WO2008053848A1 - Agent for alignment treatment of liquid crystal and liquid crystal display element using the same - Google Patents

Agent for alignment treatment of liquid crystal and liquid crystal display element using the same Download PDF

Info

Publication number
WO2008053848A1
WO2008053848A1 PCT/JP2007/071045 JP2007071045W WO2008053848A1 WO 2008053848 A1 WO2008053848 A1 WO 2008053848A1 JP 2007071045 W JP2007071045 W JP 2007071045W WO 2008053848 A1 WO2008053848 A1 WO 2008053848A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
ring
aligning agent
carbon atoms
component
Prior art date
Application number
PCT/JP2007/071045
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Hosaka
Kohei Goto
Noritoshi Miki
Kenzo Yada
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to KR1020097008679A priority Critical patent/KR101455418B1/en
Priority to JP2008542107A priority patent/JP5218062B2/en
Priority to CN200780040292XA priority patent/CN101600989B/en
Publication of WO2008053848A1 publication Critical patent/WO2008053848A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1525Four-membered rings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film, and a liquid crystal display element using the same.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment film that is industrially used is produced by applying a polyimide-based liquid crystal alignment treatment agent composed of a polyimide precursor, a polyamic acid or a polyimide solution, onto a substrate, and forming a film.
  • a surface stretching process is further performed by rubbing after film formation.
  • a method using an anisotropic photochemical reaction such as irradiation with polarized ultraviolet rays has been proposed. In recent years, studies for industrialization have been conducted.
  • the liquid crystal alignment film is used for controlling the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal, the performance of the liquid crystal display element becomes higher, and the range of use expands year by year. Among them, the stability of the pretilt angle which is not just a predetermined pretilt angle can be obtained.
  • liquid crystal display elements in order to improve the alignment uniformity of the liquid crystal, the liquid crystal is sometimes isotropically treated by heat treatment after sealing the liquid crystal. If the pretilt angle stability is low, if the pretilt angle of the desired size cannot be obtained after this isotropic treatment, or if the pretilt angle has a variation force S! /, Problems arise.
  • liquid crystal display elements that use a backlight that generates a large amount of heat to obtain high brightness and liquid crystal display elements that are used in in-vehicle applications, such as car navigation systems.
  • the one panel may be used or left in a high temperature environment for a long time. Under such severe conditions, if the pretilt angle changes gradually, problems such as failure to obtain initial display characteristics and uneven display may occur.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-234410
  • the present invention has been made in view of the above circumstances, and its problem is to provide a liquid crystal aligning agent having excellent pretilt angle stability even under a high temperature environment for a long time, and pretilt. To provide a liquid crystal display element with little change in corners and excellent display reliability.
  • the present invention also provides a liquid crystal aligning agent that does not deteriorate the alignment of the liquid crystal even under weak rubbing conditions, that is, regardless of the rubbing conditions. Make it an issue
  • the present invention has the following gist.
  • a liquid crystal aligning agent containing the following (i) component and (ii) component.
  • At least one polymer selected from the group consisting of polyamic acid and polyimide (ii) A crosslinkable compound having at least two oxetane groups represented by the following formula [1] in the molecule.
  • X represents N, NH, CO, 0, S, SO, Si, cinoresesquioxane, polysiloxa
  • an organic group having 1 to 20 carbon atoms and the organic group may contain a heteroatom (N, 0, S, Si).
  • X and X are each independently , Single bond, NH, CO, 0,
  • Y are each independently a carbon number
  • n and n each independently represents an integer of 0 to 20, and may contain heteroatoms (N, 0, S, Si). And m + n is an integer from 2 to 20)
  • X and X are each independently a single bond, NH, CO, 0, S, SO, or
  • 2 3 2 represents an organic group having 2 to 2 carbon atoms;! -20, and the organic group may contain heteroatoms (N, 0, S, Si). Y and Y are independent of each other. Indicating an organic group with 20 to 20 carbon atoms
  • the organic group may contain hetero atoms (N, 0, S, Si).
  • Z is a single bond, NH, N (CH), NHCO, CONH, NHCONH, CO, COO , 0, S, SO, CF,
  • X is NH, N (CH), NHCO, CONH, NHCONH, CO, COO, OC
  • Y and Y each independently represent an alkyl group having carbon number;! -10
  • M and n are integers from 0 to 20, and m + n is an integer from 2 to 20.
  • liquid crystal aligning agent according to any one of (1) to (6) above, further containing an organic solvent.
  • liquid crystal alignment treatment agent of the present invention By using the liquid crystal alignment treatment agent of the present invention, a liquid crystal alignment film having excellent pretilt angle stability can be obtained even under a high temperature environment for a long time, and a liquid crystal display element having this liquid crystal alignment film Is excellent in reliability.
  • the liquid crystal alignment treatment agent of the present invention is particularly useful in applications that require rubbing treatment because the orientation of the liquid crystal does not decrease even under weak rubbing conditions in which the stretchability of the polymer by rubbing is difficult to be inhibited. is there.
  • the liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of polyamic acid and polyimide.
  • the specific structures of the polyamic acid and polyimide are not particularly limited, and may be, for example, polyamic acid or polyimide contained in a known liquid crystal aligning agent.
  • the polyamic acid can be easily obtained by reacting tetracarboxylic acid or a tetracarboxylic acid derivative with diamine.
  • the method for producing the polyamic acid and polyimide as the component (A) used in the present invention is not particularly limited.
  • a polycarboxylic acid is reacted with a tetracarboxylic acid component selected from tetracarboxylic acids and derivatives thereof and a diamine component consisting of one or more diamine compounds to form a polyamic acid.
  • a method is used in which the polyamic acid is imidized to form a polyimide.
  • the polyamic acid obtained is obtained by using a force S to make a monopolymer (homopolymer) or a copolymer (copolymer) by appropriately selecting a tetracarboxylic acid component and a diamine component as raw materials.
  • tetracarboxylic acid and its derivatives are tetracarboxylic acid, tetracarboxylic acid dihalide, and tetracarboxylic dianhydride.
  • tetracarboxylic dianhydride is preferred because it has a high reactivity with diamine compounds! /.
  • Examples include tetracarboxylic acids such as 5, 9, and 10 tetracarboxylic acids. Furthermore, these dicarboxylic acid tetrahalides and dianhydrides of tetracarboxylic acids can be mentioned. [0018] Particularly for liquid crystal alignment film applications, alicyclic tetracarboxylic acids and their dianhydrides and their dicarboxylic acid diacid halides are particularly preferred from the viewpoint of transparency of the coating film.
  • the tetracarboxylic acid and its derivatives exemplified above are used singly or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding characteristics, accumulated charges, etc. in the case of forming a liquid crystal alignment film. It ’s the power to do.
  • the diamine used for the polyamic acid synthesis reaction is not particularly limited.
  • diamines having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a complex ring, and a macrocyclic substituent comprising them in the diamine side chain can be exemplified.
  • R represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group
  • R is CO ⁇ , OC ⁇ , C ⁇ NH, NHCO, CH, ⁇ , CO, or
  • NH represents R represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkyl group
  • R represents ⁇ , OCH, CH ⁇ , COOCH, or CHOC ⁇ .
  • R represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, or a fluorine-containing alkyl group.
  • R represents COO, OCO, CONH, NHCO, COOCH, C
  • R is alkyl having 1 to 22 carbon atoms
  • R represents COO, OCO, CONH, NHCO, COOCH, CH
  • R is a fluorine group, cyan group, trif
  • diaminosiloxanes represented by the following formula [A21] can also be mentioned.
  • the above-mentioned jamines can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
  • a raw material having a hydroxyl group or a carboxyl group among the above-described raw materials for synthesizing a polyamic acid can increase the reaction efficiency between the polyamic acid or polyimide and a crosslinkable compound described later.
  • Specific examples of such raw materials include 2,5 diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzol alcohol, 2,4 diaminophenol.
  • R represents COO, OCO, CONH, NHCO, CH, 0, CO, or Represents NH
  • R represents COO, OCO, CONH
  • H represents O OCO, CH 0, OCH, CH, 0, or NH
  • R represents a hydroxyl group or a carboxy group.
  • the organic solvent used for synthesizing the polyamic acid is not particularly limited as long as the produced polyamic acid can be dissolved.
  • Specific examples include N, N dimethylenoformamide, N, N dimethylacetamide, N methyl 2-pyrrolidone, N methylcaprolatatam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ Butyrolatatone, isopropyl alcohol, methoxymethyl pentanol mononole, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethino ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl bitanol, ethino recanole bittone, ethylene glycol Ethylene glycol mononomonoacetate, ethylene
  • a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent within a range where the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes the resulting polyamic acid to hydrolyze, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • a method of reacting tetracarboxylic acid and its derivative with diamine in an organic solvent when synthesizing polyamic acid the solution in which diamine is dispersed in an organic solvent is stirred, and the tetracarboxylic acid and dicarboxylic acid are stirred.
  • a method in which the derivative is added as it is or after being dispersed or dissolved in an organic solvent and conversely, a method in which diamine is added to a solution in which tetracarboxylic acid and its derivative are dispersed or dissolved in an organic solvent, tetracarboxylic acid and its Examples thereof include a method of alternately adding a derivative and diamine. Any of these methods may be used.
  • tetracarboxylic acid and its derivatives or diamines when they are composed of a plurality of types of compounds, they may be reacted in a premixed state or individually, or they may be reacted individually, and further reacted individually. May be mixed to form a high molecular weight product.
  • the temperature at which the polyamic acid is synthesized is a force capable of selecting an arbitrary temperature of -20 ° C to 150 ° C, and preferably -5 ° C to 100 ° C.
  • the reaction can be performed at any concentration. If the concentration is too low, it is difficult to obtain a high molecular weight polymer. If the concentration is too high, the reaction solution becomes too viscous and uniform stirring is difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the ratio of the number of moles of the diamine component to the number of moles of the tetracarboxylic acid and its derivative is 0.8 to 1.2; A force of 1 is preferable. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • Catalytic imidation can be performed by stirring polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the reaction temperature at this time is 120 to 250 ° C, preferably 0 to 180 ° C. The higher the reaction temperature, the faster the imidization proceeds, but if it is too high, the molecular weight of the polyimide may decrease.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times that of the amic acid group, and the amount of the acid anhydride is !! to 50 mol times, preferably 3 to 30 mole times. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it is difficult to completely remove the reaction after the reaction is completed.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the organic solvent is not limited as long as it dissolves the polyamic acid. Specific examples include N, N'-dimethylformamide, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolatatam, dimethylsulfoxide, tetramethyl. Urea, dimethinolesnorephone, hexamethinoresnorexoxide, ⁇ -butyrolatatone, etc.
  • the imidization rate by catalytic imidation is controlled by the control force S by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the produced polyimide can be obtained by charging the reaction solution into a poor solvent and collecting the produced precipitate.
  • the poor solvent to be used is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polyimide deposited in a poor solvent and filtered can be powdered by filtering at normal temperature or reduced pressure at room temperature or by heating.
  • the polyimide powder can also be purified by repeating the steps of dissolving the polyimide powder in an organic solvent and reprecipitating 2 to 10 times. It is preferable to carry out this purification process when impurities cannot be removed by a single precipitation recovery operation!
  • the molecular weight of the specific polyimide used in the present invention is not particularly limited, but is preferably 2,000 to 200,000 in terms of weight average molecular weight from the viewpoints of handling and stability of characteristics when a film is formed, and more Preferably, it is 4,000-50,000. It is determined by molecular weight (also GPC (genore- nomi-emission chromatography).
  • liquid crystal aligning agent of the present invention has the following formula in the molecule.
  • crosslinkable compound having at least two oxetane groups represented by [1] hereinafter referred to as a specific crosslinkable compound.
  • an oxetane group reacts with a carboxyl group or a hydroxyl group in the presence of heat or an acid catalyst. Therefore, a specific crosslinkable compound reacts with a carboxyl group or a hydroxyl group contained in polyamic acid or polyimide to form a film crosslinked between polymers. Further, The oxetane group causes a self-polymerization reaction in addition to the reaction with a carboxyl group or a hydroxyl group. In particular, since the oxetane group has a higher nucleophilicity than the epoxy group, a polymer having a high final conversion and a high degree of polymerization can be obtained. That is, the liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention is a film having high heat resistance due to a polymer formed by cross-linking between polymers and self-polymerization of oxetane groups.
  • the oxetane group has a four-membered ring structure, when it reacts with a carboxyl group or a hydroxyl group and when it self-polymerizes, a methylene group is present at the bonding site compared to an epoxy group that has a three-membered ring structure One more. Therefore, the film obtained from the liquid crystal aligning agent of the present invention has high toughness when stretched as compared with a film using an epoxy-based crosslinkable compound, so that the stretchability of the polymer by rubbing is inhibited. It is hard to be done.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is more stable to the heat of the pretilt angle than the liquid crystal alignment film containing no crosslinkable compound or the liquid crystal alignment film containing an epoxy crosslinkable compound. And the liquid crystal orientation does not deteriorate even under weak rubbing conditions.
  • the number of oxetane groups possessed by the specific crosslinkable compound is not particularly limited as long as it is 2 or more, but is preferably 2 to 50, more preferably 2 ⁇ 20.
  • the specific structure of the specific crosslinkable compound is not particularly limited, and examples thereof include a compound represented by the following formula [2].
  • X represents N, NH, CO, 0, S, SO, Si. Cinolesesquioxane, polysiloxa
  • the organic group having 1 to 20 carbon atoms may contain a heteroatom (N, 0, S, Si).
  • the organic group having 1 to 20 carbon atoms of X may include an organic group having a cyclic structure. Specifically, cyclopropane ring, cyclobutane ring, cyclo Pentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cyclohe Ptadecane ring, cyclodecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tri
  • 2 3 2 represents an organic group having a prime number !!-20, and the organic group may contain a heteroatom (N, 0, S, Si).
  • Y and Y are each independently an organic compound having a carbon number;! To 20, preferably 1 to 15 carbon atoms.
  • a hetero atom N, 0, S, Si
  • N, 0, S, Si a hetero atom
  • n and n each independently represents an integer of 0 to 20, preferably 0 to 15; and m + n represents an integer of 2 to 20, preferably 2 to 15;
  • X force N, NH, CO 2, 0, silsesquioxane, polysiloxane, or an organic group having 1 to 10 carbon atoms is preferable.
  • the organic group may contain heteroatoms (N, O), and the carbon number of X;!
  • To 10 organic groups include cyclohexane ring, benzene ring, naphthalene Ring, fluorene ring, pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, force rubazole ring, pyridazine ring, triazine ring, triazole ring, pyrazine ring, benzimidazole ring, or quinoxaline ring
  • An organic group having may be contained.
  • X and X Each independently NH, CO, COO, OCO, 0, CONH, or NHCO, and Y and ⁇ are each independently an alkyl group having 1 to 10 carbon atoms, m, n Respectively
  • n is an integer of 2 to 20.
  • Examples include a structure selected from S 1] to [S4].
  • polysiloxane having at least one structure selected from the group consisting of general formulas [P 1], [P2], [P3], and [P4].
  • R, R, R, R and R in the formulas [P 1] to [P4] are each independently a hydrogen atom or a hydroxyl group
  • a group having 1 to 10 carbon atoms a group selected from an alkyl group, an alkoxy group, an aliphatic ring group, or an aromatic ring group.
  • formula [2] include structures of the following formulas [3] to [8].
  • X and X are each independently a single bond, NH, CO, 0, S, SO, or
  • 2 3 2 Indicates an organic group having 2 to 2 carbon atoms,! ⁇ 20, and the organic group may contain a heteroatom (N, 0, S, Si). Y and Y are independent of each other. Carbon number;! ⁇ 20, preferably charcoal
  • a prime number;! To 15 represents an organic group, and the organic group may include a heteroatom (N, 0, S, Si).
  • Z is a single bond, NH, N (CH), NHCO, CONH, NHCONH, CO, C 00, 0, S, SO, CF, C (CF), Si (CH), OSi (CH), Si (CH) 0, OSi (C
  • H 0 or an alkyl group having 1 to 10 carbon atoms; m and n are each independently 0 to 5
  • n is an integer of 2 to 10, preferably an integer of 2 to 6.
  • M and n are each independently an integer of 0 to 5, preferably an integer of 0 to 3, and m + n is an integer of 2 to; an integer of 10 and preferably an integer of 2 to 6.
  • X is MH, N (CH), NHCO, CONH, NHCONH, CO, COO, O
  • Y and Y each independently represent an alkyl group having carbon atoms;! -10
  • An alkyl group having 1 to 5 carbon atoms is preferred.
  • X in the formula [5] is N, an aliphatic ring having 1 to 20 carbon atoms, an aromatic ring having 1 to 20 carbon atoms, or charcoal
  • An alkylene having 1 to 20 prime atoms preferably N, an aliphatic ring having 1 to 15 carbon atoms, an aromatic ring having 1 to 15 carbon atoms, or an aromatic ring having 1 to 15 carbon atoms, or an alkylene having 1 to 15 carbon atoms, more preferably
  • X is N, an aliphatic ring having 1 to 10 carbon atoms, an aromatic ring having 1 to 10 carbon atoms, or an alkylene having 1 to 10 carbon atoms.
  • Y and Y in the formula [5] each represents an alkyl group having! To 10 carbon atoms, preferably,
  • Each is an alkyl group having 1 to 5 carbon atoms.
  • M and n in the formula [5] represent an integer of 0 to 20, and m + n is an integer of 2 to 20.
  • m and n are integers from 0 to 15, and m + n is an integer from 2 to 15. More preferably, m and n represent an integer of 0 to 0, and m + n is an integer of 2 to 10;
  • M and n are integers from 0 to 20, and m + n is an integer from 2 to 20.
  • X is N, an aliphatic ring having 1 to 15 carbon atoms, an aliphatic ring having 1 to 15 carbon atoms, an aromatic ring having 15 carbon atoms or an alkylene having 1 to 15 carbon atoms, and Y and Y each have 1 to 5 alkyl
  • X is N, an aliphatic ring having 1 to 10 carbon atoms, an aliphatic ring having 1 to 10 carbon atoms, an aromatic ring having 10 carbon atoms or an alkylene having 1 to 10 carbon atoms, and Y and Y are each a carbon number. ;! ⁇ 5 al
  • n is an integer from 0 to 10 and m + n is an integer from 2 to 10;
  • Examples of the aliphatic ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cyclodecane ring, a cyclododecane ring, and a cyclotridecane.
  • aromatic ring examples include decahydronaphthalene ring, benzene ring, naphthalene ring, tetrahydro Naphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, phenalene ring, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, azole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline Ring, force rubazole ring, purine ring, thiadiazole ring, pyridazine ring, triazine ring, virazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, cinnoline ring, phenanthorin ring
  • Y and Y are each independently an alkyl group having 1 to 10 carbon atoms, preferably
  • n is an integer of 1 to 10, preferably an integer of 1 to 5.
  • Y and ⁇ ⁇ ⁇ ⁇ are each independently an alkyl group having from 10 to 10 carbon atoms, preferably
  • a C1-C5 alkyl group is shown, (eta) is an integer of 1-10, Preferably an integer of 1-5 is shown.
  • ⁇ and ⁇ are each independently an alkyl group having 1 to 10 carbon atoms, preferably carbon
  • a prime number is an alkyl group having 1 to 5, and ⁇ is an integer of 1 to 10, preferably an integer of 1 to 5. More specific specific crosslinkable compounds include compounds of the formulas [9] to [; 19].
  • the said compound is an example of a specific crosslinkable compound, It is not limited to these. Further, the specific crosslinkable compound contained in the liquid crystal aligning agent of the present invention may be one kind or a combination of two or more kinds.
  • the content of the component (B) (specific crosslinkable compound) is 0. with respect to 100 parts by mass of the component (A) (polymer component) made of polyamic acid and / or polyimide. It is more preferably 0.;! To 100 parts by mass in order that a crosslinking reaction that preferably proceeds to 150 parts by mass proceeds to produce the desired film curability and does not deteriorate the orientation of the liquid crystal. , In particular;! ⁇ 50 parts by weight.
  • the liquid crystal aligning agent of the present invention is not particularly limited, but it is usually necessary to form a uniform thin film of 0.01 to 1.0 m on the substrate when preparing the liquid crystal alignment film. Therefore, the coating solution preferably contains an organic solvent that dissolves these components in addition to the components (A) and (B).
  • the liquid crystal aligning agent of the present invention contains the organic solvent, from the viewpoint of forming a uniform thin film by coating, the content of the organic solvent is liquid crystal alignment. In the treatment agent, it is preferably 90 to 99% by mass, more preferably 92 to 97% by mass.
  • the content of component (A) is preferably 0.4 to 9.9% by mass, particularly preferably 0.5 to 9.9% by mass, and the content of component (B) is preferably 0. ;! ⁇ 9.6 mass%, particularly preferably 0.;! ⁇ 9.5 mass%.
  • organic solvent to be contained in the liquid crystal aligning agent of the present invention include organic solvents used in the above-described synthesis reaction of polyamic acid. Particularly preferred are N 2, N dimethylformamide, N, N dimethylacetamide, N methyl 2-pyrrolidone, dimethyl sulfoxide, and ⁇ -butyrolatatone. These organic solvents may be used alone or in combination of two or more.
  • ethilce mouth solve, butyno cerero sonoreb, ethinorecanolebitonore, butinorecanolebitonore, diethyleneglyconoresi Ethenoleethenore, Diethyleneglycolenomethinoretinotenole, Diethyleneglycolenoremo Nobuchinoleetenore, Ethinorecanolebitonoreacetate, Ethyleneglycolanol, Ethyleneglycolmonohexylether, 1-methoxy-2- Propanol, 1 Ethoxy-2-Prono Norole, 1-Butoxy-1-2-Prono Norole, 1-Phenoxy 2-Prono Norole, Propyrendalol Monoacetate, Propylene Glycol Diacetate, Propylene Glycol Monore 1 Monomethinoreate Nore 2 —Acetate, propylene
  • the liquid crystal aligning agent of the present invention contains the component (A), the component (B), and the organic solvent as well as the additive component as long as the effect of the present invention is not impaired. You can be! / Examples of the additive component include a compound for improving the adhesion between the liquid crystal alignment film and the substrate, and a surfactant for improving the flatness of the coating film.
  • Specific examples of the compound that improves the adhesion between the coating film and the substrate include the following.
  • Examples of the surfactant for improving the flatness of the coating film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), Megafuk F171, F173, R-30 (above, manufactured by Dainippon Ink), Florad FC430, FC431 ( (Made by Sumitomo 3EM), Asahi Guard AG710, Surflon S-382, SC101, SC 102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Shishiko).
  • the ratio of these surfactants to be used is preferably 0.0;! To 2 parts by mass, more preferably 0.0;! To 1 part by mass with respect to 100 parts by mass of the polymer component.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like. .
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate; a plastic substrate such as an acrylic substrate or a polycarbonate substrate; it is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal is formed from the viewpoint of simplifying the process.
  • a reflective liquid crystal display element an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used according to the purpose.
  • Firing after applying the liquid crystal aligning agent can be performed at any temperature of 100 to 350 ° C, preferably 120 to 300 ° C, more preferably 150 to 250 ° C. This firing can be performed with a hot plate, a hot-air circulating furnace, an infrared furnace, or the like.
  • the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. , More preferably 10 to! OOnm.
  • the baked coating film is treated with rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method. It is.
  • a pair of substrates with a liquid crystal alignment film is prepared.
  • the thickness of the spacer at this time is preferably;! -30 m, more preferably 2--10 ⁇ m.
  • the liquid crystal display element produced using the liquid crystal aligning agent of the present invention can be a liquid crystal display device having excellent pretilt angle stability, including a TN element, STN element, TFT liquid crystal element, Furthermore, it is useful for a vertical alignment type liquid crystal display element.
  • CBDA 1, 2, 3, 4 cyclobutane tetracarboxylic dianhydride
  • DADPA 4, 4'-diaminodiphenylamine
  • Oxetane C (OX-SC)
  • Epoxy A YH-434L (manufactured by Tohto Kasei)
  • Epoxy B Epolide GT-401 (4-functional alicyclic epoxy resin) (manufactured by Daicel Chemical Industries); modified with epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) ⁇
  • the molecular weight of polyimide in the synthesis example is
  • Standard samples for preparing calibration curves TSK standard polyethylene oxide (molecules !: approx. 9000,000, 150,000, 100,000, 30,000) manufactured by Tosohichi Co., Ltd. and polyethylene glycol (molecular weight approx. ).
  • the imidation ratio of polyimide in the synthesis example was measured as follows. Put 20 mg of polyimide powder into an NMR sample tube (NMR sampling tube standard ⁇ 5 mm, manufactured by Kusano Kagaku Co., Ltd.) and mix with deuterated dimethyl sulfoxide (DMSO-d, 0.05% TMS)
  • NMR sample tube NMR sampling tube standard ⁇ 5 mm, manufactured by Kusano Kagaku Co., Ltd.
  • DMSO-d deuterated dimethyl sulfoxide
  • X is the accumulated proton peak value derived from the NH group of the amic acid
  • y is the accumulated peak value of the reference proton
  • is the aprotic group proton of the amic acid in the case of polyamic acid (imidation rate is 0%) 1 This is the ratio of the number of reference protons to one.
  • CBDA (5.lg, 26.Ommol), p-PDA (2.53g, 23.4mmol), AP18 (0.98g, 2.6 mmol) were mixed in NMP (81.5g) at 25 ° C. The mixture was reacted for 6 hours to obtain a polyamic acid solution (A).
  • the number average molecular weight of this polyamic acid solution (A) was 22000, and the weight average molecular weight was 78900.
  • CBDA (3.04 g, 15.5 mmol), p—PDA (1.56 g, 14.4 mmol), PCH (0.61 g, 1.6 mmol) were mixed in NMP (22. Og) at 25 ° C. The mixture was reacted for 5 hours to obtain a polyamic acid solution (B).
  • This polyamic acid solution (B) had a number average molecular weight of 25,000 and a weight average molecular weight of 94,000.
  • BODA (16.9 g, 68 mmol), p-PDA (8. 74 g, 81 mmol), PCH (3.43 g, 9 mmol) were mixed in NMP (100. lg) and reacted at 40 ° C for 3 hours. Thereafter, CBDA (4. lg, 21 mmol) and NMP (52.2 g) were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution (C).
  • the number average molecular weight of this polyamic acid (C) was 20500, and the weight average molecular weight was 76500.
  • (E) was obtained.
  • the imidation ratio of this polyimide was 54%, the number average molecular weight was 18300, and the weight average molecular weight was 45300.
  • the coating surface is rubbed with a roll diameter of 120mm and a rayon cloth rubbing device under the conditions of a rotation speed of 70 Orpm, a moving speed of 40mm / sec, and an indentation amount of 0.3mm.
  • a substrate with a liquid crystal alignment film was obtained. Prepare two substrates with a liquid crystal alignment film, sandwich the 50 m spacer with the liquid crystal alignment film surface on the inside, combine them so that the rubbing direction is reversed, and bond the periphery with a sealant. An empty cell was prepared. Liquid crystal ZLI-2293 (manufactured by Merck & Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel aligned nematic liquid crystal cell.
  • the pretilt angle (degrees) at the initial stage after the liquid crystal injection and after the heat treatment at 120 ° C for 5 hours was measured with a pretilt angle measuring device (Model PA S-301, manufactured by ELSICON). ) At room temperature. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • Oxetane (A) (0.06 g), NMP (4.05 g), and BCS (2.35 g) were added to the polyamic acid solution (A) (6.05 g) obtained in Synthesis Example 1, and the mixture was stirred.
  • An alignment agent [2] was obtained.
  • a liquid crystal cell was prepared in the same manner as in Example 1, and the heat treatment was performed at 120 ° C. for 5 hours at the initial stage after the liquid crystal was injected at an indentation amount of 0.3 mm. The subsequent pretilt angle was measured.
  • the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
  • the pretilt angle was measured at the initial stage after liquid crystal injection and after heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure. Table 1 shows the measurement results of the pretilt angle.
  • the pretilt angle was measured at the initial stage after the liquid crystal injection and after the heat treatment for 5 hours at 120 ° C. As a result of confirming the alignment uniformity of the liquid crystal by observation with a polarizing microscope, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • liquid crystal alignment treatment agent [4] Using the obtained liquid crystal alignment treatment agent [4], a liquid crystal cell was produced in the same manner as in Example 1, and heat treatment was performed at 120 ° C. for 5 hours at the initial stage after injecting the liquid crystal at an indentation amount of 0.3 mm. The subsequent pretilt angle was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
  • Table 1 shows the measurement results of the pretilt angle.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was prepared using the obtained liquid crystal aligning agent [6] in the same manner as in Example 1, and heat treatment was performed at 120 ° C for 5 hours at the initial stage after injecting the liquid crystal at a pushing amount of rubbing treatment of 0.3 mm. The subsequent pretilt angle was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
  • Table 1 shows the measurement results of the pretilt angle.
  • the obtained liquid crystal alignment treatment agent [7] was used! A liquid crystal cell was prepared in the same manner as in Example 1 and the initial stage after liquid crystal injection at a rubbing treatment push amount of 0.3 mm, at 120 ° C for 5 hours. The pretilt angle after the heat treatment was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
  • Table 1 shows the measurement results of the pretilt angle.
  • Epoxy (A) (0. l lg), N MP (4. 75 g), and BCS (2.52 g) were added to the polyamic acid solution (A) (6.00 g) obtained in Synthesis Example 1 and stirred.
  • a liquid crystal aligning agent [8] was obtained.
  • a liquid crystal cell was prepared using the obtained liquid crystal aligning agent [8] in the same manner as in Example 1, and the initial stage after injecting the liquid crystal at a rubbing amount of 0.3 mm, after heat treatment at 120 ° C. for 5 hours.
  • the pretilt angle was measured.
  • a so-called fluid alignment was observed in which the liquid crystal was aligned in the direction in which the crystals flowed. Furthermore, this flow orientation did not disappear at each stage after the heat treatment, and in addition, a disclination line was generated by the heat treatment. Because of such alignment failure, the pretilt angle of this liquid crystal cell could not be measured.
  • Table 1 shows the measurement results of the pretilt angle.
  • Epoxy (A) (0.06 g), N MP (4.03 g), BCS (2.34 g) were added to the polyamic acid solution (A) (6.05 g) obtained in Synthesis Example 1 and stirred.
  • a liquid crystal aligning agent [9] was obtained.
  • a liquid crystal cell was prepared in the same manner as in Example 1, and the initial stage after injecting the liquid crystal at a rubbing amount of 0.3 mm, after heat treatment at 120 ° C. for 5 hours.
  • the pretilt angle was measured.
  • the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
  • the liquid crystal with no alignment failure was uniformly aligned, but a disclination line was generated after heating at 120 ° C for 5 hours. did. For this reason, it was impossible to measure the pretilt angle of the liquid crystal cell after heating at 120 ° C for 5 hours.
  • Table 1 shows the measurement results of the pretilt angle.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [11] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • the pretilt angle was measured at the initial stage after liquid crystal injection and after heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [12] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • the pretilt angle was measured at the initial stage after the liquid crystal injection and after the heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [13] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • the pretilt angle was measured at the initial stage after liquid crystal injection and after heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure.
  • Table 1 shows the measurement results of the pretilt angle. [0113] (Example 9)
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [14] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was prepared in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [15] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [16] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Then press the rubbing process The pretilt angle was measured at the initial stage after liquid crystal injection at a depth of 0.3 mm and after heat treatment at 120 ° C for 5 hours. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell. The liquid crystal was uniformly aligned.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [17] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell. The liquid crystal was uniformly aligned.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [18] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [19] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • NMP (17.7 g) was added to the polyimide powder (G) (3.00 g) obtained in Synthesis Example 7, and stirred at 80 ° C. for 40 hours for dissolution.
  • NMP (4.35 g) and BCS (25. lg) were added and stirred to obtain a liquid crystal aligning agent [20].
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [20] was used and the liquid crystal was MLC-6608 (manufactured by Merck & Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [21] was used and the liquid crystal was MLC-6608 (manufactured by Merck & Japan).
  • the plethys after the heat treatment at 120 ° C. for 5 hours.
  • the tilt angle was measured.
  • so-called fluid alignment was observed in which the liquid crystal was aligned in the direction in which the liquid crystal flowed when the liquid crystal was injected.
  • this flow orientation was not canceled at each stage after the heat treatment, and in addition, a discrimination line was generated by the heat treatment. Because of such alignment failure, it was not possible to measure the pretilt angle of this liquid crystal senore.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [22] was used and the liquid crystal was MLC-6608 (manufactured by Merck Japan). Subsequently, the pretilt angle after the heat treatment at 120 ° C. for 5 hours was measured in the initial stage after the liquid crystal injection at a rubbing treatment push amount of 0.3 mm. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal was uniformly aligned with any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [23] was used and the liquid crystal was MLC-6608 (manufactured by Merck Japan). Subsequently, the pretilt angle after the heat treatment at 120 ° C. for 5 hours was measured in the initial stage after the liquid crystal injection at a rubbing treatment push amount of 0.3 mm. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal was uniformly aligned with any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • a liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [24] was used and the liquid crystal was MLC-6608 (manufactured by Merck Japan). Subsequently, the pretilt angle after the heat treatment at 120 ° C. for 5 hours was measured in the initial stage after the liquid crystal injection at a rubbing treatment push amount of 0.3 mm. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal was uniformly aligned with any liquid crystal cell.
  • Table 1 shows the measurement results of the pretilt angle.
  • each pretilt angle is an average value obtained by measuring the center of the liquid crystal cell and the upper and lower lcm points.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a specific cross-linking.
  • the orientation of the liquid crystal was not changed, and The pretilt angle after high-temperature treatment changed by less than 1 degree, and the stability of the pretilt angle was greatly improved.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film excellent in the stability of the pretilt angle of the liquid crystal can be obtained.
  • the liquid crystal display element having this liquid crystal alignment film has excellent reliability, it is useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.

