WO2008052948A1 - Dispositif de boucle fermee d'asservissement et modulateur sigma-delta - Google Patents

Dispositif de boucle fermee d'asservissement et modulateur sigma-delta Download PDF

Info

Publication number
WO2008052948A1
WO2008052948A1 PCT/EP2007/061564 EP2007061564W WO2008052948A1 WO 2008052948 A1 WO2008052948 A1 WO 2008052948A1 EP 2007061564 W EP2007061564 W EP 2007061564W WO 2008052948 A1 WO2008052948 A1 WO 2008052948A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
input
signal
loop
analog
Prior art date
Application number
PCT/EP2007/061564
Other languages
English (en)
Inventor
Jean-Michel Hode
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US12/513,067 priority Critical patent/US7965210B2/en
Priority to EP07821924A priority patent/EP2097982A1/fr
Publication of WO2008052948A1 publication Critical patent/WO2008052948A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/38Calibration
    • H03M3/386Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M3/388Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/424Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one

Definitions

  • the present invention relates to a device for controlling a first component in a closed loop, comprising in the return circuit to the loop input a second component having a noise factor. It also relates to a sigma-delta modulator for converting an input analog signal into a digital output signal and using this closed loop control device. It applies for example in the field of microwave electronics.
  • a method called modulation ⁇ modulation makes it possible to improve the accuracy of a CAN locally around a frequency, possibly around a high frequency.
  • the basic idea is to arbitrarily vary the digital output signal, or "modulate" it, so as to minimize the power error, so that samples of the digital output signal may seem unrepresentative of the output signal.
  • analog input signal the modulation ⁇ is based in particular on a principle of oversampling of the input signal on a small number of bits. This is on the one hand to increase the temporal accuracy by cutting the signal into a large number of very short samples.
  • the modulation ⁇ "conforms" the quantization noise.
  • the modulation of the digital output signal which is adapted to the frequency of the input signal, is to minimize the power of the quantization noise around this frequency, or to reduce the spectral density of the noise. quantization around the useful signal.
  • the spectrum of quantization noise must be made "conform" to an ideal spectrum having a dip in the vicinity of the frequency of use.
  • a modulator ⁇ is obtained by "compression" of the noise at the frequency of use.
  • a modulator ⁇ can be implemented from a slave servocontrolled in a control loop in a conventional manner, in order to reduce the influence of its quantization noise on its digital output.
  • a digital-to-analog converter called CNA thereafter, makes it possible to re-convert the digital output signal of the CAN into analogue so as to subtract it from the input signal in principle of the closed servocontrol loop.
  • An amplifier and a filter in the loop can bypass the disadvantage of conventional ADCs: they allow to associate high frequency and fine resolution.
  • the architecture of such a circuit is quite remarkable because it applies conventional mounting principles to very specific components, the individual behavior of the components being always complementary to the principles of assembly. This allows the entire system to converge in a rather natural way towards the desired goal.
  • the system is only limited by the noise of the NAC. Gold at equal frequency, it is easier to limit the noise of a DAC than to limit the noise of a CAN, and therefore the system is limited by the performance of its most adjustable component. In this sense also, the architecture of such a circuit is quite remarkable.
  • the CNA's own noise breaks down into two distinct and unequally controllable contributions: static amplitude noise and dynamic noise.
  • a DAC includes a number of identical and switchable current sources to either one of two load resistors depending on the digital signal applied to the DAC input. These sources have a common voltage reference and dispersions low for the CNA to have the best possible linearity. The switched sources are thus summed in one or the other of the two load resistances as a function of the digital signal. The voltage difference between the two load resistances, called “differential voltage", constitutes the analog output signal.
  • Dynamic noise is caused by small noise pulses generated at each switching in a time interval during which the two arms of the switches that change state are on. During this short time, which is shorter as the switches switch quickly, the noises of the control voltages of the switches are greatly amplified. A priori, these noises are not correlated, so they add power.
  • the total power of the dynamic noise is on the one hand proportional to the sampling frequency and on the other hand proportional to the number of switches changing state at each instant of sampling. Therefore, the total power of dynamic noise is proportional to the signal frequency.
  • Static noise is linked to the voltage reference common to all switchable power sources that supply the DAC.
  • This common voltage has its own noise which has a proportional effect on each current source, the corresponding noise current being proportional to the noise voltage of the common voltage reference.
  • a current polluted by a noise proportional to the current received by the resistors is obtained, so that the differential voltage is itself tainted with a noise proportional to the signal.
  • this multiplicative noise can become a limitation as to the performances of the modulator ⁇ . Indeed, and as detailed below, the multiplicative noise of the CNA, given its position in the circuit, is summed directly on the input signal, without any compression.
  • the object of the invention is in particular to overcome the above-mentioned drawback by compressing the multiplicative noise generated by the DAC located in the return circuit towards the loop input in the same proportions as the closed servo-control loop compresses the quantization noise.
  • the subject of the invention is a device for closed loop control of a first component, a second component in the return circuit to the loop input having a multiplicative noise. Compensation noise is added to the input signal of the servo loop, the compensation noise being substantially equal to the input signal of the servo loop multiplied by the multiplicative noise of the second component.
  • the compensation noise added may be a function of the reference voltage of the current source which supplies the second component, the multiplicative noise of the second component depending on this voltage.
  • the compensation noise can be generated by a differential amplifier receiving as input the input voltage of the servocontrol loop and whose reference voltage is that of the current supplying the second component.
  • the invention also relates to a sigma-delta modulator for converting an analog input signal into a digital output signal from an analog-to-digital converter, the input analog signal being magnified by a high factor. at the input of the analog-to-digital converter and the digital output signal being subtracted from the input signal after conversion by a digital-to-analog converter having a multiplicative noise. Compensation noise is added to the input signal of the modulator, the compensation noise being substantially equal to the input signal of the modulator multiplied by the mutliplicative noise of the digital-to-analog converter.
  • the input signal and the compensation noise can be injected into the modulator by using an analog summator.
  • the compensation noise can be generated by a differential amplifier receiving as input the input signal of the modulator and whose reference voltage is that of the current which supplies the digital-to-analog converter.
  • the input signal and the compensation noise can be injected into the modulator by summing the currents of the differential amplifier in the branches of a cascode of the digital-to-analog converter.
