WO2011078132A1 - Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same - Google Patents

Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same Download PDF

Info

Publication number
WO2011078132A1
WO2011078132A1 PCT/JP2010/072928 JP2010072928W WO2011078132A1 WO 2011078132 A1 WO2011078132 A1 WO 2011078132A1 JP 2010072928 W JP2010072928 W JP 2010072928W WO 2011078132 A1 WO2011078132 A1 WO 2011078132A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
aligning agent
polyamic acid
Prior art date
Application number
PCT/JP2010/072928
Other languages
French (fr)
Japanese (ja)
Inventor
和義 保坂
浩 北
雅章 片山
幸司 園山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201080059187.2A priority Critical patent/CN102667594B/en
Priority to KR1020127016199A priority patent/KR101759753B1/en
Priority to JP2011547545A priority patent/JP5614412B2/en
Publication of WO2011078132A1 publication Critical patent/WO2011078132A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/06Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/53Physical properties liquid-crystalline

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film, and a liquid crystal display element used for a liquid crystal display element.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment film used industrially is formed by applying a polyimide-based liquid crystal alignment treatment agent comprising a polyimide precursor, polyamic acid (also referred to as polyamic acid) or a polyimide solution, onto a substrate. It is made by filming.
  • a surface stretching process is further performed by rubbing after film formation.
  • a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays has been proposed, and in recent years, studies for industrialization have been performed.
  • the liquid crystal alignment film is also used to control the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal.
  • the pretilt angle of the liquid crystal As the liquid crystal display element becomes more sophisticated and its range of use expands year by year, Not only can a predetermined pretilt angle be obtained, but also the stability of the pretilt angle has become increasingly important.
  • a compound having two or more epoxy groups in the molecule is used as a polyimide-based liquid crystal for the purpose of obtaining a constant pretilt angle regardless of the rubbing conditions in the manufacturing process of the liquid crystal alignment film. It has been proposed to be included in an alignment treatment agent (see, for example, Patent Document 1).
  • liquid crystal display elements in order to improve the alignment uniformity of the liquid crystal, the liquid crystal is sometimes isotropically treated by heat treatment after sealing the liquid crystal.
  • the stability of the pretilt angle is low, there arises a problem that a pretilt angle having a target size cannot be obtained after this isotropic processing or the pretilt angle varies.
  • liquid crystal display elements that use a backlight that generates a large amount of heat to obtain high brightness and liquid crystal display elements that are used in in-vehicle applications, such as car navigation systems and instrument panels, are used in high-temperature environments for long periods of time. Or it may be left unattended. Under such severe conditions, when the pretilt angle is gradually changed, problems such as inability to obtain initial display characteristics or occurrence of unevenness in display occur.
  • liquid crystal display elements are used in harsh usage environments compared to liquid crystal display elements for monitors that mainly display characters and still images. Characteristics that can withstand long-term use are required. Therefore, the liquid crystal alignment film has been required to have higher reliability. In particular, when the voltage holding ratio, which is one of the electrical characteristics, is reduced, line sticking, which is a display defect of the liquid crystal display element, easily occurs, and a highly reliable liquid crystal display element cannot be obtained. Therefore, not only the initial characteristics are good, but also, for example, it is required that the initial characteristics are not easily lowered even after being exposed to a high temperature for a long time.
  • the present invention has been made in view of the above circumstances, and the problem thereof is a liquid crystal alignment film that is excellent in stability of a pretilt angle even under a high temperature environment for a long time, and in which a decrease in voltage holding ratio is suppressed,
  • the object is to provide a liquid crystal display element having the liquid crystal alignment film and a liquid crystal alignment treatment agent for forming the liquid crystal alignment film.
  • a liquid crystal alignment treatment agent containing a polyamic acid using a specific diamine compound as a diamine component and / or a polyimide obtained by imidizing the polyamic acid has the above-mentioned purpose.
  • the present invention has been found to be extremely effective for achieving the present invention, and has been completed.
  • the said specific diamine compound contains the novel compound which literature has not been described.
  • the present invention has the following gist. (1) From the group consisting of a polyamic acid obtained by reacting a diamine component containing the diamine compound represented by the formula [1] with tetracarboxylic dianhydride, and a polyimide obtained by dehydrating and ring-closing the polyamic acid.
  • X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon.
  • X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ⁇ 4.) (2) The liquid crystal aligning agent according to the above (1), wherein X 2 in the formula [1] is a single bond or an alkylene group having 1 to 5 carbon atoms.
  • X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon.
  • X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ⁇ 4.) (9) Polyamic acid obtained by reacting a diamine component containing the diamine compound represented by the formula [1] described in (8) above with tetracarboxylic dianhydride, or dehydrating and ring-closing the polyamic acid. Obtained polyimide.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent pretilt angle stability even under a high temperature environment for a long time, and can suppress a decrease in voltage holding ratio. Therefore, the liquid crystal display element having the liquid crystal alignment film is excellent in reliability.
  • the novel diamine compound useful as raw materials such as a liquid-crystal aligning agent, is provided.
  • a diamine compound having an oxetane group represented by the following formula [1] (hereinafter also referred to as a specific diamine compound) is used.
  • X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon.
  • X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ⁇ 4.)
  • the polyamic acid obtained by the reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride, and the polyimide obtained by dehydrating and ring-closing the polyamic acid are collectively referred to as a polymer.
  • the polymer obtained by using the specific diamine compound in the present invention has a side chain of the following formula [1a].
  • X 1 , X 2 , X 3 and X 4 are the same as defined in the above formula [1].
  • the oxetane group present at the end of the side chain of the formula [1a] reacts with a carboxyl group and / or a hydroxyl group under heating. Two oxetane groups also undergo addition polymerization with each other. These reactions form a structure in which a plurality of polymers are crosslinked. Since the oxetane group has higher nucleophilicity than the epoxy group, the reaction efficiency is high.
  • the plurality of polymers having the side chain of the formula [1a] are more easily cross-linked, and a liquid crystal alignment film having a structure with a high cross-linking density is easily formed. Furthermore, since the oxetane group has a four-membered ring structure, when it reacts with a carboxyl group and / or a hydroxyl group, it contains one more methylene group at the binding site than an epoxy group that has a three-membered ring structure. In addition, because of the oxetane group present at the end of the side chain of the formula [1a], it is easy to obtain a liquid crystal alignment film having a high crosslink density structure and a high elongation and toughness.
  • the oxetane group present at the end of the side chain of the formula [1a] can efficiently promote the crosslinking reaction, thereby reducing the characteristics of the liquid crystal display element when the crosslinking compound is added. There is no residue of unreacted crosslinkable compounds that cause it.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is more stable against heat of the pretilt angle than the liquid crystal alignment film containing no crosslinkable compound or the liquid crystal alignment film added with the crosslinkable compound.
  • the decrease in voltage holding ratio can be suppressed in a high temperature environment. Therefore, line sticking, which is one of display defects, hardly occurs, so that a liquid crystal display element with excellent reliability can be obtained.
  • the specific diamine compound of the present invention is a diamine compound having an oxetane group represented by the following formula [1].
  • X 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON ( A divalent organic group selected from CH 3 ) — and —N (CH 3 ) CO—.
  • —O—, —NH—, —CONH—, —NHCO—, —CON (CH 3 ) —, —CH 2 O—, —COO—, or —OCO— is easy to synthesize diamine compounds. preferable.
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond.
  • non-aromatic hydrocarbon group examples include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, cyclotridecane ring.
  • Decane ring cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene ring , Norbornene ring, adamantane ring and the like.
  • aromatic hydrocarbon group examples include a benzene ring, a naphthalene ring, a tetrahydronaphthalene ring, an azulene ring, an indene ring, a fluorene ring, an anthracene ring, a phenanthrene ring, and a phenalene ring.
  • X 2 is preferably a single bond, an alkylene group having 1 to 10 carbon atoms, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, Adamantane ring, benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring, more preferably a single bond, an alkyl group having 1 to 10 carbon atoms, an unsaturated alkyl group having 1 to 10 carbon atoms, cyclohexane A ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, a fluorene
  • X 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ).
  • X 4 represents an organic group having 1 to 20 carbon atoms, and the organic group may contain a hetero atom (N, O, S, Si).
  • An alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • n is an integer of 1 to 4. Preferably, it is 1 to 3 and more preferably 1, from the viewpoint of reactivity with tetracarboxylic dianhydride.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine compound, the positions 2, 4 or 3, 5 are more preferable. It is particularly preferred that X 1 in the formula [1] is —O—, —CONH—, or —COO—, X 3 is a single bond or —O—, and n is 1.
  • X 1 in the formula [1] is —O—, —CONH—, or —COO—
  • X 2 is a single bond or an alkylene group having 1 to 5 carbon atoms
  • X 3 is a single bond, or It is particularly preferred that —O—
  • X 4 is an alkyl group having 1 to 5 carbon atoms
  • n is 1.
  • Preferred combinations of X 1 , X 2 , X 3 , X 4 and n in the formula [1] are as shown in Table 1 below.
  • the method for producing the specific diamine compound represented by the formula [1] of the present invention is not particularly limited, but preferred methods include the following methods.
  • the specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the following formula [2], further reducing the nitro group, and converting it to an amino group.
  • the method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent.
  • the dinitro compound of the formula [2] can be obtained by a method in which —X 2 —X 3 is bonded to dinitrobenzene via X 1 .
  • X 1 is —O— (ether bond), —NH— (amino bond), —N (CH 3 ) — (methylated amino bond), —CONH— (amide bond), —NHCO— (reverse amide bond), —CH 2 O— (methylene ether bond), —COO— (ester bond), —OCO— (reverse ester bond), —CON (CH 3 ) — (N-methylated amide bond), and —N (CH 3 ) CO— (N-methylated reverse amide bond).
  • These linking groups can be formed by ordinary organic synthetic techniques.
  • X 1 is an ether or methylene ether bond
  • a corresponding dinitro group-containing halogen derivative is reacted with a hydroxyl group derivative containing X 2 , X 3 and X 4 in the presence of an alkali, or a dinitro group-containing hydroxyl group derivative
  • a halogen-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali a halogen-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali.
  • an amino bond a method of reacting a corresponding dinitro group-containing halogen derivative with an amino group-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
  • the amide bond include a method of reacting a corresponding dinitro group-containing acid chloride and an amino group-substituted product containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali.
  • a reverse amide bond a method in which a corresponding dinitro group-containing amino group-substituted product and an acid chloride containing an oxetane group having X 2 , X 3 and X 4 are reacted in the presence of an alkali can be mentioned.
  • an ester bond a method in which the corresponding dinitro group-containing acid chloride is reacted with a hydroxyl group-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
  • dinitro group-containing halogen derivatives and dinitro group-containing derivatives include 3,5-dinitrochlorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrofluorobenzene, 3,5-dinitrobenzoic acid chloride, 3,5 -Dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzyl chloride, 2,4-dinitrobenzyl chloride, 3,5-dinitrobenzyl alcohol, 2,4- Dinitrobenzyl alcohol, 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-dinitrophenol, 2,4- And dinitrophenylacetic acid. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
  • diamine examples include a diamine having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or a macrocyclic substituent composed of these in the diamine side chain.
  • R 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 5 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.
  • R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —
  • R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group .
  • R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 11 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • diaminosiloxanes represented by the following formula [DA33] can also be exemplified.
  • a 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 3 represents a 1,4-cyclohexylene group or 1,4-phenylene.
  • a 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 )
  • a 1 is an oxygen atom or —COO— * (wherein And a bond marked with “*” binds to (CH 2 ) a2.)
  • a 1 is 0 or an integer of 1
  • a 2 is an integer of 2 to 10, and a 3 is 0. Or an integer of 1.
  • the above-mentioned other diamine compounds can be used alone or in combination of two or more depending on the properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when the liquid crystal alignment film is used.
  • tetracarboxylic dianhydride used in the present invention is not particularly limited. Specific examples are given below.
  • the tetracarboxylic dianhydride can be used singly or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when formed into a liquid crystal alignment film.
  • the polymer of the present invention is a polyamic acid using a specific diamine compound as a raw material or a polyimide obtained by dehydrating and ring-closing the polyamic acid.
  • the stability of the pretilt angle to heat increases as the content ratio of the specific diamine compound in the diamine component increases.
  • the diamine component is a specific diamine compound.
  • 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more.
  • 100 mol% of a diamine component may be a specific diamine compound, from the viewpoint of uniform coatability when applying a liquid crystal aligning agent, the specific diamine compound is preferably 80 mol% or less of the diamine component. Preferably it is 40 mol% or less.
  • tetracarboxylic dianhydride In obtaining the polyamic acid of the present invention by the reaction of the diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, tetracarboxylic dianhydride and diamine are reacted in an organic solvent. The reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction between tetracarboxylic dianhydride and diamine is not particularly limited as long as the produced polyamic acid can be dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, isopropyl alcohol, Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbito
  • a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent.
  • the solution in which the diamine is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is dispersed as it is or in the organic solvent.
  • a method of adding after dissolving a method of adding diamine to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, a method of adding tetracarboxylic dianhydride and diamine alternately, etc. Any of these methods may be used.
  • tetracarboxylic dianhydride or diamine component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
  • the temperature at which the tetracarboxylic dianhydride reacts with the diamine component can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the content is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be adjusted, for example, in the range of 45 to 85% depending on the application and purpose.
  • the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polyamic acid and the polyimide contained in the liquid crystal alignment treatment agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability during coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured by Permeation (Chromatography) method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt
  • the said resin component is a resin component containing at least 1 type of polymer chosen from the polymer of this invention mentioned above.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the above resin components may be polymers used in the present invention, and other polymers may be mixed with the polymer of the present invention.
  • the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • polystyrene resin examples include polyamic acid or polyimide obtained by using a diamine other than the specific diamine compound as a diamine component to be reacted with tetracarboxylic dianhydride.
  • the organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which the resin component mentioned above is dissolved.
  • the liquid crystal aligning agent of this invention may contain components other than the above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
  • the solvent that improves the uniformity of the film thickness and the surface smoothness include the following.
  • the solvent for improving the uniformity of the film thickness and the surface smoothness may be used alone or in combination.
  • the amount of the solvent used is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount of the compound used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent, More preferably, it is 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • Calcination after applying the liquid crystal aligning agent on the substrate can form a coating film by evaporating the solvent at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • 3-methyl-3-oxetaneethanol (2) 14.95 g, 146.4 mmol
  • triethylamine 16.29 g, 160.1 mmol
  • tetrahydrofuran 150 ml
  • a solution of 3,5-dinitrobenzoyl chloride (1) 33.70 g, 146.2 mmol
  • tetrahydrofuran 40 ml
  • the reaction solution was poured into 1 L of pure water, and the resulting crystals were filtered and washed with pure water.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • BODA bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • p-PDA p-phenylenediamine
  • PCH7DAB 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
  • PBCH5DAB 1,3-diamino-4- ⁇ 4- [ Trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • m-PBCH5DAB 3,5-diamino- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) ) Cyclohexyl] phenyl ⁇ benzoate
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • NMP was added to the polyamic acid (A) solution (20.0 g) obtained in the same manner as in Example 2 and diluted to a concentration of 6% by mass. Then, acetic anhydride (2.48 g), pyridine ( 1.90 g) was added and reacted at 80 ° C. for 4 hours. The reaction solution was poured into methanol (300 ml), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (B) powder. The imidation ratio of this polyimide was 53%, the number average molecular weight was 21,300, and the weight average molecular weight was 51,200.
  • NMP was added to a solution (20.2 g) of the polyamic acid (C) obtained in the same manner as in Example 4 to dilute to 6% by mass, and then acetic anhydride (2.50 g), pyridine (1 .95 g) was added and reacted at 80 ° C. for 4 hours.
  • the reaction solution was poured into methanol (300 ml), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (D) powder.
  • the imidation ratio of this polyimide was 55%, the number average molecular weight was 22,400, and the weight average molecular weight was 52,500.
  • Example 7 BODA (3.50 g, 14.0 mmol), PBCH5DAB (0.50 g, 1.16 mmol), p-PDA (1.89 g, 17.5 mmol), diamine (4) (1.10 g, 4.66 mmol) in NMP (14.9 g), and after reacting at 80 ° C. for 5 hours, CBDA (1.83 g, 9.33 mmol) and NMP (12.3 g) were added, and reacted at 40 ° C. for 6 hours to obtain polyamic acid. A solution (concentration 24.5% by mass) was obtained.
  • NMP was added to a solution (20.0 g) of polyamic acid (I) obtained in the same manner as in Synthesis Example 1 and diluted to 6% by mass, and then acetic anhydride (2.48 g) and pyridine (1 .92 g) was added and reacted at 80 ° C. for 4 hours.
  • the reaction solution was poured into methanol (290 ml), and the produced precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (J) powder.
  • the imidation ratio of this polyimide was 55%, the number average molecular weight was 22,300, and the weight average molecular weight was 56,300.
  • a liquid crystal alignment treatment agent is spin-coated on the ITO surface of the substrate with 3 ⁇ 4 cm ITO electrodes, and heat-treated on a hot plate at 80 ° C. for 5 minutes and in a thermal circulation clean oven for 30 minutes at 210 ° C.
  • a 100 nm polyimide coating was obtained.
  • the surface of the coating film was rubbed with a roll diameter 120 mm, rayon cloth rubbing apparatus under the conditions of a rotation speed of 700 rpm, a moving speed of 40 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • the orientation uniformity of the liquid crystal was confirmed by polarizing microscope observation.
  • the state in which the liquid crystal was uniformly aligned was evaluated as “ ⁇ ”, and the state in which the disorder of the liquid crystal was observed was evaluated as “ ⁇ ”.
  • Example 10 A solution of the polyamic acid (A) (10.2 g), NMP (9.71 g) and BCS (20.0 g) obtained in the same manner as in Example 2 were mixed at 25 ° C. for 12 hours to conduct a liquid crystal alignment treatment. Agent (1) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 11 Liquid crystal alignment treating agent obtained by mixing polyimide (B) powder (2.51 g), NMP (24.5 g) and BCS (11.6 g) obtained in the same manner as in Example 3 at 50 ° C. for 15 hours. (2) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 12 A solution (10.5 g) of polyamic acid (C), NMP (11.6 g) and BCS (18.0 g) obtained in the same manner as in Example 4 were mixed at 25 ° C. for 12 hours to conduct liquid crystal alignment treatment. Agent (3) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 13 A liquid crystal aligning agent obtained by mixing polyimide (D) powder (2.50 g), NMP (18.7 g) and BCS (17.3 g) obtained in the same manner as in Example 5 at 50 ° C. for 15 hours. (4) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 14 Liquid crystal aligning agent by mixing polyimide (E) powder (2.55 g), NMP (26.9 g) and BCS (9.81 g) obtained in the same manner as in Example 6 at 50 ° C. for 15 hours. (5) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 15 A polyimide (F) powder (2.48 g), NMP (16.6 g) and BCS (19.2 g) obtained in the same manner as in Example 7 were mixed at 50 ° C. for 15 hours to obtain a liquid crystal aligning agent. (6) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Liquid crystal aligning agent obtained by mixing polyimide (G) powder (2.50 g), NMP (28.3 g) and BCS (7.69 g) obtained in the same manner as in Example 8 at 50 ° C. for 15 hours. (7) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 17 Liquid crystal aligning agent by mixing polyimide (H) powder (2.50 g), NMP (22.6 g) and BCS (13.4 g) obtained in the same manner as in Example 9 at 50 ° C. for 15 hours. (8) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • the liquid crystal alignment films obtained from the liquid crystal aligning agents of Examples 10 to 17 show uniform alignment, improve the stability of the pretilt angle against heat, and are exposed to high temperatures for a long time. When this was done, the decrease in voltage holding ratio was suppressed.
  • the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 5 to 7 the alignment disorder of the liquid crystal, which is considered to be caused by scratches due to rubbing, was observed.
  • the pretilt angle significantly decreased after heat treatment at 120 ° C. for 5 hours (heat treatment 2).
  • the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 8 to 11 had a large decrease in voltage holding ratio after standing at high temperature with respect to the initial voltage holding ratio.
  • the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of the examples from the comparison between the examples 10 and 12 and the comparative example 5 and the comparison between the examples 11 and 13 to 17 and the comparative examples 6 and 7 In this case, there was no shaving associated with the rubbing treatment, and the stability of the pretilt angle against heat was greatly improved.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of these examples provides a liquid crystal display element that does not cause display unevenness even under severe conditions such as being used or left in a high temperature environment for a long time. be able to.
  • the liquid crystal aligning agent of the present invention is useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements, and can be suitably used particularly for large-screen and high-definition liquid crystal televisions. .

