WO2008052471A1 - Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré - Google Patents

Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré Download PDF

Info

Publication number
WO2008052471A1
WO2008052471A1 PCT/CN2007/070967 CN2007070967W WO2008052471A1 WO 2008052471 A1 WO2008052471 A1 WO 2008052471A1 CN 2007070967 W CN2007070967 W CN 2007070967W WO 2008052471 A1 WO2008052471 A1 WO 2008052471A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source link
wavelength
link
alternate
Prior art date
Application number
PCT/CN2007/070967
Other languages
English (en)
French (fr)
Inventor
Yong Duan
Zhihui Tao
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07817158.4A priority Critical patent/EP2020757B1/en
Priority to JP2008551636A priority patent/JP2009524954A/ja
Priority to US12/062,309 priority patent/US8103162B2/en
Publication of WO2008052471A1 publication Critical patent/WO2008052471A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection

Definitions

  • the present invention relates to optical communication technologies, and in particular, to a method for protecting an optoelectronic integrated device and an optoelectronic integrated device. Background of the invention
  • Dense Wave Division (DW DM) technology is the dominant technology for long-haul and regional backbone transmission networks, and is gradually integrated into metropolitan areas.
  • Traditional DW DM systems use a separate device package that fabricates boards around one or more optical devices that are connected by fiber optics.
  • FIG. 1 is a schematic structural view of the inside of a transmitting end optoelectronic integrated device in the prior art.
  • the transmitting end optical integrated device includes: a high-level control unit, a data exchange unit, a light source link control unit, n light source links, and corresponding ones thereof. n data channels, and wavelength combining units.
  • 2 is a schematic diagram of data transmission performed by a transmitting end using a data channel and a light source link in the prior art.
  • each A light source link mainly includes a light source and a modulator, and may further include an optical path eavesdropping tap module, and a link detecting circuit in the light source link control unit passes through each of the light source links
  • FIG. 3 is a schematic structural diagram of a photoelectric integrated device at a receiving end in the prior art.
  • the optical integrated device at the receiving end mainly includes a wavelength decomposing unit, n light receiving units, and an electric data processing unit.
  • the light source in the light source link generates an optical signal and outputs it to the modulator, and the corresponding data channel outputs the electrical signal to the modulator, and the modulator pairs the received optical signal.
  • the optical signal is output to the wavelength combination module.
  • the wavelength combination module combines the optical signals received from all the light source links and outputs them to the optoelectronic integrated device at the receiving end.
  • the wavelength de-combining unit de-combines the received optical signals, and outputs the decomposed n optical signals to corresponding optical receiving units, and each optical receiving unit receives the received light. After the signal is converted into an electrical signal, it is output to the electrical data processing unit for corresponding service processing.
  • optical signals have a series of advantages in terms of information transmission, such as strong anti-interference and fast transmission speed compared with electrical signals. Therefore, optoelectronic integrated devices have been widely used.
  • each light source link acts as the primary link for the actual service transmission, so that any one of the light source integrated links in the optoelectronic integrated device fails.
  • the light source does not emit light or the modulator fails, the entire optoelectronic integrated device will not work properly, which reduces the reliability of the optoelectronic integrated device.
  • the prior art must be solved by a replacement method.
  • the components of the respective light source links in the optoelectronic integrated device are integrated on one substrate and are uniformly packaged, they cannot be replaced separately. The faulty light source link, therefore, can only replace the entire optoelectronic integrated circuit, thereby greatly increasing maintenance and repair Ben. Summary of the invention
  • An object of the embodiments of the present invention is to provide a method for protecting an optoelectronic integrated device. Another object of the embodiments of the present invention is to provide an optoelectronic integrated device, thereby providing effective protection measures for the optoelectronic integrated device and improving photoelectric integration. Equipment reliability.
  • a method for protecting a photoelectric integrated device comprising: detecting whether each main light source link in the photoelectric integrated device of the transmitting end is faulty, when detecting When a primary light source link fails, a tunable wavelength alternate source link and its corresponding alternate data channel are controlled to complete the service transmission of the failed primary light source link and its corresponding primary data channel.
  • An optoelectronic integrated device comprising: a protection processing unit, a plurality of primary light source links and corresponding primary data channels thereof, and one or more adjustable wavelengths of alternate light source links and corresponding backups thereof Data channel, where
  • the protection processing unit detects whether each main light source link is faulty, and after detecting a fault of the main light source link, starts a tunable wavelength alternate light source link and its corresponding standby data channel, and controls the fault primary light source.
  • the electrical signal of the primary data channel corresponding to the link is switched to the standby data channel corresponding to the activated standby light source link;
  • the standby data channel corresponding to the activated standby light source link transmits the received electrical signal to the activated standby light source link;
  • the activated standby light source link after starting, generates an optical signal by the tunable wavelength light source, modulates the generated optical signal by using an electrical signal sent from the alternate data channel corresponding to the activated standby light source link, and modulates After the light signal is output.
  • any one of the primary light source links can be detected, and the tunable wavelength alternate source link and its corresponding alternate data channel can be used.
  • the tunable wavelength alternate source link and its corresponding alternate data channel can be used.
  • the tunable wavelength alternate source link and its corresponding backup data channel can automatically complete the service transmission process of the faulty active light source link and its corresponding data channel, without the prior art
  • the replacement of the entire optoelectronic integrated circuit reduces the maintenance cost of the optoelectronic integrated device and reduces the maintenance workload of the maintenance personnel due to the lack of maintenance personnel.
  • FIG. 1 is a schematic structural view of the inside of a transmitting end optoelectronic integrated device in the prior art.
  • FIG. 2 is a schematic diagram of data transmission performed by a transmitting end using a data channel and a light source link in the prior art.
  • FIG. 3 is a schematic structural diagram of a photoelectric integrated device at a receiving end in the prior art.
  • 4A is a schematic diagram showing the basic structure of an optoelectronic integrated device in an embodiment of the present invention.
  • FIG. 4B is a schematic diagram showing the specific structure of the optoelectronic integrated device in the embodiment of the present invention.
  • Fig. 5A is a first structural diagram of a light combining unit in an optoelectronic integrated device in an embodiment of the present invention.
  • Fig. 5B is a view showing a second structure of the optical combining unit in the optoelectronic integrated device in the embodiment of the present invention.
  • FIG. 6 is a flow chart for protecting an optoelectronic integrated device using an embodiment of the present invention.
  • FIG. 7 is a first structural diagram of a data transmission performed by a transmitting end using a data channel and a light source link in the embodiment of the present invention.
  • FIG. 8 is a second schematic structural diagram of a data transmission performed by a transmitting end using a data channel and a light source link in the embodiment of the present invention.
  • Figure 9 is a schematic diagram of the structure of a tunable light source link. Mode for carrying out the invention
  • the embodiment of the present invention provides a method for protecting a photoelectric integrated device, including: detecting whether each main light source link in the photoelectric integrated device of the transmitting end is faulty, and when detecting a fault of the main light source link, controlling one The wavelength-selected alternate source link and its corresponding alternate data channel complete the service transmission of the failed primary source link and its corresponding primary data channel.
  • an embodiment of the present invention also provides an optoelectronic integrated device.
  • Fig. 4A is a schematic view showing the basic structure of an optoelectronic integrated device in an embodiment of the present invention.
  • the internal structure of the optoelectronic integrated device mainly includes: a protection processing unit, a plurality of active light source links and corresponding primary data channels, and one or more adjustable wavelength spares. a light source link and its corresponding alternate data channel, wherein
  • the protection processing unit detects whether each main light source link is faulty, and after detecting a fault of the main light source link, starts a tunable wavelength alternate light source link and its corresponding standby data channel, and controls the fault primary light source.
  • the electrical signal of the primary data channel corresponding to the link is switched to the standby data channel corresponding to the activated standby light source link;
  • the standby data channel corresponding to the activated standby light source link transmits the received electrical signal to the activated standby light source link;
  • the activated standby light source link after starting, generates an optical signal by the tunable wavelength light source, modulates the generated optical signal by using an electrical signal sent from the alternate data channel corresponding to the activated standby light source link, and modulates After the light signal is output.
  • FIG. 4B is a schematic diagram showing the specific structure of the optoelectronic integrated device in the embodiment of the present invention.
  • the protection processing unit specifically includes: a high-level control unit, a data exchange unit, a link monitoring unit, and a light source chain. Road control unit.
  • Fig. 5A is a first structural diagram of a light combining unit in an optoelectronic integrated device in an embodiment of the present invention.
  • the internal structure of the optical combination unit in the optoelectronic integrated device in the embodiment of the present invention may be: a first wavelength combiner, a second wavelength combiner, and a a three-wavelength combiner, the first wavelength combiner being connected to each of the primary ports respectively corresponding to each of the active light source links, and the second wavelength combiner being connected to each of the alternate ports respectively corresponding to each of the active light source links,
  • the first wavelength combiner and the second wavelength combiner are both connected to the third wavelength combiner, wherein
  • the first wavelength combiner is configured to receive the optical signals sent by the respective primary light source links through the connected main active ports, combine the received optical signals, and send the optical signals to the third wavelength combiner;
  • the second wavelength combiner Used to adjust its own center wavelength to the emission wavelength of the faulty primary light source link, and connected to the activated standby light source link through the alternate port corresponding to the faulty primary light source link, which will correspond to the faulty primary light source chain
  • the optical signals received on the alternate port of the path are combined and sent to the third wavelength combiner;
  • the third wavelength combiner is configured to combine all the received optical signals and send them to the optoelectronic integrated device at the receiving end.
  • Fig. 5B is a view showing a second structure of the optical combining unit in the optoelectronic integrated device in the embodiment of the present invention.
  • the internal structure of the optical combination unit in the optoelectronic integrated device may also be: a first wavelength combiner, a second wavelength combiner, and a third wavelength combiner, the first wavelength combiner is connected to each main port corresponding to each of the main light source links, and the second wavelength combiner is connected to one or more spare ports, the first wavelength combiner and the first The two-wavelength combiner is connected to the third wavelength combiner, wherein
  • the first wavelength combiner is configured to receive the optical signals sent by the respective primary light source links through the connected main active ports, combine the received optical signals, and send the received optical signals to the third wavelength combiner; a second wavelength combiner, configured to adjust a temperature of the second wavelength combiner itself, to adjust a center wavelength corresponding to the first standby port in the standby port to an emission wavelength of the faulty primary light source link, and to pass the first standby port
  • the activated alternate light source links are connected, and the optical signals received on the first standby port are combined and sent to the third wavelength combiner;
  • the third wavelength combiner is configured to combine all the received optical signals and send them to the optoelectronic integrated device at the receiving end.
  • each of the primary light source link and the alternate light source link mainly includes a light source, and may further include a modulator, and may further include a detection execution unit and
  • a light absorber wherein the detection execution unit can be exemplified by a Tap unit.
  • FIG. 6 is a flow chart for protecting an optoelectronic integrated device using an embodiment of the present invention.
  • one or more adjustable wavelength standby light source links and corresponding spares are preset in the optoelectronic integrated device.
  • a data channel, and as shown in FIG. 7, a detection execution unit is disposed on each of the main light source links.
  • the process of protecting the optoelectronic integrated device by using the optoelectronic integrated device proposed by the embodiment of the present invention includes the following steps. :
  • Step 601 In the transmitting end optoelectronic integrated device, the detecting execution unit on each main light source link, such as the Tap unit, receives the optical signal output by the local light source link, and outputs the received optical signal to the link monitoring unit.
  • main light source link such as the Tap unit
  • the Tap unit may output a part of the received optical signal energy, such as a 5% optical signal, to the link monitoring unit.
  • Step 602 In the transmitting end optoelectronic integrated device, the link monitoring unit performs performance analysis on the optical signal outputted by the Tap unit on each of the light source links, and detects the performance of each main light source link, and detects each of the detected main uses. Performance monitoring information of the light source link is sent to the light source link control unit.
  • Step 603 In the transmitting end optoelectronic integrated device, the light source link control unit determines whether each main light source link is faulty according to the received performance monitoring information of each main light source link, and determines a main light source link, such as After the primary light source link fails, the first primary light source link failure information is sent to the upper control unit.
  • the first primary light source link failure is detected in combination with the structure of the transmitting end photoelectric integrated device shown in FIG. If the structure of the transmitting end optoelectronic integrated device shown in Fig. 8 is combined, that is, the detecting execution unit is disposed after the wavelength combining unit, then the monitoring process of steps 601 to 603 can be replaced by:
  • the detecting execution unit is, for example, a Tap unit that receives the wavelength combined optical signal output by the wavelength combining unit, and outputs the received optical signal to the link monitoring unit, wherein, preferably, the detecting execution unit can receive the received optical signal energy.
  • a part of the optical signal is output to the link monitoring unit; the link monitoring unit performs spectrum and optical power analysis or optical signal analysis on the optical signal outputted by the detection execution unit on each light source link, and each main light source is used.
  • the spectrum and optical power analysis result of the link or the optical sign signal analysis result is sent to the light source link control unit; the light source link control unit analyzes the result according to the received spectrum and optical power analysis result or the optical sign signal of each main light source link, Detecting the performance change of the spectrum and optical power of each main light source link, or detecting the performance change of the optical sign signal of each main light source link, thereby determining whether each main light source link is faulty, determining the first primary use After the light source link fails, the first primary light source link failure information is sent. High-level control unit. Wherein, when the optical sign signal mode is adopted, it is necessary to add a cursor signal to the light source in each light source link in advance, for example, adding a low frequency disturbance of a different frequency to the light source in each light source link.
  • Step 604 In the transmitting end optoelectronic integrated device, after receiving the first primary light source link failure information, the high layer control unit sends a start adjustable wavelength to the light source link control unit. An indication of an alternate source link.
  • the tunable wavelength first alternate source link and corresponding here and below are corresponding
  • the alternate data channel is selected by the upper control unit according to the priority set in advance for each of the alternate source link and the corresponding alternate data channel; or, by the higher layer control unit, each of the alternate source links is set and
  • the corresponding alternate data channel is arbitrarily selected; or is selected by the high-level control unit from the set alternate source link and the corresponding alternate data channel according to other rules set in advance.
  • Step 605 In the transmitting end optoelectronic integrated device, after receiving the indication of starting the first alternate light source link, the light source link control unit turns off the first primary light source link and starts the first alternate light source link with the adjustable wavelength. And transmitting an indication to adjust the transmission wavelength of the first primary light source link to the first alternate light source link.
  • the light source link control unit may further activate the light absorber in the first main light source link, and the light absorber in the first main light source link, After the startup, the optical signal output by the first primary light source link is absorbed, so that the first primary light source link does not emit any interference optical signal after the fault.
  • Step 606 In the transmitting end optoelectronic integrated device, when the first standby light source link of the adjustable wavelength is activated, the adjustable light source in the first standby light source link adjusts its own emission wavelength to the first primary light source link.
  • the transmission wavelength the link monitoring unit detects the performance of the first alternate light source link, and transmits the detected performance monitoring information of the first standby light source link to the light source link control unit.
  • Step 607 In the transmitting end optoelectronic integrated device, the light source link control unit determines whether the first standby light source link is stable according to the received performance monitoring information of the first standby light source link, and determines the first standby light source chain. After the road state is stable, the first alternate light source chain will be The road state stable information is sent to the high level control unit.
  • the light source link control unit may send a status unsteady indication to the link monitoring unit, and the link monitoring unit controls the first standby light source of the adjustable wavelength.
  • the optical absorber in the link absorbs the optical signal output by the first standby light source link, thereby avoiding interference to other normal links when the first standby light source link is not started, and waits until the first standby light source link state After stabilization, turn off the light absorber.
  • Step 608 In the optical integrated device of the transmitting end, after receiving the information that the first standby light source link state is stable, the high-level control unit sends the power of the primary data channel corresponding to the first primary light source link to the data exchange unit. The switching instruction is switched to the alternate data channel corresponding to the first alternate source link.
  • the high-level control unit sends the switching indication to the data switching unit after receiving the information that the first standby light source link state is stable.
  • the high-level control unit may immediately send the primary data channel corresponding to the first primary light source link to the data exchange unit.
  • the electrical signal is exchanged to a handover indication of the alternate data channel corresponding to the first alternate source link.
  • Step 609 In the transmitting end optical integrated device, after receiving the switching instruction, the data switching unit exchanges the electrical signal of the primary data channel corresponding to the first primary light source link to the standby data corresponding to the first standby light source link. aisle.
  • Step 610 In the transmitting end optoelectronic integrated device, the light source in the first alternate light source link of the tunable wavelength generates an optical signal having the same wavelength as that of the first primary light source link, and uses the spare corresponding to the first alternate light source link.
  • the electrical signal output by the data channel modulates the generated optical signal, and transmits the modulated optical signal to the wavelength combining unit.
  • Step 611 In the transmitting end optical integrated device, the first wavelength in the wavelength combining unit
  • the combiner and the second wavelength combiner respectively receive the optical signals sent by the respective light source links, respectively perform wavelength combination on the received optical signals, and then send the signals to the third wavelength combiner.
  • the high-level control unit may send an indication that the first backup light source link is connected to the wavelength combining unit.
  • the first standby light source link and the wavelength combining unit that realize the adjustable wavelength correspond to the first primary light source.
  • the alternate port of the link is connected.
  • the wavelength combining unit can receive the optical signal sent by each light source link
  • the specific implementation includes: the second wavelength combiner in the wavelength combining unit sets its own center wavelength Adjusting to the emission wavelength of the first primary light source link, and connecting to the first alternate light source link of the tunable wavelength through the alternate port corresponding to the first primary light source link, corresponding to the first primary light source chain
  • the optical signals received on the alternate ports of the path are combined and sent to the third wavelength combiner
  • the first wavelength combiner receives the optical signals sent by the respective active light source links through the connected main ports, and will receive The incoming optical signals are combined and sent to the third wavelength combiner.
  • the first standby light source link and the wavelength combining unit that realize the adjustable wavelength correspond to the first primary light source.
  • the alternate port of the link is connected.
  • the wavelength combining unit can receive the optical signal sent by each light source link
  • the specific implementation includes: the second wavelength combiner side in the wavelength combining unit can include a temperature control Subunit, adjusting the temperature by the temperature control subunit, adjusting the center wavelength corresponding to the first alternate port in the standby port to the emission wavelength of the first primary light source link, and passing the first standby light source link with the adjustable wavelength An alternate port is connected, and the optical signals received on the first standby port are combined and sent to the third wavelength combiner, and the first wavelength combiner receives the respective primary light source links through the connected main ports.
  • the incoming optical signal, the received optical signal group The combination is sent to the third wavelength combiner.
  • each of the alternate light source links of the tunable wavelength and the second wavelength combiner may further include an optical switch of 1 XN.
  • the first alternate light source link of the tunable wavelength passes through the lxN
  • the optical switch is connected to the standby port connected to the second wavelength combiner, wherein N is a natural number greater than or equal to the number of spare ports; or, between each of the alternate light source links of the adjustable wavelength and the second wavelength combiner Further comprising a beam splitter and an optical switch, wherein the first wavelength source of the tunable wavelength is connected to the alternate port to which the second wavelength combiner is connected by the optical splitter and the optical switch.
  • Step 612 In the transmitting end optoelectronic integrated device, the third wavelength combiner in the wavelength combining unit combines the optical signals sent by the first wavelength combiner and the second wavelength combiner, and sends the combined optical signals to the receiving. End optoelectronic integrated equipment.
  • the receiving end optoelectronic integrated device can implement the subsequent receiving process.
  • the first standby light source link can adjust the emission wavelength of the light source to the emission wavelength of the faulty first primary light source link, and therefore, the optical signal finally outputted from the transmitting end optoelectronic integrated device and the first When the main light source link is not faulty, the optical signals are completely the same. Therefore, the optoelectronic integrated device at the receiving end can be modified without any modification.
  • the specific receiving process is the same as the receiving process of the receiving end optoelectronic integrated device in the prior art.
  • the protection processing unit inside the transmitting end optoelectronic integrated device in the embodiment of the present invention is implemented by using an existing high-level control unit, a data exchange unit, and a light source link control unit.
  • the protection processing unit may also be a new functional unit added to the optoelectronic integrated device in the embodiment of the present invention, and the specific implementation of the light in the embodiment of the present invention may pre-empt each of the tunable wavelengths.
  • the light source link adjusts the emission wavelength of its own light source to the middle value of the emission wavelength of all the main light source links, and In the standby state, and further turning off the optical signals output by all the alternate light source links; after the failure of the first primary light source link, the transmitting optical integrated device activates the alternate data channel corresponding to the selected alternate light source light source link of the adjustable wavelength
  • the optical signal generated by the light source in the selected alternate light source link is modulated by the electrical signal outputted by the alternate data channel corresponding to the selected alternate light source link, and the modulated optical signal is sent to the wavelength combining unit.
  • the detection execution unit such as the Tap unit and the link monitoring unit, performs the monitoring of the performance of the main light source link.
  • other methods can be used to monitor the main light source chain.
  • the process of the road performance is exactly the same as the process of the corresponding process described in the above embodiment.
  • the primary data channel and the alternate data channel may be disposed in two separate devices, or may be combined in one device.
  • the optical absorber has two functions, one function is the optical power of the entire link through the optical power absorbed by the optical absorber when the light source link where the optical absorber is located is working normally. Monitoring; another function is to add a control signal, usually a voltage signal, to the light absorber when the light source link of the light absorber is faulty, so that the light signal of the light source link is almost completely absorbed, thereby achieving shutdown.
  • the light absorber can be an optical switch or a PIN tube or other device. When it is a PIN tube, when a positive voltage is applied to the PIN, the optical power output can be detected, and when a negative voltage is applied, the optical signal can be absorbed.
  • the wavelength combining unit may be an AWG or N X 1 wavelength multiplexer or the like.
  • each of the tunable wavelength light source links includes a tunable wavelength light source, and the wavelength adjustment range is relatively wide, and can cover the wavelength range of the entire main light source link, and the adjustable light source has 4 ⁇ .
  • Multiple implementations such as SG-DBR with current regulation, GCSR.
  • GCSR current regulation
  • the adjustable light source link is shown in Figure 9 (known technology), black in Figure 9. Part of the control pin portion is soldered with leads to the external pins of the optoelectronic integrated circuit; the second method is to use other processes to grow the tunable source laser and mount it on the already grown semiconductor substrate.
  • each of the primary light source links and the alternate light source links may be located on the same integrated circuit board, or may be located on different integrated circuit boards.
  • the above embodiments are described in detail using the optoelectronic integrated device proposed by the embodiment of the present invention.
  • the method of the embodiment of the present invention may be completely independent of the optoelectronic integrated device proposed by the embodiment of the present invention.
  • the basic implementation process of the method in the embodiment of the present invention is exactly the same as the principle of the process in the foregoing embodiment, except that the optical integrated device in the transmitting end does not need to distinguish each functional unit, and the optical integrated device in the transmitting end is uniformly executed in the foregoing embodiment.
  • the corresponding function can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