Abstract

Disclosed is an agent for the alignment treatment of a liquid crystal, which has a highly stabilized pretilt angle. Also disclosed is a liquid crystal display element which has less change in a pretilt angle and also has excellent display reliability. The agent for the alignment treatment of a liquid crystal comprises at least one polymer selected from the group consisting of polyamic acid and polyimide and a crosslinkable compound having at least two oxetane groups represented by the formula [I] in the molecule.

Description

明 細 書  Specification
液晶配向処理剤及びそれを用いた液晶表示素子  Liquid crystal alignment treatment agent and liquid crystal display element using the same
技術分野  Technical field
[0001] 本発明は液晶配向膜の作製に用レ、る液晶配向処理剤、及びそれを用レ、た液晶表 示素子に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film, and a liquid crystal display element using the same.
背景技術  Background art
[0002] 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割 を担っている。現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体 であるポリアミド酸やポリイミドの溶液からなるポリイミド系の液晶配向処理剤を、基板 に塗布し成膜することで作製され、基板面に対して液晶を平行配向又は傾斜配向さ せる場合は、成膜した後、更にラビングによる表面延伸処理が行われている。また、 ラビング処理に代わるものとして偏光紫外線照射等による異方性光化学反応を利用 する方法も提案されており、近年では工業化に向けた検討が行われている。  In a liquid crystal display element, a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction. Currently, the main liquid crystal alignment film that is industrially used is produced by applying a polyimide-based liquid crystal alignment treatment agent composed of a polyimide precursor, a polyamic acid or a polyimide solution, onto a substrate, and forming a film. When the liquid crystal is aligned in parallel or inclined with respect to the substrate surface, a surface stretching process is further performed by rubbing after film formation. As an alternative to rubbing treatment, a method using an anisotropic photochemical reaction such as irradiation with polarized ultraviolet rays has been proposed. In recent years, studies for industrialization have been conducted.
[0003] 液晶配向膜は、基板に対する液晶の角度、即ち液晶のプレチルト角の制御を行う ためにも用いられている力 S、液晶表示素子が高性能化し、その利用範囲が年々拡大 してゆく中で、単に所定のプレチルト角が得られるだけではなぐプレチルト角の安定 1·生が益々重要となってきて!/、る。 [0003] The liquid crystal alignment film is used for controlling the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal, the performance of the liquid crystal display element becomes higher, and the range of use expands year by year. Among them, the stability of the pretilt angle which is not just a predetermined pretilt angle can be obtained.
[0004] プレチルト角の安定性の点から、液晶配向膜の製造工程において、ラビング条件 によらず一定のプレチルト角を得ることを目的として、分子内に 2個以上のエポキシ基 を有する化合物をポリイミド系の液晶配向処理剤に含有させることが提案されている( 例えば、特許文献 1参照)。 [0004] From the viewpoint of the stability of the pretilt angle, a compound having two or more epoxy groups in the molecule is used for the purpose of obtaining a constant pretilt angle regardless of the rubbing conditions in the manufacturing process of the liquid crystal alignment film. It has been proposed to be included in a liquid crystal alignment treatment agent (for example, see Patent Document 1).
[0005] また、液晶表示素子の製造工程においては、液晶の配向均一性を高めるために、 液晶を封入した後に加熱処理して一旦液晶を等方化する場合がある。し力、しな力 Sら、 プレチルト角の安定性が低い場合は、この等方化処理後に目的の大きさのプレチノレ ト角が得られない、あるいはプレチルト角にばらつき力 S生じると!/、つた問題が起こる。 特に、高輝度を得るために発熱量が大きいバックライトを使用している液晶表示素子 や、車載用途で用いられる液晶表示素子、例えば、カーナビゲーシヨンシステムゃメ 一ターパネルでは、長時間高温環境下で使用あるいは放置される場合がある。その ような過酷条件において、プレチルト角が徐々に変化した場合、初期の表示特性が 得られなくなったり、表示にムラが発生したりなどの問題が起こる。 [0005] In addition, in the manufacturing process of a liquid crystal display element, in order to improve the alignment uniformity of the liquid crystal, the liquid crystal is sometimes isotropically treated by heat treatment after sealing the liquid crystal. If the pretilt angle stability is low, if the pretilt angle of the desired size cannot be obtained after this isotropic treatment, or if the pretilt angle has a variation force S! /, Problems arise. In particular, liquid crystal display elements that use a backlight that generates a large amount of heat to obtain high brightness, and liquid crystal display elements that are used in in-vehicle applications, such as car navigation systems. The one panel may be used or left in a high temperature environment for a long time. Under such severe conditions, if the pretilt angle changes gradually, problems such as failure to obtain initial display characteristics and uneven display may occur.
[0006] 特許文献 1:特開平 7— 234410号公報 [0006] Patent Document 1: Japanese Patent Laid-Open No. 7-234410
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記の事情に鑑みなされたものであって、その課題は長時間高温環境 下においても、プレチルト角の安定性に優れた液晶配向処理剤を提供すること、及 びプレチルト角の変化が少なく表示の信頼性に優れる液晶表示素子を提供すること にめ ·ο。 [0007] The present invention has been made in view of the above circumstances, and its problem is to provide a liquid crystal aligning agent having excellent pretilt angle stability even under a high temperature environment for a long time, and pretilt. To provide a liquid crystal display element with little change in corners and excellent display reliability.
また、近年の液晶表示素子における画素の高密度化、基板表面構造の高立体化( 表面の凹凸が大きい)に伴い、従来よりも液晶表示面内でのラビング強度のバラツキ が大きくなつた結果、ラビングが弱い部分では液晶の配向規制力が弱くなり、部分的 な表示欠陥が発生するという問題が発生している。従って、本発明では、プレチルト 角の安定性を向上させることに加えて、弱いラビング条件に対しても、即ちラビング条 件によらず液晶の配向性が低下しない液晶配向処理剤を提供することも課題とする In addition, as the density of pixels in liquid crystal display elements has increased in recent years and the surface structure of the substrate has been increased to three-dimensional (surface irregularities are large), the variation in the rubbing strength in the liquid crystal display surface has become larger than before. In the portion where rubbing is weak, the alignment regulating force of the liquid crystal is weakened, causing a problem that a partial display defect occurs. Therefore, in addition to improving the stability of the pretilt angle, the present invention also provides a liquid crystal aligning agent that does not deteriorate the alignment of the liquid crystal even under weak rubbing conditions, that is, regardless of the rubbing conditions. Make it an issue
Yes
課題を解決するための手段  Means for solving the problem
[0008] すなわち、本発明は以下の要旨を有するものである。  That is, the present invention has the following gist.
(1)下記の (Α)成分及び (Β)成分を含有する液晶配向処理剤。  (1) A liquid crystal aligning agent containing the following (i) component and (ii) component.
(Α)ポリアミド酸及びポリイミドからなる群から選ばれる少なくとも一種類のポリマー (Β)分子内に下記の式 [1]で示されるォキセタン基を少なくとも 2個有する架橋性化 合物。  (I) At least one polymer selected from the group consisting of polyamic acid and polyimide (ii) A crosslinkable compound having at least two oxetane groups represented by the following formula [1] in the molecule.
[0009] [化 1]  [0009] [Chemical 1]
Figure imgf000003_0001
(2) (B)成分が、下記の式 [2]で表される化合物である上記(1)に記載の液晶配向 処理剤。
Figure imgf000003_0001
(2) The liquid crystal aligning agent according to the above (1), wherein the component (B) is a compound represented by the following formula [2].
[0010] [化 2] [0010] [Chemical 2]
Figure imgf000004_0001
Figure imgf000004_0001
(式 [2]中、 Xは、 N、 NH、 CO、 0、 S、 SO、 Si、シノレセスキォキサン、ポリシロキサ  (In the formula [2], X represents N, NH, CO, 0, S, SO, Si, cinoresesquioxane, polysiloxa
1 2  1 2
ン、又は炭素数 1〜20の有機基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれていてもよぐ X及び Xは、それぞれ独立して、単結合、 NH、 CO、 0、  Or an organic group having 1 to 20 carbon atoms, and the organic group may contain a heteroatom (N, 0, S, Si). X and X are each independently , Single bond, NH, CO, 0,
2 3  twenty three
S、 SO、又は炭素数 1〜20の有機基を示し、その有機基の中には、ヘテロ原子(N  S, SO, or an organic group having 1 to 20 carbon atoms, which includes a heteroatom (N
2  2
、〇、 S、 Si)が含まれていてもよぐ Y及び Yは、それぞれ独立して、炭素数;!〜 20  , 〇, S, Si) may be included Y and Y are each independently a carbon number;
1 2  1 2
の有機基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれてもよぐ m、 nは、それぞれ独立して、 0〜20の整数を示し、かつ m + nは 2〜20の整数を示 す)  And m and n each independently represents an integer of 0 to 20, and may contain heteroatoms (N, 0, S, Si). And m + n is an integer from 2 to 20)
(3) (B)成分が、下記の式 [3]で表される化合物である上記(1)に記載の液晶配向 処理剤。  (3) The liquid crystal aligning agent according to (1), wherein the component (B) is a compound represented by the following formula [3].
[0011] [化 3]  [0011] [Chemical 3]
Figure imgf000004_0002
Figure imgf000004_0002
(式 [3]中、 X及び Xは、それぞれ独立して、単結合、 NH、 CO、 0、 S、 SO、又は  (In the formula [3], X and X are each independently a single bond, NH, CO, 0, S, SO, or
2 3 2 炭素数;!〜 20の有機基を示し、その有機基の中には、ヘテロ原子(N、 0、 S、 Si)が 含まれていてもよぐ Y及び Yは、それぞれ独立して、炭素数;!〜 20の有機基を示  2 3 2 represents an organic group having 2 to 2 carbon atoms;! -20, and the organic group may contain heteroatoms (N, 0, S, Si). Y and Y are independent of each other. Indicating an organic group with 20 to 20 carbon atoms
1 2  1 2
し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれてもよぐ Zは、単結合 、 NH、 N (CH )、 NHCO、 CONH、 NHCONH、 CO、 COO, 0、 S、 SO、 CF、  However, the organic group may contain hetero atoms (N, 0, S, Si). Z is a single bond, NH, N (CH), NHCO, CONH, NHCONH, CO, COO , 0, S, SO, CF,
3 2 2 3 2 2
C (CF ) 、 Si (CH ) 、 OSi (CH ) 、 Si (CH ) 0、 OSi (CH ) 0、又は炭素数;!〜 10のアルキル基を示し、 m、 nは、それぞれ独立して、 0〜; 10の整数を示し、かつ m + nは 2〜; 10の整数を示す) C (CF), Si (CH), OSi (CH), Si (CH) 0, OSi (CH) 0, or carbon number; 10 represents an alkyl group, m and n each independently represent an integer of 0 to 10 and m + n represents an integer of 2 to 10;
(4) (B)成分が、下記の式 [4]で表される化合物である上記(1)に記載の液晶配向 処理剤。  (4) The liquid crystal aligning agent according to (1), wherein the component (B) is a compound represented by the following formula [4].
[0012] [化 4]
Figure imgf000005_0001
[0012] [Chemical 4]
Figure imgf000005_0001
(式 [4]中、 Xは、 NH、 N (CH )、 NHCO、 CONH、 NHCONH, CO、 COO、 OC  (In the formula [4], X is NH, N (CH), NHCO, CONH, NHCONH, CO, COO, OC
1 3  13
0、 0、 S、 SO、 CF、 C (CF ) 、 Si (CH ) 、 OSi (CH ) 、 Si (CH ) 0、又は OSi (  0, 0, S, SO, CF, C (CF), Si (CH), OSi (CH), Si (CH) 0, or OSi (
2 2 3 2 3 2 3 2 3 2  2 2 3 2 3 2 3 2 3 2
CH ) Oを示し、 Y及び Yは、それぞれ独立して、炭素数;!〜 10のアルキル基を示 CH) O, Y and Y each independently represent an alkyl group having carbon number;! -10
3 2 1 2 3 2 1 2
す)  )
(5) (Β)成分が、下記の式 [5]で表される化合物である上記(1)に記載の液晶配向 処理剤。  (5) The liquid crystal aligning agent according to the above (1), wherein the component (ii) is a compound represented by the following formula [5].
[0013] [化 5]  [0013] [Chemical 5]
Figure imgf000005_0002
Figure imgf000005_0002
(式 [5]中、 X力 S、 N、炭素数 1〜20の脂肪族環、炭素数 1〜20の芳香族環又は炭 素数 1〜20のアルキレンであり、 Y及び Yは、それぞれ炭素数;!〜 10のアルキル基  (In the formula [5], X force S, N, an aliphatic ring having 1 to 20 carbon atoms, an aromatic ring having 1 to 20 carbon atoms, or an alkylene having 1 to 20 carbon atoms, and Y and Y are each carbon. Number ;! ~ 10 alkyl groups
1 2  1 2
であり、 m、 nは 0〜20の整数、かつ m + nは 2〜20の整数である。 )  M and n are integers from 0 to 20, and m + n is an integer from 2 to 20. )
(6) (A)成分 100質量部に対して、(B)成分の含有量が、 0.;!〜 150質量部である 上記(1)〜(5)のいずれかに記載の液晶配向処理剤。  (6) The liquid crystal alignment treatment according to any one of the above (1) to (5), wherein the content of the component (B) is 0.;! To 150 parts by mass with respect to 100 parts by mass of the component (A) Agent.
(7)さらに、有機溶媒を含有する上記(1)〜(6)の!/、ずれかに記載の液晶配向処理 剤。  (7) The liquid crystal aligning agent according to any one of (1) to (6) above, further containing an organic solvent.
(8)前記有機溶媒が、低表面張力を有する溶媒を全有機溶媒中に 5〜80質量%含 有してなる上記(7)に記載の液晶配向処理剤。  (8) The liquid crystal aligning agent according to the above (7), wherein the organic solvent contains 5 to 80% by mass of a solvent having a low surface tension in the total organic solvent.
(9)上記(1)〜(8)のいずれかに記載の液晶配向処理剤から得られる液晶配向膜。 (10)上記(9)に記載の液晶配向膜を有する液晶表示素子。 (9) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of (1) to (8). (10) A liquid crystal display device having the liquid crystal alignment film according to (9).
発明の効果  The invention's effect
[0014] 本発明の液晶配向処理剤を用いることによって、長時間高温環境下においても、 プレチルト角の安定性に優れた液晶配向膜を得ることができ、この液晶配向膜を有 する液晶表示素子は信頼性に優れたものとなる。また、本発明の液晶配向処理剤は 、ラビングによるポリマーの延伸性が阻害されにくぐ弱いラビング条件に対しても液 晶の配向性が低下しないため、ラビング処理を必要とする用途において特に有用で ある。  By using the liquid crystal alignment treatment agent of the present invention, a liquid crystal alignment film having excellent pretilt angle stability can be obtained even under a high temperature environment for a long time, and a liquid crystal display element having this liquid crystal alignment film Is excellent in reliability. In addition, the liquid crystal alignment treatment agent of the present invention is particularly useful in applications that require rubbing treatment because the orientation of the liquid crystal does not decrease even under weak rubbing conditions in which the stretchability of the polymer by rubbing is difficult to be inhibited. is there.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] < (A)成分:ポリアミド酸及びポリイミド〉  [0015] <Component (A): Polyamic acid and polyimide>
本発明の液晶配向処理剤には、ポリアミド酸及びポリイミドからなる群から選ばれる 少なくとも一種類のポリマーを含有する。このポリアミド酸及びポリイミドの具体的な構 造は特に限定されず、例えば公知の液晶配向処理剤に含有されているポリアミド酸 又はポリイミドであってもよ!/ヽ。  The liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of polyamic acid and polyimide. The specific structures of the polyamic acid and polyimide are not particularly limited, and may be, for example, polyamic acid or polyimide contained in a known liquid crystal aligning agent.
ポリアミド酸は、テトラカルボン酸又はテトラカルボン酸の誘導体と、ジァミンとの反 応によって容易に得ることができる。  The polyamic acid can be easily obtained by reacting tetracarboxylic acid or a tetracarboxylic acid derivative with diamine.
[0016] 本発明に用いる (A)成分であるポリアミド酸及びポリイミドの製造方法は特に限定さ れない。一般的には、テトラカルボン酸及びその誘導体から選ばれる 1種又は複数種 力、らなるテトラカルボン酸成分と、 1種又は複数種のジァミン化合物からなるジァミン 成分とを反応して、ポリアミド酸を得て、そのポリアミド酸をイミド化してポリイミドとする 方法が用いられる。  [0016] The method for producing the polyamic acid and polyimide as the component (A) used in the present invention is not particularly limited. In general, a polycarboxylic acid is reacted with a tetracarboxylic acid component selected from tetracarboxylic acids and derivatives thereof and a diamine component consisting of one or more diamine compounds to form a polyamic acid. A method is used in which the polyamic acid is imidized to form a polyimide.
その際、得られるポリアミド酸は、原料であるテトラカルボン酸成分とジァミン成分を 適宜選択することによって単重合体 (ホモポリマー)又は共重合体(コポリマー)とする こと力 Sでさる。  At that time, the polyamic acid obtained is obtained by using a force S to make a monopolymer (homopolymer) or a copolymer (copolymer) by appropriately selecting a tetracarboxylic acid component and a diamine component as raw materials.
ここで、テトラカルボン酸及びその誘導体とは、テトラカルボン酸、テトラカルボン酸 ジハライド及びテトラカルボン酸二無水物である。なかでも、テトラカルボン酸二無水 物はジァミン化合物との反応性が高!/、ので好まし!/、。  Here, tetracarboxylic acid and its derivatives are tetracarboxylic acid, tetracarboxylic acid dihalide, and tetracarboxylic dianhydride. Of these, tetracarboxylic dianhydride is preferred because it has a high reactivity with diamine compounds! /.
[0017] 具体白勺に (ま、ピロメリット酸、 2, 3, 6, 7—ナフタレンテトラ力ノレボン酸、 1 , 2, 5, 6— 4'—ビフエニルテトラカルボン酸、 2, 3, 3 ' , 4'—ビフエニルテトラカルボン酸、ビス([0017] In particular white birch (Pyromellitic acid, 2, 3, 6, 7-Naphthalene tetra-force norebonic acid, 1, 2, 5, 6- 4'-biphenyltetracarboxylic acid, 2, 3, 3 ', 4'-biphenyltetracarboxylic acid, bis (
3, 4—ジカルボキシフエ二ノレ)エーテル、 3, 3' , 4, 4'—べンゾフエノンテトラカルボ ン酸、ビス(3, 4—ジカルボキシフエ二ノレ)スルホン、ビス(3, 4—ジカルボキシフエ二 ノレ)メタン、 2, 2 ビス(3, 4 ジカルボキシフエ二ノレ)プロパン、 1 , 1 , 1 , 3, 3, 3— へキサフルオロー 2, 2 ビス(3, 4 ジカルボキシフエ二ノレ)プロパン、ビス(3, 4— ジカルボキシフエニル)ジメチルシラン、ビス(3, 4—ジカルボキシフエ二ノレ)ジフエ二 ルシラン、 2, 3, 4, 5 ピリジンテトラカルボン酸、 2, 6 ビス(3, 4 ジカルボキシフ ェニノレ)ピリジン、 2, 2 ビス [4— (3, 4 ジカルボキシフエノキシ)フエ二ノレ]プロパン 、 3, 3,, 4, 4,ージフエニノレスノレホンテ卜ラ力ノレボン酸、 3, 4, 9, 10—ペリレンテ卜ラ カルボン酸、 1 , 3—ジフエ二ルー 1 , 2, 3, 4—シクロブタンテトラカルボン酸、ォキシ ジフタノレテ卜ラ力ノレボン酸、 1 , 2, 3, 4—シクロフ"タンテ卜ラ力ノレボン酸、 1 , 2, 3, 4— シクロペンタンテトラカルボン酸、 1 , 2, 4, 5—シクロへキサンテトラカルボン酸、 1 , 23,4-dicarboxyphenenole) ether, 3, 3 ', 4,4'-benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenenole) sulfone, bis (3,4) —Dicarboxyphenenole) methane, 2,2 bis (3,4 dicarboxyphenenole) propane, 1,1,1,1,3,3,3—hexafluoro-2,2bis (3,4 dicarboxyphene) Ninole) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2, 3, 4, 5 pyridinetetracarboxylic acid, 2, 6 Bis (3,4 dicarboxyphenole) pyridine, 2,2bis [4— (3,4 dicarboxyphenoxy) phenole] propane, 3, 3,4,4, diphenenores norephone Power Norevonic acid, 3, 4, 9, 10-perylene carboxylic acid, 1,3-Didinitro 1, 2, 3, 4— Clobutanetetracarboxylic acid, oxydiphthalanolate norevonic acid, 1, 2, 3, 4-cyclopentane forcenolevonic acid, 1, 2, 3, 4-cyclopentanetetracarboxylic acid, 1, 2, 4 , 5-cyclohexanetetracarboxylic acid, 1, 2
, 3, 4—テトラメチルー 1 , 2, 3, 4—シクロブタンテトラカルボン酸、 1 , 2—ジメチルー 1 , 2, 3, 4 シクロブタンテトラ力ノレボン酸、 1 , 3 ジメチノレ一 1 , 2, 3, 4 シクロブ タンテトラ力ノレボン酸、 1 , 2, 3, 4—シクロヘプタンテトラ力ノレボン酸、 2, 3, 4, 5—テ トラヒドロフランテトラカルボン酸、 3, 4—ジカルボキシー 1ーシクロへキシルコハク酸、 2, 3, 5 トリカノレポキシシクロペンチノレ酢酸、 3, 4 ジカノレポキシー 1 , 2, 3, 4 テ トラヒドロー 1 ナフタレンコハク酸、ビシクロ [3, 3, 0]オクタン 2, 4, 6, 8 テトラ カルボン酸、ビシクロ [4, 3, 0]ノナン一 2, 4, 7, 9 テトラカルボン酸、ビシクロ [4,, 3, 4-tetramethyl-1,2,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,4, cyclobutanetetraforce norebonic acid, 1,3 dimethinole 1,2,3,4 Tantetrahydronorebonic acid, 1, 2, 3, 4-cycloheptanetetrahydronorebonic acid, 2, 3, 4, 5-tetrahydrofurantetracarboxylic acid, 3,4-dicarboxy 1-cyclohexylsuccinic acid, 2, 3 , 5 Tricanolepoxycyclopentinoleacetic acid, 3, 4 Dicanolepoxy 1, 2, 3, 4 Tetrahydro 1 Naphthalene succinic acid, Bicyclo [3, 3, 0] Octane 2, 4, 6, 8 Tetracarboxylic acid, Bicyclo [ 4, 3, 0] nonane 2, 4, 7, 9 tetracarboxylic acid, bicyclo [4,
4, 0]デカン— 2, 4, 7, 9 テ卜ラ力ノレボン酸、ビシクロ [4, 4, 0]デカン— 2, 4, 8, 1 0 テトラカルボン酸、トリシクロ [6. 3. 0. 0< 2, 6〉]ゥンデカン一 3, 5, 9, 11—テ トラカルボン酸、 1 , 2, 3, 4 ブタンテトラカルボン酸、ビシクロ [2, 2, 2]オタトー 7— ェン— 2, 3, 5, 6 テトラカルボン酸、テトラシクロ [6, 2, 1 , 1 , 0, 2, 7]ドデ力— 4,4, 0] decane— 2, 4, 7, 9 Tetra-force nolevonic acid, bicyclo [4, 4, 0] decane—2, 4, 8, 1 0 tetracarboxylic acid, tricyclo [6. 3. 0. 0 <2, 6>] Undecane 3, 5, 9, 11—Tetracarboxylic acid, 1, 2, 3, 4 Butanetetracarboxylic acid, Bicyclo [2, 2, 2] Otato 7— 3, 5, 6 Tetracarboxylic acid, tetracyclo [6, 2, 1, 1, 0, 2, 7] dode force — 4,
5, 9, 10 テトラカルボン酸、などのテトラカルボン酸が挙げられる。更に、これらの テトラカルボン酸のジハロゲン化物及びテトラカルボン酸の二無水物などが挙げられ [0018] 特に液晶配向膜用途としては、塗膜の透明性の点から脂環式テトラカルボン酸およ びこれらの二無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物が好ましぐ特に 1 , 2, 3, 4—シクロブタンテトラカルボン酸、 2, 3, 5—トリカルボキシシクロペンチル 酢酸、 3, 4 ジカルボキシ 1 , 2, 3, 4 テトラヒドロー 1 ナフタレンコハク酸、ビシ クロ [3, 3, 0]オクタン 2, 4, 6, 8 テトラカルボン酸、及びこれらテトラカルボン酸 のジハロゲン化物、テトラカルボン酸の二無水物が好まし!/、。 Examples include tetracarboxylic acids such as 5, 9, and 10 tetracarboxylic acids. Furthermore, these dicarboxylic acid tetrahalides and dianhydrides of tetracarboxylic acids can be mentioned. [0018] Particularly for liquid crystal alignment film applications, alicyclic tetracarboxylic acids and their dianhydrides and their dicarboxylic acid diacid halides are particularly preferred from the viewpoint of transparency of the coating film. , 4-cyclobutanetetracarboxylic acid, 2, 3, 5-tricarboxycyclopentyl acetic acid, 3, 4 dicarboxy 1, 2, 3, 4 tetrahydro 1 naphthalene succinic acid, bicyclo [3, 3, 0] octane 2, 4 6, 8 Tetracarboxylic acids, dihalides of these tetracarboxylic acids, and dianhydrides of tetracarboxylic acids are preferred! /.
[0019] 以上で例示したテトラカルボン酸及びその誘導体は、液晶配向膜にした際の液晶 配向性、電圧保持特性、蓄積電荷などの特性に応じて、 1種類または 2種類以上混 合して使用すること力でさる。  [0019] The tetracarboxylic acid and its derivatives exemplified above are used singly or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding characteristics, accumulated charges, etc. in the case of forming a liquid crystal alignment film. It ’s the power to do.
ポリアミド酸の合成反応に使用するジァミンは特に限定されない。  The diamine used for the polyamic acid synthesis reaction is not particularly limited.
[0020] 具体的には、 p—フエ二レンジァミン、 2, 3, 5, 6 テトラメチノレー p—フエ二レンジ ァミン、 2, 5 ジメチルー p フエ二レンジァミン、 m フエ二レンジァミン、 2, 4 ジメ チノレー m フエ二レンジァミン、 2, 5 ジアミノトノレェン、 2, 6 ジアミノトノレェン、 2, 5 ジァミノフエノール、 2, 4 ジァミノフエノール、 3, 5 ジァミノフエノール、 3, 5— ジァミノべンジルアルコーノレ、 2, 4 ジァミノべンジルアルコーノレ、 4, 6 ジアミノレゾ ノレシノール、 4, 4 'ージアミノビフエニル、 3, 3, 一ジメチルー 4, 4 'ージアミノビフエ二 ル、 3, 3,ージメトキシ 4, 4 'ージアミノビフエニル、 3, 3,ージヒドロキシ 4, 4 ' ジアミノビフエニル、 3, 3,一ジカルボキシ一 4, 4 '—ジアミノビフエニル、 3, 3 '—ジフ ノレォロ一 4, 4 '—ビフエニル、 3, 3,一トリフルォロメチル一 4, 4 '—ジアミノビフエ二ノレ 、 3, 4,一ジアミノビフエニル、 3, 3,一ジアミノビフエニル、 2, 2,一ジアミノビフエ二ノレ 、 2, 3 'ージアミノビフエニル、 4, 4 'ージアミノジフエニルメタン、 3, 3 'ージアミノジフ ェニルメタン、 3, 4 '—ジアミノジフエニルメタン、 2, 2 'ージアミノジフエニルメタン、 2, 3 'ージアミノジフエニルメタン、 4, 4 'ージアミノジフエニルエーテル、 3, 3 'ージァミノ ジフエニノレエーテノレ、 3, 4,ージアミノジフエニノレエーテノレ、 2, 2,ージアミノジフエ二 ノレエーテル、 2, 3 '—ジアミノジフエニルエーテル、 4, 4 ' スルホ二ルジァ二リン、 3 , 3,一スルホニルジァニリン、ビス(4—ァミノフエ二ノレ)シラン、ビス(3—ァミノフエニル )シラン、ジメチルービス(4ーァミノフエニル)シラン、ジメチルービス(3—ァミノフエ二 ノレ)シラン、 4, 4 'ーチォジァニリン、 3, 3 'ーチォジァニリン、 4, 4 'ージアミノジフエ二 ノレアミン、 3, 3'ージアミノジフエニノレアミン、 3, 4'—ジアミノジフエニノレアミン、 2, 2' ージアミノジフエニルァミン、 2, 3'ージアミノジフエニルァミン、 N メチル(4, 4'ージ アミノジフエ二ノレ)ァミン、 N メチル(3, 3,ージアミノジフエニル)ァミン、 N メチル( 3, 4'—ジアミノジフエニル)ァミン、 N メチル(2, 2,ージアミノジフエニル)ァミン、 N ーメチノレ(2, 3'ージアミノジフエ二ノレ)ァミン、 4, 4'ージァミノべンゾフエノン、 3, 3' ージァミノべンゾフエノン、 3, 4'—ジァミノべンゾフエノン、 1, 4ージァミノナフタレン、[0020] Specifically, p-phenylene diamine, 2, 3, 5, 6 tetramethylolene p-phenylene diamine, 2, 5 dimethyl-p phenylene diamine, m phenylene diamine, 2, 4 dimethylenole m hua Direndiamine, 2,5 Diaminotonolene, 2,6 Diaminotonolene, 2,5 Diaminophenol, 2,4 Diaminophenol, 3,5 Diaminophenol, 3,5-Diaminoben Ziralkanol, 2,4 Diaminobenzil alcohol, 4,6 Diaminoresorenocinol, 4,4'-Diaminobiphenyl, 3, 3, 1-Dimethyl-4,4'-Diaminobiphenyl, 3, 3, -Dimethoxy 4, 4'-diaminobiphenyl, 3, 3, -dihydroxy 4, 4 'diaminobiphenyl, 3, 3, monodicarboxy 4,4'—diaminobiphenyl, 3, 3'—difluoro 4,4'— Biphenyl, 3, 3, Itori 1,4'-diaminobiphenyl, 3, 4, 1-diaminobiphenyl, 3, 3, 1-diaminobiphenyl, 2, 2, 1-diaminobiphenyl, 2, 3'-diaminobiphenyl, 4, 4 '-Diaminodiphenylmethane, 3, 3' -diaminodiphenylmethane, 3, 4 '-diaminodiphenylmethane, 2, 2' -diaminodiphenylmethane, 2, 3 '-diaminodiphenylmethane, 4, 4' -diamino Diphenyl ether, 3, 3'-Diamino diphenylenoate, 3, 4, Diaminodiethanolate, 2, 2, Diaminodiphenol ether, 2, 3'-Diaminodiphenyl ether, 4, 4 'Sulfo Dildianiline, 3,3, monosulfonyldianiline, bis (4-aminophenol) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane Emissions, dimethyl chromatography bis (3-Aminofue two Honoré) silane, 4, 4 'Chiojianirin, 3, 3' Chiojianirin, 4, 4 'Jiaminojifue two Noreamine, 3, 3'-diaminodiphenylamine, 3, 4'-diaminodiphenylamine, 2, 2'-diaminodiphenylamine, 2, 3'-diaminodiphenylamine, N-methyl (4 , 4'-diaminodiphenyl) amine, N-methyl (3,3, -diaminodiphenyl) amine, N-methyl (3,4,2-diaminodiphenyl) amine, N-methyl (2,2, -diaminodiphenyl) amine ) Amin, N-methinole (2,3'-diaminodiphenenole) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene,
2, 2'—ジァミノべンゾフエノン、 2, 3'—ジァミノべンゾフエノン、 1, 5 ジァミノナフタ レン、 1, 6 ジァミノナフタレン、 1, 7 ジァミノナフタレン、 1, 8—ジァミノナフタレン 、 2, 5 ジァミノナフタレン、 2, 6ジァミノナフタレン、 2, 7 ジァミノナフタレン、 2, 8 ージァミノナフタレン、 1, 2 ビス(4ーァミノフエ二ノレ)ェタン、 1, 2 ビス(3 ァミノ フエ二ノレ)ェタン、 1, 3—ビス(4—ァミノフエ二ノレ)プロパン、 1, 3—ビス(3—アミノフ ェニノレ)プロパン、 1, 4—ビス(4ァミノフエ二ノレ)ブタン、 1, 4—ビス(3—ァミノフエ二 ル)ブタン、ビス(3, 5—ジェチルー 4—ァミノフエ二ノレ)メタン、 1, 4—ビス(4-アミノフ エノキシ)ベンゼン、 1, 3—ビス(4-アミノフエノキシ)ベンゼン、 1, 4—ビス(4-アミノフ ェニノレ)ベンゼン、 1, 3—ビス(4-ァミノフエ二ノレ)ベンゼン、 1, 4—ビス(4-ァミノベン ジノレ)ベンゼン、 1, 3—ビス(4-アミノフエノキシ)ベンゼン、 4, 4'— [1, 4—フエユレ ンビス(メチレン)]ジァニリン、 4, 4, ー[1, 3—フエ二レンビス(メチレン)]ジァニリン、2, 2'-Daminobenzophenone, 2,3'-Daminobenzophenone, 1,5 Diaminonaphthalene, 1,6 Diaminonaphthalene, 1,7 Diaminonaphthalene, 1,8-Diaminonaphthalene, 2 , 5 Diaminonaphthalene, 2,6 Diaminonaphthalene, 2,7 Diaminonaphthalene, 2,8-Diaminonaphthalene, 1,2 Bis (4-aminophenolinole) ethane, 1,2 Bis (3 1,3-bis (4-aminophenol) propane, 1,3-bis (3-aminophenylene) propane, 1,4-bis (4-aminophenol) butane, 1, 4 —Bis (3-aminophenol) butane, bis (3,5-deethyl-4-aminophenol) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene 1, 4-bis (4-aminophenole) benzene, 1,3-bis (4-aminophenolino) benzene, 1,4-bis (4-aminobenzinole) benzene, 1,3-bis (4-aminophenoxy) benzene, 4, 4 '-[1,4-phenolate Bis (methylene)] dianiline, 4, 4,-[1,3-Fenylenebis (methylene)] dianiline,
3, 4, 一 [1, 4 フエ二レンビス(メチレン)]ジァニリン、 3, 4, 一 [1, 3—フエ二レンビ ス(メチレン)]ジァニリン、 3, 3, 一 [1, 4一フエ二レンビス(メチレン)]ジァニリン、 3, 3 , 一 [1, 3—フエ二レンビス(メチレン)]ジァニリン、 1, 4 フエ二レンビス [(4ーァミノ フエ二ノレ)メタノン]、 1, 4 フエ二レンビス [(3—ァミノフエ二ノレ)メタノン]、 1, 3—フエ 二レンビス [(4—ァミノフエ二ノレ)メタノン]、 1, 3—フエ二レンビス [(3—ァミノフエ二ノレ )メタノン]、 1, 4 フエ二レンビス(4ーァミノべンゾエート)、 1, 4 フエ二レンビス(3 —ァミノべンゾエート)、 1, 3—フエ二レンビス(4—ァミノべンゾエート)、 1, 3—フエ二 レンビス(3—ァミノべンゾエート)、ビス(4—ァミノフエ二ノレ)テレフタレート、ビス(3— ァミノフエニル)テレフタレート、ビス(4—ァミノフエニル)イソフタレート、ビス(3—ァミノ フエニル)イソフタレート、 N, N' - (1, 4—フエ二レン)ビス(4—ァミノべンズアミド)、 N, N,一(1, 3—フエ二レン)ビス(4ーァミノべンズアミド)、 N, N,一(1, 4 フエユレ ン)ビス(3—ァミノべンズアミド)、 N, N'-(l, 3—フエ二レン)ビス(3—ァミノべンズ アミド)、 N, N,一ビス(4—ァミノフエニル)テレフタルアミド、 N, N,一ビス(3—ァミノ フエニル)テレフタルアミド、 N, N,一ビス(4—ァミノフエ二ノレ)イソフタルアミド、 N, N, —ビス(3 ァミノフエニル)イソフタルアミド、 9, 10 ビス(4 ァミノフエニル)アントラ セン、 4, 4'—ビス(4 アミノフエノキシ)ジフエニルスルホン、 2, 2' ビス [4— (4— アミノフエノキシ)フエ二ノレ]プロパン、 2, 2, 一ビス [4— (4 アミノフエノキシ)フエニル ]へキサフルォロプロパン、 2, 2,一ビス(4ーァミノフエ二ノレ)へキサフルォロプロパン 、 2, 2, 一ビス(3 ァミノフエ二ノレ)へキサフルォロプロパン、 2, 2, 一ビス(3 ァミノ —4 メチルフエ二ノレ)へキサフルォロプロパン、 2, 2, 一ビス(4 ァミノフエ二ノレ)プ 口パン、 2, 2, 一ビス(3 ァミノフエ二ノレ)プロパン、 2, 2, 一ビス(3 アミノー 4ーメチ ルフエニル)プロパン、 3, 5—ジァミノ安息香酸、 2, 5—ジァミノ安息香酸、 1, 3—ビ ス(4 アミノフエノキシ)プロパン、 1, 3—ビス(3—アミノフエノキシ)プロパン、 1, 4 ビス(4 アミノフエノキシ)ブタン、 1, 4 ビス(3—アミノフエノキシ)ブタン、 1, 5—ビ ス(4—アミノフエノキシ)ペンタン、 1, 5—ビス(3—アミノフエノキシ)ペンタン、 1, 6— ビス(4—アミノフエノキシ)へキサン、 1, 6—ビス(3—アミノフエノキシ)へキサン、 1, 7 —ビス(4—アミノフエノキシ)ヘプタン、 1, 7— (3—アミノフエノキシ)ヘプタン、 1, 8— ビス(4—アミノフエノキシ)オクタン、 1, 8—ビス(3—アミノフエノキシ)オクタン、 1, 9 ビス(4 アミノフエノキシ)ノナン、 1, 9 ビス(3 アミノフエノキシ)ノナン、 1, 10 一(4 アミノフエノキシ)デカン、 1, 10— (3—アミノフエノキシ)デカン、 1, 11一(4 アミノフエノキシ)ゥンデカン、 1, 11— (3 アミノフエノキシ)ゥンデカン、 1, 12— (4 —アミノフエノキシ)ドデカン、 1, 12— (3—アミノフエノキシ)ドデカンなどの芳香族ジ ァミン;ビス(4 アミノシクロへキシル)メタン、ビス(4 アミノー 3—メチルシクロへキ シル)メタンなどの脂環式ジァミン; 1, 3—ジァミノプロパン、 1, 4—ジァミノブタン、 1, 5—ジァミノペンタン、 1, 6 ジァミノへキサン、 1, 7 ジァミノヘプタン、 1, 8—ジアミ ノオクタン、 1, 9ージアミノノナン、 1, 10 ジァミノデカン、 1, 11ージアミノウンデカ ン、 1, 12—ジァミノドデカンなどの脂肪族ジァミンなどを挙げることができる。 3, 4, 1 [1, 4 Phenylylenebis (methylene)] guanylin, 3, 4, 1 [1, 3—Phenylene bis (methylene)] guanylin, 3, 3, 1 [1, 4 Lenbis (methylene)] dianiline, 3, 3, 1 [1,3-phenylenebis (methylene)] dianiline, 1,4 phenylenebis [(4-aminophenenole) methanone], 1,4 phenylenebis [ (3-aminophenol) methanone], 1,3-phenylenebis [(4-aminophenolinole) methanone], 1,3-phenylenebis [(3-aminophenolinole) methanone], 1,4 Bilenbis (4-aminobenzoate), 1,4-Phenylenebis (3-aminobenzoate), 1,3-Phenylenebis (4-aminobenzoate), 1,3-Phenylenebisbis (3-aminophenol) Zoate), bis (4-aminophenol) terephthalate, bis (3-aminophenol) ) Terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N '-(1, 4-phenylene) bis (4-aminobenzamide), N, N (1,3—Phenylene) bis (4-aminobenzamide), N, N, I (1,4 fuyure ) Bis (3-aminobenzamide), N, N '-(l, 3-phenylene) bis (3-aminobenzamide), N, N, monobis (4-aminophenyl) terephthalamide, N , N, monobis (3-aminophenyl) terephthalamide, N, N, monobis (4-aminophenyl) isophthalamide, N, N, —bis (3 aminophenyl) isophthalamide, 9, 10 bis (4 aminophenyl) ) Anthracene, 4, 4'-bis (4 aminophenoxy) diphenyl sulfone, 2, 2 'bis [4— (4-aminophenoxy) phenol] propane, 2, 2, monobis [4— (4 aminophenoxy) Phenyl] hexafluoropropane, 2,2,1-bis (4-aminominophenole) hexafluoropropane, 2,2,1bis (3-aminophenoxy) hexafluoropropane, 2, 2 , Bis (3 amino-4 methylphenino ) Hexafluoropropane, 2, 2, 1 bis (4 aminophenol), bread, 2, 2, 1 bis (3 aminophenol) propane, 2, 2, 1 bis (3 amino-4-methylphenyl) ) Propane, 3,5-Diaminobenzoic acid, 2,5-Diaminobenzoic acid, 1,3-bis (4 aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4bis (4 aminophenoxy) ) Butane, 1,4 bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) Xanthone, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1, 8-bis (3-aminophenoxy) octane, 1,9 bis (4 aminophenoxy) nonane, 1,9 bis (3 aminophenoxy) nonane, 1,10 one (4 aminophenoxy) decane, 1,10- (3-aminophenoxy) decane 1, 11- (4 aminophenoxy) undecane, 1, 11— (3 aminophenoxy) undecane, 1,12— (4 —aminophenoxy) dodecane, 1,12— (3-aminophenoxy) dodecane, etc .; Cycloaliphatic diamines such as (4 aminocyclohexyl) methane, bis (4 amino-3-methylcyclohexyl) methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6 diamino Hexane, 1,7 Diaminoheptane, 1,8-Diaminooctane, 1,9-Diaminononane, 1,10 Diaminodecane, 1,11-Diaminoundeca And aliphatic diamines such as 1,12-diaminedodecane.
また、ジァミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複 素環、並びにそれらからなる大環状置換体を有するジァミンを挙げることができる。具 体的には、下記式 [A1]〜[A20]で示されるジァミンを例示することができる c [0022] [化 6] Further, diamines having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a complex ring, and a macrocyclic substituent comprising them in the diamine side chain can be exemplified. Ingredients Specifically, diamines represented by the following formulas [A1] to [A20] can be exemplified. C [0022] [Chemical Formula 6]
Figure imgf000011_0001
Figure imgf000011_0001
[A4] [A 5]  [A4] [A 5]
(式 [A1]〜[A5]中、 Rは、炭素数 1以上 22以下のアルキル基又はフッ素含有アル キル基を示す)  (In the formulas [A1] to [A5], R represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group)
[0023] [化 7] [0023] [Chemical 7]
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0002
(式 [A6]〜 [A9]中、 Rは、 CO〇、 OC〇、 C〇NH、 NHCO、 CH、〇、 CO、又は  (In the formulas [A6] to [A9], R is CO ○, OC ○, C〇NH, NHCO, CH, ○, CO, or
2 2  twenty two
NHを示し、 Rは、水素原子、炭素数 1以上 22以下のアルキル基又はフッ素含有ァ ルキル基を示す)  NH represents R represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkyl group)
[化 8] [Chemical 8]
Figure imgf000012_0003
Figure imgf000012_0003
(式 [A10」及び [Al l]中、 Rは、〇、 OCH、 CH〇、 COOCH、又は CH OC〇を  (In the formula [A10] and [Al l], R represents 〇, OCH, CH〇, COOCH, or CHOC〇〇.
4 ?. ?. ' 示し、 Rは、炭素数 1以上 22以下のアルキル基、アルコキシ基、フッ素含有アルキルFour ?. ? . R represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, or a fluorine-containing alkyl group.
5 Five
基又はフッ素含有アルコキシ基を示す) Group or fluorine-containing alkoxy group)
[化 9]
Figure imgf000013_0001
[Chemical 9]
Figure imgf000013_0001
(一般式 [A12]〜[A14]中、 Rは、 COO、 OCO、 CONH、 NHCO、 COOCH 、 C  (In the general formulas [A12] to [A14], R represents COO, OCO, CONH, NHCO, COOCH, C
6 2 6 2
H OCO、 CH 0、 OCH、又は CHを示し、 Rは、炭素数 1以上 22以下のアルキルH OCO, CH 0, OCH, or CH, R is alkyl having 1 to 22 carbon atoms
2 2 2 2 7 2 2 2 2 7
基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す)Group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group)
[化 10][Chemical 10]
Figure imgf000013_0002
Figure imgf000013_0002
(式 [A15]及び [A16]中、 Rは、 COO、 OCO、 CONH、 NHCO、 COOCH 、 CH  (In the formulas [A15] and [A16], R represents COO, OCO, CONH, NHCO, COOCH, CH
8 2 8 2
OCO、 CH 0、 OCH、 CH、 0、又は NHを示し、 Rは、フッ素基、シァノ基、トリフOCO, CH 0, OCH, CH, 0, or NH, R is a fluorine group, cyan group, trif
2 2 2 2 9 2 2 2 2 9
ルォロメチル基、ニトロ基、ァゾ基、ホルミル基、ァセチル基、ァセトキシ基、水酸基、 又はカルボキシル基を示す) Fluoromethyl group, nitro group, azo group, formyl group, acetyl group, acetoxy group, hydroxyl group, Or a carboxyl group)
[0027] [化 11] [0027] [Chemical 11]
Figure imgf000014_0001
Figure imgf000014_0001
さらに、下記式 [A21]で示されるようなジァミノシロキサンなども挙げることができる Furthermore, diaminosiloxanes represented by the following formula [A21] can also be mentioned.
[0028] [化 12] [0028] [Chemical 12]
H2N— iCH2)3- -Si-0+-Si— iCH2)3- H2 [A 2 1 ] (式 [A21]中、 mは、;!〜 10の整数を表す) H 2 N— iCH 2 ) 3- -Si-0 + -Si— iCH 2 ) 3 -H 2 [A 2 1] (In the formula [A21], m represents an integer of! -10)
上記したジァミンは、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷 などの特性に応じて、 1種類又は 2種類以上を混合して使用することもできる。  The above-mentioned jamines can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
[0029] 上記に示したポリアミド酸の合成原料の中で、水酸基又はカルボキシル基を有する 原料を使用すると、ポリアミド酸又はポリイミドと後述する架橋性化合物との反応効率 を高めることができる。このような原料の具体例としては、 2, 5 ジァミノフエノール、 2 , 4ージァミノフエノール、 3, 5—ジァミノフエノール、 3, 5—ジァミノべンジルアルコー ノレ、 2, 4 ジァミノべンジルアルコール、 3, 3'ージヒドロキシ 4, 4'ージアミノビフエ ニル、 3, 3'—ジカルボキシ 4, 4'ージアミノビフエニル、 3, 5—ジァミノ安息香酸、 2, 5 ジァミノ安息香酸、式 [A22]〜[A25]で示されるジァミンなどが挙げられる。  [0029] Use of a raw material having a hydroxyl group or a carboxyl group among the above-described raw materials for synthesizing a polyamic acid can increase the reaction efficiency between the polyamic acid or polyimide and a crosslinkable compound described later. Specific examples of such raw materials include 2,5 diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzol alcohol, 2,4 diaminophenol. Nyl alcohol, 3,3'-dihydroxy 4,4'-diaminobiphenyl, 3,3'-dicarboxy 4,4'-diaminobiphenyl, 3,5-diaminobenzoic acid, 2,5 diaminobenzoic acid, formula [A22 ] To [A25] and the like.
[0030] [化 13]  [0030] [Chemical 13]
Figure imgf000015_0001
Figure imgf000015_0001
(式 [A22]〜[A25]中、 R は、 COO、 OCO、 CONH、 NHCO、 CH、 0、 CO、又 は NHを示す) (In the formulas [A22] to [A25], R represents COO, OCO, CONH, NHCO, CH, 0, CO, or Represents NH)
[0031] [化 14] [0031] [Chemical 14]
Figure imgf000016_0001
Figure imgf000016_0001
(式 [A26]及び [A27」中、 R は、 COO、 OCO、 CONH  (In the formulas [A26] and [A27], R represents COO, OCO, CONH
11 、 NHCO、 COOCH  11, NHCO, COOCH
2、 C 2, C
H OCO、 CH 0、 OCH、 CH、 0、又は NHを示し、 R は、水酸基、又はカルボキH represents O OCO, CH 0, OCH, CH, 0, or NH, and R represents a hydroxyl group or a carboxy group.
2 2 2 2 12 2 2 2 2 12
シノレ基を示す)  (Indicates a synole group)
[0032] ポリアミド酸を合成する際に用いる有機溶媒としては、生成したポリアミド酸が溶解 するものであれば特に限定されない。その具体例を挙げるならば、 N, N ジメチノレ ホルムアミド、 N, N ジメチルァセトアミド、 N メチル 2—ピロリドン、 N メチルカ プロラタタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、 へキサメチルスルホキシド、 γ ブチロラタトン、イソプロピルアルコール、メトキシメチ ノレペンタノ一ノレ、ジペンテン、ェチルアミルケトン、メチルノニルケトン、メチルェチノレ ケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、ェチル ビトーノレ、ェチノレカノレビトーノレ、エチレングリコーノレ、エチレングリコ一ノレモノァセテ一 ト、エチレングリコーノレモノイソプロピノレエーテノレ、エチレングリコ一ノレモノブチノレエー テノレ、プロピレングリコーノレ、プロピレングリコーノレモノアセテート、プロピレングリコー ノレモノメチノレエーテノレ、プロピレングリコーノレ tert ブチノレエーテノレ、ジプロピレン グリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノァセ テート、ジエチレングリコーノレジメチノレエーテノレ、ジプロピレングリコーノレモノァセテ一 トモノメチノレエーテノレ、ジプロピレングリコーノレモノメチノレエーテノレ、ジプロピレングリ コールモノェチルエーテル、ジプロピレングリコールモノアセテートモノェチルエーテ ノレ、ジプロピレングリコーノレモノプロピノレエーテノレ、ジプロピレングリコーノレモノァセテ ートモノプロピルエーテル、 3—メチルー 3—メトキシブチルアセテート、トリプロピレン グリコールメチルエーテル、 3—メチルー 3—メトキシブタノール、ジイソプロピルエー テノレ、ェチルイソブチルエーテル、ジイソブチレン、ァミルアセテート、ブチルブチレ ート、ブチルエーテル、ジイソプチルケトン、メチルシクロへキセン、プロピルエーテル 、ジへキシノレエーテノレ、ジ才キサン、 n—へキサン、 n—ペンタン、 n—オクタン、ジェ チルエーテル、シクロへキサノン、エチレンカーボネート、プロピレンカーボネート、乳 酸メチル、乳酸ェチル、酢酸メチル、酢酸ェチル、酢酸 n—ブチル、酢酸プロピレング リコールモノェチルエーテル、ピルビン酸メチル、ピルビン酸ェチル、 3—メトキシプロ ピオン酸メチル、 3—エトキシプロピオン酸メチルェチル、 3—メトキシプロピオン酸ェ チル、 3—エトキシプロピオン酸、 3—メトキシプロピオン酸、 3—メトキシプロピオン酸 プロピル、 3—メトキシプロピオン酸ブチル、ジグライム、 4ーヒドロキシー4ーメチルー 2—ペンタノンなどである。これらは単独で使用しても、混合して使用してもよい。さら に、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範 囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を 阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒は なるべく脱水乾燥させたものを用いることが好ましレ、。 [0032] The organic solvent used for synthesizing the polyamic acid is not particularly limited as long as the produced polyamic acid can be dissolved. Specific examples include N, N dimethylenoformamide, N, N dimethylacetamide, N methyl 2-pyrrolidone, N methylcaprolatatam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ Butyrolatatone, isopropyl alcohol, methoxymethyl pentanol mononole, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethino ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl bitanol, ethino recanole bittone, ethylene glycol Ethylene glycol mononomonoacetate, ethylene glycol monoisopropinoreateolate, ethylene glycol monobutinoleate tenole, propylene glycolate, Pyreneglycol Monoacetate, Propylene Glycol Nole Monomethinoateol, Propylene Glycololate tert Butinoleetenole, Dipropylene Glycol Monomethyl Ether, Diethylene Glycol, Diethylene Glycol Monoacetate, Diethylene Glycolno Resin Methylenoate Ethanol, Dipropylene Glycol Nore Monoacetate Monomethinoreethenole, Dipropyleneglycolenomonomethinoreatenore, Dipropyleneglycol Cole monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monomono propinoate ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene Glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexinole Ethereal, di-xane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, milk Ethyl acetate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methylethyl 3-ethoxypropionate, 3-methoxypropion Examples thereof include ethyl acetate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent within a range where the produced polyamic acid does not precipitate. In addition, since water in the organic solvent inhibits the polymerization reaction and further causes the resulting polyamic acid to hydrolyze, it is preferable to use a dehydrated and dried organic solvent as much as possible.
ポリアミド酸を合成する際のテトラカルボン酸及びその誘導体とジァミンとを有機溶 媒中で反応させる方法としては、ジァミンを有機溶媒に分散あるレ、は溶解させた溶液 を攪拌させ、テトラカルボン酸及びその誘導体をそのまま、又は有機溶媒に分散ある いは溶解させて添加する方法、逆にテトラカルボン酸及びその誘導体を有機溶媒に 分散あるいは溶解させた溶液にジァミンを添加する方法、テトラカルボン酸及びその 誘導体とジァミンとを交互に添加する方法などが挙げられる。これらは、いずれの方 法であってもよい。また、テトラカルボン酸及びその誘導体又はジァミンが複数種の 化合物からなる場合は、あらかじめ混合した状態で反応させてもよぐ個別に順次反 応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体とし てもよい。 [0034] ポリアミド酸を合成する際の温度は— 20°C〜150°Cの任意の温度を選択すること ができる力 好ましくは— 5°C〜100°Cの範囲である。また、反応は任意の濃度で行う ことができる力 濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が 高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは 1 〜50質量%、より好ましくは 5〜30質量%である。反応初期は高濃度で行い、その 後、有機溶媒を追加しても構わない。 As a method of reacting tetracarboxylic acid and its derivative with diamine in an organic solvent when synthesizing polyamic acid, the solution in which diamine is dispersed in an organic solvent is stirred, and the tetracarboxylic acid and dicarboxylic acid are stirred. A method in which the derivative is added as it is or after being dispersed or dissolved in an organic solvent, and conversely, a method in which diamine is added to a solution in which tetracarboxylic acid and its derivative are dispersed or dissolved in an organic solvent, tetracarboxylic acid and its Examples thereof include a method of alternately adding a derivative and diamine. Any of these methods may be used. In addition, when tetracarboxylic acid and its derivatives or diamines are composed of a plurality of types of compounds, they may be reacted in a premixed state or individually, or they may be reacted individually, and further reacted individually. May be mixed to form a high molecular weight product. [0034] The temperature at which the polyamic acid is synthesized is a force capable of selecting an arbitrary temperature of -20 ° C to 150 ° C, and preferably -5 ° C to 100 ° C. Also, the reaction can be performed at any concentration. If the concentration is too low, it is difficult to obtain a high molecular weight polymer. If the concentration is too high, the reaction solution becomes too viscous and uniform stirring is difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction may be performed at a high concentration, and then an organic solvent may be added.
[0035] ポリアミド酸の合成において、テトラカルボン酸及びその誘導体のモル数に対する、 ジァミン成分のモル数の比は 0. 8〜; 1. 2であること力 S好ましく、 0. 9〜; 1. 1であること 力はり好ましい。通常の重縮合反応同様、このモル比が 1. 0に近いほど生成するポリ アミド酸の分子量は大きくなる。  [0035] In the synthesis of the polyamic acid, the ratio of the number of moles of the diamine component to the number of moles of the tetracarboxylic acid and its derivative is 0.8 to 1.2; A force of 1 is preferable. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
ポリアミド酸をイミド化させる方法としては、加熱による熱イミド化、触媒を使用する触 媒イミド化が一般的である力、比較的低温でイミド化反応が進行する触媒イミド化の 方力 S、得られるポリイミドの分子量低下が起こりにくく好ましい。  As a method for imidizing polyamic acid, heat imidization by heating, catalyst imidization using a catalyst is generally used, catalyst imidation force S in which an imidization reaction proceeds at a relatively low temperature, S It is preferable that the molecular weight of the resulting polyimide does not decrease.
[0036] 触媒イミド化は、ポリアミド酸を有機溶媒中において、塩基性触媒と酸無水物の存 在下で攪拌することにより行うことができる。このときの反応温度は一 20〜250°C、好 ましくは 0〜180°Cである。反応温度が高い方がイミド化は早く進行するが、高すぎる とポリイミドの分子量が低下する場合がある。塩基性触媒の量はアミド酸基の 0. 5〜3 0モル倍、好ましくは 2〜20モル倍であり、酸無水物の量はアミド酸基の;!〜 50モル 倍、好ましくは 3〜30モル倍である。塩基性触媒や酸無水物の量が少ないと反応が 十分に進行せず、また多すぎると反応終了後に完全に除去することが困難となる。  [0036] Catalytic imidation can be performed by stirring polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride. The reaction temperature at this time is 120 to 250 ° C, preferably 0 to 180 ° C. The higher the reaction temperature, the faster the imidization proceeds, but if it is too high, the molecular weight of the polyimide may decrease. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times that of the amic acid group, and the amount of the acid anhydride is !! to 50 mol times, preferably 3 to 30 mole times. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it is difficult to completely remove the reaction after the reaction is completed.
[0037] 塩基性触媒としてはピリジン、トリェチルァミン、トリメチルァミン、トリブチルァミン、ト リオクチルァミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度 な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、 無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の 精製が容易となるので好ましい。  [0037] Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
[0038] 有機溶媒としては、ポリアミド酸が溶解するものであれば限定されない。その具体例 を挙げるならば、 N, N '—ジメチルホルムアミド、 N, N'—ジメチルァセトアミド、 N— メチルー 2—ピロリドン、 N—メチルカプロラタタム、ジメチルスルホキシド、テトラメチル 尿素、ジメチノレスノレホン、へキサメチノレスノレホキシド、 γ ブチロラタトンなどである。 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより 制卸すること力 Sでさる。 [0038] The organic solvent is not limited as long as it dissolves the polyamic acid. Specific examples include N, N'-dimethylformamide, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolatatam, dimethylsulfoxide, tetramethyl. Urea, dimethinolesnorephone, hexamethinoresnorexoxide, γ-butyrolatatone, etc. The imidization rate by catalytic imidation is controlled by the control force S by adjusting the amount of catalyst, reaction temperature, and reaction time.
[0039] 生成したポリイミドは、上記反応溶液を貧溶媒に投入して生成した沈殿を回収する ことで得られる。その際、用いる貧溶媒は特に限定されないが、例えば、メタノーノレ、 アセトン、へキサン、ブチルセルソルブ、ヘプタン、メチルェチルケトン、メチルイソブ チルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に 投入して沈殿させたポリイミドは、濾過した後、常圧あるいは減圧下で、常温あるいは 加熱乾燥して粉末とすることができる。そのポリイミド粉末を、更に有機溶媒に溶解し て、再沈殿する操作を 2〜; 10回繰り返すと、ポリイミドを精製することもできる。一度の 沈殿回収操作では不純物が除ききれなレ、ときは、この精製工程を行うことが好まし!/、 [0039] The produced polyimide can be obtained by charging the reaction solution into a poor solvent and collecting the produced precipitate. In this case, the poor solvent to be used is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polyimide deposited in a poor solvent and filtered can be powdered by filtering at normal temperature or reduced pressure at room temperature or by heating. The polyimide powder can also be purified by repeating the steps of dissolving the polyimide powder in an organic solvent and reprecipitating 2 to 10 times. It is preferable to carry out this purification process when impurities cannot be removed by a single precipitation recovery operation!
Yes
[0040] 本発明に用いる特定ポリイミドの分子量は特に制限されないが、取り扱いのしゃす さと、膜形成した際の特性の安定性の観点から重量平均分子量で 2, 000〜200, 0 00カ好ましく、より好ましく (ま 4, 000-50, 000である。分子量 (ま、 GPC (ゲノレノ ーミ エツシヨンクロマトグラフィ)により求めたものである。  [0040] The molecular weight of the specific polyimide used in the present invention is not particularly limited, but is preferably 2,000 to 200,000 in terms of weight average molecular weight from the viewpoints of handling and stability of characteristics when a film is formed, and more Preferably, it is 4,000-50,000. It is determined by molecular weight (also GPC (genore- nomi-emission chromatography).
[0041] < (Β)成分:特定架橋性化合物〉  [0041] <Component (ii): Specific crosslinkable compound>
本発明の液晶配向処理剤は、上記したポリマー成分に加えて、分子内に下記の式  In addition to the polymer component described above, the liquid crystal aligning agent of the present invention has the following formula in the molecule.
[1]で示すォキセタン基を少なくとも 2個有する架橋性化合物(以下、特定架橋性化 合物と称する)を含有する。  And a crosslinkable compound having at least two oxetane groups represented by [1] (hereinafter referred to as a specific crosslinkable compound).
[0042] [化 15]  [0042] [Chemical 15]
Figure imgf000019_0001
Figure imgf000019_0001
[0043] ォキセタン基は、カルボキシル基や水酸基と熱や酸触媒の存在下で反応すること が知られている。従って、特定架橋性化合物が、ポリアミド酸やポリイミド中に含まれる カルボキシル基や水酸基と反応することで、ポリマー間で架橋した膜となる。さらに、 ォキセタン基は、カルボキシル基や水酸基との反応以外にも自己重合反応を起こす 。特に、ォキセタン基は、エポキシ基よりも求核性が高いため、最終転換率が高ぐ重 合度が高い重合体が得られる。即ち、本発明の液晶配向処理剤を用いて得られる液 晶配向膜は、ポリマー間の架橋及びォキセタン基の自己重合により生成する重合体 により耐熱性が高い膜となる。 [0043] It is known that an oxetane group reacts with a carboxyl group or a hydroxyl group in the presence of heat or an acid catalyst. Therefore, a specific crosslinkable compound reacts with a carboxyl group or a hydroxyl group contained in polyamic acid or polyimide to form a film crosslinked between polymers. further, The oxetane group causes a self-polymerization reaction in addition to the reaction with a carboxyl group or a hydroxyl group. In particular, since the oxetane group has a higher nucleophilicity than the epoxy group, a polymer having a high final conversion and a high degree of polymerization can be obtained. That is, the liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention is a film having high heat resistance due to a polymer formed by cross-linking between polymers and self-polymerization of oxetane groups.
[0044] また、ォキセタン基は 4員環構造であるため、カルボキシル基や水酸基と反応した 際及び自己重合した際に、 3員環構造であるエポキシ基と比較して、結合部位にメチ レン基を 1つ多く含む。よって、本発明の液晶配向処理剤から得られた膜は、ェポキ シ系架橋性化合物を使用した膜と比べて伸びゃ靭性の高レ、ものとなるので、ラビン グによるポリマーの延伸性が阻害されにくい。  [0044] Further, since the oxetane group has a four-membered ring structure, when it reacts with a carboxyl group or a hydroxyl group and when it self-polymerizes, a methylene group is present at the bonding site compared to an epoxy group that has a three-membered ring structure One more. Therefore, the film obtained from the liquid crystal aligning agent of the present invention has high toughness when stretched as compared with a film using an epoxy-based crosslinkable compound, so that the stretchability of the polymer by rubbing is inhibited. It is hard to be done.
したがって、本発明の液晶配向処理剤から得られる液晶配向膜は、架橋性化合物 を含有しない液晶配向膜やエポキシ系架橋性化合物を含有した液晶配向膜と比較 して、プレチルト角の熱に対する安定性が向上し、かつ、弱いラビング条件に対して も液晶の配向性が低下しなレ、。  Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is more stable to the heat of the pretilt angle than the liquid crystal alignment film containing no crosslinkable compound or the liquid crystal alignment film containing an epoxy crosslinkable compound. And the liquid crystal orientation does not deteriorate even under weak rubbing conditions.
[0045] 本発明の液晶配向処理剤において、特定架橋性化合物が有しているォキセタン基 は、 2個以上であれば特に限定されないが、好ましくは 2〜50個であり、より好ましく は、 2〜20個である。  In the liquid crystal aligning agent of the present invention, the number of oxetane groups possessed by the specific crosslinkable compound is not particularly limited as long as it is 2 or more, but is preferably 2 to 50, more preferably 2 ~ 20.
また、特定架橋性化合物の具体的構造は特に限定されないが、例えば下記の式 [ 2]で表される化合物を例示できる。  Further, the specific structure of the specific crosslinkable compound is not particularly limited, and examples thereof include a compound represented by the following formula [2].
[0046] [化 16] [0046] [Chemical 16]
Figure imgf000020_0001
Figure imgf000020_0001
式 [2]中、 Xは、 N、 NH、 CO、 0、 S、 SO、 Si.シノレセスキォキサン、ポリシロキサ  In the formula [2], X represents N, NH, CO, 0, S, SO, Si. Cinolesesquioxane, polysiloxa
1 2  1 2
ン、又は炭素数 1〜20の有機基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれていてもよい。更に、 Xの炭素数 1〜20の有機基には、環状構造を持 つ有機基が含まれてもよい。具体的には、シクロプロパン環、シクロブタン環、シクロ ペンタン環、シクロへキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、 シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテト ラデカン環、シクロペンタデカン環、シクロへキサデカン環、シクロへプタデカン環、シ クロォクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、ト リシクロデコサン環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環、ァ ダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、ァズレン環、イン デン環、フルオレン環、アントラセン環、フエナントレン環、フエナレン環、ピロール環、 イミダゾール環、ォキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジ ン環、キノリン環、ピラゾリン環、イソキノリン環、力ルバゾール環、プリン環、チアジア ゾール環、ピリダジン環、トリアジン環、ビラゾリジン環、トリァゾール環、ピラジン環、ベ ンズイミダゾール環、ベンゾイミダゾール環、チノリン環、フエナント口リン環、インドー ル環、キノキサリン環、ベンゾチアゾール環、フエノチアジン環、ォキサジァゾール環 、アタリジン環、ォキサゾール環、ピぺラジン環、ピぺリジン環、ジォキサン環、モルフ オリン環、ァゼピン環、ジァゼピン環、ナフチリジン環、フエナジン環、フタラジン環な どである。 X及び Xは、それぞれ独立して、単結合、 NH、 CO、 0、 S、 SO、又は炭 Or an organic group having 1 to 20 carbon atoms, and the organic group may contain a heteroatom (N, 0, S, Si). Furthermore, the organic group having 1 to 20 carbon atoms of X may include an organic group having a cyclic structure. Specifically, cyclopropane ring, cyclobutane ring, cyclo Pentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cyclohe Ptadecane ring, cyclodecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene ring, norbornene ring, adamantane ring, benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene Ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, phenalene ring, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidin ring Quinoline ring, pyrazoline ring, isoquinoline ring, force rubazole ring, purine ring, thiadiazole ring, pyridazine ring, triazine ring, virazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, quinoline ring, phenanthorin Ring, indole ring, quinoxaline ring, benzothiazole ring, phenothiazine ring, oxadiazole ring, atalidine ring, oxazole ring, piperazine ring, piperidine ring, dioxane ring, morpholine ring, azepine ring, diazepine ring, naphthyridine ring , Phenazine ring and phthalazine ring. X and X are each independently a single bond, NH, CO, 0, S, SO, or charcoal.
2 3 2 素数;!〜 20の有機基を示し、その有機基の中には、ヘテロ原子(N、 0、 S、 Si)が含 まれていてもよい。  2 3 2 represents an organic group having a prime number !!-20, and the organic group may contain a heteroatom (N, 0, S, Si).
[0048] Y及び Yは、それぞれ独立して、炭素数;!〜 20、好ましくは炭素数 1〜; 15の有機  [0048] Y and Y are each independently an organic compound having a carbon number;! To 20, preferably 1 to 15 carbon atoms.
1 2  1 2
基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれてもよい。  In the organic group, a hetero atom (N, 0, S, Si) may be contained.
m、 nは、それぞれ独立して、 0〜20の整数、好ましくは 0〜; 15の整数を示し、かつ m + nは 2〜20の整数、好ましくは 2〜; 15の整数を示す。  m and n each independently represents an integer of 0 to 20, preferably 0 to 15; and m + n represents an integer of 2 to 20, preferably 2 to 15;
[0049] 式 [2]で表される特定架橋性化合物において、好ましいのは、 X力 N、 NH、 CO 、 0、シルセスキォキサン、ポリシロキサン、又は炭素数 1〜; 10の有機基を示し、その 有機基の中にはへテロ原子(N、 O)が含まれていてもよぐ更に、 Xの炭素数;!〜 10 の有機基には、シクロへキサン環、ベンゼン環、ナフタレン環、フルオレン環、ピロ一 ル環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、力ルバゾール環、ピリ ダジン環、トリアジン環、トリァゾール環、ピラジン環、ベンズイミダゾール環、又はキノ キサリン環の環状構造を持つ有機基が含まれていてもよい。更に、 X及び X 、そ れぞれ独立して、 NH、 CO、 COO、 OCO、 0、 CONH、又は NHCOであり、 Y及 ひ Ύは、それぞれ独立して、炭素数 1〜; 10のアルキル基であり、 m、 nは、それぞれIn the specific crosslinkable compound represented by the formula [2], X force N, NH, CO 2, 0, silsesquioxane, polysiloxane, or an organic group having 1 to 10 carbon atoms is preferable. The organic group may contain heteroatoms (N, O), and the carbon number of X;! To 10 organic groups include cyclohexane ring, benzene ring, naphthalene Ring, fluorene ring, pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, force rubazole ring, pyridazine ring, triazine ring, triazole ring, pyrazine ring, benzimidazole ring, or quinoxaline ring An organic group having may be contained. In addition, X and X, Each independently NH, CO, COO, OCO, 0, CONH, or NHCO, and Y and Ύ are each independently an alkyl group having 1 to 10 carbon atoms, m, n Respectively
2 2
独立して、 0〜20の整数を示し、かつ m + nは 2〜20の整数である。  Independently, it represents an integer of 0 to 20, and m + n is an integer of 2 to 20.
[0050] 式 [2]中、 Xがシルセスキォキサンである場合において、その例としては、一般式 [[0050] In the formula [2], when X is silsesquioxane, examples thereof include the general formula [
S 1]〜 [S4]から選ばれる構造が挙げられる。 Examples include a structure selected from S 1] to [S4].
[0051] [化 17] [0051] [Chemical 17]
[ s][s]
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
Figure imgf000023_0004
Figure imgf000023_0003
Figure imgf000023_0004
S OlLO/LOOZdT/lDd zz 8^8CS0/800Z OAV 式 [2]中、 Xがポリシロキサンである場合において、そのポリシロキサンの例として S OlLO / LOOZdT / lDd zz 8 ^ 8CS0 / 800Z OAV In the formula [2], when X is polysiloxane, examples of the polysiloxane
2  2
は、一般式 [P l ]、 [P2]、 [P3]、及び [P4]からなる群から選ばれる少なくとも 1種の 構造を有するポリシロキサンが挙げられる。  Includes a polysiloxane having at least one structure selected from the group consisting of general formulas [P 1], [P2], [P3], and [P4].
[化 18]  [Chemical 18]
Figure imgf000024_0001
Figure imgf000024_0001
式 [P 1 ]〜[P4]中の R、 R、 R、 R、 Rは、それぞれ独立して、水素原子、水酸基  R, R, R, R and R in the formulas [P 1] to [P4] are each independently a hydrogen atom or a hydroxyl group
1 2 3 4 5  1 2 3 4 5
、炭素数 1〜; 10のアルキル基、アルコキシ基、脂肪族環基、又は芳香族環基から選 ばれる基である。  , A group having 1 to 10 carbon atoms, a group selected from an alkyl group, an alkoxy group, an aliphatic ring group, or an aromatic ring group.
[0053] 式 [2]の好ましい具体例としては、下記式 [3]〜 [8]の構造が挙げられる。  [0053] Preferable specific examples of the formula [2] include structures of the following formulas [3] to [8].
[0054] [化 19] [0054] [Chemical 19]
Figure imgf000024_0002
Figure imgf000024_0002
式 [3]中、 X及び Xは、それぞれ独立して、単結合、 NH、 CO、 0、 S、 SO、又は  In the formula [3], X and X are each independently a single bond, NH, CO, 0, S, SO, or
2 3 2 炭素数;!〜 20の有機基を示し、その有機基の中には、ヘテロ原子(N、 0、 S、 Si)カ 含まれていてもよぐ Y及び Yは、それぞれ独立して、炭素数;!〜 20、好ましくは炭  2 3 2 Indicates an organic group having 2 to 2 carbon atoms,! ~ 20, and the organic group may contain a heteroatom (N, 0, S, Si). Y and Y are independent of each other. Carbon number;! ~ 20, preferably charcoal
1 2  1 2
素数;!〜 1 5の有機基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含ま れてもよい。 Zは、単結合、 NH、 N (CH )、 NHCO、 CONH、 NHCONH、 CO、 C 00、 0、 S、 SO、 CF、 C(CF ) 、 Si(CH ) 、 OSi(CH ) 、 Si(CH ) 0、 OSi(C A prime number;! To 15 represents an organic group, and the organic group may include a heteroatom (N, 0, S, Si). Z is a single bond, NH, N (CH), NHCO, CONH, NHCONH, CO, C 00, 0, S, SO, CF, C (CF), Si (CH), OSi (CH), Si (CH) 0, OSi (C
2 2 3 2 3 2 3 2 3 2  2 2 3 2 3 2 3 2 3 2
H ) 0、又は炭素数 1〜; 10のアルキル基を示す。 m、 nは、それぞれ独立して、 0〜5 H) 0 or an alkyl group having 1 to 10 carbon atoms; m and n are each independently 0 to 5
3 2 3 2
の整数、好ましくは 0〜3の整数を示し、かつ m + nは 2〜10の整数、好ましくは 2〜6 の整数を示す。  , Preferably an integer of 0 to 3, and m + n is an integer of 2 to 10, preferably an integer of 2 to 6.
[0056] 式 [3]で表される特定架橋性化合物において、好ましいのは、 X及び X力 それ  [0056] In the specific crosslinkable compound represented by the formula [3], X and X forces are preferred.
2 3 ぞれ独立して、 NH、 CO、 COO、 OCO、 0、 CONH、又は NHCOであり、 Z力 単 結合、 CH、 C(CH ) 、 NH、 N(CH )、 NHCO、 CONH、 CO、 COO、 0、 SO、  2 3 Each independently NH, CO, COO, OCO, 0, CONH, or NHCO, Z force single bond, CH, C (CH), NH, N (CH), NHCO, CONH, CO, COO, 0, SO,
2 3 2 3 2 2 3 2 3 2
C(CF ) 、 Si(CH ) 、 OSi(CH ) 、 Si(CH ) 0、 OSi(CH ) 0、又は炭素数;!〜C (CF), Si (CH), OSi (CH), Si (CH) 0, OSi (CH) 0, or carbon number;
3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
5のアルキル基であり、 Y及び Y 、それぞれ独立して、炭素数 1〜; 10のアルキル  An alkyl group having 5 and Y and Y each independently having 1 to 10 carbon atoms;
1 2  1 2
基であり、 m、 nはそれぞれ独立して、 0〜5の整数、好ましくは 0〜3の整数、かつ m + nは 2〜; 10の整数、好ましくは 2〜6の整数である。  M and n are each independently an integer of 0 to 5, preferably an integer of 0 to 3, and m + n is an integer of 2 to; an integer of 10 and preferably an integer of 2 to 6.
[0057] [化 20]
Figure imgf000025_0001
[0057] [Chemical 20]
Figure imgf000025_0001
式 [4」中、 Xは、 MH、 N(CH )、 NHCO, CONH, NHCONH, CO、 COO、 O  In the formula [4], X is MH, N (CH), NHCO, CONH, NHCONH, CO, COO, O
1 3  13
CO、 0、 S、 SO、 CF、 C(CF ) 、 Si(CH ) 、 OSi(CH ) 、 Si(CH ) 0、又は OS  CO, 0, S, SO, CF, C (CF), Si (CH), OSi (CH), Si (CH) 0, or OS
2 2 3 2 3 2 3 2 3 2  2 2 3 2 3 2 3 2 3 2
i(CH ) Oを示し、 Y及び Yは、それぞれ独立して、炭素数;!〜 10のアルキル基、 i (CH 3) 2 O, Y and Y each independently represent an alkyl group having carbon atoms;! -10
3 2 1 2 3 2 1 2
好ましく炭素数 1〜5のアルキル基を示す。  An alkyl group having 1 to 5 carbon atoms is preferred.
[0058] 式 [4]で表される特定架橋性化合物において、好ましいのは、 X 1 NH、 N(CH  In the specific crosslinkable compound represented by the formula [4], X 1 NH, N (CH
1 3 13
)、 NHCO、 CONH、 CO、 COO、 OCO、 0、 SO、 C(CF ) 、 Si(CH ) 、 OSi(C ), NHCO, CONH, CO, COO, OCO, 0, SO, C (CF), Si (CH), OSi (C
2 3 2 3 2  2 3 2 3 2
H ) 、 Si(CH ) 0、又は OSi(CH ) Oであり、 Y及び Yは、それぞれ独立して、炭 H), Si (CH) 0, or OSi (CH) O, and Y and Y are each independently
3 2 3 2 3 2 1 2 3 2 3 2 3 2 1 2
素数 1〜 10のアルキル基である。  It is a 1 to 10 prime alkyl group.
[0059] [化 21] [0059] [Chemical 21]
Figure imgf000025_0002
Figure imgf000025_0002
式 [5]中の Xは、 N、炭素数 1〜20の脂肪族環、炭素数 1〜20の芳香族環又は炭 素数 1〜20のアルキレンであり、好ましくは、 N、炭素数 1〜; 15の脂肪族環、炭素数 1 〜: 15の芳香族環又は炭素数 1〜; 15のアルキレンであり、更に好ましくは、 Xは、 N、 炭素数 1〜 10の脂肪族環、炭素数 1〜 10の芳香族環又は炭素数 1〜 10のアルキレ ンである。 X in the formula [5] is N, an aliphatic ring having 1 to 20 carbon atoms, an aromatic ring having 1 to 20 carbon atoms, or charcoal An alkylene having 1 to 20 prime atoms, preferably N, an aliphatic ring having 1 to 15 carbon atoms, an aromatic ring having 1 to 15 carbon atoms, or an aromatic ring having 1 to 15 carbon atoms, or an alkylene having 1 to 15 carbon atoms, more preferably , X is N, an aliphatic ring having 1 to 10 carbon atoms, an aromatic ring having 1 to 10 carbon atoms, or an alkylene having 1 to 10 carbon atoms.
式 [5]中の Y及び Yは、それぞれ炭素数;!〜 10のアルキル基を示し、好ましくは、  Y and Y in the formula [5] each represents an alkyl group having! To 10 carbon atoms, preferably,
1 2  1 2
それぞれ炭素数 1〜 5のアルキル基である。  Each is an alkyl group having 1 to 5 carbon atoms.
式 [5]中の m、 nは 0〜20の整数を示し、かつ m + nは 2〜20の整数である。好まし くは、 m、 nは 0〜15の整数であり、かつ m + nは 2〜15の整数である。更に好ましく は、 m、 nは 0〜10の整数を示し、かつ m+nは 2〜; 10の整数である。  M and n in the formula [5] represent an integer of 0 to 20, and m + n is an integer of 2 to 20. Preferably, m and n are integers from 0 to 15, and m + n is an integer from 2 to 15. More preferably, m and n represent an integer of 0 to 0, and m + n is an integer of 2 to 10;
斯くして、 X、 Y、 Y、 m、 nの好ましい組み合わせは、以下の通りである。  Thus, preferred combinations of X, Y, Y, m, and n are as follows.
1 1 2  1 1 2
[0060] 式 [5]中の X 、 N、炭素数 1〜20の脂肪族環、炭素数 1〜20の芳香族環又は炭 素数 1〜20のアルキレンであり、 Y及び Yは、それぞれ炭素数;!〜 10のアルキル基  [0060] In Formula [5], X, N, an aliphatic ring having 1 to 20 carbon atoms, an aromatic ring having 1 to 20 carbon atoms, or an alkylene having 1 to 20 carbon atoms, and Y and Y are each carbon. Number ;! ~ 10 alkyl groups
1 2  1 2
であり、 m、 nは 0〜20の整数、かつ m + nは 2〜20の整数である。  M and n are integers from 0 to 20, and m + n is an integer from 2 to 20.
好ましくは、 Xは、 N、炭素数 1〜; 15の脂肪族環、炭素数 1〜; 15の芳香族環又は 炭素数 1〜 15のアルキレンであり、 Y及び Yは、それぞれ炭素数 1〜 5のアルキル  Preferably, X is N, an aliphatic ring having 1 to 15 carbon atoms, an aliphatic ring having 1 to 15 carbon atoms, an aromatic ring having 15 carbon atoms or an alkylene having 1 to 15 carbon atoms, and Y and Y each have 1 to 5 alkyl
1 2  1 2
基であり、 m、 nは 0〜; 15の整数、かつ m + nは 2〜; 15の整数である。  M, n is an integer from 0 to 15; and m + n is an integer from 2 to 15;
更に好ましくは、 Xは、 N、炭素数 1〜; 10の脂肪族環、炭素数 1〜; 10の芳香族環 又は炭素数 1〜; 10のアルキレンであり、 Y及び Yは、それぞれ炭素数;!〜 5のアル  More preferably, X is N, an aliphatic ring having 1 to 10 carbon atoms, an aliphatic ring having 1 to 10 carbon atoms, an aromatic ring having 10 carbon atoms or an alkylene having 1 to 10 carbon atoms, and Y and Y are each a carbon number. ;! ~ 5 al
1 2  1 2
キル基であり、 m、 nは 0〜; 10の整数、かつ m + nは 2〜; 10の整数である。  M, n is an integer from 0 to 10 and m + n is an integer from 2 to 10;
上記の Xにおける、炭素数 1〜20の脂肪族環、炭素数 1〜20の芳香族環の具体 例を以下に挙げる。  Specific examples of the aliphatic ring having 1 to 20 carbon atoms and the aromatic ring having 1 to 20 carbon atoms in X above are given below.
[0061] 脂肪族環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロへ キサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シク ロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロ ペンタデカン環、シクロへキサデカン環、シクロへプタデカン環、シクロォクタデカン環 、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環 、ビシクロヘプタン環、ノルボルネン環、ァダマンタン環が挙げられる。  [0061] Examples of the aliphatic ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cyclodecane ring, a cyclododecane ring, and a cyclotridecane. Ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, norbornene ring And adamantane ring.
[0062] 芳香族環としては、デカヒドロナフタレン環、ベンゼン環、ナフタレン環、テトラヒドロ ナフタレン環、ァズレン環、インデン環、フルオレン環、アントラセン環、フエナントレン 環、フエナレン環、ピロール環、イミダゾール環、ォキサゾール環、チアゾール環、ビラ ゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、力ルバ ゾール環、プリン環、チアジアゾール環、ピリダジン環、トリアジン環、ビラゾリジン環、 トリァゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、チノリン環 、フエナント口リン環、インドール環、キノキサリン環、ベンゾチアゾール環、フエノチア ジン環、ォキサジァゾール環、アタリジン環、ォキサゾール環、ピぺラジン環、ピペリジ ン環、ジォキサン環、モルフオリン環、ァゼピン環、ジァゼピン環、ナフチリジン環、フ ェナジン環、フタラジン環が挙げられる。 [0062] Examples of the aromatic ring include decahydronaphthalene ring, benzene ring, naphthalene ring, tetrahydro Naphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, phenalene ring, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, azole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline Ring, force rubazole ring, purine ring, thiadiazole ring, pyridazine ring, triazine ring, virazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, cinnoline ring, phenanthorin ring, indole ring, quinoxaline ring, Benzothiazole ring, phenothiazine ring, oxadiazole ring, atalidine ring, oxazole ring, piperazine ring, piperidin ring, dioxane ring, morpholine ring, azepine ring, diazepine ring, naphthyridine ring, phenazine , And a phthalazine ring.
[0063] これらの中でも、好ましくは、シクロブタン環、シクロへキサン環、ノルボルネン環、ァ ダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環、ァ ントラセン環、ピロール環、イミダゾール環、ォキサゾール環、チアゾール環、ピラゾー ル環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、カノレバゾール環、ピリダジン 環、トリアジン環、トリァゾール環、ピラジン環、ベンズイミダゾール環、ピぺラジン環、 ピぺリジン環である。さらに好ましくは、シクロへキサン環、ノルボルネン環、ァダマン タン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、ピロール環、イミダゾー ル環、ピリジン環、ピリミジン環、カノレバゾール環、ピリダジン環、トリアジン環、トリァゾ ール環、ピラジン環、ベンズイミダゾール環、ピぺラジン環、ピぺリジン環である。  Among these, preferably, a cyclobutane ring, a cyclohexane ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, a tetrahydronaphthalene ring, a fluorene ring, an anthracene ring, a pyrrole ring, an imidazole ring, an oxazole ring , Thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, canolevazole ring, pyridazine ring, triazine ring, triazole ring, pyrazine ring, benzimidazole ring, piperazine ring, piperidine ring . More preferably, a cyclohexane ring, norbornene ring, adamantane ring, benzene ring, naphthalene ring, tetrahydronaphthalene ring, pyrrole ring, imidazole ring, pyridine ring, pyrimidine ring, canolebazole ring, pyridazine ring, triazine ring, triazol ring. Ring, pyrazine ring, benzimidazole ring, piperazine ring, piperidine ring.
[0064] [化 22]
Figure imgf000027_0001
[0064] [Chemical 22]
Figure imgf000027_0001
式 [6]中、 Y及び Yは、それぞれ独立して、炭素数 1〜; 10のアルキル基、好ましく  In formula [6], Y and Y are each independently an alkyl group having 1 to 10 carbon atoms, preferably
1 2  1 2
炭素数 1〜5のアルキル基を示し、 nは 1〜10の整数、好ましく 1〜5の整数を示す。  An alkyl group having 1 to 5 carbon atoms is shown, and n is an integer of 1 to 10, preferably an integer of 1 to 5.
[0065] [化 23]
Figure imgf000027_0002
式 [7]中、 Y及び Υは、それぞれ独立して、炭素数;!〜 10のアルキル基、好ましく
[0065] [Chemical 23]
Figure imgf000027_0002
In the formula [7], Y and そ れ ぞ れ are each independently an alkyl group having from 10 to 10 carbon atoms, preferably
1 2 1 2
炭素数 1〜5のアルキル基を示し、 ηは 1〜10の整数、好ましく 1〜5の整数を示す。 A C1-C5 alkyl group is shown, (eta) is an integer of 1-10, Preferably an integer of 1-5 is shown.
[化 24]
Figure imgf000028_0001
[Chemical 24]
Figure imgf000028_0001
式 [8]中、 Υ及び Υは、それぞれ独立して、炭素数 1〜; 10のアルキル基、好ましく炭 In formula [8], Υ and Υ are each independently an alkyl group having 1 to 10 carbon atoms, preferably carbon
1 2  1 2
素数 1〜5のアルキル基を示し、 ηは 1〜10の整数、好ましく 1〜5の整数を示す。 より具体的な特定架橋性化合物としては、式 [9]〜[; 19]の化合物を挙げることがで きる。 A prime number is an alkyl group having 1 to 5, and η is an integer of 1 to 10, preferably an integer of 1 to 5. More specific specific crosslinkable compounds include compounds of the formulas [9] to [; 19].
[化 25] [Chemical 25]
Figure imgf000029_0001
Figure imgf000029_0001
[0068] [化 26] [0068] [Chemical 26]
Figure imgf000030_0001
Figure imgf000030_0001
[0069] [化 27] [0069] [Chemical 27]
Figure imgf000031_0001
Figure imgf000031_0001
上記化合物は特定架橋性化合物の一例であり、これらに限定されるものではない。 また、本発明の液晶配向処理剤に含有される特定架橋性化合物は、 1種類であって もよく、 2種類以上組み合わせてもよい。  The said compound is an example of a specific crosslinkable compound, It is not limited to these. Further, the specific crosslinkable compound contained in the liquid crystal aligning agent of the present invention may be one kind or a combination of two or more kinds.
[0070] (液晶配向処理剤)  [0070] (Liquid crystal aligning agent)
本発明の液晶配向処理剤における、(B)成分 (特定架橋性化合物)の含有量は、 ポリアミド酸及び/又はポリイミドからなる(A)成分(ポリマー成分) 100質量部に対し て、 0.;!〜 150質量部であることが好ましぐ架橋反応が進行し所望の膜硬化性を発 現し、かつ液晶の配向性を低下させないために、より好ましくは 0.;!〜 100質量部で あり、特には、;!〜 50質量部である。  In the liquid crystal aligning agent of the present invention, the content of the component (B) (specific crosslinkable compound) is 0. with respect to 100 parts by mass of the component (A) (polymer component) made of polyamic acid and / or polyimide. It is more preferably 0.;! To 100 parts by mass in order that a crosslinking reaction that preferably proceeds to 150 parts by mass proceeds to produce the desired film curability and does not deteriorate the orientation of the liquid crystal. , In particular;! ~ 50 parts by weight.
[0071] 本発明の液晶配向処理剤は特に限定されないが、通常、液晶配向膜を作製する 際に、基板上に 0. 01〜; 1. 0 mの均一な薄膜を形成する必要があることから、 (A) 成分、(B)成分に加えて、これらの成分を溶解させる有機溶媒を含有する塗布液で あることが好ましレ、。本発明の液晶配向処理剤が上記有機溶媒を含有する場合は、 塗布により均一な薄膜を形成するという観点から、有機溶媒の含有量は、液晶配向 処理剤中、 90〜99質量%であることが好ましぐ 92〜97質量%であることがより好ま しい。一方、(A)成分の含有量は、好ましくは 0. 4〜9. 9質量%、特に好ましくは 0. 5〜9. 9質量%であり、(B)成分の含有量は、好ましくは 0. ;!〜 9. 6質量%、特に好 ましくは 0. ;!〜 9. 5質量%である。これらの含有量は、 目的とする液晶配向膜の膜厚 によって適宜変更することができる。 [0071] The liquid crystal aligning agent of the present invention is not particularly limited, but it is usually necessary to form a uniform thin film of 0.01 to 1.0 m on the substrate when preparing the liquid crystal alignment film. Therefore, the coating solution preferably contains an organic solvent that dissolves these components in addition to the components (A) and (B). When the liquid crystal aligning agent of the present invention contains the organic solvent, from the viewpoint of forming a uniform thin film by coating, the content of the organic solvent is liquid crystal alignment. In the treatment agent, it is preferably 90 to 99% by mass, more preferably 92 to 97% by mass. On the other hand, the content of component (A) is preferably 0.4 to 9.9% by mass, particularly preferably 0.5 to 9.9% by mass, and the content of component (B) is preferably 0. ;! ~ 9.6 mass%, particularly preferably 0.;! ~ 9.5 mass%. These contents can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
[0072] 本発明の液晶配向処理剤に含有させる有機溶媒の具体例としては、前述したポリ アミド酸の合成反応に用いられる有機溶媒を挙げることができる。特に好ましくは、 N , N ジメチルホルムアミド、 N, N ジメチルァセトアミド、 N メチル 2—ピロリドン 、ジメチルスルホキシド、 γ ブチロラタトンである。これらの有機溶媒は 1種類でもよ ぐ 2種類以上を併用してもよい。  [0072] Specific examples of the organic solvent to be contained in the liquid crystal aligning agent of the present invention include organic solvents used in the above-described synthesis reaction of polyamic acid. Particularly preferred are N 2, N dimethylformamide, N, N dimethylacetamide, N methyl 2-pyrrolidone, dimethyl sulfoxide, and γ-butyrolatatone. These organic solvents may be used alone or in combination of two or more.
[0073] また、有機溶媒中には、塗膜の均一性を向上させる目的で、ェチルセ口ソルブ、ブ チノレセロソノレブ、ェチノレカノレビトーノレ、ブチノレカノレビトーノレ、ジエチレングリコーノレジ ェチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレモ ノブチノレエーテノレ、ェチノレカノレビトーノレアセテート、エチレングリコーノレ、エチレングリ コールモノへキシルエーテル、 1ーメトキシー2—プロパノール、 1 エトキシー2—プ ロノ ノーノレ、 1—ブトキシ一 2—プロノ ノーノレ、 1—フエノキシ 2—プロノ ノーノレ、プロ ピレンダリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコ 一ノレ 1 モノメチノレエーテノレー2—アセテート、プロピレングリコーノレ 1ーモノエ チノレエーテノレ 2—アセテート、ジプロピレングリコーノレ、ジプロピレングリコーノレモノ メチノレエーテノレ、ジプロピレングリコーノレモノェチノレエーテノレ、 4ーヒドロキシー 4ーメ チルー 2—ペンタノン、 2—(2—エトキシプロポキシ)プロパノール、乳酸メチルエステ ノレ、乳酸ェチルエステル、乳酸 η プロピルエステル、乳酸 η ブチルエステル、乳 酸イソアミルエステルなど、低表面張力を有する溶媒を含有することが好ましい。これ らの溶媒は通常 1種類又は 2種類以上を混合して用いられる。これらの溶媒は一般 的にポリアミド酸又はポリイミドを溶解させる能力が低いので、有機溶媒中の 80質量 %以下であることが好ましぐより好ましくは 60質量%以下である。また、塗膜の均一 性の向上を期待するのであれば、有機溶媒中の 5質量%以上が好ましぐより好まし くは 20質量%以上である。 [0074] 本発明の液晶配向処理剤は、(A)成分、(B)成分、及び上記有機溶媒の他、本発 明の効果が損なわれなレ、範囲であれば、添加剤成分が含有されて!/、ても構わなレ、。 添加剤成分としては、液晶配向膜と基板との密着性を向上させるための化合物、塗 膜の平坦化性を高めるための界面活性剤などが挙げられる。 [0073] In addition, in an organic solvent, for the purpose of improving the uniformity of the coating film, ethilce mouth solve, butyno cerero sonoreb, ethinorecanolebitonore, butinorecanolebitonore, diethyleneglyconoresi Ethenoleethenore, Diethyleneglycolenomethinoretinotenole, Diethyleneglycolenoremo Nobuchinoleetenore, Ethinorecanolebitonoreacetate, Ethyleneglycolanol, Ethyleneglycolmonohexylether, 1-methoxy-2- Propanol, 1 Ethoxy-2-Prono Norole, 1-Butoxy-1-2-Prono Norole, 1-Phenoxy 2-Prono Norole, Propyrendalol Monoacetate, Propylene Glycol Diacetate, Propylene Glycol Monore 1 Monomethinoreate Nore 2 —Acetate, propylene glycol Nole 1-monoethyl chinoleatenole 2-acetate, dipropylene glycolenole, dipropyleneglycololemonomethinoleatenore, dipropyleneglycolenolechinenoleatenore, 4-hydroxy-4-methyloyl 2-pentanone, 2- (2-ethoxy It is preferable to contain a solvent having a low surface tension, such as propoxy) propanol, methyl lactate ester, lactate ester, lactate η propyl ester, lactic acid η butyl ester, lactate isoamyl ester. These solvents are usually used alone or in combination of two or more. Since these solvents generally have a low ability to dissolve polyamic acid or polyimide, it is preferably 80% by mass or less, more preferably 60% by mass or less in the organic solvent. Further, if the improvement of the uniformity of the coating is expected, 5% by mass or more in the organic solvent is preferable, and 20% by mass or more is preferable. [0074] The liquid crystal aligning agent of the present invention contains the component (A), the component (B), and the organic solvent as well as the additive component as long as the effect of the present invention is not impaired. You can be! / Examples of the additive component include a compound for improving the adhesion between the liquid crystal alignment film and the substrate, and a surfactant for improving the flatness of the coating film.
[0075] 塗膜と基板との密着性を向上させる化合物の具体例としては、次に示すものが挙 げられる。例えば、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシ シラン、 2—ァミノプロビルトリメトキシシラン、 2—ァミノプロピルトリエトキシシラン、 N— (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N— (2 アミノエチル) - 3 レイドプロピルトリエトキシシラン、 N エトキシカルボ二ルー 3—ァミノプロピルトリメト キシシラン、 N—エトキシカルボ二ルー 3—ァミノプロピルトリエトキシシラン、 N トリエ トキシシリルプロピルトリエチレントリァミン、 N トリメトキシシリルプロピルトリエチレント リアミン、 10 トリメトキシシリル一 1,4,7 トリァザデカン、 10 トリエトキシシリル一 1, 4,7—トリァザデカン、 9—トリメトキシシリル一 3,6—ジァザノニルアセテート、 9—トリ エトキシシリルー3,6—ジァザノニルアセテート、 N べンジルー 3—ァミノプロピルトリ メトキシシラン、 N—べンジルー 3—ァミノプロピルトリエトキシシラン、 N—フエ二ルー 3 —ァミノプロピルトリメトキシシラン、 N フエニル一 3—ァミノプロピルトリエトキシシラ ン、 N ビス(ォキシエチレン) 3—ァミノプロビルトリメトキシシラン、 N ビス(ォキシ エチレン)一 3—ァミノプロピルトリエトキシシランなどの官能性シラン含有化合物であ これら化合物を添加する場合は、密着性向上の効果を得ることができ、液晶の配向 性を低下させないという観点から、(A)成分 100質量部に対して 0. ;!〜 30質量部が 好ましぐより好ましくは 1〜20質量部であり、特には 1〜; 10質量部である。  [0075] Specific examples of the compound that improves the adhesion between the coating film and the substrate include the following. For example, 3-Aminopropyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 2-Aminopropyl trimethoxysilane, 2-Aminopropyltriethoxysilane, N- (2 Aminoethyl) 3 Aminopropyl Trimethoxysilane, N— (2 aminoethyl) -3 raidpropyltriethoxysilane, N ethoxycarbonyl 3-aminoaminotrimethoxysilane, N-ethoxycarbonyl 3-aminopropyltriethoxysilane, N trie Toxisilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10 trimethoxysilyl-1,4,7 triazadecane, 10 triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-1,3 6-diazanonyl acetate, 9-triethoxysilyl-3,6 —Diazanonyl acetate, N benzil 3-Naminobenzyl trimethoxy silane, N-benzyl trifluoro 3-Namino propyl triethoxy silane, N-phenyl nitro 3-Namino phen tri silane, N phenyl 1 3 -Functional silane-containing compounds such as aminopropyltriethoxysilane, N-bis (oxyethylene) 3-aminomino trimethoxysilane, N-bis (oxyethylene) 3-aminopropyltriethoxysilane From the standpoint that the effect of improving the adhesion can be obtained and that the orientation of the liquid crystal is not deteriorated, 0.;! To 30 parts by mass is preferable with respect to 100 parts by mass of component (A). More preferably, it is 1-20 mass parts, Especially it is 1-; 10 mass parts.
[0076] 塗膜の平坦化性を高めるための界面活性剤としては、フッ素系界面活性剤、シリコ ーン系界面活性剤、ノニオン系界面活性剤などが挙げられる。より具体的には、例え ばエフトップ EF301、 EF303、 EF352 (以上、トーケムプロダクツ社製))、メガフアツ ク F171、 F173、 R— 30 (以上、大日本インキ社製)、フロラード FC430、 FC431 (以 上、住友スリーェム社製)、アサヒガード AG710、サーフロン S— 382、 SC101 , SC 102、 SC103、 SC104、 SC105、 SC106 (以上、旭石肖子社製)など力挙げ、られる。こ れらの界面活性剤の使用割合は、ポリマー成分 100質量部に対して、好ましくは 0. 0;!〜 2質量部、より好ましくは 0. 0;!〜 1質量部である。 [0076] Examples of the surfactant for improving the flatness of the coating film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), Megafuk F171, F173, R-30 (above, manufactured by Dainippon Ink), Florad FC430, FC431 ( (Made by Sumitomo 3EM), Asahi Guard AG710, Surflon S-382, SC101, SC 102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Shishiko). The ratio of these surfactants to be used is preferably 0.0;! To 2 parts by mass, more preferably 0.0;! To 1 part by mass with respect to 100 parts by mass of the polymer component.
[0077] <液晶配向膜 ·液晶表示素子〉  [0077] <Liquid crystal alignment film / liquid crystal display element>
本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射 などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜とし て用いることができる。  The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like. .
この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基 板;アクリル基板やポリカーボネート基板などのプラスチック基板;などを用いることが できる。さらに、液晶駆動のための ITO電極などが形成された基板を用いることがプ 口セスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板 のみにならばシリコンウェハー等の不透明な物でも使用でき、この場合の電極はアル ミ等の光を反射する材料も使用できる。  In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate; a plastic substrate such as an acrylic substrate or a polycarbonate substrate; In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal is formed from the viewpoint of simplifying the process. In the case of a reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used.
[0078] 液晶配向処理剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷 、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その 他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなど があり、 目的に応じてこれらを用いてもよい。  [0078] The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used according to the purpose.
液晶配向処理剤を塗布した後の焼成は、 100〜350°Cの任意の温度で行うことが できる力 好ましくは 120〜300°Cであり、さらに好ましくは 150〜250°Cである。この 焼成はホットプレート、熱風循環炉、赤外線炉などで行うことができる。  Firing after applying the liquid crystal aligning agent can be performed at any temperature of 100 to 350 ° C, preferably 120 to 300 ° C, more preferably 150 to 250 ° C. This firing can be performed with a hot plate, a hot-air circulating furnace, an infrared furnace, or the like.
[0079] 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、 薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは 5〜300n m、より好ましくは 10〜; !OOnmである。液晶を水平配向や傾斜配向させる場合は、 焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。  [0079] If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. , More preferably 10 to! OOnm. When the liquid crystal is aligned horizontally or tilted, the baked coating film is treated with rubbing or irradiation with polarized ultraviolet rays.
[0080] 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液 晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子とした ものである。  [0080] The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method. It is.
液晶セル作製の一例を挙げるならば、液晶配向膜の形成された 1対の基板を用意 し、片方の基板の液晶配向膜上にスぺーサーを散布し、液晶配向膜面が内側になる ようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、 スぺーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封 止を行う方法などが例示できる。このときのスぺーサ一の厚みは、好ましくは;!〜 30 m、より好ましくは 2〜; 10 μ mである。 To give an example of liquid crystal cell preparation, a pair of substrates with a liquid crystal alignment film is prepared. A method of spraying a spacer on the liquid crystal alignment film of one substrate and bonding the other substrate so that the surface of the liquid crystal alignment film is on the inside, and injecting liquid crystal under reduced pressure, or sealing Examples thereof include a method in which a liquid crystal is dropped on the surface of the liquid crystal alignment film on which a spacer is dispersed and then the substrate is bonded and sealed. The thickness of the spacer at this time is preferably;! -30 m, more preferably 2--10 μm.
このようにして、本発明の液晶配向処理剤を用いて作製した液晶表示素子は、プレ チルト角の安定性に優れた液晶表示デバイスとすることができ、 TN素子、 STN素子 、 TFT液晶素子、更には、垂直配向型の液晶表示素子などに有用である。  In this way, the liquid crystal display element produced using the liquid crystal aligning agent of the present invention can be a liquid crystal display device having excellent pretilt angle stability, including a TN element, STN element, TFT liquid crystal element, Furthermore, it is useful for a vertical alignment type liquid crystal display element.
実施例  Example
[0081] 以下に実施例を挙げ、本発明を更に詳しく説明するが、これらに限定して解釈され るものではない。  [0081] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention should not be construed as being limited thereto.
本実施例で使用する化合物の略号は以下のとおりである。  The abbreviations of the compounds used in this example are as follows.
(テトラカルボン酸二無水物)  (Tetracarboxylic dianhydride)
CBDA: 1 , 2, 3, 4 シクロブタンテトラカルボン酸二無水物  CBDA: 1, 2, 3, 4 cyclobutane tetracarboxylic dianhydride
BODA:ビシクロ [3, 3, 0]オクタン 2, 4, 6, 8 テトラカルボン酸二無水物  BODA: Bicyclo [3, 3, 0] octane 2, 4, 6, 8 Tetracarboxylic dianhydride
[0082] [化 28] [0082] [Chemical 28]
Figure imgf000035_0001
Figure imgf000035_0001
C B D A B O D A  C B D A B O D A
(ジァミン)  (Jiamin)
p— PDA: p フエ二レンジァミン  p— PDA: p
DBA: 3, 5—ジァミノ安息香酸  DBA: 3, 5—Diaminobenzoic acid
DADPA: 4, 4'—ジアミノジフエニノレアミン  DADPA: 4, 4'-diaminodiphenylamine
AP18 : 4- (ォクタデシルォキシ) 1 , 3 フエ二レンジァミン  AP18: 4- (octadecyloxy) 1,3 phenylenediamine
PCH: 1 , 3—ジァミノー 4 [4一(4 ヘプチルシクロへキシル)フエノキシ]ベンゼ ン PCH: 1,3-Diamino 4 [4 (4-heptylcyclohexyl) phenoxy] benze N
[0083] [化 29]  [0083] [Chemical 29]
Figure imgf000036_0001
Figure imgf000036_0001
p— PDA DBA  p— PDA DBA
Figure imgf000036_0002
Figure imgf000036_0002
PCH  PCH
系架橋性化合物) ォキセタン (A) :〇 丁ー221(東亜合成社製) ォキセタン (B) :OX— SQ— H (東亜合成社製) ォキセタン(C) :OX— SC (東亜合成社製) Crosslinkable compound) Oxetane (A): 〇 Dc-221 (manufactured by Toa Gosei Co., Ltd.) Oxetane (B): OX— SQ— H (Manufactured by Toa Gosei Co., Ltd.) Oxetane (C): OX— SC (manufactured by Toa Gosei Co., Ltd.)
[0084] [化 30] [0084] [Chemical 30]
Figure imgf000037_0001
Figure imgf000037_0001
Figure imgf000037_0002
Figure imgf000037_0002
ォキセタン B (OX-SQ-H)  Oxetane B (OX-SQ-H)
Figure imgf000037_0003
ォキセタン C (OX-SC)
Figure imgf000037_0003
Oxetane C (OX-SC)
(エポキシ系架橋性化合物)  (Epoxy-based crosslinkable compound)
エポキシ A: YH -434L (東都化成社製)  Epoxy A: YH-434L (manufactured by Tohto Kasei)
エポキシ B:ェポリード GT— 401 (4官能脂環式エポキシ樹脂)(ダイセル化学社製) ;エポキシ化ブタンテトラカルボン酸テトラキス一(3—シクロへキセニルメチル)修飾 ε 一力プロラタトン  Epoxy B: Epolide GT-401 (4-functional alicyclic epoxy resin) (manufactured by Daicel Chemical Industries); modified with epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) ε
[化 31]
Figure imgf000038_0001
エポキシ A (YH - 4 3 4 L )
[Chemical 31]
Figure imgf000038_0001
Epoxy A (YH-4 3 4 L)
(有機溶媒)  (Organic solvent)
NMP : N—メチルー 2—ピロリドン  NMP: N-Methyl-2-pyrrolidone
BCS :ブチルセ口ソルブ  BCS: Butyl Seguchi Solve
<ポリイミドの分子量測定〉 <Molecular weight measurement of polyimide>
合成例におけるポリイミドの分子量は、センシユー科学社製 常温く  The molecular weight of polyimide in the synthesis example is
グラフィー(GPC)装置(SSC— 7200)、 Shodex社製カラム(KD— 803、 KD— 805 )を用い以下のようにして測定した。 Measurement was carried out as follows using a chromatography (GPC) apparatus (SSC-7200) and a column (KD-803, KD-805) manufactured by Shodex.
カラム温度: 50°C  Column temperature: 50 ° C
溶離液: N, N'—ジメチルホルムアミド(添加剤として、臭化リチウム—水和物(LiBr •H O)が 30mmol/L、リン酸.無水結晶(o—リン酸)が 30mmo 流速: 1. 0ml/分  Eluent: N, N'-dimethylformamide (as additive, lithium bromide-hydrate (LiBr • HO) 30mmol / L, phosphoric acid. Anhydrous crystals (o-phosphoric acid) 30mmo Flow rate: 1.0ml / Min
検量線作成用標準サンプル:東ソ一社製 TSK 標準ポリエチレンオキサイド (分 子!: 約 9000,000、 150,000、 100,000、 30,000)、及び、ポジマーラボラ HJ—社 製 ポリエチレングリコール(分子量 約 12,000、 4,000、 1,000)。  Standard samples for preparing calibration curves: TSK standard polyethylene oxide (molecules !: approx. 9000,000, 150,000, 100,000, 30,000) manufactured by Tosohichi Co., Ltd. and polyethylene glycol (molecular weight approx. ).
<イミド化率の測定〉 <Measurement of imidization rate>
合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末 20 mgを NMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ 5mm)に入れ、重水素化ジメチルスルホキシド(DMSO— d 、 0. 05%TMS混合品  The imidation ratio of polyimide in the synthesis example was measured as follows. Put 20 mg of polyimide powder into an NMR sample tube (NMR sampling tube standard φ5 mm, manufactured by Kusano Kagaku Co., Ltd.) and mix with deuterated dimethyl sulfoxide (DMSO-d, 0.05% TMS)
