WO2008041776A1 - Fully aromatic polyester - Google Patents

Fully aromatic polyester Download PDF

Info

Publication number
WO2008041776A1
WO2008041776A1 PCT/JP2007/069637 JP2007069637W WO2008041776A1 WO 2008041776 A1 WO2008041776 A1 WO 2008041776A1 JP 2007069637 W JP2007069637 W JP 2007069637W WO 2008041776 A1 WO2008041776 A1 WO 2008041776A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyester
film
wholly aromatic
multilayer
mol
Prior art date
Application number
PCT/JP2007/069637
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Yokota
Toshio Shiwaku
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Publication of WO2008041776A1 publication Critical patent/WO2008041776A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to wholly aromatic polyesters suitably used for films, blow molded articles and the like. More specifically, since it has a small volume expansion coefficient, excellent high dimensional stability, and excellent heat resistance, it is particularly suitable for multilayer films or multilayer sheets, multilayer multilayer molded products, etc. Related to fully aromatic polyesters
  • Liquid crystalline polymers have a good balance of excellent fluidity, mechanical strength, heat resistance, chemical resistance, and electrical properties, and are therefore widely used as high-performance engineering plastics, but most of them are exclusively used. It was obtained by injection molding.
  • the multilayer body when a liquid crystal polymer film and a metal multilayer body are used for an electronic circuit board, the multilayer body will be damaged if the liquid crystal polymer film and the metal have different coefficients of thermal expansion or the film itself is weak. There was a problem.
  • the present invention solves the above-mentioned problems of the prior art, has a small volume expansion coefficient, has excellent high dimensional stability, and is excellent in heat resistance.
  • a multilayer film or a multilayer sheet, a multilayer blow molded article, etc. It is an object of the present invention to provide a wholly aromatic polyester which is particularly preferably used in the present invention.
  • the present invention includes structural units represented by the following general formulas (I), (II) and (III) as structural components, and the structural unit of (I) is 66 to 5 mole 0/0, at the time of melting, wherein the structural unit (II) is 12.5 to 17.0 mole 0/0, a structural unit is 12.5 to 17.0 mol% of (III) It is a wholly aromatic polyester that exhibits optical anisotropy.
  • the present invention further provides a film or sheet formed from the wholly aromatic polyester and a metal laminate obtained by laminating a metal on the film or sheet.
  • the present invention also provides a use for producing the above-mentioned fully aromatic polyester film or sheet.
  • the wholly aromatic polyester and its composition comprising a specific structural unit obtained in the present invention and exhibiting anisotropy at the time of melting are easily melt-drawn and blow-molded, processed efficiently and economically. It is possible to obtain a film or sheet, fiber and blow-molded product having excellent physical properties of liquid crystalline polyester.
  • polystyrene resin because of its small volume expansion coefficient and excellent dimensional stability, it can be used as a multilayer film or sheet formed from other polymers and metals, and as a multilayer pro-molded product formed from other polymers. Used especially well.
  • Other polymers used here are not particularly limited, but polyolefins, particularly high-density polyethylene are preferred.
  • the constitutive position (I) is introduced from 4-hydroxybenzoic acid and its derivatives.
  • the structural unit (II) is derived from 2,6-naphthalenedicarboxylic acid and its derivatives.
  • the structural unit (III) is introduced from hydroquinone and its derivatives.
  • Ar 3 needs to be 1,4-phenylene, and, for example, 4, 4, biphenyl, etc. are not preferable because the melting point is remarkably high.
  • the copolymerization ratio of each structural unit is important for the purpose of the present invention, in order to maintain good heat resistance and to exhibit a small volume expansion coefficient and excellent dimensional stability.
  • the present invention comprise the structural units (I) ⁇ a ( ⁇ ), constituent units 66-75 mol% of the total constitutional units 100 mole% (I) (preferably 68 to 72 mole 0/0 ), the structural unit (II) 12. 5 to 17. 0 mole 0/0 (preferably 14-16 mole 0/0), the structural unit (III) 12. 5 to 17. 0 mole 0/0 (Preferably 14 to 16 mol%).
  • the structural unit of (I) is less than 6 mol%, it is not preferable because it adversely affects the target dimensional stability (volume expansion coefficient). On the other hand, if it exceeds 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production, which makes it impossible to produce a polymer having a desired molecular weight.
  • the structural unit of (III) is less than 12.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. Therefore, it is not preferable. In addition, if it exceeds 17.0 mol%, the target dimensional stability (volume expansion coefficient) is adversely affected. It ’s not.
  • the wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method or the like is used for the polymerization.
  • an acylating agent for the polymerization monomer or a monomer having an active end as an acid chloride derivative can be used in the polymerization.
  • the acylating agent include acid anhydrides such as anhydrous acetic acid, and the amount used is preferably 1.01 to 1.10 times the total equivalent weight of hydroxyl groups, more preferably 1. 02 to 1 ⁇ 05 times.
  • Various catalysts can be used for these polymerizations. Typical examples are dialkyltin oxide, dialyl tin oxide, titanium dioxide, alkoxytitanium silicates, titanium alcoholates, and carboxylic acids. And alkaline earth metal salts, Lewis acid salts such as BF 3 and the like.
  • the amount of catalyst used is generally from about 0.001 to 1% by weight, especially from about 0.003 to 0.2% by weight, based on the total weight of the monomer.
  • liquid paraffin In the case of performing solution polymerization or slurry polymerization, liquid paraffin, high heat resistant synthetic oil, inert mineral oil, etc. are used as a solvent.
  • the reaction conditions are a reaction temperature of 200 to 380 D C and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to: L01, 080 Pa).
  • the reaction temperature is 260 to 380 ° C, preferably 300 to 360 ° C, and the final pressure is! ⁇ LOOTorr (ie, 133-13, 300 Pa), preferably l-50 Torr (ie, 133-6, 670 Pa).
  • melt polymerization is carried out after the reaction system reaches a predetermined temperature, and then the pressure reduction is started to a predetermined pressure reduction degree. After the agitator torque reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.
  • the liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability. From the above unit There are some wholly aromatic polyesters that do not form an anisotropic melt phase depending on the sequence distribution in the constituent components and the polymer. However, the polymer according to the present invention has an optical anisotropy when melted. Are limited to wholly aromatic polyesters.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere.
  • the polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten still liquid state.
  • the wholly aromatic polyester of the present invention preferably has a melt viscosity of 1 ⁇ 10 6 Pa ⁇ s or less at a shear rate of lOOOOsec- 1 at a temperature 10 ° C. or more higher than the melting point. More preferably, it is 1 ⁇ 10 3 Pa ⁇ s or less. These melt viscosities are generally realized by having liquid crystallinity.
  • the wholly aromatic polyester of the present invention can be formed into a film by melt extrusion molding, inflation molding or the like.
  • Melt extrusion molding is a molding method in which a wholly aromatic polyester is melt-kneaded with an extruder and a melt-extruded melt is stretched from a slit portion of a T die, and a stretched and oriented film can be obtained.
  • the setting of the extruder during film formation can be appropriately set according to the skeleton composition ratio of the wholly aromatic polyester.
  • the cylinder temperature of the extruder is preferably from 300 to 380 ° C, more preferably from 320 to 370 ° C. At temperatures outside this range, the wholly aromatic polyester tends to be thermally decomposed and film formation tends to be difficult.
  • the slit interval used is preferably 0.1 to 1.0mra. When the slit interval is larger than 1.0 mm, uneven orientation or the like occurs and the shape of the film tends to deteriorate.
  • the drift ratio of the axially oriented film (the value obtained by dividing the cross-sectional area of the T-die slit by the cross-sectional area of the MD direction) is preferably in the range of 2.0-30. When the drift ratio is less than 2.0, the film strength tends to be insufficient, and when the drift ratio exceeds 30, the smoothness of the film tends to be insufficient.
  • Biaxially stretched film is a method in which a melt sheet extruded from a T die is stretched simultaneously in the longitudinal direction (MD) and in both the longitudinal direction and the vertical direction (transverse direction (TD)), or a melt extruded from a T die. The sheet can be obtained by stretching in the V1D direction and then in the TD direction.
  • the draw ratio in the MD direction and TD direction is preferably 1.0 or more, and more preferably 1.5 to 20. If the draw ratio is out of the above range, it tends to be difficult to obtain a film having a mechanical balance and a uniform thickness.
  • Inflation molding is a molding method in which a wholly aromatic polyester is melt-kneaded with an extruder and an inert gas is blown from the inside of a cylindrical sheet melt-extruded from a circular ring die, and a stretched and oriented film can be obtained. it can.
  • the setting of the extruder during film formation can be appropriately set according to the skeleton composition ratio of the wholly aromatic polyester.
  • the cylinder temperature of the extruder is preferably 300 to 380 ° C, more preferably 320 to 370 ° C. At temperatures outside this range, the wholly aromatic polyester tends to be thermally decomposed and film formation tends to be difficult.
  • the ring slit interval used is preferably 0.1 to 3.0 mm, more preferably 0.2 to 1.5 mm. In inflation molding, the draw ratio and blow ratio are used as equivalent to the draw ratio in the MD direction and TD direction in the T-die method.
  • the draw ratio corresponds to the draw ratio in the MD direction, preferably 1.5 to 40, and the blow ratio corresponds to the draw ratio in the TD direction, preferably 2.0 to 10. If the setting conditions at the time of film formation are outside the above range, it tends to be difficult to obtain a film having a mechanical balance and a uniform thickness.
  • the thickness of the wholly aromatic polyester film obtained by the present invention is preferably 1 to 500 ⁇ m and more preferably 5 to 300 ⁇ m from the viewpoints of film forming property, mechanical properties and processability.
  • the wholly aromatic polyester film obtained by the present invention can be formed into a metal laminate by laminating a metal layer on its surface, or a multilayer laminate of two or more layers of a wholly aromatic polyester film and a metal layer. You can also. Further, in order to improve strength and adhesion, the metal laminate may be heat-treated as necessary. Examples of the metal used include gold, silver, copper, nickel, and aluminum. Copper is preferable for printed wiring board applications, and aluminum is preferable for capacitor applications.
  • the wholly aromatic polyester of the present invention can be blended with various fibrous, powdery, and plate-like inorganic and organic fillers within a range that does not affect the film processability.
  • Fiber fillers include glass fibers, asbestos fibers, silica fibers, silica 'alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and silicate fibers such as wollastonite.
  • Inorganic fibrous materials such as magnesium sulfate fiber, aluminum borate fiber, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass.
  • a particularly typical fibrous filler is glass fiber.
  • High melting point organic fibrous materials such as polyamide, fluororesin, polyester resin, and attalyl resin can also be used.
  • the granular filler carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, potassium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite Silicates such as iron oxide, iron oxide, titanium oxide, zinc oxide, antimony trioxide, oxides of metals such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfuric acids of metals such as calcium sulfate and barium sulfate Examples include salts, other ferrites, silicon carbide, silicon nitride, boron nitride, and various metal powders.
  • Examples of the plate-like filler include My strength, glass flakes, Tanorek, and various metal foils.
  • organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.
  • inorganic and organic fillers can be used alone or in combination of two or more.
  • the combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties, and the like.
  • the amount of inorganic filler is It is 120 parts by weight or less, preferably 20 to 80 parts by weight based on 100 parts by weight of the wholly aromatic polyester.
  • a sizing agent or a surface treatment agent can be used.
  • thermoplastic resins may be further added to the wholly aromatic polyester of the present invention as long as the purpose of the present invention is not impaired.
  • thermoplastic resin used in this case are: Polyoleins such as polyethylene and polypropylene; Aromatic polyesters composed of aromatic dicarboxylic acids such as polyethylene terephthalate and polybutylene terephthalate and diol; Polyacetal ( Homo or copolymer), polystyrene, polychlorinated butyl, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, fluororesin, and the like. Two or more of these thermoplastic resins can be used in combination.
  • Polyoleins such as polyethylene and polypropylene
  • Aromatic polyesters composed of aromatic dicarboxylic acids such as polyethylene terephthalate and polybutylene terephthalate and diol
  • Polyacetal Homo or copolymer
  • polystyrene polychlorinated butyl
  • polyamide polyamide
  • polycarbonate ABS
  • polyphenylene oxide polyphenylene sulfide
  • Measurement temperature was 360 ° (: shear rate lOOOsecf 1 ), measured with Toyo Seiki Capirodharaf using an orifice with an inner diameter of 1 ram and a length of 20 mm.
  • Example 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a vacuum Z effluent line was charged with the following raw material monomers, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • Acetate-powered rhodium catalyst 25.5 mg (30 ppm by weight as metal-based lithium (total weight of polymer))
  • the temperature of the reaction system was raised to 140 ° C and reacted at 140 ° C for 1 hour. After that, the temperature was further increased to 360 ° C over 5 hours, and then over 15 minutes, lOTorr
  • the pressure was reduced to (that is, 1330 Pa), and melt polymerization was carried out while distilling acetic acid, excess acetic anhydride, and other low-boiling components. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from the reduced pressure state to the normal pressure state, and the polymer was discharged from the lower part of the polymerization vessel.
  • a film was prepared by adjusting the temperature and pressure so that the thickness of the film became 0.05 mm with a hot press, and the volume expansion coefficient was measured.
  • a polymerization vessel equipped with a stirrer, reflux column, monomer inlet, nitrogen inlet, and vacuum / outflow line was charged with the following raw material monomers, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • Acetate-powered rhodium catalyst 25.5 mg (30 ppm by weight as metal-based lithium (total weight of polymer))
  • the temperature of the reaction system was raised to 140 ° C and reacted at 140 ° C for 1 hour. After that, the temperature was further raised to 350 ° C over 5 hours, and then over 15 minutes, lOTorr
  • the pressure was reduced to (that is, 1330 Pa), and melt polymerization was carried out while distilling acetic acid, excess acetic anhydride, and other low-boiling components. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from the reduced pressure state to the normal pressure state, and the polymer was discharged from the lower part of the polymerization vessel.
  • the film was prepared by adjusting the temperature and pressure so that the thickness of the film became 0.05 mm by hot pressing, and the volume expansion coefficient was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a fully aromatic polyester which is particularly suitably used for multilayer films, multilayer sheets, multilayer blow molded articles and the like, since it is excellent in dimensional stability and heat resistance while having low volume expansion rate. Specifically disclosed is a fully aromatic polyester exhibiting optical anisotropy when melted, which contains structural units introduced from 4-hydroxybenzoic acid, 2,6-naphthalene dicarboxylic acid and hydroquinone at a specific ratio.

Description

明細書 全芳香族ポリエステル 技術分野  Description Fully Aromatic Polyester Technical Field
本発明は、 フィルム、 ブロー成形品等に好適に用いられる全芳香族ポリエス テルに関する。 更に詳しくは、 体積膨張率が小さく、 優れた高寸法安定性を持 ち、 且つ耐熱性に優れていることから、 多層フィルムもしくは多層シート、 多 層プロ一成形品等に特に好適に用レ、られる全芳香族ポリエステルに関するもの The present invention relates to wholly aromatic polyesters suitably used for films, blow molded articles and the like. More specifically, since it has a small volume expansion coefficient, excellent high dimensional stability, and excellent heat resistance, it is particularly suitable for multilayer films or multilayer sheets, multilayer multilayer molded products, etc. Related to fully aromatic polyesters
(、ぁる。 背景技術 (The background.
液晶性ポリマーは、 優れた流動性、 機械強度、 耐熱性、 耐薬品性、 電気的性 質をバランス良く有するため、 高機能エンジニアリングプラスチックスとして 好適に広く利用されているが、 その大部分は専ら射出成形により得られるもの であった。  Liquid crystalline polymers have a good balance of excellent fluidity, mechanical strength, heat resistance, chemical resistance, and electrical properties, and are therefore widely used as high-performance engineering plastics, but most of them are exclusively used. It was obtained by injection molding.
一方、 近年の著しい産業の発展に伴い、 力かる液晶性ポリマーの用途も多岐 にわたり一層高度化、 特殊化する傾向にあり、 溶融延伸加工及びブロー成形等 により効率良く経済的に成形加工して、 液晶性ポリマーの寸法安定性、 吸湿性 及び電気特性等の優れた物性を保持したフィルムもしくはシート、 中空成形品、 繊維等を得ることが期待されてきている。 近年、 電気 ·電子材料分野において、 液晶性ポリマーフィルムは電子回路基板用途に使用されているが、 信号の高速 化、 パターンの高密度化や高多層化が必要になってきており、 より高い高周波 特性、 厚さ精度、 耐熱性、 加工時の寸法安定性を持ち、 且つ多層化が求められ ている。 例えば、 電子回路基板に液晶性ポリマーフィルムと金属の多層体を使 用する場合、 液晶性ポリマーフィルムと金属の熱膨張率が異なったり、 フィル ム自体の強度が弱いと、 多層体が破損するという問題があつた。  On the other hand, along with the remarkable industrial development in recent years, the use of powerful liquid crystalline polymers is also becoming more sophisticated and specialized, and it can be efficiently and economically processed by melt drawing and blow molding, It has been expected to obtain a film or sheet, a hollow molded product, a fiber or the like that retains excellent physical properties such as dimensional stability, hygroscopicity and electrical properties of the liquid crystalline polymer. In recent years, in the field of electrical and electronic materials, liquid crystalline polymer films have been used for electronic circuit board applications. However, higher signal speed, higher pattern density, and higher multi-layers have become necessary. Properties, thickness accuracy, heat resistance, dimensional stability during processing, and multilayering are required. For example, when a liquid crystal polymer film and a metal multilayer body are used for an electronic circuit board, the multilayer body will be damaged if the liquid crystal polymer film and the metal have different coefficients of thermal expansion or the film itself is weak. There was a problem.
既存の液晶性ポリマーフィルムでは、 寸法安定性と強度を兼ね備えていない ため、 液晶性ポリマーフィルムと金属の多層化は困難である。 特開 2 0 0 4 - 2 4 4 4 5 2号公報では熱による体積膨張率が小さい液晶性ポリマーフィルム が提案されているが、 その効果は十分とは言えない。 Existing liquid crystalline polymer films do not have dimensional stability and strength Therefore, it is difficult to make a multilayer of liquid crystalline polymer film and metal. Japanese Patent Application Laid-Open No. 20 0 4-2 4 4 4 5 2 proposes a liquid crystalline polymer film having a small volume expansion coefficient due to heat, but the effect is not sufficient.
また、 寸法安定性と強度を兼備させるため、 液晶性ポリマーに各種フィラー を添加する方法等が考えられているが、 フィルム加工性が悪くなるため、 電子 回路基板用途に対する材料としては不十分である。 発明の開示  In addition, in order to combine dimensional stability and strength, methods such as adding various fillers to liquid crystalline polymers are considered, but the film processability deteriorates, so it is insufficient as a material for electronic circuit board applications. . Disclosure of the invention
本発明は、 上記従来技術の問題点を解決し、 体積膨張率が小さく、 優れた高 寸法安定性を持ち、 且つ耐熱性に優れていることから、 多層フィルムもしくは 多層シート、 多層ブロー成形品等に特に好適に用いられる全芳香族ポリエステ ルを提供することを目的とする。  The present invention solves the above-mentioned problems of the prior art, has a small volume expansion coefficient, has excellent high dimensional stability, and is excellent in heat resistance. Thus, a multilayer film or a multilayer sheet, a multilayer blow molded article, etc. It is an object of the present invention to provide a wholly aromatic polyester which is particularly preferably used in the present invention.
本発明者らは上記目的を達成し、 良好な電気的物性を維持しつつ、 体積膨張 率が小さく、 高寸法安定性、 優れた耐熱性を有する全芳香族ポリエステルの提 供について鋭意研究した結果、 原料モノマーとして特定の 3種を選択して、 そ の特定量を組み合わせることが上記目的達成のために有効であることを見出し、 本発明を完成するに至った。  As a result of intensive research on the provision of wholly aromatic polyesters that achieve the above-mentioned object and maintain good electrical properties while having a small volume expansion coefficient, high dimensional stability, and excellent heat resistance. The inventors have found that it is effective to select three specific raw materials and combine the specific amounts to achieve the above object, and the present invention has been completed.
即ち本発明は、 構成成分として下記一般式 (I ) , (II) , (III)で表され る構成単位を含み、 全構成単位 100モル%に対して (I ) の構成単位が 66〜ァ5 モル0 /0、 (II) の構成単位が 12. 5〜17. 0モル0 /0、 (III)の構成単位が 12. 5〜 17. 0モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリ エステルである。 That is, the present invention includes structural units represented by the following general formulas (I), (II) and (III) as structural components, and the structural unit of (I) is 66 to 5 mole 0/0, at the time of melting, wherein the structural unit (II) is 12.5 to 17.0 mole 0/0, a structural unit is 12.5 to 17.0 mol% of (III) It is a wholly aromatic polyester that exhibits optical anisotropy.
(Π)
Figure imgf000004_0001
(Π)
Figure imgf000004_0001
(III) —— o— Ar3-0—— (III) —— o— Ar 3 -0——
(ここで、 Ai^は 1, 4一フエ二レン、 Ar2は 2, 6—ナフタレン、 Ar3は 1, 4 —フエ二レンである。 ) (Where Ai ^ is 1,4 1-phenylene, Ar 2 is 2,6-naphthalene, and Ar 3 is 1,4-phenylene.)
本発明はさらに上記全芳香族ポリエステルから形成されるフィルムもしくは シートおよび上記フィルムもしくはシートに金属を積層してなる金属積層体を 提供する。  The present invention further provides a film or sheet formed from the wholly aromatic polyester and a metal laminate obtained by laminating a metal on the film or sheet.
本発明はまた上記全芳香族ポリエステルのフィルムもしくはシートの製造用 途を提供する。  The present invention also provides a use for producing the above-mentioned fully aromatic polyester film or sheet.
本発明で得られる特定の構成単位よりなる溶融時に異方性を示す全芳香族ポ リエステル及びその組成物は、 溶融延伸加工及ぴブロー成形が容易であり、 効 率良く経済的に加工して液晶性ポリエステルの優れた物性を保持したフィルム もしくはシート、 繊維及びブロー成形品とすることが可能である。  The wholly aromatic polyester and its composition comprising a specific structural unit obtained in the present invention and exhibiting anisotropy at the time of melting are easily melt-drawn and blow-molded, processed efficiently and economically. It is possible to obtain a film or sheet, fiber and blow-molded product having excellent physical properties of liquid crystalline polyester.
また、 体積膨張率が小さく、 寸法安定性に優れているという特徴から、 他の ポリマー及び金属とから形成される多層フィルムもしくは多層シート、 他のポ リマーとから形成される多層プロ一成形品に特に好^に用いられる。 ここで使 用される他のポリマーは特に制限されないが、 ポリオレフイン、 特に高密度ポ リエチレンが好適である。  In addition, because of its small volume expansion coefficient and excellent dimensional stability, it can be used as a multilayer film or sheet formed from other polymers and metals, and as a multilayer pro-molded product formed from other polymers. Used especially well. Other polymers used here are not particularly limited, but polyolefins, particularly high-density polyethylene are preferred.
発明の詳細な説明 Detailed Description of the Invention
上記 (I ) 〜(III)の構成単位を具現化するには通常のエステル形成能を有 する種々の化合物が使用される。 以下に本発明を構成する全芳香族ポリエステ ルを形成するために必要な原料化合物について順を追って詳しく説明する。 In order to realize the structural units (I) to (III) above, it has ordinary ester forming ability. Various compounds are used. Hereinafter, the raw material compounds necessary for forming the wholly aromatic polyester constituting the present invention will be described in detail step by step.
構成寧-位 (I ) は、 4ーヒドロキシ安息香酸及びその誘導体から導入される。 構成単位 (II) は、 2 , 6—ナフタレンジカルボン酸及びその誘導体から導 入される。  The constitutive position (I) is introduced from 4-hydroxybenzoic acid and its derivatives. The structural unit (II) is derived from 2,6-naphthalenedicarboxylic acid and its derivatives.
構成単位(III)は、 ヒドロキノン及びその誘導体から導入される。  The structural unit (III) is introduced from hydroquinone and its derivatives.
構成単位(III)は、 Ar3が 1 , 4—フエ二レンであることが必要であり、 例え ば 4, 4, ービフエニル等では融点が著しく高くなり好ましくない。 In the structural unit (III), Ar 3 needs to be 1,4-phenylene, and, for example, 4, 4, biphenyl, etc. are not preferable because the melting point is remarkably high.
本発明において、 各構成単位の共重合比率は、 本発明所期の目的である、 耐 熱性を良好に保ちつつ、 体積膨張率が小さく、 優れた寸法安定性を発現するた めに重要である。 そのため、 本発明では、 上記構成単位 (I ) 〜(ΙΠ)を含み、 全構成単位 100モル%に対して (I ) の構成単位が66〜 75モル% (好ましく は 68〜72モル0 /0) 、 (II) の構成単位が 12. 5〜17. 0モル0 /0 (好ましくは 14〜 16モル0 /0) 、 (III)の構成単位が 12. 5〜17. 0モル0 /0 (好ましくは 14〜16モ ル%) であることが必要である。 In the present invention, the copolymerization ratio of each structural unit is important for the purpose of the present invention, in order to maintain good heat resistance and to exhibit a small volume expansion coefficient and excellent dimensional stability. . Therefore, in the present invention comprise the structural units (I) ~ a (ΙΠ), constituent units 66-75 mol% of the total constitutional units 100 mole% (I) (preferably 68 to 72 mole 0/0 ), the structural unit (II) 12. 5 to 17. 0 mole 0/0 (preferably 14-16 mole 0/0), the structural unit (III) 12. 5 to 17. 0 mole 0/0 (Preferably 14 to 16 mol%).
( I ) の構成単位が S6モル%未満では、 目的とする寸法安定性 (体積膨張 率) に悪影響を与えるため好ましくない。 また、 75モル%より多くなると融点 が著しく高くなり、 場合によっては製造時にポリマーがリアクター内で固化し、 所望の分子量のポリマーを製造することができなくなるため好ましくない。  If the structural unit of (I) is less than 6 mol%, it is not preferable because it adversely affects the target dimensional stability (volume expansion coefficient). On the other hand, if it exceeds 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production, which makes it impossible to produce a polymer having a desired molecular weight.
また、 (II) の構成単位が 12· 5モル%未満では、 融点が著しく高くなり、 場合によっては製造時にポリマーがリアクター内で固化し、 所望の分子量のポ リマーを製造することができなくなるため好ましくない。 また、 I7. 0モル0 /0よ り多くなると目的とする寸法安定性 (体積膨張率) に悪影響を与えるため好ま しくない。 In addition, when the constituent unit of (II) is less than 12.5 mol%, the melting point is remarkably high, and in some cases, the polymer solidifies in the reactor at the time of production, making it impossible to produce a polymer with a desired molecular weight. It is not preferable. Further, there is no properly preferred because an adverse effect on I 7. 0 mole 0/0 becomes Ri many good when dimensional stability of interest (volume expansion ratio).
また、 (III)の構成単位が 12. 5モル%未満では、 融点が著しく高くなり、 場 合によっては製造時にポリマーがリアクター内で固化し、 所望の分子量のポリ マーを製造することができなくなるため好ましくない。 また、 17. 0モル%より 多くなると目的とする寸法安定性 (体積膨張率) に悪影響を与えるため好まし くない。 If the structural unit of (III) is less than 12.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. Therefore, it is not preferable. In addition, if it exceeds 17.0 mol%, the target dimensional stability (volume expansion coefficient) is adversely affected. It ’s not.
尚、 本発明の全芳香族ポリエステルには、 本発明の目的を阻害しない範囲で 少量の公知の他の構成単位を導入することもできるが、 これらの構成単位は事 実上含まれないことが好ましい。  Incidentally, in the wholly aromatic polyester of the present invention, a small amount of other known structural units can be introduced as long as the object of the present invention is not impaired, but these structural units may not be actually included. preferable.
本発明の全芳香族ポリエステルは、 直接重合法やエステル交換法を用いて重 合され、 重合に際しては、 溶融重合法、 溶液重合法、 スラリー重合法等が用い られる。  The wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method or the like is used for the polymerization.
本発明では、 重合に際し、 重合モノマーに対するァシル化剤や、 酸塩化物誘 導体として末端を活性ィヒしたモノマーを使用できる。 ァシル化剤としては、 無 水酢酸等の酸無水物等が挙げられ、 使用量は、 重合制御の観点から、 水酸基の 合計当量の 1. 01〜1. 10倍が好ましく、 さらに好ましくは 1· 02〜1· 05倍である。 これらの重合に際しては種々の触媒の使用が可能であり、 代表的なものはジ アルキル錫酸化物、 ジァリール錫酸化物、 二酸化チタン、 アルコキシチタンけ い酸塩類、 チタンアルコラート類、 カルボン酸のアル力リ及びアル力リ土類金 属塩類、 BF3の如きルイス酸塩等が挙げられる。 触媒の使用量は一般にはモノ マーの全重量に基いて約 0. 001乃至 1重量%、 特に約 0. 003乃至 0. 2重量%が 好ましい。 In the present invention, an acylating agent for the polymerization monomer or a monomer having an active end as an acid chloride derivative can be used in the polymerization. Examples of the acylating agent include acid anhydrides such as anhydrous acetic acid, and the amount used is preferably 1.01 to 1.10 times the total equivalent weight of hydroxyl groups, more preferably 1. 02 to 1 · 05 times. Various catalysts can be used for these polymerizations. Typical examples are dialkyltin oxide, dialyl tin oxide, titanium dioxide, alkoxytitanium silicates, titanium alcoholates, and carboxylic acids. And alkaline earth metal salts, Lewis acid salts such as BF 3 and the like. The amount of catalyst used is generally from about 0.001 to 1% by weight, especially from about 0.003 to 0.2% by weight, based on the total weight of the monomer.
また、 溶液重合又はスラリー重合を行う場合、 溶媒としては流動パラフィン、 高耐熱性合成油、 不活性鉱物油等が用レヽられる。  In the case of performing solution polymerization or slurry polymerization, liquid paraffin, high heat resistant synthetic oil, inert mineral oil, etc. are used as a solvent.
反応条件としては、 反応温度 200〜380DC、 最終到達圧力 0. l〜760Torr (即 ち、 13〜: L01, 080Pa) である。 特に溶融反応では、 反応温度 260〜380°C、 好ま しくは 300〜360°C、 最終到達圧力:!〜 lOOTorr (即ち、 133〜13, 300Pa) 、 好ま しくは l〜50Torr (即ち、 133〜6, 670Pa) である。 The reaction conditions are a reaction temperature of 200 to 380 D C and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to: L01, 080 Pa). Especially for melt reactions, the reaction temperature is 260 to 380 ° C, preferably 300 to 360 ° C, and the final pressure is! ~ LOOTorr (ie, 133-13, 300 Pa), preferably l-50 Torr (ie, 133-6, 670 Pa).
溶融重合は、 反応系内が所定温度に達した後、 減圧を開始して所定の減圧度 にして行う。 撹拌機のトルクが所定値に達した後、 不活性ガスを導入し、 減圧 状態から常圧を経て、 所定の加圧状態にして反応系からポリマーを排出する。 溶融時に光学的異方性を示す液晶性ポリマーであることは、 本発明において 熱安定性と易加工性を併せ持つ上で不可欠な要素である。 上記構成単位からな る全芳香族ポリエステルは、 構成成分おょぴポリマー中のシーケンス分布によ つては、 異方性溶融相を形成しないものも存在するが、 本発明に係わるポリマ 一は溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。 Melt polymerization is carried out after the reaction system reaches a predetermined temperature, and then the pressure reduction is started to a predetermined pressure reduction degree. After the agitator torque reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state. The liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability. From the above unit There are some wholly aromatic polyesters that do not form an anisotropic melt phase depending on the sequence distribution in the constituent components and the polymer. However, the polymer according to the present invention has an optical anisotropy when melted. Are limited to wholly aromatic polyesters.
溶融異方性の性質は直交偏光子を利用した憒用の偏光検査方法により確認す ることができる。 より具体的には溶融異方性の確認はォリンパス社製偏光顕微 鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、 窒素雰囲気下 で 150倍の倍率で観察することにより実施できる。 上記ポリマーは光学的に異 方性であり、 直交偏光子間に挿入したとき光を透過させる。 試料が光学的に異 方性であると、 例えば溶融静止液状態であっても偏光は透過する。  The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere. The polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten still liquid state.
本発明の全芳香族ポリエステルは、 融点より 10°C以上高い温度で、 剪断速度 lOOOsec— 1における溶融粘度が 1 X 106 Pa · s 以下であることが好ましい。 更に 好ましくは 1 X 103 Pa · s 以下である。 これらの溶融粘度は液晶性を具備する ことで概ね実現される。 The wholly aromatic polyester of the present invention preferably has a melt viscosity of 1 × 10 6 Pa · s or less at a shear rate of lOOOOsec- 1 at a temperature 10 ° C. or more higher than the melting point. More preferably, it is 1 × 10 3 Pa · s or less. These melt viscosities are generally realized by having liquid crystallinity.
本発明の全芳香族ポリエステルは、 溶融押出成形、 インフレーション成形な どによりフィルムとすることができる。  The wholly aromatic polyester of the present invention can be formed into a film by melt extrusion molding, inflation molding or the like.
溶融押出成形は、 全芳香族ポリエステルを押出機で溶融混練し、 Tダイのス リット部より溶融押出しされた溶融体を延伸する成形法であり、 延伸および配 向フィルムを得ることができる。  Melt extrusion molding is a molding method in which a wholly aromatic polyester is melt-kneaded with an extruder and a melt-extruded melt is stretched from a slit portion of a T die, and a stretched and oriented film can be obtained.
フィルム製膜時の押出機の設定は、 全芳香族ポリエステルの骨格組成比によ り適宜設定することができる。 押出機のシリンダー温度は.300〜380°Cが好まし く、 320〜370°Cがより好ましい。 この範囲以外の温度においては、 全芳香族ポ リエステルが熱分解したり、 フィルム製膜が困難となる傾向にある。 使用され るスリッ ト間隔は、 0. l〜1. 0mraが好ましレ、。 スリ ッ ト間隔が 1. 0mmより大きい 場合は、 配向ムラ等が発生し、 フィルムの形状が悪くなる傾向にある。  The setting of the extruder during film formation can be appropriately set according to the skeleton composition ratio of the wholly aromatic polyester. The cylinder temperature of the extruder is preferably from 300 to 380 ° C, more preferably from 320 to 370 ° C. At temperatures outside this range, the wholly aromatic polyester tends to be thermally decomposed and film formation tends to be difficult. The slit interval used is preferably 0.1 to 1.0mra. When the slit interval is larger than 1.0 mm, uneven orientation or the like occurs and the shape of the film tends to deteriorate.
—軸配向フィルムのドリフト比 (Tダイスリットの断面積を MD方向のフィ ルム断面積で除した値) は 2. 0〜30の範囲が好ましい。 ドリフト比が 2. 0未満 であると、 フィルム強度不足となる傾向にあり、 ドリフト比が 30 を超えると、 フィルムの平滑性が不十分となる傾向にある。 二軸延伸フィルムは、 Tダイから押出した溶融体シートを長手方向 (MD) および長手方向と垂直方向 (横手方向 (T D) ) の両方向に同時に延伸する方 法、 または Tダイから押出した溶融体シートを] V1D方向に延伸し、 ついで T D 方向に延伸する方法により得ることができる。 MD方向及び T D方向の延伸倍 率は 1. 0以上が好ましく、 1. 5〜20がより好ましい。 延伸倍率が前記の範囲外 であると、 力学的バランスおよび均一な厚みのフィルムを得るのが困難な傾向 にあ —The drift ratio of the axially oriented film (the value obtained by dividing the cross-sectional area of the T-die slit by the cross-sectional area of the MD direction) is preferably in the range of 2.0-30. When the drift ratio is less than 2.0, the film strength tends to be insufficient, and when the drift ratio exceeds 30, the smoothness of the film tends to be insufficient. Biaxially stretched film is a method in which a melt sheet extruded from a T die is stretched simultaneously in the longitudinal direction (MD) and in both the longitudinal direction and the vertical direction (transverse direction (TD)), or a melt extruded from a T die. The sheet can be obtained by stretching in the V1D direction and then in the TD direction. The draw ratio in the MD direction and TD direction is preferably 1.0 or more, and more preferably 1.5 to 20. If the draw ratio is out of the above range, it tends to be difficult to obtain a film having a mechanical balance and a uniform thickness.
インフレーション成形は、 全芳香族ポリエステルを押出機で溶融混練し、 円 形状リングダイから溶融押出された円筒状シートの内側から不活性ガスを吹き 込む成形法であり、 延伸および配向フィルムを得ることができる。  Inflation molding is a molding method in which a wholly aromatic polyester is melt-kneaded with an extruder and an inert gas is blown from the inside of a cylindrical sheet melt-extruded from a circular ring die, and a stretched and oriented film can be obtained. it can.
フィルム製膜時の押出機の設定は、 全芳香族ポリエステルの骨格組成比によ り適宜設定することができる。 押出機のシリンダー温度は 300~380°Cが好まし く、 320〜370°Cがより好ましい。 この範囲以外の温度においては、 全芳香族ポ リエステルが熱分解したり、 フィルム製膜が困難となる傾向にある。 使用され るリング状スリッ ト間隔は、 0. 1〜3. 0匪が好ましく、 0. 2〜1. 5讓がより好ま しい。 インフレーション成形では、 Tダイ法における MD方向及び T D方向の 延伸倍率に相当するものとして、 ドロー比及びブロー比が用いられる。 ドロー 比は MD方向の延伸倍率に相当し、 1. 5〜40が好ましく、 ブロー比は T D方向 の延伸倍率に相当し、 2. 0〜10が好ましい。 ィンフレーション製膜時の設定条 件が前記の範囲外であると、 力学的バランスおよび均一な厚みのフィルムを得 るのが困難な傾向にある。  The setting of the extruder during film formation can be appropriately set according to the skeleton composition ratio of the wholly aromatic polyester. The cylinder temperature of the extruder is preferably 300 to 380 ° C, more preferably 320 to 370 ° C. At temperatures outside this range, the wholly aromatic polyester tends to be thermally decomposed and film formation tends to be difficult. The ring slit interval used is preferably 0.1 to 3.0 mm, more preferably 0.2 to 1.5 mm. In inflation molding, the draw ratio and blow ratio are used as equivalent to the draw ratio in the MD direction and TD direction in the T-die method. The draw ratio corresponds to the draw ratio in the MD direction, preferably 1.5 to 40, and the blow ratio corresponds to the draw ratio in the TD direction, preferably 2.0 to 10. If the setting conditions at the time of film formation are outside the above range, it tends to be difficult to obtain a film having a mechanical balance and a uniform thickness.
本発明により得られる全芳香族ポリエステルフィルムの厚みは、 製膜性、 機 械特性及び加工性の観点から 1〜500 μ mが好ましく、 5〜300 μ mがより好まし い。  The thickness of the wholly aromatic polyester film obtained by the present invention is preferably 1 to 500 μm and more preferably 5 to 300 μm from the viewpoints of film forming property, mechanical properties and processability.
本発明により得られる全芳香族ポリエステルフィルムは、 その表面に金属層 を積層して金属積層体とすることができ、 また全芳香族ポリエステルフィルム と金属層との二層以上の多層積層体とすることもできる。 また、 強度や密着性 向上のために、 必要に応じて金属積層体の熱処理を行ってもよい。 使用される金属としては、 例えば、 金、 銀、 銅、 ニッケル、 アルミニウムな どが挙げられ、 プリント配線板用途には銅が好ましく、 コンデンサー用途には アルミニウムが好ましい。 The wholly aromatic polyester film obtained by the present invention can be formed into a metal laminate by laminating a metal layer on its surface, or a multilayer laminate of two or more layers of a wholly aromatic polyester film and a metal layer. You can also. Further, in order to improve strength and adhesion, the metal laminate may be heat-treated as necessary. Examples of the metal used include gold, silver, copper, nickel, and aluminum. Copper is preferable for printed wiring board applications, and aluminum is preferable for capacitor applications.
次に本発明の全芳香族ポリエステルは使用目的に応じて、 フィルム加工性に 影響を与えない範囲で各種の繊維状、 粉粒状、 板状の無機及び有機の充填剤を 配合することができる。  Next, the wholly aromatic polyester of the present invention can be blended with various fibrous, powdery, and plate-like inorganic and organic fillers within a range that does not affect the film processability.
繊維状充填剤としてはガラス繊維、 アスベスト繊維、 シリカ繊維、 シリカ ' アルミナ繊維、 アルミナ繊維、 ジルコユア繊維、 窒化硼素繊維、 窒化珪素繊維、 硼素繊維、 チタン酸カリ繊維、 ウォラストナイ トの如き珪酸塩の繊維、 硫酸マ グネシゥム繊維、 ホウ酸アルミニウム繊維、 更にステンレス、 アルミニウム、 チタン、 銅、 真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。 特に代表的な繊維状充填剤はガラス繊維である。 尚、 ポリアミ ド、 フッ素樹脂、 ポリエステル樹脂、 アタリル樹脂などの高融点有機質繊維状物質も使用するこ とが出来る。  Fiber fillers include glass fibers, asbestos fibers, silica fibers, silica 'alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and silicate fibers such as wollastonite. Inorganic fibrous materials such as magnesium sulfate fiber, aluminum borate fiber, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass. A particularly typical fibrous filler is glass fiber. High melting point organic fibrous materials such as polyamide, fluororesin, polyester resin, and attalyl resin can also be used.
一方、 粉粒状充填剤としてはカーボンブラック、 黒鉛、 シリカ、 石英粉末、 ガラスビーズ、 ミルドガラスファイバ一、 ガラスバルーン、 ガラス粉、 硅酸カ ノレシゥム、 硅酸アルミニウム、 カオリン、 クレー、 硅藻土、 ウォラストナイ ト の如き硅酸塩、 酸化鉄、 酸化チタン、 酸化亜鉛、 三酸化アンチモン、 アルミナ の如き金属の酸化物、 炭酸カルシウム、 炭酸マグネシウムの如き金属の炭酸塩、 硫酸カルシウム、 硫酸バリウムの如き金属の硫酸塩、 その他フェライト、 炭化 硅素、 窒化硅素、 窒化硼素、 各種金属粉末等が挙げられる。  On the other hand, as the granular filler, carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, potassium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite Silicates such as iron oxide, iron oxide, titanium oxide, zinc oxide, antimony trioxide, oxides of metals such as alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfuric acids of metals such as calcium sulfate and barium sulfate Examples include salts, other ferrites, silicon carbide, silicon nitride, boron nitride, and various metal powders.
又、 板状充填剤としてはマイ力、 ガラスフレーク、 タノレク、 各種の金属箔等 が挙げられる。  Examples of the plate-like filler include My strength, glass flakes, Tanorek, and various metal foils.
有機充填剤の例を示せば芳香族ポリエステル繊維、 液晶性ポリマー繊維、 芳 香族ポリアミド、 ポリイミド繊維等の耐熱性高強度合成繊維等である。  Examples of organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.
これらの無機及び有機充填剤は一種又は二種以上併用することが出来る。 繊 維状充填剤と粒状又は板状充填剤との併用は特に機械的強度と寸法精度、 電気 的性質等を兼備する上で好ましい組み合わせである。 無機充填剤の配合量は、 全芳香族ポリエステル 100重量部に対し、 120重量部以下、 好ましくは 20〜80 重量部である。 These inorganic and organic fillers can be used alone or in combination of two or more. The combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties, and the like. The amount of inorganic filler is It is 120 parts by weight or less, preferably 20 to 80 parts by weight based on 100 parts by weight of the wholly aromatic polyester.
これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用 することができる。  In using these fillers, if necessary, a sizing agent or a surface treatment agent can be used.
また、 本発明の全芳香族ポリエステルには、 本発明の企図する目的を損なわ ない範囲で他の熱可塑性樹脂を更に補助的に添加してもよい。  In addition, other thermoplastic resins may be further added to the wholly aromatic polyester of the present invention as long as the purpose of the present invention is not impaired.
この場合に使用する熱可塑性樹脂の例を示すと、 ポリエチレン、 ポリプロピ レン等のポリオレイン、 ポリエチレンテレフタレート、 ポリブチレンテレフタ レート等の芳香族ジカルボン酸とジオール等からなる芳香族ポリエステル、 ポ リアセタール (ホモ又はコポリマー) 、 ポリスチレン、 ポリ塩化ビュル、 ポリ アミド、 ポリカーボネート、 A B S、 ポリフエ二レンォキシド、 ポリフエユレ ンスルフイ ド、 フッ素樹脂等を挙げることができる。 またこれらの熱可塑性樹 脂は 2種以上混合して使用することができる。 実施例  Examples of the thermoplastic resin used in this case are: Polyoleins such as polyethylene and polypropylene; Aromatic polyesters composed of aromatic dicarboxylic acids such as polyethylene terephthalate and polybutylene terephthalate and diol; Polyacetal ( Homo or copolymer), polystyrene, polychlorinated butyl, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, fluororesin, and the like. Two or more of these thermoplastic resins can be used in combination. Example
以下に実施例をもって本発明を更に詳しく説明するが、 本発明はこれらに限 定されるものではない。 尚、 実施例中の物性測定の方法は以下の通りである。  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In addition, the method of the physical-property measurement in an Example is as follows.
[融点]  [Melting point]
示差走查熱量分析装置 (パーキンエルマ一社製 D S C 7 ) にて、 20°CZ分の 昇温条件で測定した。  It was measured with a differential running calorimeter (DSC 7 manufactured by Perkin Elma Co., Ltd.) under a temperature rising condition of 20 ° CZ.
[溶融粘度 3  [Melting viscosity 3
測定温度 360° (:、 剪断速度 lOOOsecf1の条件で、 内径 1 ram、 長さ 20讓のオリ フィスを用いて東洋精機製キヤピロダラフで測定した。 Measurement temperature was 360 ° (: shear rate lOOOsecf 1 ), measured with Toyo Seiki Capirodharaf using an orifice with an inner diameter of 1 ram and a length of 20 mm.
[体積膨張率]  [Volume expansion]
(株) リガク製 TMA 8 3 1 0装置にて、 10°C/分の昇温条件でフィルム平 面の MD方向及び T D方向、 フィルム厚みの Z D方向の 50— 100°Cにおける線 膨張率の平均値を算出し、 3方向の線膨張率の総和を体積膨張率とした。 実施例 1 攪拌機、 還流カラム、 モノマー投入口、 窒素導入口、 減圧 Z流出ラインを備 えた重合容器に、 以下の原料モノマー、 金属触媒、 ァシル化剤を仕込み、 窒素 置換を開始した。 The linear expansion coefficient at 50-100 ° C in the MD and TD directions of the film plane and in the ZD direction of the film thickness with a temperature rise condition of 10 ° C / min. The average value was calculated, and the sum of the linear expansion coefficients in the three directions was taken as the volume expansion coefficient. Example 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a vacuum Z effluent line was charged with the following raw material monomers, metal catalyst, and acylating agent, and nitrogen substitution was started.
( I ) 4ーヒ ドロキシ安息香酸 227. 3 g (70モル0 /0) (I) 4 over arsenate Dorokishi acid 227. 3 g (70 mol 0/0)
(II) 2 , 6 _ナフタレンジカルボン酸 76. 2 g (15モル%)  (II) 2,6_Naphthalenedicarboxylic acid 76.2 g (15 mol%)
(III) ヒ ドロキノン 38. 8 g (15モル0 /0) (III) human Dorokinon 38. 8 g (15 mole 0/0)
酢酸力リゥム触媒 22. 5mg (金属力リウムとして 30重量 ppm (対ポリマー合計 重量) ) Acetate-powered rhodium catalyst 25.5 mg (30 ppm by weight as metal-based lithium (total weight of polymer))
無水酢酸 244. 8 g Acetic anhydride 244.8 g
原料を仕込んだ後、 反応系の温度を 140°Cに上げ、 140°Cで 1時間反応させた。 その後、 更に 360°Cまで 5時間かけて昇温し、 そこから 15分かけて lOTorr  After charging the raw materials, the temperature of the reaction system was raised to 140 ° C and reacted at 140 ° C for 1 hour. After that, the temperature was further increased to 360 ° C over 5 hours, and then over 15 minutes, lOTorr
(即ち 1330Pa) まで減圧にして、 酢酸、 過剰の無水酢酸、 その他の低沸分を留 出させながら溶融重合を行った。 撹拌トルクが所定の値に達した後、 窒素を導 入して減圧状態から常圧を経て加圧状態にして、 重合容器の下部からポリマー を 出した。  The pressure was reduced to (that is, 1330 Pa), and melt polymerization was carried out while distilling acetic acid, excess acetic anhydride, and other low-boiling components. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from the reduced pressure state to the normal pressure state, and the polymer was discharged from the lower part of the polymerization vessel.
次いで、 ホッ トプレスにて、 フィルムの厚みが 0. 05mmになるように温度 ' 圧力を調節してフィルムを作製し、 体積膨張率を測定した。  Next, a film was prepared by adjusting the temperature and pressure so that the thickness of the film became 0.05 mm with a hot press, and the volume expansion coefficient was measured.
比較例:!〜 3 Comparison example: ~ 3
原料モノマーの種類、 仕込み量を表 1に示す通りとした以外は、 実施例 1と 同様にして重合を行った。 これらの結果を表 1に示す。 尚、 比較例 3について は、 製造時にポリマーがリアクター内で固化し、 所望の分子量のポリマーを製 造することができなかった。  Polymerization was carried out in the same manner as in Example 1 except that the types and amounts of raw material monomers were as shown in Table 1. These results are shown in Table 1. In Comparative Example 3, the polymer solidified in the reactor at the time of production, and a polymer having a desired molecular weight could not be produced.
比較例 4 Comparative Example 4
攪拌機、 還流カラム、 モノマー投入口、 窒素導入口、 減圧/流出ラインを備 えた重合容器に、 以下の原料モノマー、 金属触媒、 ァシル化剤を仕込み、 窒素 置換を開始した。  A polymerization vessel equipped with a stirrer, reflux column, monomer inlet, nitrogen inlet, and vacuum / outflow line was charged with the following raw material monomers, metal catalyst, and acylating agent, and nitrogen substitution was started.
6—ヒ ドロキシ _ 2—ナフトェ酸 193. 2 g (60モル0 /0) 6 arsenide Dorokishi _ 2 Nafute acid 193. 2 g (60 mole 0/0)
2 , 6 _ナフタレンジカルボン酸 74. 0 g (20モル0 /0) 4 , 4, ージヒ ドロキシビフエ二ノレ 63. 7 g (20モル0 /0) 2, 6 _ naphthalenedicarboxylic acid 74. 0 g (20 mole 0/0) 4, 4, Jihi Dorokishibifue two Norre 63. 7 g (20 mole 0/0)
酢酸力リゥム触媒 22. 5mg (金属力リウムとして 30重量 ppm (対ポリマー合計 重量) ) Acetate-powered rhodium catalyst 25.5 mg (30 ppm by weight as metal-based lithium (total weight of polymer))
無水酢酸 178. 1 g Acetic anhydride 178.1 g
原料を仕込んだ後、 反応系の温度を 140°Cに上げ、 140°Cで 1時間反応させた。 その後、 更に 350°Cまで 5時間かけて昇温し、 そこから 15分かけて lOTorr  After charging the raw materials, the temperature of the reaction system was raised to 140 ° C and reacted at 140 ° C for 1 hour. After that, the temperature was further raised to 350 ° C over 5 hours, and then over 15 minutes, lOTorr
(即ち 1330Pa) まで減圧にして、 酢酸、 過剰の無水酢酸、 その他の低沸分を留 出させながら溶融重合を行った。 撹拌トルクが所定の値に達した後、 窒素を導 入して減圧状態から常圧を経て加圧状態にして、 重合容器の下部からポリマー を排出した。  The pressure was reduced to (that is, 1330 Pa), and melt polymerization was carried out while distilling acetic acid, excess acetic anhydride, and other low-boiling components. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from the reduced pressure state to the normal pressure state, and the polymer was discharged from the lower part of the polymerization vessel.
次いで、 ホットプレスにて、 フィルムの厚みが 0. 05mmになるように温度 ' 圧力を調節してフィルムを作製し、 体積膨張率を測定した。  Next, the film was prepared by adjusting the temperature and pressure so that the thickness of the film became 0.05 mm by hot pressing, and the volume expansion coefficient was measured.
この結果を表 1に示す。 The results are shown in Table 1.
表 1 table 1
Figure imgf000013_0001
Figure imgf000013_0001
(表の註) (註 in the table)
HB A; 4ーヒ ドロキシ安息香酸  HB A; 4-Hydroxybenzoic acid
NDA; 2, 6一ナフタレンジカルボン酸 NDA: 2, 6 Naphthalene dicarboxylic acid
HQ ; ヒ ドロキノン HQ : Hydroquinone
HNA; 6—ヒドロキシー 2—ナフトェ酸 BP ; 4, 4, 一ジヒ ドロキシビフエ二ノレ  HNA; 6-hydroxy-2-naphthoic acid BP; 4, 4, monodihydroxybiphene

Claims

請求の範囲 The scope of the claims
1. 構成成分として下記一般式 (I) , (II) , (III)で表される構成単位 を含み、 全構成単位 100モル%に対して (I) の構成単位が 66〜75モル%、1. Containing constituent units represented by the following general formulas (I), (II), and (III) as constituent components, and the constituent unit of (I) is 66-75 mol% with respect to 100 mol% of all constituent units,
(II) の構成単位が 12.5〜17.0モル%、 (III)の構成単位が 12·5〜17.0モ ル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステ ル。 A wholly aromatic polyester exhibiting optical anisotropy upon melting, characterized in that the structural unit of (II) is 12.5 to 17.0 mol% and the structural unit of (III) is 12.5 to 17.0 mol%.
0 0
, 、  ,,
(τ I ) — O— Ar— C II—
Figure imgf000014_0001
( τ I) — O— Ar— C II—
Figure imgf000014_0001
(III) — O— Ar3-0—— (III) — O— Ar 3 -0——
(ここで、 は 1, 4一フエ二レン、 Ar2は 2, 6—ナフタレン、 Ar3は 1 , 4 一フエ二レンである。 ) (Where is 1,4 monophenylene, Ar 2 is 2,6-naphthalene, and Ar 3 is 1,4 monophenylene.)
2. 請求項 1記載の全芳香族ポリエステルから形成されるフィルムもしくは シート。  2. A film or sheet formed from the wholly aromatic polyester according to claim 1.
3. 請求項 2記載のフィルムもしくはシートに金属を積層してなる金属積層 体。  3. A metal laminate obtained by laminating a metal on the film or sheet according to claim 2.
PCT/JP2007/069637 2006-10-05 2007-10-02 Fully aromatic polyester WO2008041776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-274111 2006-10-05
JP2006274111A JP5274761B2 (en) 2006-10-05 2006-10-05 Totally aromatic polyester

Publications (1)

Publication Number Publication Date
WO2008041776A1 true WO2008041776A1 (en) 2008-04-10

Family

ID=39268626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069637 WO2008041776A1 (en) 2006-10-05 2007-10-02 Fully aromatic polyester

Country Status (3)

Country Link
JP (1) JP5274761B2 (en)
TW (1) TW200827381A (en)
WO (1) WO2008041776A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586113B1 (en) * 2009-08-11 2016-01-15 도레이 카부시키가이샤 Liquid crystalline polyester and process for producing same
WO2019097750A1 (en) * 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor and metalized film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294732A (en) * 1988-05-20 1989-11-28 Mitsubishi Kasei Corp Aromatic polyester and its production
JPH02102223A (en) * 1988-10-11 1990-04-13 Mitsubishi Kasei Corp Aromatic polyester and preparation thereof
JP2000080289A (en) * 1998-09-07 2000-03-21 Toray Ind Inc Liquid crystalline resin composition
JP2003160716A (en) * 2001-11-26 2003-06-06 Ueno Seiyaku Oyo Kenkyusho:Kk Liquid crystalline polyester resin
JP2004051867A (en) * 2002-07-23 2004-02-19 Sumitomo Chem Co Ltd Aromatic liquid-crystalline polyester film and its metal layered product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294732A (en) * 1988-05-20 1989-11-28 Mitsubishi Kasei Corp Aromatic polyester and its production
JPH02102223A (en) * 1988-10-11 1990-04-13 Mitsubishi Kasei Corp Aromatic polyester and preparation thereof
JP2000080289A (en) * 1998-09-07 2000-03-21 Toray Ind Inc Liquid crystalline resin composition
JP2003160716A (en) * 2001-11-26 2003-06-06 Ueno Seiyaku Oyo Kenkyusho:Kk Liquid crystalline polyester resin
JP2004051867A (en) * 2002-07-23 2004-02-19 Sumitomo Chem Co Ltd Aromatic liquid-crystalline polyester film and its metal layered product

Also Published As

Publication number Publication date
JP2008088387A (en) 2008-04-17
TW200827381A (en) 2008-07-01
JP5274761B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
TWI359159B (en) Aromatic liquid-crystalline polyester
JP5546081B2 (en) Totally aromatic polyester and polyester resin composition
JPH0216120A (en) Polyester resin exhibiting optical anisotropy when melted and resin composition
KR101016117B1 (en) Amorphous, wholly aromatic polyesteramide composition
EP1319678B1 (en) Wholly aromatic polyester and polyester resin composition
JP2002179776A (en) Whole aromatic polyester and polyester resin composition
JP2001139674A (en) Preparation process of liquid crystal polyester
JP6316733B2 (en) Laminate
JP4946066B2 (en) Aromatic liquid crystal polyester and film obtained therefrom
JP4302638B2 (en) Amorphous wholly aromatic polyester amide
WO2008041619A1 (en) Fully aromatic polyester
WO2008041776A1 (en) Fully aromatic polyester
JP3913527B2 (en) Totally aromatic polyesteramide and polyesteramide resin composition
JP4558379B2 (en) Totally aromatic polyester amide liquid crystal resin molded article and molding method
JPH01261415A (en) Polyester resin exhibiting optical anisotropy on melting and composition thereof
JP4245969B2 (en) Amorphous wholly aromatic polyester amide and composition thereof
WO2006025546A1 (en) Thermoplastic resin composition
JP4302467B2 (en) Amorphous wholly aromatic polyesteramide composition
JP4207676B2 (en) Aromatic polyester and its film
JP2004217890A (en) Amorphous wholly aromatic polyester amide
WO2005116141A1 (en) Thermoplastic resin composition
JPH11277618A (en) Method for blow molding liquid crystal resin
JPH0830112B2 (en) Polyester resin and resin composition showing optical anisotropy when melted
JP2007119673A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829375

Country of ref document: EP

Kind code of ref document: A1