一种对光电集成设备进行保护的方法和光电集成设备 技术领域
本发明涉及光通信技术, 特别是涉及一种对光电集成设备进行保护 的方法和一种光电集成设备。 发明背景
密集波分系统( DW DM )技术是长途和地区主干传输网络的主导技 术, 并且也逐渐融入到城域范围。 传统的 DW DM系统使用的是独立的 器件封装, 围绕一个或多个光器件制作板卡,板卡之间通过光纤来连接。
随着技术的发展, 光器件的价格不断的下降, 到目前为止, 只有光 器件的封装成本仍然居高不下, 并且成为制约光器件成本的瓶颈。 一个 典型的例子就是一个激光器的内核只有几个美金, 但是它的封装成本却 需要几百美金。
在过去的几年, 人们一直致力于将多个光器件, 比如激光器和调制 器等集成在同一个半导体基底上, 从而达到减少光器件各自分立封装成 本的目的。 同时由于减少了封装, 使得 DW DM系统发送、 接收、 监视 等子模块体积大大减少。
光电集成电路就是将多个光器件集成在一个共同的半导体基底上, 并加上相应的外围控制电路。 图 1是在现有技术中发送端光电集成设备 内部的结构示意图。 参见图 1 , 为了通过光电集成电路实现信息传输, 在现有技术中, 发送端光电集成设备内部包括: 高层控制单元、 数据交 换单元、 光源链路控制单元、 n个光源链路及其对应的 n个数据通道、 以及波长组合单元。 图 2是在现有技术中发送端利用数据通道和光源链 路实现数据传输的示意图。 参见图 1和图 2, 在实际的业务实现中, 每 一个光源链路中主要包括光源和调制器, 并可进一步包括光路窃听 Tap 模块, 光源链路控制单元中的链路检测电路通过每一个光源链路中的
Tap模块, 检测每一个光源链路的性能, 使得光源链路控制单元能够根 据检测结果对光源链路进行适当调整, 比如, 调整光源链路的光功率大 小等。 图 3是在现有技术中接收端光电集成设备的结构示意图。 参见图 3 ,接收端光电集成设备内部主要包括波长解组合单元、 n个光接收单元 和电数据处理单元。
在进行信息传递时, 在发送端的光电集成设备中, 光源链路中的光 源产生光信号, 并输出至调制器, 对应的数据通道将电信号输出至调制 器, 调制器对接收到的光信号和电信号进行调制后产生光信号输出至波 长组合模块。 波长组合模块对从所有光源链路上接收到的光信号进行组 合后, 输出至接收端的光电集成设备。 在接收端的光电集成设备中, 波 长解组合单元对接收到的光信号进行解组合, 将解组合出的 n路光信号 分别输出至对应的光接收单元, 每个光接收单元将接收到的光信号转换 为电信号后, 输出至电数据处理单元进行相应的业务处理。
目前, 光信号在信息传递方面, 相对于电信号具有抗干扰强和传输 速度快等一系列优点, 因此, 光电集成设备得到了广泛的应用。
然而, 在目前, 对光电集成设备并不存在任何有效的保护措施, 每 一条光源链路都会作为主用链路作用于实际业务传输, 这样, 当光电集 成设备中的任意一条光源链路发生故障, 比如, 光源不发光或调制器故 障等, 则会导致整个光电集成设备无法正常工作, 降低了光电集成设备 的可靠性。 为了使得光电集成设备能够重新工作, 现有技术则必须采用 更换的方式来解决, 然而, 又由于在光电集成设备中各个光源链路的组 成器件集成在一个基底上, 并且统一封装, 无法单独更换故障的光源链 路, 因此, 只能更换整个光电集成电路, 从而大大增加了维护和维修成 本。 发明内容
本发明实施例的一个目的在于提供一种对光电集成设备进行保护的 方法, 本发明实施例的另一目的在于提供一种光电集成设备, 从而对光 电集成设备提供有效的保护措施, 提高光电集成设备的可靠性。
为了达到上述目的, 本发明实施例的技术方案是这样实现的: 一种对光电集成设备进行保护的方法, 该方法包括: 检测发送端光 电集成设备中各个主用光源链路是否故障, 当检测到一条主用光源链路 故障时, 控制一条可调波长的备用光源链路和其对应的备用数据通道来 完成故障主用光源链路和其对应的主用数据通道的业务传输。
一种光电集成设备, 该光电集成设备包括: 保护处理单元、 多个主 用光源链路及其对应的主用数据通道、 以及一个或一个以上可调波长的 备用光源链路及其对应的备用数据通道, 其中,
保护处理单元, 检测各个主用光源链路是否故障, 在检测到一条主 用光源链路故障后, 启动一个可调波长的备用光源链路及其对应的备用 数据通道, 并控制故障主用光源链路对应的主用数据通道的电信号交换 到所启动备用光源链路对应的备用数据通道;
所启动备用光源链路对应的备用数据通道, 将接收到的电信号发送 至所启动备用光源链路;
所启动备用光源链路, 在启动后, 由可调波长的光源产生光信号, 利用与该所启动备用光源链路对应的备用数据通道发来的电信号对产 生的光信号进行调制, 将调制后的光信号输出。
由此可见, 在本发明实施例中, 能够检测到任意一条主用光源链路 的故障, 并能够使用可调波长的备用光源链路和其对应的备用数据通道 来完成该故障主用光源链路和其对应数据通道的业务传输过程, 因此, 能够保证在主用光源链路故障时, 光电集成设备仍然能够正常工作, 从 而对光电集成设备提供了有效的保护, 提高了光电集成设备的可靠性。
另外, 在本发明实施例中, 由于可调波长的备用光源链路和其对应 的备用数据通道能够自动完成故障主用光源链路和其对应数据通道的 业务传输过程, 而无需现有技术中更换整个光电集成电路, 因此, 降低 了光电集成设备的维护成本, 并且, 由于无需维护人员的参与, 因此, 降低了维护人员的维护工作量。 附图简要说明
图 1是在现有技术中发送端光电集成设备内部的结构示意图。
图 2是在现有技术中发送端利用数据通道和光源链路实现数据传输 的示意图。
图 3是在现有技术中接收端光电集成设备的结构示意图。
图 4A是在本发明实施例中光电集成设备的基本结构示意图。
图 4B是在本发明实施例中光电集成设备的具体结构示意图。
图 5A是在本发明实施例中光电集成设备中光组合单元的第一种结 构示意图。
图 5B是在本发明实施例中光电集成设备中光组合单元的第二种结 构示意图。
图 6是利用本发明实施例对光电集成设备进行保护的流程图。
图 7是在本发明实施例中发送端利用数据通道和光源链路实现数据 传输的第一种结构示意图。
图 8是在本发明实施例中发送端利用数据通道和光源链路实现数据 传输的第二种结构示意图。 图 9是可调光源链路的结构示意图。 实施本发明的方式
本发明实施例提出了一种对光电集成设备进行保护的方法, 包括: 检测发送端光电集成设备中各个主用光源链路是否故障, 当检测到一条 主用光源链路故障时, 控制一条可调波长的备用光源链路和其对应的备 用数据通道来完成故障主用光源链路和其对应的主用数据通道的业务 传输。
相应地, 本发明实施例还提出了一种光电集成设备。 图 4A是在本 发明实施例中光电集成设备的基本结构示意图。 参见图 4A, 在本发明 实施例中, 光电集成设备的内部结构主要包括: 保护处理单元、 多个主 用光源链路及其对应的主用数据通道、 以及一个或一个以上可调波长的 备用光源链路及其对应的备用数据通道, 其中,
保护处理单元, 检测各个主用光源链路是否故障, 在检测到一条主 用光源链路故障后, 启动一个可调波长的备用光源链路及其对应的备用 数据通道, 并控制故障主用光源链路对应的主用数据通道的电信号交换 到所启动备用光源链路对应的备用数据通道;
所启动备用光源链路对应的备用数据通道, 将接收到的电信号发送 至所启动备用光源链路;
所启动备用光源链路, 在启动后, 由可调波长的光源产生光信号, 利用与该所启动备用光源链路对应的备用数据通道发来的电信号对产 生的光信号进行调制, 将调制后的光信号输出。
图 4B是在本发明实施例中光电集成设备的具体结构示意图。 参见 图 4A和图 4B, 在本发明实施例中的光电集成设备中, 所述的保护处理 单元具体包括: 高层控制单元、 数据交换单元、 链路监测单元和光源链 路控制单元。
图 5A是在本发明实施例中光电集成设备中光组合单元的第一种结 构示意图。 参见图 5A, 由于备用光源链路中采用了可调波长的光源, 在本发明实施例中光电集成设备中光组合单元内部的结构可以为: 第一 波长组合器、 第二波长组合器和第三波长组合器, 第一波长组合器与分 别对应于每一个主用光源链路的各个主用端口相连, 第二波长组合器与 分别对应于每一个主用光源链路的各个备用端口相连, 第一波长组合器 和第二波长组合器均与第三波长组合器相连, 其中,
第一波长组合器, 用于通过相连的各个主用端口接收各个主用光源 链路发来的光信号, 将接收到的光信号组合后发送至第三波长组合器; 第二波长组合器, 用于将自身的中心波长调整为故障主用光源链路 的发射波长, 并通过对应于故障主用光源链路的备用端口与所启动备用 光源链路相连, 将在对应于故障主用光源链路的备用端口上接收到的光 信号进行组合后发送至第三波长组合器;
第三波长组合器, 用于将接收到的所有光信号组合后发送至接收端 的光电集成设备。
图 5B是在本发明实施例中光电集成设备中光组合单元的第二种结 构示意图。 参见图 5B , 由于备用光源链路中采用了可调波长的光源, 在 本发明实施例中光电集成设备中光组合单元内部的结构也可以为: 第一 波长组合器、 第二波长组合器和第三波长组合器, 第一波长组合器与分 别对应于每一个主用光源链路的各个主用端口相连, 第二波长组合器与 一个或多个备用端口相连, 第一波长组合器和第二波长组合器均与第三 波长组合器相连, 其中,
第一波长组合器, 用于通过相连的各个主用端口接收各个主用光源 链路发来的光信号, 将接收到的光信号组合后发送至第三波长组合器; 第二波长组合器, 用于调整该第二波长组合器自身的温度, 使备用 端口中第一备用端口对应的中心波长调整为故障主用光源链路的发射 波长, 并通过第一备用端口与所启动的备用光源链路相连, 将在该第一 备用端口上接收到的光信号进行组合后发送至第三波长组合器;
第三波长组合器, 用于将接收到的所有光信号组合后发送至接收端 的光电集成设备。
在本发明实施例中, 每一条主用光源链路上和备用光源链路主要包 括光源, 并可进一步包括调制器, 以及可以进一步包括检测执行单元和
/或光吸收器, 其中, 检测执行单元可以举例为 Tap单元。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面结合附 图及具体实施例对本发明实施例作进一步地详细描述。
图 6是利用本发明实施例对光电集成设备进行保护的流程图。 参见 图 4A、 图 4B、 图 5A、 图 5B、 图 6和图 7, 在本发明实施例中, 预先 在光电集成设备中设置一个或多个可调波长的备用光源链路和与其对 应的备用数据通道, 并且如图 7所示, 在每一个主用光源链路上设置检 测执行单元, 之后, 利用本发明实施例提出的光电集成设备, 实现对光 电集成设备进行保护的过程具体包括以下步骤:
步骤 601: 在发送端光电集成设备中, 每一个主用光源链路上的检 测执行单元比如 Tap单元接收本路光源链路输出的光信号, 将接收到的 光信号输出至链路监测单元。
这里, 较佳地, Tap 单元可以将接收到的光信号能量的一部分如 5 %的光信号输出至链路监测单元。
步骤 602: 在发送端光电集成设备中, 链路监测单元对每一个光源 链路上 Tap单元输出的光信号进行性能分析, 检测各个主用光源链路的 性能, 将所检测出的各个主用光源链路的性能监测信息发送至光源链路 控制单元。
步骤 603: 在发送端光电集成设备中, 光源链路控制单元根据接收 到的各个主用光源链路的性能监测信息确定各个主用光源链路是否故 障, 在确定一条主用光源链路比如第一主用光源链路故障后, 将第一主 用光源链路故障信息发送至高层控制单元。
需要说明的是, 在上述步骤 601至步骤 603的过程中, 是结合图 7 所示的发送端光电集成设备的结构来监测出第一主用光源链路故障。 如 果结合图 8所示的发送端光电集成设备的结构, 即检测执行单元设置在 波长组合单元之后, 那么, 步骤 601至步骤 603的监测过程则可以替换 为:
检测执行单元比如为 Tap单元接收波长组合单元输出的波长组合后 的光信号, 将接收到的光信号输出至链路监测单元, 其中, 较佳地, 检 测执行单元可以将接收到的光信号能量的一部分如 5 %的光信号输出至 链路监测单元; 链路监测单元对每一个光源链路上检测执行单元输出的 光信号进行频谱和光功率分析或进行光标志信号分析, 将各个主用光源 链路的频谱和光功率分析结果或光标志信号分析结果发送至光源链路 控制单元; 光源链路控制单元根据接收到的各个主用光源链路的频谱和 光功率分析结果或光标志信号分析结果, 检测出各个主用光源链路的频 谱和光功率的性能变化, 或检测出各个主用光源链路的光标志信号的性 能变化, 从而确定各个主用光源链路是否故障, 在确定第一主用光源链 路故障后, 将第一主用光源链路故障信息发送至高层控制单元。 其中, 当采用光标志信号方式时, 需要预先给每一路光源链路中的光源加光标 志信号, 比如给每一路光源链路中的光源加不同频率的低频扰动。
步骤 604: 在发送端光电集成设备中, 高层控制单元在接收到第一 主用光源链路故障信息后, 向光源链路控制单元发送启动可调波长的第 一备用光源链路的指示。
这里, 如果预先在光电集成设备中设置了多个可调波长的备用光源 链路和与其对应的备用数据通道, 那么, 此处以及以下所述的可调波长 的第一备用光源链路和对应的备用数据通道, 是由高层控制单元根据预 先为各个备用光源链路和对应的备用数据通道所设置的优先级选择出 的; 或者, 是由高层控制单元从所设置的各个备用光源链路和对应的备 用数据通道中任意选择出的; 或者, 是由高层控制单元根据预先设置的 其他规则, 从所设置的各个备用光源链路和对应的备用数据通道中选择 出的。
步骤 605: 在发送端光电集成设备中, 光源链路控制单元在接收到 启动第一备用光源链路的指示后, 关闭第一主用光源链路并启动可调波 长的第一备用光源链路, 将调整为第一主用光源链路发射波长的指示发 送至第一备用光源链路。
这里, 当主用光源链路中存在光吸收器时, 光源链路控制单元还可 以进一步启动第一主用光源链路中的光吸收器, 第一主用光源链路中的 光吸收器, 在启动后吸收第一主用光源链路输出的光信号, 从而保证第 一主用光源链路在故障后, 不会再发出任何干扰光信号。
步骤 606: 在发送端光电集成设备中, 在可调波长的第一备用光源 链路启动时, 第一备用光源链路中的可调光源将自身的发射波长调整为 第一主用光源链路的发射波长, 链路监测单元检测第一备用光源链路的 性能, 将所检测出的第一备用光源链路的性能监测信息发送至光源链路 控制单元。
步骤 607: 在发送端光电集成设备中, 光源链路控制单元根据接收 到的第一备用光源链路的性能监测信息, 确定第一备用光源链路是否达 到状态稳定, 在确定第一备用光源链路状态稳定后, 将第一备用光源链 路状态稳定的信息发送至高层控制单元。
在步骤 607中, 在确定第一备用光源链路状态已经达到稳定之前, 光源链路控制单元可以将状态未稳定指示发送至链路监测单元, 链路监 测单元控制可调波长的第一备用光源链路中的光吸收器吸收该第一备 用光源链路输出的光信号, 从而避免第一备用光源链路刚开始启动没有 稳定时对其它正常链路产生干扰, 等到第一备用光源链路状态稳定后, 再关闭光吸收器。
步骤 608: 在发送端光电集成设备中, 高层控制单元在接收到第一 备用光源链路状态稳定的信息后, 向数据交换单元发送将第一主用光源 链路对应的主用数据通道的电信号交换到第一备用光源链路对应的备 用数据通道的切换指示。
需要说明的是, 在上述过程中, 高层控制单元是在接收到第一备用 光源链路状态稳定的信息后, 才向数据交换单元发送所述切换指示。 在 实际的业务实现中, 高层控制单元在上述步骤 604接收到第一主用光源 链路故障信息后, 可以立即执行向数据交换单元发送将第一主用光源链 路对应的主用数据通道的电信号交换到第一备用光源链路对应的备用 数据通道的切换指示。
步骤 609: 在发送端光电集成设备中, 数据交换单元在接收到切换 指示后, 将第一主用光源链路对应的主用数据通道的电信号交换到第一 备用光源链路对应的备用数据通道。
步骤 610: 在发送端光电集成设备中, 可调波长的第一备用光源链 路中光源产生与第一主用光源链路发射波长相同的光信号, 并利用第一 备用光源链路对应的备用数据通道所输出的电信号对该产生的光信号 进行调制, 将调制后的光信号发送至波长组合单元。
步骤 611 : 在发送端光电集成设备中, 波长组合单元中的第一波长 组合器和第二波长组合器分别接收各个光源链路发来的光信号, 分别对 接收到的光信号进行波长组合后发送至第三波长组合器。
需要说明的是, 在上述过程中, 高层控制单元在上述步骤 604接收 到第一主用光源链路故障信息后, 可以向波长组合单元发送与第一备用 光源链路连通的指示。 此后,
参见图 5A, 当波长组合单元的内部结构如图 5A所示时, 波长组合 单元接收到连通指示后, 实现可调波长的第一备用光源链路与波长组合 单元中对应于第一主用光源链路的备用端口相连, 这样, 在本步骤 611 中,波长组合单元则可接收各个光源链路发来的光信号,具体实现包括: 波长组合单元中的第二波长组合器将自身的中心波长调整为第一主用 光源链路的发射波长, 并通过对应于第一主用光源链路的备用端口与可 调波长的第一备用光源链路相连, 将在对应于第一主用光源链路的备用 端口上接收到的光信号进行组合后发送至第三波长组合器, 并且, 第一 波长组合器通过相连的各个主用端口接收各个主用光源链路发来的光 信号, 将接收到的光信号组合后发送至第三波长组合器。
参见图 5B, 当波长组合单元的内部结构如图 5B所示时, 波长组合 单元接收到连通指示后, 实现可调波长的第一备用光源链路与波长组合 单元中对应于第一主用光源链路的备用端口相连, 这样, 在本步骤 611 中波长组合单元则可接收各个光源链路发来的光信号, 具体实现包括: 波长组合单元中的第二波长组合器侧可以包括一个温度控制子单元, 通 过温度控制子单元调整温度, 使备用端口中第一备用端口对应的中心波 长调整为第一主用光源链路的发射波长, 并与可调波长的第一备用光源 链路通过第一备用端口相连, 将在该第一备用端口上接收到的光信号进 行组合后发送至第三波长组合器, 并且, 第一波长组合器通过相连的各 个主用端口接收各个主用光源链路发来的光信号, 将接收到的光信号组 合后发送至第三波长组合器。
需要说明的是, 在可调波长的每一个备用光源链路与第二波长组合 器之间可以进一步包括 1 X N的光开关, 此时, 可调波长的第一备用光 源链路通过 l x N的光开关与第二波长组合器所连接的备用端口相连, 其中, N为大于或等于备用端口数的自然数; 或者, 在可调波长的每一 个备用光源链路与第二波长组合器之间可以进一步包括分光器和光开 关, 此时, 可调波长的第一备用光源链路通过分光器和光开关与第二波 长组合器所连接的备用端口相连。
步骤 612: 在发送端光电集成设备中, 波长组合单元中的第三波长 组合器将第一波长组合器和第二波长组合器发来的光信号进行组合, 将 组合后的光信号发送至接收端光电集成设备。
之后, 接收端光电集成设备则可实现后续接收过程。 由于在本实施 例中, 第一备用光源链路可以将光源的发射波长调整为故障的第一主用 光源链路的发射波长, 因此, 从发送端光电集成设备最终输出的光信号 与第一主用光源链路未故障时发出的光信号完全相同, 因此, 接收端的 光电集成设备可以不作任何改动, 其具体接收过程与现有技术中接收端 光电集成设备的接收过程相同。
至此, 则完成了对光电集成设备进行保护的过程。
需要说明的是, 在上述实现过程中, 本发明实施例中发送端光电集 成设备内部的保护处理单元利用现有的高层控制单元、 数据交换单元和 光源链路控制单元来实现。 在实际的业务实现中, 保护处理单元也可以 是本发明实施例在光电集成设备内部新增的功能单元, 其具体实现对光 在本发明实施例中, 可以预先使可调波长的每一个备用光源链路将 自身光源的发射波长调整为所有主用光源链路发射波长的中间值, 并处 于待机状态, 并进一步关闭所有备用光源链路输出的光信号; 在第一主 用光源链路故障后, 发送端光电集成设备激活可调波长的所选备用光源 光源链路对应的备用数据通道上; 利用所选备用光源链路对应的备用数 据通道所输出的电信号对所选备用光源链路中光源产生的光信号进行 调制, 将调制后的光信号发送至波长组合单元。
并且, 在上述实施例中, 是由检测执行单元比如 Tap单元和链路监 测单元共同完成监测主用光源链路性能, 在实际的业务实现中, 也可以 采用其他方式来实现监测主用光源链路性能的过程, 其具体实现过程与 上述实施例所述相应过程的原理完全相同。
在本发明实施例中, 主用数据通道和备用数据通道可以设置在分开 的两个器件中, 也可以合成在一个器件中。
另外, 在本发明实施例中, 光吸收器有两个作用, 一个作用就是当 光吸收器所在的光源链路正常工作时, 通过光吸收器吸收的光功率大小 来对整个链路的光功率进行监测; 另外一个作用就是当光吸收器所在的 光源链路故障时, 在光吸收器上加入控制信号, 一般是电压信号, 使得 该光源链路的光信号几乎全部被吸收, 从而达到关断整个故障链路光源 的作用。 光吸收器可以是光开关或 PIN管或其他器件。 当为 PIN管时, 当给该 PIN加上正电压时, 可以检测光功率输出, 当加上负电压时, 可 以吸收掉光信号。
另外,在本发明实施例中, 波长组合单元可以是 AWG或 N X 1波长 复用器等。
在本发明实施例中, 每一个可调波长的光源链路中都包括可调波长 的光源, 其波长调节范围比较宽, 可以覆盖整个主用光源链路的波长范 围, 可调光源有 4艮多种实现方式, 比如采用电流调节的 SG - DBR, GCSR。 可调光源集成的方法有两种: 一种是在制作光电集成电路时与 现有的定波长光源同时生长, 可调光源链路如图 9所示(已知技术), 图 9中涂黑部分为控制管脚部分, 上面焊有引线与光电集成电路的外部 管脚相连; 第二种方法为使用其它的工艺生长好可调光源激光器, 再将 其安装在已经生长好的半导体基底上。
另外, 在本发明实施例中, 各主用光源链路与备用光源链路可以位 于同一集成电路板, 也可以位于不同集成电路板。
另外, 上述实施例是利用本发明实施例提出的光电集成设备来进行 详细描述的。 在实际的业务实现中, 本发明实施例的方法完全可以不依 赖于本发明实施例提出的光电集成设备。 此时, 本发明实施例方法的基 本实现流程与上述实施例所述过程的原理完全相同, 只是发送端光电集 成设备内部无需区分各个功能单元, 而统一由发送端光电集成设备执行 上述实施例中相应功能即可。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本发 明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、一种对光电集成设备进行保护的方法,其特征在于,该方法包括: 检测发送端光电集成设备中各个主用光源链路是否故障, 当检测到一条 主用光源链路故障时, 控制一条可调波长的备用光源链路和其对应的备 用数据通道来完成故障主用光源链路和其对应的主用数据通道的业务 传输。
2、根据权利要求 1所述的方法, 其特征在于, 所述控制一条可调波 长的备用光源链路和其对应的备用数据通道来完成故障主用光源链路 和其对应的主用数据通道的业务传输的步骤包括:
发送端光电集成设备启动选择出的一条可调波长的备用光源链路, 链路对应的备用数据通道上; 利用所选备用光源链路对应的备用数据通 道所输出的电信号对所选备用光源链路中光源产生的光信号进行调制, 将调制后的光信号发送至波长组合单元。
3、根据权利要求 2所述的方法, 其特征在于, 所述发送端光电集成 设备启动选择出的可调波长的备用光源链路的步骤进一步包括: 发送端 光电集成设备将所选备用光源链路中光源的发射波长, 调整为故障主用 光源链路中光源的发射波长;
所述进行调制为: 利用所选备用光源链路对应的备用数据通道所输 出的电信号, 对所选备用光源链路中光源产生的、 与故障主用光源链路 中发射波长相同的光信号进行调制。
4、 根据权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 在发送端光电集成设备的波长组合单元中设置对应于每一个主用光源 链路的主用端口和备用端口; 所述将调制后的光信号发送至波长组合单元的步骤包括: 所选备用 光源链路将调制后的光信号发送至波长组合单元中对应于故障主用光 源链路的备用端口;
在将调制后的光信号发送至波长组合单元后, 进一步包括: 所述波 长组合单元在对应于故障主用光源链路的备用端口和对应于其他主用 光源链路的主用端口上接收到光信号, 将所接收到的光信号进行组合 后, 发送至接收端的光电集成设备。
5、 根据权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 在波长组合单元中设置温度控制子单元和备用端口;
在检测到一条主用光源链路故障后, 进一步包括: 波长组合单元调 整温度控制子单元的温度, 使备用端口中第一备用端口对应的中心波长 为故障主用光源链路的发射波长;
所述将调制后的光信号发送至波长组合单元的步骤包括: 所选备用 光源链路将调制后的光信号发送至波长组合单元中的第一备用端口。
6、根据权利要求 4或 5所述的方法, 其特征在于, 所选备用光源链 路通过 Ι χ Ν的光开关或通过分光器和光开关, 与所述备用端口相连, 其中, N为大于或等于备用端口数的自然数。
7、 根据权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 预先设置的每一个可调波长的备用光源链路将自身光源的发射波长调 整为所有主用光源链路发射波长的中间值, 并处于待机状态;
所述完成故障主用光源链路和其对应的主用数据通道的业务传输的 步骤包括: 发送端光电集成设备激活选择出的一条备用光源链路, 将故 障主用光源链路对应的主用数据通道的数据交换到所选备用光源链路 对应的备用数据通道上; 利用所选备用光源链路对应的备用数据通道所 输出的电信号对所选备用光源链路中光源产生的光信号进行调制, 将调 制后的光信号发送至波长组合单元。
8、根据权利要求 1所述的方法, 其特征在于, 所述检测发送端光电 集成设备中各个主用光源链路是否故障的步骤包括:
每一个主用光源链路上预先设置的检测执行单元接收所在光源链路 输出的光信号, 并将该光信号输出; 对每一个主用光源链路上检测执行 单元输出的光信号进行性能分析, 检测各个主用光源链路是否故障; 或者, 在发送端光电集成设备对各个光源链路进行波长组合后, 对 该波长组合后的光信号进行频谱和光功率分析, 通过检测各个主用光源 链路的频谱和光功率的性能变化来确定各个主用光源链路是否故障; 或者, 预先为每一个主用光源链路的光源设置光标志信号, 在发送 端光电集成设备对各个光源链路进行波长组合后, 对该波长组合后的光 信号进行光标志信号分析, 通过检测各个主用光源链路的光标志信号的 性能变化来确定各个主用光源链路是否故障。
9、 一种光电集成设备, 其特征在于, 该光电集成设备包括: 保护处 理单元、 多个主用光源链路及其对应的主用数据通道、 以及一个或一个 保护处理单元, 检测各个主用光源链路是否故障, 在检测到一条主 用光源链路故障后, 启动一个可调波长的备用光源链路及其对应的备用 数据通道, 并控制故障主用光源链路对应的主用数据通道的电信号交换 到所启动备用光源链路对应的备用数据通道;
所启动备用光源链路对应的备用数据通道, 将接收到的电信号发送 至所启动的备用光源链路;
所启动的备用光源链路,在启动后, 由可调波长的光源产生光信号, 利用与该所启动备用光源链路对应的备用数据通道发来的电信号对产 生的光信号进行调制, 将调制后的光信号输出。
10、 根据权利要求 9所述的光电集成设备, 其特征在于, 所启动的 波长相同的光信号。
11、 根据权利要求 10所述的光电集成设备, 其特征在于, 该光电集 成设备进一步包括: 波长组合单元, 该波长组合单元包括第一波长组合 器、 第二波长组合器和第三波长组合器, 第一波长组合器与分别对应于 每一个主用光源链路的各个主用端口相连, 第二波长组合器与分别对应 于每一个主用光源链路的各个备用端口相连,
第一波长组合器, 用于通过相连的各个主用端口接收各个主用光源 链路发来的光信号, 将接收到的光信号组合后发送至第三波长组合器; 第二波长组合器, 用于将自身的中心波长调整为故障主用光源链路 的发射波长, 并通过对应于故障主用光源链路的备用端口与所启动备用 光源链路相连, 将在对应于故障主用光源链路的备用端口上接收到的光 信号进行组合后发送至第三波长组合器;
第三波长组合器, 用于将接收到的所有光信号组合后发送至接收端 的光电集成设备。
12、根据权利要求 10所述的光电集成设备, 其特征在于, 所述波长 组合单元包括第一波长组合器、 第二波长组合器和第三波长组合器, 第 一波长组合器与分别对应于每一个主用光源链路的各个主用端口相连, 第二波长组合器与一个或多个备用端口相连,
第一波长组合器, 用于通过相连的各个主用端口接收各个主用光源 链路发来的光信号, 将接收到的光信号组合后发送至第三波长组合器; 第二波长组合器, 用于调整自身温度, 使备用端口中第一备用端口 对应的中心波长调整为故障主用光源链路的发射波长, 并通过第一备用 端口与所启动备用光源链路相连, 将在该第一备用端口上接收到的光信 号进行组合后发送至第三波长组合器;
第三波长组合器, 用于将接收到的所有光信号组合后发送至接收端 的光电集成设备。
13、 根据权利要求 11或 12所述的光电集成设备, 其特征在于, 在 所启动备用光源链路与第二波长组合器之间进一步包括 l x N 的光开 关;
所启动备用光源链路通过 l x N的光开关与第二波长组合器所连接 的备用端口相连, 其中, N为大于或等于备用端口数的自然数。
14、 根据权利要求 11或 12所述的光电集成设备, 其特征在于, 在 所启动备用光源链路与第二波长组合器之间进一步包括分光器和光吸 收器;
所启动备用光源链路通过分光器和光吸收器与第二波长组合器所连 接的备用端口相连。
15、 根据权利要求 9所述的光电集成设备, 其特征在于, 所述保护 处理单元包括: 高层控制单元、 数据交换单元、 光源链路控制单元和链 路监测单元, 其中,
链路监测单元, 检测各个主用光源链路的监控信息, 将所检测出的 各个主用光源链路的监控信息结果发送至光源链路控制单元;
光源链路控制单元, 根据接收到的各个主用光源链路的监控信息结 果确定各个主用光源链路是否故障, 在确定一条主用光源链路故障后, 将该主用光源链路故障信息发送至高层控制单元, 在接收到启动一个备 用光源链路的指示后, 关闭故障主用光源链路并启动该备用光源链路; 高层控制单元, 在接收到主用光源链路故障信息后, 向光源链路控 制单元发送启动备用光源链路的指示, 并向数据交换单元发送将故障主 用光源链路对应的主用数据通道的电信号交换到所启动备用光源链路 对应的备用数据通道的切换指示;
数据交换单元, 在接收到切换指示后, 将故障主用光源链路对应的 主用数据通道的电信号交换到所启动备用光源链路对应的备用数据通 道。
16、根据权利要求 15所述的光电集成设备, 其特征在于, 所述每一 条光源链路中包括检测执行单元, 该检测执行单元接收所在光源链路输 出的光信号, 将该光信号输出至链路监测单元;
链路监测单元, 通过对每一个光源链路上检测执行单元输出的发来 的光信号进行性能分析进行, 完成所述的检测各个主用光源链路的监控 信息的过程。
17、根据权利要求 15所述的光电集成设备, 其特征在于, 该光电集 成设备中进一步包括与波长组合单元相连的检测执行单元, 接收波长组 合单元输出的波长组合后的光信号, 将该光信号输出至链路监测单元; 链路监测单元, 通过对检测执行单元输出的光信号进行频谱和光功 率分析或进行光标志信号分析, 完成所述的检测各个主用光源链路的监 析结果作为所检测出的各个主用光源链路的监控信息结果发送至光源 链路控制单元。
18、根据权利要求 15所述的光电集成设备, 其特征在于, 所述链路 监测单元, 进一步用于在备用光源链路启动时, 检测所启动备用光源链 路的性能, 将所检测出的所启动备用光源链路的性能监测信息发送至光 源链路控制单元;
光源链路控制单元, 进一步用于根据接收到的所启动备用光源链路 的性能监测信息, 确定所启动备用光源链路是否达到状态稳定, 在确定 所启动备用光源链路状态稳定后, 将所启动备用光源链路状态稳定的信 息发送至高层控制单元;
高层控制单元, 用于在接收到所启动备用光源链路状态稳定的信息 后, 执行所述的向数据交换单元发送将故障主用光源链路对应的主用数 据通道的电信号交换到所启动备用光源链路对应的备用数据通道的切 换指示。
PCT/CN2007/070967 2006-10-27 2007-10-26 Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré WO2008052471A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07817158.4A EP2020757B1 (en) 2006-10-27 2007-10-26 A method for protecting photoelectricity integrated device and photoelectricity integraged device
JP2008551636A JP2009524954A (ja) 2006-10-27 2007-10-26 光電子集積装置および光電子集積装置を保護するための方法
US12/062,309 US8103162B2 (en) 2006-10-27 2008-04-03 Channel protection for multi-channel optical transmission system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006101426562A CN100488071C (zh) 2006-10-27 2006-10-27 一种对光电集成设备进行保护的方法和光电集成设备
CN200610142656.2 2006-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/062,309 Continuation US8103162B2 (en) 2006-10-27 2008-04-03 Channel protection for multi-channel optical transmission system and method

Publications (1)

Publication Number Publication Date
WO2008052471A1 true WO2008052471A1 (fr) 2008-05-08

Family

ID=38045224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070967 WO2008052471A1 (fr) 2006-10-27 2007-10-26 Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré

Country Status (5)

Country Link
US (1) US8103162B2 (zh)
EP (1) EP2020757B1 (zh)
JP (1) JP2009524954A (zh)
CN (1) CN100488071C (zh)
WO (1) WO2008052471A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411392C (zh) 2006-10-27 2008-08-13 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN100488071C (zh) * 2006-10-27 2009-05-13 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备
CN101212254A (zh) * 2006-12-27 2008-07-02 华为技术有限公司 一种光源链路传输装置和方法
JP5636684B2 (ja) * 2010-01-29 2014-12-10 富士通株式会社 コヒーレント光通信装置及びコヒーレント光通信方法
GB2483930A (en) * 2010-09-27 2012-03-28 Oclaro Technology Plc Fast wavelength switching
US9305747B2 (en) * 2010-11-13 2016-04-05 Mapper Lithography Ip B.V. Data path for lithography apparatus
CN105122681A (zh) 2013-12-31 2015-12-02 华为技术有限公司 一种光发射器及发射方法、光接收器及接收方法
DE102014101307A1 (de) * 2014-02-03 2015-08-06 Osram Opto Semiconductors Gmbh Kodierverfahren zur Datenkompression von Leistungsspektren eines optoelektronischen Bauteils und Dekodierverfahren
JP6253506B2 (ja) * 2014-05-15 2017-12-27 三菱電機株式会社 送信装置および光通信システム
US9582366B2 (en) * 2014-11-21 2017-02-28 International Business Machines Corporation Detecting and sparing of optical PCIE cable channel attached IO drawer
US10277327B2 (en) * 2016-12-28 2019-04-30 Calix Inc. Methods and apparatus for improving reliability of an optical device using auxiliary lasers in a photonic integrated circuit
CN110870231A (zh) * 2017-07-19 2020-03-06 华为技术有限公司 波长选择的方法、装置和系统
GB2570132A (en) * 2018-01-11 2019-07-17 Rushmere Tech Limited Reconfigurable point to multipoint connections
CN113574432B (zh) * 2019-03-15 2022-12-27 华为技术有限公司 一种光发射组件、光模块以及光线路终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731887A (en) 1995-12-22 1998-03-24 Mci Communications Corporation System and method for photonic facility and line protection switching
CN1336745A (zh) * 2000-06-15 2002-02-20 马科尼通讯有限公司 用于保护数字通信系统的方法
CN1490968A (zh) * 2002-10-15 2004-04-21 华为技术有限公司 用于密集波分复用系统的光波长通道保护方法和装置
EP1450509A2 (en) 2003-02-18 2004-08-25 Tyco Telecommunications (US) Inc. Protection switching architecture and method of use
CN1936630A (zh) * 2006-10-27 2007-03-28 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN1945991A (zh) * 2006-10-27 2007-04-11 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777761A (en) 1995-12-22 1998-07-07 Mci Communications Corporation System and method for photonic facility and line protection switching using wavelength translation
JPH11211924A (ja) 1998-01-21 1999-08-06 Nippon Telegr & Teleph Corp <Ntt> 波長多重通信用光回路
US5943149A (en) * 1998-02-18 1999-08-24 Cearns; Kevin J. Optical multiplexor/demultiplexor using a narrow band filter followed by a wideband filter
JP2000151514A (ja) * 1998-11-13 2000-05-30 Nec Corp 光波長多重送信器、光波長多重受信器、光波長多重伝送装置、および光伝送方法
JP2001085798A (ja) 1999-09-10 2001-03-30 Hitachi Ltd 半導体レーザモジュールおよび波長分割多重光伝送システム
US7099578B1 (en) * 1999-12-16 2006-08-29 Tellabs Operations Inc. 1:N protection in an optical terminal
JP2003258734A (ja) * 2002-03-06 2003-09-12 Fujitsu Ltd 波長分割多重が適用されるシステム及びそのシステムを運用する方法
US6928208B2 (en) * 2003-06-30 2005-08-09 Intel Corporation Hitless tunable optical add drop multiplexer with vernier gratings
US20100034532A1 (en) * 2006-09-11 2010-02-11 Paolo Ghelfi Communications Network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731887A (en) 1995-12-22 1998-03-24 Mci Communications Corporation System and method for photonic facility and line protection switching
CN1336745A (zh) * 2000-06-15 2002-02-20 马科尼通讯有限公司 用于保护数字通信系统的方法
CN1490968A (zh) * 2002-10-15 2004-04-21 华为技术有限公司 用于密集波分复用系统的光波长通道保护方法和装置
EP1450509A2 (en) 2003-02-18 2004-08-25 Tyco Telecommunications (US) Inc. Protection switching architecture and method of use
CN1936630A (zh) * 2006-10-27 2007-03-28 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN1945991A (zh) * 2006-10-27 2007-04-11 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2020757A4

Also Published As

Publication number Publication date
CN100488071C (zh) 2009-05-13
EP2020757B1 (en) 2015-09-16
US20100278526A1 (en) 2010-11-04
JP2009524954A (ja) 2009-07-02
CN1945991A (zh) 2007-04-11
EP2020757A4 (en) 2009-08-26
US8103162B2 (en) 2012-01-24
EP2020757A1 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
WO2008052471A1 (fr) Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré
EP2117138A1 (en) An optical source link transmission device and method
EP2077627B1 (en) A method and system for protecting a photo-electricity integrating device
JP5490517B2 (ja) 光通信システム、光通信方法およびolt
JPH10262000A (ja) パッシブオプチカルネットワークにおける障害復旧方法及び装置
US8447182B2 (en) Multi-wavelength transponder with wavelength division multiplexing modules
US7526199B2 (en) Optical transmission equipment preventing malfunction in recovery from fault
US8396362B2 (en) Light transmitting and receiving module, method for managing the same, light transmitting and receiving apparatus, and wavelength-multiplexing light transmitting and receiving apparatus
US20200021362A1 (en) Transceiver to transceiver digital optical commands
US20230299867A1 (en) Communication station, optical communication system, data transmission method, and storage medium
US20080317463A1 (en) Optical transmitter system
ES2584654T3 (es) Sistema y método de protección de transmisión por línea óptica
US20020024696A1 (en) Wavelength division multiplexing transmission system and transmitter and receiver therefor
CN1863026A (zh) 采用多波长激光器的波分复用终端设备
US20030020979A1 (en) Remote optical transmitter output power control
JP2009212668A (ja) 光伝送システム
CN113574432B (zh) 一种光发射组件、光模块以及光线路终端
JP2006197447A (ja) 光送信器における常時発光防止回路
CN113783605A (zh) 一种光源保护装置以及方法
CN100431288C (zh) 采用可调谐光源实现业务保护的方法和装置
JP4569761B2 (ja) 光送信器、光伝送システム、および光中継器
KR20090036487A (ko) 미인증 광모듈의 연결로 인한 타 회선 장애 유발 방지기능을 갖는 시분할 수동광통신망 시스템 및 이를 이용한타 회선 장애 유발 방지 방법.
US7623794B2 (en) Wavelength division-multiplex system
WO2023011699A1 (en) Communications network optical apparatus and method of providing an optical signal
KR20150013966A (ko) 보호 절체 기능을 갖는 광송수신 장치, 광송신 장치 및 광수신 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007817158

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008551636

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE