WO2008050579A1 - Matériau de semi-conducteur de type p, dispositif à semi-conducteur, dispositif électroluminescent organique et procédé de production d'un matériau de semi-conducteur de type p - Google Patents

Matériau de semi-conducteur de type p, dispositif à semi-conducteur, dispositif électroluminescent organique et procédé de production d'un matériau de semi-conducteur de type p Download PDF

Info

Publication number
WO2008050579A1
WO2008050579A1 PCT/JP2007/068971 JP2007068971W WO2008050579A1 WO 2008050579 A1 WO2008050579 A1 WO 2008050579A1 JP 2007068971 W JP2007068971 W JP 2007068971W WO 2008050579 A1 WO2008050579 A1 WO 2008050579A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor material
type semiconductor
substrate
znse
type
Prior art date
Application number
PCT/JP2007/068971
Other languages
English (en)
French (fr)
Inventor
Masahiro Orita
Takashi Narushima
Hiroaki Yanagida
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to US12/311,886 priority Critical patent/US8212260B2/en
Priority to CN2007800382540A priority patent/CN101523983B/zh
Publication of WO2008050579A1 publication Critical patent/WO2008050579A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape

Definitions

  • p-type semiconductor material semiconductor element, organic electret luminescence element, and method of manufacturing p-type semiconductor material
  • the present invention relates to a p-type semiconductor material having a compound containing Zn and Se, a semiconductor element and an organic electroluminescence device comprising the p-type semiconductor material, and a method for producing the p-type semiconductor material.
  • a hole injection electrode (hereinafter referred to as a p-type electrode) of a conventional organic electroluminescent device (hereinafter referred to as an organic EL element and an organic EL element) has transparency, easiness of availability, etc.
  • ITO indium tin oxide
  • ITO is formed on a glass substrate or a polymer substrate by a sputtering method, a vapor deposition method, or the like.
  • ITO / NPB / Alq3 / Mg / Ag can be mentioned.
  • NPB is N, N, -bis (l-naphyl)-N, N, one dipheny
  • Alq3 is 8-hydroxyquinoline aluminum and functions as an electron transport layer.
  • light is emitted by combining electrons and holes injected from the respective electrodes in the vicinity of the junction interface between the NPB layer which is a hole transport layer and the Alq layer which is an electron transport layer. Therefore, the light emission luminance of the organic EL element is proportional to the number of holes or holes or electrons injected into the electron transport layer.
  • Patent Document 1 International Publication No. 2005/076373
  • Non-Patent Document 1 S. ⁇ ⁇ Lee et al., Appl. Phys. Lett. 74 (1999) P. 67 0
  • ZnSe or GaN whose polarity is controlled to p-type, has been proposed as a transparent p-type electrode material capable of achieving band matching with the hole transport layer having a large work function (patented)
  • these materials are used only as a single crystal thin film, and the polycrystalline film loses the conductivity significantly, it can not be used on a glass substrate or a polymer substrate.
  • the present invention is a p-type semiconductor material suitable for a p-type electrode which can be formed on a glass substrate or a polymer substrate which has band matching with the hole transport layer in an organic EL device.
  • An object of the present invention is to provide a semiconductor element and an organic EL element provided with a p-type semiconductor material, and a method of manufacturing the p-type semiconductor material.
  • Ag is contained in a compound containing Zn and Se at 1 ⁇ 10 18 to 5 ⁇ 10 2 ° cm ⁇ 3. It is characterized by
  • the compound containing Zn and Se has a composition formula Zn
  • Mg Se S (0 ⁇ ⁇ 0. 5, 0 ⁇ 0. 5) is indicated and eight 1 10 18 to 5 10 2 . It is characterized by containing cm ⁇ 3 .
  • the content of Ag is 3 ⁇ 10 19 to 3 ⁇ 10 20 cm ⁇ 3 .
  • a semiconductor device is characterized by including a p-type electrode including the above-mentioned p-type semiconductor material.
  • the structure of the p-type semiconductor material contained in the p-type electrode of the semiconductor device according to the present invention is characterized in that it has a columnar structure extending in the average movement direction of holes.
  • An organic EL device is characterized by comprising a p-type electrode including any one of the p-type semiconductor materials.
  • p-type consisting of ZnSe containing l ⁇ 10 18 to 5 ⁇ 10 2 ° cm ⁇ 3 of Ag
  • the manufacturing method of the semiconductor material is a vacuum evaporation method, and ZnSe and Ag S are used as a force evaporation source.
  • a p-type semiconductor material suitable for a p-type electrode which has a large work function and can be formed on a glass substrate or a polymer substrate, and a semiconductor element using the same.
  • the force S can be matched with the hole transport layer, and the emission luminance can be improved.
  • the present invention can be applied not only to organic EL elements but also to other types of elements that perform hole injection, such as p-type electrodes of LEDs using inorganic materials.
  • the P-type semiconductor material according to the present embodiment contains Ag as a dopant at 1 ⁇ 10 18 to 5 ⁇ 10 2 ° cm — 3 in a compound containing Zn and Se, and this p-type semiconductor material is used.
  • the semiconductor element according to the present embodiment is formed on the substrate as the p-type electrode.
  • This p-type semiconductor material can be used, for example, as a p-type electrode material of an organic EL element, and holes can be injected into a hole transport layer formed to be adjacent.
  • the content of Ag is more than 5 ⁇ 10 2 ° cm — 3 , Ag segregates at grain boundaries of ZnSe, resulting in a decrease in work function. Therefore, for example, when the p-type semiconductor material according to the present embodiment is used as the anode of the organic EL element, the efficiency of hole injection to the adjacent hole transport layer is low. On the other hand, when the content of Ag is less than 1 ⁇ 10 18 cm- 3 , carriers are scattered at grain boundaries of ZnSe, and the conductivity almost disappears.
  • the content of Ag is that when is 1 X 10 19 ⁇ 4 X 10 2 ° cm_ 3 Note Yogu further 3 10 19-3 10 2 111_ 3 Dearu I like it.
  • Ag can act as an acceptor in the ZnSe lattice to generate holes.
  • the p-type semiconductor material is represented by a composition formula Zn Mg Se S (0 ⁇ x, y ⁇ 0.5) that preferably contains Mg and S in Zn, Se and Ag. It is preferable to use a ZnSe-based compound.
  • the p-type semiconductor material has a columnar structure extending in the thickness direction of the substrate (which is the average moving direction of holes in the thickness direction of the p-type electrode). It is preferable to An example of the columnar structure is shown in Fig.1.
  • FIG. 1 is an electron micrograph showing the cross-sectional structure of the semiconductor device according to the present embodiment.
  • a p-type electrode 2 in which a ZnSe-based compound is doped with Ag is formed on a quartz substrate 1, and ZnSe extends in a columnar shape in the thickness direction of the quartz substrate 1 (vertical direction in FIG. 1). .
  • a substrate for forming a p-type electrode in a semiconductor device a single crystal of a compound semiconductor (for example, GaAs, GaP, InP) and a glass substrate coated with a conductive oxide (for example, ITO, ⁇ ) Can be used.
  • a device such as a GaAs substrate ⁇ n- ZnSe: Cl ⁇ i- ZnSe ⁇ ZnSe: Ag as a substrate and form it on the top
  • FIG. 2 is a conceptual view of the schematic internal configuration of the vapor deposition apparatus according to the present embodiment as viewed from the side, in which (a) shows the state before the start of vapor deposition and FIG. FIG. 3 is a schematic view showing the arrangement of the crucible of the vapor deposition apparatus according to one embodiment of the present invention, and FIG. 3 (a) is a plan view showing the position of the crucible relative to the rotational orbit of the substrate holder in this embodiment. (B) is a plan view showing the arrangement in the case where there are four crucibles.
  • the substrate 20 is housed inside the vapor deposition device 10 configured as a closed container, and Zn, Se, and This is done by supplying a raw material gas stream formed by evaporating the raw material such as Ag.
  • the upper portion in the vapor deposition chamber 10 is rotated in the vapor deposition chamber 10 by the rotation shaft 12.
  • a substrate holder 13 is provided which is rotated (rotated in the direction of the arrow in FIG. 2).
  • the substrate 20 is attached to the lower surface side of the substrate holder 13.
  • an exhaust part 11 for adjusting the pressure in the vapor deposition device 10 is provided.
  • the pressure in the vaporizer 10 is preferably set to 1 ⁇ 10 — 7 T OT r or less.
  • the pressure in the evaporator 1 in the 0 is higher than 1 X 10- 7 Torr, will be written Ri taken in the thin film to be formed by residual water is too large, impair the crystallinity, desired electrical characteristics can not express It is because there is a thing.
  • the pressure in the evaporator 10 is set to lower than or equal to 1 X 10_ 7 T OT r, the mean free path of atoms in the evaporator becomes about LOOOKm, material generated in the crucible 25, 26, 27, 28 The gas molecules contained in the air flow reach the surface of the substrate 20 directly without colliding with anything.
  • Crucibles 25, 26, 27 containing Zn, Se, and Ag as raw materials are disposed on the lower surface side of the substrate 20.
  • the crucibles 25, 26, 27 are placed vertically below the substrate 20.
  • the flow of the raw material gas flow generated in each of the temples can be made substantially perpendicular to the substrate 20.
  • the crucibles 25, 26, 27 may be arranged with an angle so that each raw material gas flow is concentrated in the vicinity of the substrate 20.
  • Crucibles 25, 26, 27 are arranged at equal angular intervals on rotational orbit 13a of substrate holder 13 and with extension line 12a of rotational axis 12 (ie, the center of rotational orbit 13a). Force S preferred. By arranging at equal angular intervals, it is possible to equalize the supply time of the raw material air flow from each crucible to the substrate 20.
  • S or Mg is deposited in addition to Zn, Se, and Ag, as shown in FIG. 3 (b), Zn, Se, etc. are equiangularly spaced from the extension line 12a of the rotary shaft 12.
  • the crucibles 25, 26, 27, 28 containing Ag, Ag and S or Mg, respectively, are placed.
  • BN boron nitride
  • BN is , ZnSe, Zn, Se, Ag, a force that is difficult to react with.
  • a shutter 14 is provided between the substrate 20 and the crucibles 25, 26, 27 for blocking supply of the raw material gas flow generated in each of the crucibles to the substrate 20.
  • the shirter 14 may be provided with one common to all the crucibles rather than each crucible.
  • the crucibles 25, 26, 27 and the substrate 20 are heated to a predetermined temperature by a heating means (not shown) (for example, an infrared lamp, a platinum wire electric current heater, a BN heater, a SiC heater).
  • a heating means for example, an infrared lamp, a platinum wire electric current heater, a BN heater, a SiC heater.
  • the heating temperature is set in accordance with the film forming conditions.
  • the temperature of the substrate 20 during film formation is preferably 200 ° C. or more and 400 ° C. or less.
  • the raw material gas flow reaching the substrate 20 is not crystallized, and desired electrical characteristics do not appear. Also, if the temperature is 400 ° C. or higher, the ZnSe vapor pressure is too high and the film does not adhere to the substrate 20.
  • each raw material gas flow is supplied substantially perpendicularly to the substrate 20, and is adsorbed onto the substrate 20 to form the p-type electrode 2.
  • the shutter 14 is simultaneously closed to complete the film forming process.
  • the deposition rate is preferably 5 nm / min to 30 nm / min.
  • the p-type semiconductor material and the semiconductor element of the present embodiment use Zn, Se, Ag or the like as a raw material, they can be easily manufactured by a vapor deposition method or a sputtering method.
  • Ag is substitutionally dissolved in the ZnSe lattice to act as an acceptor and generate holes.
  • It has a large work function (6.3 eV) compared to the work function of ITO used conventionally. Therefore, when applied to the p-type electrode of an organic EL device, band matching with the hole transport layer is taken away to create an energy barrier.
  • the p-type semiconductor of the present embodiment is used.
  • Ag is used as a dopant as in materials and semiconductor devices, valence control is unnecessary because only Ag + is present.
  • the ion radius (100 pm) of Ag + is much larger than the ion radius (60 pm) of CtT, so it is difficult to cause diffusion due to heat or electric field in the ZnSe lattice.
  • the content of Ag is set in a predetermined range, segregation at the grain boundaries and a decrease in work function due to the high content of Ag can be prevented, and It is possible to prevent the carrier scattering at the grain boundaries and the remarkable reduction of the conductivity due to the low content of.
  • Example 1 an Ag-doped ZnSe epitaxial film was formed on a p-GaAs substrate to form a semiconductor device.
  • the vapor deposition apparatus used was an ultimate vacuum of 1 x 10 8 T OT r. While heating the BN crucible containing lg of ZnSe raw material to 830 ° C and the BN crucible containing Ag SeO.lg to 775 ° C,
  • the temperature of the GaAs substrate was raised to 250 ° C. by an IR lamp (infrared lamp), and the shutter below the substrate was opened for film formation.
  • IR lamp infrared lamp
  • the Ag concentration analyzed by the SI MS method was 1 ⁇ 10 2 ° cm ⁇ 3 and was uniform in the film thickness direction.
  • the specific resistivity was 6. 8 ⁇ 10 4 Q cm.
  • the current-voltage characteristics in the film thickness direction were good as shown in FIG.
  • FIG. 4 shows 21 ⁇ 6: 8 ⁇ / ⁇ 0 & 8 3 (21 3 doped with 8 ⁇
  • FIG. 2 is a diagram showing the current-voltage characteristic of the semiconductor device according to Example 1 in which e is deposited on p GaAs.
  • Example 2 a Ag-doped ZnSe film was formed on a glass substrate with ITO to form a semiconductor device.
  • the film formation conditions are the same as in Example 1.
  • the work function measured by ultraviolet photoelectron spectroscopy was 6.3 eV, and the specific resistivity was 6.8 ⁇ 10 4 Q cm
  • the current-voltage characteristic in the film thickness direction was good as in Example 1 .
  • Example 3 an Ag-doped ZnSe epitaxial film was formed on a p-GaAs substrate to form a semiconductor element.
  • evaporator used was of ultimate vacuum 1 X 10- 8 Torr. While heating the BN crucible containing lg of ZnSe raw material to 830 ° C and the BN crucible containing Ag SeO. Lg to 750 ° C,
  • the temperature of the GaAs substrate was raised to 250 ° C. by an IR lamp (infrared lamp), and the shutter below the substrate was opened for film formation.
  • IR lamp infrared lamp
  • Example 4 an Ag-doped ZnSe epitaxial film was formed on a p-GaAs substrate to form a semiconductor element.
  • evaporator used was of ultimate vacuum 1 X 10- 8 Torr. While heating the BN crucible containing lg of ZnSe raw material to 830 ° C and the BN crucible containing Ag SeO. Lg to 730 ° C,
  • the temperature of the GaAs substrate was raised to 250 ° C. by an IR lamp (infrared lamp), and the shutter below the substrate was opened for film formation.
  • IR lamp infrared lamp
  • the epitaxial growth was performed by the In-plane X-ray diffraction method and the transmission electron microscope.
  • the Ag concentration analyzed by the SIMS method was 3 ⁇ 10 18 cm ⁇ 3 and was uniform in the film thickness direction.
  • the work function measured by ultraviolet photoelectron spectroscopy was 6. leV.
  • the resistivity ratio was 7.5 ⁇ 10 6 Qcm.
  • the current-voltage characteristics in the film thickness direction were as good as in Example 1.
  • Comparative Example 1 an Ag-doped ZnSe epitaxial film was formed on a p-GaAs substrate to form a semiconductor element.
  • evaporator used was of ultimate vacuum 1 X 10- 8 Torr. While heating the BN crucible containing lg of ZnSe raw material to 830 ° C and the BN crucible containing Ag SeO.lg to 830 ° C,
  • the temperature of the GaAs substrate was raised to 250 ° C. by an IR lamp (infrared lamp), and the shutter below the substrate was opened for film formation.
  • IR lamp infrared lamp
  • the Ag concentration analyzed by the SIM S method is 1 ⁇ 10 21 cm ⁇ 3 , and the force is uniform in the film thickness direction. Ag is segregated at the grain boundaries by the in-plane X-ray diffraction method and the transmission electron microscope It was confirmed.
  • the work function measured by ultraviolet photoelectron spectroscopy was 5. leV.
  • the resistivity was 3 ⁇ 3 ⁇ 10 2 ⁇ «.
  • evaporator used was of ultimate vacuum 1 X 10- 8 Torr.
  • BN containing ZnSe raw material lg While heating the crucible to 830 ° C and the BN crucible containing Ag SeO.lg to 700 ° C, p-
  • the temperature of the GaAs substrate was raised to 250 ° C. by an IR lamp (infrared lamp), and the shutter below the substrate was opened for film formation.
  • IR lamp infrared lamp
  • the Ag concentration analyzed by the SIMS method was 510 17 cm ⁇ 3 and was uniform in the film thickness direction. The measurement of the work function by ultraviolet photoelectron spectroscopy and the measurement of the specific resistivity were not possible because the conductivity of the film was too low.
  • FIG. 1 is an electron micrograph showing the cross-sectional structure of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 A conceptual view of a schematic internal configuration of a vapor deposition apparatus according to an embodiment of the present invention seen from the side (A) shows the state before the start of deposition, and (b) shows the state after the start of deposition.
  • FIG. 3 A schematic view showing the arrangement of crucibles of a vapor deposition apparatus according to an embodiment of the present invention, (a) is a plan view showing an arrangement example of crucibles with respect to the rotation orbit of a substrate holder in the embodiment, (b) is the top view which showed the example of arrangement
  • FIG. 4 is a diagram showing current-voltage characteristics of the semiconductor device according to Example 1.
  • FIG. 5 A conceptual view of the schematic internal configuration of the vapor deposition apparatus according to another embodiment of the present invention as viewed from the side, showing a state in which the crucible is arranged with an angle so as to concentrate raw material vapor near the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Description