Abstract

A liquid crystal-aligning agent comprising at least one kind of a polymer selected from the group consisting of a polyamic acid, which is obtained by reacting a diamine component containing a diamine compound represented by formula [1] with a tetracarboxylic dianhydride, and a polyimide obtained by the dewatering cyclization of said polyamic acid. In formula [1], X1 represents -O-, -NH-, -N(CH3)-, -CONH-, -NHCO-, -CH2O-, -COO-, -OCO-, -CON(CH3)- or -N(CH3)CO-; X2 represents a single bond or an aliphatic hydrocarbon group, a non-aromatic cyclic hydrocarbon group or an aromatic hydrocarbon group, each group having 1 to 20 carbon atoms; X3 represents a single bond, -O-, -NH-, -N(CH3)-, -CONH-, -NHCO-, -COO-, -OCO-, -CON(CH3)-, -N(CH3)CO- or -O(CH2)m- (wherein m is an integer of 1 to 5); X4 represents an organic group having 1 to 20 carbon atoms; and n is an integer of 1 to 4.

Description

液晶配向処理剤、液晶配向膜、及びそれを用いた液晶表示素子Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
 本発明は、液晶表示素子に用いる液晶配向処理剤、液晶配向膜、及び液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film, and a liquid crystal display element used for a liquid crystal display element.
 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸ともいわれる。)やポリイミドの溶液からなるポリイミド系の液晶配向処理剤を、基板に塗布し成膜することで作製される。また、基板面に対して液晶を平行配向又は傾斜配向させる場合は、成膜した後、更にラビングによる表面延伸処理が行われている。また、ラビング処理に代わるものとして偏光紫外線照射等による異方性光化学反応を利用する方法も提案されており、近年では工業化に向けた検討が行われている。 In a liquid crystal display element, a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction. Currently, the main liquid crystal alignment film used industrially is formed by applying a polyimide-based liquid crystal alignment treatment agent comprising a polyimide precursor, polyamic acid (also referred to as polyamic acid) or a polyimide solution, onto a substrate. It is made by filming. When the liquid crystal is aligned in parallel or inclined with respect to the substrate surface, a surface stretching process is further performed by rubbing after film formation. As an alternative to the rubbing treatment, a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays has been proposed, and in recent years, studies for industrialization have been performed.
 液晶配向膜は、基板に対する液晶の角度、即ち液晶のプレチルト角の制御を行うためにも用いられているが、液晶表示素子が高性能化し、その利用範囲が年々拡大してゆく中で、単に所定のプレチルト角が得られるだけではなく、プレチルト角の安定性が益々重要となってきている。 The liquid crystal alignment film is also used to control the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal. However, as the liquid crystal display element becomes more sophisticated and its range of use expands year by year, Not only can a predetermined pretilt angle be obtained, but also the stability of the pretilt angle has become increasingly important.
 プレチルト角の安定性の点から、液晶配向膜の製造工程において、ラビング条件によらず一定のプレチルト角を得ることを目的として、分子内に2個以上のエポキシ基を有する化合物をポリイミド系の液晶配向処理剤に含有させることが提案されている(例えば、特許文献1参照)。 From the viewpoint of the stability of the pretilt angle, a compound having two or more epoxy groups in the molecule is used as a polyimide-based liquid crystal for the purpose of obtaining a constant pretilt angle regardless of the rubbing conditions in the manufacturing process of the liquid crystal alignment film. It has been proposed to be included in an alignment treatment agent (see, for example, Patent Document 1).
 また、液晶表示素子の製造工程においては、液晶の配向均一性を高めるために、液晶を封入した後に加熱処理して一旦液晶を等方化する場合がある。しかしながら、プレチルト角の安定性が低い場合は、この等方化処理後に目的の大きさのプレチルト角が得られない、あるいはプレチルト角にばらつきが生じるといった問題が起こる。特に、高輝度を得るために発熱量が大きいバックライトを使用している液晶表示素子や、車載用途で用いられる液晶表示素子、例えば、カーナビゲーションシステムやメーターパネルでは、長時間高温環境下で使用あるいは放置される場合がある。そのような過酷条件において、プレチルト角が徐々に変化した場合、初期の表示特性が得られない、あるいは、表示にムラが発生するなどの問題が起こる。 Also, in the manufacturing process of the liquid crystal display element, in order to improve the alignment uniformity of the liquid crystal, the liquid crystal is sometimes isotropically treated by heat treatment after sealing the liquid crystal. However, when the stability of the pretilt angle is low, there arises a problem that a pretilt angle having a target size cannot be obtained after this isotropic processing or the pretilt angle varies. In particular, liquid crystal display elements that use a backlight that generates a large amount of heat to obtain high brightness, and liquid crystal display elements that are used in in-vehicle applications, such as car navigation systems and instrument panels, are used in high-temperature environments for long periods of time. Or it may be left unattended. Under such severe conditions, when the pretilt angle is gradually changed, problems such as inability to obtain initial display characteristics or occurrence of unevenness in display occur.
 近年では大画面で高精細の液晶テレビが広く実用化されており、このような液晶表示素子は主として文字や静止画を表示するモニター用途の液晶表示素子と比較して、過酷な使用環境での長期使用に耐えうる特性が要求されている。そのため液晶配向膜は更に高い信頼性が要求されてきている。特に電気特性の一つである電圧保持率が低下した場合、液晶表示素子の表示不良である線焼き付きが発生しやすくなり、信頼性の高い液晶表示素子を得ることができない。そのため、初期特性が良好なだけでなく、例えば、高温下に長時間曝された後であっても、低下しにくいことが求められている。 In recent years, large-screen, high-definition liquid crystal televisions have been widely put into practical use, and such liquid crystal display elements are used in harsh usage environments compared to liquid crystal display elements for monitors that mainly display characters and still images. Characteristics that can withstand long-term use are required. Therefore, the liquid crystal alignment film has been required to have higher reliability. In particular, when the voltage holding ratio, which is one of the electrical characteristics, is reduced, line sticking, which is a display defect of the liquid crystal display element, easily occurs, and a highly reliable liquid crystal display element cannot be obtained. Therefore, not only the initial characteristics are good, but also, for example, it is required that the initial characteristics are not easily lowered even after being exposed to a high temperature for a long time.
特開平7-234410号公報JP 7-234410 A
 本発明は、上記の事情に鑑みなされたものであって、その課題は長時間高温環境下においても、プレチルト角の安定性に優れ、且つ、電圧保持率の低下が抑制された液晶配向膜、該液晶配向膜を有する液晶表示素子、及び該液晶配向膜を形成するための液晶配向処理剤を提供することにある。 The present invention has been made in view of the above circumstances, and the problem thereof is a liquid crystal alignment film that is excellent in stability of a pretilt angle even under a high temperature environment for a long time, and in which a decrease in voltage holding ratio is suppressed, The object is to provide a liquid crystal display element having the liquid crystal alignment film and a liquid crystal alignment treatment agent for forming the liquid crystal alignment film.
 本発明者は、鋭意研究を行った結果、ジアミン成分として、特定のジアミン化合物を使用したポリアミド酸、及び/又は該ポリアミド酸をイミド化して得られるポリイミドを含む液晶配向処理剤が上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。なお、上記特定のジアミン化合物は、文献未載の新規化合物を含むものである。 As a result of intensive studies, the present inventors have found that a liquid crystal alignment treatment agent containing a polyamic acid using a specific diamine compound as a diamine component and / or a polyimide obtained by imidizing the polyamic acid has the above-mentioned purpose. The present invention has been found to be extremely effective for achieving the present invention, and has been completed. In addition, the said specific diamine compound contains the novel compound which literature has not been described.
 すなわち、本発明は以下の要旨を有するものである。
(1)式[1]で示されるジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸、及び該ポリアミド酸を脱水閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する液晶配向処理剤。
That is, the present invention has the following gist.
(1) From the group consisting of a polyamic acid obtained by reacting a diamine component containing the diamine compound represented by the formula [1] with tetracarboxylic dianhydride, and a polyimide obtained by dehydrating and ring-closing the polyamic acid. A liquid crystal aligning agent containing at least one selected polymer.
Figure JPOXMLDOC01-appb-C000003
(式[1]中、Xは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、Xは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基、又は芳香族炭化水素基であり、Xは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-、又は-O(CH-(mは1~5の整数である。)であり、X4は炭素数1~20の有機基を表し、nは1~4の整数である。)
(2)式[1]のXが単結合又は炭素数1~5のアルキレン基である上記(1)に記載の液晶配向処理剤。
(3)式[1]のXが炭素数1~5のアルキル基である上記(1)又は(2)に記載の液晶配向処理剤。
(4)式[1]のXが-O-、-CONH-、又は-COO-であり、Xが単結合、又は-O-であり、nが1である上記(1)~(3)のいずれかに記載の液晶配向処理剤。
(5)ジアミン成分中の5~80モル%が式[1]で示されるジアミン化合物である上記(1)~(4)のいずれかに記載の液晶配向処理剤。
(6)上記(1)~(5)のいずれかに記載の液晶配向処理剤を用いて得られる液晶配向膜。
(7)上記(6)に記載の液晶配向膜を有する液晶表示素子。
(8)下記の式[1]で示されるジアミン化合物。
Figure JPOXMLDOC01-appb-C000003
(In the formula [1], X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—, and X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon. X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ~ 4.)
(2) The liquid crystal aligning agent according to the above (1), wherein X 2 in the formula [1] is a single bond or an alkylene group having 1 to 5 carbon atoms.
(3) The liquid crystal aligning agent according to the above (1) or (2), wherein X 4 in the formula [1] is an alkyl group having 1 to 5 carbon atoms.
(4) In the formula (1), X 1 is —O—, —CONH—, or —COO—, X 3 is a single bond or —O—, and n is 1, 3) The liquid-crystal aligning agent in any one of.
(5) The liquid crystal aligning agent according to any one of (1) to (4), wherein 5 to 80 mol% in the diamine component is a diamine compound represented by the formula [1].
(6) A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of (1) to (5).
(7) A liquid crystal display device having the liquid crystal alignment film according to (6).
(8) A diamine compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000004
(式[1]中、Xは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、Xは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基、又は芳香族炭化水素基であり、Xは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-、又は-O(CH-(mは1~5の整数である。)であり、X4は炭素数1~20の有機基を表し、nは1~4の整数である。)
(9)上記(8)に記載の式[1]で示されるジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸、又は該ポリアミド酸を脱水閉環させて得られるポリイミド。
Figure JPOXMLDOC01-appb-C000004
(In the formula [1], X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—, and X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon. X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ~ 4.)
(9) Polyamic acid obtained by reacting a diamine component containing the diamine compound represented by the formula [1] described in (8) above with tetracarboxylic dianhydride, or dehydrating and ring-closing the polyamic acid. Obtained polyimide.
 本発明の液晶配向処理剤から得られる液晶配向膜は、長時間高温環境下においても、プレチルト角の安定性に優れ、電圧保持率の低下を抑制することができる。そのため、該液晶配向膜を有する液晶表示素子は信頼性に優れる。
 また、本発明によれば、液晶配向処理剤等の原料として有用な新規なジアミン化合物が提供される。
The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent pretilt angle stability even under a high temperature environment for a long time, and can suppress a decrease in voltage holding ratio. Therefore, the liquid crystal display element having the liquid crystal alignment film is excellent in reliability.
Moreover, according to this invention, the novel diamine compound useful as raw materials, such as a liquid-crystal aligning agent, is provided.
 本発明の液晶配向処理剤では、下記の式[1]で示されるオキセタン基を有するジアミン化合物(以下、特定ジアミン化合物ともいう。)が使用される。 In the liquid crystal aligning agent of the present invention, a diamine compound having an oxetane group represented by the following formula [1] (hereinafter also referred to as a specific diamine compound) is used.
Figure JPOXMLDOC01-appb-C000005
(式[1]中、Xは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、Xは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基、又は芳香族炭化水素基であり、Xは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-、又は-O(CH-(mは1~5の整数である。)であり、X4は炭素数1~20の有機基を表し、nは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula [1], X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—, and X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon. X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ~ 4.)
 本発明において、特定のジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物との反応によって得られるポリアミド酸、及び該ポリアミド酸を脱水閉環させて得られるポリイミドは、総称して重合体ということもある。本発明における特定ジアミン化合物を使用して得られる重合体は下記の式[1a]の側鎖を有する。 In the present invention, the polyamic acid obtained by the reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride, and the polyimide obtained by dehydrating and ring-closing the polyamic acid are collectively referred to as a polymer. There is also. The polymer obtained by using the specific diamine compound in the present invention has a side chain of the following formula [1a].
Figure JPOXMLDOC01-appb-C000006
(式[1a]中、X、X、X及びXは、上記した式[1]の定義と同意義である。)
 式[1a]の側鎖の端部に存在するオキセタン基は、加熱下でカルボキシル基及び/又は水酸基と反応する。また、2つのオキセタン基も相互に付加重合する。これらの反応により複数の重合体が架橋した構造を形成する。オキセタン基はエポキシ基よりも求核性が高いため反応効率が高い。そのため式[1a]の側鎖を有する複数の重合体はより架橋し易く、架橋密度の高い構造の液晶配向膜が形成されやすい。さらにオキセタン基は4員環構造であるため、カルボキシル基及び/又は水酸基と反応する場合、3員環構造であるエポキシ基と比較して、結合部位にメチレン基を1つ多く含む。加えて式[1a]の側鎖の端部に存在するオキセタン基のために、架橋密度の高い構造と共に伸びや靭性の高い性質を有する液晶配向膜が得られ易い。このことによりラビングの際に重合体の延伸性が阻害され難く、傷や削れが起こり難くなるものと推察される。
 さらに、式[1a]の側鎖の端部に存在するオキセタン基は、架橋反応を効率的に進行させることができ、それにより、架橋性化合物を添加した際に液晶表示素子特性の低下などの原因となる未反応の架橋性化合物の残留がない。
Figure JPOXMLDOC01-appb-C000006
(In the formula [1a], X 1 , X 2 , X 3 and X 4 are the same as defined in the above formula [1].)
The oxetane group present at the end of the side chain of the formula [1a] reacts with a carboxyl group and / or a hydroxyl group under heating. Two oxetane groups also undergo addition polymerization with each other. These reactions form a structure in which a plurality of polymers are crosslinked. Since the oxetane group has higher nucleophilicity than the epoxy group, the reaction efficiency is high. Therefore, the plurality of polymers having the side chain of the formula [1a] are more easily cross-linked, and a liquid crystal alignment film having a structure with a high cross-linking density is easily formed. Furthermore, since the oxetane group has a four-membered ring structure, when it reacts with a carboxyl group and / or a hydroxyl group, it contains one more methylene group at the binding site than an epoxy group that has a three-membered ring structure. In addition, because of the oxetane group present at the end of the side chain of the formula [1a], it is easy to obtain a liquid crystal alignment film having a high crosslink density structure and a high elongation and toughness. It is presumed that this makes it difficult for the stretchability of the polymer to be hindered during rubbing and to prevent scratches and scraping.
Furthermore, the oxetane group present at the end of the side chain of the formula [1a] can efficiently promote the crosslinking reaction, thereby reducing the characteristics of the liquid crystal display element when the crosslinking compound is added. There is no residue of unreacted crosslinkable compounds that cause it.
 以上のことより、本発明の液晶配向処理剤から得られる液晶配向膜は、架橋性化合物を含有しない液晶配向膜や架橋性化合物を添加した液晶配向膜と比較して、プレチルト角の熱に対する安定性が向上し、高温環境下において、電圧保持率の低下を抑制することができる。そのため、表示不良の一つである線焼き付きが発生し難いので、信頼性に優れた液晶表示素子を得ることができる。 From the above, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is more stable against heat of the pretilt angle than the liquid crystal alignment film containing no crosslinkable compound or the liquid crystal alignment film added with the crosslinkable compound. Thus, the decrease in voltage holding ratio can be suppressed in a high temperature environment. Therefore, line sticking, which is one of display defects, hardly occurs, so that a liquid crystal display element with excellent reliability can be obtained.
<特定ジアミン化合物>
 本発明の特定ジアミン化合物は、下記の式[1]で示されるオキセタン基を有するジアミン化合物である。
<Specific diamine compound>
The specific diamine compound of the present invention is a diamine compound having an oxetane group represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000007
 式[1]中、Xは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-より選ばれる2価の有機基である。なかでも、-O-、-NH-、-CONH-、-NHCO-、-CON(CH)-、-CHO-、-COO-、又は-OCO-は、ジアミン化合物を合成し易いので好ましい。より好ましくは、-O-、-CONH-、-CON(CH)-、-CHO-、又は-COO-である。さらに好ましくは、-O-、-CONH-、又は-COO-であり、特に好ましくは-COO-である。
 式[1]中、Xは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基、又は芳香族炭化水素基である。
 炭素数1~20の脂肪族炭化水素基は、直鎖状でもよいし、分岐していてもよい。また、不飽和結合を有していてもよい。
Figure JPOXMLDOC01-appb-C000007
In the formula [1], X 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON ( A divalent organic group selected from CH 3 ) — and —N (CH 3 ) CO—. Among them, —O—, —NH—, —CONH—, —NHCO—, —CON (CH 3 ) —, —CH 2 O—, —COO—, or —OCO— is easy to synthesize diamine compounds. preferable. More preferred is —O—, —CONH—, —CON (CH 3 ) —, —CH 2 O—, or —COO—. More preferred is —O—, —CONH—, or —COO—, and particularly preferred is —COO—.
In the formula [1], X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon group.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond.
 非芳香族炭化水素基の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環、アダマンタン環などが挙げられる。 Specific examples of the non-aromatic hydrocarbon group include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, cyclotridecane ring. Decane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene ring , Norbornene ring, adamantane ring and the like.
 芳香族炭化水素基の具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環、フェナレン環などが挙げられる。 Specific examples of the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, a tetrahydronaphthalene ring, an azulene ring, an indene ring, a fluorene ring, an anthracene ring, a phenanthrene ring, and a phenalene ring.
 好ましいXとしては、単結合、炭素数1~10のアルキレン基、炭素数1~10の不飽和アルキレン基、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環、又はアントラセン環であり、より好ましくは、単結合、炭素数1~10のアルキル基、炭素数1~10の不飽和アルキル基、シクロヘキサン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、フルオレン環、又はアントラセン環であり、さらに好ましくは、単結合、炭素数1~5のアルキレン基、又はベンゼン環である。最も好ましくは、単結合、又は炭素数1~5のアルキレン基である。 X 2 is preferably a single bond, an alkylene group having 1 to 10 carbon atoms, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, Adamantane ring, benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring, more preferably a single bond, an alkyl group having 1 to 10 carbon atoms, an unsaturated alkyl group having 1 to 10 carbon atoms, cyclohexane A ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, a fluorene ring, or an anthracene ring, and more preferably a single bond, an alkylene group having 1 to 5 carbon atoms, or a benzene ring. Most preferably, it is a single bond or an alkylene group having 1 to 5 carbon atoms.
 式[1]中、Xは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-、-O(CH-(mは1~5の整数である)より選ばれる。好ましくは、単結合、-O-、-NH-、-CONH-、-NHCO-、-COO-、-OCO-、又は-O(CH-(mは1~5の整数である)であり、より好ましくは、単結合、-O-、-NH-、-CONH-、-NHCO-、-COO-、-OCO-、又は-O(CH-(mは1~5の整数である)であり、さらに好ましくは、単結合、-O-、-CONH-、又は-COO-であり、特に好ましくは単結合、又は-O-である。 In the formula [1], X 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ). —, —N (CH 3 ) CO—, —O (CH 2 ) m — (m is an integer of 1 to 5). Preferably, a single bond, —O—, —NH—, —CONH—, —NHCO—, —COO—, —OCO—, or —O (CH 2 ) m — (m is an integer of 1 to 5) More preferably, a single bond, —O—, —NH—, —CONH—, —NHCO—, —COO—, —OCO—, or —O (CH 2 ) m — (m is 1 to 5) It is an integer), more preferably a single bond, —O—, —CONH—, or —COO—, and particularly preferably a single bond or —O—.
 式[1]中、Xは炭素数1~20の有機基を示し、その有機基の中にはヘテロ原子(N、O、S、Si)が含まれてもよい。好ましくは、炭素数1~10のアルキル基であり、より好ましくは、炭素数1~5のアルキル基である。
 式[1]中、nは1~4の整数である。好ましくは、テトラカルボン酸二無水物との反応性の点から、1~3であり、1であるのがさらに好ましい。
In the formula [1], X 4 represents an organic group having 1 to 20 carbon atoms, and the organic group may contain a hetero atom (N, O, S, Si). An alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
In the formula [1], n is an integer of 1 to 4. Preferably, it is 1 to 3 and more preferably 1, from the viewpoint of reactivity with tetracarboxylic dianhydride.
 式[1]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(X)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミン化合物を合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 式[1]のXが-O-、-CONH-、又は-COO-であり、Xが単結合、又は-O-であり、nが1であるのが特に好ましい。
The bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine compound, the positions 2, 4 or 3, 5 are more preferable.
It is particularly preferred that X 1 in the formula [1] is —O—, —CONH—, or —COO—, X 3 is a single bond or —O—, and n is 1.
 また、式[1]のXが-O-、-CONH-、又は-COO-であり、Xが単結合、又は炭素数1~5のアルキレン基であり、Xが単結合、又は-O-であり、Xが炭素数1~5のアルキル基であり、nが1であるのがとりわけ好ましい。
 式[1]におけるX、X、X、X及びnの好ましい組み合わせは、下記の表1に示す通りである。
Further, X 1 in the formula [1] is —O—, —CONH—, or —COO—, X 2 is a single bond or an alkylene group having 1 to 5 carbon atoms, and X 3 is a single bond, or It is particularly preferred that —O—, X 4 is an alkyl group having 1 to 5 carbon atoms, and n is 1.
Preferred combinations of X 1 , X 2 , X 3 , X 4 and n in the formula [1] are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <特定ジアミン化合物の合成方法>
 本発明の式[1]で示される特定ジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、以下の方法が挙げられる。
 本発明の特定ジアミン化合物は、下記式[2]で示すジニトロ体を合成し、さらにニトロ基を還元して、アミノ基に変換することで得られる。
<Method for synthesizing specific diamine compound>
The method for producing the specific diamine compound represented by the formula [1] of the present invention is not particularly limited, but preferred methods include the following methods.
The specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the following formula [2], further reducing the nitro group, and converting it to an amino group.
Figure JPOXMLDOC01-appb-C000009
(式[2]におけるX、X、X、X及びnは式[1]におけるX、X、X、X及びnの定義と同意義である。)
 ジニトロ基を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系溶剤などの溶媒中、水素ガス、ヒドラジン、塩化水素などによって行う方法がある。
 式[2]のジニトロ体は、ジニトロベンゼンに対して、Xを介して、-X-Xを結合させる方法などで得ることができる。
Figure JPOXMLDOC01-appb-C000009
(X 1, X 2, X 3 in the formula [2], X 4 and n are X 1, X 2, X 3 , the same meanings as defined in X 4 and n in the formula [1].)
The method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent.
The dinitro compound of the formula [2] can be obtained by a method in which —X 2 —X 3 is bonded to dinitrobenzene via X 1 .
 Xは-O-(エーテル結合)、-NH-(アミノ結合)、-N(CH)-(メチル化アミノ結合)、-CONH-(アミド結合)、-NHCO-(逆アミド結合)、-CHO-(メチレンエーテル結合)、-COO-(エステル結合)、-OCO-(逆エステル結合)、-CON(CH)-(N-メチル化アミド結合)、及び-N(CH)CO-(N-メチル化逆アミド結合)より選ばれる結合基であり、これらの結合基は通常の有機合成的手法で形成させることができる。 X 1 is —O— (ether bond), —NH— (amino bond), —N (CH 3 ) — (methylated amino bond), —CONH— (amide bond), —NHCO— (reverse amide bond), —CH 2 O— (methylene ether bond), —COO— (ester bond), —OCO— (reverse ester bond), —CON (CH 3 ) — (N-methylated amide bond), and —N (CH 3 ) CO— (N-methylated reverse amide bond). These linking groups can be formed by ordinary organic synthetic techniques.
 例えば、Xがエーテル、又はメチレンエーテル結合の場合、対応するジニトロ基含有ハロゲン誘導体と、X、X及びXを含む水酸基誘導体をアルカリ存在下で反応させる方法、またはジニトロ基含有水酸基誘導体と、X、X及びXを有するオキセタン基を含むハロゲン置換誘導体とをアルカリ存在下で反応させる方法が挙げられる。 For example, when X 1 is an ether or methylene ether bond, a corresponding dinitro group-containing halogen derivative is reacted with a hydroxyl group derivative containing X 2 , X 3 and X 4 in the presence of an alkali, or a dinitro group-containing hydroxyl group derivative And a halogen-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali.
 アミノ結合の場合は、対応するジニトロ基含有ハロゲン誘導体と、X、X及びXを有するオキセタン基を含むアミノ基置換誘導体とをアルカリ存在下で反応させる方法が挙げられる。
 アミド結合では、対応するジニトロ基含有酸クロリド体と、X、X及びXを有するオキセタン基を含むアミノ基置換体とをアルカリ存在下で反応させる方法が挙げられる。
In the case of an amino bond, a method of reacting a corresponding dinitro group-containing halogen derivative with an amino group-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
Examples of the amide bond include a method of reacting a corresponding dinitro group-containing acid chloride and an amino group-substituted product containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali.
 逆アミド結合の場合は、対応するジニトロ基含有アミノ基置換体と、X、X及びXを有するオキセタン基を含む酸クロリド体とをアルカリ存在下で反応させる方法が挙げられる。
 エステル結合の場合は、対応するジニトロ基含有酸クロリド体と、X、X及びXを有するオキセタン基を含む水酸基置換誘導体とをアルカリ存在下で反応させる方法が挙げられる。
 逆エステル結合の場合は、対応するジニトロ基含有水酸基誘導体と、X、X及びXを有するオキセタン基を含む酸クロリド体とをアルカリ存在下で反応させる方法が挙げられる。
In the case of a reverse amide bond, a method in which a corresponding dinitro group-containing amino group-substituted product and an acid chloride containing an oxetane group having X 2 , X 3 and X 4 are reacted in the presence of an alkali can be mentioned.
In the case of an ester bond, a method in which the corresponding dinitro group-containing acid chloride is reacted with a hydroxyl group-substituted derivative containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
In the case of a reverse ester bond, a method of reacting a corresponding dinitro group-containing hydroxyl group derivative with an acid chloride containing an oxetane group having X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
 ジニトロ基含有ハロゲン誘導体およびジニトロ基含有誘導体の具体例としては、3,5-ジニトロクロロベンゼン、2,4-ジニトロクロロベンゼン、2,4-ジニトロフルオロベンゼン、3,5-ジニトロ安息香酸クロリド、3,5-ジニトロ安息香酸、2,4-ジニトロ安息香酸クロリド、2,4-ジニトロ安息香酸、3,5-ジニトロベンジルクロリド、2,4-ジニトロベンジルクロリド、3,5-ジニトロベンジルアルコール、2,4-ジニトロベンジルアルコール、2,4-ジニトロアニリン、3,5-ジニトロアニリン、2,6-ジニトロアニリン、2,4-ジニトロフェノール、2,5-ジニトロフェノール、2,6-ジニトロフェノール、2,4-ジニトロフェニル酢酸などが挙げられる。原料の入手性、反応の点を考慮して、一種又は複数種を選択して用いることができる。 Specific examples of dinitro group-containing halogen derivatives and dinitro group-containing derivatives include 3,5-dinitrochlorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrofluorobenzene, 3,5-dinitrobenzoic acid chloride, 3,5 -Dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzyl chloride, 2,4-dinitrobenzyl chloride, 3,5-dinitrobenzyl alcohol, 2,4- Dinitrobenzyl alcohol, 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-dinitrophenol, 2,4- And dinitrophenylacetic acid. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
 <その他のジアミン化合物>
 本発明においては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物以外のその他のジアミン化合物を、ジアミン成分として併用することができる。その具体例を以下に挙げる。
<Other diamine compounds>
In this invention, unless the effect of this invention is impaired, other diamine compounds other than a specific diamine compound can be used together as a diamine component. Specific examples are given below.
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン。 p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2 '-Diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'- Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldi Aniline, 3,3'-sulfonyldianiline, bis ( -Aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'- Diaminodiphenyl) amine, N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl (2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3 , 3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diamino Naphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4 -Aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4 aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4- Minophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4 -Aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 '-[1,3-phenylenebis (methylene)] dianiline, 3,4'-[1,4-phenylenebis (methylene)] dianiline, 3,4 '-[1,3-phenylenebis (methylene) )] Dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebi [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [( 3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3 -Phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1,3-phen Nylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N'-bis (4-aminophenyl) terephthalamide, N, N'-bis (3-aminophenyl) terephthalamide, N, N'-bis (4-aminophenyl) isophthalamide, N, N'- Bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4- Aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminopheny) ) Hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4- Aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5-diamino Benzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3- Aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) ) Hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4 -Aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- ( 4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4- Aromatic diamines such as aminophenoxy) dodecane and 1,12- (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino -3-cyclohexyl) methane and other alicyclic diamines, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, Aliphatic diamines such as 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane.
 また、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、又はそれらからなる大環状置換体を有するジアミンを挙げることができ、具体的には、下記の式[DA1]~式[DA32]で示されるジアミンを例示することができる。 Examples of the diamine include a diamine having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or a macrocyclic substituent composed of these in the diamine side chain. Examples thereof include diamines represented by DA1] to [DA32].
Figure JPOXMLDOC01-appb-C000010
(式[DA1]~式[DA5]中、Rは、炭素数1以上22以下のアルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000010
(In Formula [DA1] to Formula [DA5], R 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000011
(式[DA6]~式[DA11]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Rは炭素数1以上22以下のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000011
(In the formulas [DA6] to [DA11], R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—. R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000012
(式[DA12]及び式[DA13]中、Rは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000012
(In Formula [DA12] and Formula [DA13], R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 5 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.)
Figure JPOXMLDOC01-appb-C000013
(式[DA14]~式[DA16]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000013
(In the formulas [DA14] to [DA16], R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —, and R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000014
(式[DA17]及び式[DA18]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000014
(In Formula [DA17] and Formula [DA18], R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group .)
Figure JPOXMLDOC01-appb-C000015
(式[DA19]及び式[DA20]中、R10は、炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000015
(In Formula [DA19] and Formula [DA20], R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000016
(式[DA21]及び式[DA22]中、R11は、炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000016
(In Formula [DA21] and Formula [DA22], R 11 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 加えて、下記の式[DA33]で示されるようなジアミノシロキサンなども挙げることができる。
Figure JPOXMLDOC01-appb-C000018
In addition, diaminosiloxanes represented by the following formula [DA33] can also be exemplified.
Figure JPOXMLDOC01-appb-C000019
(式[DA33]中、pは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000019
(In the formula [DA33], p is an integer of 1 to 10)
 更に、下記の式[DA34]のジアミンを挙げることができる。 Furthermore, a diamine of the following formula [DA34] can be mentioned.
Figure JPOXMLDOC01-appb-C000020
(式[DA34]中、Aは、フッ素原子で置換されていてもよい、炭素数3~20のアルキル基であり、Aは、1,4シクロへキシレン基、又は1,4-フェニレン基であり、Aは、酸素原子、又は-COO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子、又は-COO-*(ただし、「*」を付した結合手が(CH)a2と結合する。)である。また、aは0、又は1の整数であり、a2は2~10の整数であり、a3は0、又は1の整数である。)
Figure JPOXMLDOC01-appb-C000020
(In the formula [DA34], A 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 represents a 1,4-cyclohexylene group or 1,4-phenylene. A 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (wherein And a bond marked with “*” binds to (CH 2 ) a2.) A 1 is 0 or an integer of 1, a 2 is an integer of 2 to 10, and a 3 is 0. Or an integer of 1.)
 上記その他のジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The above-mentioned other diamine compounds can be used alone or in combination of two or more depending on the properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when the liquid crystal alignment film is used.
 <テトラカルボン酸二無水物>
 本発明に用いるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
<Tetracarboxylic dianhydride>
The tetracarboxylic dianhydride used in the present invention is not particularly limited. Specific examples are given below.
 ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等が挙げられる。 Pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7 -Anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4-biphenyltetracarboxylic acid, bis ( 3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) pro Bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4 -Dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3,4- Cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic Acid, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,4-cyclobut Tetracarboxylic acid, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cycloheptanetetracarboxylic acid, 2,3,4,5-tetrahydrofurantetracarboxylic acid 3,4-dicarboxy-1-cyclohexylsuccinic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid, bicyclo [4,3,0] nonane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0 ] Decane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,8,10-tetracarboxylic acid, tricyclo [6.3.0.0 <2,6 >] Undecane- 3,5,9,11-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetra Hydrinaphthalene-1,2-dicarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, 5- (2,5-dioxotetrahydrofuryl) -3 -Methyl-3-cyclohexane-1,2-dicarboxylic acid, tetracyclo [6,2,1,1,0,2,7] dodeca-4,5,9,10-tetracarboxylic acid, 3,5, Examples thereof include 6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic acid and 1,2,4,5-cyclohexanetetracarboxylic acid.
 テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上併用することができる。 The tetracarboxylic dianhydride can be used singly or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when formed into a liquid crystal alignment film.
 <重合体>
 本発明の重合体は、上記のように、特定ジアミン化合物を原料とするポリアミド酸、又は該ポリアミド酸を脱水閉環させて得られるポリイミドである。
 本発明の重合体から得られる液晶配向膜は、上記ジアミン成分における特定ジアミン化合物の含有割合が多くなるほど、プレチルト角の熱に対する安定性が向上する。
<Polymer>
As described above, the polymer of the present invention is a polyamic acid using a specific diamine compound as a raw material or a polyimide obtained by dehydrating and ring-closing the polyamic acid.
In the liquid crystal alignment film obtained from the polymer of the present invention, the stability of the pretilt angle to heat increases as the content ratio of the specific diamine compound in the diamine component increases.
 上記した特性を高める目的では、ジアミン成分の1モル%以上が特定ジアミン化合物であることが好ましい。更には、ジアミン成分の5モル%以上が特定ジアミン化合物であることが好ましく、より好ましくは10モル%以上である。また、ジアミン成分の100モル%が特定ジアミン化合物であってもよいが、液晶配向処理剤を塗布する際の均一塗布性の観点から、特定ジアミン化合物はジアミン成分の80モル%以下が好ましく、より好ましくは40モル%以下である。 For the purpose of enhancing the above properties, it is preferable that 1 mol% or more of the diamine component is a specific diamine compound. Furthermore, it is preferable that 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more. Moreover, although 100 mol% of a diamine component may be a specific diamine compound, from the viewpoint of uniform coatability when applying a liquid crystal aligning agent, the specific diamine compound is preferably 80 mol% or less of the diamine component. Preferably it is 40 mol% or less.
 ジアミン成分とテトラカルボン酸二無水物との反応により、本発明のポリアミド酸を得るにあたっては、公知の合成手法を用いることができる。一般的には、テトラカルボン酸二無水物とジアミンとを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 In obtaining the polyamic acid of the present invention by the reaction of the diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, tetracarboxylic dianhydride and diamine are reacted in an organic solvent. The reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
 テトラカルボン酸二無水物とジアミンとの反応に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
The organic solvent used for the reaction between tetracarboxylic dianhydride and diamine is not particularly limited as long as the produced polyamic acid can be dissolved. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene Glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether , Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n- Pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3 -Methyl methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid 3-methoxy propionic acid propyl, 3-methoxy propionic acid butyl, diglyme, and the like 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate. Moreover, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent.
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミンを有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミンを添加する方法、テトラカルボン酸二無水物とジアミンとを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、テトラカルボン酸二無水物またはジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 When reacting tetracarboxylic dianhydride and diamine component in an organic solvent, the solution in which the diamine is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is dispersed as it is or in the organic solvent. Alternatively, a method of adding after dissolving, a method of adding diamine to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, a method of adding tetracarboxylic dianhydride and diamine alternately, etc. Any of these methods may be used. In addition, when the tetracarboxylic dianhydride or diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
 テトラカルボン酸二無水物とジアミン成分との反応させる温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The temperature at which the tetracarboxylic dianhydride reacts with the diamine component can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the content is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリアミド酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミド酸の分子量は大きくなる。 In the polymerization reaction of the polyamic acid, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
 本発明のポリイミドは前記のポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて、例えば、45~85%の範囲など調整することができる。
 ポリアミド酸をイミド化させる方法としては、ポリアミド酸の溶液をそのまま加熱する熱イミド化、ポリアミド酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be adjusted, for example, in the range of 45 to 85% depending on the application and purpose. .
Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリアミド酸の触媒イミド化は、ポリアミド酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリアミド酸又はポリイミドの反応溶液から、生成したポリアミド酸又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When the produced polyamic acid or polyimide is recovered from the polyamic acid or polyimide reaction solution, the reaction solution may be poured into a poor solvent and precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の液晶配向処理剤に含有されるポリアミド酸及びポリイミドの分子量は、そこから得られる塗膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polyamic acid and the polyimide contained in the liquid crystal alignment treatment agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability during coating film formation, and the uniformity of the coating film. The weight average molecular weight measured by Permeation (Chromatography) method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 <液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記した本発明の重合体から選ばれる少なくとも一種の重合体を含む樹脂成分である。その際、樹脂成分の含有量は1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3~10質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt | dissolved in the organic solvent. Here, the said resin component is a resin component containing at least 1 type of polymer chosen from the polymer of this invention mentioned above. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
 本発明において、前記の樹脂成分は、全てが本発明に用いる重合体であってもよく、本発明の重合体にそれ以外の他の重合体が混合されていてもよい。その際、樹脂成分中におけるかかる他の重合体の含有量は0.5質量%~15質量%、好ましくは1質量%~10質量%である。 In the present invention, all of the above resin components may be polymers used in the present invention, and other polymers may be mixed with the polymer of the present invention. In that case, the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
 かかる他の重合体は、例えば、テトラカルボン酸二無水物と反応させるジアミン成分として、特定ジアミン化合物以外のジアミンを使用して得られるポリアミド酸又はポリイミドなどが挙げられる。 Examples of such other polymers include polyamic acid or polyimide obtained by using a diamine other than the specific diamine compound as a diamine component to be reacted with tetracarboxylic dianhydride.
 本発明の液晶配向処理剤に用いる有機溶媒は、上述した樹脂成分を溶解させる有機溶媒であれば特に限定されない。
 本発明の液晶配向処理剤は、上記以外の成分を含有してもよい。その例としては、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物などである。
The organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which the resin component mentioned above is dissolved.
The liquid crystal aligning agent of this invention may contain components other than the above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
 膜厚の均一性や表面平滑性を向上させる溶媒の具体例としては次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。
Specific examples of the solvent that improves the uniformity of the film thickness and the surface smoothness include the following.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, n-hexane, n-pentane, n-octane, diethyl ether Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy- 2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether Ter-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. have low surface tension A solvent etc. are mentioned.
 上記膜厚の均一性や表面平滑性を向上させる溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、該溶媒の使用量は、液晶配向処理剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
The solvent for improving the uniformity of the film thickness and the surface smoothness may be used alone or in combination. When the above solvent is used, the amount of the solvent used is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物であるものが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 これら基板との密着させる化合物を使用する場合は、該化合物の使用量は、液晶配向処理剤に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
When using a compound to be adhered to these substrates, the amount of the compound used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent, More preferably, it is 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In addition to the above, the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
 <液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like. In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
 液晶配向処理剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて、塗膜を形成させることができる。焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。 Calcination after applying the liquid crystal aligning agent on the substrate can form a coating film by evaporating the solvent at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like. . The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
As described above, the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、これらに限定されるものではない。
「本発明の特定ジアミン化合物の合成」
 <実施例1>
 ジアミン化合物(4)の合成
The present invention will be described in more detail with reference to the following examples, but is not limited thereto.
“Synthesis of the Specific Diamine Compound of the Present Invention”
<Example 1>
Synthesis of diamine compound (4)
Figure JPOXMLDOC01-appb-C000021
 室温下、窒素置換した4つ口フラスコ中に3-メチル-3-オキセタンエタノール(2)(14.95g、146.4mmol)、トリエチルアミン(16.29g、160.1mmol)とテトラヒドロフラン(150ml)を加えた後、15℃以下に保ちながら、3、5-ジニトロベンゾイルクロライド(1)(33.70g、146.2mmol)のテトラヒドロフラン(40ml)溶液を滴下した。反応終了後、反応液を1Lの純水中に注ぎ、得られた結晶をろ過し、純水にて洗浄した。結晶をエタノール(200ml)中で攪拌した後、ろ過およびエタノール洗浄したところ、化合物(3)(白色結晶,36.33g,得率84%)を得た。
 1H-NMR(400MHz,CDCl3,δppm):9.26(1H,t,J=2.0Hz),9.16(1H,dd,
J=1.2Hz),4.63-4.50(4H,m),4.59(2H,s),1.47(3H,s).
 化合物(3)(30.00g、101mmol)と5%Pd-C(3g)のテトラヒドロフラン(300ml)の混合物を、水素存在下、室温にて攪拌した。反応終了後、ろ過し、ろ液を減圧下、濃縮した。得られた粗物にヘキサン(200ml)を加え攪拌した。攪拌後、結晶をろ過、ヘキサン洗浄した。再び、得られた結晶を、エタノール(100ml)中に加え、攪拌した後、結晶をろ過し、エタノールにて洗浄したところ、ジアミン化合物(4)(白色結晶,21.45g,得率90%)を得た。
 1H-NMR(400MHz,CDCl3,δppm):6.78(2H,d,J=2.4Hz),6.18(1H,t,J=2.4Hz),4.63(2H,d,J=6.0Hz),4.44(2H,d,J=6.0Hz),4.32(2H,s),3.745(4H,brord),1.40(3H, s).
Figure JPOXMLDOC01-appb-C000021
3-methyl-3-oxetaneethanol (2) (14.95 g, 146.4 mmol), triethylamine (16.29 g, 160.1 mmol) and tetrahydrofuran (150 ml) were added to a nitrogen-substituted four-necked flask at room temperature. Thereafter, a solution of 3,5-dinitrobenzoyl chloride (1) (33.70 g, 146.2 mmol) in tetrahydrofuran (40 ml) was added dropwise while maintaining the temperature at 15 ° C. or lower. After completion of the reaction, the reaction solution was poured into 1 L of pure water, and the resulting crystals were filtered and washed with pure water. The crystals were stirred in ethanol (200 ml), filtered and washed with ethanol to obtain compound (3) (white crystals, 36.33 g, yield 84%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 9.26 (1H, t, J = 2.0 Hz), 9.16 (1H, dd,
J = 1.2Hz), 4.63-4.50 (4H, m), 4.59 (2H, s), 1.47 (3H, s).
A mixture of compound (3) (30.00 g, 101 mmol) and 5% Pd—C (3 g) in tetrahydrofuran (300 ml) was stirred at room temperature in the presence of hydrogen. After completion of the reaction, the mixture was filtered, and the filtrate was concentrated under reduced pressure. Hexane (200 ml) was added to the resulting crude product and stirred. After stirring, the crystals were filtered and washed with hexane. The obtained crystals were added again in ethanol (100 ml) and stirred, and then the crystals were filtered and washed with ethanol to obtain the diamine compound (4) (white crystals, 21.45 g, yield 90%). Got.
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 6.78 (2H, d, J = 2.4 Hz), 6.18 (1H, t, J = 2.4 Hz), 4.63 (2H, d, J = 6.0 Hz), 4.44 (2H, d, J = 6.0Hz), 4.32 (2H, s), 3.745 (4H, brod), 1.40 (3H, s).
 「ポリアミド酸及びポリイミドの合成」
 下記する実施例2~9及び比較例1~4では、ポリアミド酸又はポリイミドの合成例を記載するが、それぞれの記載で使用される略号の意味、ポリアミド酸及びポリイミドの分子量の測定、及びイミド化率の測定は以下のとおりである。また、実施例2~9及び比較例1~4で合成されたポリアミド酸及びポリイミドの内容を、それぞれ表2及び表3にまとめて示す。
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
"Synthesis of polyamic acid and polyimide"
In Examples 2 to 9 and Comparative Examples 1 to 4 described below, examples of synthesizing polyamic acid or polyimide are described. Meaning of abbreviations used in each description, measurement of molecular weight of polyamic acid and polyimide, and imidization The rate measurements are as follows. The contents of the polyamic acid and polyimide synthesized in Examples 2 to 9 and Comparative Examples 1 to 4 are summarized in Table 2 and Table 3, respectively.
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000022
(特定ジアミン化合物)
 ジアミン(4):実施例1で合成したジアミン化合物
Figure JPOXMLDOC01-appb-C000022
(Specific diamine compound)
Diamine (4): Diamine compound synthesized in Example 1
Figure JPOXMLDOC01-appb-C000023
(その他のジアミン化合物)
 p-PDA:p-フェニレンジアミン
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 PBCH5DAB:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 m-PBCH5DAB:3,5-ジアミノ-{4-〔トランス-4-(トランス-4-n-ペンチルシクロヘキシル)シクロヘキシル〕フェニル}ベンゾアート
Figure JPOXMLDOC01-appb-C000023
(Other diamine compounds)
p-PDA: p-phenylenediamine PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene PBCH5DAB: 1,3-diamino-4- {4- [ Trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene m-PBCH5DAB: 3,5-diamino- {4- [trans-4- (trans-4-n-pentylcyclohexyl) ) Cyclohexyl] phenyl} benzoate
Figure JPOXMLDOC01-appb-C000024
(架橋性化合物)
 KK1:
Figure JPOXMLDOC01-appb-C000024
(Crosslinkable compound)
KK1:
Figure JPOXMLDOC01-appb-C000025
 KK2:
Figure JPOXMLDOC01-appb-C000025
KK2:
Figure JPOXMLDOC01-appb-C000026
 (有機溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 (ポリアミド酸、ポリイミドの分子量の測定)
 ポリアミド酸及びポリイミドの分子量は、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
Figure JPOXMLDOC01-appb-C000026
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve (Measurement of molecular weight of polyamic acid and polyimide)
The molecular weights of the polyamic acid and the polyimide were measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) Molecular weight about 12,000, 4,000, 1,000).
 (イミド化率の測定)
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization rate)
Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture). The solution was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
 <実施例2>
 BODA(3.51g,14.0mmol)、PCH7DAB(0.89g,2.34mmol)、p-PDA(1.77g、16.4mmol)、ジアミン(4)(1.10g,4.66mmol)をNMP(14.4g)中で混合し、80℃で5時間反応させた後、CBDA(1.84g,9.38mmol)とNMP(12.3g)を加え、40℃で6時間反応させてポリアミド酸(A)の溶液(濃度25.4質量%)を得た。このポリアミド酸の数平均分子量は23,900、重量平均分子量は59,500であった。
<Example 2>
BODA (3.51 g, 14.0 mmol), PCH7DAB (0.89 g, 2.34 mmol), p-PDA (1.77 g, 16.4 mmol), diamine (4) (1.10 g, 4.66 mmol) in NMP (14.4 g), and reacted at 80 ° C. for 5 hours. Then, CBDA (1.84 g, 9.38 mmol) and NMP (12.3 g) were added, and reacted at 40 ° C. for 6 hours to obtain polyamic acid. A solution (concentration 25.4% by mass) of (A) was obtained. The number average molecular weight of this polyamic acid was 23,900, and the weight average molecular weight was 59,500.
 <実施例3>
 実施例2と同様にして得られたポリアミド酸(A)の溶液(20.0g)に、NMPを加え濃度6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、ピリジン(1.90g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(B)の粉末を得た。このポリイミドのイミド化率は53%であり、数平均分子量は21,300、重量平均分子量は51,200であった。
<Example 3>
NMP was added to the polyamic acid (A) solution (20.0 g) obtained in the same manner as in Example 2 and diluted to a concentration of 6% by mass. Then, acetic anhydride (2.48 g), pyridine ( 1.90 g) was added and reacted at 80 ° C. for 4 hours. The reaction solution was poured into methanol (300 ml), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (B) powder. The imidation ratio of this polyimide was 53%, the number average molecular weight was 21,300, and the weight average molecular weight was 51,200.
 <実施例4>
 BODA(3.48g,13.9mmol)、PCH7DAB(0.44g,1.16mmol)、p-PDA(1.63g、15.1mmol)、ジアミン(4)(1.64g,6.94mmol)をNMP(14.6g)中で混合し、80℃で5時間反応させた後、CBDA(1.82g,9.27mmol)とNMP(12.7g)を加え、40℃で6時間反応させてポリアミド酸(C)の溶液(濃度24.8質量%)を得た。このポリアミド酸の数平均分子量は24,100、重量平均分子量は59,200であった。
<Example 4>
BODA (3.48 g, 13.9 mmol), PCH7DAB (0.44 g, 1.16 mmol), p-PDA (1.63 g, 15.1 mmol), diamine (4) (1.64 g, 6.94 mmol) in NMP (14.6 g), the mixture was reacted at 80 ° C. for 5 hours, CBDA (1.82 g, 9.27 mmol) and NMP (12.7 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A solution (concentration 24.8% by mass) of (C) was obtained. The number average molecular weight of this polyamic acid was 24,100, and the weight average molecular weight was 59,200.
 <実施例5>
 実施例4と同様にして得られたポリアミド酸(C)の溶液(20.2g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)、ピリジン(1.95g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(D)の粉末を得た。このポリイミドのイミド化率は55%であり、数平均分子量は22,400、重量平均分子量は52,500であった。
<Example 5>
NMP was added to a solution (20.2 g) of the polyamic acid (C) obtained in the same manner as in Example 4 to dilute to 6% by mass, and then acetic anhydride (2.50 g), pyridine (1 .95 g) was added and reacted at 80 ° C. for 4 hours. The reaction solution was poured into methanol (300 ml), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (D) powder. The imidation ratio of this polyimide was 55%, the number average molecular weight was 22,400, and the weight average molecular weight was 52,500.
 <実施例6>
 BODA(3.50g,14.0mmol)、PCH7DAB(4.44g,11.7mmol)、p-PDA(1.01g、9.34mmol)、ジアミン(4)(0.55g,2.33mmol)をNMP(17.5g)中で混合し、80℃で5時間反応させた後、CBDA(1.83g,9.33mmol)とNMP(15.9g)を加え、40℃で6時間反応させてポリアミド酸溶液(濃度25.3質量%)を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.53g)、ピリジン(3.31g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(310ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(E)の粉末を得た。このポリイミドのイミド化率は80%であり、数平均分子量は16,300、重量平均分子量は45,400であった。
<Example 6>
BODA (3.50 g, 14.0 mmol), PCH7DAB (4.44 g, 11.7 mmol), p-PDA (1.01 g, 9.34 mmol), diamine (4) (0.55 g, 2.33 mmol) in NMP (17.5 g), the mixture was reacted at 80 ° C. for 5 hours, CBDA (1.83 g, 9.33 mmol) and NMP (15.9 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A solution (concentration 25.3% by weight) was obtained.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.53 g) and pyridine (3.31 g) were added as an imidization catalyst, and the mixture was stirred at 90 ° C. for 3 hours. Reacted. The reaction solution was poured into methanol (310 ml), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (E) powder. The imidation ratio of this polyimide was 80%, the number average molecular weight was 16,300, and the weight average molecular weight was 45,400.
 <実施例7>
 BODA(3.50g,14.0mmol)、PBCH5DAB(0.50g,1.16mmol)、p-PDA(1.89g、17.5mmol)、ジアミン(4)(1.10g,4.66mmol)をNMP(14.9g)中で混合し、80℃で5時間反応させた後、CBDA(1.83g,9.33mmol)とNMP(12.3g)を加え、40℃で6時間反応させてポリアミド酸溶液(濃度24.5質量%)を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.45g)、ピリジン(1.93g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(280ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(F)粉末を得た。このポリイミドのイミド化率は55%であり、数平均分子量は22,600、重量平均分子量は53,100であった。
<Example 7>
BODA (3.50 g, 14.0 mmol), PBCH5DAB (0.50 g, 1.16 mmol), p-PDA (1.89 g, 17.5 mmol), diamine (4) (1.10 g, 4.66 mmol) in NMP (14.9 g), and after reacting at 80 ° C. for 5 hours, CBDA (1.83 g, 9.33 mmol) and NMP (12.3 g) were added, and reacted at 40 ° C. for 6 hours to obtain polyamic acid. A solution (concentration 24.5% by mass) was obtained.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.45 g) and pyridine (1.93 g) were added as an imidization catalyst, and the mixture was heated at 80 ° C. for 4 hours. Reacted. The reaction solution was poured into methanol (280 ml), and the generated precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (F) powder. The imidation ratio of this polyimide was 55%, the number average molecular weight was 22,600, and the weight average molecular weight was 53,100.
 <実施例8>
 BODA(3.55g,14.2mmol)、PBCH5DAB(3.07g,7.10mmol)、p-PDA(1.28g、11.8mmol)、ジアミン(4)(1.12g,4.74mmol)をNMP(16.5g)中で混合し、80℃で5時間反応させた後、CBDA(1.86g,9.48mmol)とNMP(15.9g)を加え、40℃で6時間反応させてポリアミド酸溶液(濃度25.2質量%)を得た。
 得られたポリアミド酸溶液(20.5g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)、ピリジン(3.30g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(330ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(G)の粉末を得た。このポリイミドのイミド化率は81%であり、数平均分子量は16,100、重量平均分子量は44,800であった。
<Example 8>
BODA (3.55 g, 14.2 mmol), PBCH5DAB (3.07 g, 7.10 mmol), p-PDA (1.28 g, 11.8 mmol), diamine (4) (1.12 g, 4.74 mmol) were added to NMP. (16.5 g), and the mixture was reacted at 80 ° C. for 5 hours. Then, CBDA (1.86 g, 9.48 mmol) and NMP (15.9 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A solution (concentration 25.2% by mass) was obtained.
After adding NMP to the obtained polyamic acid solution (20.5 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and the mixture was stirred at 90 ° C. for 3 hours. Reacted. The reaction solution was poured into methanol (330 ml), and the generated precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (G) powder. The imidation ratio of this polyimide was 81%, the number average molecular weight was 16,100, and the weight average molecular weight was 44,800.
 <実施例9>
 BODA(3.50g,14.0mmol)、m-PBCH5DAB(3.12g,7.00mmol)、p-PDA(1.26g、11.7mmol)、ジアミン(4)(1.10g,4.66mmol)をNMP(16.4g)中で混合し、80℃で5時間反応させた後、CBDA(1.83g,9.33mmol)とNMP(15.3g)を加え、40℃で6時間反応させてポリアミド酸溶液(濃度25.4質量%)を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、ピリジン(1.95g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(H)の粉末を得た。このポリイミドのイミド化率は55%であり、数平均分子量は18,200、重量平均分子量は48,500であった。
<Example 9>
BODA (3.50 g, 14.0 mmol), m-PBCH5DAB (3.12 g, 7.00 mmol), p-PDA (1.26 g, 11.7 mmol), diamine (4) (1.10 g, 4.66 mmol) Were mixed in NMP (16.4 g) and reacted at 80 ° C. for 5 hours, then CBDA (1.83 g, 9.33 mmol) and NMP (15.3 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution (concentration 25.4% by mass) was obtained.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.48 g) and pyridine (1.95 g) were added as imidization catalysts, and the mixture was heated at 80 ° C. for 4 hours. Reacted. The reaction solution was poured into methanol (300 ml), and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (H) powder. The imidation ratio of this polyimide was 55%, the number average molecular weight was 18,200, and the weight average molecular weight was 48,500.
 <比較例1>
 BODA(3.53g,14.1mmol)、PCH7DAB(0.89g,2.34mmol)、p-PDA(2.29g、21.2mmol)をNMP(13.1g)中で混合し、80℃で5時間反応させた後、CBDA(1.85g,9.43mmol)とNMP(12.4g)を加え、40℃で6時間反応させてポリアミド酸(I)の溶液(濃度25.0質量%)を得た。このポリアミド酸の数平均分子量は25,400、重量平均分子量は63,300であった。
<Comparative Example 1>
BODA (3.53 g, 14.1 mmol), PCH7DAB (0.89 g, 2.34 mmol), p-PDA (2.29 g, 21.2 mmol) were mixed in NMP (13.1 g) and mixed at 80 ° C. for 5 hours. After reacting for a period of time, CBDA (1.85 g, 9.43 mmol) and NMP (12.4 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid (I) solution (concentration 25.0% by mass). Obtained. The number average molecular weight of this polyamic acid was 25,400, and the weight average molecular weight was 63,300.
 <比較例2>
 合成例1と同様にして得られたポリアミド酸(I)の溶液(20.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、ピリジン(1.92g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(290ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(J)の粉末を得た。このポリイミドのイミド化率は55%であり、数平均分子量は22,300、重量平均分子量は56,300であった。
<Comparative Example 2>
NMP was added to a solution (20.0 g) of polyamic acid (I) obtained in the same manner as in Synthesis Example 1 and diluted to 6% by mass, and then acetic anhydride (2.48 g) and pyridine (1 .92 g) was added and reacted at 80 ° C. for 4 hours. The reaction solution was poured into methanol (290 ml), and the produced precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (J) powder. The imidation ratio of this polyimide was 55%, the number average molecular weight was 22,300, and the weight average molecular weight was 56,300.
 <比較例3>
 BODA(3.51g,14.0mmol)、PCH7DAB(4.45g,11.7mmol)、p-PDA(1.26g、11.7mmol)をNMP(17.3g)中で混合し、80℃で5時間反応させた後、CBDA(1.83g,9.33mmol)とNMP(15.3g)を加え、40℃で6時間反応させポリアミド酸溶液(濃度25.3質量%)を得た。
 得られたポリアミド酸溶液(20.1g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)、ピリジン(3.30g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(320ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(K)の粉末を得た。このポリイミドのイミド化率は80%であり、数平均分子量は16,100、重量平均分子量は44,200であった。
<Comparative Example 3>
BODA (3.51 g, 14.0 mmol), PCH7DAB (4.45 g, 11.7 mmol), p-PDA (1.26 g, 11.7 mmol) were mixed in NMP (17.3 g) and mixed at 80 ° C. for 5 hours. After reacting for a period of time, CBDA (1.83 g, 9.33 mmol) and NMP (15.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (concentration 25.3 mass%).
After adding NMP to the obtained polyamic acid solution (20.1 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and the mixture was heated at 90 ° C. for 3 hours. Reacted. The reaction solution was poured into methanol (320 ml), and the generated precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (K) powder. The imidation ratio of this polyimide was 80%, the number average molecular weight was 16,100, and the weight average molecular weight was 44,200.
 <比較例4>
 BODA(3.50g,14.0mmol)、PBCH5DAB(3.03g,7.00mmol)、p-PDA(1.77g、16.4mmol)をNMP(16.2g)中で混合し、80℃で5時間反応させた後、CBDA(1.83g,9.33mmol)とNMP(15.0g)を加え、40℃で6時間反応させてポリアミド酸溶液(濃度24.5質量%)を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.48g)、ピリジン(3.28g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(320ml)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド(L)の粉末を得た。このポリイミドのイミド化率は81%であり、数平均分子量は19,500、重量平均分子量は49,400であった。
<Comparative Example 4>
BODA (3.50 g, 14.0 mmol), PBCH5DAB (3.03 g, 7.00 mmol), p-PDA (1.77 g, 16.4 mmol) were mixed in NMP (16.2 g) and mixed at 80 ° C. for 5 hours. After reacting for a period of time, CBDA (1.83 g, 9.33 mmol) and NMP (15.0 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (concentration 24.5% by mass).
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.48 g) and pyridine (3.28 g) were added as an imidization catalyst, and the mixture was stirred at 90 ° C. for 3 hours. Reacted. The reaction solution was poured into methanol (320 ml), and the generated precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide (L) powder. The imidation ratio of this polyimide was 81%, the number average molecular weight was 19,500, and the weight average molecular weight was 49,400.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 [液晶配向処理剤の製造]
 下記する実施例10~17及び比較例5~11では、液晶配向処理剤の製造例を記載するが、各液晶配向処理剤の評価のために使用される、[液晶セルの作製]、[液晶配向性及びプレチルト角の評価]及び[電気特性の評価]は、下記のとおりである。また、実施例10~17及び比較例5~11で得られた各液晶配向処理剤の内容及び特性を、それぞれ表4及び表5にまとめて示す。
[Manufacture of liquid crystal alignment treatment agent]
In Examples 10 to 17 and Comparative Examples 5 to 11 described below, production examples of liquid crystal alignment treatment agents will be described. [Production of liquid crystal cell], [Liquid crystal used for evaluation of each liquid crystal alignment treatment agent] [Evaluation of orientation and pretilt angle] and [Evaluation of electrical characteristics] are as follows. The contents and properties of the liquid crystal alignment treatment agents obtained in Examples 10 to 17 and Comparative Examples 5 to 11 are summarized in Tables 4 and 5, respectively.
 [液晶セルの作製]
 液晶配向処理剤を3×4cmITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて210℃で30分間加熱処理をして膜厚100nmのポリイミド塗膜を得た。塗膜面をロール径120mm、レーヨン布のラビング装置にて、回転数700rpm、移動速度40mm/sec、押し込み量0.3mmの条件にてラビング処理をし、液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサー挟み、ラビング方向が逆向きになるようにして組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法で液晶(メルク・ジャパン社製、ZLI-2293)を注入し、注入口を封止して、アンチパラレル配向のネマティック液晶セル(以下、液晶セルともいう)を得た。但し、実施例14、実施例16、実施例17、比較例3~比較例7においては液晶としてMLC-6608(メルク・ジャパン社製)を用いた。
[Production of liquid crystal cell]
A liquid crystal alignment treatment agent is spin-coated on the ITO surface of the substrate with 3 × 4 cm ITO electrodes, and heat-treated on a hot plate at 80 ° C. for 5 minutes and in a thermal circulation clean oven for 30 minutes at 210 ° C. A 100 nm polyimide coating was obtained. The surface of the coating film was rubbed with a roll diameter 120 mm, rayon cloth rubbing apparatus under the conditions of a rotation speed of 700 rpm, a moving speed of 40 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film. Two substrates with this liquid crystal alignment film were prepared, a 6 μm spacer was sandwiched with the liquid crystal alignment film surface on the inside, the rubbing directions were reversed, and the surroundings were adhered with a sealant to produce an empty cell. . A liquid crystal (ZLI-2293, manufactured by Merck Japan Ltd.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel aligned nematic liquid crystal cell (hereinafter also referred to as a liquid crystal cell). . However, in Example 14, Example 16, Example 17, and Comparative Examples 3 to 7, MLC-6608 (manufactured by Merck Japan) was used as the liquid crystal.
 [液晶配向性及びプレチルト角の評価]
 上記の[液晶セルの作製]で得られた液晶セルについて、液晶注入後(初期)、95℃5分加熱処理後(表4中の処理1)及び120℃で5時間加熱処理後95℃で5分間加熱処理後(表4中の処理2)にそれぞれプレチルト角を測定した。プレチルト角は液晶セルの中心及び中心から上下1cmの箇所の3箇所を測定し、それらの平均値をプレチルト角の値とした。その際、測定は室温下でプレチルト角測定装置(ELSICON社製 モデルPAS-301)を用いた。
 また、初期及び各加熱処理後の液晶セルについて、偏光顕微鏡観察により液晶の配向均一性を確認した。液晶が均一に配向している状態を○、液晶の配向に乱れが観察されたものを×と評価した。
[Evaluation of liquid crystal alignment and pretilt angle]
About the liquid crystal cell obtained in the above [Preparation of liquid crystal cell], after liquid crystal injection (initial), after heat treatment at 95 ° C. for 5 minutes (treatment 1 in Table 4), and after heat treatment at 120 ° C. for 5 hours, After the heat treatment for 5 minutes (treatment 2 in Table 4), the pretilt angle was measured. The pretilt angle was measured at three locations, the center of the liquid crystal cell and the location 1 cm above and below the center, and the average value thereof was taken as the pretilt angle value. At that time, the measurement was performed using a pretilt angle measuring device (model PAS-301 manufactured by ELSICON) at room temperature.
Moreover, about the liquid crystal cell after an initial stage and each heat processing, the orientation uniformity of the liquid crystal was confirmed by polarizing microscope observation. The state in which the liquid crystal was uniformly aligned was evaluated as “◯”, and the state in which the disorder of the liquid crystal was observed was evaluated as “×”.
 [電気特性の評価]
 上記の[液晶セルの作製]で得られた液晶セルに、80℃の温度下で4Vの電圧を60μs間印加し、16.67ms後及び1667ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(表5中の初期の電圧保持率)として求めた。
 更に、電圧保持率測定後の液晶セルを100℃に設定した恒温槽に21日間放置し、上記と同様にして電圧保持率(表5中の高温放置後の電圧保持率)の測定を行った。
[Evaluation of electrical characteristics]
A voltage of 4 V was applied to the liquid crystal cell obtained in [Preparation of liquid crystal cell] at a temperature of 80 ° C. for 60 μs, and the voltage after 16.67 ms and 1667 ms was measured. Was determined as a voltage holding ratio (initial voltage holding ratio in Table 5).
Further, the liquid crystal cell after the voltage holding ratio measurement was left in a thermostat set at 100 ° C. for 21 days, and the voltage holding ratio (voltage holding ratio after standing at high temperature in Table 5) was measured in the same manner as described above. .
 [ラビング耐性の評価]
 上記の[液晶セルの作製]で得られたラビング処理後の液晶配向膜付き基板の表面を共焦点レーザー顕微鏡で観察し、ラビング傷の有無を確認した。
 ラビング傷が観察されないものを○、ラビング傷があるものを×とした。
[Rubbing resistance evaluation]
The surface of the substrate with the liquid crystal alignment film after the rubbing treatment obtained in [Preparation of liquid crystal cell] was observed with a confocal laser microscope to confirm the presence or absence of rubbing scratches.
A sample in which no rubbing scratch was observed was marked with ○, and a sample with rubbing scratch was marked with ×.
 <実施例10>
 実施例2と同様にして得られたポリアミド酸(A)の溶液(10.2g)、NMP(9.71g)及びBCS(20.0g)を、25℃にて12時間混合して液晶配向処理剤(1)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 10>
A solution of the polyamic acid (A) (10.2 g), NMP (9.71 g) and BCS (20.0 g) obtained in the same manner as in Example 2 were mixed at 25 ° C. for 12 hours to conduct a liquid crystal alignment treatment. Agent (1) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例11>
 実施例3と同様にして得られたポリイミド(B)の粉末(2.51g)、NMP(24.5g)及びBCS(11.6g)を、50℃にて15時間混合して液晶配向処理剤(2)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 11>
Liquid crystal alignment treating agent obtained by mixing polyimide (B) powder (2.51 g), NMP (24.5 g) and BCS (11.6 g) obtained in the same manner as in Example 3 at 50 ° C. for 15 hours. (2) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例12>
 実施例4と同様にして得られたポリアミド酸(C)の溶液(10.5g)、NMP(11.6g)及びBCS(18.0g)を、25℃にて12時間混合して液晶配向処理剤(3)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 12>
A solution (10.5 g) of polyamic acid (C), NMP (11.6 g) and BCS (18.0 g) obtained in the same manner as in Example 4 were mixed at 25 ° C. for 12 hours to conduct liquid crystal alignment treatment. Agent (3) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例13>
 実施例5と同様にして得られたポリイミド(D)の粉末(2.50g)、NMP(18.7g)及びBCS(17.3g)を、50℃にて15時間混合して液晶配向処理剤(4)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 13>
A liquid crystal aligning agent obtained by mixing polyimide (D) powder (2.50 g), NMP (18.7 g) and BCS (17.3 g) obtained in the same manner as in Example 5 at 50 ° C. for 15 hours. (4) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例14>
 実施例6と同様にして得られたポリイミド(E)の粉末(2.55g)、NMP(26.9g)及びBCS(9.81g)を、50℃にて15時間混合して液晶配向処理剤(5)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 14>
Liquid crystal aligning agent by mixing polyimide (E) powder (2.55 g), NMP (26.9 g) and BCS (9.81 g) obtained in the same manner as in Example 6 at 50 ° C. for 15 hours. (5) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例15>
 実施例7と同様にして得られたポリイミド(F)の粉末(2.48g)、NMP(16.6g)及びBCS(19.2g)を、50℃にて15時間混合して液晶配向処理剤(6)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 15>
A polyimide (F) powder (2.48 g), NMP (16.6 g) and BCS (19.2 g) obtained in the same manner as in Example 7 were mixed at 50 ° C. for 15 hours to obtain a liquid crystal aligning agent. (6) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例16>
 実施例8と同様にして得られたポリイミド(G)の粉末(2.50g)、NMP(28.3g)及びBCS(7.69g)を、50℃にて15時間混合して液晶配向処理剤(7)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 16>
Liquid crystal aligning agent obtained by mixing polyimide (G) powder (2.50 g), NMP (28.3 g) and BCS (7.69 g) obtained in the same manner as in Example 8 at 50 ° C. for 15 hours. (7) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <実施例17>
 実施例9と同様にして得られたポリイミド(H)の粉末(2.50g)、NMP(22.6g)及びBCS(13.4g)を、50℃にて15時間混合して液晶配向処理剤(8)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 17>
Liquid crystal aligning agent by mixing polyimide (H) powder (2.50 g), NMP (22.6 g) and BCS (13.4 g) obtained in the same manner as in Example 9 at 50 ° C. for 15 hours. (8) was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 <比較例5>
 比較例1で得たポリアミド酸(I)の溶液(10.5g)に、NMP(9.71g)、BCS(20.2g)を加え、25℃にて12時間攪拌することで、液晶配向処理剤(9)を得た。
<Comparative Example 5>
NMP (9.71 g) and BCS (20.2 g) were added to the polyamic acid (I) solution (10.5 g) obtained in Comparative Example 1, and the mixture was stirred at 25 ° C. for 12 hours, whereby a liquid crystal alignment treatment was performed. Agent (9) was obtained.
 <比較例6>
 比較例2で得たポリイミド(J)の粉末(2.45g)、NMP(24.0g)及びBCS(11.3g)を、50℃にて15時間混合して液晶配向処理剤(10)を得た。
<Comparative Example 6>
The polyimide (J) powder (2.45 g), NMP (24.0 g) and BCS (11.3 g) obtained in Comparative Example 2 were mixed at 50 ° C. for 15 hours to obtain a liquid crystal alignment treatment agent (10). Obtained.
 <比較例7>
 比較例3で得たポリイミド(K)の粉末(2.50g)、NMP(26.4g)、BCS(9.62g)を、50℃にて15時間混合して液晶配向処理剤(11)を得た。
<Comparative Example 7>
The polyimide (K) powder (2.50 g), NMP (26.4 g), and BCS (9.62 g) obtained in Comparative Example 3 were mixed at 50 ° C. for 15 hours to obtain a liquid crystal aligning agent (11). Obtained.
 <比較例8>
 比較例3と同様にして得られたポリイミド(K)の粉末(2.45g)、NMP(31.1g)、BCS(11.3g)及び架橋性化合物KK1(0.49g)を、50℃にて15時間混合して液晶配向処理剤(12)を得た。
<Comparative Example 8>
The polyimide (K) powder (2.45 g), NMP (31.1 g), BCS (11.3 g) and crosslinkable compound KK1 (0.49 g) obtained in the same manner as in Comparative Example 3 were heated to 50 ° C. For 15 hours to obtain a liquid crystal aligning agent (12).
 <比較例9>
 比較例4で得たポリイミド(L)の粉末(2.50g)、NMP(31.7g)、BCS(11.5g)及び架橋性化合物KK1(0.50g)を、50℃にて15時間混合して液晶配向処理剤(13)を得た。
<Comparative Example 9>
The polyimide (L) powder obtained in Comparative Example 4 (2.50 g), NMP (31.7 g), BCS (11.5 g) and crosslinkable compound KK1 (0.50 g) were mixed at 50 ° C. for 15 hours. As a result, a liquid crystal aligning agent (13) was obtained.
 <比較例10>
 比較例3と同様にして得られたポリイミド(K)の粉末(2.48g)、NMP(32.0g)、BCS(11.1g)及び架橋性化合物KK2(0.50g)を、50℃にて15時間混合して液晶配向処理剤(14)を得た。
<Comparative Example 10>
A polyimide (K) powder (2.48 g), NMP (32.0 g), BCS (11.1 g) and a crosslinkable compound KK2 (0.50 g) obtained in the same manner as in Comparative Example 3 were heated to 50 ° C. For 15 hours to obtain a liquid crystal aligning agent (14).
 <比較例11>
 比較例4と同様にして得られたポリイミド(L)の粉末(2.52g)、NMP(31.8g)、BCS(11.4g)及び架橋性化合物KK2(0.51g)を、50℃にて15時間混合して液晶配向処理剤(15)を得た。
<Comparative Example 11>
A polyimide (L) powder (2.52 g), NMP (31.8 g), BCS (11.4 g) and a crosslinkable compound KK2 (0.51 g) obtained in the same manner as in Comparative Example 4 were heated to 50 ° C. For 15 hours to obtain a liquid crystal aligning agent (15).
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 上記の結果からわかるように、実施例10~17の液晶配向処理剤から得られた液晶配向膜は均一な配向性を示し、プレチルト角の熱に対する安定性が向上し、高温下に長時間曝された際も電圧保持率の低下が抑制された。一方、比較例5~7の液晶配向処理剤から得られた液晶配向膜はラビングによる傷が原因と考えられる液晶の配向乱れが観察された。加えて120℃で5時間加熱処理後(熱処理2)にプレチルト角が大きく低下した。他方、比較例8~11の液晶配向処理剤から得られた液晶配向膜は、初期の電圧保持率に対する高温放置後の電圧保持率の低下が大きかった。
 また、実施例10、12と比較例5との比較、及び実施例11、13~17と比較例6、7との比較からして、実施例の液晶配向処理剤から得られた液晶配向膜は、ラビング処理に伴う削れがなく、かつプレチルト角の熱に対する安定性が大きく向上した。これにより、これらの実施例の液晶配向処理剤から得られた液晶配向膜は、長時間高温環境下で使用、あるいは放置されるような過酷条件においても、表示ムラが発生しない液晶表示素子を得ることができる。
As can be seen from the above results, the liquid crystal alignment films obtained from the liquid crystal aligning agents of Examples 10 to 17 show uniform alignment, improve the stability of the pretilt angle against heat, and are exposed to high temperatures for a long time. When this was done, the decrease in voltage holding ratio was suppressed. On the other hand, in the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 5 to 7, the alignment disorder of the liquid crystal, which is considered to be caused by scratches due to rubbing, was observed. In addition, the pretilt angle significantly decreased after heat treatment at 120 ° C. for 5 hours (heat treatment 2). On the other hand, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 8 to 11 had a large decrease in voltage holding ratio after standing at high temperature with respect to the initial voltage holding ratio.
In addition, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of the examples from the comparison between the examples 10 and 12 and the comparative example 5 and the comparison between the examples 11 and 13 to 17 and the comparative examples 6 and 7 In this case, there was no shaving associated with the rubbing treatment, and the stability of the pretilt angle against heat was greatly improved. As a result, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of these examples provides a liquid crystal display element that does not cause display unevenness even under severe conditions such as being used or left in a high temperature environment for a long time. be able to.
 また、実施例10、12と比較例9との比較、実施例11、13~17と比較例6、7とを比較して、実施例の液晶配向処理剤から得られた液晶配向膜は、高温下に長時間曝された際の電圧保持率の低下が抑制された。これにより、これらの実施例の液晶配向処理剤から得られた液晶配向膜は、過酷条件においても液晶表示素子の表示不良である線焼き付きが発生しない信頼性の高い液晶表示素子を得ることができる。
 他方、比較例8~11の液晶配向処理剤から得られた液晶配向膜は、初期の電圧保持率に対する高温放置後の電圧保持率の低下が大きかった。
In addition, the comparison between Examples 10 and 12 and Comparative Example 9, and the comparison between Examples 11 and 13 to 17 and Comparative Examples 6 and 7, and the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of Example, The decrease in the voltage holding ratio when exposed to a high temperature for a long time was suppressed. Thereby, the liquid crystal aligning film obtained from the liquid crystal aligning agent of these Examples can obtain a highly reliable liquid crystal display element that does not cause line sticking which is a display defect of the liquid crystal display element even under severe conditions. .
On the other hand, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 8 to 11 had a large decrease in voltage holding ratio after standing at high temperature with respect to the initial voltage holding ratio.
 本発明の液晶配向処理剤は、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに有用であり、特に大画面で高精細の液晶テレビなどに好適に利用できる。 The liquid crystal aligning agent of the present invention is useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements, and can be suitably used particularly for large-screen and high-definition liquid crystal televisions. .
 なお、2009年12月25日に出願された日本特許出願2009-295180号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2009-295180 filed on Dec. 25, 2009 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (9)

  1.  式[1]で示されるジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸、及び該ポリアミド酸を脱水閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Xは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、Xは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基、又は芳香族炭化水素基であり、Xは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-、又は-O(CH-(mは1~5の整数である。)であり、X4は炭素数1~20の有機基を表し、nは1~4の整数である。)
    At least selected from the group consisting of a polyamic acid obtained by reacting a diamine component containing a diamine compound represented by the formula [1] and tetracarboxylic dianhydride, and a polyimide obtained by dehydrating and ring-closing the polyamic acid. Liquid crystal aligning agent containing 1 type of polymer.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—, and X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon. X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ~ 4.)
  2.  式[1]のXが単結合又は炭素数1~5のアルキレン基である請求項1に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 1, wherein X 2 in the formula [1] is a single bond or an alkylene group having 1 to 5 carbon atoms.
  3.  式[1]のXが炭素数1~5のアルキル基である請求項1又は請求項2に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein X 4 in the formula [1] is an alkyl group having 1 to 5 carbon atoms.
  4.  式[1]のXが-O-、-CONH-、又は-COO-であり、Xが単結合、又は-O-であり、nが1である請求項1~請求項3のいずれかに記載の液晶配向処理剤。 X 1 in the formula [1] is —O—, —CONH—, or —COO—, X 3 is a single bond or —O—, and n is 1. A liquid crystal alignment treatment agent according to claim 1.
  5.  ジアミン成分中の5~80モル%が式[1]で示されるジアミン化合物である請求項1~請求項4のいずれかに記載の液晶配向処理剤。 5. The liquid crystal aligning agent according to claim 1, wherein 5 to 80 mol% in the diamine component is a diamine compound represented by the formula [1].
  6.  請求項1~請求項5のいずれかに記載の液晶配向処理剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 5.
  7.  請求項6に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 6.
  8.  下記の式[1]で示されるジアミン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式[1]中、Xは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、Xは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基、又は芳香族炭化水素基であり、Xは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-、又は-O(CH-(mは1~5の整数である。)であり、X4は炭素数1~20の有機基を表し、nは1~4の整数である。)
    A diamine compound represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [1], X 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON) (CH 3 ) — or —N (CH 3 ) CO—, and X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, or an aromatic hydrocarbon. X 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), X 4 represents an organic group having 1 to 20 carbon atoms, and n is 1 It is an integer of ~ 4.)
  9.  請求項8に記載の式[1]で示されるジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸、又は該ポリアミド酸を脱水閉環させて得られるポリイミド。 A polyamic acid obtained by reacting a diamine component containing the diamine compound represented by the formula [1] according to claim 8 and tetracarboxylic dianhydride, or a polyimide obtained by dehydrating and ring-closing the polyamic acid.
PCT/JP2010/072928 2009-12-25 2010-12-20 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same WO2011078132A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080059187.2A CN102667594B (en) 2009-12-25 2010-12-20 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
KR1020127016199A KR101759753B1 (en) 2009-12-25 2010-12-20 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP2011547545A JP5614412B2 (en) 2009-12-25 2010-12-20 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295180 2009-12-25
JP2009295180 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078132A1 true WO2011078132A1 (en) 2011-06-30

Family

ID=44195659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072928 WO2011078132A1 (en) 2009-12-25 2010-12-20 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Country Status (5)

Country Link
JP (1) JP5614412B2 (en)
KR (1) KR101759753B1 (en)
CN (1) CN102667594B (en)
TW (1) TWI494374B (en)
WO (1) WO2011078132A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102135493B1 (en) * 2013-05-01 2020-08-26 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102275484B1 (en) * 2013-10-23 2021-07-08 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7067472B2 (en) * 2016-06-14 2022-05-16 日産化学株式会社 Liquid crystal alignment agent and liquid crystal display element for coating BOA substrate or substrate with BCS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053848A1 (en) * 2006-11-01 2008-05-08 Nissan Chemical Industries, Ltd. Agent for alignment treatment of liquid crystal and liquid crystal display element using the same
JP2009244628A (en) * 2008-03-31 2009-10-22 Jsr Corp Radiation sensitive resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427529C (en) * 2003-11-26 2008-10-22 日产化学工业株式会社 Liquid crystal alignment treating agent for vertical alignment and liquid crystal display
JP4779974B2 (en) * 2004-12-22 2011-09-28 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using the same
JP5240207B2 (en) * 2008-01-25 2013-07-17 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053848A1 (en) * 2006-11-01 2008-05-08 Nissan Chemical Industries, Ltd. Agent for alignment treatment of liquid crystal and liquid crystal display element using the same
JP2009244628A (en) * 2008-03-31 2009-10-22 Jsr Corp Radiation sensitive resin composition

Also Published As

Publication number Publication date
CN102667594A (en) 2012-09-12
JP5614412B2 (en) 2014-10-29
KR101759753B1 (en) 2017-07-19
CN102667594B (en) 2015-02-18
TWI494374B (en) 2015-08-01
TW201137037A (en) 2011-11-01
JPWO2011078132A1 (en) 2013-05-09
KR20120123284A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5729299B2 (en) Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
JP5382372B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5177150B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5904121B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5257548B2 (en) Liquid crystal display element and liquid crystal aligning agent
JP5651953B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5663876B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6233309B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
JP5218062B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP6217937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013146890A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5614412B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059187.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547545

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127016199

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839362

Country of ref document: EP

Kind code of ref document: A1