WO2008044539A1 - Appareil de diagnostic d'images par interférence optique et procédé de traitement associé - Google Patents

Appareil de diagnostic d'images par interférence optique et procédé de traitement associé Download PDF

Info

Publication number
WO2008044539A1
WO2008044539A1 PCT/JP2007/069259 JP2007069259W WO2008044539A1 WO 2008044539 A1 WO2008044539 A1 WO 2008044539A1 JP 2007069259 W JP2007069259 W JP 2007069259W WO 2008044539 A1 WO2008044539 A1 WO 2008044539A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
intensity distribution
unit
measurement
Prior art date
Application number
PCT/JP2007/069259
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Hirota
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Publication of WO2008044539A1 publication Critical patent/WO2008044539A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence

Definitions

  • the present invention relates to an optical coherence tomographic image diagnostic apparatus, and more particularly to a calibration process in an optical coherent fault image diagnostic apparatus.
  • an optical interference slice image diagnostic apparatus for diagnosing arteriosclerosis, preoperative diagnosis at the time of endovascular treatment using a high-functional force tail such as a balloon catheter, a stent, or for confirming postoperative results (OCT: Optical Coherent Tomography) is used.
  • An optical coherence tomography diagnostic apparatus divides low-coherence light output from a light source into measurement light and reference light, and emits the distal force through the optical fiber inside the catheter, and then biological tissue The reflected light reflected by the light is received by the same optical fiber, and the reflected light and the reference light are caused to interfere inside the apparatus, so that the interference intensity of the measurement light from the same optical path length as the reference light, that is, the light reflection The strength is acquired.
  • the reference light is reflected by the mirror and the position of the mirror is moved back and forth so that the optical path length of the reference light is scanned and synchronized therewith.
  • the reflection intensity distribution in the depth direction is obtained.
  • Optical coherence tomography diagnostic equipment using wavelength sweep repeatedly scans the wavelength of the emitted light, and scans the optical path length of the reference light from the frequency distribution of the interfering light and obtains the measurement light and A reflection intensity distribution in the measurement light emission direction (depth direction) is obtained based on a point having the same optical path difference from the reference light.
  • the optical coherence tomography diagnostic apparatus is generally configured to obtain a reflection intensity distribution in the depth direction in the living body by causing the measurement light and the reference light to interfere with each other. Therefore, it is necessary to appropriately calibrate the optical path difference between the measurement light and the reference light. Ie depth When displaying the reflected intensity distribution in the direction, it is necessary to adjust the optical path length corresponding to the predetermined reference point (zero point). Normally, the catheter can be replaced each time it is used to prevent infection. There are individual differences in the catheter, and the optical path length (ie, optical fiber length) from the light source inside the device to the exit position of the catheter tip is different. It is a force that is small but has variations.
  • the optical path difference was calibrated while viewing the cross-sectional image.
  • the present invention has been made in view of the above problems, and in an optical coherence tomography diagnostic apparatus, calibration of an optical path difference between measurement light and reference light can be performed accurately and easily. Like this.
  • an optical coherence tomography diagnostic apparatus has the following configuration. That is,
  • the measurement light While irradiating the measurement light to the measurement object, the measurement light is connected to an optical probe that receives the reflected light from the measurement object, and the light output from the light source is divided into the measurement light and the reference light, and the reflected light and An optical coherence tomography diagnostic apparatus that obtains a reflection intensity distribution in an emission direction of the optical probe by causing interference with the reference light and forms an image of the measurement object.
  • An extraction means for extracting an intensity distribution for a unit; and a predetermined reference position in the emission direction of the optical probe, which is determined based on the intensity distribution extracted by the extraction means, does not match the predetermined position,
  • Recognition means for recognizing a distance between a reference position and the predetermined position as a shift amount;
  • Adjusting means for adjusting the optical path length of the measurement light or the reference light based on the deviation amount.
  • FIG. 1 is a diagram showing an external configuration of an optical coherence tomography diagnosis apparatus (100) that is an optical coherence tomography diagnosis apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram for explaining the outline of the operation of the catheter section 101 and the cross-sectional image generation process during optical coherence tomography diagnosis.
  • FIG. 3 is a schematic diagram for explaining the outline of the operation of the catheter section 101 and the cross-sectional image generation process at the time of optical coherence tomography diagnosis.
  • FIG. 4 is a diagram showing a functional configuration of the optical coherence tomography diagnostic apparatus 100.
  • FIG. 5 is a diagram showing a detailed configuration of a signal processing unit 314 and functional blocks related to calibration.
  • FIG. 6 is a diagram showing an example of a reflection intensity distribution in the depth direction displayed on the LCD monitor 327.
  • FIG. 7 is a diagram showing the correspondence between the configuration of the tip of the optical probe 101 and the three peaks of reflection intensity.
  • FIG. 8 is a diagram illustrating a configuration of a signal processing unit of an optical coherence tomography diagnosis apparatus that is an optical coherence tomography diagnosis apparatus according to a second embodiment.
  • FIG. 9 is a diagram showing an example of an LCD monitor screen on which a cursor 801 for designating a position indicating reflection from the optical system surface is displayed.
  • FIG. 10 is a diagram illustrating a configuration of a signal processing unit of an optical coherence tomography diagnosis apparatus that is an optical coherence tomography diagnosis apparatus according to a third embodiment.
  • FIG. 1 is a diagram showing an external configuration of an optical coherence tomography diagnosis apparatus (100) that is an optical coherence tomography diagnosis apparatus according to the first embodiment.
  • the optical coherence tomography diagnosis apparatus (100) includes a catheter unit 101 as an optical probe, a scanner / pullback unit 102, and an operation control unit 103, and includes a scanner / proneback unit 102. And the operation control device 103 are connected by a signal line 104.
  • the catheter unit 101 has a long main body inserted directly into a blood vessel, and measures an internal state of the blood vessel using an optical system (not shown) passed through the lumen of the catheter unit 101.
  • the scanner / pullback unit 102 defines a radial scan of the optical system in the catheter unit 101.
  • the operation control device 103 includes a function for inputting various setting values and a mechanism for processing data obtained by measurement and displaying the data as a cross-sectional image when performing optical coherence tomography diagnosis. .
  • reference numeral 111 denotes a main body control unit that processes data obtained by measurement and outputs a processing result.
  • Reference numeral 1111 denotes a printer and a DVD recorder, which print (output) processing results in the main body control unit 111 and store them as data.
  • Reference numeral 112 denotes an operation panel, and the user inputs various setting values via the operation panel 112.
  • Reference numeral 113 denotes an LCD monitor that displays a processing result in the main body control unit 111.
  • 2 and 3 are schematic diagrams for explaining the outline of the operation of the catheter unit 101 and the cross-sectional image generation process at the time of optical coherence tomography diagnosis.
  • 2 and 3 are a perspective view and a cross-sectional view, respectively, of a blood vessel (measurement target) with the catheter 101 inserted therein.
  • 201 indicates a cross section of the blood vessel in which the catheter unit 101 is inserted.
  • An optical system (not shown) is passed through the catheter portion 101 to the vicinity of the tip, and a linear drive device (not shown) is rotated while rotating in the direction of arrow 202 by a radial scanning motor (not shown). As shown, the direction proceeds to the direction of arrow 203 (the long axis direction of the catheter portion 101). Meanwhile, the optical system emits measurement light and receives reflected light at each rotation angle.
  • lines 1, 2,..., 512 indicate the emission direction of the measurement light at each rotation angle.
  • 512 times of light emission / light reception are intermittently performed while the optical system rotates 360 degrees on the predetermined blood vessel cross section 201. Note that the number of light emission / light reception times during the 360-degree rotation is not limited to this and can be arbitrarily set.
  • a scan that repeats light emission / light reception while rotating the optical system in this manner is generally referred to as "radial scan (radial scan)".
  • Reference numeral 309 denotes a light source such as an ultra-high luminance light emitting diode.
  • the light source 309 emits low-coherence light that exhibits coherence only in a short distance range in which the wavelength is about 1310 nm and the coherence distance (coherent length) is about several m to about several tens of m. Output.
  • the low coherence light output from the light source 309 is incident on one end of the first single mode fiber 328, and is transmitted to the front end face side as measurement light.
  • the first single mode fiber 328 is optically coupled to the second single mode fiber 329 at an intermediate optical coupler unit 308. Therefore, the optical coupler unit 308 branches the signal into two and transmits it.
  • An optical rotary joint 303 that couples between the non-rotating part and the rotating part and transmits the measurement light is provided on the tip side of the optical coupler part 308 of the first single mode fiber 328! /, Ru
  • the connector portion 302 of the catheter portion 101 is detachably connected to the distal end of the third single mode fiber 330 passed through the optical rotary joint 303.
  • the third single mode fiber 330 is connected to the catheter portion 1 via the connector portion 302.
  • the measurement light from the light source 309 is transmitted to the fourth single mode fiber 331 that can be rotationally driven.
  • the transmitted measurement light is deflected laterally by deflecting means such as a mirror provided at the distal end portion 301 of the optical system, and is radially scanned in the direction of the living tissue (measurement target) in the body cavity. Emitted. Then, a part of the reflected light scattered on the surface of the living tissue side or inside is taken in by the front end 301, returns to the first single mode fiber 328 side through the reverse optical path, and part thereof by the optical coupler 308. Moves to the second single mode fiber 329 side, and enters one of the second single mode fibers 329 into a photodetector (for example, a photodiode 310).
  • a photodetector for example, a photodiode 310
  • the rotating part side of the optical rotary joint 303 is rotationally driven by a radial scanning motor 305 of a rotational drive device 304. Further, the rotation angle of the radial scanning motor 305 is detected by the encoder unit 306. Furthermore, the optical rotary joint 303 includes a linear drive device 307, and based on an instruction from the signal processing unit 314, the operation (axial direction in the distal direction in the body cavity and the opposite direction) of the catheter unit 101 is inserted. Movement). The axial movement is realized by the operation of the linear drive device 303 based on the control signal from the signal processing unit 314.
  • the radial scanning motor 305 and the linear drive device 307 may be detachably connected or may be configured integrally. Further, the axial movement by the linear drive device 307 can be realized by a ball screw or the like.
  • an optical path length variable mechanism 316 that changes the optical path length of the reference light is provided on the distal end side of the optical coupler section 308 of the second single mode fiber 329.
  • the optical path length variable mechanism 316 includes a first optical path length changing means that changes the optical path length corresponding to the examination range in the depth direction (outgoing direction) of the living tissue (measurement target) at high speed, and the catheter unit 101.
  • the individual differences in the length of each optical system (mainly optical fiber 331) included in the catheter section 101 when the tube is used (variation in the optical path length from the light source to the emission position of the optical system)
  • the second optical path length changing means optical path length adjusting means for changing the optical path length corresponding to the variation in the length is provided so that it can be absorbed.
  • the single-axis stay is opposed to the tip of the second single mode fiber 329 and the tip.
  • a grating 319 is arranged via a collimating lens 321 that is mounted on the die 320 and is movable in the direction indicated by an arrow 323.
  • a galvanometer mirror 317 capable of turning by a minute angle is attached as a first optical path length changing means via a lens 318 corresponding to the grating 319 (diffraction grating).
  • the galvanometer mirror 317 is rotated at a high speed in the direction of an arrow 322 by a galvanometer controller 324.
  • the galvanometer mirror 317 reflects the reference light by the mirror of the galvanometer, and by applying an AC drive signal to the galvanometer that functions as a mirror for the reference light, the mirror received in the movable part at high speed. It is configured to rotate.
  • a drive signal is applied to the galvanometer from the galvanometer controller 324 and rotated at high speed in the direction of the arrow 322 by the drive signal, so that the optical path length of the reference light is the depth of the living tissue. It will change at a high speed by the amount corresponding to the direction inspection range.
  • One period of this change in optical path difference is the period for acquiring interference light for one line (one unit).
  • the uniaxial stage 320 has a second optical path length change that has a variable range of optical path lengths that can absorb variations in optical path length for each optical system included in the catheter unit 101.
  • Means optical path length adjusting means.
  • the single-axis stage 320 also has a function as an adjusting means for adjusting the offset. For example, even when the tip of the optical probe 301 is not in close contact with the surface of the living tissue, the optical path length can be changed minutely by the single-axis stage 320 so as to interfere with the surface position of the living tissue. It becomes possible.
  • the reference light whose optical path length is changed by the optical path length variable mechanism 316 is obtained from the first single mode fiber 338 side by the optical coupler unit 308 provided in the middle of the second single mode fiber 329.
  • the light is mixed (interfered) with the reflected light and received by the photodiode 310.
  • the demodulator 312 After being amplified by 311, it is input to the demodulator 312.
  • the demodulator 312 performs demodulation processing for extracting only the signal portion of the interfered light, and its output is input to the A / D converter 313.
  • the interference optical signal is sampled for 200 points, and one line of data is decoded. Digital data (interference light data) is generated.
  • the sampling frequency is the value obtained by dividing the scanning time of the optical path length by 200.
  • the line-by-line interference light data (line data) generated by the A / D converter 313 is input to the signal processing unit 314.
  • This signal processing unit 314 converts the line data in the depth direction (outgoing direction) into a video signal to form cross-sectional images at each position in the blood vessel, and the LCD monitor 327 (Fig. 1 (corresponding to 113 of 1).
  • the signal processing unit 314 is connected to the optical path length adjusting unit control device 326 and controls the position of the single-axis stage 320 via the optical path length adjusting unit control device 326.
  • the signal processing unit 314 is connected to the motor control circuit 325 and controls the rotational drive of the radial scanning motor 305.
  • the signal processing unit 314 is connected to a galvanometer controller 324 that controls scanning of the optical path length of the reference light mirror (galvanometer mirror 317).
  • a drive signal is output from the galvanometer controller 324 to the signal processing unit 314, and the motor control device 325 is synchronized with the galvanometer controller 324 based on this drive signal.
  • the signal processing unit 314 is connected to an input device 328 (corresponding to the operation panel 112 in FIG. 1), and can accept various instructions from the user.
  • FIG. 5 shows a detailed configuration of the signal processing unit 314 and functional blocks related to calibration.
  • the line data generated by the A / D conversion unit 313 is output from the radial scanning motor 1 using the signal of the encoder unit 306 of the radial scanning motor 305 output from the motor control circuit 325 in the line memory unit 401. After being processed so that the number of lines per rotation is 512, it is output to the line data generation unit 402 in the subsequent stage.
  • the line data generation unit 402 performs line addition averaging processing, filter processing, logarithmic conversion, and the like, and outputs the result to the signal post-processing unit 403 at the subsequent stage.
  • the signal post-processing unit 403 performs contrast adjustment, brightness adjustment, gamma correction, frame correlation, sharpness processing, etc. It is output to the image construction unit (DSC) 404.
  • DSC image construction unit
  • the image construction unit 404 converts the polar coordinate line data string into a video signal, and displays the blood vessel cross-sectional image on the LCD monitor 327.
  • an example of constructing an image from 512 lines is shown. This is not limited to this number of lines.
  • the line data output from the line data generation unit 402 is input to the line data extraction unit 405.
  • the line data extraction unit 405 extracts one line (one unit) of predetermined line data from the plurality of line data.
  • the extracted line data for one line is displayed on the line data graph display unit 406 of the LCD monitor 327 as a reflection intensity distribution in the depth direction at a predetermined rotation angle.
  • the optical system of the optical probe (catheter unit) varies in optical path length for each individual, the user is displayed on the line data graph display unit 406 of the LCD monitor 327. Based on the reflection intensity distribution, the deviation amount of the optical path difference is read. Specifically, by using the cursor moving unit 408 of the input device 328, the cursor displayed on the LCD monitor is moved to a predetermined reference position (described later), and the position of the cursor is read. The amount of displacement can be read.
  • the cursor moving unit 408 may be a keyboard, a mouse, a trackball, or the like.
  • the read deviation amount is input via the optical path difference deviation amount input unit 407 of the input device 328.
  • the input deviation amount is transmitted to the optical path length adjusting means control device 326 via the control unit 406, and the second optical path length changing means (optical path length adjusting means) is operated based on the deviation amount.
  • the variation in the optical path length for each optical probe is absorbed.
  • FIG. 6 is a diagram illustrating an example of the reflection intensity distribution in the depth direction (outgoing direction) displayed on the line data graph display unit 406 of the LCD monitor 327.
  • the horizontal axis indicates the distance in the depth direction (unit: m), and the vertical axis indicates the reflection intensity.
  • the zero point on the horizontal axis indicates a position that optically matches the initial length of the optical path length on the reference light side in the optical path on the measurement light side. This position corresponds to the tip of the central axis of the optical system when the optical system length of the optical probe (catheter part 101) is an ideal length (length without deviation), in other words, the optical axis is laterally moved.
  • the position where the reflective surface to be deflected to the position is assumed Is shown.
  • FIG. 6 shows a reflection intensity distribution in a state before the catheter unit 101 is inserted into a blood vessel. Normally, when low coherence light is emitted / received with the catheter 101 not inserted into the blood vessel, three reflection intensity peaks appear as shown in FIG.
  • FIG. 7 is a diagram showing the correspondence between the configuration of the distal end portion of the catheter portion 101 and the three peaks of the reflection intensity.
  • the distal end portion of the catheter portion 101 is covered with a light-transmitting catheter sheath 601, and an optical fiber 602 (corresponding to the single mode fiber 331) is placed inside the catheter sheath 601.
  • An optical lens 603 for condensing the emitted light and an optical mirror 604 for deflecting the traveling direction of the light by reflecting the collected light by about 90 degrees and emitting it toward the living tissue are arranged. Being! /
  • the light reflected at the reflection position 608 of the optical mirror 604 is partially reflected on the optical system surface 605, the catheter sheath inner surface 606, and the catheter sheath outer surface 607 before being emitted toward the living tissue. Will be reflected.
  • the first peak indicates a position (reference position) indicating reflection from the optical system surface 605 (that is, the position of the emission end from the optical system).
  • the ideal distance from the zero point on the horizontal axis to the first peak in Fig. 6 is ideally equal to the distance from the optical mirror 604 to the optical system surface 605 (the radius of the optical lens 603). Deviations due to individual differences in the length of the optical system of the optical probe (category part 101) occur.
  • the optical path length on the reference light side may be adjusted by the amount of this deviation.
  • the position showing reflection from the optical system surface 605 is the foremost of the three top peaks appearing in the reflection intensity distribution (the shallowest position in the depth direction, in other words, the This is the peak (peak 1) position at the position close to the mouth point.
  • a cursor 502 for reading the position of peak 1 is displayed and can be arbitrarily moved via the curry moving unit 408. Further, the current position of the force 1 502 is displayed in the cursor position display field 503. Therefore, the operator moves the cursor 502 to the position of peak 1 (reference position: a position indicating reflection from the optical system surface 605), and reads the numerical value displayed in the cursor position display field 503 to The position of 1 can be accurately recognized.
  • the position of peak 1 reference position: position showing reflection from the optical system surface 605
  • the lens radius of the optical science lens 603 is assumed to be a 0.99 am, it forces the amount of deviation of the optical path difference is 70 mu m s Wakakaru.
  • the user inputs “70” to the deviation amount input ff 510 via the optical path difference deviation amount input unit 407 of the input device 328 and presses the OK button 511.
  • the deviation amount input via the optical path difference deviation input unit 407 of the input device 328 is transmitted to the optical path length adjusting means controller 326 via the control unit 406, and the optical path length adjustment is performed. Is called.
  • the force for adjusting the optical path length by moving the collimating lens 321 is not limited to this, and the galvanometer mirror 317 may be moved. Further, the optical path length on the measurement light side may be adjusted on the reference light side. In that case, it is desirable to provide the optical path length adjusting unit in the scanner / pullback unit 102.
  • the configuration is such that the line data for one line is extracted and displayed, so that the user only compares it with the lens radius of a known optical lens.
  • the shift amount of the optical path difference is recognized with high accuracy.
  • an input of a deviation amount recognized by the user is accepted, and the deviation amount according to the accepted deviation amount is accepted.
  • the optical path length adjusting means By configuring the optical path length adjusting means to operate, it is possible to easily calibrate the optical path difference.
  • the deviation amount of the optical path difference read by the user is manually input based on the reflection intensity distribution in the depth direction displayed on the line data graph display section of the LCD monitor 328.
  • Force S the present invention is not particularly limited to this.
  • the amount of deviation is automatically calculated. Do it like that.
  • FIG. 8 is a diagram showing a configuration of the signal processing unit 701 of the optical coherence tomography diagnosis apparatus 100 that is the optical coherence tomography diagnosis apparatus according to the present embodiment. Note that functions that are the same as those of the signal processing unit 314 shown in the first embodiment are given the same reference numerals, and descriptions thereof are omitted. Here, differences from the signal processing unit 314 will be mainly described.
  • the line data extracted by the line data extraction unit 405 is displayed on the line data graph display unit 406 of the LCD monitor 327 as a reflection intensity distribution in the depth direction. At this time, a cursor for designating a position indicating reflection from the optical system surface 605 is also displayed.
  • 801 in FIG. 9 is a diagram showing an example of a screen of the LCD monitor on which a cursor 802 for designating a position indicating reflection from the optical system surface 605 is displayed.
  • the input device 328 is provided with a cursor moving unit 408, which can move the cursor 802 displayed on the LCD monitor.
  • the user moves the cursor 802 to a position indicating reflection from the optical system surface 605 and presses an OK button 803.
  • the cursor moving unit 408 may be a keyboard, a mouse, a trackball, or the like.
  • the input device 328 reads the position where the cursor 802 is displayed and transmits it to the control unit 406. Specifically, information of 220 in is transmitted to the control unit 401.
  • the optical path difference deviation calculation unit 702 of the control unit 406 calculates the difference between the preset lens radius of the optical lens and the position of the curry 802 transmitted from the input device 328. The amount of deviation is calculated. For example, 150 m is set as the lens radius of the optical lens. If it is set, 70 in is calculated as the deviation.
  • the calculated deviation amount is transmitted to the optical path length adjusting means control device 326, and in response thereto, the optical path length adjustment is automatically performed.
  • the user moves the cursor with respect to the displayed line data for one line, and shows the reflection from the optical system surface. It is possible to automatically calibrate the optical path difference simply by specifying the position.
  • the force that the user designates a position indicating reflection from the optical system surface is not particularly limited to this.
  • FIG. 10 is a diagram showing a configuration of the signal processing unit 901 of the optical coherence tomography diagnosis apparatus 100 that is the optical coherence tomography diagnosis apparatus according to the present embodiment. Note that functions that are the same as those of the signal processing unit 701 shown in the second embodiment are given the same reference numerals, and descriptions thereof are omitted. Here, the description will focus on differences from the signal processing unit 701.
  • the line data extracted by the line data extraction unit 405 is input to the optical path difference detection unit 902.
  • the optical path difference detection unit 902 extracts the top three peaks having the highest reflection intensity from the input line data. Furthermore, among the extracted peaks, the peak with the closest reflection position (the peak at the shallowest position in the depth direction) is extracted.
  • the position of the extracted peak in the depth direction is detected.
  • the deviation of the optical path difference is calculated by reading the lens radius of the optical lens set (stored) in advance and taking the difference from the detected position.
  • the calculated deviation amount is transmitted to the optical path length adjusting unit control device 326 via the control unit, and optical path length adjustment is performed.
  • the user can automatically acquire at least one line of data before inserting the catheter unit 101 into the blood vessel.
  • the optical path difference for each optical probe can be calibrated.
  • the reflection position is the most prominent among them.
  • the force S for extracting the position of a previous peak and the present invention is not particularly limited to this.
  • the peak position with the maximum reflection intensity may be extracted.
  • the peak position with the reflection position closest to the peak having the reflection intensity equal to or higher than a predetermined value may be extracted.
  • the calibration is performed with the position showing the reflection from the optical system surface as the reference position.
  • the present invention is not limited to this, and the reflection from the catheter sheath inner surface or the catheter sheath outer surface is performed. Make sure to calibrate using the indicated position as the reference position. In this case, out of the top three peaks with the highest reflection intensity, the position of the second or third peak showing the reflection is extracted, and the difference from the preset catheter sheath inner or outer diameter is compared. The amount of deviation is calculated.
  • the optical path difference calibration in the optical coherence tomography diagnosis apparatus has been described.
  • the present invention is not particularly limited to this, and the optical coherence tomography diagnosis apparatus using wavelength sweeping may be different. It's possible to apply it.
  • the second optical path length changing means is provided as the optical path length variable mechanism. (That is, it does not have the first optical path length changing means). For this reason, the deviation amount of the optical path difference output from the signal processing units 314, 701, 901 is transmitted to the optical path length adjusting means control device 326, and the second optical path length changing means (optical path length adjusting means) operates. As a result, optical path length calibration is realized.
  • the optical path length adjustment is performed with the radius of the optical lens 603 as a known value.
  • the present invention is not necessarily limited to this, for example, a prism that connects the tip of the optical system with a lens.
  • the distance from the reflection part of the optical element to the measurement light emitting end can be set to a known value.
  • the optical probe is a device that does not reflect the measurement light
  • the reference light side optical path length initial value from the measurement light and reference light branching section (optical coupler section 308) to the reference light mirror is obtained. If it is held as a known value, the optical path length from the measurement light and reference light branch to the measurement light side optical system exit end The deviation can be measured and adjusted (calibrated).

Description

明 細 書
光干渉断層画像診断装置およびその処理方法
技術分野
[0001] 本発明は、光干渉断層画像診断装置に関するものであり、更に詳しくは、光干渉断 層画像診断装置における校正処理に関するものである。
背景技術
[0002] 従来より、動脈硬化の診断や、バルーンカテーテル、ステント等の高機能力テーテ ルによる血管内治療時の術前診断、あるいは、術後の結果確認のために光干渉断 層画像診断装置(OCT : Optical Coherent Tomography)が使用されている。
[0003] 光干渉断層画像診断装置は、光源から出力される低干渉性光を測定光と参照光と に分割し、測定光をカテーテル内部の光ファイバを介して先端力 出射した後、生体 組織より反射された反射光を同じ光ファイバで受光し、装置内部において該反射光と 参照光とを干渉させることで、参照光と同じ光路長からの測定光の干渉強度、すなわ ち、光反射強度を取得するものである。
[0004] ここで、光干渉断層画像診断装置の内部では、参照光をミラーで反射させるととも に、ミラーの位置を前後に移動させることで、参照光の光路長を走査し、それに同期 させて干渉光を得ることで、深さ方向の反射強度分布を得ている。そして、これらの処 理を、円周方向の各位置で行うことで(つまり、ラジアル走査させることにより)血管断 面画像を生成している。
[0005] 更に、最近では、上記光干渉断層画像診断装置の改良版として、波長掃引を利用 したものも登場してきている。波長掃引を利用した光干渉断層画像診断装置は、出 射する光の波長を繰り返し掃引することで、参照光の光路長を走査することなぐ得ら れた干渉光の周波数分布から、測定光と参照光との光路差が同じ点を基準とした測 定光の出射方向(深さ方向)の反射強度分布を得るものである。
[0006] このように、光干渉断層画像診断装置は、一般に、測定光と参照光とを干渉させる ことにより生体内の深さ方向の反射強度分布を得る構成となっているため、実用上は 、測定光と参照光との光路差を適宜校正することが必要となってくる。すなわち、深さ 方向の反射強度分布表示を行う場合、所定の基準点 (ゼロ点)に対応する光路長の 調整が必要となってくる。通常、カテーテルは感染予防のため 1回使用するごとに取 り替えられる力 カテーテルには個体差があり、装置内部の光源からカテーテル先端 の出射位置までの光路長(すなわち、光ファイバ長)には微小ながらばらつきがある 力 である。
[0007] そこで、現在、使用されている光干渉断層画像診断装置では、はじめに校正してい ない状態で測定を行い、深さ方向にオフセットがかかった画像を表示させた後、該画 像中のカテーテル表面を表すリング形状の径が、想定される画像中のカテーテルの 大きさと一致するように、参照光を反射させるミラー(参照ミラー)の位置を前後に移動 させることで校正を行って!/、る。
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、上述のように断面画像を見ながら光路差の校正作業を行ったのでは
、精度の高い校正を行うことは困難であるうえ、作業性も悪い。このため、簡単な作業 で精度の高い校正を行うことが可能な光干渉断層画像診断装置が望まれている。
[0009] 本発明は、上記課題に鑑みてなされたものであり、光干渉断層画像診断装置にお いて、測定光と参照光との光路差の校正を精度よぐかつ容易に行うことができるよう にする。
課題を解決するための手段
[0010] 一態様として光干渉断層画像診断装置は以下のような構成を備える。即ち、
測定光を測定対象に照射する一方、該測定対象からの反射光を受光する光プロ一 ブと接続され、光源から出力される光を前記測定光と参照光とに分割し、前記反射光 と前記参照光とを干渉させることで前記光プローブの出射方向における反射強度分 布を取得し、前記測定対象の画像を形成する光干渉断層画像診断装置であって、 前記反射強度分布のうち、 1単位分の強度分布を抽出する抽出手段と、 前記抽出手段により抽出された強度分布に基づいて判別される、前記光プローブ の出射方向における所定の基準位置が、所定位置と一致しない場合に、前記基準 位置と前記所定位置との距離を、ずれ量として認識する認識手段と、 前記ずれ量に基づいて、前記測定光または参照光の光路長を調整する調整手段 とを備える。
発明の効果
[0011] このような態様によれば、光干渉断層画像診断装置において、測定光と参照光との 光路差の校正を精度よくかつ容易に行うこと力 Sできるようになる。
[0012] その他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになる であろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号 を付す。
図面の簡単な説明
[0013] [図 1]図 1は、第 1の実施形態にかかる光干渉断層画像診断装置である、光干渉断層 診断装置(100)の外観構成を示す図である。
[図 2]図 2は、光干渉断層診断時のカテーテル部 101の動作と断面画像の生成工程 の概要を説明するための模式図である。
[図 3]図 3は、光干渉断層診断時のカテーテル部 101の動作と断面画像の生成工程 の概要を説明するための模式図である。
[図 4]図 4は、光干渉断層診断装置 100の機能構成を示す図である。
[図 5]図 5は、信号処理部 314の詳細構成ならびに校正に関連する機能ブロックを示 した図である。
[図 6]図 6は、 LCDモニタ 327に表示された深さ方向の反射強度分布の一例を示す 図である。
[図 7]図 7は、光プローブ 101の先端部の構成と、反射強度の 3つのピークとの対応 関係について示した図である。
[図 8]図 8は、第 2の実施形態にかかる光干渉断層画像診断装置である、光干渉断層 診断装置の信号処理部の構成を示す図である。
[図 9]図 9は、光学系表面からの反射を示す位置を指定するためのカーソル 801が表 示された LCDモニタの画面の一例を示す図である。
[図 10]図 10は、第 3の実施形態にかかる光干渉断層画像診断装置である、光干渉 断層診断装置の信号処理部の構成を示す図である。 発明を実施するための最良の形態
[0014] 以下、必要に応じて添付図面を参照しながら各実施形態を詳細に説明する。
[0015] [第 1の実施形態]
1.光干渉断層画像診断装置の外観構成
図 1は第 1の実施形態にかかる光干渉断層画像診断装置である、光干渉断層診断 装置(100)の外観構成を示す図である。
[0016] 図 1に示すように、光干渉断層診断装置(100)は、光プローブとしてのカテーテル 部 101と、スキャナ/プルバック部 102と、操作制御装置 103とを備え、スキャナ/プ ノレバック部 102と操作制御装置 103とは、信号線 104により接続されている。
[0017] カテーテル部 101は、その長尺な本体が直接血管内に挿入され、カテーテル部 10 1のルーメン内に揷通された光学系(不図示)を用いて血管内部の状態を測定する。 スキャナ/プルバック部 102は、カテーテル部 101内の光学系のラジアル走查を規 定している。
[0018] 操作制御装置 103は、光干渉断層診断を行うにあたり、各種設定値を入力するた めの機能や、測定により得られたデータを処理し、断面画像として表示するための機 倉を備える。
[0019] 操作制御装置 103において、 111は本体制御部であり、測定により得られたデータ を処理したり、処理結果を出力する。 111 1はプリンタ及び DVDレコーダであり、本 体制御部 111における処理結果を印刷(出力)したり、データとして記憶したりする。
[0020] 112は操作パネルであり、ユーザは該操作パネル 112を介して、各種設定値の入 力を行う。 113は LCDモニタであり、本体制御部 111における処理結果を表示する。
[0021] 2.カテーテル部の動作と断面画像の生成工程の概要
図 2、図 3は光干渉断層診断時のカテーテル部 101の動作と断面画像の生成工程 の概要を説明するための模式図である。図 2、図 3はそれぞれカテーテル部 101が揷 入された状態の血管 (測定対象)の斜視図および断面図である。
[0022] 図 2において、 201はカテーテル部 101が揷入された血管断面を示している。カテ 一テル部 101はその先端付近まで、内部に光学系(不図示)が揷通されており、ラジ アル走査モータ(不図示)により矢印 202方向に回転しながら、直線駆動装置(不図 示)により矢印 203方向(カテーテル部 101の長軸方向)に進む。その間、光学系か らは、各回転角度にて測定光の出射及び反射光の受光が行われる。
[0023] 図 3において、ライン 1、 2、 · ' · 512は各回転角度における測定光の出射方向を示 している。本実施形態では、光学系が所定の血管断面 201にて 360度回動する間に 、 512回の光の出射/受光が断続的に行われる。なお、 360度回動する間における 光の出射/受光回数は特にこれに限られず、任意に設定可能であるものとする。
[0024] このように光学系を回転させながら光の出射/受光を繰り返すスキャン(走査)を、 一般に「ラジアルスキャン (ラジアル走査)」と!/、う。
[0025] 3.光干渉断層診断装置のシステム構成
次に、光干渉断層診断装置 100の機能構成について図 4を用いて説明する。
[0026] 309は超高輝度発光ダイオード等の光源である。本実施形態において光源 309は 、その波長が 1310nm程度で、その可干渉距離(コヒーレント長)が数 m〜; 10数 m程度であるような短い距離範囲でのみ干渉性を示す低干渉性光を出力する。
[0027] このため、この低干渉性光を 2つに分岐した後、再び混合した場合には分岐した点 力、ら混合した点までの 2つの光路長の差が 17 m程度の短い距離範囲内の場合に は干渉光として検出され、それよりも光路長の差が大き!/、場合には干渉光が検出さ れなレ、。
[0028] 光源 309より出力される低干渉性光は、第 1のシングルモードファイバ 328の一端 に入射され、測定光として先端面側に伝送される。第 1のシングルモードファイバ 328 は、途中の光カップラ部 308で第 2のシングルモードファイバ 329と光学的に結合さ れている。従って、この光カップラ部 308で 2つに分岐されて伝送される。
[0029] 第 1のシングルモードファイバ 328の光カップラ部 308より先端側には、非回転部と 回転部との間を結合し、測定光を伝送する光ロータリジョイント 303が設けられて!/、る
[0030] 更に、光ロータリジョイント 303内に揷通された第 3のシングルモードファイバ 330の 先端には、カテーテル部 101のコネクタ部 302が着脱自在に接続されている。これに より、カテーテル部 101は、スキャナ及びプルバック部 102から取り外すことができる。 また、第 3のシングルモードファイバ 330は、コネクタ部 302を介して、カテーテル部 1 01内に揷通された光学系の構成要素である第 4のシングルモードファイバ 331に光 学的に接続される。これにより、回転駆動可能な第 4のシングルモードファイバ 331に 、光源 309からの測定光が伝送される。
[0031] 伝送された測定光は、光学系の先端部 301に設けられたミラー等の偏向手段によ り側方へ偏向させられ、体腔内の生体組織 (測定対象)方向にラジアル走査しながら 出射される。そして、生体組織側の表面あるいは内部で散乱した反射光の一部は先 端部 301により取り込まれ、逆の光路を経て第 1のシングルモードファイバ 328側に 戻り、光カップラ部 308によりその一部が第 2のシングルモードファイバ 329側に移り 、第 2のシングルモードファイバ 329の一端から光検出器 (例えばフォトダイオード 31 0)に入射される。なお、光ロータリジョイント 303の回転部側は回転駆動装置 304の ラジアル走査モータ 305により回転駆動される。また、ラジアル走査モータ 305の回 転角度は、エンコーダ部 306により検出される。更に、光ロータリジョイント 303は、直 線駆動装置 307を備え、信号処理部 314からの指示に基づいて、カテーテル部 101 の揷入方向(体腔内の末梢方向およびその反対方向)の動作 (軸方向移動)を規定 する。軸方向移動は、信号処理部 314からの制御信号に基づいて、直線駆動装置 3 07が動作することにより実現される。
[0032] なお、ラジアル走査モータ 305と直線駆動装置 307とは着脱可能に接続されてい ても、一体的に構成されていてもよい。また、直線駆動装置 307による軸方向移動は 、ボールネジ等により実現することができる。
[0033] また、第 2のシングルモードファイバ 329の光カップラ部 308より先端側には、参照 光の光路長を変える光路長の可変機構 316が設けてある。
[0034] この光路長の可変機構 316は生体組織 (測定対象)の深さ方向(出射方向)の検査 範囲に相当する光路長を高速に変化させる第 1の光路長変化手段と、カテーテル部 101を交換して使用した場合の該カテーテル部 101に含まれる個々の光学系(主に 光ファイバ 331)の長さの個体差 (光源から光学系の出射位置までの光路長のばらつ き)を吸収できるように、その長さのばらつきに相当する光路長を変化させる第 2の光 路長変化手段 (光路長調整手段)とを備えて!/、る。
[0035] 第 2のシングルモードファイバ 329の先端に対向して、この先端とともに 1軸ステー ジ 320上に取り付けられ、矢印 323に示す方向に移動自在のコリメートレンズ 321を 介して、グレーティング 319が配置されている。また、このグレーティング 319 (回折格 子)と対応するレンズ 318を介して微小角度回動可能なガルバノメータミラー 317が 第 1の光路長変化手段として取り付けられている。このガルバノメータミラー 317はガ ノレバノメータコントローラ 324により、矢印 322方向に高速に回転される。
[0036] ガルバノメータミラー 317はガルバノメータのミラーにより参照光を反射させるもので あり、参照光用のミラーとして機能するガルバノメータに交流の駆動信号を印加する ことによりその可動部分に採りうけたミラーを高速に回転させるよう構成されている。
[0037] つまり、ガルバノメータコントローラ 324より、ガルバノメータに対して駆動信号が印 加され、該駆動信号により矢印 322方向に高速に回転させられることで、参照光の光 路長は、生体組織の深さ方向の検査範囲に相当する分だけ高速に変化することとな る。この光路差の変化の 1周期が 1ライン分(1単位分)の干渉光を取得する周期とな
[0038] 一方、 1軸ステージ 320はカテーテル部 101を交換した場合に、カテーテル部 101 に含まれる光学系ごとの光路長のばらつきを吸収できるだけの光路長の可変範囲を 有する第 2の光路長変化手段(光路長調整手段)を備える。さらに、 1軸ステージ 320 はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ 30 1の先端が生体組織の表面に密着していない場合でも、 1軸ステージ 320により光路 長を微小変化させることにより、生体組織の表面位置から干渉する状態に設定するこ とが可能となる。
[0039] 光路長の可変機構 316で光路長が変えられた参照光は第 2のシングルモードファ ィバ 329の途中に設けた光カップラ部 308で第 1のシングルモードファイバ 338側か ら得られた反射光と混合 (干渉)されて、フォトダイオード 310にて受光される。
[0040] フォトダイオード 310にて受光された光(反射光と参照光)は光電変換され、アンプ
311により増幅された後、復調器 312に入力される。この復調器 312では干渉した光 の信号部分のみを抽出する復調処理を行い、その出力は A/D変換器 313に入力 される。
[0041] 八/0変換器313では、干渉光信号を 200ポイント分サンプリングして 1ラインのデ ジタルデータ(干渉光データ)を生成する。サンプリング周波数は、光路長の 1走査の 時間を 200で除した値である。
[0042] A/D変換器 313で生成されたライン単位の干渉光データ(ラインデータ)は、信号 処理部 314に入力される。この信号処理部 314では深さ方向(出射方向)のラインデ ータをビデオ信号に変換することにより、血管内の各位置での断面画像を形成し、所 定のフレームレートで LCDモニタ 327 (図 1の 113に対応)に出力する。
[0043] なお、信号処理部 314は光路長調整手段制御装置 326と接続されており、光路長 調整手段制御装置 326を介して 1軸ステージ 320の位置の制御を行う。また、信号処 理部 314はモータ制御回路 325と接続されており、ラジアル走査モータ 305の回転 駆動を制御する。
[0044] さらに、信号処理部 314は、参照光用のミラー(ガルバノメータミラー 317)の光路長 の走査を制御するガルバノメータコントローラ 324と接続されている。ガルバノメータコ ントローラ 324から信号処理部 314に対しては駆動信号が出力されており、モータ制 御装置 325はこの駆動信号に基づいてガルバノメータコントローラ 324と同期をとつ ている。
[0045] 更に、信号処理部 314は入力装置 328 (図 1の操作パネル 112に対応)と接続され ており、ユーザからの各種指示を受け付けることができる。
[0046] 4.信号処理部の詳細構成
次に図 5を用いて、光干渉断層診断装置の信号処理部における校正機能につい て説明する。図 5には、信号処理部 314の詳細構成ならびに校正に関連する機能ブ ロックが示されている。
[0047] A/D変換部 313で生成されたラインデータは、ラインメモリ部 401において、モー タ制御回路 325から出力されるラジアル走査モータ 305のエンコーダ部 306の信号 を用いて、ラジアル走査モータ 1回転あたりのライン数が 512本となるように処理され た後、後段のラインデータ生成部 402に出力される。
[0048] ラインデータ生成部 402では、ライン加算平均処理、フィルター処理、対数変換等 が行われ、後段の信号後処理部 403に出力される。信号後処理部 403では、コントラ スト調整、輝度調整、ガンマ補正、フレーム相関、シャープネス処理等が行われ、画 像構築部(DSC) 404に出力される。
[0049] 画像構築部 404では、極座標のラインデータ列から、ビデオ信号に変換し、 LCD モニタ 327に血管断面画像を表示する。なお、ここでは一例として、 512ラインから画 像を構築する例を示してレ、る力 このライン数に限定されるものではなレ、。
[0050] 校正を行うモードでは、ラインデータ生成部 402より出力されたラインデータがライ ンデータ抽出部 405に入力される。ラインデータ抽出部 405では、複数のラインデー タのうち、所定のラインデータ 1ライン分(1単位分)を抽出する。抽出された 1ライン分 のラインデータは、所定の回転角度における深さ方向の反射強度分布として LCDモ ユタ 327のラインデータグラフ表示部 406に表示される。
[0051] 上述のように、光プローブ(カテーテル部)の光学系は、個体ごとに光路長にばらつ きがあるため、ユーザは、 LCDモニタ 327のラインデータグラフ表示部 406に表示さ れた反射強度分布に基づいて、光路差のずれ量を読み取る。具体的には、入力装 置 328のカーソル移動部 408を用いて、 LCDモニタ上に表示されるカーソルを所定 の基準位置(後述)まで移動させ、該カーソルの位置を読み取ることで、光路差のず れ量を読み取ることができる。なお、カーソル移動部 408としては、キーボード、マウ ス、トラックボール等が考えられる。
[0052] 読み取つたずれ量は、入力装置 328の光路差ずれ量入力部 407を介して入力さ れる。入力されたずれ量は、制御部 406を介して光路長調整手段制御装置 326に送 信され、該ずれ量に基づいて、第 2の光路長変化手段(光路長調整手段)が動作す ることで、光プローブごとの光路長のばらつきが吸収される。
[0053] 5.ラインデータ抽出部にて抽出される反射強度分布及びずれ量の入力方法
図 6の 501は、 LCDモニタ 327のラインデータグラフ表示部 406に表示された深さ 方向(出射方向)の反射強度分布の一例を示す図である。横軸は深さ方向の距離( 単位は m)を、縦軸は反射強度をそれぞれ示している。ここで、横軸のゼロ点は、 測定光側の光路における参照光側の光路長の初期長と光学的に一致する位置を示 している。この位置は、光プローブ(カテーテル部 101)の光学系の長さが理想の長さ (ずれのない長さ)であった場合の光学系の中心軸の先端、言い換えれば、光軸を 側方へ偏向させる反射表面の位置(後述する光学ミラー 604の位置)が想定される位 置を示している。
[0054] なお、図 6の例は、カテーテル部 101が血管に揷入される前の状態における、反射 強度分布を示している。通常、カテーテル部 101が血管に揷入されていない状態で 、低干渉性光の出射/受光を行った場合、図 6のように、反射強度のピークが 3つあ らわれることとなる。
[0055] ここで、図 7を用いて、反射強度の 3つのピークについて簡単に説明する。図 7は、 カテーテル部 101の先端部の構成と、反射強度の 3つのピークとの対応関係につい て示した図である。
[0056] 同図に示すように、カテーテル部 101の先端部は、光透過性のカテーテルシース 6 01で覆われ、カテーテルシース 601の内部には、光ファイバ 602 (シングルモードフ アイバ 331に対応)より放射された光を集光させる光学レンズ 603と、集光された光を 反射することで光の進行方向を約 90度偏向させ、生体組織に向かって出射するため の光学ミラー 604とが配されて!/、る。
[0057] このため、光学ミラー 604の反射位置 608にて反射した光は、生体組織に向かって 出射される前に、光学系表面 605、カテーテルシース内面 606、カテーテルシース 外面 607にてその一部が反射することとなる。
[0058] このため、生体組織がない状態(体腔内に挿入されていない状態)では、深さ方向 の反射強度分布には、図 6、図 7に示すような 3つのピークが生じることとなる。ここで 、最初のピークは光学系表面 605 (すなわち、光学系からの出射端の位置)からの反 射を示す位置(基準位置)を示すものである。図 6における横軸のゼロ点から最初の ピークまでの距離は、本来であれば、光学ミラー 604から光学系表面 605までの距離 (光学レンズ 603の半径)に等しいのが理想である力 一般には光プローブ(カテ一 テル部 101)の光学系の長さの個体差に起因するずれが生じる。光学レンズ 603の 半径は既知であるので、最初のピークの位置(基準位置)と、ゼロ点からの距離が光 学レンズ 603の半径に相当する位置 (所定位置)とのずれ(2点間の距離)がずれ量 として認識される。したがって、このずれ量の分、参照光側の光路長を調整すればよ い。なお、光学系表面 605からの反射を示す位置は、反射強度分布内に現れた上 位 3つのピークのうち、最も手前(深さ方向において最も浅い位置、言い換えれば、ゼ 口点に近い位置)にあるピーク(ピーク 1)の位置である。
[0059] 再び図 6に戻る。図 6の例では、ピーク 1の位置を読み取るためのカーソル 502が表 示されており、カーカレ移動部 408を介して任意に移動させることができる。また、力 一ソル 502の現在位置はカーソル位置表示欄 503に表示される。このため、操作者 は、ピーク 1の位置(基準位置:光学系表面 605からの反射を示す位置)にカーソル 5 02を移動させ、カーソル位置表示欄 503に表示された数値を読み取ることで、ピーク 1の位置を正確に認識することができる。なお、図 6の例では、ピーク 1の位置(基準 位置:光学系表面 605からの反射を示す位置)は、 220 mを示している。ここで、光 学レンズ 603のレンズ半径が 150 a mであったとすると、光路差のずれ量は 70 μ m であること力 sゎカゝる。
[0060] そこで、ユーザは入力装置 328の光路差ずれ量入力部 407を介して、ずれ量入力 ff 510に" 70"と入力し、 OKボタン 511を押下する。
[0061] 上述のように入力装置 328の光路差ずれ量入力部 407を介して入力されたずれ量 は、制御部 406を介して光路長調整手段制御装置 326に送信され、光路長調整が 行われる。
[0062] このようにして光路差のずれ量 70 H m分の光路差調整を行うことで、画像上での光 学系表面の位置は、中心から 150 inの円として表示されることとなり、それとともに、 画像の中心はカテーテルの軸中心と一致することになる。したがって、中心位置が校 正された正し!/、画像(言!/、換えれば、オフセットの無!/、正し!/、画像)が描出される。
[0063] なお、本実施形態では、コリメートレンズ 321を移動させることで、光路長を調整す ることとしている力 本発明はこれに限られず、ガルバノメータミラー 317を移動させる ようにしてもよい。また、参照光側ではなぐ測定光側の光路長を調整するようにして もよい。その場合、光路長調整部は、スキャナ/プルバック部 102に設けることが望ま しい。
[0064] 以上の説明から明らかなように、本実施形態によれば、 1ライン分のラインデータを 抽出し表示する構成とすることで、ユーザが既知の光学レンズのレンズ半径と対比す るだけで、精度よく光路差のずれ量を認識することが可能となる。
[0065] また、ユーザが認識したずれ量の入力を受け付け、該受け付けたずれ量に応じて 光路長調整手段を動作させる構成とすることにより、光路差の校正を容易に行うこと が可能となる。
[0066] [第 2の実施形態]
上記第 1の実施形態では、 LCDモニタ 328のラインデータグラフ表示部に表示され た深さ方向の反射強度分布に基づいて、ユーザが読み取った光路差のずれ量を手 動で入力する構成とした力 S、本発明は特にこれに限定されるものではない。例えば、 LCDモニタ 328に表示された深さ方向の反射分布強度の中から、光学系表面 605 力、らの反射を示す位置をマウス等を用いて指定することで、ずれ量を自動的に算出 するようにしてあよレヽ。
[0067] 図 8は、本実施形態にかかる光干渉断層画像診断装置である、光干渉断層診断装 置 100の信号処理部 701の構成を示す図である。なお、上記第 1の実施形態におい て示した信号処理部 314と重複する機能については、同じ参照番号を付すこととし、 説明を省略する。ここでは、信号処理部 314と異なる点を中心に説明する。
[0068] ラインデータ抽出部 405において抽出されたラインデータは、深さ方向の反射強度 分布として LCDモニタ 327のラインデータグラフ表示部 406に表示される。このとき、 あわせて光学系表面 605からの反射を示す位置を指定するためのカーソルが表示さ れる。図 9の 801は、光学系表面 605からの反射を示す位置を指定するためのカー ソル 802が表示された LCDモニタの画面の一例を示す図である。
[0069] 入力装置 328には、カーソル移動部 408が配されており、 LCDモニタ上に表示さ れたカーソル 802を移動させることができる。ユーザは、光学系表面 605からの反射 を示す位置に、カーソル 802を移動させ、 OKボタン 803を押下する。なお、カーソル 移動部 408としては、キーボード、マウス、トラックボール等が考えられる。
[0070] OKボタン 803が押下されると、入力装置 328では、カーソル 802が表示された位 置を読み取り、制御部 406に送信する。具体的には、 220 inという情報が制御部 4 06に送信される。
[0071] 制御部 406の光路差ずれ量計算部 702では、予め設定された光学レンズのレンズ 半径と、入力装置 328から送信されたカーカレ 802の位置との差を計算することで、 光路差のずれ量を算出する。例えば、光学レンズのレンズ半径として 150 mが設 定されていた場合、ずれ量として 70 inが算出される。
[0072] 算出されたずれ量は、光路長調整手段制御装置 326に送信され、それを受けて光 路長調整が自動的に行われる。
[0073] 以上の説明から明らかなように、本実施形態によれば、ユーザは、表示された 1ライ ン分のラインデータに対して、カーソルを移動させ、光学系表面からの反射を示す位 置を指定するだけで、自動的に光路差の校正を行うことが可能となる。
[0074] [第 3の実施形態]
上記第 2の実施形態では、光学系表面からの反射を示す位置をユーザが指定する こととした力 本発明は特にこれに限られない。例えば、光学系表面からの反射を示 す位置を自動的に検出し、当該位置を自動的に読み取るようにしてもよ!/、。
[0075] 図 10は、本実施形態にかかる光干渉断層画像診断装置である、光干渉断層診断 装置 100の信号処理部 901の構成を示す図である。なお、上記第 2の実施形態にお いて示した信号処理部 701と重複する機能については、同じ参照番号を付すこととし 、説明を省略する。ここでは、信号処理部 701と異なる点を中心に説明する。
[0076] ラインデータ抽出部 405において抽出されたラインデータは、光路差検出部 902に 入力される。光路差検出部 902では、入力されたラインデータの中から、反射強度が 大きい上位 3つのピークを抽出する。更に、抽出したピークのうち、反射位置が最も手 前にあるピーク (深さ方向の最も浅い位置にあるピーク)を抽出する。
[0077] そして、当該抽出されたピークの深さ方向の位置を検出する。一方、予め設定 (記 憶)されている光学レンズのレンズ半径を読み出し、該検出された位置との差分をと ることにより、光路差のずれ量を算出する。
[0078] 算出されたずれ量は、制御部を介して光路長調整手段制御装置 326に送信され、 光路長調整が行われる。
[0079] 以上の説明から明らかなように、本実施形態によれば、ユーザは、カテーテル部 10 1を血管に揷入する前に、少なくとも 1ライン分のラインデータを取得するだけで、自 動的に光プローブごとの光路差の校正を行うことが可能となる。
[0080] なお、本実施形態では、光学系表面からの反射を示す位置を検出するためのロジ ックとして、反射強度が大きい 3つのピークを抽出し、その中から反射位置が最も手 前にあるピークの位置を抽出することとした力 S、本発明は特にこれに限定されない。 例えば、反射強度が最大のピークの位置を抽出してもよい。また、予め定められた値 以上の反射強度を有するピークのうち反射位置が最も手前にあるピークの位置を抽 出してもよい。
[0081] 更に、本実施形態では、光学系表面からの反射を示す位置を基準位置として校正 を行うこととしたが、本発明はこれに限られず、カテーテルシース内面あるいはカテー テルシース外面からの反射を示す位置を基準位置として校正を行うようにしてもょレ、 。この場合、反射強度が大きい上位 3つのピークのうち、反射を示す位置が 2番目ま たは 3番目のピークの位置を抽出し、予め設定されたカテーテルシース内径または外 径との差を比較し、ずれ量を算出することとなる。
[0082] [第 4の実施形態]
上記第 1乃至第 3の実施形態では、光干渉断層診断装置における光路差の校正 について説明したが、本発明は特にこれに限定されず、波長掃引による光干渉断層 診断装置にぉレ、ても、適用可能であることはレ、うまでもなレ、。
[0083] なお、波長掃引による光干渉断層診断装置の場合、光源から波長掃引された低干 渉光が出力される代わりに、光路長の可変機構として、第 2の光路長変化手段しか 配されていない(つまり、第 1の光路長変化手段を持たない)。このため、信号処理部 314、 701、 901より出力される光路差のずれ量は、光路長調整手段制御装置 326 に送信され、第 2の光路長変化手段(光路長調整手段)が動作することにより、光路 長の校正が実現されることとなる。
[0084] [第 5の実施形態]
上記第 1乃至第 4の実施形態では、光学レンズ 603の半径を既知な値として光路 長調整を行っていたが、本発明は必ずしもこれに限定されず、例えば光学系の先端 をレンズでなぐプリズムなどの別の光学素子とし、該光学素子の反射部から測定光 出射端までの距離を既知の値とすることができる。また、光プローブを測定光を反射 させないタイプの装置とする場合であっても、測定光と参照光の分岐部(光カップラ 部 308)から参照光用ミラーまでの参照光側光路長初期値を既知の値として保有し ておけば、測定光と参照光の分岐部から測定光側光学系出射端までの光路長との ずれを計測して、調整 (校正)することが可能となる。
本発明は上記実施の形態に制限されるものではなぐ本発明の精神及び範囲から 離脱することなぐ様々な変更及び変形が可能である。従って、本発明の範囲を公に するために、以下の請求項を添付する。

Claims

請求の範囲
[1] 測定光を測定対象に照射する一方、該測定対象からの反射光を受光する光プロ一 ブと接続され、光源から出力される光を前記測定光と参照光とに分割し、前記反射光 と前記参照光とを干渉させることで前記光プローブの出射方向における反射強度分 布を取得し、前記測定対象の画像を形成する光干渉断層画像診断装置であって、 前記反射強度分布のうち、 1単位分の強度分布を抽出する抽出手段と、 前記抽出手段により抽出された強度分布に基づいて判別される、前記光プローブ の出射方向における所定の基準位置が、所定位置と一致しない場合に、前記基準 位置と前記所定位置との距離を、ずれ量として認識する認識手段と、
前記ずれ量に基づいて、前記測定光または参照光の光路長を調整する調整手段 と
を備えることを特徴とする光干渉断層画像診断装置。
[2] 前記抽出手段により抽出された反射強度分布を表示する表示手段と、
前記表示手段により表示された反射強度分布に基づいて操作者が読み取った前 記ずれ量を入力する入力手段と、を更に備え、
前記認識手段は、前記入力手段からの入力により前記ずれ量を認識することを特 徴とする請求項 1に記載の光干渉断層画像診断装置。
[3] 前記抽出手段により抽出された反射強度分布を表示する表示手段と、
前記表示手段により表示された反射強度分布上において、前記基準位置を指定 する指定手段と、を備え、
前記認識手段は、前記指定手段により指定された位置と前記所定位置との間の距 離を算出することで、前記ずれ量を認識することを特徴とする請求項 1に記載の光干 渉断層画像診断装置。
[4] 前記抽出手段によって抽出された反射強度分布に基づいて前記基準位置の位置 情報を取得する取得手段を更に備え、
前記認識手段は、前記取得手段により取得された位置情報に基づいて、前記ずれ 量を認識することを特徴とする請求項 1に記載の光干渉断層画像診断装置。
[5] 前記取得手段は、前記反射強度分布に含まれるピークのうち、ピークの値が大きい 上位 3つの中から、深さ方向の位置が最も浅い位置にあるピークを選択し、該選択さ れたピークの位置を取得することを特徴とする請求項 4に記載の光干渉断層画像診 断装置。
[6] 前記所定位置が、前記光プローブに配された光学系の出射端の位置であることを 特徴とする請求項 1に記載の光干渉断層画像診断装置。
[7] 前記光源から出力される光は、波長掃引された低干渉性光であることを特徴とする 請求項 1に記載の光干渉断層画像診断装置。
[8] 前記光プローブは、生体の体腔内に挿入される形状および大きさの本体を有する ものであり、前記反射強度分布は、前記測定光の出射方向を連続的に回転させるこ とで前記体腔内の円周方向に複数取得することを特徴とする請求項 1に記載の光干 渉断層画像診断装置。
[9] 測定光を測定対象に照射する一方、該測定対象からの反射光を受光する光プロ一 ブと接続され、光源から出力される光を前記測定光と参照光とに分割し、前記反射光 と前記参照光とを干渉させることで前記光プローブの出射方向における反射強度分 布を取得し、前記測定対象の画像を形成する光干渉断層画像診断装置における情 報処理方法であって、
前記反射強度分布のうち、 1単位分の強度分布を抽出する抽出工程と、 前記抽出工程により抽出された強度分布に基づいて判別される、前記光プローブ の出射方向における所定の基準位置が、所定位置と一致しない場合に、前記基準 位置と前記所定位置との距離を、ずれ量として認識する認識工程と、
前記ずれ量に基づいて、前記測定光または参照光の光路長を調整する調整工程 と
を備えることを特徴とする情報処理方法。
[10] 請求項 9に記載の情報処理方法をコンピュータによって実現させるための制御プロ グラム。
PCT/JP2007/069259 2006-10-13 2007-10-02 Appareil de diagnostic d'images par interférence optique et procédé de traitement associé WO2008044539A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006280566 2006-10-13
JP2006-280566 2006-10-13

Publications (1)

Publication Number Publication Date
WO2008044539A1 true WO2008044539A1 (fr) 2008-04-17

Family

ID=39282748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069259 WO2008044539A1 (fr) 2006-10-13 2007-10-02 Appareil de diagnostic d'images par interférence optique et procédé de traitement associé

Country Status (1)

Country Link
WO (1) WO2008044539A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098014A1 (ja) * 2009-02-24 2010-09-02 テルモ株式会社 画像診断装置及びその制御方法
JP2011206373A (ja) * 2010-03-30 2011-10-20 Terumo Corp 光画像診断装置及びその表示制御方法
JP2011206375A (ja) * 2010-03-30 2011-10-20 Terumo Corp 光画像診断装置及びその表示制御方法
US8493567B2 (en) 2008-09-25 2013-07-23 Terumo Kabushiki Kaisha Optical tomographic image acquisition apparatus and method of acquiring optical tomographic image which adjusts reference position that acquires optical tomographic image based on sheath interference signal
JP2015511162A (ja) * 2012-02-22 2015-04-16 ヴォルカノ コーポレイションVolcano Corporation 自動較正システムおよび使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097846A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 光走査プローブ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097846A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 光走査プローブ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493567B2 (en) 2008-09-25 2013-07-23 Terumo Kabushiki Kaisha Optical tomographic image acquisition apparatus and method of acquiring optical tomographic image which adjusts reference position that acquires optical tomographic image based on sheath interference signal
US9207064B2 (en) 2008-09-25 2015-12-08 Terumo Kabushiki Kaisha Optical tomographic image acquisition apparatus and method of acquiring optical tomographic image which adjusts reference position that acquires optical tomographic image based on sheath interference signal
WO2010098014A1 (ja) * 2009-02-24 2010-09-02 テルモ株式会社 画像診断装置及びその制御方法
US8994803B2 (en) 2009-02-24 2015-03-31 Terumo Kabushiki Kaisha Image apparatus and control method thereof configured to determine optical probe abnormality
JP2011206373A (ja) * 2010-03-30 2011-10-20 Terumo Corp 光画像診断装置及びその表示制御方法
JP2011206375A (ja) * 2010-03-30 2011-10-20 Terumo Corp 光画像診断装置及びその表示制御方法
US8868159B2 (en) 2010-03-30 2014-10-21 Terumo Kabushiki Kaisha Optical imaging diagnostic apparatus and the display control method thereof
JP2015511162A (ja) * 2012-02-22 2015-04-16 ヴォルカノ コーポレイションVolcano Corporation 自動較正システムおよび使用方法

Similar Documents

Publication Publication Date Title
JP4963913B2 (ja) 光コヒーレンス断層画像化システム
JP4471163B2 (ja) 光断層画像取得装置
JP4768494B2 (ja) 画像診断装置およびその処理方法
JP4577504B2 (ja) 画像診断装置
US9295450B2 (en) Imaging apparatus and control method thereof
JP2002200037A (ja) 内視鏡装置
JP5981557B2 (ja) 画像診断装置
JP6315816B2 (ja) 画像処理装置、画像処理装置の作動方法、プログラムおよび記憶媒体
US10555723B2 (en) Imaging apparatus for diagnosis, control method therefor, program, and computer readable storage medium
WO2008044539A1 (fr) Appareil de diagnostic d'images par interférence optique et procédé de traitement associé
JP5431852B2 (ja) 画像診断装置及びその作動方法、並びにプログラム
US8868159B2 (en) Optical imaging diagnostic apparatus and the display control method thereof
JP2010051533A (ja) 光断層画像読み取り装置
JP5399844B2 (ja) 画像診断装置及びその作動方法
CN114052659A (zh) 用于图像同步的方法和系统
US9140538B2 (en) Optical tomographic imaging system and optical tomographic imaging method to generate tomographic image and surface image of a subject
JP5812785B2 (ja) 光断層画像処理装置及び光断層画像処理装置の作動方法
JP2012050609A (ja) 画像診断装置及び画像診断方法
JP6584806B2 (ja) 画像診断装置及びその制御方法、プログラム及びコンピュータ可読記憶媒体
JP2008048798A (ja) ラジアル走査式経内視鏡オプティカルコヒーレンストモグラフィ装置
JP2018153563A (ja) 断層像撮影装置およびその制御方法
JP2010125271A (ja) 光断層画像取得装置
JP2016131592A (ja) 光ケーブル及び光画像診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP