JP5274761B2 - Totally aromatic polyester - Google Patents

Totally aromatic polyester Download PDF

Info

Publication number
JP5274761B2
JP5274761B2 JP2006274111A JP2006274111A JP5274761B2 JP 5274761 B2 JP5274761 B2 JP 5274761B2 JP 2006274111 A JP2006274111 A JP 2006274111A JP 2006274111 A JP2006274111 A JP 2006274111A JP 5274761 B2 JP5274761 B2 JP 5274761B2
Authority
JP
Japan
Prior art keywords
aromatic polyester
film
mol
wholly aromatic
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006274111A
Other languages
Japanese (ja)
Other versions
JP2008088387A (en
Inventor
俊明 横田
俊雄 塩飽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2006274111A priority Critical patent/JP5274761B2/en
Priority to PCT/JP2007/069637 priority patent/WO2008041776A1/en
Priority to TW96137416A priority patent/TW200827381A/en
Publication of JP2008088387A publication Critical patent/JP2008088387A/en
Application granted granted Critical
Publication of JP5274761B2 publication Critical patent/JP5274761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a fully aromatic polyester which is particularly suitably used for multilayer films, multilayer sheets, multilayer blow molded articles and the like, since it is excellent in dimensional stability and heat resistance while having low volume expansion rate. Specifically disclosed is a fully aromatic polyester exhibiting optical anisotropy when melted, which contains structural units introduced from 4-hydroxybenzoic acid, 2,6-naphthalene dicarboxylic acid and hydroquinone at a specific ratio.

Description

本発明は、フィルム、ブロー成形品等に好適に用いられる全芳香族ポリエステルに関する。更に詳しくは、体積膨張率が小さく、優れた高寸法安定性を持ち、且つ耐熱性に優れていることから、多層フィルムもしくは多層シート、多層ブロー成形品等に特に好適に用いられる全芳香族ポリエステルに関するものである。   The present invention relates to wholly aromatic polyesters suitably used for films, blow molded articles and the like. More specifically, wholly aromatic polyesters are particularly suitable for use in multilayer films or multilayer sheets, multilayer blow-molded articles, etc., because they have a small volume expansion rate, excellent high dimensional stability, and excellent heat resistance. It is about.

液晶性ポリマーは、優れた流動性、機械強度、耐熱性、耐薬品性、電気的性質をバランス良く有するため、高機能エンジニアリングプラスチックスとして好適に広く利用されているが、その大部分は専ら射出成形により得られるものであった。   Liquid crystalline polymers have excellent fluidity, mechanical strength, heat resistance, chemical resistance, and electrical properties in a well-balanced manner, and are therefore widely used as high-performance engineering plastics. It was obtained by molding.

一方、近年の著しい産業の発展に伴い、かかる液晶性ポリマーの用途も多岐にわたり一層高度化、特殊化する傾向にあり、溶融延伸加工及びブロー成形等により効率良く経済的に成形加工して、液晶性ポリマーの寸法安定性、吸湿性及び電気特性等の優れた物性を保持したフィルムもしくはシート、中空成形品、繊維等を得ることが期待されてきている。近年、電気・電子材料分野において、液晶性ポリマーフィルムは電子回路基板用途に使用されているが、信号の高速化、パターンの高密度化や高多層化が必要になってきており、より高い高周波特性、厚さ精度、耐熱性、加工時の寸法安定性を持ち、且つ多層化が求められている。例えば、電子回路基板に液晶性ポリマーフィルムと金属の多層体を使用する場合、液晶性ポリマーフィルムと金属の熱膨張率が異なったり、フィルム自体の強度が弱いと、多層体が破損するという問題があった。   On the other hand, with the remarkable development of industry in recent years, the use of such liquid crystalline polymers is also becoming more advanced and specialized, and the liquid crystal polymer can be formed efficiently and economically by melt drawing and blow molding. It has been expected to obtain a film or sheet, a hollow molded article, a fiber, or the like that retains excellent physical properties such as dimensional stability, hygroscopicity, and electrical characteristics of the conductive polymer. In recent years, liquid crystalline polymer films have been used for electronic circuit board applications in the field of electrical and electronic materials. However, higher signal speeds, higher pattern density, and higher multi-layers are required, and higher frequency Properties, thickness accuracy, heat resistance, dimensional stability during processing, and multilayering are required. For example, when a liquid crystal polymer film and a metal multilayer body are used for an electronic circuit board, the liquid crystal polymer film and the metal have different thermal expansion coefficients, or the film itself is weak, the multilayer body may be damaged. there were.