6  6
) 0.53mlを添加し、超音波をかけて完全に溶解させた。このチューブ内溶液で日本 電子データム NMR測定器 (JNW—ECA500)にて 500MHzのプロトン NMRを測 定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロト ンとして決め、このプロトンのピーク積算値と、 9.5〜10.0ppm付近に現れるァミック 酸の NH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。 ) 0.53 ml was added and completely dissolved by sonication. With this solution in the tube, proton NMR at 500 MHz was measured with a Japan Electronic Datum NMR measuring instrument (JNW-ECA500). The imidization rate is based on protons derived from structures that do not change before and after imidation. The proton peak integrated value and the proton peak integrated value derived from the NH group of the amic acid appearing in the vicinity of 9.5 to 10.0 ppm were obtained by the following formula.
イミド化率(%) = (1— a - x/y) X IOO  Imidization rate (%) = (1— a-x / y) X IOO
上記式において、 Xはァミック酸の NH基由来のプロトンピーク積算値、 yは基準プロ トンのピーク積算値、 αはポリアミック酸 (イミド化率が 0%)の場合におけるァミック酸 の ΝΗ基プロトン 1個に対する基準プロトンの個数割合である。  In the above formula, X is the accumulated proton peak value derived from the NH group of the amic acid, y is the accumulated peak value of the reference proton, α is the aprotic group proton of the amic acid in the case of polyamic acid (imidation rate is 0%) 1 This is the ratio of the number of reference protons to one.
(合成例 1) (Synthesis Example 1)
CBDA(5. lg,26. Ommol)、 p— PDA(2. 53g, 23. 4mmol)、 AP18 (0. 98g, 2. 6mmol)を NMP (81. 5g)中で混合し、 25°Cで 6時間反応させ、ポリアミック酸溶 液 (A)を得た。このポリアミック酸溶液 (A)の数平均分子量は 22000、重量平均分子 量は 78900であった。  CBDA (5.lg, 26.Ommol), p-PDA (2.53g, 23.4mmol), AP18 (0.98g, 2.6 mmol) were mixed in NMP (81.5g) at 25 ° C. The mixture was reacted for 6 hours to obtain a polyamic acid solution (A). The number average molecular weight of this polyamic acid solution (A) was 22000, and the weight average molecular weight was 78900.
(合成例 2) (Synthesis Example 2)
CBDA(3. 04g, 15. 5mmol)、 p— PDA(1. 56g、 14. 4mmol)、 PCH (0. 61g 、 1. 6mmol)を NMP (22. Og)中で混合し、 25°Cで 5時間反応させ、ポリアミック酸 溶液 (B)を得た。このポリアミック酸溶液 (B)の数平均分子量は 25000、重量平均分 子量は 94000であった。  CBDA (3.04 g, 15.5 mmol), p—PDA (1.56 g, 14.4 mmol), PCH (0.61 g, 1.6 mmol) were mixed in NMP (22. Og) at 25 ° C. The mixture was reacted for 5 hours to obtain a polyamic acid solution (B). This polyamic acid solution (B) had a number average molecular weight of 25,000 and a weight average molecular weight of 94,000.
(合成例 3) (Synthesis Example 3)
BODA(16. 9g, 68mmol)、 p— PDA(8. 74g, 81mmol)、 PCH (3. 43g, 9m mol)を NMP (100. lg)中で混合し、 40°Cで 3時間反応させた後、 CBDA(4. lg, 21mmol)と NMP (52. 2g)を加え、 40°Cで 3時間反応させ、ポリアミック酸溶液(C) を得た。このポリアミック酸(C)の数平均分子量は 20500、重量平均分子量 76500 であった。  BODA (16.9 g, 68 mmol), p-PDA (8. 74 g, 81 mmol), PCH (3.43 g, 9 mmol) were mixed in NMP (100. lg) and reacted at 40 ° C for 3 hours. Thereafter, CBDA (4. lg, 21 mmol) and NMP (52.2 g) were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution (C). The number average molecular weight of this polyamic acid (C) was 20500, and the weight average molecular weight was 76500.
(合成例 4) (Synthesis Example 4)
BODA(150. lg, 600mmol)、 DBA(60. 9g, 400mmol)、 PCH (152. 2g, 4 OOmmol)を NMP (1290g)中で混合し、 80°Cで 5時間反応させた後、 CBDA(38. 8g, 198mmol)と NMP (320g)を加え、 40°Cで 3時間反応させ、ポリアミック酸溶液 (D)を得た。このポリアミック酸 (D)の数平均分子量は 24400、重量平均分子量 985 00であった。 (合成例 5) BODA (150.lg, 600mmol), DBA (60.9g, 400mmol), PCH (152.2g, 4OOmmol) were mixed in NMP (1290g) and reacted at 80 ° C for 5 hours, then CBDA ( 38.8 g, 198 mmol) and NMP (320 g) were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution (D). The number average molecular weight of this polyamic acid (D) was 24400, and the weight average molecular weight was 985,000. (Synthesis Example 5)
合成例 3で得られたポリアミック酸溶液(C) (130. 3g)に NMPを加え 6質量%に希 釈した後、イミド化触媒として無水酢酸(15. 6g)、ピリジン(12. lg)を加え、 80°Cで 3時間反応させた。この反応溶液をメタノール(1600ml)中に投入し、得られた沈殿 物を濾別した。この沈殿物をメタノールで洗浄し、 100°Cで減圧乾燥しポリイミド粉末 After adding NMP to the polyamic acid solution (C) (130.3 g) obtained in Synthesis Example 3 and diluting to 6% by mass, acetic anhydride (15.6 g) and pyridine (12. lg) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C for 3 hours. This reaction solution was poured into methanol (1600 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C to obtain polyimide powder.
(E)を得た。このポリイミドのイミド化率は 54%であり、数平均分子量は 18300、重量 平均分子量は 45300であった。 (E) was obtained. The imidation ratio of this polyimide was 54%, the number average molecular weight was 18300, and the weight average molecular weight was 45300.
[0089] (合成例 6)  [0089] (Synthesis Example 6)
合成例 4で得られたポリアミック酸溶液(D) (600. 2g)に NMPを加え 6質量%に希 釈した後、イミド化触媒として無水酢酸 ½3. 9g)、ピリジン (49. 6g)を加え、 80°Cで 3時間反応させた。この反応溶液をメタノール(7700ml)中に投入し、得られた沈殿 物を濾別した。この沈殿物をメタノールで洗浄し、 100°Cで減圧乾燥しポリイミド粉末 After adding NMP to the polyamic acid solution (D) (60.2 g) obtained in Synthesis Example 4 and diluting to 6% by mass, acetic anhydride (3.9 g) and pyridine (49.6 g) were added as imidization catalysts. And reacted at 80 ° C for 3 hours. This reaction solution was poured into methanol (7700 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C to obtain polyimide powder.
(F)を得た。このポリイミドのイミド化率は 57%であり、数平均分子量は 23,000、重量 平均分子量は 80,200であった。 (F) was obtained. The imidation ratio of this polyimide was 57%, the number average molecular weight was 23,000, and the weight average molecular weight was 80,200.
(合成例 7)  (Synthesis Example 7)
合成例 4で得られたポリアミック酸溶液(D) (101. 2g)に NMPを加え 6質量%に希 釈した後、イミド化触媒として無水酢酸(21. 3g)、ピリジン(16. 5g)を加え、 90°Cで 3時間反応させた。この反応溶液をメタノール(1300ml)中に投入し、得られた沈殿 物を濾別した。この沈殿物をメタノールで洗浄し、 100°Cで減圧乾燥しポリイミド粉末 After adding NMP to the polyamic acid solution (D) (101.2 g) obtained in Synthesis Example 4 and diluting to 6% by mass, acetic anhydride (21.3 g) and pyridine (16.5 g) were used as imidization catalysts. In addition, the mixture was reacted at 90 ° C for 3 hours. This reaction solution was poured into methanol (1300 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C to obtain polyimide powder.
(G)を得た。このポリイミドのイミド化率は 81 %であり、数平均分子量は 20400、重量 平均分子量は 63000であった。 (G) was obtained. The imidation ratio of this polyimide was 81%, the number average molecular weight was 20400, and the weight average molecular weight was 63000.
[0090] (実施例 1)  [0090] (Example 1)
合成例 1で得られたポリアミック酸溶液 (A) (6. 00g)に、ォキセタン (A) (0. l lg)、 NMP (4. 76g)、BCS (2. 53g)を加えて攪拌し、液晶配向処理剤 [1]を得た。 上記で得た液晶配向処理剤 [1]を 3cm X 4cmITO電極付き基板の ITO面にスピ ンコートし、 80°Cで 5分間、 230°Cで 30分間加熱処理をして膜厚 lOOnmのポリイミド 塗膜を得た。塗膜面をロール径 120mm、レーヨン布のラビング装置にて、回転数 70 Orpm、移動速度 40mm/sec、押し込み量 0. 3mmの条件にてラビング処理をし、 液晶配向膜付き基板を得た。この液晶配向膜付き基板を 2枚用意し、液晶配向膜面 を内側にして 50 mのスぺーサーを挟み、ラビング方向が逆向きになるようにして組 み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法 によって、液晶 ZLI— 2293 (メルク'ジャパン社製)を注入し、注入口を封止して、ァ ンチパラレル配向のネマティック液晶セルを得た。 To the polyamic acid solution (A) (6.00 g) obtained in Synthesis Example 1, oxetane (A) (0.1 g), NMP (4.76 g), and BCS (2.53 g) were added and stirred. A liquid crystal aligning agent [1] was obtained. The liquid crystal alignment treatment agent [1] obtained above is spin-coated on the ITO surface of the substrate with 3cm x 4cm ITO electrode, and heat-treated at 80 ° C for 5 minutes and at 230 ° C for 30 minutes to apply polyimide with a film thickness of lOOnm. A membrane was obtained. The coating surface is rubbed with a roll diameter of 120mm and a rayon cloth rubbing device under the conditions of a rotation speed of 70 Orpm, a moving speed of 40mm / sec, and an indentation amount of 0.3mm. A substrate with a liquid crystal alignment film was obtained. Prepare two substrates with a liquid crystal alignment film, sandwich the 50 m spacer with the liquid crystal alignment film surface on the inside, combine them so that the rubbing direction is reversed, and bond the periphery with a sealant. An empty cell was prepared. Liquid crystal ZLI-2293 (manufactured by Merck & Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel aligned nematic liquid crystal cell.
[0091] この液晶セルについて、液晶注入後の初期、及び 120°Cで 5時間加熱処理後のそ れぞれのプレチルト角(度)を、プレチルト角測定装置(ELSICON社製 モデル PA S— 301)を用いて室温で測定した。初期及び各熱処理後の液晶セルについて、偏 光顕微鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配 向不良はなぐ液晶は均一に配向していた。  [0091] For this liquid crystal cell, the pretilt angle (degrees) at the initial stage after the liquid crystal injection and after the heat treatment at 120 ° C for 5 hours was measured with a pretilt angle measuring device (Model PA S-301, manufactured by ELSICON). ) At room temperature. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
[0092] また、ラビング処理の押し込み量を 0. 1mmとした以外は、上記と同様にして作製し た液晶セルについて、液晶注入後の初期及び 120°Cで 5時間加熱処理後のプレチ ノレト角を測定した。これら液晶セルにつ!/、て偏光顕微鏡観察により液晶の配向均一 性を確認したところ、いずれの液晶セルとも、配向不良はなぐ液晶は均一に配向し ていた。  [0092] In addition, with respect to a liquid crystal cell manufactured in the same manner as described above except that the indentation amount of the rubbing treatment was set to 0.1 mm, the pre-retinoic angle after the heat treatment at 120 ° C for 5 hours at the initial stage after the liquid crystal injection. Was measured. When the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope under these liquid crystal cells, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0093] (実施例 2) [0093] (Example 2)
合成例 1で得られたポリアミック酸溶液 (A) (6. 05g)に、ォキセタン (A) (0. 06g)、 NMP (4. 05g)、 BCS (2. 35g)を加えて攪拌し、液晶配向処理剤 [2]を得た。 得られた液晶配向処理剤 [2]を用いて実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱 処理後のプレチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光 顕微鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向 不良はなぐ液晶は均一に配向していた。  Oxetane (A) (0.06 g), NMP (4.05 g), and BCS (2.35 g) were added to the polyamic acid solution (A) (6.05 g) obtained in Synthesis Example 1, and the mixture was stirred. An alignment agent [2] was obtained. Using the obtained liquid crystal alignment treatment agent [2], a liquid crystal cell was prepared in the same manner as in Example 1, and the heat treatment was performed at 120 ° C. for 5 hours at the initial stage after the liquid crystal was injected at an indentation amount of 0.3 mm. The subsequent pretilt angle was measured. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
[0094] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルについ て、液晶注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定した。 これら液晶セルにつ!/、て、偏光顕微鏡観察により液晶の配向均一性を確認したとこ ろ、いずれの液晶セルとも、配向不良はなぐ液晶は均一に配向していた。 プレチルト角の測定結果は、表 1に示す。 [0094] Further, with respect to a liquid crystal cell produced in the same manner as described above except that the amount of push-in was 0.1 mm, the pretilt angle was measured at the initial stage after liquid crystal injection and after heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure. Table 1 shows the measurement results of the pretilt angle.
[0095] (実施例 3) [Example 3]
合成例 1で得られたポリアミック酸溶液 (A) (6. OOg)に、ォキセタン (B) (0. 03g)、 NMP (3. 61g)、BCS (2. 21g)を加えて攪拌し、液晶配向処理剤 [3]を得た。 得られた液晶配向処理剤 [3]を用いて実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱 処理後のプレチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光 顕微鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向 不良はなぐ液晶は均一に配向していた。  To the polyamic acid solution (A) (6.OOg) obtained in Synthesis Example 1, oxetane (B) (0.03 g), NMP (3.61 g), and BCS (2.21 g) were added and stirred to obtain a liquid crystal. An alignment agent [3] was obtained. Using the obtained liquid crystal alignment treatment agent [3], a liquid crystal cell was prepared in the same manner as in Example 1, and heat treatment was performed at 120 ° C. for 5 hours at the initial stage after injecting the liquid crystal at an indentation amount of 0.3 mm. The subsequent pretilt angle was measured. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
[0096] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルについ て、液晶注入後の初期及び 120°Cで 5時間過熱処理後のプレチルト角を測定した。 これら液晶せるにつ!/、て、偏光顕微鏡観察により液晶の配向均一性を確認したところ 、いずれの液晶セルとも、配向不良はなぐ液晶は均一に配向していた。 [0096] Further, with respect to the liquid crystal cell produced in the same manner as described above except that the indentation amount was set to 0.1 mm, the pretilt angle was measured at the initial stage after the liquid crystal injection and after the heat treatment for 5 hours at 120 ° C. As a result of confirming the alignment uniformity of the liquid crystal by observation with a polarizing microscope, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0097] (実施例 4) [Example 4]
合成例 2で得られたポリアミック酸溶液 (B) (6. OOg)に、ォキセタン (A) (0. 12g)、 NMP (3. 61g)、 BCS (2. 4g)を加えて攪拌し、液晶配向処理剤 [4]を得た。  To the polyamic acid solution (B) (6.OOg) obtained in Synthesis Example 2, oxetane (A) (0.12 g), NMP (3.61 g), and BCS (2.4 g) were added and stirred to obtain a liquid crystal. An alignment agent [4] was obtained.
得られた液晶配向処理剤 [4]を用いて実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱 処理後のプレチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光 顕微鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向 不良はなぐ液晶は均一に配向していた。  Using the obtained liquid crystal alignment treatment agent [4], a liquid crystal cell was produced in the same manner as in Example 1, and heat treatment was performed at 120 ° C. for 5 hours at the initial stage after injecting the liquid crystal at an indentation amount of 0.3 mm. The subsequent pretilt angle was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0098] (実施例 5) [Example 5]
合成例 2で得られたポリアミック酸溶液 (B) (6. 02g)に、ォキセタン (B) (0. 03g)、 NMP (2. 41g)、 BCS (2. lOg)を加えて攪拌し、液晶配向処理剤 [5]を得た。 得られた液晶配向処理剤 [ 5]を用!/、て実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理 後のプレチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微 鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良 はなぐ液晶は均一に配向していた。 To the polyamic acid solution (B) (6.02 g) obtained in Synthesis Example 2, oxetane (B) (0.03 g), NMP (2.41 g), and BCS (2. lOg) were added and stirred. An alignment agent [5] was obtained. The obtained liquid crystal aligning agent [5] was used! /, And a liquid crystal cell was prepared in the same manner as in Example 1, and the initial stage after liquid crystal injection at a rubbing treatment push amount of 0.3 mm at 120 ° C. for 5 hours Heat treatment The subsequent pretilt angle was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal without alignment failure was uniformly aligned in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0099] (比較例 1) [0099] (Comparative Example 1)
合成例 1で得られたポリアミック酸溶液 (A) (6. 00g)に、 NMP (3. 06g)、 BCS (2 . 12g)を加えて攪拌し、液晶配向処理剤 [6]を得た。  NMP (3.06 g) and BCS (2.12 g) were added to the polyamic acid solution (A) (6.00 g) obtained in Synthesis Example 1 and stirred to obtain a liquid crystal aligning agent [6].
得られた液晶配向処理剤 [6]を用いて実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱 処理後のプレチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光 顕微鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向 不良はなぐ液晶は均一に配向していた。  A liquid crystal cell was prepared using the obtained liquid crystal aligning agent [6] in the same manner as in Example 1, and heat treatment was performed at 120 ° C for 5 hours at the initial stage after injecting the liquid crystal at a pushing amount of rubbing treatment of 0.3 mm. The subsequent pretilt angle was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0100] (比較例 2) [0100] (Comparative Example 2)
合成例 2で得られたポリアミック酸溶液(B) (6. Olg)に、 NMP (2. 01g)、 BCS (1 . 99g)を加えて攪拌し、液晶配向処理剤 [7]を得た。  NMP (2.01 g) and BCS (1.99 g) were added to the polyamic acid solution (B) (6. Olg) obtained in Synthesis Example 2 and stirred to obtain a liquid crystal aligning agent [7].
得られた液晶配向処理剤 [ 7]を用!/、て実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理 後のプレチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微 鏡観察により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良 はなぐ液晶は均一に配向していた。  The obtained liquid crystal alignment treatment agent [7] was used! A liquid crystal cell was prepared in the same manner as in Example 1 and the initial stage after liquid crystal injection at a rubbing treatment push amount of 0.3 mm, at 120 ° C for 5 hours. The pretilt angle after the heat treatment was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0101] (比較例 3) [0101] (Comparative Example 3)
合成例 1で得られたポリアミック酸溶液 (A) (6. 00g)に、エポキシ (A) (0. l lg)、 N MP (4. 75g)、BCS (2. 52g)を加えて攪拌し、液晶配向処理剤 [8]を得た。  Epoxy (A) (0. l lg), N MP (4. 75 g), and BCS (2.52 g) were added to the polyamic acid solution (A) (6.00 g) obtained in Synthesis Example 1 and stirred. A liquid crystal aligning agent [8] was obtained.
得られた液晶配向処理剤 [8]を用いて実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理 後のプレチルト角を測定した。この液晶セルの初期状態にお!/、て、液晶注入時に液 晶が流れていった方向に液晶が配向してしまう、いわゆる流動配向が観察された。更 に、熱処理後の各段階においてもこの流動配向は解消せず、加えて、熱処理によつ てディスクリネーシヨンラインが発生した。このような配向不良が発生していたため、こ の液晶セルのプレチルト角を測定することはできなかった。 A liquid crystal cell was prepared using the obtained liquid crystal aligning agent [8] in the same manner as in Example 1, and the initial stage after injecting the liquid crystal at a rubbing amount of 0.3 mm, after heat treatment at 120 ° C. for 5 hours. The pretilt angle was measured. In the initial state of this liquid crystal cell! A so-called fluid alignment was observed in which the liquid crystal was aligned in the direction in which the crystals flowed. Furthermore, this flow orientation did not disappear at each stage after the heat treatment, and in addition, a disclination line was generated by the heat treatment. Because of such alignment failure, the pretilt angle of this liquid crystal cell could not be measured.
[0102] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。  [0102] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the push amount was 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Even after the heat treatment, the flow orientation did not disappear, and in addition, a discrimination line was generated. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0103] (比較例 4)  [0103] (Comparative Example 4)
合成例 1で得られたポリアミック酸溶液 (A) (6. 05g)に、エポキシ (A) (0. 06g)、 N MP (4. 03g)、BCS (2. 34g)を加えて攪拌し、液晶配向処理剤 [9]を得た。  Epoxy (A) (0.06 g), N MP (4.03 g), BCS (2.34 g) were added to the polyamic acid solution (A) (6.05 g) obtained in Synthesis Example 1 and stirred. A liquid crystal aligning agent [9] was obtained.
得られた液晶配向処理剤 [9]を用いて実施例 1と同様に液晶セルを作製し、ラビン グ処理の押し込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理 後のプレチルト角を測定した。初期の液晶セルについて、偏光顕微鏡観察により液 晶の配向均一性を確認したところ、配向不良はなぐ液晶は均一に配向していたが、 120°Cで 5時間加熱後に、ディスクリネーシヨンラインが発生した。そのため、 120°C で 5時間加熱後の液晶セルのプレチルト角を測定することができな力、つた。  Using the obtained liquid crystal alignment treatment agent [9], a liquid crystal cell was prepared in the same manner as in Example 1, and the initial stage after injecting the liquid crystal at a rubbing amount of 0.3 mm, after heat treatment at 120 ° C. for 5 hours. The pretilt angle was measured. In the early liquid crystal cell, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. The liquid crystal with no alignment failure was uniformly aligned, but a disclination line was generated after heating at 120 ° C for 5 hours. did. For this reason, it was impossible to measure the pretilt angle of the liquid crystal cell after heating at 120 ° C for 5 hours.
[0104] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。 [0104] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the indentation amount was 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Even after the heat treatment, the flow orientation did not disappear, and in addition, a discrimination line was generated. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0105] (比較例 5) [0105] (Comparative Example 5)
合成例 1で得られたポリアミック酸溶液 (A) (6. 00g)に、エポキシ (B) (0. 06g)、 N MP (4. 02g)、BCS (2. 35g)を加えて攪拌し、液晶配向処理剤 [10]を得た。 得られた液晶配向処理剤 [ 10]を用!/、て実施例 1と同様に液晶セルを作製し、ラビ ング処理の押し込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処 理後のプレチルト角を測定した。初期の液晶セルについて、偏光顕微鏡観察により 液晶の配向均一性を確認したところ、配向不良はなぐ液晶は均一に配向していた 1S 120°Cで 5時間加熱後に、ディスクリネーシヨンラインが発生した。そのため、 120 °Cで 5時間加熱後の液晶セルのプレチルト角を測定することができなかった。 To the polyamic acid solution (A) (6.00 g) obtained in Synthesis Example 1, epoxy (B) (0.06 g), N MP (4.02 g), and BCS (2.35 g) were added and stirred. A liquid crystal aligning agent [10] was obtained. Using the obtained liquid crystal aligning agent [10]! /, A liquid crystal cell was prepared in the same manner as in Example 1, and the initial stage after injecting the liquid crystal at a rubbing amount of 0.3 mm, at 120 ° C. for 5 hours. The pretilt angle after the heat treatment was measured. When the initial liquid crystal cell was observed for the alignment uniformity of the liquid crystal by observation with a polarizing microscope, the liquid crystal without alignment defects was uniformly aligned. After heating at 120 ° C for 1S for 5 hours, a disclination line was generated. Therefore, the pretilt angle of the liquid crystal cell after heating at 120 ° C. for 5 hours could not be measured.
[0106] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。  [0106] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the indentation amount was 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Even after the heat treatment, the flow orientation did not disappear, and in addition, a discrimination line was generated. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0107] (実施例 6)  [Example 6]
合成例 5で得られたポリイミド粉末(E) (2. 91g)に ΝΜΡ (17· lg)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン (A) (0. 60g)、 ΝΜΡ (12· 2 g)、 BCS (25. 7g)を加えて攪拌し、液晶配向処理剤 [11]を得た。  To the polyimide powder (E) obtained in Synthesis Example 5 (2.91 g), ΝΜΡ (17 · lg) was added and stirred at 80 ° C. for 40 hours for dissolution. To this solution, oxetane (A) (0.60 g), ΝΜΡ (12.2 g), and BCS (25.7 g) were added and stirred to obtain a liquid crystal aligning agent [11].
得られた液晶配向処理剤 [ 11 ]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [11] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
[0108] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルについ て、液晶注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定した。 これら液晶セルにつ!/、て、偏光顕微鏡観察により液晶の配向均一性を確認したとこ ろ、いずれの液晶セルとも、配向不良はなぐ液晶は均一に配向していた。  [0108] Further, for the liquid crystal cell produced in the same manner as described above except that the indentation amount was set to 0.1 mm, the pretilt angle was measured at the initial stage after liquid crystal injection and after heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure.
[0109] (実施例 7)  [Example 7]
合成例 5で得られたポリイミド粉末(E) (3. 05g)に NMP (18. 0g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン (A) (0. 31g)、 NMP (6. 65 g)、 BCS (28. Og)を加えて攪拌し、液晶配向処理剤 [12]を得た。 NMP (18.0 g) was added to the polyimide powder (E) (3.05 g) obtained in Synthesis Example 5, and the temperature was adjusted to 80 ° C. And stirred for 40 hours to dissolve. To this solution, oxetane (A) (0.31 g), NMP (6.65 g), and BCS (28. Og) were added and stirred to obtain a liquid crystal aligning agent [12].
得られた液晶配向処理剤 [12]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [12] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
[0110] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルについ て、液晶注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定した。 これら液晶セルにつ!/、て、偏光顕微鏡観察により液晶の配向均一性を確認したとこ ろ、いずれの液晶セルとも、配向不良はなぐ液晶は均一に配向していた。  [0110] Further, with respect to the liquid crystal cell produced in the same manner as described above except that the indentation amount was set to 0.1 mm, the pretilt angle was measured at the initial stage after the liquid crystal injection and after the heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0111] (実施例 8)  [0111] (Example 8)
合成例 5で得られたポリイミド粉末(E) (3. 00g)に ΝΜΡ (17· 6g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン (A) (0. 15g)、NMP (5. 51 g)、 BCS (26. 3g)を加えて攪拌し、液晶配向処理剤 [13]を得た。  To the polyimide powder (E) (3.00 g) obtained in Synthesis Example 5, ΝΜΡ (17.6 g) was added and stirred at 80 ° C. for 40 hours for dissolution. To this solution, oxetane (A) (0.15 g), NMP (5.51 g), and BCS (26.3 g) were added and stirred to obtain a liquid crystal aligning agent [13].
得られた液晶配向処理剤 [13]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [13] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
[0112] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルについ て、液晶注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定した。 これら液晶セルにつ!/、て、偏光顕微鏡観察により液晶の配向均一性を確認したとこ ろ、いずれの液晶セルとも、配向不良はなぐ液晶は均一に配向していた。 [0112] Further, with respect to the liquid crystal cell produced in the same manner as described above except that the indentation amount was 0.1 mm, the pretilt angle was measured at the initial stage after liquid crystal injection and after heat treatment at 120 ° C for 5 hours. As a result of confirming the alignment uniformity of the liquid crystal cells by observation with a polarizing microscope, the liquid crystal cells were aligned uniformly without any alignment failure.
プレチルト角の測定結果は、表 1に示す。 [0113] (実施例 9) Table 1 shows the measurement results of the pretilt angle. [0113] (Example 9)
合成例 6で得られたポリイミド粉末(F) (3. 12g)に ΝΜΡ (18· 4g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン (A) (0. 31g)、 NMP (6. 80 g)、 BCS (28. 6g)を加えて攪拌し、液晶配向処理剤 [14]を得た。  To the polyimide powder (F) obtained in Synthesis Example 6 (3.12 g), 18.4 g was added and stirred at 80 ° C. for 40 hours for dissolution. To this solution, oxetane (A) (0.31 g), NMP (6.80 g) and BCS (28.6 g) were added and stirred to obtain a liquid crystal aligning agent [14].
[0114] 得られた液晶配向処理剤 [14]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。 [0114] A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [14] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0115] (実施例 10) [0115] (Example 10)
合成例 6で得られたポリイミド粉末(F) (3. 04g)に ΝΜΡ (17· 9g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン (A) (0. 15g)、NMP (5. 51 g)、 BCS (26. 6g)を加えて攪拌し、液晶配向処理剤 [15]を得た。  To the polyimide powder (F) obtained in Synthesis Example 6 (3.04 g), ΝΜΡ (17.9 g) was added and stirred at 80 ° C. for 40 hours for dissolution. To this solution, oxetane (A) (0.15 g), NMP (5.51 g), and BCS (26.6 g) were added and stirred to obtain a liquid crystal aligning agent [15].
得られた液晶配向処理剤 [15]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was prepared in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [15] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0116] (実施例 11) [0116] (Example 11)
合成例 7で得られたポリイミド粉末(G) (2. 98g)に NMP (17. 5g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン (A) (0. 30g)、 NMP (6. 61 g)、 BCS (27. 3g)を加えて攪拌し、液晶配向処理剤 [16]を得た。  NMP (17.5 g) was added to the polyimide powder (G) (2.98 g) obtained in Synthesis Example 7, and dissolved by stirring at 80 ° C. for 40 hours. To this solution, oxetane (A) (0.30 g), NMP (6.61 g), and BCS (27.3 g) were added and stirred to obtain a liquid crystal aligning agent [16].
得られた液晶配向処理剤 [16]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。 A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [16] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Then press the rubbing process The pretilt angle was measured at the initial stage after liquid crystal injection at a depth of 0.3 mm and after heat treatment at 120 ° C for 5 hours. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell. The liquid crystal was uniformly aligned.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0117] (実施例 12) [Example 12]
合成例 7で得られたポリイミド粉末(G) (3. Olg)に NMP (17. 7g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、ォキセタン(C) (0. 15g)、 ΝΜΡ (5· 41 g)、 BCS (26. 3g)を加えて攪拌し、液晶配向処理剤 [17]を得た。  NMP (17.7 g) was added to the polyimide powder (G) (3. Olg) obtained in Synthesis Example 7, and stirred at 80 ° C. for 40 hours for dissolution. To this solution, oxetane (C) (0.15 g), ΝΜΡ (5.41 g) and BCS (26.3 g) were added and stirred to obtain a liquid crystal aligning agent [17].
得られた液晶配向処理剤 [17]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [17] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell. The liquid crystal was uniformly aligned.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0118] (比較例 6) [0118] (Comparative Example 6)
合成例 5で得られたポリイミド粉末(E) (2. 91g)に ΝΜΡ (17· lg)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、 NMP (4. 18g)、 BCS (26. 3g)を加え て攪拌し、液晶配向処理剤 [18]を得た。  To the polyimide powder (E) obtained in Synthesis Example 5 (2.91 g), ΝΜΡ (17 · lg) was added and stirred at 80 ° C. for 40 hours for dissolution. NMP (4.18 g) and BCS (26.3 g) were added to this solution and stirred to obtain a liquid crystal aligning agent [18].
得られた液晶配向処理剤 [18]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [18] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0119] (比較例 7) 合成例 6で得られたポリイミド粉末(F) (3. 05g)に ΝΜΡ (17· 9g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、 NMP (4. 46g)、 BCS (25. 4g)を加え て攪拌し、液晶配向処理剤 [19]を得た。 [0119] (Comparative Example 7) To the polyimide powder (F) (3.05 g) obtained in Synthesis Example 6, ΝΜΡ (17 · 9 g) was added and stirred at 80 ° C. for 40 hours for dissolution. NMP (4.46 g) and BCS (25.4 g) were added to this solution and stirred to obtain a liquid crystal aligning agent [19].
得られた液晶配向処理剤 [19]を用い、液晶を MLC - 6608 (メルク ·ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [19] was used and the liquid crystal was changed to MLC-6608 (manufactured by Merck Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0120] (比較例 8) [0120] (Comparative Example 8)
合成例 7で得られたポリイミド粉末(G) (3. 00g)に NMP (17. 7g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、 NMP (4. 35g)、 BCS (25. lg)を加え て攪拌し、液晶配向処理剤 [20]を得た。  NMP (17.7 g) was added to the polyimide powder (G) (3.00 g) obtained in Synthesis Example 7, and stirred at 80 ° C. for 40 hours for dissolution. To this solution, NMP (4.35 g) and BCS (25. lg) were added and stirred to obtain a liquid crystal aligning agent [20].
得られた液晶配向処理剤 [20]を用い、液晶を MLC— 6608 (メルク'ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、及び 120°Cで 5時間加熱処理後のプ レチルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察 により液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ 液晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [20] was used and the liquid crystal was MLC-6608 (manufactured by Merck & Japan). Next, the pretilt angle after the liquid crystal injection at the indentation amount of 0.3 mm and the heat treatment at 120 ° C. for 5 hours was measured. Regarding the liquid crystal cell at the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, there was no alignment failure in any liquid crystal cell.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0121] (比較例 9) [0121] (Comparative Example 9)
合成例 6で得られたポリイミド粉末(F) (3. Olg)に ΝΜΡ (17· 7g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、エポキシ (A) (0. 60g)、 NMP (8. 80g )、 BCS (30. Og)を加えて攪拌し、液晶配向処理剤 [21]を得た。  To the polyimide powder (F) (3. Olg) obtained in Synthesis Example 6, ΝΜΡ (17.7 g) was added and stirred at 80 ° C. for 40 hours for dissolution. Epoxy (A) (0.60 g), NMP (8.80 g), and BCS (30. Og) were added to this solution and stirred to obtain a liquid crystal aligning agent [21].
得られた液晶配向処理剤 [21]を用い、液晶を MLC— 6608 (メルク'ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理後のプレチ ルト角を測定した。この液晶セルの初期状態にお!/、て、液晶注入時に液晶が流れて いった方向に液晶が配向してしまう、いわゆる流動配向が観察された。更に、熱処理 後の各段階においてもこの流動配向は解消せず、加えて、熱処理によってディスクリ ネーシヨンラインが発生した。このような配向不良が発生していたため、この液晶セノレ のプレチルト角を測定することはできなかった。 A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [21] was used and the liquid crystal was MLC-6608 (manufactured by Merck & Japan). Next, in the initial stage after injecting the liquid crystal at a pushing amount of rubbing treatment of 0.3 mm, the plethys after the heat treatment at 120 ° C. for 5 hours. The tilt angle was measured. In the initial state of the liquid crystal cell, so-called fluid alignment was observed in which the liquid crystal was aligned in the direction in which the liquid crystal flowed when the liquid crystal was injected. Furthermore, this flow orientation was not canceled at each stage after the heat treatment, and in addition, a discrimination line was generated by the heat treatment. Because of such alignment failure, it was not possible to measure the pretilt angle of this liquid crystal senore.
[0122] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。  [0122] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the indentation amount was 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Even after the heat treatment, the flow orientation did not disappear, and in addition, a discrimination line was generated. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0123] (比較例 10)  [0123] (Comparative Example 10)
合成例 6で得られたポリイミド粉末(F) (3. 00g)に ΝΜΡ (17· 5g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、エポキシ (A) (0. 30g)、 NMP (6. 71g )、 BCS (27. 5g)を加えて攪拌し、液晶配向処理剤 [22]を得た。  To the polyimide powder (F) (3.00 g) obtained in Synthesis Example 6, ΝΜΡ (17.5 g) was added and stirred at 80 ° C. for 40 hours to dissolve. Epoxy (A) (0.30 g), NMP (6.71 g), and BCS (27.5 g) were added to this solution and stirred to obtain a liquid crystal aligning agent [22].
得られた液晶配向処理剤 [22]を用い、液晶を MLC— 6608 (メルク'ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理後のプレチ ルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察によ り液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ液 晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [22] was used and the liquid crystal was MLC-6608 (manufactured by Merck Japan). Subsequently, the pretilt angle after the heat treatment at 120 ° C. for 5 hours was measured in the initial stage after the liquid crystal injection at a rubbing treatment push amount of 0.3 mm. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal was uniformly aligned with any liquid crystal cell.
[0124] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。  [0124] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the push amount was set to 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Even after the heat treatment, the flow orientation did not disappear, and in addition, a discrimination line was generated. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0125] (比較例 11) 合成例 6で得られたポリイミド粉末(F) (3. 03g)に ΝΜΡ (17· 8g)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、エポキシ (A) (0. 15g)、 NMP (5. 60g )、 BCS (26. 3g)を加えて攪拌し、液晶配向処理剤 [23]を得た。 [0125] (Comparative Example 11) To the polyimide powder (F) (3.03 g) obtained in Synthesis Example 6, ΝΜΡ (17.8 g) was added and stirred at 80 ° C. for 40 hours for dissolution. Epoxy (A) (0.15 g), NMP (5.60 g), and BCS (26.3 g) were added to this solution and stirred to obtain a liquid crystal aligning agent [23].
得られた液晶配向処理剤 [23]を用い、液晶を MLC— 6608 (メルク'ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理後のプレチ ルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察によ り液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ液 晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [23] was used and the liquid crystal was MLC-6608 (manufactured by Merck Japan). Subsequently, the pretilt angle after the heat treatment at 120 ° C. for 5 hours was measured in the initial stage after the liquid crystal injection at a rubbing treatment push amount of 0.3 mm. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal was uniformly aligned with any liquid crystal cell.
[0126] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。 [0126] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the indentation amount was 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Even after the heat treatment, the flow orientation did not disappear, and in addition, a discrimination line was generated. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[0127] (比較例 12) [Comparative Example 12]
合成例 6で得られたポリイミド粉末(F) (2. 93g)に ΝΜΡ (17· lg)を加え、 80°Cに て 40時間撹拌して溶解させた。この溶液に、エポキシ (B) (0. 30g)、 NMP (5. 50g )、 BCS (25. 7g)を加えて攪拌し、液晶配向処理剤 [24]を得た。  To the polyimide powder (F) obtained in Synthesis Example 6 (2.93 g), ΝΜΡ (17 · lg) was added, and dissolved by stirring at 80 ° C. for 40 hours. Epoxy (B) (0.30 g), NMP (5.50 g), and BCS (25.7 g) were added to this solution and stirred to obtain a liquid crystal aligning agent [24].
得られた液晶配向処理剤 [24]を用い、液晶を MLC— 6608 (メルク'ジャパン社製 )にした以外は実施例 1と同様に液晶セルを作製した。次いで、ラビング処理の押し 込み量 0. 3mmにおける液晶注入後の初期、 120°Cで 5時間加熱処理後のプレチ ルト角を測定した。初期及び各熱処理後の液晶セルについて、偏光顕微鏡観察によ り液晶の配向均一性を確認したところ、いずれの液晶セルとも、配向不良はなぐ液 晶は均一に配向していた。  A liquid crystal cell was produced in the same manner as in Example 1 except that the obtained liquid crystal aligning agent [24] was used and the liquid crystal was MLC-6608 (manufactured by Merck Japan). Subsequently, the pretilt angle after the heat treatment at 120 ° C. for 5 hours was measured in the initial stage after the liquid crystal injection at a rubbing treatment push amount of 0.3 mm. Regarding the liquid crystal cell in the initial stage and after each heat treatment, the alignment uniformity of the liquid crystal was confirmed by observation with a polarizing microscope. As a result, the liquid crystal was uniformly aligned with any liquid crystal cell.
[0128] 更に、押し込み量を 0. 1mmとした以外は、上記と同様に作製した液晶セルの液晶 注入後の初期及び 120°Cで 5時間加熱処理後のプレチルト角を測定したところ、初 期状態において、流動配向が見られた。熱処理後にも流動配向は解消せず、加えて 、ディスクリネーシヨンラインが発生した。そのため、プレチルト角を測定することがで きなかった。 [0128] Further, the initial tilt after the liquid crystal injection of the liquid crystal cell produced in the same manner as described above except that the indentation amount was 0.1 mm and the pretilt angle after the heat treatment at 120 ° C for 5 hours were measured. In the state, flow orientation was observed. Flow orientation does not disappear even after heat treatment. A discretion line occurred. Therefore, the pretilt angle could not be measured.
プレチルト角の測定結果は、表 1に示す。  Table 1 shows the measurement results of the pretilt angle.
[表 1] [table 1]
Figure imgf000052_0001
一:未評価
Figure imgf000052_0001
One: Not evaluated
* 1:偏光顕微鏡観察により、液晶セル內に流動配向が見られた。  * 1: Flow alignment was observed in the liquid crystal cell by observation with a polarizing microscope.
* 2 :偏光顕微鏡観察により、液晶セル内に流動配向およびディスクリネーシヨンライ ンが見られた。  * 2: Flow alignment and disclination line were observed in the liquid crystal cell by polarizing microscope observation.
* 3 :偏光顕微鏡観察により、液晶セル内にディスクリネーシヨンラインが見られた。 (各プレチルト角は、液晶セルの中心及び上下 lcmの 3点を測定した平均値である) 上記の結果より、本発明の液晶配向処理剤から得られた液晶配向膜は、特定架橋 性化合物を含有する実施例 1〜 12と架橋性化合物を含有しな!/、比較例;!〜 2、及び 比較例 6〜8とを比較して、液晶の配向性は変化せず、かつ高温処理後のプレチルト 角が 1度未満の変化であり、プレチルト角の安定性が大きく向上した。一方、比較例 3 〜5、及び比較例 9〜; 12のように本発明における特定架橋性化合物の代わりにェポ キシ系架橋性化合物を使用した場合は、配向不良が見られた。特に、これらの比較 例では、ラビング処理の押し込み量が低い場合に配向不良が発生した。 * 3: Discrimination lines were observed in the liquid crystal cell by polarizing microscope observation. (Each pretilt angle is an average value obtained by measuring the center of the liquid crystal cell and the upper and lower lcm points.) From the above results, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a specific cross-linking. In comparison with Examples 1 to 12 containing a reactive compound and a crosslinkable compound! /, Comparative Example;! To 2 and Comparative Examples 6 to 8, the orientation of the liquid crystal was not changed, and The pretilt angle after high-temperature treatment changed by less than 1 degree, and the stability of the pretilt angle was greatly improved. On the other hand, when the epoxy-based crosslinkable compound was used instead of the specific crosslinkable compound in the present invention as in Comparative Examples 3-5 and 9-9; In particular, in these comparative examples, alignment failure occurred when the indentation amount of the rubbing treatment was low.
産業上の利用可能性 Industrial applicability
本発明の液晶配向処理剤を用いることにより、液晶のプレチルト角の安定性に優れ た液晶配向膜を得ることができる。また、この液晶配向膜を有する液晶表示素子は信 頼性に優れたものとなるので、 TN素子、 STN素子、 TFT液晶素子、更には、垂直 配向型の液晶表示素子などに有用である。 なお、 2006年 11月 1曰に出願された曰本特許出願 2006— 297244号の明細書 、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示と して、取り入れるものである。  By using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film excellent in the stability of the pretilt angle of the liquid crystal can be obtained. In addition, since the liquid crystal display element having this liquid crystal alignment film has excellent reliability, it is useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements. It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2006-297244, filed on November 1, 2006, are hereby incorporated herein by reference. It is something that is incorporated.

Claims

請求の範囲 下記の (A)成分及び (B)成分を含有する液晶配向処理剤。 (A)成分:ポリアミド酸及びポリイミドからなる群から選ばれる少なくとも一種類のポリ マー (B)成分:分子内に下記の式 [1]で示されるォキセタン基を少なくとも 2個有する架橋 性化合物。 The liquid crystal aligning agent containing the following (A) component and (B) component. Component (A): at least one polymer selected from the group consisting of polyamic acid and polyimide. Component (B): a crosslinkable compound having at least two oxetane groups represented by the following formula [1] in the molecule.
[化 1]  [Chemical 1]
Figure imgf000054_0001
Figure imgf000054_0001
[2] (B)成分が、下記の式 [2]で表される化合物である請求項 1に記載の液晶配向処 理剤。  [2] The liquid crystal aligning agent according to claim 1, wherein the component (B) is a compound represented by the following formula [2].
[化 2]  [Chemical 2]
Figure imgf000054_0002
Figure imgf000054_0002
(式 [2]中、 Xは、 N、 NH CO、 0、 S、 SO、 Si、シノレセスキォキサン、ポリシロキサ  (In the formula [2], X represents N, NH 2 CO 3, 0, S, SO, Si, cinoresesquioxane, polysiloxa
1 2  1 2
ン、又は炭素数 1〜20の有機基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれていてもよぐ X及び Xは、それぞれ独立して、単結合、 NH、 CO、 0、  Or an organic group having 1 to 20 carbon atoms, and the organic group may contain a heteroatom (N, 0, S, Si). X and X are each independently , Single bond, NH, CO, 0,
2 3  twenty three
S、 SO、又は炭素数 1〜20の有機基を示し、その有機基の中には、ヘテロ原子(N  S, SO, or an organic group having 1 to 20 carbon atoms, which includes a heteroatom (N
2  2
、〇、 S、 Si)が含まれていてもよぐ Y及び Yは、それぞれ独立して、炭素数;!〜 20  , 〇, S, Si) may be included Y and Y are each independently a carbon number;
1 2  1 2
の有機基を示し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれてもよぐ m、 nは、それぞれ独立して、 0〜20の整数を示し、かつ m + nは 2〜20の整数を示 す)  And m and n each independently represents an integer of 0 to 20, and may contain heteroatoms (N, 0, S, Si). And m + n is an integer from 2 to 20)
[3] (B)成分が、下記の式 [3]で表される化合物である請求項 1に記載の液晶配向処 理剤。 [化 3] [3] The liquid crystal aligning agent according to claim 1, wherein the component (B) is a compound represented by the following formula [3]. [Chemical 3]
Figure imgf000055_0001
Figure imgf000055_0001
(式 [3]中、 X及び Xは、それぞれ独立して、単結合、 NH、 CO、 0、 S、 SO、又は  (In the formula [3], X and X are each independently a single bond, NH, CO, 0, S, SO, or
2 3 2 炭素数;!〜 20の有機基を示し、その有機基の中には、ヘテロ原子(N、 0、 S、 Si)が 含まれていてもよぐ Y及び Yは、それぞれ独立して、炭素数;!〜 20の有機基を示  2 3 2 represents an organic group having 2 to 2 carbon atoms;! -20, and the organic group may contain heteroatoms (N, 0, S, Si). Y and Y are independent of each other. Indicating an organic group with 20 to 20 carbon atoms
1 2  1 2
し、その有機基の中にはへテロ原子(N、 0、 S、 Si)が含まれてもよぐ Zは、単結合 、 NH、 N (CH )、 NHCO、 CONH、 NHCONH、 CO、 COO, 0、 S、 SO 、 CF、 However, the organic group may contain hetero atoms (N, 0, S, Si). Z is a single bond, NH, N (CH), NHCO, CONH, NHCONH, CO, COO , 0, S, SO, CF,
3 2 2 3 2 2
C (CF ) 、 Si (CH ) 、 OSi (CH ) 、 Si (CH ) 0、 OSi (CH ) 0、又は炭素数;!〜C (CF), Si (CH), OSi (CH), Si (CH) 0, OSi (CH) 0, or carbon number;
3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
10のアルキル基を示し、 m、 nは、それぞれ独立して、 0〜; 10の整数を示し、かつ m + nは 2〜; 10の整数を示す)  10 represents an alkyl group, m and n each independently represent an integer of 0 to 10 and m + n represents an integer of 2 to 10;
(B)成分が、下記の式 [4]で表される化合物である請求項 1に記載の液晶配向処 理剤。  2. The liquid crystal aligning agent according to claim 1, wherein the component (B) is a compound represented by the following formula [4].
[化 4]
Figure imgf000055_0002
[Chemical 4]
Figure imgf000055_0002
(式 [4]中、 Xは、 NH、 N (CH )、 NHCO、 CONH、 NHCONH, CO、 COO、 OC  (In the formula [4], X is NH, N (CH), NHCO, CONH, NHCONH, CO, COO, OC
1 3  13
0、 0、 S、 SO 、 CF、 C (CF ) 、 Si (CH ) 、 OSi (CH ) 、 Si (CH ) 0、又は OSi (  0, 0, S, SO, CF, C (CF), Si (CH), OSi (CH), Si (CH) 0, or OSi (
2 2 3 2 3 2 3 2 3 2 2 2 3 2 3 2 3 2 3 2
CH ) Oを示し、 Y及び Yは、それぞれ独立して、炭素数;!〜 10のアルキル基を示CH) O, Y and Y each independently represent an alkyl group having carbon number;! -10
3 2 1 2 3 2 1 2
す) )
(Β)成分が、下記の式 [5]で表される化合物である請求項 1に記載の液晶配向処理 剤。  2. The liquid crystal aligning agent according to claim 1, wherein the component (i) is a compound represented by the following formula [5].
[化 5]
Figure imgf000056_0001
[Chemical 5]
Figure imgf000056_0001
(式 [5]中、 が、 N、炭素数 1〜20の脂肪族環、炭素数 1〜20の芳香族環又は炭 素数 1〜20のアルキレンであり、 Y及び Yは、それぞれ炭素数;!〜 10のアルキル基  (In the formula [5], is N, an aliphatic ring having 1 to 20 carbon atoms, an aromatic ring having 1 to 20 carbon atoms, or alkylene having 1 to 20 carbon atoms, and Y and Y are each a carbon number; ! ~ 10 alkyl groups
1 2  1 2
であり、 m、 nは 0〜20の整数、かつ m + nは 2〜20の整数である。 )  M and n are integers from 0 to 20, and m + n is an integer from 2 to 20. )
[6] (A)成分 100質量部に対して、(B)成分の含有量が、 0. ;!〜 150質量部である請 求項 1〜5のいずれか一項に記載の液晶配向処理剤。 [6] The liquid crystal alignment treatment according to any one of claims 1 to 5, wherein the content of the component (B) is 0.;! To 150 parts by mass with respect to 100 parts by mass of the component (A). Agent.
[7] さらに、有機溶媒を含有する請求項;!〜 6のいずれか一項に記載の液晶配向処理 剤。 [7] The liquid crystal aligning agent according to any one of [6] to [6], further containing an organic solvent.
[8] 前記有機溶媒が、低表面張力を有する溶媒を全有機溶媒中に 5〜80質量%含有 してなる請求項 7に記載の液晶配向処理剤。  8. The liquid crystal aligning agent according to claim 7, wherein the organic solvent contains 5 to 80% by mass of a solvent having a low surface tension in the total organic solvent.
[9] 請求項 1〜8のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。 [9] A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of claims 1 to 8.
[10] 請求項 9に記載の液晶配向膜を有する液晶表示素子。 10. A liquid crystal display device having the liquid crystal alignment film according to claim 9.
PCT/JP2007/071045 2006-11-01 2007-10-29 Agent for alignment treatment of liquid crystal and liquid crystal display element using the same WO2008053848A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097008679A KR101455418B1 (en) 2006-11-01 2007-10-29 Agent for alignment treatment of liquid crystal and liquid crystal display element using the same
JP2008542107A JP5218062B2 (en) 2006-11-01 2007-10-29 Liquid crystal alignment treatment agent and liquid crystal display element using the same
CN200780040292XA CN101600989B (en) 2006-11-01 2007-10-29 Agent for alignment treatment of liquid crystal and liquid crystal display element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-297244 2006-11-01
JP2006297244 2006-11-01

Publications (1)

Publication Number Publication Date
WO2008053848A1 true WO2008053848A1 (en) 2008-05-08

Family

ID=39344190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071045 WO2008053848A1 (en) 2006-11-01 2007-10-29 Agent for alignment treatment of liquid crystal and liquid crystal display element using the same

Country Status (5)

Country Link
JP (1) JP5218062B2 (en)
KR (1) KR101455418B1 (en)
CN (1) CN101600989B (en)
TW (1) TWI407214B (en)
WO (1) WO2008053848A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191655A (en) * 2007-01-09 2008-08-21 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2009300465A (en) * 2008-06-10 2009-12-24 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
WO2011078132A1 (en) * 2009-12-25 2011-06-30 日産化学工業株式会社 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
EP3054345A1 (en) * 2015-02-09 2016-08-10 Samsung Display Co., Ltd. Liquid crystal display

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100068A1 (en) * 2011-12-28 2013-07-04 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal display element, method for manufacturing liquid crystal display element, and polymerizable compound
WO2016076413A1 (en) * 2014-11-13 2016-05-19 日産化学工業株式会社 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
CN108034434A (en) * 2017-12-19 2018-05-15 深圳市华星光电技术有限公司 The production method of thermal polymerization auto-orientation liquid crystal material and liquid crystal display panel
TWI679217B (en) * 2018-03-02 2019-12-11 達興材料股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124639A (en) * 2004-09-30 2006-05-18 Fuji Photo Film Co Ltd Polymer film, liquid crystal alignment layer, retardation plate and liquid crystal display
JP2007086399A (en) * 2005-09-22 2007-04-05 Dainippon Printing Co Ltd Optical element
JP2007286597A (en) * 2006-03-24 2007-11-01 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665033B2 (en) * 2000-11-30 2003-12-16 International Business Machines Corporation Method for forming alignment layer by ion beam surface modification
CN100350471C (en) * 2001-07-26 2007-11-21 索尼株式会社 Optical recording/reproducing apparatus, focusing method therefor, and optical disk recording medium
CN100396728C (en) * 2003-10-23 2008-06-25 日产化学工业株式会社 Aligning agent for liquid crystal and liquid-crystal display element
JP4937745B2 (en) * 2004-07-16 2012-05-23 旭化成イーマテリアルズ株式会社 polyamide
JP5045241B2 (en) * 2006-07-10 2012-10-10 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4941120B2 (en) * 2006-09-01 2012-05-30 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124639A (en) * 2004-09-30 2006-05-18 Fuji Photo Film Co Ltd Polymer film, liquid crystal alignment layer, retardation plate and liquid crystal display
JP2007086399A (en) * 2005-09-22 2007-04-05 Dainippon Printing Co Ltd Optical element
JP2007286597A (en) * 2006-03-24 2007-11-01 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191655A (en) * 2007-01-09 2008-08-21 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2009300465A (en) * 2008-06-10 2009-12-24 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
TWI447144B (en) * 2008-06-10 2014-08-01 Jsr Corp Liquid crystal alignment agent and liquid crystal display element
KR101543797B1 (en) 2008-06-10 2015-08-11 제이에스알 가부시끼가이샤 Liquid crystal aligning agent and liquid crystal display device
WO2011078132A1 (en) * 2009-12-25 2011-06-30 日産化学工業株式会社 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP5614412B2 (en) * 2009-12-25 2014-10-29 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
EP3054345A1 (en) * 2015-02-09 2016-08-10 Samsung Display Co., Ltd. Liquid crystal display
CN105867030A (en) * 2015-02-09 2016-08-17 三星显示有限公司 Photoalignment layer and liquid crystal display
US9758622B2 (en) 2015-02-09 2017-09-12 Samsung Display Co., Ltd. Photoalignment layer and liquid crystal display

Also Published As

Publication number Publication date
JPWO2008053848A1 (en) 2010-02-25
CN101600989A (en) 2009-12-09
TWI407214B (en) 2013-09-01
KR20090076944A (en) 2009-07-13
JP5218062B2 (en) 2013-06-26
KR101455418B1 (en) 2014-10-27
CN101600989B (en) 2012-01-25
TW200841093A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
KR101589322B1 (en) Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
KR101826380B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5651953B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP6233309B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20130091651A (en) Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
WO2011010619A1 (en) Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent
KR101947855B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2008053848A1 (en) Agent for alignment treatment of liquid crystal and liquid crystal display element using the same
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
WO2012133820A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
KR20150100743A (en) Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
TW200527081A (en) Liquid crystal alignment treating agent for vertical alignment and liquid crystal display
CN104837928A (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI452104B (en) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
JP6217937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN104956259A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2012091109A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6183616B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101935314B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, forming method for the liquid crystal alignment film, and liquid crystal display device
JP6319581B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5614412B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
TW202003818A (en) Liquid crystal orientation agent, liquid crystal orientation film, and liquid crystal element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040292.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542107

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097008679

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830779

Country of ref document: EP

Kind code of ref document: A1