  • the main advantage of the invention is that it can be implemented in an elementary manner and at minimum cost, requiring only the addition of standard components to summon at the input of the modulator a current obtained from a voltage already available elsewhere.
  • FIGS. 1a, 1b, 2a and 2b by graphs, an illustration of the modulation principle ⁇ , - FIGS. 3a and 3b, by block diagrams, an exemplary embodiment of a ⁇ modulator
  • FIG. 4 by a block diagram an illustration of the principle of the closed control loop according to the invention in a mod ⁇ modulator
  • FIG. 5 by a block diagram, an example of an estimation of the compensation noise in a ⁇ modulator according to FIG. the invention.
  • FIGS. 1a, 1b, 2a and 2b illustrate by graphs the principle of the modulation ⁇ in the case of single-bit operation in baseband.
  • an analog signal e (t) can be converted into a 1-bit digital signal s- ⁇ (t) with a low sampling frequency.
  • Figure 1b then illustrates the error made on the signal strength by an area Ai situated between the integral of e (t) represented by a curve 1 and the integral of s- ⁇ (t) represented by a curve 2.
  • the analog signal e (t) can also be converted into a digital signal s 2 (t), always on 1 bit but at a higher sampling frequency.
  • the digital signal s 2 (t) has arbitrary variations or "modulations", that is, samples that may seem unrepresentative of the input analog signal e (t).
  • FIG. 2b illustrates the error made on the power of the signal by an area A 2 situated between the integral of e (t) represented by the curve 1 and the integral of s 2 (t) represented by a curve 3.
  • FIGS. 3a and 3b illustrate, by means of block diagrams, an exemplary embodiment of a mod ⁇ modulator.
  • a modulator ⁇ can be implemented from a slave CAN 10 in a closed loop in a conventional manner.
  • the CAN 10 is arranged in a closed servocontrol loop in order to attenuate the influence of its quantization noise b CAN on its digital output s as a function of an input analog signal e to be converted.
  • the closed loop control comprises a summer 12 taking e and s input and whose role in the loop is to perform the subtraction operation e - s ( ⁇ operation of the modulator) in principle of the servo closed loop.
  • the circuit portion between the output of the modulator ⁇ and the input of the adder 12 which makes it possible to send s to the adder 12 is commonly called "loopback".
  • FIG. 1 The circuit portion between the output of the modulator ⁇ and the input of the adder 12 which makes it possible to send s to the adder 12 is commonly called "loopback".
  • the loopback further includes a digital-to-analog converter 1 1, which will be called a loopback CNA thereafter, which makes it possible to convert the digital signal back to analog.
  • output of CAN 10 to subtract it from the input signal e in principle of the closed loop control.
  • a high G gain amplifier 13 then amplifies e - s.
  • G is raised by principle of the closed loop servo, so
  • a servo closed loop is a generic electronic assembly for compressing the noise of a component.
  • a control loop is applied to the CAN 10 to compress its quantization noise b CAN .
  • Only the return loopback CNA 1 1 is a specificity that is not given by the principle of the closed loop servo. It allows to put s in the same mode of analog representation as the signal e and thus allows to calculate e - s.
  • CAN 10 is the time delay of the signal s on the signal e. This delay is inherent to the closed-loop servocontrol principle. Its application to a CAN can constitute a serious problem of stability by an effect comparable to the Larsen effect, because the two operations of conversion from analog to digital and then digital to analog are particularly time consuming. More specifically, a study of the modulators ⁇ stability led by Thales showed that the product G x B x T, where B is the modulator band and T the delay of the loop, can not exceed a certain value depending on the stiffness of the frequency response of the modulator. In order to obtain a stable loop and as illustrated in FIG.
  • a minimum phase variation filtering component 14 is inserted between the adder 12 and the amplifier 13 and performs an integration operation (operation ⁇ of the modulator).
  • the component 14 which filters the high frequencies out of the useful band targeted by the modulator ⁇ is produced in such a way that the overall frequency response (in amplitude and in phase) of the loop complies with the Nyquist stability criterion. It should be noted that the filtering in a ⁇ modulator is the subject of a patent filed by Thales.
  • the amplifier 13 and the filter 14 in the feedback loop of FIG. 3b make it possible in combination to circumvent the disadvantage of conventional ADCs: they make it possible to associate high frequency and fine resolution.
  • the amplifier 13 compresses the quantization noise, thus decreasing the error and increasing the accuracy.
  • the filter 14 makes it possible to increase the frequency while preventing the loop from diverging.
  • the architecture of the circuit of Figure 3b is quite remarkable because it applies conventional mounting principles to very specific components, the individual behavior of the components always being complementary to the mounting principles. This allows the entire system to converge in a rather natural way towards the desired goal.
  • FIG. 4 illustrates the principle of the closed-loop servocontrol according to the invention in a modulator ⁇ from the same circuit example as that of FIG. 3b.
  • the CAN 10, the CNA 11, the adder 12 and the amplifier 13 are assembled in a closed loop control.
  • the filter 14 advantageously makes it possible to filter the high frequencies, the noise for example, and thus to make a mod ⁇ modulator.
  • the analog signal e is applied to the input of the modulator, the digital signal s is found at the output of the modulator and is applied to the input of the loopback DAC 11.
  • the ⁇ CNA multiplicative noise is specific to the current source and to the reference voltage used to feed the CNA 1 1. In the same way as for the relation (1), it is easy to show that in reality it is given by the relation (3) following:
  • CAN and CNA sounds are compressed in the same proportions, but by different means: the noise of the CAN is conventionally compressed by the loop, while the noise of the CNA is compressed by the device according to the invention by adding the compensation noise to the input signal.
  • FIG. 5 illustrates an example of estimation of the compensation noise in a modulator ⁇ according to the invention from the same
  • a differential amplifier 20 uses the same reference voltage V r ⁇ f as the current sources supplying the DAC 11.
  • the differential amplifier 20 receives as input the signal e, characterized by the input voltage u e .
  • the output current of the amplifier 20 is proportional to the input signal and is characterized by the output voltage g ⁇ u e and the added noise ⁇ CNA ⁇ g ⁇ u e .
  • the output signal of the amplifier 20 can thus contain the compensation noise b e .
  • the digital input signal of the DAC 11 is characterized by the voltages U 1 , ..., u m , ..., u N.
  • the analog signal at the output of the DAC 1 1 is characterized by u s .
  • s is obtained by the difference of the voltages between the two load resistances equal to each other R 1 and R 2 , which themselves contain sums of source signals as a function of the commutations.
  • a difference-making component 21 receives as input the amplified input signal and the compensation noise b e from the differential amplifier 20 on the one hand and the output signal s of the NAC 11 tinged with its added noise on the other hand. It carries out the operation of difference between the two useful signals while subtracting the noise of compensation with the noise added by the CNA:
  • the component 21 may consist of two differential pairs whose currents are summed two by two in two cascodes.
  • the invention described above still has the main advantage that the amplitude noise is attenuated as if it had been generated at the loop output and not in the loopback, ie as if it had been generated by the CAN whose defects are corrected by the loop and thus as if no noise had been introduced by the loopback CNA.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

La présente invention concerne un dispositif d'asservissement d'un premier composant en boucle fermée, un deuxième composant dans le circuit de retour vers l'entrée de boucle présentant un bruit multiplicatif. Elle concerne également un modulateur sigma-delta permettant de convertir un signal analogique d'entrée en un signal numérique de sortie à partir d'un convertisseur analogique-numérique asservi dans une boucle fermée utilisant ce dispositif. Un bruit de compensation est ajouté au signal d'entrée de la boucle d'asservissement, le bruit de compensation étant égal au signal d'entrée de la boucle d'asservissement multiplié par le bruit multiplicatif du deuxième composant. Application : électronique

Description

Dispositif de boucle fermée d'asservissement et modulateur sigma- delta
La présente invention concerne un dispositif d'asservissement d'un premier composant dans une boucle fermée, comportant dans le circuit de retour vers l'entrée de boucle un deuxième composant présentant un facteur de bruit. Elle concerne également un modulateur sigma-delta permettant de convertir un signal analogique d'entrée en un signal numérique de sortie et utilisant ce dispositif de boucle fermée d'asservissement. Elle s'applique par exemple dans le domaine de l'électronique hyperfréquence.
La conversion d'un signal analogique en un signal numérique est devenue une opération classique dans les circuits électroniques actuels, grâce à des composants standards du marché couramment regroupés sous l'acronyme CAN signifiant « Convertisseur Analogique-Numérique ». Il s'agit de représenter un signal e(t) variant de manière continue dans le temps et pouvant prendre n'importe quelle valeur sous une forme s(t) échantillonnée dans le temps. Chaque échantillon peut prendre un nombre fini de valeurs quantifiées possibles et chaque valeur est codée sur un nombre de bits bien déterminé. Chaque bit peut prendre uniquement deux valeurs possibles, 1 ou -1 par exemple.
Les CAN classiques offrent des performances en précision qui sont suffisantes à des fréquences relativement basses du signal d'entrée, de l'ordre de quelques mégahertz. Cela signifie qu'à ces fréquences, la différence entre le signal représenté numériquement en sortie et le signal analogique d'entrée est acceptable. Mais dans le domaine des hyperfréquences, lorsque la fréquence du signal d'entrée est de l'ordre de plusieurs gigahertz, la dynamique des CAN classiques, c'est-à-dire leur capacité à échantillonner/quantifier rapidement le signal d'entrée, s'avère nettement insuffisante. Ceci est principalement dû à un phénomène de rémanence sur un composant interne des CAN appelé échantillonneur/bloqueur. Un échantillonneur/bloqueur peut difficilement stabiliser un signal d'entrée en vue de le quantifier s'il est à trop haute fréquence : la durée de stabilisation devient trop courte et les amplitudes entre les échantillons à stabiliser trop élevée. Ceci introduit des erreurs, c'est-à-dire que des échantillons numériques peuvent ne pas être représentatifs du signal analogique. Ainsi, à fréquence élevée la différence entre le signal représenté numériquement en sortie et le signal analogique en entrée devient non négligeable et la précision du CAN n'est plus suffisante. En résumé, la précision des CAN classiques diminue quand la fréquence du signal analogique e(t) appliqué à leur entrée augmente. Ils ne sont donc pas adaptés à l'utilisation dans des applications à très hautes fréquences exigeant une bonne précision numérique, comme les radars par exemple.
Un procédé appelé modulation ΣΔ permet d'améliorer la précision d'un CAN localement autour d'une fréquence, éventuellement autour d'une fréquence élevée. L'idée de base est de faire varier arbitrairement le signal numérique de sortie, ou de le « moduler », de manière à minimiser l'erreur sur la puissance, quitte à ce que des échantillons du signal numérique de sortie puissent sembler non représentatifs du signal analogique d'entrée. Pour cela, la modulation ΣΔ s'appuie notamment sur un principe de suréchantillonnage du signal d'entrée sur un petit nombre de bits. Il s'agit d'une part d'augmenter la précision temporelle en découpant le signal en un grand nombre d'échantillons très brefs. D'autre part, il s'agit de diminuer la précision en amplitude en ne codant, pour chaque échantillon, que peu de valeurs d'amplitude distinctes, ceci en utilisant peu de bits. Intrinsèquement, cela génère une erreur due au manque de précision sur la quantification de l'amplitude de chaque échantillon. Par conséquent, l'erreur inhérente à tout procédé de numérisation et abusivement appelée « bruit de quantification », est importante. Mais en s'appuyant sur le sur-échantillonnage, le signal numérique de sortie est modulé comme précédemment explicité, ce qui permet de minimiser la puissance de ce bruit de quantification dans une bande de fréquences déterminée.
Dans le domaine fréquentiel ou spectral, il est couramment dit que la modulation ΣΔ « conforme » le bruit de quantification. En effet, la modulation du signal numérique de sortie, qui est adaptée à la fréquence du signal d'entrée, revient à minimiser la puissance du bruit de quantification autour de cette fréquence, ou encore à diminuer la densité spectrale du bruit de quantification autour du signal utile. En fait, le spectre du bruit de quantification doit être rendu « conforme » à un spectre idéal présentant un creux au voisinage de la fréquence d'utilisation. Ainsi, même si un bruit de quantification important est intrinsèquement généré en modulation ΣΔ, ceci quelle que soit la fréquence du signal en entrée, au moins ce bruit de quantification est de faible puissance au voisinage de la fréquence d'utilisation. Dans la pratique et comme explicité par la suite, un modulateur ΣΔ est obtenu par « compression » du bruit à la fréquence d'utilisation.
Un modulateur ΣΔ peut être mis en œuvre à partir d'un CAN asservi dans une boucle d'asservissement de manière classique, en vue d'atténuer l'influence de son bruit de quantification sur sa sortie numérique. Dans ce cas, un convertisseur numérique-analogique, appelé CNA par la suite, permet de re-convertir en analogique le signal numérique de sortie du CAN en vue de le soustraire au signal d'entrée par principe de la boucle fermée d'asservissement. Un amplificateur et un filtre dans la boucle permettent de contourner l'inconvénient des CAN classiques : ils permettent d'associer haute fréquence et fine résolution. Comme détaillé par la suite, l'architecture d'un tel circuit est tout à fait remarquable, car elle applique des principes de montage classiques à des composants très spécifiques, le comportement individuel des composants étant toujours complémentaire des principes de montage. Cela permet à l'ensemble du système de converger de manière plutôt naturelle vers le but recherché. Le système n'est plus limité que par un bruit propre du CNA. Or à fréquence égale, il est plus facile de limiter le bruit d'un CNA que de limiter le bruit d'un CAN, et donc le système est limité par les performances de son composant le plus ajustable. En ce sens également, l'architecture d'un tel circuit est tout à fait remarquable.
Cependant, le bruit propre du CNA se décompose en deux contributions distinctes et inégalement contrôlables : un bruit d'amplitude d'origine statique et un bruit dynamique.
Un CNA comporte un certain nombre de sources de courant identiques et commutables vers l'une ou l'autre de deux résistances de charge en fonction du signal numérique appliqué à l'entrée du CNA. Ces sources possèdent une référence de tension commune et des dispersions faibles pour que le CNA ait la meilleure linéarité possible. Les sources commutées sont ainsi sommées dans l'une ou l'autre des deux résistances de charge en fonction du signal numérique. L'écart de tension entre les deux résistances de charge, dite « tension différentielle », constitue le signal analogique de sortie.
Le bruit dynamique est causé par de petites impulsions de bruit générées à chaque commutation dans un intervalle de temps pendant lequel les deux bras des commutateurs qui changent d'état sont passants. Pendant ce court laps de temps, qui est d'autant plus court que les commutateurs commutent vite, les bruits des tensions de commande des commutateurs sont fortement amplifiés. A priori, ces bruits ne sont pas corrélés, donc ils s'ajoutent en puissance. La puissance totale du bruit dynamique est d'une part proportionnelle à la fréquence d'échantillonnage et d'autre part proportionnelle au nombre de commutateurs changeant d'état à chaque instant d'échantillonnage. Par conséquent la puissance totale du bruit dynamique est proportionnelle à la fréquence du signal.
Le bruit statique est quant à lui lié à la référence de tension commune à toutes les sources de courant commutables alimentant le CNA. Cette tension commune possède un bruit propre qui se répercute proportionnellement sur chaque source de courant, le courant de bruit correspondant étant proportionnel à la tension de bruit de la référence commune de tension. On obtient à la sortie de chacune des deux résistances de charge un courant pollué par un bruit proportionnel au courant reçu par les résistances, si bien que la tension différentielle est elle-même entachée d'un bruit proportionnel au signal. Suivant son niveau qui est lié à la qualité de la référence de tension, ce bruit multiplicatif peut devenir une limitation quant aux performances du modulateur ΣΔ. En effet et comme détaillé par la suite, le bruit multiplicatif du CNA, vu sa position dans le circuit, se retrouve par sommation directement sur le signal d'entrée, sans aucune compression.
Les modulateurs ∑Δ actuels s'accommodent du bruit d'amplitude du CNA, notamment en s'attachant à avoir une excellente qualité de la référence de tension. Mais cela n'est pas toujours possible et surtout, cela n'annule pas complètement le phénomène. L'invention a notamment pour but de pallier l'inconvénient précité en comprimant le bruit multiplicatif généré par le CNA situé dans le circuit de retour vers l'entrée de boucle dans les mêmes proportions que la boucle fermée d'asservissement comprime le bruit de quantification du CAN. A cet effet, l'invention a pour objet un dispositif de boucle fermée d'asservissement d'un premier composant, un deuxième composant dans le circuit de retour vers l'entrée de boucle présentant un bruit multiplicatif. Un bruit de compensation est ajouté au signal d'entrée de la boucle d'asservissement, le bruit de compensation étant sensiblement égal au signal d'entrée de la boucle d'asservissement multiplié par le bruit multiplicatif du deuxième composant.
Avantageusement, le bruit de compensation ajouté peut être fonction de la tension de référence de la source de courant qui alimente le deuxième composant, le bruit multiplicatif du deuxième composant dépendant de cette tension.
Le bruit de compensation peut être généré par un amplificateur différentiel recevant en entrée la tension d'entrée de la boucle d'asservissement et dont la tension de référence est celle du courant qui alimente le deuxième composant.
L'invention a également pour objet un modulateur sigma-delta permettant de convertir un signal analogique d'entrée en un signal numérique de sortie à partir d'un convertisseur analogique-numérique, le signal analogique d'entrée étant amplifié d'un facteur élevé à l'entrée du convertisseur analogique-numérique et le signal numérique de sortie étant soustrait au signal d'entrée après conversion par un convertisseur numérique-analogique présentant un bruit multiplicatif. Un bruit de compensation est ajouté au signal d'entrée du modulateur, le bruit de compensation étant sensiblement égal au signal d'entrée du modulateur multiplié par le bruit mutliplicatif du convertisseur numérique-analogique.
Avantageusement, le signal d'entrée et le bruit de compensation peuvent être injectés dans le modulateur par utilisation d'un sommateur analogique.
Le bruit de compensation peut être généré par un amplificateur différentiel recevant en entrée le signal d'entrée du modulateur et dont la tension de référence est celle du courant qui alimente le convertisseur numérique-analogique.
Dans un mode de réalisation particulier, le signal d'entrée et le bruit de compensation peuvent être injectés dans le modulateur par sommation des courants de l'amplificateur différentiel dans les branches d'un cascode du convertisseur numérique-analogique.
L'invention a pour principal avantage que sa mise en œuvre peut se faire de manière élémentaire et à coût minimal, ne nécessitant que l'ajout de composants standards pour sommer à l'entrée du modulateur un courant obtenu à partir d'une tension déjà disponible par ailleurs.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
- les figures 1 a, 1 b, 2a et 2b, par des graphes une illustration du principe de modulation ΣΔ, - les figures 3a et 3b, par des synoptiques un exemple de réalisation d'un modulateur ΣΔ,
- la figure 4, par un synoptique une illustration du principe de la boucle fermée d'asservissement selon l'invention dans un modulateur ΣΔ, - la figure 5, par un synoptique un exemple d'estimation du bruit de compensation dans un modulateur ΣΔ selon l'invention.
Les figures 1 a, 1 b, 2a et 2b, illustrent par des graphes le principe de la modulation ∑Δ dans le cas d'un fonctionnement à un seul bit en bande de base.
Comme illustré par la figure 1 a, un signal analogique e(t) peut être converti en un signal numérique s-ι (t) sur 1 bit à fréquence d'échantillonnage basse. La figure 1 b illustre alors l'erreur commise sur la puissance du signal par une aire Ai située entre l'intégrale de e(t) représentée par une courbe 1 et l'intégrale de s-ι(t) représentée par une courbe 2.
De même et comme illustré par la figure 2a, le signal analogique e(t) peut également être converti en un signal numérique s2(t), toujours sur 1 bit mais à fréquence d'échantillonnage plus élevée. Le signal numérique s2(t) présente des variations ou des « modulations » arbitraires, c'est-à-dire des échantillons qui peuvent sembler non représentatifs du signal analogique d'entrée e(t). Cependant la figure 2b illustre l'erreur commise sur la puissance du signal par une aire A2 située entre l'intégrale de e(t) représentée par la courbe 1 et l'intégrale de s2(t) représentée par une courbe 3.
Il apparaît clairement que l'erreur A2 commise en puissance en approximant e(t) par le signal s2(t) modulé est plus faible que l'erreur Ai commise en puissance en approximant e(t) par le signal s-ι(t) non modulé. C'est ce qui permet de minimiser la puissance du bruit de quantification.
Les figures 3a et 3b illustrent par des synoptiques un exemple de réalisation d'un modulateur ΣΔ.
Comme illustré par la figure 3a, un modulateur ΣΔ peut être mis en œuvre à partir d'un CAN 10 asservi dans une boucle fermée de manière classique. Le CAN 10 est disposé dans une boucle fermée d'asservissement en vue d'atténuer l'influence de son bruit de quantification bCAN sur sa sortie numérique s en fonction d'un signal analogique d'entrée e à convertir. La boucle fermée d'asservissement comporte un sommateur 12 prenant e et s en entrée et dont le rôle dans la boucle est de réaliser l'opération de soustraction e - s (opération Δ du modulateur) par principe de la boucle fermée d'asservissement. La portion de circuit entre la sortie du modulateur ΣΔ et l'entrée du sommateur 12 qui permet d'envoyer s vers le sommateur 12 est couramment appelée « retour de boucle ». Dans le cas particulier de la figure 3a, le retour de boucle comporte en plus un convertisseur numérique-analogique 1 1 , que l'on appellera CNA de retour de boucle par la suite, qui permet de re-convertir en analogique le signal numérique s de sortie du CAN 10 en vue de le soustraire au signal d'entrée e par principe de la boucle fermée d'asservissement. Un amplificateur 13 de gain G élevé amplifie ensuite e - s . Le rôle de l'amplificateur 13 dans la boucle est de « comprimer » le bruit bCAN par principe de la boucle fermée d'asservissement. En effet, si l'on appliquait le signal e directement à l'entrée du CAN 10, c'est-à-dire si le CAN 10 n'était pas asservi dans une boucle fermée, alors le signal s en sortie du CAN 10 serait s = e + bCAN et le rapport signal sur bruit serait égal à . Alors que si le CAN 10 est asservi bCAN dans une boucle fermée comme illustré par la figure 3a, il se montre facilement que le signal s en sortie du CAN 10 et le rapport signal sur bruit (SNR) associé sont donnés par les relations (1 ) et (2) suivantes :
s = h^ + _Ç_e (1 )
1 + G 1 + G
SNR = G x -^- (2) bCAN
Or, G est élevé par principe de la boucle fermée d'asservissement, donc
1 C ≈ O et ≈ l . Ainsi s ≈ e et le rapport signal sur bruit est amélioré
1 + G 1 + G d'un facteur G élevé. En cela, l'amplificateur 13 de gain G élevé
« comprime » d'un facteur le bruit de quantification bCAN induit par le
1 + G
CAN 10.
Une boucle fermée d'asservissement est un montage générique en électronique pour comprimer le bruit d'un composant. Dans l'exemple de la figure 3a, une boucle d'asservissement est appliquée au CAN 10 pour comprimer son bruit de quantification bCAN . Seul le CNA 1 1 de retour de boucle est une spécificité qui n'est pas donné par le principe de la boucle fermée d'asservissement. Il permet de remettre s dans le même mode de représentation analogique que le signal e et autorise ainsi de calculer e - s . Un inconvénient majeur du circuit de la figure 3a asservissant le
CAN 10 est le retard temporel du signal s sur le signal e . Ce retard est inhérent au principe de boucle fermée d'asservissement. Son application à un CAN peut constituer un problème sérieux de stabilité par un effet comparable à l'effet Larsen, car les deux opérations de conversion d'analogique en numérique puis de numérique en analogique sont particulièrement coûteuses en temps. Plus précisément, une étude de la stabilité des modulateurs ∑Δ menée par Thaïes a montré que le produit G x B x T, où B est la bande du modulateur et T le retard de la boucle, ne peut pas dépasser une certaine valeur dépendant de la raideur de la réponse fréquencielle du modulateur. Pour obtenir une boucle stable et comme illustré par la figure 3b, un composant 14 de filtrage à variation de phase minimale est inséré entre le sommateur 12 et l'amplificateur 13 et réalise une opération d'intégration (opération Σ du modulateur). Le composant 14 qui filtre les fréquences élevées en dehors de la bande utile ciblée par le modulateur ∑Δ est réalisé de telle sorte que la réponse en fréquence globale (en amplitude et en phase) de la boucle respecte le critère de stabilité de Nyquist. Il est à noter que le filtrage dans un modulateur ∑Δ fait l'objet d'un brevet déposé par Thaïes.
Ainsi, l'amplificateur 13 et le filtre 14 dans la boucle de contre- réaction de la figure 3b permettent par combinaison de contourner l'inconvénient des CAN classiques : ils permettent d'associer haute fréquence et fine résolution. L'amplificateur 13 comprime le bruit de quantification, donc diminue l'erreur et augmente la précision. Le filtre 14 permet d'augmenter la fréquence en empêchant la boucle de diverger. L'architecture du circuit de la figure 3b est tout à fait remarquable, car elle applique des principes de montage classiques à des composants très spécifiques, le comportement individuel des composants étant toujours complémentaire des principes de montage. Cela permet à l'ensemble du système de converger de manière plutôt naturelle vers le but recherché.
La figure 4 illustre le principe de la boucle fermée d'asservissement selon l'invention dans un modulateur ΣΔ à partir du même exemple de circuit que celui de la figure 3b. Par exemple, le CAN 10, le CNA 11 , le sommateur 12 et l'amplificateur 13 sont assemblés dans une boucle fermée d'asservissement. Le filtre 14 permet avantageusement de filtrer les hautes fréquences, le bruit par exemple, et ainsi de réaliser un modulateur ∑Δ. Le signal analogique e est appliqué à l'entrée du modulateur, le signal numérique s se retrouve à la sortie du modulateur et est appliqué à l'entrée du CNA 11 de retour de boucle. Le bruit d'amplitude du CNA 11 de retour de boucle est donné par bCNA = βCNA - s , où βCNA traduit le bruit multiplicatif introduit par le CNA. Le bruit multiplicatif βCNA est propre à la source de courant et à la tension de référence utilisées pour alimenter le CNA 1 1. De la même manière que pour la relation (1 ), on montre facilement qu'en réalité s est donné par la relation (3) suivante :
s = -^—e + ^- — —βCNAs (3)
1 + G 1 + G l + G cm
Ainsi, même si le bruit de quantification bCAN introduit par le CAN 10 est bien comprimé par la boucle d'un facteur ≈ O , ce n'est pas le cas du bruit
introduit par le CNA 11 puisque ≈ 1.
H H H 1 + G
L'invention propose par exemple d'ajouter un sommateur 15 en entrée du modulateur ∑Δ. Il permet d'ajouter au signal d'entrée e une composante de bruit be = βCNA - e , dite « bruit de compensation ». Pour générer le bruit de compensation be à l'entrée du modulateur, il faut par exemple utiliser la même tension de référence que celle utilisée pour alimenter en courant le CNA 11. Alors, on montre facilement que s est donné par la relation (4) suivante :
s = -^—e + ^- + -^—βCNA - {e - s) (4)
1 + G 1+ G 1 + G CNA
Comme s ≈ e par principe de l'asservissement, il vient :
1 + G
s _G_e + b£Δ^__G_β£MAe_
1 + G 1 + G 1 + G 1 + G Cette fois, le bruit introduit par le CNA 1 1 est comprimé d'un facteur
(i+ Gy du même ordre de grandeur que le facteur par lequel est comprimé le
1 + G bruit bCAN du CAN 10. Ainsi, les bruits du CAN et du CNA sont comprimés dans les mêmes proportions, mais par des moyens différents : le bruit du CAN est classiquement comprimé par la boucle, alors que le bruit du CNA est comprimé grâce au dispositif selon l'invention par l'ajout du bruit de compensation au signal d'entrée.
La figure 5 illustre un exemple d'estimation du bruit de compensation dans un modulateur ΣΔ selon l'invention à partir du même
CNA 1 1 que les figures 3a, 3b et 4. Il s'agit essentiellement de générer le bruit de compensation be à partir du bruit multiplicatif βCNA du CNA 1 1 et de l'ajouter au signal d'entrée e .
Avantageusement, un amplificateur différentiel 20 utilise la même tension de référence VrΘf que les sources de courant alimentant le CNA 11.
L'amplificateur différentiel 20 reçoit en entrée le signal e , caractérisé par la tension d'entrée ue . Par les principes de l'amplificateur différentiel connus par ailleurs et en ajustant les paires différentielles de l'amplificateur avec des résistances R0 et Re vérifiant Re = R0/g (où g est le gain en tension de l'amplificateur), le courant de sortie de l'amplificateur 20 est proportionnel au signal d'entrée et est caractérisé par la tension de sortie g χ ue et le bruit ajouté βCNA χ g χ ue. Le signal de sortie de l'amplificateur 20 peut ainsi contenir le bruit de compensation be .
Le signal numérique en entrée du CNA 1 1 est caractérisé par les tensions U1 ,..., um ,...,uN . Le signal analogique s en sortie du CNA 1 1 est caractérisé par us . s est obtenu par la différence des tensions entre les deux résistances de charge égales entre elles R1 et R2 , qui elles-mêmes contiennent des sommes de signaux sources en fonction des commutations.
Il est très important que la source de courant de l'amplificateur différentiel d'entrée soit la plus proche possible de la somme des sources de courant du CNA, de sorte que son bruit multiplicatif donné pour être égal à βCNA soit effectivement le plus proche possible de cette valeur.
Par exemple, un composant 21 opérant une différence reçoit en entrée le signal d'entrée amplifié et le bruit de compensation be en provenance de l'amplificateur différentiel 20 d'une part et le signal de sortie s du CNA 1 1 entaché de son bruit ajouté d'autre part. Il réalise l'opération de différence entre les deux signaux utiles tout en retranchant le bruit de compensation au bruit ajouté par le CNA :
(g - ue + be)- (s + bCNA )= (g - ue - s)+ (be - bCNA ) avec bCNA = βCNA • s Par exemple, le composant 21 peut être constitué de deux paires différentielles dont les courants sont sommés deux à deux dans deux cascodes.
L'invention décrite précédemment a encore pour principal avantage que le bruit d'amplitude est atténué comme s'il avait été généré en sortie de boucle et non dans le retour de boucle, c'est à dire comme s'il avait été généré par le CAN dont les défauts sont corrigés par la boucle et donc comme si aucun bruit n'avait été introduit par le CNA de retour de boucle.

Claims

REVENDICATIONS
1. Dispositif de boucle fermée d'asservissement d'un premier composant (10), un deuxième composant (1 1 ) dans le circuit de retour vers l'entrée de boucle présentant un bruit multiplicatif (PCNA), un bruit de compensation (bΘ) étant ajouté au signal d'entrée (e) de la boucle d'asservissement, caractérisé en ce que le bruit de compensation (bΘ) est sensiblement égal au signal d'entrée (e) de la boucle d'asservissement multiplié par le bruit multiplicatif (PCNA) du deuxième composant (1 1 ).
2. Dispositif de boucle fermée d'asservissement selon la revendication 1 , caractérisé en ce que le bruit de compensation (bΘ) ajouté est fonction de la tension de référence (VrΘf) de la source de courant qui alimente le deuxième composant (1 1 ), le bruit multiplicatif (PCNA) du deuxième composant dépendant de cette tension.
3. Dispositif de boucle fermée d'asservissement selon la revendication 1 , caractérisé en ce que le bruit de compensation (bΘ) est généré par un amplificateur différentiel (20) recevant en entrée la tension d'entrée (uΘ) de la boucle d'asservissement et dont la tension de référence (VrΘf) est celle du courant qui alimente le deuxième composant (1 1 ).
4. Modulateur sigma-delta permettant de convertir un signal analogique d'entrée (e) en un signal numérique de sortie (s) à partir d'un convertisseur analogique-numérique (10), le signal analogique d'entrée (e) étant amplifié d'un facteur élevé à l'entrée du convertisseur analogique-numérique (10) et le signal numérique de sortie (s) étant soustrait au signal d'entrée (e) après conversion par un convertisseur numérique-analogique (1 1 ) présentant un bruit multiplicatif (PCNA), un bruit de compensation (bΘ) étant ajouté au signal d'entrée (e) du modulateur, caractérisé en ce que le bruit de compensation (bΘ) est sensiblement égal au signal d'entrée (e) du modulateur multiplié par le bruit mutliplicatif (βcNA) du convertisseur numérique-analogique (1 1 ).
5. Modulateur sigma-delta selon la revendication 4, caractérisé en ce que le signal d'entrée (e) et le bruit de compensation (bΘ) sont injectés dans le modulateur par utilisation d'un sommateur analogique (15).
6. Modulateur sigma-delta selon la revendication 4, caractérisé en ce que le bruit de compensation (bΘ) est généré par un amplificateur différentiel (20) recevant en entrée le signal d'entrée (e) du modulateur et dont la tension de référence (VrΘf) est celle du courant qui alimente le convertisseur numérique-analogique (1 1 ).
7. Modulateur sigma-delta selon la revendication 6, caractérisé en ce que le signal d'entrée (e) et le bruit de compensation (bΘ) sont injectés dans le modulateur par sommation des courants de l'amplificateur différentiel (20) dans les branches d'un cascode du convertisseur numérique-analogique (1 1 ).
PCT/EP2007/061564 2006-10-31 2007-10-26 Dispositif de boucle fermee d'asservissement et modulateur sigma-delta WO2008052948A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/513,067 US7965210B2 (en) 2006-10-31 2007-10-26 Control closed-loop device and sigma-delta modulator
EP07821924A EP2097982A1 (fr) 2006-10-31 2007-10-26 Dispositif de boucle fermee d'asservissement et modulateur sigma-delta

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0609560 2006-10-31
FR0609560A FR2907987B1 (fr) 2006-10-31 2006-10-31 Dispositif de boucle fermee d'asservissement et modulateur sigma-delta

Publications (1)

Publication Number Publication Date
WO2008052948A1 true WO2008052948A1 (fr) 2008-05-08

Family

ID=38069326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/061564 WO2008052948A1 (fr) 2006-10-31 2007-10-26 Dispositif de boucle fermee d'asservissement et modulateur sigma-delta

Country Status (4)

Country Link
US (1) US7965210B2 (fr)
EP (1) EP2097982A1 (fr)
FR (1) FR2907987B1 (fr)
WO (1) WO2008052948A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938083B1 (fr) * 2008-10-31 2013-03-29 Thales Sa Procede d'amelioration de la resolution et de correction des distorsions pour modulateur sigma-delta et modulateur sigma-delta mettant en oeuvre le procede
EP2749893A1 (fr) * 2012-12-31 2014-07-02 Imec Mesure de bruit basse fréquence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889482A (en) * 1997-10-06 1999-03-30 Motorola Inc. Analog-to-digital converter using dither and method for converting analog signals to digital signals
US20060158359A1 (en) * 2005-01-17 2006-07-20 Magrath Anthony J Pulse width modulator quantisation circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500645A (en) * 1994-03-14 1996-03-19 General Electric Company Analog-to-digital converters using multistage bandpass delta sigma modulators with arbitrary center frequency
US5623263A (en) * 1995-10-20 1997-04-22 National Science Council 4th-order sigma-delta modulator with leapfrog topology
US6271781B1 (en) * 1998-06-10 2001-08-07 Lockheed Martin Corporation Nonlinear filter correction of multibit ΣΔ modulators
US6191715B1 (en) * 1998-10-29 2001-02-20 Burr-Brown Corporation System for calibration of a digital-to-analog converter
US6940436B2 (en) * 2003-10-31 2005-09-06 Texas Instruments Incorporated Analog-to-digital conversion system with second order noise shaping and a single amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889482A (en) * 1997-10-06 1999-03-30 Motorola Inc. Analog-to-digital converter using dither and method for converting analog signals to digital signals
US20060158359A1 (en) * 2005-01-17 2006-07-20 Magrath Anthony J Pulse width modulator quantisation circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL Q LE ET AL: "An Adaptive Analog Noise-Predictive Decision-Feedback Equalizer", February 2002, IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, ISSN: 0018-9200, XP011061687 *
PICKERING J R ET AL: "Design of a quantum-based oversampling delta&ndash", 4 September 2004, IEE PROCEEDINGS: SCIENCE, MEASUREMENT AND TECHNOLOGY, IEE, STEVENAGE, HERTS, GB, PAGE(S) 362-367, ISSN: 1350-2344, XP006022593 *

Also Published As

Publication number Publication date
EP2097982A1 (fr) 2009-09-09
FR2907987A1 (fr) 2008-05-02
FR2907987B1 (fr) 2009-01-23
US7965210B2 (en) 2011-06-21
US20100060499A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
US6781533B2 (en) Optically sampled delta-sigma modulator
BE897704A (fr) Appareil a signaux analogiques et numeriques
FR2526608A1 (fr) Appareil de transmission de signaux analogiques et numeriques
EP0631395A1 (fr) Circuit de traitement de signaux comportant un étage d'entrée à gain variable
FR2689343A1 (fr) Convertisseur analogique-numérique prédictif à action directe.
EP2201689B1 (fr) Quantificateur, convertisseur analogique-numerique comprenant un tel quantificateur, et recepteur ultra-large bande integrant un tel convertisseur
FR2743960A1 (fr) Convertisseur numerique analogique a haute resolution destine notamment a l'accord d'un oscillateur a quartz controle par tension
FR3105897A1 (fr) Dispositif de conversion analogique-numérique comprenant deux étages cascadés de conversion analogique-numérique avec registre à approximations successives et mise en forme du bruit, et capteur électronique associé
FR2899741A1 (fr) Modulateur delta-sigma dote d'un integrateur a partage de charges
EP1039643A1 (fr) Dispositif de conversion analogique/numérique à non-linearite différentielle constante
WO2008052948A1 (fr) Dispositif de boucle fermee d'asservissement et modulateur sigma-delta
EP1137190B1 (fr) Système de correction du CNA pour modulateur delta-sigma
WO2009153449A2 (fr) Amplificateur numerique classe d configure pour mettre en forme des non-idealites d'un signal de sortie
EP3276833A1 (fr) Convertisseur sigma-delta à haute linéarité
EP1077530B1 (fr) Procédé et dispositif de conversion d'un signal analogique en un signal numérique avec contrôle automatique de gain
FR2794309A1 (fr) Dispositif compensateur de la non-linearite d'un convertisseur analogique-numerique
EP1192718A1 (fr) Procede et systeme de compensation de la non-linearite d'un convertisseur analogique-numerique sigma-delta
EP2084816A1 (fr) Modulateur sigma-delta
FR2730590A1 (fr) Procede et appareil pour reduire et bruit de quantification
EP4333313A1 (fr) Systeme multivoies d'emission et/ou de reception comprenant au moins n voies de traitement paralleles et procede de decorrelation des bruits de quantification dans un tel systeme
EP1421683A2 (fr) Systeme d'amplification d'un signal hertzien et decodeur de signaux de television comportant un tel systeme
WO2023072906A1 (fr) Numériseur radiofréquence à dynamique augmentée
EP1717951A1 (fr) Contrôle de gain pour émetteur à boucle cartésienne avec des traitements numériques
CA3181386A1 (fr) Circuit de controle d'un transducteur ultrasonore
WO2018115066A1 (fr) Encodeur numérique pour signaux modulés, et dispositif de génération d'un signal analogique associé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07821924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007821924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12513067

Country of ref document: US