既存の液晶性ポリマーフィルムでは、寸法安定性と強度を兼ね備えていないため、液晶性ポリマーフィルムと金属の多層化は困難である。特許文献1では熱による体積膨張率が小さい液晶性ポリマーフィルムが提案されているが、その効果は十分とは言えない。   Since the existing liquid crystalline polymer film does not have both dimensional stability and strength, it is difficult to make a multilayer of the liquid crystalline polymer film and the metal. Patent Document 1 proposes a liquid crystalline polymer film having a small volume expansion coefficient due to heat, but the effect is not sufficient.

また、寸法安定性と強度を兼備させるため、液晶性ポリマーに各種フィラーを添加する方法等が考えられているが、フィルム加工性が悪くなるため、電子回路基板用途に対する材料としては不十分である。
特開2004−244452号公報
Moreover, in order to combine dimensional stability and strength, a method of adding various fillers to the liquid crystalline polymer is considered, but the film processability deteriorates, so that it is insufficient as a material for electronic circuit board applications. .
Japanese Patent Laid-Open No. 2004-244452

本発明は、上記従来技術の問題点を解決し、体積膨張率が小さく、優れた高寸法安定性を持ち、且つ耐熱性に優れていることから、多層フィルムもしくは多層シート、多層ブロー成形品等に特に好適に用いられる全芳香族ポリエステルを提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, has a small volume expansion coefficient, excellent high dimensional stability, and excellent heat resistance, so that a multilayer film or a multilayer sheet, a multilayer blow molded article, etc. An object of the present invention is to provide a wholly aromatic polyester which is particularly preferably used in the invention.

本発明者らは上記目的を達成し、良好な電気的物性を維持しつつ、体積膨張率が小さく、高寸法安定性、優れた耐熱性を有する全芳香族ポリエステルの提供について鋭意研究した結果、原料モノマーとして特定の3種を選択して、その特定量を組み合わせることが上記目的達成のために有効であることを見出し、本発明を完成するに至った。   As a result of intensive research on the provision of wholly aromatic polyesters that achieve the above object and maintain good electrical properties while having a small volume expansion coefficient, high dimensional stability, and excellent heat resistance, The inventors have found that it is effective to select three specific types of raw material monomers and combine the specific amounts to achieve the above object, and the present invention has been completed.

即ち本発明は、構成成分として下記一般式(I),(II),(III)で表される構成単位を含み、全構成単位100モル%に対して(I)の構成単位が66〜75モル%、(II)の構成単位が12.5〜17.0モル%、(III)の構成単位が12.5〜17.0モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステルである。   That is, the present invention includes structural units represented by the following general formulas (I), (II), and (III) as structural components, and the structural unit of (I) is 66 to 75 per 100 mol% of all structural units. It is a wholly aromatic polyester exhibiting optical anisotropy when melted, characterized in that the constituent unit of (II) is 12.5 to 17.0 mol% and the constituent unit of (III) is 12.5 to 17.0 mol% .

Figure 0005274761
Figure 0005274761

(ここで、Ar1 は1,4−フェニレン、Ar2 は2,6−ナフタレン、Ar3 は1,4−フェニレンである。) (Here, Ar 1 is 1,4-phenylene, Ar 2 is 2,6-naphthalene, and Ar 3 is 1,4-phenylene.)

本発明で得られる特定の構成単位よりなる溶融時に異方性を示す全芳香族ポリエステル及びその組成物は、溶融延伸加工及びブロー成形が容易であり、効率良く経済的に加工して液晶性ポリエステルの優れた物性を保持したフィルムもしくはシート、繊維及びブロー成形品とすることが可能である。   The wholly aromatic polyester comprising the specific structural unit obtained in the present invention and anisotropy at the time of melting and its composition are easy to be melt-stretched and blow-molded, processed efficiently and economically, and liquid crystalline polyester It is possible to obtain a film or sheet, fiber and blow-molded product having excellent physical properties.

また、体積膨張率が小さく、寸法安定性に優れているという特徴から、他のポリマー及び金属とから形成される多層フィルムもしくは多層シート、他のポリマーとから形成される多層ブロー成形品に特に好適に用いられる。ここで使用される他のポリマーは特に制限されないが、ポリオレフィン、特に高密度ポリエチレンが好適である。   In addition, because of its low volume expansion coefficient and excellent dimensional stability, it is particularly suitable for multilayer films or multilayer sheets formed from other polymers and metals, and multilayer blow molded products formed from other polymers. Used for. The other polymer used here is not particularly limited, but polyolefin, particularly high-density polyethylene is suitable.

