WO2008050476A1 - Method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer - Google Patents

Method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer Download PDF

Info

Publication number
WO2008050476A1
WO2008050476A1 PCT/JP2007/001143 JP2007001143W WO2008050476A1 WO 2008050476 A1 WO2008050476 A1 WO 2008050476A1 JP 2007001143 W JP2007001143 W JP 2007001143W WO 2008050476 A1 WO2008050476 A1 WO 2008050476A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
susceptor
main surface
flow rate
epitaxial silicon
Prior art date
Application number
PCT/JP2007/001143
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Ohnishi
Takeshi Arai
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2008050476A1 publication Critical patent/WO2008050476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for manufacturing an epitaxial silicon wafer, in which an epitaxial silicon layer is grown on the silicon wafer.
  • an epitaxial silicon wafer in which an epitaxial silicon layer is formed on the silicon wafer may be used.
  • a general method for manufacturing an epitaxial silicon wafer is as follows. First, a mirror-polished silicon wafer (silicon single crystal wafer) is prepared and cleaned by RCA cleaning or the like. A natural oxide film is formed on the entire surface of the silicon wafer by the SC_1 cleaning and SC-2 cleaning during the RCA cleaning process. Next, a silicon wafer is placed on the susceptor in the chamber. Next, by supplying a reducing gas such as hydrogen gas into the chamber, an oxide film (including a natural oxide film) covering the surface on which epitaxial growth is performed (hereinafter sometimes referred to as the first main surface) Is removed.
  • a reducing gas such as hydrogen gas
  • a source gas containing silicon (monosilane, trichlorosilane, silicon tetrachloride, etc.) and hydrogen gas as a carrier gas are introduced into the chamber, and the first silicon single crystal wafer heated to high temperature is introduced.
  • a silicon single crystal layer (epitaxial silicon layer) is grown on the main surface (hereinafter, sometimes simply referred to as “epitaxial growth”).
  • a susceptor having a large number of through holes in a portion on which a wafer is placed is used as a susceptor.
  • a method is disclosed in which epitaxial growth is performed after the natural oxide film on the second main surface is completely removed by sufficiently supplying a reducing gas to the second main surface side of the wafer. This method prevents deterioration of the in-plane resistivity distribution of the epitaxial silicon layer due to auto-doping, reduces halo generated on the second main surface, and enables stable particle measurement on the second main surface. I can do it now.
  • the present invention has been made in view of such a problem, and when a susceptor having a large number of through-holes is used in manufacturing an epitaxial silicon wafer, the nano-particle generated on the second main surface is produced. Reduces the occurrence of topology irregularities It is an object of the present invention to provide a method for manufacturing an epitaxial silicon wafer that can be manufactured.
  • a susceptor in which a number of through holes are formed in a counterbore portion of the susceptor is used, and the susceptor is placed on the susceptor.
  • the second main surface side of the silicon wafer is subjected to hydrogen treatment so that the entire surface of the silicon wafer is in contact with the hydrogen gas during the hydrogen treatment, and the flow rate of hydrogen gas flowing in the epitaxial growth step
  • the ratio of the flow rate of the hydrogen gas and the flow rate of the source gas in the epitaxial growth process is set to the hydrogen flow rate.
  • (Slm) / Raw material gas flow rate (sI m) ⁇ 4 the epitaxial silicon layer manufacturing method that grows the epitaxial silicon layer has a good in-plane resistance distribution of the epitaxial silicon layer.
  • the present invention also relates to an epitaxial silicon wafer manufactured by the above method, wherein the nanotopology on the second main surface is 12 nm or less. Provide silicon wafers.
  • a good in-plane resistivity distribution of the epitaxial silicon layer can be obtained, and stable particle measurement can be performed on the second main surface. Even if a susceptor having a large number of through-holes is used as a susceptor for the purpose of obtaining an epitaxial silicon wafer that can be performed, the unevenness of the nanotopology on the second main surface is reduced. Epitaxial silicon wafers can be manufactured with reduced. As a result, the in-plane resistance distribution of the epitaxial silicon layer is good, stable particle measurement can be performed on the second main surface, and high-quality unevenness of the nanotopology on the second main surface is reduced. Epitaxial silicon can be manufactured.
  • FIG. 2 is a schematic sectional view of an epitaxy growth apparatus used in the present invention.
  • FIG. 4 is a schematic sectional view showing another example of a susceptor used in the present invention.
  • FIG. 5 is a flowchart showing a process flow of a manufacturing method of an epitaxial silicon wafer to which the present invention is applied.
  • the present inventors have repeatedly studied a method for suppressing the occurrence of such unevenness of nanotopology when a susceptor having a large number of through-holes is used as a susceptor. It has been found that by increasing the flow rate of the hydrogen gas that serves as the carrier gas in the growth process, the source gas can be diluted to reduce the flow of the source gas toward the second main surface.
  • the inventors of the present invention when performing epitaxial growth after performing hydrogen treatment using a susceptor having a large number of through holes, if the ratio of the hydrogen gas flow rate to the raw material gas flow rate exceeds a predetermined value, The present invention has been completed by conceiving that an epitaxial silicon wafer can be manufactured while suppressing the formation of irregularities of nanotopology locally on the second main surface. [001 7]
  • the present invention will be described more specifically with reference to the drawings, but the present invention is not limited thereto.
  • FIG. 1 An outline of the procedure of the manufacturing method of the epitaxial silicon wafer to which the present invention is applied is shown in FIG.
  • a silicon wafer for growing an epitaxial silicon layer is prepared.
  • a silicon mirror wafer having a predetermined diameter, conductivity type, resistivity, and plane orientation may be prepared.
  • step (b) the silicon wafer is appropriately subjected to cleaning such as R CA cleaning.
  • the cleaning method in this cleaning step may be one in which the concentration and type of the chemical solution are changed within a normal range in addition to typical R CA cleaning.
  • cleaning with ozone water may be used.
  • the cleaning in the step (b) often keeps the surface of the silicon wafer hydrophilic in order to prevent adhesion of particles, but is not limited to this.
  • RCA cleaning or cleaning with ozone water can keep the surface of the silicon wafer hydrophilic, and a natural oxide film is formed on the surface of the silicon wafer. After washing with such a chemical solution, washing with pure water or drying may be performed.
  • step (c) the silicon wafer is transferred to the epitaxial growth apparatus for processing.
  • a schematic diagram of an example of an epitaxial growth apparatus used in step (c) and subsequent steps is shown in FIG.
  • the epitaxy growth apparatus 51 includes a chamber 52, a susceptor 71 disposed inside the chamber 1, a susceptor support means 5 3 that supports the susceptor from below, and can freely rotate up and down, and the chamber 52.
  • Wafer transfer port for loading and unloading wafers to the outside, 5 4
  • Gas supply pipes for supplying various gases into the chamber 5 5
  • Gas supply pipes 5 5 A hydrogen gas supply means (not shown) for supplying hydrogen gas into the chamber, a raw material gas supply means (not shown) for supplying a raw material gas such as silane, and a gas exhaust pipe for discharging various gases from the chamber 1 5 7
  • the heating means 5 8 provided outside the chamber 52, the silicon wafer is transferred into the chamber 1, and the silicon wafer is transferred from the chamber 52. It is composed of wafer transfer means (not shown) for transferring c.
  • FIG. 3 shows an enlarged schematic view of the susceptor 71 used in the present invention.
  • FIG. 3 (b) is a cross-sectional view.
  • the susceptor 71 may have a left pin through hole 73 formed therein.
  • the lift pin 75 is passed through the lift pin through hole 73.
  • a counterbore 7 2 for positioning a silicon wafer to be placed is formed in the susceptor 71, and a large number of through holes 74 are formed on substantially the entire surface of the counterbore 72.
  • the through-hole 74 may have any size and shape that allows gas to flow smoothly.
  • the through-hole 74 may be cylindrical and have a diameter of 1 mm.
  • the number of through holes is not particularly limited. For example, if the opening density is 0.1 openings / cm 2 or more, the gas is on the second main surface side of the wafer. It is preferable because it can be supplied more uniformly.
  • the through holes of the susceptor 71 are preferably formed so as to be evenly arranged so that the opening density thereof is substantially uniform at the spot facing portion 72.
  • the susceptor 71 has a space between the silicon wafer W to be placed as shown in FIG.
  • a large number of through holes 74 are formed in the countersink of a susceptor having a known shape. If so, the present invention can be applied.
  • an epitaxial silicon layer is grown on the first main surface of the silicon wafer as follows.
  • the silicon wafer is transferred into the chamber 52 using a wafer transfer means (not shown) and the second main surface is opposed to the susceptor. 7 Place on the counterbore part 7 of 1.
  • a commonly used placement method can be applied in addition to the method using the lift pins 75.
  • a large amount of hydrogen gas is supplied to the first main surface side of the silicon wafer, and the oxide film on the first main surface is removed by heating.
  • the hydrogen gas is sufficiently supplied also to the second main surface side of the silicon wafer by the large number of through holes 74 formed in the susceptor 71, and the natural oxide film is almost uniformly removed.
  • a region that is locally unevenly removed remains.
  • the hydrogen gas can be more reliably brought into contact with the second main surface.
  • the natural oxide film on the second main surface side can be removed more uniformly.
  • the heating temperature and heating time during the hydrogen treatment may be set in any way as long as the natural oxide film on the silicon wafer surface, particularly the natural oxide film on the second main surface, can be efficiently removed. 80 ° C or higher, 1 minute or longer
  • an epitaxial silicon layer is grown on the first main surface of the silicon wafer.
  • This epitaxial growth is performed by introducing a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and a hydrogen gas as a carrier gas into the chamber 52 and heating.
  • the flow rate of the carrier hydrogen gas is set to a predetermined value or more. Since the desired carrier hydrogen gas flow rate depends on the concentration of the raw material gas, it is specified by the ratio of the hydrogen gas flow rate and the raw material gas flow rate.
  • Carrier hydrogen By increasing the gas flow rate, the source gas is sufficiently diluted, and the amount of the source gas supplied around the second main surface side of the silicon wafer is reduced. For this reason, local nanotopology irregularities on the second main surface are suppressed.
  • an epitaxial silicon wafer in which an epitaxial silicon layer is formed on the first main surface of the silicon wafer can be manufactured.
  • This epitaxial silicon wafer has a good in-plane resistivity distribution of the epitaxial silicon layer, can perform stable particle measurement on the second main surface, and The unevenness of the nanotopology on the second main surface is reduced.
  • an epitaxial silicon wafer is actually manufactured as follows. The experiment was conducted.
  • An epitaxial silicon wafer was manufactured according to the procedure shown in FIG.
  • a p-type silicon single crystal wafer having a diameter of 30 Om m and a plane orientation (1 0 0) was prepared (a) and cleaned with ozone water (b).
  • the silicon wafer was loaded into an epitaxial growth apparatus having a susceptor having a large number of through holes as shown in FIG. 3 (c).
  • the volume of the chamber is about 3.5 I.
  • the temperature at the time of carry-in was 700 ° C.
  • hydrogen gas was introduced into the chamber at a flow rate of 60 s I m, the temperature was raised to 1 130 ° C for 45 seconds, and then hydrogen treatment was performed at 1 130 ° C for 1 minute ( d).
  • trichlorosilane was introduced into the chamber as a source gas containing silicon while flowing carrier hydrogen gas at a predetermined flow rate, and epitaxial growth was performed for 120 seconds while maintaining 1130 ° C. (E).
  • the flow rate of trichlorosilane was constant at 16 s I m and the flow rate of the carrier hydrogen gas was changed to manufacture an epitaxial silicon wafer.
  • the carrier hydrogen gas flow rate and the corresponding carrier hydrogen flow rate to the trichlorosilane flow rate are listed in Table 1. .
  • epitaxial silicon wafers were manufactured as described above.
  • TCS is an abbreviation for trichlorosilane.
  • the nanotopology measurement method in this specification is as follows. First, the irregularities with a wavelength of 2 Omm or less are extracted using the principle of optical interference. Next, on the other hand, the entire surface of the wafer is scanned in an area of 2 mm X 2 mm (this is called the window 1), and the height difference is obtained. This difference in height is given to the center of the window. Next, the horizontal axis represents the threshold value (threshold value), and the vertical axis represents the area ratio of the portion having the height difference exceeding the threshold value in the window. In this threshold curve, the threshold value at which the vertical axis is 0.05% is taken as the value of nanotopology.
  • Fig. 1 shows the relationship between the nanotopology of the second main surface obtained in this way and the hydrogen flow rate (sIm) / source gas flow rate (slm).
  • the curve in the graph is an approximate curve.
  • the ratio between the hydrogen gas flow rate and the raw material gas flow rate and the value of the nanotopology have a very strong correlation.
  • the ratio between the hydrogen gas flow rate and the raw material gas flow rate If hydrogen flow rate (slm) / source gas flow rate (slm) ⁇ 4, it can be seen that the nanotopology of the second major surface can be about 12 nm or less.
  • Such a nanotopology level is a high-quality epitaxial silicon wafer that cannot be visually confirmed and has few adverse effects in later processes.
  • the unevenness of the nanotopology can be sufficiently reduced. Further, in order to reduce the unevenness of the nanotopology, it is preferable to set the hydrogen flow rate (s l m) / source gas flow rate (s I m) to 5 or more. In this case, the nanotopology of the second main surface can be about 10 nm or less.
  • the upper limit value of the ratio of the hydrogen gas flow rate to the raw material gas flow rate is not particularly limited, but the upper limit value is limited depending on the specifications of the apparatus, for example, the hydrogen flow rate (slm) / the raw material gas flow rate. (Slm) should be 9 or less.
  • the ratio of the hydrogen gas flow rate to the raw material gas flow rate according to the present invention can be applied as it is.
  • a silicon wafer As a silicon wafer, a p-type silicon single crystal wafer having a diameter of 300 mm and a plane orientation (100) was prepared (a) and subjected to RCA cleaning (b).
  • the silicon wafer was loaded into an epitaxial growth apparatus having a susceptor having a large number of through holes as shown in Fig. 3 (c).
  • the temperature at loading was 700 ° C.
  • hydrogen gas was introduced into the chamber at a flow rate of 60 s I m, the temperature was raised to 1 1300 ° C for 45 seconds, and then hydrogen treatment was performed at 1 1300 ° C for 1 minute (d).
  • trichlorosilane was introduced into the chamber at a flow rate of 16 s I m and maintained at 1 1 30 ° C for 120 seconds for epitaxial growth. Went (e).
  • the hydrogen flow rate (sI m) / source gas flow rate (slm) is approximately 5.
  • Example 2 As in Example 1, however, an epitaxial silicon wafer was manufactured with a carrier hydrogen gas flow rate of 70 s I m in the epitaxial growth process. At this time, the hydrogen flow rate (s l m) / source gas flow rate (s l m) is approximately 4.38.
  • Example 2 As in Example 1, however, an epitaxial silicon wafer was manufactured with a carrier hydrogen gas flow rate of 60 s I m in the epitaxial growth process. At this time, the hydrogen flow rate (s l m) / source gas flow rate (s l m) is approximately 3.75.
  • Example 2 As in Example 1, however, an epitaxial silicon wafer was manufactured with a carrier hydrogen gas flow rate of 40 s I m in the epitaxial growth step. At this time, the hydrogen flow rate (s l m) / source gas flow rate (s l m) becomes approximately 2.5.
  • the area measured as nanotopology on the periphery of the second main surface is larger than that of Comparative Example 1.
  • a slight unevenness was observed in many places corresponding to the through holes of the susceptor on the periphery of the second main surface by visual inspection.

Abstract

A method for manufacturing epitaxial silicon wafers includes a natural oxide film removing step and an epitaxial growth step. In the method, an epitaxial silicon layer is grown by using a susceptor whereupon many through holes are formed and by having a rate of a hydrogen gas flow quantity to a material gas flow quantity in the epitaxial growth step satisfy the inequality of hydrogen flow quantity (slm)/material gas flow quantity (slm) ≥4. Thus, when the susceptor having many through holes is used for manufacturing the epitaxial silicon wafer, nanotopological unevenness generated on a second main surface can be reduced.

Description

明 細 書  Specification
ェピタキシャルシリコンゥェ一ハの製造方法及びェピタキシャルシ リコンゥェ一ハ  Manufacturing method of epoxy silicon wafer and epitaxial silicon wafer
技術分野  Technical field
[0001 ] 本発明は、 シリコンゥェ一ハにェピタキシャルシリコン層を成長させるェ ピタキシャルシリコンゥエーハの製造方法に関する。 背景技術  [0001] The present invention relates to a method for manufacturing an epitaxial silicon wafer, in which an epitaxial silicon layer is grown on the silicon wafer. Background art
[0002] 半導体デバイスを作製する場合、 シリコンゥェ一ハ上にェピタキシャルシ リコン層が形成されたェピタキシャルシリコンゥェ一ハを用いる場合がある  [0002] When manufacturing a semiconductor device, an epitaxial silicon wafer in which an epitaxial silicon layer is formed on the silicon wafer may be used.
[0003] ェピタキシャルシリコンゥェ一ハの一般的な製造方法は以下の通りである 。 まず、 鏡面研磨されたシリコンゥェ一ハ (シリコン単結晶ゥェ一ハ) を用 意し、 R C A洗浄等によって洗浄を行う。 R C A洗浄工程中の S C _ 1洗浄 や S C—2洗浄によって、 シリコンゥェ一ハの表面全体に自然酸化膜が形成 される。 次に、 チャンバ一内のサセプタ上にシリコンゥェ一ハを載置する。 次に、 チャンバ一内に水素ガス等の還元ガスを供給することによって、 ェピ タキシャル成長を行う面 (以下、 第一主表面と言うことがある) を覆う酸化 膜 (自然酸化膜を含む) が取り除かれる。 次に、 チャンバ一内にシリコンを 含む原料ガス (モノシランやトリクロロシラン、 四塩化珪素等) と、 キヤリ ァガスとなる水素ガスを導入し、 高温に加熱されたシリコン単結晶ゥェ一ハ の第一主表面上にシリコン単結晶層 (ェピタキシャルシリコン層) を成長さ せる (以下、 単に、 「ェピタキシャル成長」 と言うことがある) 。 [0003] A general method for manufacturing an epitaxial silicon wafer is as follows. First, a mirror-polished silicon wafer (silicon single crystal wafer) is prepared and cleaned by RCA cleaning or the like. A natural oxide film is formed on the entire surface of the silicon wafer by the SC_1 cleaning and SC-2 cleaning during the RCA cleaning process. Next, a silicon wafer is placed on the susceptor in the chamber. Next, by supplying a reducing gas such as hydrogen gas into the chamber, an oxide film (including a natural oxide film) covering the surface on which epitaxial growth is performed (hereinafter sometimes referred to as the first main surface) Is removed. Next, a source gas containing silicon (monosilane, trichlorosilane, silicon tetrachloride, etc.) and hydrogen gas as a carrier gas are introduced into the chamber, and the first silicon single crystal wafer heated to high temperature is introduced. A silicon single crystal layer (epitaxial silicon layer) is grown on the main surface (hereinafter, sometimes simply referred to as “epitaxial growth”).
[0004] し力、し、 このような従来のェピタキシャルシリコンゥェ一ハの製造方法に よると、 次のような問題点があった。  [0004] However, according to such a conventional method for manufacturing an epitaxial silicon wafer, there are the following problems.
前記の水素処理の際に、 第一主表面だけでなく、 第一主表面とは反対側の 面 (以下、 第二主表面と言うことがある) にも水素ガスがわずかに回り込み 、 第二主表面の自然酸化膜を不均一に除去してしまう。 そして、 次のェピタ キシャル成長の際に、 自然酸化膜が除去された部分に、 局所的にシリコンが 成長して凹凸を形成してしまう。 なお、 このような微小な凹凸は、 「ハロー 」 と呼ばれる濃淡のある 「くもり」 として目視で観察できることもある。 こ のような微小な凹凸はパーティクル測定を行う際に、 パーティクルとして力 ゥントされてしまい、 正確にパーティクル測定を行うことができないなどの 問題があった。 During the hydrogen treatment, hydrogen gas slightly wraps around not only the first main surface but also the surface opposite to the first main surface (hereinafter sometimes referred to as the second main surface). The natural oxide film on the second main surface is removed unevenly. Then, in the next epitaxial growth, silicon grows locally in the portion where the natural oxide film has been removed, forming irregularities. Such minute irregularities may be visually observed as “cloudy” with a density called “halo”. Such minute irregularities are distorted as particles when performing particle measurement, and there is a problem that accurate particle measurement cannot be performed.
また、 第二主表面側から外方拡散したドーパン卜が第一主表面側に回り込 んでェピタキシャルシリコン層に取り込まれるオートドーピングなどによつ て面内抵抗率分布が悪化するという問題があった。  Another problem is that the in-plane resistivity distribution deteriorates due to autodoping or the like in which doppins diffused outward from the second main surface side enter the first main surface side and are taken into the epitaxial silicon layer. It was.
[0005] このような問題点を解決するため、 特表 2 0 0 3— 5 3 2 6 1 2号公報で は、 サセプタとして、 ゥエーハを載置する部分に多数の貫通孔を有するサセ プタを用い、 ゥエーハの第二主表面側にも十分に還元ガスを供給することに よって第二主表面の自然酸化膜を全面にわたって除去した後にェピタキシャ ル成長を行う方法が開示されている。 この方法により、 オートドーピングに よるェピタキシャルシリコン層の面内抵抗率分布の悪化を防止するとともに 、 第二主表面に生じるハローを低減でき、 第二主表面において安定したパー テイクル測定を行うことができるようになった。  [0005] In order to solve such a problem, in Japanese Translation of PCT International Publication No. 2 0 0 3—5 3 2 6 1 2, a susceptor having a large number of through holes in a portion on which a wafer is placed is used as a susceptor. In addition, a method is disclosed in which epitaxial growth is performed after the natural oxide film on the second main surface is completely removed by sufficiently supplying a reducing gas to the second main surface side of the wafer. This method prevents deterioration of the in-plane resistivity distribution of the epitaxial silicon layer due to auto-doping, reduces halo generated on the second main surface, and enables stable particle measurement on the second main surface. I can do it now.
しかし、 このように多数の貫通孔を有するサセプタを用いた場合ェピタキ シャル成長の際に、 ゥェ一ハの第二主表面に、 サセプタの貫通孔に相当する 位置にシリコンが堆積し、 ナノ トポロジーと一般に称されるような、 ゥェ一 ハの局部表面領域における厚さの微小な変化 (ナノ トポロジーの凹凸) が形 成されてしまう等の問題があった。  However, when a susceptor having a large number of through-holes is used, silicon is deposited on the second main surface of the wafer at a position corresponding to the through-hole of the susceptor during the epitaxial growth. There are problems such as the formation of minute changes in thickness (nanotopology irregularities) in the local surface area of wafers, commonly referred to as
発明の開示 Disclosure of the invention
[0006] そこで、 本発明は、 このような問題点に鑑みなされたもので、 ェピタキシ ャルシリコンゥェ一ハを製造する際に多数の貫通孔を有するサセプタを用い た場合に、 第二主表面に生じるナノ トポロジーの凹凸が発生することを低減 することができるェピタキシャルシリコンゥエーハの製造方法を提供するこ とを目的とする。 [0006] Therefore, the present invention has been made in view of such a problem, and when a susceptor having a large number of through-holes is used in manufacturing an epitaxial silicon wafer, the nano-particle generated on the second main surface is produced. Reduces the occurrence of topology irregularities It is an object of the present invention to provide a method for manufacturing an epitaxial silicon wafer that can be manufactured.
[0007] 本発明は、 上記課題を解決するためになされたもので、 少なくとも、 チヤ ンバー内に配置され、 シリコンゥエー/、が載置される座ぐり部を有するサセ プタの上面に、 前記シリコンゥェ一ハを、 その第二主表面をサセプタに対向 させて載置し、 前記チャンバ一内に水素ガスを流して加熱する水素処理を行 つて前記シリコンゥエーハの自然酸化膜を除去する自然酸化膜除去工程と、 前記チャンバ一内に少なくとも原料ガスと水素ガスとを流すとともに加熱し て前記シリコンゥェ一ハの第一主表面上にェピタキシャルシリコン層を成長 させるェピタキシャル成長工程とを含むェピタキシャルシリコンゥェ一ハの 製造方法において、 前記サセプタの座ぐり部に、 多数の貫通孔が形成されて いるサセプタを用い、 該サセプタ上に載置された前記シリコンゥエーハの第 二主表面側が、 前記水素処理の際にその全面において前記水素ガスと接触す るようにして水素処理を行い、 前記ェピタキシャル成長工程において流す水 素ガスの流量と原料ガスの流量との比を、 水素流量 ( s I m ) /原料ガス流 量 (s l m ) ≥4として前記ェピタキシャルシリコン層の成長を行うことを 特徴とするェピタキシャルシリコンゥエーハの製造方法を提供する。  [0007] The present invention has been made to solve the above-described problem, and at least the upper surface of a susceptor disposed in a chamber and having a counterbore portion on which a silicon wafer / is placed, The silicon wafer is placed with its second main surface facing the susceptor, and hydrogen treatment is performed by flowing hydrogen gas into the chamber and heating to remove the natural oxide film of the silicon wafer. An epitaxy comprising: a film removal step; and an epitaxial growth step of growing an epitaxial silicon layer on the first main surface of the silicon wafer by flowing and heating at least a source gas and hydrogen gas in the chamber. In the silicon wafer manufacturing method, a susceptor in which a number of through holes are formed in a counterbore portion of the susceptor is used, and the susceptor is placed on the susceptor. The second main surface side of the silicon wafer is subjected to hydrogen treatment so that the entire surface of the silicon wafer is in contact with the hydrogen gas during the hydrogen treatment, and the flow rate of hydrogen gas flowing in the epitaxial growth step A method of manufacturing an epitaxial silicon wafer, characterized in that the epitaxial silicon layer is grown by setting the ratio of the flow rate of the source gas to hydrogen flow rate (sI m) / source gas flow rate (slm) ≥4. provide.
[0008] このように、 多数の貫通孔を有するサセプタを用い、 自然酸化膜除去工程 を行った後、 ェピタキシャル成長工程において流す水素ガスの流量と原料ガ スの流量との比を、 水素流量 (s l m ) /原料ガス流量 (s I m ) ≥4とし てェピタキシャルシリコン層の成長を行うェピタキシャルシリコンゥェ一ハ の製造方法であれば、 ェピタキシャルシリコン層の面内抵抗分布が良好であ り、 第二主表面において安定したパーティクル測定を行うことができ、 かつ 、 第二主表面のナノ トポロジーの凹凸が低減されたェピタキシャルシリコン ゥエーハを製造することができる。  [0008] Thus, after performing the natural oxide film removal process using a susceptor having a large number of through holes, the ratio of the flow rate of the hydrogen gas and the flow rate of the source gas in the epitaxial growth process is set to the hydrogen flow rate. (Slm) / Raw material gas flow rate (sI m) ≥4, the epitaxial silicon layer manufacturing method that grows the epitaxial silicon layer has a good in-plane resistance distribution of the epitaxial silicon layer. In addition, it is possible to manufacture an epitaxial silicon wafer in which stable particle measurement can be performed on the second main surface, and the nanotopology unevenness of the second main surface is reduced.
[0009] この場合、 前記多数の貫通孔は、 前記サセプタの座ぐり部に均等に配置さ れていることが好ましい。  [0009] In this case, it is preferable that the plurality of through holes are evenly arranged in the counterbore portion of the susceptor.
[0010] このように、 多数の貫通孔がサセプタの座ぐり部に均等に配置されていれ ば、 水素処理の際に、 より均一に水素ガスをサセプタに載置されたシリコン ゥエーハの第二主表面に供給することができるので、 より均一に第二主表面 の自然酸化膜を取り除くことができる。 その結果、 ェピタキシャルシリコン 層の面内抵抗分布が良好であり、 第二主表面においてより安定したパーティ クル測定を行うことができる品質のェピタキシャルシリコンゥェ一ハにおい て、 第二主表面のナノ トポロジーの凹凸を低減することができる。 [0010] In this way, a large number of through holes are evenly arranged in the counterbore of the susceptor. For example, during hydrogen treatment, hydrogen gas can be supplied more uniformly to the second main surface of the silicon wafer placed on the susceptor, so that the natural oxide film on the second main surface can be more uniformly removed. it can. As a result, the in-plane resistance distribution of the epitaxial silicon layer is good, and in the epitaxial silicon wafer of the quality that can perform more stable particle measurement on the second main surface, Nanotopology unevenness can be reduced.
[001 1 ] また、 本発明は、 前記の方法により製造されたェピタキシャルシリコンゥ ェ一ハであって、 前記第二主表面におけるナノ トポロジーが 1 2 n m以下で あることを特徴とするェピタキシャルシリコンゥェ一ハを提供する。  [001 1] The present invention also relates to an epitaxial silicon wafer manufactured by the above method, wherein the nanotopology on the second main surface is 12 nm or less. Provide silicon wafers.
[0012] このように、 前記の方法により製造され、 第二主表面のナノ トポロジーが  [0012] Thus, the nanotopology of the second main surface manufactured by the above method is
1 2 n m以下 (2 X 2 m mウィンド一を用いた場合、 ナノ トポロジーの表面 変位量が 1 2 n m以下になったときに、 欠陥判定される面積割合が 0 . 0 5 %を超える) であるェピタキシャルシリコンゥェ一ハであれば、 ェピタキシ ャルシリコン層の面内の抵抗率分布が良好であり、 第二主表面において安定 したパーティクル測定を行うことができ、 かつ、 第二主表面のナノ トポロジ —の凹凸が低減されたェピタキシャルシリコンゥェ一ハである。  1 2 nm or less (when using a 2 X 2 mm window, when the surface displacement of the nanotopology is 12 nm or less, the area ratio for determining defects exceeds 0.05%) With epitaxial silicon wafers, the in-plane resistivity distribution of the epitaxial silicon layer is good, stable particle measurement can be performed on the second main surface, and nanotopology on the second main surface. —Epitaxial silicon wafer with reduced unevenness.
[0013] 本発明に係るェピタキシャルシリコンゥェ一ハの製造方法によれば、 ェピ タキシャルシリコン層の良好な面内抵抗率分布を得ることができるとともに 第二主表面において安定したパーティクル測定を行うことができるェピタキ シャルシリコンゥェ一ハを得ること等を目的として、 サセプタとして多数の 貫通孔を有するサセプタを使用した場合であっても、 第二主表面のナノ トポ 口ジ一の凹凸を低減してェピタキシャルシリコンゥェ一ハを製造することが できる。 その結果、 ェピタキシャルシリコン層の面内抵抗分布が良好であり 、 第二主表面において安定したパーティクル測定を行うことができ、 かつ、 第二主表面のナノ トポロジーの凹凸が低減された高品質のェピタキシャルシ リコンゥエーハを製造することができる。  [0013] According to the method for manufacturing an epitaxial silicon wafer according to the present invention, a good in-plane resistivity distribution of the epitaxial silicon layer can be obtained, and stable particle measurement can be performed on the second main surface. Even if a susceptor having a large number of through-holes is used as a susceptor for the purpose of obtaining an epitaxial silicon wafer that can be performed, the unevenness of the nanotopology on the second main surface is reduced. Epitaxial silicon wafers can be manufactured with reduced. As a result, the in-plane resistance distribution of the epitaxial silicon layer is good, stable particle measurement can be performed on the second main surface, and high-quality unevenness of the nanotopology on the second main surface is reduced. Epitaxial silicon can be manufactured.
図面の簡単な説明 [0014] [図 1 ]実験によって得られた、 水素ガスの流量と原料ガス流量との比と第二主 表面のナノ トポロジーの関係を示したグラフである。 Brief Description of Drawings FIG. 1 is a graph showing the relationship between the ratio of hydrogen gas flow rate to raw material gas flow rate and the nanotopology of the second main surface obtained by experiments.
[図 2]本発明において用いられるェピタキシャル成長装置の概略断面図である  FIG. 2 is a schematic sectional view of an epitaxy growth apparatus used in the present invention.
[図 3]本発明において用いられるサセプタの一例を示す拡大概略図であり、 ( a ) は概略平面図、 (b ) は概略断面図である。 FIG. 3 is an enlarged schematic view showing an example of a susceptor used in the present invention, where (a) is a schematic plan view and (b) is a schematic cross-sectional view.
[図 4]本発明において用いられるサセプタの別の一例を示した概略断面図であ る。  FIG. 4 is a schematic sectional view showing another example of a susceptor used in the present invention.
[図 5]本発明が適用されるェピタキシャルシリコンゥエーハの製造方法の処理 の流れを示したフロー図である。  FIG. 5 is a flowchart showing a process flow of a manufacturing method of an epitaxial silicon wafer to which the present invention is applied.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、 本発明についてより具体的に説明する。 [0015] Hereinafter, the present invention will be described in more detail.
前述のように、 多数の貫通孔を有するサセプタを用いてェピタキシャル成 長を行った場合、 ゥエーハの第二主表面に、 サセプタの貫通孔に相当する位 置にシリコンが堆積し、 ナノ トポロジーの凹凸が形成されてしまう等の問題 があった。 そして、 近年、 このようなナノ トポロジーの凹凸であっても、 そ の悪影響が無視できなくなつてきており、 ゥエーハ品質のさらなる向上が望 まれている。  As described above, when epitaxial growth is performed using a susceptor having a large number of through-holes, silicon is deposited on the second main surface of the wafer at a position corresponding to the through-holes of the susceptor. There were problems such as the formation of irregularities. In recent years, even with such irregularities in nanotopology, the adverse effects of such irregularities have become ignorable, and further improvement in wafer quality is desired.
[0016] 本発明者らは、 サセプタとして多数の貫通孔を有するサセプタを用いた場 合にこのようなナノ トポロジ一の凹凸の発生を抑制するための方法について 検討を重ね、 その結果、 ェピタキシャル成長工程におけるキャリアガスとな る水素ガスの流量を多くすることによって、 原料ガスを希釈し、 第二主表面 側への原料ガスの回り込みを低減すればよいことを見出した。 すなわち、 本 発明者らは、 多数の貫通孔を有するサセプタを用いて水素処理をした後にェ ピタキシャル成長を行う際に、 原料ガス流量に対する水素ガス流量の比を所 定の値以上にすれば、 第二主表面に局所的にナノ トポロジーの凹凸が生じる ことを抑制してェピタキシャルシリコンゥェ一ハを製造できることに想到し 、 本発明を完成させた。 [001 7] 以下、 本発明について図面を参照しながらさらに具体的に説明するが、 本 発明はこれに限定されるものではない。 [0016] The present inventors have repeatedly studied a method for suppressing the occurrence of such unevenness of nanotopology when a susceptor having a large number of through-holes is used as a susceptor. It has been found that by increasing the flow rate of the hydrogen gas that serves as the carrier gas in the growth process, the source gas can be diluted to reduce the flow of the source gas toward the second main surface. That is, the inventors of the present invention, when performing epitaxial growth after performing hydrogen treatment using a susceptor having a large number of through holes, if the ratio of the hydrogen gas flow rate to the raw material gas flow rate exceeds a predetermined value, The present invention has been completed by conceiving that an epitaxial silicon wafer can be manufactured while suppressing the formation of irregularities of nanotopology locally on the second main surface. [001 7] Hereinafter, the present invention will be described more specifically with reference to the drawings, but the present invention is not limited thereto.
本発明が適用されるェピタキシャルシリコンゥエーハの製造方法の手順の 概略を図 5に示した。  An outline of the procedure of the manufacturing method of the epitaxial silicon wafer to which the present invention is applied is shown in FIG.
まず、 工程 (a ) では、 ェピタキシャルシリコン層を成長させるシリコン ゥエーハを準備する。 仕様に応じて、 所定の直径、 導電型、 抵抗率、 面方位 を有するシリコン鏡面ゥェ一ハを用意すればよい。  First, in step (a), a silicon wafer for growing an epitaxial silicon layer is prepared. Depending on the specifications, a silicon mirror wafer having a predetermined diameter, conductivity type, resistivity, and plane orientation may be prepared.
[0018] 次に、 工程 (b ) において、 シリコンゥェ一ハに対し、 適宜 R C A洗浄等 の洗浄を行う。 この洗浄工程における洗浄法は、 典型的な R C A洗浄の他、 薬液の濃度や種類を通常行われる範囲で変更したものであってもよい。 例え ば、 オゾン水等による洗浄に替えてもよい。 また、 工程 (b ) の洗浄は、 パ —ティクルの付着を防ぐために、 シリコンゥェ一ハの表面を親水性に保つこ とが多いがこれに限定されるものではない。 R C A洗浄やオゾン水による洗 浄であればシリコンゥェ _/、の表面を親水性に保つことができ、 このときシ リコンゥェ一ハの表面には自然酸化膜が形成される。 このような薬液による 洗浄の後、 さらに、 純水での洗浄や乾燥を行ってもよい。  [0018] Next, in step (b), the silicon wafer is appropriately subjected to cleaning such as R CA cleaning. The cleaning method in this cleaning step may be one in which the concentration and type of the chemical solution are changed within a normal range in addition to typical R CA cleaning. For example, cleaning with ozone water may be used. Further, the cleaning in the step (b) often keeps the surface of the silicon wafer hydrophilic in order to prevent adhesion of particles, but is not limited to this. RCA cleaning or cleaning with ozone water can keep the surface of the silicon wafer hydrophilic, and a natural oxide film is formed on the surface of the silicon wafer. After washing with such a chemical solution, washing with pure water or drying may be performed.
[001 9] 工程 (c ) 以降では、 ェピタキシャル成長装置にシリコンゥェ一ハを移送 して処理を行う。 工程 (c ) 以降で用いるェピタキシャル成長装置の一例の 概略図を図 2に示した。  [001 9] After step (c), the silicon wafer is transferred to the epitaxial growth apparatus for processing. A schematic diagram of an example of an epitaxial growth apparatus used in step (c) and subsequent steps is shown in FIG.
ェピタキシャル成長装置 5 1は、 チャンバ一 5 2と、 チャンバ一内部に配 置されたサセプタ 7 1、 サセプタを下方から支持し、 回転上下動自在なサセ プタ支持手段 5 3、 チャンバ一 5 2内にゥェ一ハを搬入したり、 逆に外へと 搬出したりするためのゥェ一ハ搬送口 5 4、 チャンバ一内に各種ガスを供給 するガス導入管 5 5、 ガス導入管 5 5に接続され、 チャンバ一内に水素ガス を供給する図示しない水素ガス供給手段及びシラン等の原料ガスを供給する 図示しない原料ガス供給手段、 チャンバ一内から各種ガスを排出するガス排 出管 5 7、 チャンバ一 5 2の外部に備えられた加熱手段 5 8、 チャンバ一内 にシリコンゥェ一ハを移送し、 また、 チャンバ一 5 2内からシリコンゥェ一 ハを移送する図示しないゥエーハ移送手段等から構成される。 The epitaxy growth apparatus 51 includes a chamber 52, a susceptor 71 disposed inside the chamber 1, a susceptor support means 5 3 that supports the susceptor from below, and can freely rotate up and down, and the chamber 52. Wafer transfer port for loading and unloading wafers to the outside, 5 4 Gas supply pipes for supplying various gases into the chamber 5 5 Gas supply pipes 5 5 A hydrogen gas supply means (not shown) for supplying hydrogen gas into the chamber, a raw material gas supply means (not shown) for supplying a raw material gas such as silane, and a gas exhaust pipe for discharging various gases from the chamber 1 5 7 The heating means 5 8 provided outside the chamber 52, the silicon wafer is transferred into the chamber 1, and the silicon wafer is transferred from the chamber 52. It is composed of wafer transfer means (not shown) for transferring c.
[0020] さらに、 本発明で用いるサセプタ 7 1の拡大概略図を図 3に示した。 図 3  Furthermore, FIG. 3 shows an enlarged schematic view of the susceptor 71 used in the present invention. Fig 3
( a ) は平面図であり、 図 3 ( b ) は断面図である。 サセプタ 7 1には、 リ フトピン用貫通孔 7 3が形成されているものであってもよい。 リフトピン用 貫通孔 7 3には、 リフトピン 7 5が揷通される。  (a) is a plan view, and FIG. 3 (b) is a cross-sectional view. The susceptor 71 may have a left pin through hole 73 formed therein. The lift pin 75 is passed through the lift pin through hole 73.
また、 チャンバ一 5 2の内部にはリフトピン 7 5をサセプタに対して相対 的に上下させることができるリフトピン昇降手段を設けてもよい。  Further, lift pin lifting / lowering means capable of moving the lift pin 75 up and down relatively with respect to the susceptor may be provided inside the chamber 52.
サセプタ 7 1には、 載置するシリコンゥェ一ハを位置決めする座ぐり 7 2 が形成され、 座ぐり 7 2の略全面に多数の貫通孔 7 4が形成されている。 貫 通孔 7 4はスムーズにガスが流通できるような大きさ、 形状であればどのよ うなものであってもよいが、 例えば、 円筒状であり、 その直径が 1 m mとす ることができる。 また、 貫通孔の数も特に限定されるものではないが、 例え ば、 開口密度が 0 . 1開口/ c m 2以上となるように形成すれば、 ガスがゥェ 一八の第二主表面側により一様に供給されるようにすることができるので好 ましい。 A counterbore 7 2 for positioning a silicon wafer to be placed is formed in the susceptor 71, and a large number of through holes 74 are formed on substantially the entire surface of the counterbore 72. The through-hole 74 may have any size and shape that allows gas to flow smoothly. For example, the through-hole 74 may be cylindrical and have a diameter of 1 mm. . Also, the number of through holes is not particularly limited. For example, if the opening density is 0.1 openings / cm 2 or more, the gas is on the second main surface side of the wafer. It is preferable because it can be supplied more uniformly.
[0021 ] なお、 サセプタ 7 1の貫通孔は、 その開口密度が座ぐり部 7 2においてほ ぼ均一になるように、 均等に配置されるように形成することが好ましい。 また、 シリコンゥエーハの第二主表面に接触するガスが、 より入れ替わり 易くするために、 サセプタ 7 1の形状を図 4のように、 載置されるシリコン ゥェ一ハ Wとの間に空間ができるように、 シリコンゥェ一 /、の周縁部のみを 下方から支持するようにしてもよい他、 公知の形状を有するサセプタの座ぐ り部に、 多数の貫通孔 7 4が形成されているものであれば本発明を適用する ことができる。  [0021] The through holes of the susceptor 71 are preferably formed so as to be evenly arranged so that the opening density thereof is substantially uniform at the spot facing portion 72. In addition, in order to make it easier for the gas contacting the second main surface of the silicon wafer to be replaced, the susceptor 71 has a space between the silicon wafer W to be placed as shown in FIG. In addition to supporting only the peripheral edge of the silicon wafer / from below, a large number of through holes 74 are formed in the countersink of a susceptor having a known shape. If so, the present invention can be applied.
[0022] このようなサセプタ 7 1を具備したェピタキシャル成長装置 5 1を用いて 、 以下のようにして、 シリコンゥェ一ハの第一主表面上にェピタキシャルシ リコン層を成長させる。  Using the epitaxial growth apparatus 51 having such a susceptor 71, an epitaxial silicon layer is grown on the first main surface of the silicon wafer as follows.
[0023] まず、 工程 (c ) において、 図示しないゥェ一ハ移送手段を用いてチャン バー 5 2内にシリコンゥェ一ハを移送し、 第二主表面を対向させてサセプタ 7 1の座ぐり部 7 2に載置する。 シリコンゥェ一ハのサセプタ 7 1への載置 方法は、 リフトピン 7 5を用いる方法の他、 通常用いられる載置方法を適用 できる。 [0023] First, in the step (c), the silicon wafer is transferred into the chamber 52 using a wafer transfer means (not shown) and the second main surface is opposed to the susceptor. 7 Place on the counterbore part 7 of 1. As a method for placing the silicon wafer on the susceptor 71, a commonly used placement method can be applied in addition to the method using the lift pins 75.
チャン/《一内にシリコンゥェ _/、を搬入した時点で、 シリコンゥェ一ハの 表面には、 自然酸化膜がわずかに成長している。  At the point of loading the silicon // in the channel, a natural oxide film has grown slightly on the surface of the silicon wafer.
[0024] 次に、 自然酸化膜除去工程 (d ) では、 チャンバ一 5 2内に、 水素ガス供 給手段からガス導入管 5 5を通して、 チャンバ一 5 2内に水素ガスを導入し 、 加熱手段 5 8によって加熱して水素処理を行い、 シリコンゥェ一ハ表面に 生じた自然酸化膜を除去する。 [0024] Next, in the natural oxide film removing step (d), hydrogen gas is introduced into the chamber 52 through the gas introduction pipe 55 from the hydrogen gas supply means into the chamber 52, and the heating means 5 8 Heat treatment with 8 to remove the natural oxide film formed on the silicon wafer surface.
水素ガスはシリコンゥエーハの第一主表面側に多く供給され、 加熱によつ て第一主表面の酸化膜を除去する。 一方、 サセプタ 7 1に形成されている多 数の貫通孔 7 4によって、 シリコンゥエーハの第二主表面側にも水素ガスは 十分に供給され、 自然酸化膜をほぼ均一に除去するが、 前述のように局所的 に不均一に除去される領域が残る。 このとき、 サセプタ 7 1に形成されてい る多数の貫通孔 7 4が座ぐり部 7 2に均等に配置されていれば、 より確実に 水素ガスを第二主表面に均一に接触させることができ、 第二主表面側の自然 酸化膜をより均一に除去することができる。  A large amount of hydrogen gas is supplied to the first main surface side of the silicon wafer, and the oxide film on the first main surface is removed by heating. On the other hand, the hydrogen gas is sufficiently supplied also to the second main surface side of the silicon wafer by the large number of through holes 74 formed in the susceptor 71, and the natural oxide film is almost uniformly removed. Thus, a region that is locally unevenly removed remains. At this time, if a large number of through-holes 74 formed in the susceptor 71 are evenly arranged in the counterbore 72, the hydrogen gas can be more reliably brought into contact with the second main surface. The natural oxide film on the second main surface side can be removed more uniformly.
この水素処理の際の加熱温度及び加熱時間は、 シリコンゥエーハ表面の自 然酸化膜、 特に第二主表面の自然酸化膜を効率よく除去できれば、 どのよう に設定してもよいが、 例えば、 8 0 0 °C以上、 1分以上とすることができる  The heating temperature and heating time during the hydrogen treatment may be set in any way as long as the natural oxide film on the silicon wafer surface, particularly the natural oxide film on the second main surface, can be efficiently removed. 80 ° C or higher, 1 minute or longer
[0025] 次に、 工程 (e ) において、 シリコンゥェ一ハの第一主表面に、 ェピタキ シャルシリコン層の成長を行う。 このェピタキシャル成長は、 モノシランや トリクロロシラン、 四塩化珪素などの原料ガスと、 キャリアガスとなる水素 ガスとをチャンバ一 5 2内に導入し、 加熱することによって行う。 このとき 、 キャリア水素ガスの流量を所定の値以上にする。 望ましいキャリア水素ガ スの流量は原料ガスの濃度に依存するので、 水素ガスの流量と原料ガス流量 との比で規定するが、 この具体的な数値については後述する。 キャリア水素 ガスの流量を大きくしたことによって、 原料ガスは十分に希釈され、 また、 シリコンゥエーハの第二主表面側に回り込んで供給される原料ガスの量が低 減される。 このため、 第二主表面における局所的なナノ トポロジーの凹凸の 発生は抑制される。 Next, in the step (e), an epitaxial silicon layer is grown on the first main surface of the silicon wafer. This epitaxial growth is performed by introducing a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and a hydrogen gas as a carrier gas into the chamber 52 and heating. At this time, the flow rate of the carrier hydrogen gas is set to a predetermined value or more. Since the desired carrier hydrogen gas flow rate depends on the concentration of the raw material gas, it is specified by the ratio of the hydrogen gas flow rate and the raw material gas flow rate. Carrier hydrogen By increasing the gas flow rate, the source gas is sufficiently diluted, and the amount of the source gas supplied around the second main surface side of the silicon wafer is reduced. For this reason, local nanotopology irregularities on the second main surface are suppressed.
[0026] このようにして、 シリコンゥェ一ハの第一主表面上にェピタキシャルシリ コン層が形成されたェピタキシャルシリコンゥェ一ハを製造することができ る。 そして、 このェピタキシャルシリコンゥェ一ハは、 ェピタキシャルシリ コン層の面内の抵抗率分布が良好であり、 第二主表面において安定したパー ティクル測定を行うことができるものであり、 かつ、 第二主表面のナノ トポ ロジ一の凹凸が低減されたものとなる。  In this way, an epitaxial silicon wafer in which an epitaxial silicon layer is formed on the first main surface of the silicon wafer can be manufactured. This epitaxial silicon wafer has a good in-plane resistivity distribution of the epitaxial silicon layer, can perform stable particle measurement on the second main surface, and The unevenness of the nanotopology on the second main surface is reduced.
[0027] 本発明の効果が得られるような水素ガスの流量と原料ガス流量との比の具 体的な数値を求めるため、 以下のように、 ェピタキシャルシリコンゥェ一ハ を実際に製造する実験を行った。  [0027] In order to obtain a specific numerical value of the ratio of the flow rate of the hydrogen gas and the flow rate of the raw material gas so that the effects of the present invention can be obtained, an epitaxial silicon wafer is actually manufactured as follows. The experiment was conducted.
[0028] (実験)  [0028] (Experiment)
図 5に示した手順でェピタキシャルシリコンゥェ一ハを製造した。  An epitaxial silicon wafer was manufactured according to the procedure shown in FIG.
シリコンゥェ一ハとして、 直径 3 0 O m m、 面方位 (1 0 0 ) の p型シリ コン単結晶ゥエーハを準備し (a ) 、 オゾン水による洗浄を行った (b ) 。  As a silicon wafer, a p-type silicon single crystal wafer having a diameter of 30 Om m and a plane orientation (1 0 0) was prepared (a) and cleaned with ozone water (b).
[0029] シリコンゥェ一ハを図 3に示したような、 多数の貫通孔を有するサセプタ を具備するェピタキシャル成長装置に搬入した (c ) 。 なお、 チャンバ一の 容積は約 3 . 5 Iである。 また、 搬入時の温度は 7 0 0 °Cであった。 次に、 6 0 s I mの流量で水素ガスをチャンバ一内に導入しつつ 1 1 3 0 °Cまで 4 5秒間で昇温したのち、 1 1 3 0 °Cで 1分間水素処理した (d ) 。 次に、 キ ャリァ水素ガスを所定の流量で流しながらシリコンを含む原料ガスとしてト リクロロシランをチャンバ一内に導入して 1 1 3 0 °Cのまま 1 2 0秒間ェピ タキシャル成長を行った (e ) 。 なお、 トリクロロシランの流量は 1 6 s I mで一定とし、 キャリア水素ガスの流量を変化させてそれぞれェピタキシャ ルシリコンゥェ一ハを製造した。 キャリア水素ガスの流量、 及びこれに対応 するキャリア水素流量と トリクロロシラン流量との比は、 表 1中に記載した 。 これらの場合についてそれぞれ上記のようにェピタキシャルシリコンゥェ —ハの製造を行った。 なお、 表 1中の 「TCS」 とはトリクロロシランの略 である。 [0029] The silicon wafer was loaded into an epitaxial growth apparatus having a susceptor having a large number of through holes as shown in FIG. 3 (c). The volume of the chamber is about 3.5 I. The temperature at the time of carry-in was 700 ° C. Next, while hydrogen gas was introduced into the chamber at a flow rate of 60 s I m, the temperature was raised to 1 130 ° C for 45 seconds, and then hydrogen treatment was performed at 1 130 ° C for 1 minute ( d). Next, trichlorosilane was introduced into the chamber as a source gas containing silicon while flowing carrier hydrogen gas at a predetermined flow rate, and epitaxial growth was performed for 120 seconds while maintaining 1130 ° C. (E). In addition, the flow rate of trichlorosilane was constant at 16 s I m and the flow rate of the carrier hydrogen gas was changed to manufacture an epitaxial silicon wafer. The carrier hydrogen gas flow rate and the corresponding carrier hydrogen flow rate to the trichlorosilane flow rate are listed in Table 1. . In each of these cases, epitaxial silicon wafers were manufactured as described above. In Table 1, “TCS” is an abbreviation for trichlorosilane.
[0030] [表 1]  [0030] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0031] このようにして製造したそれぞれのェピタキシャルシリコンゥェ一ハにつ いて、 第二主表面のナノ トポロジーを測定した。 [0031] The nanotopology of the second main surface was measured for each of the epitaxial silicon wafers thus manufactured.
本明細書中におけるナノ トポロジ一の測定方法は以下の通りである。 まず、 光学干渉の原理を用いて、 波長 2 Omm以下の凹凸を抽出する。 次 に、 これに対し、 2 mm X 2 mmの大きさの領域 (これをウィンド一と呼ぶ ) でゥェ一ハ全面をスキャンし、 高低差を求める。 この高低差の値をウィン ドーの中心に与える。 次に、 横軸に閾値 (スレッシュホールド値) とする高 低差の値を取り、 縦軸に、 ウィンド一内でその閾値を超える高低差を有する 部分の面積割合を取り、 閾値曲線を描く。 この閾値曲線において、 縦軸が 0 . 05%となる閾値をナノ トポロジーの数値とした。  The nanotopology measurement method in this specification is as follows. First, the irregularities with a wavelength of 2 Omm or less are extracted using the principle of optical interference. Next, on the other hand, the entire surface of the wafer is scanned in an area of 2 mm X 2 mm (this is called the window 1), and the height difference is obtained. This difference in height is given to the center of the window. Next, the horizontal axis represents the threshold value (threshold value), and the vertical axis represents the area ratio of the portion having the height difference exceeding the threshold value in the window. In this threshold curve, the threshold value at which the vertical axis is 0.05% is taken as the value of nanotopology.
[0032] このようにして得られた第二主表面のナノ トポロジーと、 水素流量 (s I m) /原料ガス流量 (s l m) との関係を図 1に示した。 グラフ中の曲線は 近似曲線である。  [0032] Fig. 1 shows the relationship between the nanotopology of the second main surface obtained in this way and the hydrogen flow rate (sIm) / source gas flow rate (slm). The curve in the graph is an approximate curve.
[0033] 図 1の結果より、 水素ガスの流量と原料ガス流量との比とナノ トポロジ一 の値は、 きわめて強い相関関係を有し、 特に、 水素ガスの流量と原料ガス流 量との比が、 水素流量 (s l m) /原料ガス流量 (s l m) ≥ 4であれば、 第二主表面のナノ トポロジーは約 1 2 n m以下とすることができることがわ かる。 このようなナノ トポロジーのレベルであれば目視では確認できず、 ま た、 後の工程での悪影響が少ない高品質なェピタキシャルシリコンゥェ一ハ である。 [0033] From the results in FIG. 1, the ratio between the hydrogen gas flow rate and the raw material gas flow rate and the value of the nanotopology have a very strong correlation. In particular, the ratio between the hydrogen gas flow rate and the raw material gas flow rate. If hydrogen flow rate (slm) / source gas flow rate (slm) ≥ 4, It can be seen that the nanotopology of the second major surface can be about 12 nm or less. Such a nanotopology level is a high-quality epitaxial silicon wafer that cannot be visually confirmed and has few adverse effects in later processes.
[0034] すなわち、 ェピタキシャル成長工程において、 水素流量 (s l m) /原料 ガス流量 (s l m) を 4以上にすれば、 ナノ トポロジーの凹凸を十分に低減 できる。 さらにナノ トポロジーの凹凸を低減するには、 水素流量 (s l m) /原料ガス流量 (s I m) を 5以上にすることが好ましい。 この場合、 第二 主表面のナノ トポロジーは約 1 0 n m以下とすることができる。 また、 この 水素ガスの流量と原料ガス流量との比の上限値は特に限定されるものではな いが、 装置の仕様等によって上限値が制限され、 例えば、 水素流量 (s l m ) /原料ガス流量 (s l m) は 9以下とする。  That is, in the epitaxial growth process, if the hydrogen flow rate (s l m) / the raw material gas flow rate (s l m) is 4 or more, the unevenness of the nanotopology can be sufficiently reduced. Further, in order to reduce the unevenness of the nanotopology, it is preferable to set the hydrogen flow rate (s l m) / source gas flow rate (s I m) to 5 or more. In this case, the nanotopology of the second main surface can be about 10 nm or less. In addition, the upper limit value of the ratio of the hydrogen gas flow rate to the raw material gas flow rate is not particularly limited, but the upper limit value is limited depending on the specifications of the apparatus, for example, the hydrogen flow rate (slm) / the raw material gas flow rate. (Slm) should be 9 or less.
なお、 通常のェピタキシャル成長に用いられるチャンバ一であれば、 本発 明の水素ガスの流量と原料ガス流量との比の規定をそのまま適用することが できる。  In the case of a chamber used for normal epitaxial growth, the ratio of the hydrogen gas flow rate to the raw material gas flow rate according to the present invention can be applied as it is.
[0035] また、 チャンバ一の容量が異なる他のタイプのェピタキシャル成長装置で も、 同様の結果が得られた。 実施例  [0035] Similar results were obtained with other types of epitaxial growth apparatuses having different chamber capacities. Example
[0036] 以下、 本発明の実施例を示して本発明をより具体的に説明するが、 本発明 はこれらに限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples of the present invention. However, the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
実験と同様に、 図 5に示した手順でェピタキシャルシリコンゥェ一ハを製 造した。  Similar to the experiment, an epitaxial silicon wafer was manufactured according to the procedure shown in Fig. 5.
[0037] シリコンゥェ一ハとして、 直径 300mm、 面方位 (1 00) の p型シリ コン単結晶ゥエーハを準備し (a) 、 RCA洗浄を行った (b) 。  [0037] As a silicon wafer, a p-type silicon single crystal wafer having a diameter of 300 mm and a plane orientation (100) was prepared (a) and subjected to RCA cleaning (b).
[0038] シリコンゥェ一ハを図 3に示したような、 多数の貫通孔を有するサセプタ を具備するェピタキシャル成長装置に搬入した (c) 。 また、 搬入時の温度 は 700°Cであった。 次に、 60 s I mの流量で水素ガスをチャンバ一内に 導入しつつ 1 1 30°Cまで 45秒間で昇温したのち、 1 1 30°Cで 1分間水 素処理した (d) 。 次に、 キャリア水素ガスを 80 s I mの流量で流しなが らトリクロロシランを 1 6 s I mの流量でチャンバ一内に導入して 1 1 30 °Cのまま 1 20秒間ェピタキシャル成長を行った (e) 。 このとき、 水素流 量 (s I m) /原料ガス流量 (s l m) はおよそ 5になる。 [0038] The silicon wafer was loaded into an epitaxial growth apparatus having a susceptor having a large number of through holes as shown in Fig. 3 (c). In addition, the temperature at loading Was 700 ° C. Next, while hydrogen gas was introduced into the chamber at a flow rate of 60 s I m, the temperature was raised to 1 1300 ° C for 45 seconds, and then hydrogen treatment was performed at 1 1300 ° C for 1 minute (d). Next, while flowing carrier hydrogen gas at a flow rate of 80 s I m, trichlorosilane was introduced into the chamber at a flow rate of 16 s I m and maintained at 1 1 30 ° C for 120 seconds for epitaxial growth. Went (e). At this time, the hydrogen flow rate (sI m) / source gas flow rate (slm) is approximately 5.
[0039] このようにして製造したェピタキシャルシリコンゥェ一ハの第二主表面の ナノ トポロジーの画像から、 第二主表面のどの領域においても、 ナノ トポロ ジ一の凹凸として測定された領域はほとんどなかった。 また、 目視ではサセ プタ貫通孔に対応する跡は全く観察されなかった。 [0039] From the image of the nanotopology of the second main surface of the epitaxial silicon wafer manufactured as described above, the region measured as the unevenness of the nanotopology in any region of the second main surface is There was almost no. In addition, no traces corresponding to the through-holes of the acceptor were visually observed.
[0040] (実施例 2) [0040] (Example 2)
実施例 1 と同様に、 ただし、 ェピタキシャル成長工程におけるキャリア水 素ガスの流量を 70 s I mとしてェピタキシャルシリコンゥェ一ハの製造を 行った。 このとき、 水素流量 (s l m) /原料ガス流量 (s l m) はおよそ 4. 38になる。  As in Example 1, however, an epitaxial silicon wafer was manufactured with a carrier hydrogen gas flow rate of 70 s I m in the epitaxial growth process. At this time, the hydrogen flow rate (s l m) / source gas flow rate (s l m) is approximately 4.38.
このようにして製造したェピタキシャルシリコンゥェ一ハの第二主表面の ナノ トポロジーの画像から、 第二主表面のどの領域においても、 ナノ トポロ ジ一の凹凸として測定された領域はほとんどなかった。 また、 目視ではサセ プタ貫通孔に対応する跡は全く観察されなかった。  From the image of the nanotopology of the second main surface of the epitaxial silicon wafer manufactured in this way, there was almost no area measured as the unevenness of the nanotopology in any region of the second main surface. . In addition, no traces corresponding to the through-holes of the acceptor were visually observed.
[0041] (比較例 1 ) [0041] (Comparative Example 1)
実施例 1 と同様に、 ただし、 ェピタキシャル成長工程におけるキャリア水 素ガスの流量を 60 s I mとしてェピタキシャルシリコンゥェ一ハの製造を 行った。 このとき、 水素流量 (s l m) /原料ガス流量 (s l m) はおよそ 3. 75になる。  As in Example 1, however, an epitaxial silicon wafer was manufactured with a carrier hydrogen gas flow rate of 60 s I m in the epitaxial growth process. At this time, the hydrogen flow rate (s l m) / source gas flow rate (s l m) is approximately 3.75.
このようにして製造したェピタキシャルシリコンゥェ一ハの第二主表面の ナノ トポロジーの画像から、 第二主表面の周縁部にナノ トポロジーの凹凸と して測定された領域が現れた。 また、 目視によって第二主表面の周縁部の、 サセプタの貫通孔に対応する箇所の一部にわずかな凹凸が観察された。 From the image of the nanotopology of the second main surface of the epitaxial silicon wafer manufactured in this way, The measured area appeared. In addition, a slight unevenness was observed visually at a part of the peripheral portion of the second main surface corresponding to the through hole of the susceptor.
[0042] (比較例 2 ) [0042] (Comparative Example 2)
実施例 1 と同様に、 ただし、 ェピタキシャル成長工程におけるキャリア水 素ガスの流量を 4 0 s I mとしてェピタキシャルシリコンゥェ一ハの製造を 行った。 このとき、 水素流量 (s l m ) /原料ガス流量 (s l m ) はおよそ 2 . 5になる。  As in Example 1, however, an epitaxial silicon wafer was manufactured with a carrier hydrogen gas flow rate of 40 s I m in the epitaxial growth step. At this time, the hydrogen flow rate (s l m) / source gas flow rate (s l m) becomes approximately 2.5.
このようにして製造したェピタキシャルシリコンゥェ一ハの第二主表面の ナノ トポロジーの画像から、 第二主表面の周縁部にナノ トポロジーの凹凸と して測定された領域が比較例 1よりも広がった。 また、 目視によって第二主 表面の周縁部の、 サセプタの貫通孔に対応する箇所の多くにわずかな凹凸が 観察された。  From the image of the nanotopology of the second main surface of the epitaxial silicon wafer manufactured in this way, the area measured as nanotopology on the periphery of the second main surface is larger than that of Comparative Example 1. Spread. In addition, a slight unevenness was observed in many places corresponding to the through holes of the susceptor on the periphery of the second main surface by visual inspection.
[0043] 以上の結果より、 本発明の、 第二主表面にナノ トポロジーの凹凸がほとん ど形成されないという効果が明らかに得られた。 [0043] From the above results, the effect of the present invention that almost no nanotopology irregularities were formed on the second main surface was clearly obtained.
[0044] なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態 は単なる例示であり、 本発明の特許請求の範囲に記載された技術的思想と実 質的に同一な構成を有し、 同様な作用効果を奏するものは、 いかなるもので あっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is merely an example, and any structure that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect may be used. It is included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1 ] 少なくとも、 チャンバ一内に配置され、 シリコンゥエーハが載置される座 ぐり部を有するサセプタの上面に、 前記シリコンゥエーハを、 その第二主表 面をサセプタに対向させて載置し、 前記チャンバ一内に水素ガスを流して加 熱する水素処理を行つて前記シリコンゥエーハの自然酸化膜を除去する自然 酸化膜除去工程と、 前記チャンバ一内に少なくとも原料ガスと水素ガスとを 流すとともに加熱して前記シリコンゥェ一ハの第一主表面上にェピタキシャ ルシリコン層を成長させるェピタキシャル成長工程とを含むェピタキシャル シリコンゥェ一ハの製造方法において、  [1] At least the silicon wafer is placed on the upper surface of a susceptor that is disposed in the chamber and has a counterbore portion on which the silicon wafer is placed, with the second main surface facing the susceptor. A natural oxide film removing step of removing a natural oxide film of the silicon wafer by performing a hydrogen treatment in which a hydrogen gas is flowed and heated in the chamber; and at least a source gas and a hydrogen gas in the chamber And an epitaxial growth step of growing an epitaxial silicon layer on the first main surface of the silicon wafer by flowing and heating the silicon wafer,
前記サセプタの座ぐり部に、 多数の貫通孔が形成されているサセプタを用 し、、 該サセプタ上に載置された前記シリコンゥェ一ハの第二主表面側が、 前 記水素処理の際にその全面において前記水素ガスと接触するようにして水素 処理を行い、 前記ェピタキシャル成長工程において流す水素ガスの流量と原 料ガスの流量との比を、 水素流量 (s l m ) /原料ガス流量 (s I m ) ≥4 として前記ェピタキシャルシリコン層の成長を行うことを特徴とするェピタ キシャルシリコンゥェ一ハの製造方法。  A susceptor in which a number of through holes are formed is used in the counterbore portion of the susceptor, and the second main surface side of the silicon wafer placed on the susceptor is removed during the hydrogen treatment. Hydrogen treatment is performed so that the entire surface is in contact with the hydrogen gas, and the ratio between the flow rate of the hydrogen gas and the flow rate of the raw material gas in the epitaxial growth process is determined by the following formula: hydrogen flow rate (slm) m) A method of manufacturing an epitaxial silicon wafer, wherein the epitaxial silicon layer is grown as ≥4.
[2] 前記多数の貫通孔が、 前記サセプタの座ぐり部に均等に配置されているサ セプタを用いることを特徴とする請求項 1に記載のェピタキシャルシリコン ゥエーハの製造方法。 [2] The method for producing an epitaxial silicon wafer according to [1], wherein a susceptor in which the plurality of through-holes are evenly arranged in a spot facing portion of the susceptor is used.
[3] 請求項 1または請求項 2に記載の方法により製造されたェピタキシャルシ リコンゥェ一ハであって、 前記第二主表面におけるナノ トポロジーが 1 2 η m以下であることを特徴とするェピタキシャルシリコンゥェ一ハ。 [3] An epitaxial silicon wafer manufactured by the method according to claim 1 or claim 2, wherein the nanotopology on the second main surface is 1 2 ηm or less. Pitaxic silicon wafer.
PCT/JP2007/001143 2006-10-27 2007-10-19 Method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer WO2008050476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006292577A JP5140990B2 (en) 2006-10-27 2006-10-27 Epitaxial silicon wafer manufacturing method
JP2006-292577 2006-10-27

Publications (1)

Publication Number Publication Date
WO2008050476A1 true WO2008050476A1 (en) 2008-05-02

Family

ID=39324289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001143 WO2008050476A1 (en) 2006-10-27 2007-10-19 Method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer

Country Status (2)

Country Link
JP (1) JP5140990B2 (en)
WO (1) WO2008050476A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339591B1 (en) * 2012-01-13 2013-12-10 주식회사 엘지실트론 Susceptor
SE536605C2 (en) * 2012-01-30 2014-03-25 Culture of silicon carbide crystal in a CVD reactor using chlorination chemistry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324625A (en) * 1991-04-24 1992-11-13 Toshiba Mach Co Ltd Vapor phase growth device
JP2003229370A (en) * 2001-11-30 2003-08-15 Shin Etsu Handotai Co Ltd Susceptor, vapor phase growth device, method of manufacturing epitaxial wafer, and epitaxial wafer
JP2003532612A (en) * 2000-11-29 2003-11-05 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Epitaxial silicon wafer without autodoping and backside halo
JP2005020000A (en) * 2003-06-26 2005-01-20 Siltronic Ag Manufacturing method for susceptor for carrying semiconductor wafer and semiconductor wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324625A (en) * 1991-04-24 1992-11-13 Toshiba Mach Co Ltd Vapor phase growth device
JP2003532612A (en) * 2000-11-29 2003-11-05 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Epitaxial silicon wafer without autodoping and backside halo
JP2003229370A (en) * 2001-11-30 2003-08-15 Shin Etsu Handotai Co Ltd Susceptor, vapor phase growth device, method of manufacturing epitaxial wafer, and epitaxial wafer
JP2005020000A (en) * 2003-06-26 2005-01-20 Siltronic Ag Manufacturing method for susceptor for carrying semiconductor wafer and semiconductor wafer

Also Published As

Publication number Publication date
JP2008105914A (en) 2008-05-08
JP5140990B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP4492840B2 (en) Improved receptor for use in chemical vapor deposition processes.
JP5158093B2 (en) Vapor growth susceptor and vapor growth apparatus
KR100828622B1 (en) Epitaxially coated silicon wafer
US7659207B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafer
US8372298B2 (en) Method for producing epitaxially coated silicon wafers
EP1287188B1 (en) Epitaxial silicon wafer free from autodoping and backside halo
WO2012066752A1 (en) Susceptor and method of manufacturing epitaxial wafer
TWI453801B (en) Verfahren zur herstellung einer halbleiterscheibe aus silizium mit einer epitaktisch abgeschiedenen schicht
TW201005803A (en) Silicon epitaxial wafer and method for manufacturing the same
JP4292872B2 (en) Manufacturing method of silicon epitaxial wafer
JP5195370B2 (en) Epitaxial wafer manufacturing method
TWI626730B (en) Method of manufacturing epitaxial wafer
JP2013123004A (en) Method for manufacturing silicon epitaxial wafer
JP2012019095A (en) Semiconductor device manufacturing method and substrate processing apparatus
WO2008050476A1 (en) Method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer
JP2010040574A (en) Production process of epitaxial wafer, and epitaxial wafer
CN105671631B (en) Method for cleaning back surface of 200mm-300mm epitaxial equipment base in situ
CN113913926A (en) Recovery method of epitaxial reaction chamber, epitaxial growth device and epitaxial wafer
JP2001035794A (en) Method and device for manufacturing semiconductor device
JP5206613B2 (en) Epitaxial wafer susceptor, manufacturing method thereof, and epitaxial growth apparatus using the same
KR102368657B1 (en) Method for measuring defect of silicon wafer and wafer
JP4591824B2 (en) Susceptor
KR20090119724A (en) Process and apparatus for treating wafers
CN117265654A (en) Epitaxial growth method and epitaxial wafer
TW202022174A (en) Process for producing an epitaxially coated semiconductor wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07827922

Country of ref document: EP

Kind code of ref document: A1