明 細 書
p型半導体材料、半導体素子、有機エレクト口ルミネッセンス素子及び p型 半導体材料の製造方法
技術分野
[0001] 本発明は、 Znと Seを含む化合物を有する p型半導体材料、この p型半導体材料を 備えた半導体素子及び有機エレクト口ルミネッセンス素子、並びに p型半導体材料の 製造方法に関する。
背景技術
[0002] 従来の有機エレクト口ルミネッセンス素子(以下、有機 EL素子と!/、う)の正孔注入電 極(以下、 p型電極と記す。 )には、透明性、入手の容易性などの観点から ITO (イン ジゥム錫酸化物)が用いられることが多い。 ITOは、ガラス基板またはポリマー基板上 にスパッタリング法や蒸着法などによって形成される。有機 ELデバイスの典型的な積 層構造としては、例えば、 ITO/NPB/Alq3/Mg/Agを挙げることができる。 ここで、 NPBは、 N, N, -bis (l -naphyl) -N, N, 一 dipheny
1- 1 , l ' biphenyl-4, 4, 一diamneであり正孔輸送層として、また
Alq3は、 8— hydroxyquinoline aluminumであり、電子輸送層として機能する。 斯かる有機 EL素子においては、各電極から注入された電子と正孔が、正孔輸送層 である NPB層と電子輸送層である Alq層の接合界面近傍で結合することにより発光 する。従って、有機 EL素子の発光輝度は、正孔、あるいは電子輸送層に注入される 正孔、あるいは電子の数に比例することになる。
特許文献 1:国際公開 2005/076373号公報
非特許文献 1 : S. Τ· Lee et al. 、 Appl. Phys. Lett. 74 (1999) P. 67 0
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、 ITOの仕事関数は 4. 3eVと小さいため、 p型電極としての ITOとこれ に隣接する正孔輸送層(上述の積層構造例では NPB層)との間のバンド整合がとれ ていなかった。例えば、上記積層構造例の場合は、 ITOから NPBへの正孔注入は 1 . 7eVものエネルギー障壁を越えて行われていた(非特許文献 1)ため、正孔注入効 率が低ぐ結果として十分な発光輝度がとれない、と云う問題点があった。
[0004] これに対して、仕事関数が大きぐ正孔輸送層との間にバンド整合がとれる透明な p 型電極用材料として、 p型に極性制御した ZnSeや GaNが提案されている(特許文献 D oしかし、これらの材料は単結晶薄膜としてのみ用いられており、多結晶膜とすると 導電性が顕著に失われるため、ガラス基板やポリマー基板上に形成して用いることが できなかった。
[0005] そこで本発明は、有機 EL素子において、正孔輸送層との間でバンド整合がとれて おり、ガラス基板やポリマー基板上に形成可能な p型電極に好適な p型半導体材料、 この p型半導体材料を備えた半導体素子及び有機 EL素子、並びに p型半導体材料 の製造方法を提供することを目的とする。
課題を解決するための手段
[0006] 上記課題を解決するために、本発明により成る p型半導体材料においては、 Znと S eを含む化合物中に、 Agを 1 X 1018〜5 X 102°cm_3含有させてなることを特徴とする
[0007] また、本発明に係る p型半導体材料にお!/、て、 Znと Seを含む化合物は、組成式 Zn
Mg Se S (0 ^≤0. 5、 0 ≤0. 5)で示され、八 1 1018〜5 102。 cm— 3含有させたことを特徴とする。
[0008] また、本発明に係る p型半導体材料において、 Agの含有量が、 3 X 1019~3 X 1020 cm_3であることを特徴とする。
[0009] また、本発明により成る半導体素子は、上述した!/、ずれかの p型半導体材料を含む p型電極を備えることを特徴とする。
[0010] また、本発明に係る半導体素子の p型電極に含まれる p型半導体材料の組織は、 正孔の平均的な移動方向に延びた柱状構造をなすことを特徴とする。
[0011] また、本発明により成る有機 EL素子は、前記 p型半導体材料のいずれか一を含む p型電極を具備することを特徴とする特徴とする。
[0012] 更に、本発明により成る、 l X 1018〜5 X 102°cm— 3の Agを含む ZnSeから成る p型 半導体材料の製造方法は、真空蒸着法であり、力、つ蒸発源として、 ZnSe及び Ag S
2 eを用いたことを特徴とする。
発明の効果
[0013] 本発明によれば、仕事関数が大きぐかつガラス基板やポリマー基板上に形成可能 な p型電極に好適な p型半導体材料、及びこれを用いた半導体素子の提供が可能と なり、例えば有機 EL素子に適用した場合には、正孔輸送層との間でバンド整合をと ること力 Sでき、発光輝度の向上が図れる。
発明を実施するための最良の形態
[0014] 以下、本発明にかかる実施形態を図面を参照しつつ詳しく説明する。
なお、本発明は、有機 EL素子のほか、無機材料を使った LEDの p型電極など、正 孔注入を行うほかの種類の素子にも適用することができる。
[0015] (l) p型電極の構成
本実施形態に係る P型半導体材料は、 Znと Seを含む化合物中に、ドーパントとして Agを 1 X 1018〜5 X 102°cm_3含有させてなるものであり、この p型半導体材料を p型 電極として基板上に形成したものが本実施形態に係る半導体素子である。この p型 半導体材料は、例えば有機 EL素子の p型電極材料として用いることができ、隣接す るように形成された正孔輸送層へ正孔を注入することができる。
[0016] ここで、 Agの含有量が 5 X 102°cm_3より多い場合は、 ZnSeの粒界に Agが偏析し 仕事関数の低下を招いてしまう。そのため、例えば有機 EL素子の陽極として本実施 形態に係る p型半導体材料を用いた場合は、隣接する正孔輸送層への正孔注入の 効率が低いものとなる。一方、 Agの含有量が 1 X 1018cm— 3より少ない場合は、 ZnSe の粒界においてキャリアの散乱を生じて導電性がほぼ消失してしまう。
[0017] 以上の効果の観点からすると、 Agの含有量は、 1 X 1019〜4 X 102°cm_3であると なお良ぐさらに3 1019〜3 102 111_ 3でぁることが好ましぃ。
Agの含有量が上述の範囲内であれば、 Agは ZnSe格子内でァクセプターとして働き 、正孔を生成することができるからである。
[0018] p型半導体材料は、 Zn、 Se、 Agのほ力、に Mg、 Sを含有することが好ましぐ組成式 Zn Mg Se S (0≤x、 y≤0. 5)で示される ZnSe系化合物とすることが好まし
(1 (1 い。 Mgを含有させることにより p型半導体材料の伝導帯を上側にシフトすることがで き、 Sを含有させることにより p型半導体材料の価電子帯を下側へシフトすることがで きるため、 p型半導体材料のバンドギャップを広げることができるからである。
[0019] p型電極にお!/、て、 p型半導体材料は、基板の板厚方向(p型電極の厚さ方向で、 正孔の平均的移動方向となる。)に延びた柱状構造をなすことが好ましい。柱状構造 の例を図 1に示す。図 1は本実施形態にかかる半導体素子の断面構造を示す電子 顕微鏡写真である。この例では、石英基板 1上に ZnSe系化合物に Agをドープした p 型電極 2が形成されており、 ZnSeが石英基板 1の板厚方向(図 1の上下方向)に柱 状に延びている。このように柱状に形成することにより、正孔の散乱が起きやすい Zn Se多結晶体であっても、実用的な導電性を得ることができる。また、 ZnSe多結晶体 をェピタキシャル膜とすることによつても同様の効果を得ることができる。
[0020] 半導体素子において p型電極を形成する基板としては、化合物半導体 (例えば Ga As、 GaP、 InP)の単結晶、及び、導電性酸化物(例えば ITO、 ΖηΟ)を表面にコート したガラス基板を用いることができる。その他、例えば GaAs基板 \n— ZnSe : Cl\i — ZnSe\ZnSe: Ag等のデバイスを基板とし、その上部に形成することも可能である
[0021] (2) p型電極の成膜方法
つづいて、図 2、 3を参照しつつ、 Agをドープした ZnSeのェピタキシャル膜を例に とって、 p型電極の成膜(半導体素子の製造)について説明する。ここで、図 2は、本 実施形態に係る蒸着器の概略内部構成を側面から見た概念図であり、 (a)は蒸着開 始前の状態を、(b)は蒸着開始後の状態を、それぞれ示す図である。また、図 3は、 本発明の一実施形態に係る蒸着器のるつぼの配置を示す概略図であり、 (a)は本実 施形態における基板ホルダの回転軌道に対するるつぼの位置を示した平面図であり 、 (b)はるつぼが 4つある場合の配置を示した平面図である。
[0022] p型電極の成膜は、図 2 (a)に示すような、密閉容器として構成される蒸着器 10の 内部に基板 20を格納して、基板 20の表面に Zn、 Se、及び Ag等の原料を蒸発させ てなる原料気流を供給することにより行う。
[0023] 図 2 (a)に示すように、蒸着器 10内の上部には、回転軸 12により蒸着器 10内で回 転駆動(図 2の矢印の方向に回転)する基板ホルダ 13が設けられる。そして、基板ホ ルダ 13の下面側には基板 20が取り付けられる。基板ホルダ 13に基板 20を取り付け て成膜中に回転させることにより、形成する薄膜の膜厚や組成を均一にすることが出 来るため好ましい。
[0024] また、蒸着器 10内の側壁には、蒸着器 10内の圧力を調節する排気部 11が設けら れる。
成膜中は、蒸着器 10内の圧力を 1 X 10_7TOTr以下とすることが好ましい。蒸着器 1 0内の圧力が 1 X 10— 7Torrより高いと、残留水分が多すぎて成膜される薄膜中に取 り込まれてしまい、結晶性を害し、所望の電気特性が発現しないことがあるためで ある。また、蒸着器 10内の圧力を 1 X 10_7TOTr以下とすることで、蒸着器内における 原子の平均自由行程は lOOOKm程度になり、るつぼ 25, 26, 27, 28にて発生する 原料気流に含まれるガス分子が、何にも衝突せずに、基板 20の表面へ直接到達で さるカゝらである。
[0025] 基板 20の下面側には、原料としての Zn、 Se、及び Agをそれぞれ収容したるつぼ 2 5、 26、 27が配置配置される。この際、本発明の一実施形態においては、図 2 (a)ま たは(b)に示すように、るつぼ 25、 26、 27を、基板 20の垂直下方に設置している。こ のように配置することで、各つるぼにて発生させる原料気流の流れを、基板 20に対し て略垂直とすることができる。また、図 5に示すように、本発明の他の実施形態として、 各原料気流が基板 20付近に集中するように角度を付けてるつぼ 25、 26、 27を配置 することでも構わない。
[0026] なお、るつぼ 25、 26、 27は、基板ホルダ 13の回転軌道 13a上であって、かつ回転 軸 12の延長線 12a (すなわち回転軌道 13aの中心)に対して等角度間隔に配置され ること力 S好ましい。等角度間隔に配置することにより、各るつぼからの基板 20への原 料気流の供給時間を均等化することが出来るためである。なお、 Zn、 Se、及び Agの ほかに、 S又は Mgを蒸着する場合は、図 3 (b)に示すように、回転軸 12の延長線 12 aに対して等角度間隔に、 Zn、 Se、 Ag、及び、 S又は Mgをそれぞれ収容したるつぼ 25、 26、 27、 28を酉己置することカ好ましい。
[0027] なお、るつぼ 25、 26、 27の材料としては、 BN (窒化硼素)などが用いられる。 BNは 、 ZnSe、 Zn、 Se、 Agと反応しにくい力、らである。
[0028] なお、基板 20と、るつぼ 25、 26、 27との間には、各るつぼにて発生する原料気流 が基板 20へ供給されることを遮断するためのシャツタ 14が、それぞれ設けられる。な お、シャツタ 14は、るつぼごとに設けるのではなぐすべてのるつぼに共通の 1つだけ を設けることとしてもよい。
[0029] るつぼ 25、 26、 27及び基板 20は、図示しない加熱手段(例えば、赤外線ランプ、 白金線通電加熱器、 BNヒータ、 SiCヒータ)により所定温度に加熱される。ここで、加 熱温度は成膜条件に応じて設定される。
そして、成膜中のるつぼ 25、 26、 27の温度を制御することで、各るつぼからの原料 気流の蒸気圧を制御することが出来、形成する薄膜の組成を制御することが出来る。 なお、成膜中の基板 20の温度は 200°C以上 400度以下とすることが好ましい。 20
0°C以下とすると、基板 20に到達した原料気流が結晶化せず、所望の電気特性が発 現しないためである。また、 400°C以上とすると、 ZnSeの蒸気圧が高すぎて基板 20 に膜が付着しなレ、ためである。
[0030] るつぼ 25、 26、 27を加熱すると、各るつぼ中に収容されている各原料が気化(昇 華)して、それぞれ原料気流を発生させる。そして原料気流が発生したら、基板 20と 各るつぼとの間に設けられたシャツタ 14を同時に開放する。すると、各原料気流が、 基板 20上に対して略垂直に供給されることとなり、基板 20上に吸着して、 p型電極 2
1を成膜する。
その後、所定時間の経過後に基板 20の下面側に所望膜厚の p型電極 21が成膜さ れたら、シャツタ 14を同時に閉めて、成膜処理を完了する。
[0031] なお、成膜速度は、 5nm/minから 30nm/minになるようにすることが好ましい。
5nm/minより小さいと、成膜に時間が力、かりすぎ、生産性が低下するからである。ま た 30nm/minより大きいと、結晶性が低くなり、柱状構造を作らなくなり、所望の電 気特性を得られな!/、からである。
[0032] 以上のように、本実施形態の p型半導体材料及び半導体素子は、 Zn、 Se、 Ag等を 原料に用いるため、蒸着法、スパッタリング法により容易に作製することができる。ま た、 Agが ZnSe格子内に置換固溶してァクセプターとして働き、正孔を生成するため 、従来用いられた ITOの仕事関数に比べて大きな仕事関数(6. 3eV)を有する。この ため、有機 EL素子の p型電極に適用した場合は、正孔輸送層との間でバンド整合が とれてエネルギー障壁を作らなレ、。
[0033] なお、 Cuをドーパントに用いた場合には、 Cu2+と Cu+の価数制御を行う必要があり 、成膜条件が制限されるのに対して、本実施形態の p型半導体材料及び半導体素子 のように Agをドーパントに用いた場合には、 Ag+のみが存在するので価数制御が不 要である。また、 CtTのイオン半径(60pm)に比べて Ag+のイオン半径(100pm)は 格段に大きいため、 ZnSe格子中で熱や電界による拡散を起こしにくい。
[0034] さらに、 Agの含有量を所定の範囲に設定しているため、 Agの含有量が多いことに 起因する粒界での偏析及び仕事関数の低下を防止することができ、かつ、 Agの含 有量が少ないことによる粒界でのキャリアの散乱及び導電性の顕著な低下を防ぐこと ができる。
実施例
[0035] 以下に本発明の実施例を、比較例とともに説明する。
[0036] <実施例 1〉
実施例 1では Agをドープした ZnS eのェピタキシャル膜を p— GaAs基板上に成 膜して半導体素子を形成した。
[0037] 蒸着器は到達真空度 1 X 10_8TOTrのものを使用した。 ZnSe原料 lgを入れた BN るつぼを 830°Cに、 Ag SeO. lgを入れた BNるつぼを 775°Cに加熱する一方、 p—
2
GaAs基板を IRランプ (赤外線ランプ)により 250°Cに昇温し、基板下方のシャツタを 開放して成膜を行った。
[0038] In— plane法 X線回折法および透過電子顕微鏡によりェピタキシャル成長したこと を確認した。
触針式段差計で測定したェピタキシャル膜の膜厚は 400nmであり、 ICP法により 分析したィ匕学糸且成は、 Zn : Se :Ag = 49. 4 : 50. 2 : 0. 33 (at%)であった。また、 SI MS法により分析した Ag濃度は 1 X 102°cm— 3であり、膜厚方向に均一であった。ま た、比抵抗率は 6. 8 X 104 Q cmであった。膜厚方向の電流 電圧特性は、図 4に 示すように良好であった。ここで、図4は21^6 :八§/ ー0&八3 (八§をドープした21 3 eを p GaAs上に成膜した実施例 1に係る半導体素子)の電流電圧特性を示す図で ある。
[0039] <実施例 2〉
実施例 2では、 Agドープした ZnSe膜を ITO付ガラス基板上に成膜して半導体素子 を形成した。成膜条件は実施例 1と同様である。
[0040] 触針式段差計で測定した ZnSe膜厚は 400nmであり、 ICP法により分析した化学 糸且成 (ま、 Zn:Se:Ag = 49.4:50.2:0.33 (at0/0)であった。また、 SIMS法 ίこより分 析した Ag濃度は 1 X 102°cm— 3であり、膜厚方向に均一であった。断面を TEMで観 察したところ、柱状粒子構造を確認できた。紫外光電子分光法により測定した仕事関 数は 6.3eVであった。また、比抵抗率は 6.8X104Qcmであった。膜厚方向の電流 電圧特性は実施例 1と同様に良好であった。
[0041] <実施例 3〉
実施例 3では Agをドープした ZnSeのェピタキシャル膜を p GaAs基板上に成膜 して半導体素子を形成した。
[0042] 蒸着器は到達真空度 1 X 10— 8Torrのものを使用した。 ZnSe原料 lgを入れた BN るつぼを 830°Cに、 Ag SeO. lgを入れた BNるつぼを 750°Cに加熱する一方、 p—
2
GaAs基板を IRランプ (赤外線ランプ)により 250°Cに昇温し、基板下方のシャツタを 開放して成膜を行った。
[0043] In— plane法 X線回折法および透過電子顕微鏡によりェピタキシャル成長したこと を確認した。触針式段差計で測定した Agドープ ZnSe膜の膜厚は 400nmであり、 IC P法により分析した化学組成は、 Zn:Se:Ag = 49.7:50.2:0.08(at%)であった 。また、 SIMS法により分析した Ag濃度は 3X1019cm— 3であり、膜厚方向に均一で あった。紫外光電子分光法により測定した仕事関数は 6.3eVであった。また、比抵 抗率は 8.8X105Qcmであった。膜厚方向の電流 電圧特性は実施例 1と同様に 良好であった。
[0044] <実施例 4〉
実施例 4では Agをドープした ZnSeのェピタキシャル膜を p GaAs基板上に成 膜して半導体素子を形成した。 [0045] 蒸着器は到達真空度 1 X 10— 8Torrのものを使用した。 ZnSe原料 lgを入れた BN るつぼを 830°Cに、 Ag SeO. lgを入れた BNるつぼを 730°Cに加熱する一方、 p—
2
GaAs基板を IRランプ (赤外線ランプ)により 250°Cに昇温し、基板下方のシャツタを 開放して成膜を行った。
[0046] In— plane法 X線回折法および透過電子顕微鏡によりェピタキシャル成長したこと を確認した。触針式段差計で測定した Agドープ ZnSe膜の膜厚は 400nmであり、 IC P法により分析した化学組成は、 Zn:Se:Ag = 49.8:50.1:0.01(at%)であった 。また、 SIMS法により分析した Ag濃度は 3X1018cm— 3であり、膜厚方向に均一で あった。紫外光電子分光法により測定した仕事関数は 6. leVであった。また、比抵 抗率は 7.5X106Qcmであった。膜厚方向の電流 電圧特性は実施例 1と同様に 良好であった。
[0047] <比較例 1〉
比較例 1では Agをドープした ZnSeのェピタキシャル膜を p GaAs基板上に成 膜して半導体素子を形成した。
[0048] 蒸着器は到達真空度 1 X 10— 8Torrのものを使用した。 ZnSe原料 lgを入れた BN るつぼを 830°Cに、 Ag SeO. lgを入れた BNるつぼを 830°Cに加熱する一方、 p—
2
GaAs基板を IRランプ (赤外線ランプ)により 250°Cに昇温し、基板下方のシャツタを 開放して成膜を行った。
[0049] 触針式段差計で測定した Agドープ ZnSe膜の膜厚は 400nmであり、 ICP法により 分析した化学組成は、 Zn:Se:Ag = 47.2:50.3:2.5(at%)であった。また、 SIM S法により分析した Ag濃度は 1 X 1021cm_3であり、膜厚方向に均一であった力 In plane法 X線回折法および透過電子顕微鏡により Agが粒界に偏析していることを 確認した。紫外光電子分光法により測定した仕事関数は 5. leVであった。また、比 抵抗率は 3· 3Χ102Ω«ηであった。
[0050] <比較例 2〉
比較例 2では Agをドープした ZnSeのェピタキシャル膜を p GaAs基板上に成膜 して半導体素子を形成した。
[0051] 蒸着器は到達真空度 1 X 10— 8Torrのものを使用した。 ZnSe原料 lgを入れた BN るつぼを 830°Cに、 Ag SeO. lgを入れた BNるつぼを 700°Cに加熱する一方、 p—
2
GaAs基板を IRランプ (赤外線ランプ)により 250°Cに昇温し、基板下方のシャツタを 開放して成膜を行った。
[0052] In— plane法 X線回折法および透過電子顕微鏡によりェピタキシャル成長したこと を確認した。触針式段差計で測定した Agドープ ZnSe膜の膜厚は 400nmであり、 IC P法により分析した化学糸且成は、 Zn : Se :Ag = 49. 8 : 50. 2 : 0. 002 (at%)であつ た。また、 SIMS法により分析した Ag濃度は 51017cm— 3であり、膜厚方向に均一であ つた。紫外光電子分光法による仕事関数の測定ならびに比抵抗率の測定は膜の導 電性が低すぎて測定することができな力、つた。
[0053] 実施例;!〜 4および比較例;!〜 2の Ag濃度、仕事関数および抵抗率の値を表 1にま とめて示す。
[0054] [表 1]
Figure imgf000012_0001
[0055] 本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態 に限定されるものではなぐ改良の目的または本発明の思想の範囲内において改良 または変更が可能である。
図面の簡単な説明
[0056] [図 1]本発明の一実施形態にかかる半導体素子の断面構造を示す電子顕微鏡写真 である。
[図 2]本発明の一実施形態に係る蒸着器の概略内部構成を側面から見た概念図で あり、(a)は蒸着開始前の状態を、(b)は蒸着開始後の状態を、それぞれ示す図であ
[図 3]本発明の一実施形態に係る蒸着器のるつぼの配置を示す概略図であり、 (a) は実施形態における基板ホルダの回転軌道に対するるつぼの配置例を示した平面 図であり、 (b)はるつぼが 4つある場合の配置例を示した平面図である。
[図 4]実施例 1に係る半導体素子の電流電圧特性を示す図である。
[図 5]本発明の他の実施形態に係る蒸着器の概略内部構成を側面から見た概念図 であり、原料蒸気が基板付近に集中するように角度を付けてるつぼを配置した状態 を示す図である。
符号の説明
1 石英基板
2 p型電極層
10 蒸着器
20 基板
21 p型電極
25 るつぼ
26 るつぼ
27 るつぼ

Claims

請求の範囲
[1] Znと Seを含む化合物中に、 Agを 1 X 1018〜5 X 102°cm_3含有させてなることを特 徴とする p型半導体材料。
[2] 前記 Znと Seを含む化合物は、
組成式 Zn Mg Se S (0≤χ≤0· 5、 0≤ν≤0· 5)で示されることを特徴とす る請求項 1に記載の P型半導体材料。
[3] Znと Seを含む化合物中に、 Agを 3 X 1019〜3 X 102°cm_3含有させてなることを特 徴とする p型半導体材料。
[4] 前記 Znと Seを含む化合物は、
組成式 Zn Mg Se S (0≤x、 y≤0. 5)で示されることを特徴とする請求項 3 に記載の P型半導体材料。
[5] 請求項 1から請求項 4のいずれか 1項に記載の p型半導体材料を含む p型電極を具 備することを特徴とする半導体素子。
[6] 前記 p型電極に含まれる p型半導体材料の組織が、正孔の平均的な移動方向に延 びた柱状構造をなすことを特徴とする請求項 5に記載の半導体素子。
[7] 請求項 1から請求項 4のいずれか 1項に記載の p型半導体材料を含む p型電極を具 備することを特徴とする有機エレクト口ルミネッセンス素子。
[8] ZnSeに、 Agを 1 X 1018〜5 X 102°cm_3含有させてなることを特徴とする p型半導 体材料の製造方法であって、当該製造方法が真空蒸着法であり、かつ蒸発源として
、 ZnSe及び Ag Seを用いたことを特徴とする p型半導体材料の製造方法。
PCT/JP2007/068971 2006-10-23 2007-09-28 Matériau de semi-conducteur de type p, dispositif à semi-conducteur, dispositif électroluminescent organique et procédé de production d'un matériau de semi-conducteur de type p WO2008050579A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/311,886 US8212260B2 (en) 2006-10-23 2007-09-28 P-type semiconductor material, semiconductor device, organic electroluminescent device, and method for manufacturing P-type semiconductor material
CN2007800382540A CN101523983B (zh) 2006-10-23 2007-09-28 p型半导体材料、半导体元件、有机电致发光元件及p型半导体材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006287995A JP4832250B2 (ja) 2006-10-23 2006-10-23 p型半導体材料、半導体素子、有機エレクトロルミネッセンス素子、及びp型半導体材料の製造方法
JP2006-287995 2006-10-23

Publications (1)

Publication Number Publication Date
WO2008050579A1 true WO2008050579A1 (fr) 2008-05-02

Family

ID=39324385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068971 WO2008050579A1 (fr) 2006-10-23 2007-09-28 Matériau de semi-conducteur de type p, dispositif à semi-conducteur, dispositif électroluminescent organique et procédé de production d'un matériau de semi-conducteur de type p

Country Status (4)

Country Link
US (1) US8212260B2 (ja)
JP (1) JP4832250B2 (ja)
CN (1) CN101523983B (ja)
WO (1) WO2008050579A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010425A1 (en) 2008-07-25 2010-01-28 Freescale Semiconductor, Inc. Heterodyne receiver
CN103173733A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064284A (zh) * 2010-12-01 2011-05-18 郑州大学 一种有机电致发光器件
WO2023073404A1 (en) 2021-10-27 2023-05-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223377A (ja) * 1997-02-04 1998-08-21 Internatl Business Mach Corp <Ibm> 発光ダイオード
WO2000067531A1 (fr) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et procede de fabrication
JP2005100893A (ja) * 2003-09-26 2005-04-14 Sekisui Plastics Co Ltd エレクトロルミネッセンス素子
WO2006001194A1 (ja) * 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. 蛍光体及びその製法並びにそれを用いた粒子分散型elデバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248631A (en) * 1990-08-24 1993-09-28 Minnesota Mining And Manufacturing Company Doping of iib-via semiconductors during molecular beam epitaxy using neutral free radicals
JP4537596B2 (ja) 2000-02-10 2010-09-01 パナソニック電工株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2003017509A (ja) * 2001-06-28 2003-01-17 Telecommunication Advancement Organization Of Japan 半導体層の電気的特性制御方法
CN100401543C (zh) 2004-02-06 2008-07-09 Hoya株式会社 半导体材料以及采用该半导体材料的半导体元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223377A (ja) * 1997-02-04 1998-08-21 Internatl Business Mach Corp <Ibm> 発光ダイオード
WO2000067531A1 (fr) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et procede de fabrication
JP2005100893A (ja) * 2003-09-26 2005-04-14 Sekisui Plastics Co Ltd エレクトロルミネッセンス素子
WO2006001194A1 (ja) * 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. 蛍光体及びその製法並びにそれを用いた粒子分散型elデバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010425A1 (en) 2008-07-25 2010-01-28 Freescale Semiconductor, Inc. Heterodyne receiver
CN103173733A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法
CN103173733B (zh) * 2013-03-08 2014-09-17 北京航空航天大学 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法

Also Published As

Publication number Publication date
US20100078626A1 (en) 2010-04-01
US8212260B2 (en) 2012-07-03
CN101523983B (zh) 2011-08-10
CN101523983A (zh) 2009-09-02
JP4832250B2 (ja) 2011-12-07
JP2008108471A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
Zhao et al. Photoluminescence and electroluminescence from Tris (8‐hydroxyquinoline) aluminum nanowires prepared by adsorbent‐assisted physical vapor deposition
Shi et al. High-performance planar green light-emitting diodes based on a PEDOT: PSS/CH 3 NH 3 PbBr 3/ZnO sandwich structure
TWI375339B (en) Quantum dot light emitting layer
Hu et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes
US9755172B2 (en) Device including quantum dots
Hayden et al. Core–shell nanowire light‐emitting diodes
Molaei et al. Near-white emitting QD-LED based on hydrophilic CdS nanocrystals
KR101782626B1 (ko) 금속 할라이드 페로브스카이트 발광 소자 및 이의 제조방법
Esro et al. Solution processed SnO 2: Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes
US20120238047A1 (en) Light emitting device including semiconductor nanocrystals
WO2009123763A2 (en) Light-emitting device including quantum dots
TW201248894A (en) Device including quantum dots and method for making same
Park et al. Luminance efficiency roll-off mechanism in CsPbBr 3− x Cl x mixed-halide perovskite quantum dot blue light-emitting diodes
WO2008106040A2 (en) Led device having improved light output
CN108075020A (zh) 一种铯铅卤钙钛矿薄膜材料以及一种发光二极管及其制备方法
Kumarakuru et al. The growth and conductivity of nanostructured ZnO films grown on Al-doped ZnO precursor layers by pulsed laser deposition
WO2008050579A1 (fr) Matériau de semi-conducteur de type p, dispositif à semi-conducteur, dispositif électroluminescent organique et procédé de production d&#39;un matériau de semi-conducteur de type p
Mohammed et al. Thickness effect of Al2O3 as buffer layer on Alq3 sensitivity for toxic gas
Chakraborty et al. Surface-modification of Cu2O nanoparticles towards band-optimized hole-injection layers in CsPbBr3 perovskite light-emitting diodes
Yuan et al. Polyethylenimine modified sol-gel ZnO electron-transporting layers for quantum-dot light-emitting diodes
Otieno et al. Effect of thermal treatment on ZnO: Tb 3+ nano-crystalline thin films and application for spectral conversion in inverted organic solar cells
CN113388385B (zh) 一种非铅金属卤化物发光材料及其制备方法和器件
Kim et al. Hybrid nanowire–multilayer graphene film light-emitting sources
US8574955B2 (en) Method for producing light-emitting film and light-emitting device
CN114015984B (zh) 一种有机-无机杂化钙钛矿材料的制备方法及应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038254.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12311886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828712

Country of ref document: EP

Kind code of ref document: A1