上記(I)〜(III)の構成単位を具現化するには通常のエステル形成能を有する種々の化合物が使用される。以下に本発明を構成する全芳香族ポリエステルを形成するために必要な原料化合物について順を追って詳しく説明する。   In order to embody the structural units (I) to (III), various compounds having ordinary ester forming ability are used. Hereinafter, the raw material compounds necessary for forming the wholly aromatic polyester constituting the present invention will be described in detail step by step.

構成単位(I)は、4−ヒドロキシ安息香酸及びその誘導体から導入される。   The structural unit (I) is introduced from 4-hydroxybenzoic acid and its derivatives.

構成単位(II)は、2,6−ナフタレンジカルボン酸及びその誘導体から導入される。   The structural unit (II) is introduced from 2,6-naphthalenedicarboxylic acid and its derivatives.

構成単位(III)は、ヒドロキノン及びその誘導体から導入される。   The structural unit (III) is introduced from hydroquinone and its derivatives.

構成単位(III)は、Ar3 が1,4−フェニレンであることが必要であり、例えば4,4’−ビフェニル等では融点が著しく高くなり好ましくない。 In the structural unit (III), Ar 3 needs to be 1,4-phenylene. For example, 4,4′-biphenyl and the like are not preferable because the melting point is remarkably high.

本発明において、各構成単位の共重合比率は、本発明所期の目的である、耐熱性を良好に保ちつつ、体積膨張率が小さく、優れた寸法安定性を発現するために重要である。そのため、本発明では、上記構成単位(I)〜(III)を含み、全構成単位100モル%に対して(I)の構成単位が66〜75モル%(好ましくは68〜72モル%)、(II)の構成単位が12.5〜17.0モル%(好ましくは14〜16モル%)、(III)の構成単位が12.5〜17.0モル%(好ましくは14〜16モル%)であることが必要である。   In the present invention, the copolymerization ratio of each structural unit is important in order to exhibit excellent dimensional stability with a small volume expansion coefficient while maintaining good heat resistance, which is the intended purpose of the present invention. Therefore, in the present invention, the structural units (I) to (III) are included, and the structural unit of (I) is 66 to 75 mol% (preferably 68 to 72 mol%) with respect to 100 mol% of all the structural units. It is necessary that the constituent unit of (II) is 12.5 to 17.0 mol% (preferably 14 to 16 mol%) and the constituent unit of (III) is 12.5 to 17.0 mol% (preferably 14 to 16 mol%). .

(I)の構成単位が66モル%未満では、目的とする寸法安定性(体積膨張率)に悪影響を与えるため好ましくない。また、75モル%より多くなると融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。   If the structural unit of (I) is less than 66 mol%, it is not preferable because it adversely affects the target dimensional stability (volume expansion coefficient). On the other hand, if it exceeds 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production, which makes it impossible to produce a polymer having a desired molecular weight.

また、(II)の構成単位が12.5モル%未満では、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。また、17.0モル%より多くなると目的とする寸法安定性(体積膨張率)に悪影響を与えるため好ましくない。   On the other hand, if the constituent unit of (II) is less than 12.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production, making it impossible to produce a polymer having a desired molecular weight. On the other hand, if it exceeds 17.0 mol%, the target dimensional stability (volume expansion coefficient) will be adversely affected, which is not preferable.

また、(III)の構成単位が12.5モル%未満では、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。また、17.0モル%より多くなると目的とする寸法安定性(体積膨張率)に悪影響を与えるため好ましくない。   On the other hand, if the structural unit of (III) is less than 12.5 mol%, the melting point is remarkably high, and in some cases, the polymer is solidified in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. On the other hand, if it exceeds 17.0 mol%, the target dimensional stability (volume expansion coefficient) will be adversely affected, which is not preferable.

尚、本発明の全芳香族ポリエステルには、本発明の目的を阻害しない範囲で少量の公知の他の構成単位を導入することもできるが、これらの構成単位は事実上含まれないことが好ましい。   Incidentally, in the wholly aromatic polyester of the present invention, a small amount of other structural units known in the art can be introduced as long as the object of the present invention is not impaired, but it is preferable that these structural units are practically not contained. .

本発明の全芳香族ポリエステルは、直接重合法やエステル交換法を用いて重合され、重合に際しては、溶融重合法、溶液重合法、スラリー重合法等が用いられる。   The wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method or the like is used for the polymerization.

