WO2008048136A1 - Method for checking a film thickness during the application thereof by evaporating in a vacuum chamber - Google Patents

Method for checking a film thickness during the application thereof by evaporating in a vacuum chamber Download PDF

Info

Publication number
WO2008048136A1
WO2008048136A1 PCT/RU2006/000643 RU2006000643W WO2008048136A1 WO 2008048136 A1 WO2008048136 A1 WO 2008048136A1 RU 2006000643 W RU2006000643 W RU 2006000643W WO 2008048136 A1 WO2008048136 A1 WO 2008048136A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelengths
wavelength
transmittance
reflection
difference
Prior art date
Application number
PCT/RU2006/000643
Other languages
French (fr)
Russian (ru)
Inventor
Konstantin Petrovich Kornev
Irina Pavlovna Korneva
Original Assignee
Federalnoe Gosudarstvennoe Obrazovatelnoe Uchrezhdenie Vyschego Professionalnogo Obrazovaniya 'rossysky Gosudarstvenny Universitet Im. I. Kanta'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federalnoe Gosudarstvennoe Obrazovatelnoe Uchrezhdenie Vyschego Professionalnogo Obrazovaniya 'rossysky Gosudarstvenny Universitet Im. I. Kanta' filed Critical Federalnoe Gosudarstvennoe Obrazovatelnoe Uchrezhdenie Vyschego Professionalnogo Obrazovaniya 'rossysky Gosudarstvenny Universitet Im. I. Kanta'
Publication of WO2008048136A1 publication Critical patent/WO2008048136A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer

Definitions

  • the present invention relates to the field of measurement technology and can be used to control the thickness of the film during its application by deposition in a vacuum chamber.
  • a known method of controlling the thickness of the films forming the multilayer optical coating in the process of deposition by vacuum deposition on a substrate (Katsnelson L. B. Methods for controlling the optical thickness of interference films deposited in vacuum. OMP N ° 4, 1979, p. 51), based on the photoelectric principle, according to which the thickness of the films is judged by the known dependence of the transmittance or reflection of the layer on the optical thickness.
  • the control is carried out by monochromatic flow at a wavelength of ⁇ o , fixing the moment of reaching the extremum by the transmittance (or reflection) of the sample with the controlled film.
  • Devices implementing this method include a radiation source, an otic system, a monochromatization channel, and a photo-recording system.
  • the application of the next layer is completed when the specified difference becomes equal to zero.
  • the advantages of the two-wave method are due to the fact that the control results are not affected by the instability in time of the brightness of the radiation source, and the change in time of the sensitivity of the photo-recording system can be compensated.
  • the use of the two-wave method by 1-2 orders of magnitude increases the sensitivity of the control.
  • the disadvantage of this method is that it does not allow you to control the values of the film parameters at a wavelength ⁇ . This can lead to the fact that in the presence of temperature and time drift of the parameters of the photodetector and the measuring circuit, the difference of the two signals will reach zero at wavelengths ⁇ 3 and ⁇ 4 that do not satisfy relation (2).
  • the change in the values of ⁇ ] and ⁇ 2 means that the extremum will not be fixed at a given wavelength ⁇ 0 , but at some other - ⁇ ' o . This will lead to an error in determining the optical layer thickness at ⁇ .
  • FIG 1 shows the dependence of the reflection coefficients R of the film on the deposition time for three wavelengths: ⁇ , ⁇ t and X 2 satisfying relation (2).
  • the aim of the proposed method is to increase the accuracy of control of the thickness of the sprayed film.
  • This goal is achieved in that the control of the film thickness of the multilayer optical coating during deposition in a vacuum chamber is carried out at three wavelengths ⁇ 0 , ⁇ ] and X 2 satisfying the ratio: where ⁇ 0 is the control wavelength for the sprayed film (multilayer coating);
  • the difference in the photoelectric signals is recorded, and for the third wavelength ⁇ o, the transmittance (reflection) coefficient is found to be extremum, while the signal to terminate the sputtering process is obtained while the extremum of the reflection (absorption) coefficient is reached at the wavelength ⁇ o and equal to zero the difference of reflection (absorption) coefficients at wavelengths ⁇ j and ⁇ 2 .
  • Fig.2 schematically shows the dependence of the reflection coefficient on the wavelength for the film thickness at which is achieved extremum at wavelength V At wavelengths ⁇ i and X 2, the magnitude of the reflection coefficient is the same, and their difference is zero
  • Fig. 3 shows a device designed to implement the proposed method.
  • the method is implemented as follows.
  • the thickness control is carried out during the deposition of the film in vacuum.
  • the values of transmittance (reflection) are measured for three wavelengths ⁇ réelle, ⁇ i and X 2 satisfying relation (2).
  • the transmittance (reflection) values are controlled, their difference is found at the wavelengths ⁇ i and X 2 , and the coefficient extremality is checked for ⁇ 0 . If the difference between the coefficients for ⁇ ] and X 2 is 0, and the coefficient for ⁇ o reaches an extreme value, the layer sputtering process is completed.
  • a device that contains: a radiation source, an optical system, a spectral device, and a photo-recording system (controller), a display and a control circuit (Fig.Z).
  • the light from the source 1 is directed to a focusing lens 2, creating a parallel beam that passes through the film (or through a multilayer optical coating) 3 sprayed onto the substrate.
  • the light transmitted through the film with the substrate, the lens 4 is focused on the entrance slit 5 of the spectral device.
  • a multichannel monochromator with one dispersing element which allows you to get at the output of (9) three beams of light with wavelengths ⁇ 0 , ⁇ j and X 2 satisfying relation (2).
  • the emerging beams with a lens 10 are focused on photodetectors 11, 12 and 13, the signal from which is fed to a recording circuit (controller) 14.
  • the signal from the controller is fed to a display 15 and a control circuit 16 that processes a signal to stop the spraying process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Spray Control Apparatus (AREA)

Abstract

The invention relates to instrumentation engineering and can be used for controlling a film thickness during the application thereof by evaporating in a vacuum chamber. The inventive method consists in controlling the thickness of films of a multi-layer optical coating during the application thereof by evaporating in a vacuum chamber on three λ0, λ1 and λ2 wavelengths, which satisfy the relationship 1/λ1 +1/λ2 = 2/λ0, wherein λ0 is the reference wavelength for a evaporated film (of a multi-layer coating), in recording the difference of photoelectric signals for the λ1 and λ2 wavelengths, in determining the extremum of a transmittance (reflectance) factor for the third λ0 wavelength and in receiving a signal for interrupting the deposition process when the extremum of a transmittance (reflectance) factor on the wavelength λ0 and the equal-zero difference of the transmittance (reflectance) factors on the λ1 and λ2 wavelengths is simultaneously attained. Said method makes it possible to increase the checking accuracy of the evaporated film thickness.

Description

СПОСОБ КОНТРОЛЯ ТОЛЩИНЫ ПЛЕНКИ В ПРОЦЕССЕ ЕЕ НАНЕСЕНИЯ ОСАЖДЕНИЕМ В ВАКУУМНОЙ КАМЕРЕ METHOD FOR FILM THICKNESS CONTROL DURING ITS APPLICATION BY DEPOSITION IN A VACUUM CAMERA
Предлагаемое изобретение относится к области контрольно- измерительной техники и может быть использовано для контроля толщины пленки в процессе ее нанесения путем осаждения в вакуумной камере.The present invention relates to the field of measurement technology and can be used to control the thickness of the film during its application by deposition in a vacuum chamber.
Известен способ контроля толщины пленок, образующих многослойное оптическое покрытие, в процессе нанесения осаждением в вакууме на подложку (Кацнельсон Л. Б. Методы контроля оптической толщины интерференционных пленок, наносимых в вакууме. О.М.П. N°4, 1979, с.51), основанный на фотоэлектрическом принципе, в соответствии с которым о толщине пленок судят по известной зависимости коэффициента пропускания или отражения слоя от оптической толщины.A known method of controlling the thickness of the films forming the multilayer optical coating in the process of deposition by vacuum deposition on a substrate (Katsnelson L. B. Methods for controlling the optical thickness of interference films deposited in vacuum. OMP N ° 4, 1979, p. 51), based on the photoelectric principle, according to which the thickness of the films is judged by the known dependence of the transmittance or reflection of the layer on the optical thickness.
Контроль осуществляют по монохроматическому потоку на длине волны λо, фиксируя момент достижения экстремума коэффициентом пропускания (или отражения) образца с контролируемой пленкой. Экстремум регистрируют, когда оптическая толщина h пленки становится равной: h =m λo/4, где m = 1,2,3, ... (1)The control is carried out by monochromatic flow at a wavelength of λo , fixing the moment of reaching the extremum by the transmittance (or reflection) of the sample with the controlled film. The extremum is recorded when the optical thickness h of the film becomes equal to: h = m λ o / 4, where m = 1,2,3, ... (1)
Устройства, реализующие этот способ, содержат источник излучения, отическую систему, канал монохроматизации и фоторегистрирующую систему.Devices implementing this method include a radiation source, an otic system, a monochromatization channel, and a photo-recording system.
Наиболее близким по технической сущности к предлагаемому является способ контроля толщины пленок многослойных оптических покрытий в процессе напыления, описанный в а.с. СССР Ns> 508666, M. кл. GOlB 11/02, опубл. 30.03.76, Бюлл.Ко 12.Closest to the technical nature of the proposed is a method of controlling the thickness of the films of multilayer optical coatings during the deposition process, described in A.S. USSR Ns> 508666, M. cl. GOlB 11/02, publ. 03.30.76, Bull.Co 12.
Согласно этому способу контроль ведут по двум длинам волн λi и λ2 определяемым из условия: l/ λ, + l/ λ2= l/ λo (2) при этом фиксируют разность фотоэлектрических сигналов, пропорциональных коэффициентам пропускания T (или отражения R) при λ] и λ2. Нанесение очередного слоя заканчивают, когда указанная разность становится равной нулю.According to this method, control is carried out according to two wavelengths λi and λ 2 determined from the condition: l / λ, + l / λ 2 = l / λo (2) this fixes the difference of the photoelectric signals proportional to the transmittance T (or reflection R) at λ] and λ 2 . The application of the next layer is completed when the specified difference becomes equal to zero.
Преимущества двухволнового способа обусловлены тем, что на результаты контроля не влияет нестабильность во времени яркости источника излучения, и изменение во времени чувствительности фоторегистрирующей системы может быть компенсировано. Кроме того, применение двухволнового способа на 1-2 порядка повышает чувствительность контроля.The advantages of the two-wave method are due to the fact that the control results are not affected by the instability in time of the brightness of the radiation source, and the change in time of the sensitivity of the photo-recording system can be compensated. In addition, the use of the two-wave method by 1-2 orders of magnitude increases the sensitivity of the control.
Недостатком известного способа является то, что он не позволяет контролировать значения параметров пленки на длине волны λø. Это может привести к тому, что при наличии температурного и временного дрейфа параметров фотоприемника и измерительной схемы, разность двух сигналов будет достигать нулевого значения при длинах волн λ3 и λ4, не удовлетворяющих соотношению (2) . Изменение значений λ] и λ2 означает, что экстремум будет фиксироваться не при заданной длине волны λ0, а при некоторой другой - λ'o. Это приведет к появлению ошибки в определении оптической толщины слоя при λø.The disadvantage of this method is that it does not allow you to control the values of the film parameters at a wavelength λø. This can lead to the fact that in the presence of temperature and time drift of the parameters of the photodetector and the measuring circuit, the difference of the two signals will reach zero at wavelengths λ 3 and λ 4 that do not satisfy relation (2). The change in the values of λ] and λ 2 means that the extremum will not be fixed at a given wavelength λ 0 , but at some other - λ ' o . This will lead to an error in determining the optical layer thickness at λø.
Данное обстоятельство иллюстрируется фиг.1 , на которой приведены зависимости коэффициенов отражения R пленки от времени напыления для трех длин волн: λø, λт и X2, удовлетворяющих соотношению (2). Кривая 1 - реальная кривая зависимости R(t) для длины волны λ0 = 650 нм, кривая 2 - зависимость R(t) для длины волны λi = 547 нм, кривые 3,4 - зависимость R(t) для длины волны X2 = 800 нм. Кривые 2 и 3, подбором чувствительности регистрирующей схемы, нормированы таким образом, чтобы разность коэффициентов отражения для X\ и X2 равнялась нулю, когда коэффициент отражения для λ0 достигает максимального значения (время напыления t = 160 секунд, показано стрелкой). Кривая 4 соответствует изменению чувствительности регистрирующей схемы для длины волны X2 = 800 нм на 2,5%. В этом случае кривые 2 и 4 пересекаются (те есть разность коэффициентов отражения для I1 и λ2 равна нулю) при времени напыления t = 166 секунд. Таким образом, при изменении чувствительности регистрирующей схемы на 2,5% ошибка в определении оптической толщины слоя при X0 будет равна 3,75%.This circumstance is illustrated in figure 1, which shows the dependence of the reflection coefficients R of the film on the deposition time for three wavelengths: λø, λ t and X 2 satisfying relation (2). Curve 1 is the real curve of the dependence R (t) for the wavelength λ 0 = 650 nm, curve 2 is the dependence R (t) for the wavelength λi = 547 nm, curves 3.4 is the dependence R (t) for the wavelength X 2 = 800 nm. Curves 2 and 3, by selecting the sensitivity of the recording circuit, are normalized so that the difference in reflection coefficients for X \ and X 2 is zero, when the reflection coefficient for λ 0 reaches its maximum value (deposition time t = 160 seconds, shown by the arrow). Curve 4 corresponds to a change in the sensitivity of the recording circuit for a wavelength of X 2 = 800 nm by 2.5%. In this case, curves 2 and 4 intersect (that is, the difference in reflection coefficients for I 1 and λ 2 is zero) at a deposition time of t = 166 seconds. Thus, when the sensitivity of the recording circuit is changed by 2.5%, the error in determining the optical layer thickness at X 0 will be 3.75%.
Целью предлагаемого способа является повышение точности контроля толщины напыляемой пленки.The aim of the proposed method is to increase the accuracy of control of the thickness of the sprayed film.
Поставленная цель достигается тем, что контроль толщины пленок многослойного оптического покрытия в процессе нанесения осаждением в вакуумной камере, осуществляют на трех длинах волн λ0, λ] и X2, удовлетворяющих соотношению:
Figure imgf000005_0001
где λ0 - контрольная длина волны для напыляемой пленки ( многослойного покрытия);
This goal is achieved in that the control of the film thickness of the multilayer optical coating during deposition in a vacuum chamber is carried out at three wavelengths λ 0 , λ] and X 2 satisfying the ratio:
Figure imgf000005_0001
where λ 0 is the control wavelength for the sprayed film (multilayer coating);
Причем для двух длин волн λi и X2 фиксируют разность фотоэлектрических сигналов, а для третьей - λо , находят экстремум коэффициента пропускания (отражения), при этом сигнал на прекращение процесса напыления получают при одновременном достижении экстремума коэффициента отражения (поглощения) на длине волны λо и равенства нулю разности коэффициентов отражения (поглощения) при длинах волн λj и λ 2 .Moreover, for the two wavelengths λi and X 2, the difference in the photoelectric signals is recorded, and for the third wavelength λo, the transmittance (reflection) coefficient is found to be extremum, while the signal to terminate the sputtering process is obtained while the extremum of the reflection (absorption) coefficient is reached at the wavelength λo and equal to zero the difference of reflection (absorption) coefficients at wavelengths λj and λ 2 .
Сущность предлагаемого способа поясняется рисунками, где: на фиг.2 схематично изображена зависимость коэффициента отражения от длины волны для толщины пленки, при которой достигается экстремум на длине волны V На длинах волн λi и X2 величина коэффициента отражения одинакова, а их разность равна нулю, на фиг.З представлено устройство, предназначенное для реализации предлагаемого способа.The essence of the proposed method is illustrated by drawings, where: in Fig.2 schematically shows the dependence of the reflection coefficient on the wavelength for the film thickness at which is achieved extremum at wavelength V At wavelengths λi and X 2, the magnitude of the reflection coefficient is the same, and their difference is zero, Fig. 3 shows a device designed to implement the proposed method.
Способ реализуют следующим образом.The method is implemented as follows.
Контроль толщины осуществляют в процессе напыления пленки в вакууме. При этом значения коэффициентов пропускания (отражения) измеряют для трех длин волн λо, λi и X2, удовлетворяющих соотношению (2). Длину волны λ0 задают, руководствуясь техническими условиями, в соответствии с требуемыми свойствами оптического покрытия. В свою очередь, толщина оптического покрытия должна удовлетворять соотношению: h = m λo/4, где m - целые числа (1,2,3 ... ).The thickness control is carried out during the deposition of the film in vacuum. In this case, the values of transmittance (reflection) are measured for three wavelengths λо, λi and X 2 satisfying relation (2). The wavelength λ 0 set, guided by the technical conditions, in accordance with the required properties of the optical coating. In turn, the thickness of the optical coating should satisfy the relation: h = m λ o / 4, where m are integers (1,2,3 ...).
В процессе напыления контролируют значения коэффициентов пропускания (отражения), находят их разность на длинах волн λi и X2, проверяют экстремальность коэффициента для λ0. Если разность коэффициентов для λ] и X2 равна 0, и при этом коэффициент для λо достигает экстремального значения, процесс напыления слоя завершают.In the process of spraying, the transmittance (reflection) values are controlled, their difference is found at the wavelengths λi and X 2 , and the coefficient extremality is checked for λ 0 . If the difference between the coefficients for λ] and X 2 is 0, and the coefficient for λo reaches an extreme value, the layer sputtering process is completed.
Для реализации предлагаемого способа используют устройство, которое содержит: источник излучения, оптическую систему, спектральный прибор, и фоторегистрирующую систему (контроллер), дисплей и схему управления (фиг.З). Свет от источника 1 направляется на фокусирующую линзу 2, создающую параллельный пучок, который проходит через пленку (или через многослойное оптическое покрытие) 3 напыленную на подложку. Свет, прошедший через пленку с подложкой, линзой 4 фокусируется на входную щель 5 спектрального прибора. В качестве спектрального прибора используется многоканальный монохроматор с одним диспергирующим элементом, который позволяет получить на выходе (9) три пучка света с длинами волн λ0 , λj и X2, удовлетворяющими соотношению (2). Вышедшие пучки линзой 10 фокусируются на фотоприемники 11, 12 и 13, сигнал с которых подается на регистрирующую схему (контроллер) 14. Сигнал с контроллера подается на дисплей 15 и схему управления 16, отрабатывающую сигнал на прекращение процесса напыления.To implement the proposed method using a device that contains: a radiation source, an optical system, a spectral device, and a photo-recording system (controller), a display and a control circuit (Fig.Z). The light from the source 1 is directed to a focusing lens 2, creating a parallel beam that passes through the film (or through a multilayer optical coating) 3 sprayed onto the substrate. The light transmitted through the film with the substrate, the lens 4 is focused on the entrance slit 5 of the spectral device. A multichannel monochromator with one dispersing element, which allows you to get at the output of (9) three beams of light with wavelengths λ 0 , λj and X 2 satisfying relation (2). The emerging beams with a lens 10 are focused on photodetectors 11, 12 and 13, the signal from which is fed to a recording circuit (controller) 14. The signal from the controller is fed to a display 15 and a control circuit 16 that processes a signal to stop the spraying process.
Применение этого способа позволяет более точно находить точку экстремума и, тем самым, с большей точностью определять толщину напыляемой пленки, соответствующую оптической толщине пленки, равной λo/4. The application of this method allows you to more accurately find the extremum point and, thereby, with greater accuracy to determine the thickness of the sprayed film corresponding to the optical film thickness equal to λ o / 4.

Claims

Формула изобретения Claim
1. Способ контроля толщины пленки в процессе ее нанесения осаждением в вакуумной камере путем осуществления контроля по двум длинам волн λi и λ2 , определяемым из условия 1/ λi + 1/ λ2 = 2/ λо , и фиксации разности фотоэлектрических сигналов, пропорциональных коэффициентам пропускания или отражения при λj и λ2, отличающийся тем, что контроль толщины пленок многослойного оптического покрытия осуществляют на трех длинах волн λ0, λi и X2, удовлетворяющих соотношению 1/ λj + 1/ X2 = 2/ X0 , причем, разность фотоэлектрических сигналов фиксируют для двух длин волн X\ и X2, а для третьей, λо, находят экстремум коэффициента пропускания (отражения), при этом сигнал на прекращение процесса напыления получают при одновременном достижении экстремума коэффициента отражения (поглощения) на длине волны λо и равенства нулю разности коэффициентов отражения (поглощения) при длинах волн X\ и λ2. 1. A method of controlling the thickness of a film during its deposition by deposition in a vacuum chamber by monitoring over two wavelengths λi and λ 2 determined from the condition 1 / λi + 1 / λ 2 = 2 / λo and fixing the difference of the photoelectric signals proportional to the coefficients transmittance or reflection at λj and λ 2 , characterized in that the thickness control of the films of the multilayer optical coating is carried out at three wavelengths λ 0 , λi and X 2 satisfying the ratio 1 / λj + 1 / X 2 = 2 / X 0 , moreover, the difference of the photoelectric signals is fixed for two lengths waves X \ and X 2 , and for the third, λо, they find the extremum of the transmittance (reflection), while the signal to stop the spraying process is obtained while reaching the extremum of the reflection (absorption) at a wavelength of λo and the difference of the reflection coefficients (absorption) to zero ) at wavelengths X \ and λ 2.
PCT/RU2006/000643 2006-10-18 2006-11-30 Method for checking a film thickness during the application thereof by evaporating in a vacuum chamber WO2008048136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006136761/28A RU2006136761A (en) 2006-10-18 2006-10-18 METHOD FOR FILM THICKNESS CONTROL DURING ITS APPLICATION BY DEPOSITION IN A VACUUM CAMERA
RU2006136761 2006-10-18

Publications (1)

Publication Number Publication Date
WO2008048136A1 true WO2008048136A1 (en) 2008-04-24

Family

ID=39314260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000643 WO2008048136A1 (en) 2006-10-18 2006-11-30 Method for checking a film thickness during the application thereof by evaporating in a vacuum chamber

Country Status (2)

Country Link
RU (1) RU2006136761A (en)
WO (1) WO2008048136A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201201462A1 (en) * 2012-01-10 2013-12-30 Общество С Ограниченной Ответственностью "Вмк-Оптоэлектроника" METHOD OF MEASURING THE THICKNESSES OF NANOMETER LAYERS OF A MULTILAYER COATING CONDUCTED IN ITS SPRAYING PROCESS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110938A (en) * 1978-02-20 1979-08-30 Matsushita Electric Ind Co Ltd Method and apparatus for controlling film thickness
SU1233208A1 (en) * 1984-01-02 1986-05-23 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Method of measuring thickness of multilayer polymeric film
US4645349A (en) * 1984-09-21 1987-02-24 O R C Manufacturing Co., Ltd. Method of measuring film thickness
US4909631A (en) * 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
RU2025675C1 (en) * 1992-08-06 1994-12-30 Научно-производственный концерн "Синтез" Device for measuring temperature and temperature difference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110938A (en) * 1978-02-20 1979-08-30 Matsushita Electric Ind Co Ltd Method and apparatus for controlling film thickness
SU1233208A1 (en) * 1984-01-02 1986-05-23 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Method of measuring thickness of multilayer polymeric film
US4645349A (en) * 1984-09-21 1987-02-24 O R C Manufacturing Co., Ltd. Method of measuring film thickness
US4909631A (en) * 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
RU2025675C1 (en) * 1992-08-06 1994-12-30 Научно-производственный концерн "Синтез" Device for measuring temperature and temperature difference

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENK K.H.: "TEORYA INZHENERNEGO EXPERIMENTA", part 5.4 1972, MIR, MOSCOW, pages: 146 - 148 *

Also Published As

Publication number Publication date
RU2006136761A (en) 2008-04-27

Similar Documents

Publication Publication Date Title
US8339617B2 (en) Film thickness measuring device and film thickness measuring method
US5166080A (en) Techniques for measuring the thickness of a film formed on a substrate
US4906844A (en) Phase sensitive optical monitor for thin film deposition
US8338194B2 (en) Method for the in-situ determination of the material composition of optically thin layers
JP2001516017A (en) Near-normal incidence optical assay method and system having wavelength and angular sensitivity
JPH054606B2 (en)
JPS639161B2 (en)
WO1989000779A1 (en) Apparatus for controlling laser wavelength
US8958999B1 (en) Differential detection for surface plasmon resonance sensor and method
US7684039B2 (en) Overlay metrology using the near infra-red spectral range
US6992774B2 (en) Wavelength determining apparatus and method
EP2669658B1 (en) Surface plasmon sensor and refractive index measurement method
KR20170015116A (en) Method and assembly for determining the thickness of a layer in a sample stack
WO2008048136A1 (en) Method for checking a film thickness during the application thereof by evaporating in a vacuum chamber
WO2003025496A2 (en) Optical method measuring thin film growth
JPH0431522B2 (en)
JP2010210384A (en) Refractive index meter
SU1747877A1 (en) Interference method of measurement of the semiconductor layer thickness
JP2915294B2 (en) Method and apparatus for measuring oil coating amount on metal material surface
JPH031615B2 (en)
Waldner et al. Hybrid Mode Optical Monitoring–Monochromatic and Broadband Algorithms in the same Coating Process
JP2006071381A (en) Thin film measuring device
CN112198140A (en) Liquid refractive index measuring method and device based on multilayer dielectric film interference filter
JPH08338709A (en) Device and method for measuring thickness of thin film and manufacture of optical filter
JPS59143904A (en) Monitoring method of characteristics of dielectric thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06849635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06849635

Country of ref document: EP

Kind code of ref document: A1