Beschreibung
Titel
Injektor zur Einspritzung von Kraftstoff in Brennräume von Brennkraftmaschinen
Stand der Technik
Die Erfindung betrifft einen Injektor nach dem Oberbegriff des Anspruches 1.
Die EP 1 612 403 Al beschreibt einen Common-Rail-Injektor mit einem in axialer Richtung druckausgeglichenen Steuerventil zum Sperren und Öffnen eines Kraftstoffablaufweges aus einer Steuerkammer. Mittels des Steuerventils kann der Kraftstoffdruck in- nerhalb der Steuerkammer beeinflusst werden. Die Steuerkammer wird dabei über einen Druckkanal mit Kraftstoff aus einem mit einem Kraftstoffhochdruckspeicher hydraulisch verbundenen Druckraum versorgt. Durch Variation des Kraftstoffdruckes innerhalb der Steuerkammer wird eine Düsennadel zwischen einer Öffnungs- Stellung und einer Schließstellung verstellt, wobei die Düsennadel in ihrer Öffnungsstellung den Kraftstofffluss in den Brennraum einer Brennkraftmaschine freigibt. Das Steuerventil weist eine in axialer Richtung mittels eines Elektromagnetantriebes verstellbare Ventilhülse auf, die mit einer ortsfesten, konischen Ventilsitzfläche dichtend zusammenwirkt. Beim Langzeiteinsatz des bekannten Injektors sind Verschleißerscheinungen im Bereich des Ventilsitzes zu beobachten. Durch den Sitzverschleiß bildet sich eine Kreisringfläche am Ventilsitz sowie an der Ventilhülse aus, was dazu führt, dass das Steuerventil nicht mehr druckausgeglichen ist und die Öffnungscharakteristik des Steuerventils über die Lebensdauer des Injektors starken Änderungen unterliegt. Das Öffnungsverhalten des Steuerventils wird
im Laufe der Zeit stark druckabhängig, was zu deutlichen Änderungen der Einspritzmengen führt.
Offenbarung der Erfindung Technische Aufgabe
Der Erfindung liegt daher die Aufgabe zugrunde, einen Injektor mit einem Steuerventil vorzuschlagen, dessen Öff- nungscharakteristik über seine Lebensdauer zumindest im Wesentlichen konstant bleibt.
Technische Lösung
Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Zudem fallen in den Rahmen der Erfindung alle Kombinationen aus zumindest zwei der in der Beschreibung, der Zeichnung und/oder den Ansprüchen offenbarten Merkmale.
Der Erfindung liegt der Gedanke zugrunde, anstatt eines erhabenen, beispielsweise konischen Ventilsitzes einen als Flachsitz ausgebildeten Ventilsitz mit einer ebenen Ventilsitzfläche vor- zusehen, wobei die ebene Ventilsitzfläche dichtend mit einer stirnseitigen Umlaufkante der Ventilhülse des Steuerventils zusammenwirkt. Dabei erstreckt sich die Umlaufkante von der Ventilhülse in axialer Richtung. Bei geschlossenem Steuerventil wird die Ventilhülse mit ihrer stirnseitigen Umlaufkante gegen die ebene Ventilsitzfläche gepresst. Aufgrund der Kombination aus einer ebenen Ventilsitzfläche und der in radialer Richtung schmalen Auflagefläche (Umlaufkante) der Ventilhülse wird trotz eines nicht zu verhindernden Verschleißes sichergestellt, dass an der Ventilhülse keine Druckangriffsfläche für den Kraftstoff- druck in axialer Richtung entsteht, so dass die Öffnungscharakteristik über die Lebensdauer des Steuerventils im Wesentlichen erhalten bleibt. Um ein in axialer Richtung druckausgeglichenes
Steuerventil zu erhalten, muss die Umlaufkante, also die Auflagekante, mit der die Ventilhülse auf der ebenen Ventilsitzfläche aufliegt, vom Innenumfang der Ventilhülse gebildet werden. Anders ausgedrückt ist der Durchmesser der Umlaufkante bei einem in axialer Richtung druckausgeglichenem Steuerventil gleich dem Innendurchmesser der Ventilhülse in ihrem Führungsabschnitt am die axialen Druckkräfte aufnehmenden Führungsbolzen.
Die Auswirkungen des Verschleißes auf die Öffnungscharakteristik des Steuerventils sind minimal, wenn eine sich von der Umlaufkante nach radial außen erstreckende Ringfläche mit der Ventilsitzfläche einen Winkel einschließt.
Dieser Winkel muss so bemessen werden, dass erstens der Ver- schleiß der Ventilhülse und des Ventilsitzes minimal ist und zweitens Strömungskräfte auf die Ventilhülse, die von dem bei geöffnetem Steuerventil in einen die Ventilhülse umgebenden Niederdruckraum strömenden Kraftstoff verursacht werden, minimiert werden. Es hat sich herausgestellt, dass je nachdem, für welche Einspritzdrücke der Injektor ausgelegt wird, Winkel zwischen der Ventilsitzfläche und der Ringfläche in einem Bereich zwischen etwa 0,5° und 20° geeignet sind. Bevorzugt beträgt der Winkel etwa zwischen 1° und 10°; optimale Ergebnisse werden bei einem Winkel von etwa 5° erzielt.
Zur Realisierung eines Sicherheitskonzeptes kann in Weiterbildung der Erfindung zu Lasten der axialen Druckausgeglichenheit eine definierte Druckangriffsfläche vorgesehen werden, die sicherstellt, dass bei Überschreiten eines maximalen Kraftstoff- druckes innerhalb der Ventilhülse diese von dem ebenen Ventilsitz abhebt und somit der unter einem unzulässigen Überdruck stehende Kraftstoff in einen Niederdruckraum abfließen kann. Insbesondere ist die Druckangriffsfläche derart bemessen, dass die Ventilhülse bei Kraftstoffdrücken ab 2100 bar, insbesondere ab 2200 bar entgegen der Kraft einer Ventilfeder vom Ventilsitz abhebt.
In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass die Druckangriffsfläche als umlaufende Druckstufe ausgebildet ist. Eine derartige Druckangriffsfläche ist auf einfache Weise mit hoher Genauigkeit herzustellen.
Bevorzugt ist die Umlaufkante, mit der die Ventilhülse auf der ebenen Ventilsitzfläche aufliegt, mit radialem Abstand zu der an dem Führungsbolzen geführten Innenfläche der Ventilhülse angeordnet. In einem Bereich zwischen dieser Innenfläche und der Um- laufkante befindet sich die bevorzugt als umlaufende Druckstufe ausgebildete Druckangriffsfläche .
Winkelfehler zwischen Ventilhülse und ebenem Ventilsitz werden minimiert, wenn der Führungsbolzen einstückig mit einem den Ven- tilsitz bildenden bzw. aufweisenden Bauteil ausgebildet ist. Dabei erstreckt sich der Führungsbolzen von einem Bereich radial innerhalb der ebenen Ventilsitzfläche in axialer Richtung in die Ventilhülse hinein.
Winkelfehler zwischen Ventilhülse und Ventilsitzfläche können weiterhin dadurch verringert werden, dass die Ventilhülse in Ausgestaltung der Erfindung einstückig mit einer Ankerplatte des als Elektromagnetantriebs ausgebildeten Aktuators ausgebildet ist.
Mit Vorteil verläuft der Kraftstoffablaufweg durch das den Ventilsitz aufweisende Bauteil in axialer Richtung in den Führungsbolzen hinein und von dort in radialer Richtung aus diesem in einen Ringraum innerhalb der Ventilhülse. Von dort aus kann der Kraftstoff bei vom Ventilsitz abgehobener Ventilhülse in radialer Richtung in einen Niederdruckraum strömen.
Kurze Beschreibung der Zeichnungen
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung. Diese zeigt in:
Fig. 1: eine schematische Schnittdarstellung eines Injektors,
Fig. 2: eine mögliche Ausgestaltung eines Details aus Fig. 1 und
Fig. 3: eine alternative Ausgestaltung des Details aus Fig. 1.
Ausführungsformen der Erfindung
In den Figuren sind gleiche Bauteile und Bauteile mit gleichen Funktionen mit den gleichen Bezugszeichen gekennzeichnet.
In Fig. 1 sind schematisch die für die Steuerung wesentlichen Teile eines Common-Rail-Injektors 1 dargestellt. Innerhalb eines Düsenkörpers 2 ist eine längliche Düsennadel 3 in axialer Richtung beweglich geführt. Die Düsennadel 3 weist an ihrer nicht gezeigten Nadelspitze eine Schließfläche auf, mit welcher sie in dichte Anlage an einem innerhalb des Düsenkörpers 3, ebenfalls nicht gezeigten, Nadelsitz bringbar ist. Wenn die Düsennadel 3 am Nadelsitz anliegt, ist der Kraftstoffaustritt aus einer nicht dargestellten Düsenlochanordnung gesperrt. Ist sie dagegen vom Nadelsitz angehoben, kann Kraftstoff aus einem Druckraum 4 in axialer Richtung entlang der Düsennadel 3 durch die Düsenlochanordnung strömen und dort im Wesentlichen unter dem Hochdruck (Rail-Druck) stehend in einen Brennraum gespritzt werden. Der grundsätzliche Aufbau eines Injektors 1 ist bekannt. Diesbezüg- lieh wird auf die DE 100 24 703 Al verwiesen.
Der Injektor 1 weist eine Drosselplatte 5 auf, die sich hülsen- förmig in der Zeichnungsebene nach unten in den Düsenkörper 2 hinein erstreckt. Von dem hülsenförmigen Abschnitt der Drossel- platte 5 und von der Stirnseite 6 der Düsennadel 3 wird eine Steuerkammer 7 begrenzt. Die Steuerkammer 7 ist über einen Druckkanal 8 mit Zulaufdrossel 9 mit dem Druckraum 4 verbunden,
welcher wiederum über eine nicht dargestellte Versorgungsleitung mit einem Kraftstoff-Hochdruckspeicher verbunden ist. Über den Druckkanal 8 kann somit unter Hochdruck stehender Kraftstoff in die Steuerkammer 7 fließen. Aus der Steuerkammer 7 heraus führt in axialer Richtung ein Kraftstoffablaufweg 10 mit Ablaufdrossel 11. Über den Kraftstoffablaufweg 10 kann Kraftstoff aus der Steuerkammer 7 bei geöffnetem Steuerventil 12 in einen Niederdruckraum 13 strömen. Die Durchflussquerschnitte der Zulaufdros- sel 9 und der Ablaufdrossel 11 sind dabei so aufeinander abge- stimmt, dass der Zufluss durch den Druckkanal 8 schwächer als der Abfluss durch den Kraftstoffablaufweg 10 ist und demnach bei geöffnetem Steuerventil 12 ein Nettoabfluss von Kraftstoff aus der Steuerkammer 7 resultiert. Der daraus resultierende Druckabfall in der Steuerkammer 7 bewirkt, dass der Betrag der Schließ- kraft unter den Betrag der Öffnungskraft sinkt und die Düsennadel 3 von ihrem Nadelsitz abhebt.
Der Kraftstoffablaufweg 10 führt durch die Drosselplatte 5 mit Ablaufdrossel 11 in ein in der Zeichnungsebene darüber angeord- netes Bauteil 14. Das Bauteil 14 weist einen Ventilsitz 22
(Flachsitz) mit einer ebenen Ventilsitzfläche 15 des Steuerventils 12 auf, wobei eine Ventilhülse 16 des Steuerventils 12 bei geschlossenem Steuerventil dichtend auf der Ventilsitzfläche 15 aufliegt. Hierzu ist die Ventilhülse 16 von einer Ventilfeder 17 in axialer Richtung auf die Ventilsitzfläche 15 federkraftbeaufschlagt. Die Ventilfeder 17 stützt sich in der Zeichnungsebene oben an einem Injektorkörper 18 und am entgegengesetzten Ende an einem Federführungsteil 19 ab, welches wiederum auf der Ventilhülse 16 aufliegt. Die Ventilhülse 15 ist in axialer Richtung von einem Führungsbolzen 25 durchsetzt, an dessen Außenfläche sie geführt ist. Der Führungsbolzen 25 ist dabei einstückig mit einem zylinderförmigen Abschnitt des Bauteils 14 ausgebildet.
Die Ventilfeder 17 ist innerhalb eines Elektromagneten 20 ange- ordnet. Bei Bestromung des Elektromagneten 20 wird eine einstückig mit der Ventilhülse 16 ausgebildete Ankerplatte 21 axial in Richtung Elektromagnet 20 bewegt, wodurch die Ventilhülse 16
entgegen der Federkraft der Ventilfeder 17 von der Ventilsitzfläche 15 abhebt, wodurch wiederum der Kraftstofffluss aus der Steuerkammer 7 über den Kraftstoffablaufweg 10 in den Niederdruckraum 13 ermöglicht wird. Von dort aus kann der Kraftstoff über eine nicht gezeigte Rücklaufleitung zu einem Vorratsbehälter abfließen. Der Druck innerhalb des Niederdruckraumes beträgt je nach Betriebszustand etwa zwischen 0 und 10 bar, wohingegen der Kraftstoffdruck innerhalb des Druckraumes etwa zwischen 1800 und 2000 bar beträgt.
Wie aus Fig. 2 ersichtlich ist die Ventilsitzfläche 15 des Ventilsitzes 22 eben ausgeformt, wobei sich die Ventilsitzfläche 15 quer zur Längsmittelachse 23 der Ventilhülse 16 erstreckt. Die Ventilhülse 16 liegt mit einer sich in axialer Richtung erstre- ckenden, stirnseitigen Umlaufkante 24 bei geschlossenem Steuerventil 12 an der Ventilsitzfläche 15 an. Die Umlaufkante 24 ist dabei am Innendurchmesser dl der Ventilhülse 16 ausgebildet. Anders ausgedrückt, entspricht der Durchmesser d2 der Ventilhülse 16 an der Umlaufkante 24 dem Durchmesser dl der Ventilhülse 16 im Führungsabschnitt am Führungsbolzen 25. Dadurch, dass der
Durchmesser d2 dem Durchmesser dl entspricht, ist das Steuerventil 12 gemäß Fig. 2 in axialer Richtung druckausgeglichen. Dies bedeutet, dass auf die Ventilhülse 16 in axialer Richtung keine oder nur minimale Druckkräfte wirken.
An die Umlaufkante 24 schließt in radialer Richtung nach außen eine konische Ringfläche 27 an. Diese schließt mit der ebenen Ventilsitzfläche 15 im gezeigten Ausführungsbeispiel einen Winkel OC von etwa 5° ein.
Ferner ist aus Fig. 2 zu erkennen, dass der Kraftstoffablaufweg von einem axialen Abschnitt in einen radialen Abschnitt übergeht, welcher in einem Ringraum 26 mündet, der einerseits von dem Führungsbolzen 25 und andererseits von der Ventilhülse 16 begrenzt wird.
Der Injektor 1 gemäß Fig. 1 kann auch wie in Fig. 3 dargestellt ausgebildet werden. Auch bei dieser Ausführungsvariante ist eine ebene Ventilsitzfläche 15 vorgesehen. Im Unterschied zu dem Ausführungsbeispiel gemäß Fig. 2 entspricht der Durchmesser d2 der Ventilhülse 16 im Bereich der Umlaufkante 24 nicht dem Durchmesser dl der Ventilhülse 16 im Führungsbereich unmittelbar radial außerhalb des Führungsbolzens 25. Der Durchmesser d2 ist geringfügig größer als der Durchmesser dl, wodurch eine als Druckstufe ausgebildete, ringförmige Druckangriffsfläche 28 an der Ventil- hülse 16 gebildet ist. Diese Druckangriffsfläche 28 verhindert eine Beschädigung oder Zerstörung des Injektors bei einer Überschreitung eines maximal zulässigen Kraftstoffdruckes innerhalb des Steuerventils 12. Die Druckangriffsfläche 28 ist derart bemessen, dass die Ventilhülse 16 bei Erreichen eines unzulässigen Druckniveaus von beispielsweise etwa 2200 bar vom Ventilsitz 22 abhebt und damit Kraftstoff in den Niederdruckraum 13 abströmen kann .
In gleicher Weise wie bei dem Ausführungsbeispiel gemäß Fig. 2 schließt auch bei dem Ausführungsbeispiel gemäß Fig. 3 eine radial äußere Ringfläche 27 an die Umlaufkante 24 an, die mit der ebenen Ventilsitzfläche 15 bzw. ihrer gedachten Verlängerung einen Winkel OC von etwa 5° einschließt.