本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられ、使用量は、重合制御の観点から、水酸基の合計当量の1.01〜1.10倍が好ましく、さらに好ましくは1.02〜1.05倍である。   In the present invention, at the time of polymerization, an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used. Examples of the acylating agent include acid anhydrides such as acetic anhydride, and the amount used is preferably 1.01 to 1.10 times, more preferably 1.02 to 1.05 times the total equivalent weight of the hydroxyl group from the viewpoint of polymerization control.

これらの重合に際しては種々の触媒の使用が可能であり、代表的なものはジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BF3 の如きルイス酸塩等が挙げられる。触媒の使用量は一般にはモノマーの全重量に基いて約 0.001乃至1重量%、特に約0.003 乃至 0.2重量%が好ましい。 Various catalysts can be used for these polymerizations, and typical ones include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth of carboxylic acids. Metal salts, Lewis acid salts such as BF 3 and the like. The amount of catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.

また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。   Moreover, when performing solution polymerization or slurry polymerization, as a solvent, liquid paraffin, a high heat resistant synthetic oil, an inert mineral oil, etc. are used.

反応条件としては、反応温度200 〜380 ℃、最終到達圧力0.1 〜760 Torr(即ち、13〜101,080 Pa)である。特に溶融反応では、反応温度260 〜380 ℃、好ましくは300 〜360 ℃、最終到達圧力1〜100 Torr(即ち、133 〜13,300 Pa )、好ましくは1〜50 Torr (即ち、133 〜6,670 Pa)である。   The reaction conditions are a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., and the final pressure is 1 to 100 Torr (ie 133 to 13,300 Pa), preferably 1 to 50 Torr (ie 133 to 6,670 Pa). is there.

溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系からポリマーを排出する。   The melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined pressure reduction degree. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.

溶融時に光学的異方性を示す液晶性ポリマーであることは、本発明において熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位からなる全芳香族ポリエステルは、構成成分およびポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明に係わるポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。   The liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability. Some wholly aromatic polyesters composed of the above structural units do not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the polymer, but the polymer according to the present invention exhibits optical anisotropy when melted. Limited to the fully aromatic polyesters shown.

溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認はオリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150 倍の倍率で観察することにより実施できる。上記ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。   The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using an Olympus polarizing microscope and observing it at a magnification of 150 times in a nitrogen atmosphere. The polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.

本発明の全芳香族ポリエステルは、融点より10℃以上高い温度で、剪断速度 1000sec-1における溶融粘度が1×106 Pa・s 以下であることが好ましい。更に好ましくは1×103 Pa・s 以下である。これらの溶融粘度は液晶性を具備することで概ね実現される。 The wholly aromatic polyester of the present invention preferably has a melt viscosity of 1 × 10 6 Pa · s or less at a shear rate of 1000 sec −1 at a temperature higher by 10 ° C. than the melting point. More preferably, it is 1 × 10 3 Pa · s or less. These melt viscosities are generally realized by having liquid crystallinity.

本発明の全芳香族ポリエステルは、溶融押出成形、インフレーション成形などによりフィルムとすることができる。   The wholly aromatic polyester of the present invention can be formed into a film by melt extrusion molding, inflation molding or the like.

溶融押出成形は、全芳香族ポリエステルを押出機で溶融混練し、Tダイのスリット部より溶融押出しされた溶融体を延伸する成形法であり、延伸および配向フィルムを得ることができる。   Melt extrusion molding is a molding method in which a wholly aromatic polyester is melt-kneaded with an extruder and a melt extruded from the slit portion of a T-die is stretched, and a stretched and oriented film can be obtained.

フィルム製膜時の押出機の設定は、全芳香族ポリエステルの骨格組成比により適宜設定することができる。押出機のシリンダー温度は300〜380℃が好ましく、320〜370℃がより好ましい。この範囲以外の温度においては、全芳香族ポリエステルが熱分解したり、フィルム製膜が困難となる傾向にある。使用されるスリット間隔は、0.1〜1.0mmが好ましい。スリット間隔が1.0mmより大きい場合は、配向ムラ等が発生し、フィルムの形状が悪くなる傾向にある。   The setting of the extruder during film formation can be appropriately set according to the skeleton composition ratio of the wholly aromatic polyester. The cylinder temperature of the extruder is preferably 300 to 380 ° C, more preferably 320 to 370 ° C. When the temperature is outside this range, the wholly aromatic polyester tends to be thermally decomposed or film formation tends to be difficult. The slit interval used is preferably 0.1 to 1.0 mm. When the slit interval is larger than 1.0 mm, uneven orientation or the like occurs and the shape of the film tends to deteriorate.

一軸配向フィルムのドリフト比(Tダイスリットの断面積をMD方向のフィルム断面積で除した値)は2.0〜30の範囲が好ましい。ドリフト比が2.0未満であると、フィルム強度不足となる傾向にあり、ドリフト比が30を超えると、フィルムの平滑性が不十分となる傾向にある。   The drift ratio of the uniaxially oriented film (the value obtained by dividing the cross-sectional area of the T-die slit by the film cross-sectional area in the MD direction) is preferably in the range of 2.0-30. When the drift ratio is less than 2.0, the film strength tends to be insufficient, and when the drift ratio exceeds 30, the smoothness of the film tends to be insufficient.

二軸延伸フィルムは、Tダイから押出した溶融体シートを長手方向(MD)および長手方向と垂直方向(横手方向(TD))の両方向に同時に延伸する方法、またはTダイから押出した溶融体シートをMD方向に延伸し、ついでTD方向に延伸する方法により得ることができる。MD方向及びTD方向の延伸倍率は1.0以上が好ましく、1.5〜20がより好ましい。延伸倍率が前記の範囲外であると、力学的バランスおよび均一な厚みのフィルムを得るのが困難な傾向にある。   Biaxially stretched film is a method in which a melt sheet extruded from a T-die is simultaneously stretched in the longitudinal direction (MD) and both the longitudinal direction and the vertical direction (lateral direction (TD)), or a melt sheet extruded from a T-die Can be obtained by a method of stretching in the MD direction and then stretching in the TD direction. 1.0 or more are preferable and, as for the draw ratio of MD direction and TD direction, 1.5-20 are more preferable. If the draw ratio is out of the above range, it tends to be difficult to obtain a film having a mechanical balance and a uniform thickness.

インフレーション成形は、全芳香族ポリエステルを押出機で溶融混練し、円形状リングダイから溶融押出された円筒状シートの内側から不活性ガスを吹き込む成形法であり、延伸および配向フィルムを得ることができる。   Inflation molding is a molding method in which a wholly aromatic polyester is melt-kneaded with an extruder and an inert gas is blown from the inside of a cylindrical sheet melt-extruded from a circular ring die, and a stretched and oriented film can be obtained. .

フィルム製膜時の押出機の設定は、全芳香族ポリエステルの骨格組成比により適宜設定することができる。押出機のシリンダー温度は300〜380℃が好ましく、320〜370℃がより好ましい。この範囲以外の温度においては、全芳香族ポリエステルが熱分解したり、フィルム製膜が困難となる傾向にある。使用されるリング状スリット間隔は、0.1〜3.0mmが好ましく、0.2〜1.5mmがより好ましい。インフレーション成形では、Tダイ法におけるMD方向及びTD方向の延伸倍率に相当するものとして、ドロー比及びブロー比が用いられる。ドロー比はMD方向の延伸倍率に相当し、1.5〜40が好ましく、ブロー比はTD方向の延伸倍率に相当し、2.0〜10が好ましい。インフレーション製膜時の設定条件が前記の範囲外であると、力学的バランスおよび均一な厚みのフィルムを得るのが困難な傾向にある。   The setting of the extruder during film formation can be appropriately set according to the skeleton composition ratio of the wholly aromatic polyester. The cylinder temperature of the extruder is preferably 300 to 380 ° C, more preferably 320 to 370 ° C. When the temperature is outside this range, the wholly aromatic polyester tends to be thermally decomposed or film formation tends to be difficult. The ring-shaped slit interval used is preferably 0.1 to 3.0 mm, and more preferably 0.2 to 1.5 mm. In inflation molding, a draw ratio and a blow ratio are used as equivalent to the draw ratio in the MD direction and the TD direction in the T-die method. The draw ratio corresponds to the draw ratio in the MD direction, preferably 1.5 to 40, and the blow ratio corresponds to the draw ratio in the TD direction, preferably 2.0 to 10. If the setting conditions at the time of inflation film formation are out of the above range, it tends to be difficult to obtain a film having a mechanical balance and a uniform thickness.

本発明により得られる全芳香族ポリエステルフィルムの厚みは、製膜性、機械特性及び加工性の観点から1〜500μmが好ましく、5〜300μmがより好ましい。   The thickness of the wholly aromatic polyester film obtained by the present invention is preferably 1 to 500 μm, more preferably 5 to 300 μm, from the viewpoints of film formability, mechanical properties and processability.

本発明により得られる全芳香族ポリエステルフィルムは、その表面に金属層を積層して金属積層体とすることができ、また全芳香族ポリエステルフィルムと金属層との二層以上の多層積層体とすることもできる。また、強度や密着性向上のために、必要に応じて金属積層体の熱処理を行ってもよい。   The wholly aromatic polyester film obtained by the present invention can be formed into a metal laminate by laminating a metal layer on the surface thereof, or a multilayer laminate of two or more layers of a wholly aromatic polyester film and a metal layer. You can also. Moreover, you may heat-process a metal laminated body as needed for an intensity | strength and adhesive improvement.

使用される金属としては、例えば、金、銀、銅、ニッケル、アルミニウムなどが挙げられ、プリント配線板用途には銅が好ましく、コンデンサー用途にはアルミニウムが好ましい。   Examples of the metal used include gold, silver, copper, nickel, and aluminum. Copper is preferable for printed wiring board applications, and aluminum is preferable for capacitor applications.

次に本発明の全芳香族ポリエステルは使用目的に応じて、フィルム加工性に影響を与えない範囲で各種の繊維状、粉粒状、板状の無機及び有機の充填剤を配合することができる。   Next, the wholly aromatic polyester of the present invention can be blended with various fibrous, powdery, and plate-like inorganic and organic fillers within a range that does not affect the film processability.

繊維状充填剤としてはガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。尚、ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質も使用することが出来る。   Examples of fibrous fillers include glass fibers, asbestos fibers, silica fibers, silica / alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and silicates such as wollastonite. Examples thereof include inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass. A particularly typical fibrous filler is glass fiber. High melting point organic fibrous materials such as polyamide, fluororesin, polyester resin, and acrylic resin can also be used.

一方、粉粒状充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイトの如き硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。   On the other hand, as the granular filler, carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite Oxalates such as, iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate Other examples include ferrite, silicon carbide, silicon nitride, boron nitride, and various metal powders.

又、板状充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。   Examples of the plate-like filler include mica, glass flakes, talc and various metal foils.

有機充填剤の例を示せば芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。   Examples of organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.

これらの無機及び有機充填剤は一種又は二種以上併用することが出来る。繊維状充填剤と粒状又は板状充填剤との併用は特に機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。無機充填剤の配合量は、全芳香族ポリエステル100重量部に対し、120重量部以下、好ましくは20〜80重量部である。   These inorganic and organic fillers can be used alone or in combination of two or more. The combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties and the like. The blending amount of the inorganic filler is 120 parts by weight or less, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the wholly aromatic polyester.

これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。   In using these fillers, if necessary, a sizing agent or a surface treatment agent can be used.

また、本発明の全芳香族ポリエステルには、本発明の企図する目的を損なわない範囲で他の熱可塑性樹脂を更に補助的に添加してもよい。   In addition, other thermoplastic resins may be further added to the wholly aromatic polyester of the present invention as long as the purpose of the present invention is not impaired.

この場合に使用する熱可塑性樹脂の例を示すと、ポリエチレン、ポリプロピレン等のポリオレィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ジカルボン酸とジオール等からなる芳香族ポリエステル、ポリアセタール(ホモ又はコポリマー)、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポリカーボネート、ABS、ポリフェニレンオキシド、ポリフェニレンスルフィド、フッ素樹脂等を挙げることができる。またこれらの熱可塑性樹脂は2種以上混合して使用することができる。   Examples of the thermoplastic resin used in this case are: Polyolefins such as polyethylene and polypropylene, aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate and aromatic diols such as diols, polyacetals (homo or copolymers), polystyrene , Polyvinyl chloride, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, fluororesin and the like. These thermoplastic resins can be used in combination of two or more.

以下に実施例をもって本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性測定の方法は以下の通りである。
[融点]
示差走査熱量分析装置(パーキンエルマー社製DSC7)にて、20℃/分の昇温条件で測定した。
[溶融粘度]
測定温度360℃、剪断速度1000sec-1の条件で、内径1mm、長さ20mmのオリフィスを用いて東洋精機製キャピログラフで測定した。
[体積膨張率]
(株)リガク製TMA8310装置にて、10℃/分の昇温条件でフィルム平面のMD方向及びTD方向、フィルム厚みのZD方向の50−100℃における線膨張率の平均値を算出し、3方向の線膨張率の総和を体積膨張率とした。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In addition, the method of the physical property measurement in an Example is as follows.
[Melting point]
It measured on 20 degreeC / min temperature rising conditions with the differential scanning calorimeter (DSC7 by Perkin-Elmer Co.).
[Melt viscosity]
The measurement was performed with a Capillograph manufactured by Toyo Seiki using an orifice having an inner diameter of 1 mm and a length of 20 mm under the conditions of a measurement temperature of 360 ° C. and a shear rate of 1000 sec −1 .
[Volume expansion]
The average value of the linear expansion coefficient at 50-100 ° C. in the MD direction and TD direction of the film plane and the ZD direction of the film thickness was calculated with a TMA8310 device manufactured by Rigaku Corporation under a temperature rising condition of 10 ° C./min. The sum of the linear expansion coefficients in the direction was defined as the volume expansion coefficient.

実施例1
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
Example 1
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.

(I)4−ヒドロキシ安息香酸227.3g(70モル%)
(II)2,6−ナフタレンジカルボン酸76.2g(15モル%)
(III)ヒドロキノン38.8g(15モル%)
酢酸カリウム触媒22.5mg(金属カリウムとして30重量ppm(対ポリマー合計重量))
無水酢酸244.8g
原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
(I) 227.3 g (70 mol%) of 4-hydroxybenzoic acid
(II) 2,6-Naphthalenedicarboxylic acid 76.2 g (15 mol%)
(III) Hydroquinone 38.8g (15mol%)
Potassium acetate catalyst 22.5mg (30ppm by weight as metal potassium (vs. polymer total weight))
Acetic anhydride 244.8g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 360 ° C. over 5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes. went. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to a normal pressure, and the polymer was discharged from the lower part of the polymerization vessel.

次いで、ホットプレスにて、フィルムの厚みが0.05mmになるように温度・圧力を調節してフィルムを作製し、体積膨張率を測定した。   Next, a film was prepared by adjusting the temperature and pressure so that the thickness of the film became 0.05 mm by hot pressing, and the volume expansion coefficient was measured.

比較例1〜3
原料モノマーの種類、仕込み量を表1に示す通りとした以外は、実施例1と同様にして重合を行った。これらの結果を表1に示す。尚、比較例3については、製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなかった。
Comparative Examples 1-3
Polymerization was carried out in the same manner as in Example 1 except that the type and amount of raw material monomer were as shown in Table 1. These results are shown in Table 1. In Comparative Example 3, the polymer solidified in the reactor at the time of production, and a polymer having a desired molecular weight could not be produced.

比較例4
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
Comparative Example 4
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.

6−ヒドロキシ−2−ナフトエ酸193.2g(60モル%)
2,6−ナフタレンジカルボン酸74.0g(20モル%)
4,4’−ジヒドロキシビフェニル63.7g(20モル%)
酢酸カリウム触媒22.5mg(金属カリウムとして30重量ppm(対ポリマー合計重量))
無水酢酸178.1g
原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に350℃まで5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
193.2 g (60 mol%) of 6-hydroxy-2-naphthoic acid
2,6-naphthalenedicarboxylic acid 74.0 g (20 mol%)
6,4'-dihydroxybiphenyl 63.7g (20mol%)
Potassium acetate catalyst 22.5mg (30ppm by weight as metal potassium (vs. polymer total weight))
Acetic anhydride 178.1g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 350 ° C. over 5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes. went. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to a normal pressure, and the polymer was discharged from the lower part of the polymerization vessel.

次いで、ホットプレスにて、フィルムの厚みが0.05mmになるように温度・圧力を調節してフィルムを作製し、体積膨張率を測定した。
この結果を表1に示す。
Next, a film was prepared by adjusting the temperature and pressure so that the thickness of the film became 0.05 mm by hot pressing, and the volume expansion coefficient was measured.
The results are shown in Table 1.

Figure 0005274761
Figure 0005274761

(表の註)
HBA;4−ヒドロキシ安息香酸
NDA;2,6−ナフタレンジカルボン酸
HQ;ヒドロキノン
HNA;6−ヒドロキシ−2−ナフトエ酸
BP;4,4’−ジヒドロキシビフェニル
(註 in the table)
4-hydroxybenzoic acid NDA; 2,6-naphthalenedicarboxylic acid HQ; hydroquinone HNA; 6-hydroxy-2-naphthoic acid BP; 4,4′-dihydroxybiphenyl

Claims (3)

構成成分として下記一般式(I),(II),(III)で表される構成単位を含み、全構成単位100モル%に対して(I)の構成単位が66〜75モル%、(II)の構成単位が12.5〜17.0モル%、(III)の構成単位が12.5〜17.0モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル。
Figure 0005274761
(ここで、Ar1 は1,4−フェニレン、Ar2 は2,6−ナフタレン、Ar3 は1,4−フェニレンである。)
The structural unit includes structural units represented by the following general formulas (I), (II), and (III), and the structural unit of (I) is 66 to 75 mol% with respect to 100 mol% of all structural units, (II A wholly aromatic polyester exhibiting optical anisotropy when melted, wherein the structural unit is 12.5 to 17.0 mol% and the structural unit (III) is 12.5 to 17.0 mol%.
Figure 0005274761
(Here, Ar 1 is 1,4-phenylene, Ar 2 is 2,6-naphthalene, and Ar 3 is 1,4-phenylene.)
請求項1記載の全芳香族ポリエステルから形成されるフィルムもしくはシート。 A film or sheet formed from the wholly aromatic polyester according to claim 1. 請求項2記載のフィルムもしくはシートに金属を積層してなる金属積層体。 A metal laminate obtained by laminating a metal on the film or sheet according to claim 2.
JP2006274111A 2006-10-05 2006-10-05 Totally aromatic polyester Expired - Fee Related JP5274761B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006274111A JP5274761B2 (en) 2006-10-05 2006-10-05 Totally aromatic polyester
PCT/JP2007/069637 WO2008041776A1 (en) 2006-10-05 2007-10-02 Fully aromatic polyester
TW96137416A TW200827381A (en) 2006-10-05 2007-10-05 All aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274111A JP5274761B2 (en) 2006-10-05 2006-10-05 Totally aromatic polyester

Publications (2)

Publication Number Publication Date
JP2008088387A JP2008088387A (en) 2008-04-17
JP5274761B2 true JP5274761B2 (en) 2013-08-28

Family

ID=39268626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274111A Expired - Fee Related JP5274761B2 (en) 2006-10-05 2006-10-05 Totally aromatic polyester

Country Status (3)

Country Link
JP (1) JP5274761B2 (en)
TW (1) TW200827381A (en)
WO (1) WO2008041776A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560714B2 (en) * 2009-08-11 2014-07-30 東レ株式会社 Liquid crystalline polyester and method for producing the same
JP6677357B2 (en) * 2017-11-15 2020-04-08 株式会社村田製作所 Film capacitors and metallized films

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747624B2 (en) * 1988-05-20 1995-05-24 三菱化学株式会社 Aromatic polyester and method for producing the same
JPH0747625B2 (en) * 1988-10-11 1995-05-24 三菱化学株式会社 Aromatic polyester and method for producing the same
JP2000080289A (en) * 1998-09-07 2000-03-21 Toray Ind Inc Liquid crystalline resin composition
JP4522627B2 (en) * 2001-11-26 2010-08-11 上野製薬株式会社 Liquid crystalline polyester resin
JP2004051867A (en) * 2002-07-23 2004-02-19 Sumitomo Chem Co Ltd Aromatic liquid-crystalline polyester film and its metal layered product

Also Published As

Publication number Publication date
TW200827381A (en) 2008-07-01
JP2008088387A (en) 2008-04-17
WO2008041776A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
TWI359159B (en) Aromatic liquid-crystalline polyester
JP5032957B2 (en) Totally aromatic polyester and polyester resin composition
JP5546081B2 (en) Totally aromatic polyester and polyester resin composition
JP4701737B2 (en) Aromatic liquid crystal polyester and its use
JP2010037474A (en) Wholly aromatic polyester and polyester resin composition
JPH0216120A (en) Polyester resin exhibiting optical anisotropy when melted and resin composition
JP4269675B2 (en) Aromatic liquid crystal polyester and film thereof
EP1319678B1 (en) Wholly aromatic polyester and polyester resin composition
JP4639756B2 (en) Aromatic liquid crystal polyester and film thereof and use thereof
JP4466217B2 (en) Aromatic liquid crystal polyester film and laminate
JP2002179776A (en) Whole aromatic polyester and polyester resin composition
JP6316733B2 (en) Laminate
JP4946066B2 (en) Aromatic liquid crystal polyester and film obtained therefrom
JP5032958B2 (en) Totally aromatic polyester and polyester resin composition
JP5274761B2 (en) Totally aromatic polyester
JP2009292852A (en) Fully aromatic polyester
JP4302638B2 (en) Amorphous wholly aromatic polyester amide
JP4558379B2 (en) Totally aromatic polyester amide liquid crystal resin molded article and molding method
JP4306268B2 (en) Aromatic liquid crystal polyester and film thereof
JP3913527B2 (en) Totally aromatic polyesteramide and polyesteramide resin composition
JP4245969B2 (en) Amorphous wholly aromatic polyester amide and composition thereof
JP4207676B2 (en) Aromatic polyester and its film
JPH11277618A (en) Method for blow molding liquid crystal resin
JP2004217890A (en) Amorphous wholly aromatic polyester amide
JPH059277A (en) Polyester showing anisotropy when melted

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees