WO2008041407A1 - METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS - Google Patents

METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS Download PDF

Info

Publication number
WO2008041407A1
WO2008041407A1 PCT/JP2007/064635 JP2007064635W WO2008041407A1 WO 2008041407 A1 WO2008041407 A1 WO 2008041407A1 JP 2007064635 W JP2007064635 W JP 2007064635W WO 2008041407 A1 WO2008041407 A1 WO 2008041407A1
Authority
WO
WIPO (PCT)
Prior art keywords
grains
alloy
particles
molten salt
producing
Prior art date
Application number
PCT/JP2007/064635
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Ogasawara
Makoto Yamaguchi
Masahiko Hori
Katsunori Dakeshita
Satomi Kawaguchi
Original Assignee
Osaka Titanium Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co., Ltd. filed Critical Osaka Titanium Technologies Co., Ltd.
Publication of WO2008041407A1 publication Critical patent/WO2008041407A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc

Definitions

  • Ti grain or Ti alloy grain manufacturing method metal Ti or Ti alloy manufacturing method and manufacturing apparatus
  • the present invention relates to a method for producing Ti grains or Ti alloy grains, characterized by granulating Ti grains or Ti alloy grains produced by reduction in molten salt, and the Ti grains or Ti alloy grains.
  • the present invention relates to a manufacturing method of metal Ti or Ti alloy to which the manufacturing method is applied and a manufacturing apparatus used therefor. Background art
  • TiCl is supplied in a liquid form from above to the molten Mg liquid surface in the reaction vessel, and melted.
  • TiCl supply rate is limited to avoid local heat generation due to reaction. as a result,
  • JP-A-2005-133196 further discloses a method for effectively suppressing back reaction due to electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as a cathode. Yes.
  • an alloy electrode for example, Mg—Ca alloy electrode
  • a step of separating the grains from the molten salt is included. That is, C by electrolysis of molten CaCl
  • the separation step is performed by sedimentation separation using gravity.
  • the Ti grains immediately after being generated by Ca reduction are submicron fine particles.
  • the heat generated during the force generation promotes the bonding between the grains and coalesces. Sediment separation is possible.
  • Ti grains or Ti alloy grains are formed in a mixed state with bath salt, and its strength and strength are low.
  • Ti grains or Ti alloy grains are dissolved to form a liquid phase, and the upper layer bath salt is dissolved. If a method such as dissolution separation is used, a large amount of energy is required, and an increase in manufacturing cost is inevitable!
  • the particle size of the generated Ti particles can be increased (the operation or treatment for increasing the particle size is referred to as “granulation” in this case), the particles settle and immediately become large in order to solve the above problems. This is thought to lead to improvement. However, no such attempt has been made in the past.
  • granulation operations have long been performed by various methods for various purposes. For example, to obtain pharmaceutical granules and tablets, granular products such as pesticides and chemical fertilizers, In order to obtain good pellets such as non-ringed and sintered raw materials, and briquettes, etc., granulation operations are performed from powders (fine particles) to molded products having various shapes. It is.
  • a moistened powdery substance is separated from granules and granular substances by utilizing an agglomeration phenomenon by an action such as rolling, stirring, and vibration using a rotary pan or a rotary drum.
  • the dry powder (or moistened) is made into a granular material by compression between rolls or other mechanical forming.
  • the purpose and method of these granulation operations are all to form a powdery product (fine particles) into a molded product having a predetermined shape in the air.
  • the fine particles are aggregated in a liquid such as a molten salt. It is not granulated.
  • Ti grains or Ti alloy grains are formed in a state of being mixed with a bath salt and have low strength and / or low concentration.
  • An object of the present invention is to produce Ti grains or Ti alloy grains by granulating Ti grains or Ti alloy grains produced by reduction in a molten salt in the molten salt, as well as the Ti grains or
  • the production method of Ti alloy grains is applied in the process of separating the Ti grains or Ti alloy grains from the molten salt in the production process of metallic Ti or Ti alloys by Ca reduction, and the productivity is improved.
  • Another object is to provide a method for producing a Ti alloy at a low cost and a production apparatus used for carrying out the method.
  • the bath salt containing the Ti particles granulated in this way is concentrated using, for example, a liquid cyclone,
  • the present invention has been made on the basis of these findings.
  • the gist of the present invention is the following (1) or (2) Ti grain or Ti alloy grain production method, and (3) metal Ti or Ti alloy.
  • the manufacturing method of (4) and the manufacturing apparatus of (4) used for the implementation of the method are.
  • a method for producing Ti grains or Ti alloy grains characterized in that granulation is performed by bringing Ti grains or Ti alloy grains produced by reduction in molten salt into contact with each other.
  • molten salt refers to a substance obtained by heating and melting a solid salt or oxide at room temperature into a liquid state, or a mixture thereof.
  • molten salt consisting only of molten CaCl, molten
  • Examples thereof include molten salts containing CaCl, such as CaF added to CaCl.
  • Changing the bath flow means changing the state of the bath salt flow (including the resting state here) at the time when Ti grains or Ti alloy grains are formed.
  • the premise is to change the movement of the bath salt so that contact between the grains is likely to occur. For example, if the bath is stationary when Ti grains or Ti alloy grains are formed, the bath is in a fluid state, and if the bath flow is in a laminar flow or a state close thereto, the bath is in a turbulent state. It means changing.
  • This "changing the bath flow” is to change the bath from a stationary state to a fluid state, or to make the bath flow turbulent.
  • a guide plate (baffle plate) is provided in the bath. It is also possible to change the speed of the bath flow or to rotate the bath flow.
  • the average grain size of the granulated grains is 1 ⁇ m or more, the sedimentation of the grains is promoted.
  • the separation efficiency can be increased.
  • the average particle size after granulation is 100 m or more, it is desirable because the separation efficiency of the particles is remarkably improved.
  • the “average particle size” means the particle size (D) at which the particle on the sieve or under the sieve is 50% in the particle size distribution (integrated distribution) expressed on a mass basis.
  • the Ti particles or Ti alloy grains can be regarded as Ti grains or Ti alloy grains produced by the method for producing Ti grains or Ti alloy grains described in (1) or (2) above.
  • particle size of the constituent particles means that the major axis and minor axis of a particle are measured in an image observed with a SEM (scanning electron microscope), and the particle is regarded as an ellipse. This is an average value of the diameters of the circles obtained by performing the operation of obtaining the area and obtaining the diameter of the circle of the same area on the grains having 50 or more samples.
  • a reduction process for generating Ti grains or Ti alloy grains in the molten salt a granulation process for granulating the Ti grains or Ti alloy grains immediately after the formation by coalescence by Brownian motion and then bringing the grains into contact with each other
  • the separation efficiency can be further increased. Can do.
  • the supplied metal chloride containing TiCl reacts with Ca to produce Ti grains or Ti alloy grains.
  • the production method according to (4) above has a concentration means for concentrating Ti particles or Ti alloy particles after granulation by the granulation means!
  • the power S is used to further increase the efficiency of separation.
  • Ti grains or Ti alloy grains produced by reduction in molten salt are granulated, and the sedimentation of the grains is promoted to significantly increase the efficiency of separation. You can increase your power. If it concentrates after granulation, the improvement effect of a separation efficiency can be heightened further.
  • Figure 1 shows the separation from the formation of Ti grains or Ti alloy grains produced by Ca reduction through granulation. It is a figure which shows typically the process until.
  • Fig. 2 is an explanatory diagram of a method for stirring molten salt containing Ti grains or Ti alloy grains using a static mixer.
  • (A) is the structure of the main part of the static mixer, and (b) is a melt using this mixer. It is a figure which shows typically the stirring condition of a salt, respectively.
  • Fig. 3 is a diagram schematically showing an example of the configuration of an apparatus for concentrating Ti grains or Ti alloy grains by using a liquid cyclone and a filter separator together.
  • FIG. 4 is a diagram showing a schematic configuration example of an apparatus used for carrying out the Ti or Ti alloy manufacturing method of the present invention.
  • the method for producing Ti grains or Ti alloy grains of the present invention contains CaCl as a molten salt and
  • the method for producing Ti grains or Ti alloy grains of the present invention is a method of producing Ti grains or Ti alloy grains by granulating Ti grains or Ti alloy grains produced by reduction in molten salt by bringing them into contact with each other. is there.
  • Ti particles are generated.
  • Metal chlorides containing TiCl V, Al, Cr, etc.
  • the resulting metal chlorides are reduced by Ti simultaneously with the reduction of TiCl.
  • Ti grains or Ti alloy grains formed by reduction in molten salt in this way are fine particles of submicron (for example, particle size of 150 nm or less), force S, and heat generated during the reduction reaction ( Combine with heat of reduction. Furthermore, these fine particles are brought into contact (collision) with each other due to Brownian motion resulting from collision of molten salt constituents (molecules) with the particles, and aggregate. As the particle size increases due to agglomeration, the Brownian motion becomes slow, and no further increase in particle size can be expected.
  • the molten salt (bath) is in a static state or a gentle fluid state, Ti grains or Ti alloy grains
  • the increase in diameter is limited to the particle size that can be achieved by agglomeration due to Brownian motion (up to about 1 to 3 m). In addition, the particle size is increased.
  • FIG. 1 is a diagram schematically showing a process from generation of Ti grains or Ti alloy grains to separation through granulation in the method for producing Ti grains or Ti alloy grains of the present invention.
  • the particle size indicated in the figure is a rough guide for the particle size in the middle stage.
  • the produced Ti particles coalesce and aggregate due to reduction heat or Brownian motion, and then coalesce due to collision during the movement of the aggregated particles along with the bath flow (this , “Inertial force coalescence” proceeds, and granulation is performed to a particle size (desirably 20 to; ⁇ ) necessary for separation.
  • a particle size desirably 20 to; ⁇
  • sintering due to the heat possessed by the bath salt occurs between the collided particles, so that inertial force coalescence easily proceeds.
  • the granulation by bringing the Ti grains or Ti alloy grains into contact with each other is performed by coalescence by the reduction heat, collision / aggregation by Brownian motion, and This is to create a condition where coalescence due to inertial force is likely to occur, and to promote inertial force coalescence that has a particularly large granulation effect.
  • “granulation” refers to the operation of producing granules and other granular products, pellets, briquettes, and other specific forms of granulated products. This means that fine particles are combined (fixed) to increase the particle size. When fine particles are aggregated to increase the size of the grains, there is no difference between the two points. Therefore, the term “granulation” is also used in the present invention.
  • the cohesive force is mainly a force caused by van der Waals force acting between particles and an electric double layer formed on the particle surface.
  • the former acts as attractive force
  • the latter acts as repulsive force
  • the sum of these forces is expressed as cohesive force.
  • the sintering effect is obtained.
  • the upper limit temperature is desirably 1050 ° C.
  • (C) is a sintering action, which is a function of the temperature of the molten salt and the time during which granulation is performed, but the granulation time is high enough to extend the time! / Controllability cannot be expected.
  • (D) is a force related to the strength of the shearing force acting on each particle and the strength of each particle. In granulation in molten salt where the sintering action works, it is not considered to be a significant influence factor. .
  • the collision of particles in the molten salt that is, the liquid phase
  • the collision of solid particles in the gas-solid model is handled theoretically, and referring to it, the main factors that affect the granulation in molten salt (granulation factor) ) May be the relative speed of each particle, the particle density (the proportion of particles in the system), the residence time (granulation time), and the impact particle size.
  • stirring the bath there is a method of stirring the bath.
  • stirring methods using various types of stirring blades used for solid-liquid stirring and the like can be applied. This increases the collision (contact) frequency of Ti grains or Ti alloy grains in the bath salt and promotes granulation.
  • the stirring conditions such as the shape of the stirring blade and the stirring speed may be appropriately selected so that granulation is suitably performed.
  • the stirring of the bath can also be performed by using a specific mixer.
  • the application of this mixer is particularly effective for the purpose of use of Ti grains or Ti alloy grains obtained by the method for producing Ti grains or Ti alloy grains of the present invention.
  • FIG. 2 is an explanatory diagram of a method of stirring a bath with a static mixer.
  • A is a structure of the main part of the static mixer, and
  • (b) is a schematic diagram of the stirring state of the bath using this mixer.
  • the static mixer 1 is used by being inserted into a cylindrical tube. As shown in Fig. 2 (a), the main parts are sequentially placed with the right element 2 that rotates the fluid in the right direction and the left element 3 that rotates the fluid in the left direction shifted by 90 ° around the axis of the mixer 1. Connected structures Have.
  • the molten salt containing fine particles of Ti or Ti alloy is supplied to the static mixer 1 inserted in the pipe in the state shown in Fig. 2 (a)
  • the molten salt is moved to the front side by the right element 2.
  • the other side (indicated as the back side).
  • the molten salt on the near side moves along the twisted surface in the right element 2 from the central part of the pipe to the wall side while rotating rightward, and the molten salt on the far side also rotates rightward. Move to the front side.
  • the molten salt is divided into two parts up and down by the left element 3 and moves while rotating counterclockwise, and the up and down positions are reversed.
  • the next right element 2 is divided into two parts, the front side and the back side.
  • the molten salt containing fine particles of Ti or Ti alloy changes its rotation direction every time it passes through each element, so that it is vigorously stirred by abrupt reversal action and remarkably promotes granulation.
  • Fig. 2 (b) shows a stirring state when the static mixer 1 is attached in the middle of the pipe 4 through which the molten salt containing fine particles of Ti or Ti alloy passes.
  • a hydrocyclone 5 for concentrating and separating the granulated particles is attached to the exit side of the static mixer 1, and the particle diameter is 3 to 100 after passing through the static mixer 1.
  • the molten salt containing Ti grains or Ti alloy grains which has reached about m, is subject to particle collision (contact) during the treatment with hydrocyclone 5, so that granulation proceeds further, and the particle size of the whole particle is reduced. It is about 100 ⁇ m. That is, the liquid cyclone is used to concentrate the granulated particles as will be described later, but also has a granulating function.
  • a method of providing a guide plate (baffle plate) in the pipe through which the bath salt passes is simple and effective. By appropriately selecting the baffle shape and location, granulation can be promoted by changing the bath flow.
  • Changing the speed of the bath flow is also effective in changing the bath flow. For example, by intermittently increasing or decreasing the speed of the bath salt that passes through the pipe, the flow becomes turbulent, increasing the probability of particle collision (contact) and granulation. Is promoted.
  • An effective way to change the bath flow is to make the bath flow turbulent. There are various ways to do this, such as stirring the bath, installing baffles, and changing the bath flow rate. Misalignment also causes turbulent flow.
  • Rotating the bath flow is also effective in changing the bath flow. Granulation is promoted because the particles collide violently due to the turbulence caused by the rotation.
  • the average grain size of the granulated grains is 1 ⁇ m or more, the sedimentation of the grains is promoted and the separation efficiency is increased. Can be increased. The larger the particle size, the easier the separation, so it is desirable that the average particle size be 20 m or more and the particle size range 20-100 111.
  • the average particle size of the granulated particles is 100 m or more, the particle separation efficiency is remarkably improved, which is more desirable.
  • the particle size after granulation is either Ti grains in molten salt containing CaCl or
  • the average grain size is usually set to 100 m or more by applying the force S with an average grain size of about 100 m, and the Ti grain or Ti alloy grain production method described in detail later. It is possible to do.
  • the particle size of the constituent particles of Ti particles or Ti alloy particles granulated so that the average particle size is 1 am or more is from 0 ⁇ 05 m to 10 m, as described below,
  • These Ti grains or Ti alloy grains can be regarded as Ti grains or Ti alloy grains produced by the method for producing Ti grains or Ti alloy grains of the present invention.
  • the Ti grains or Ti alloy grains of the present invention in order for the granulation to proceed in the molten salt, the Ti grains or Ti alloy grains must be brought into contact with each other and coalesced. That is, the granulated particles obtained by granulation are Ti particles or Ti alloy particles (which are called “constituting particles” in the sense of particles constituting the granulated particles) in contact with each other.
  • the particle diameter of the constituent particles that have been combined and can be combined by the Ti grain or Ti alloy grain manufacturing method of the present invention is about 10 am or less. Particles exceeding this particle size are not likely to be constituent particles that are easily present as independent granulated particles.
  • the particle size of the Ti particles or Ti alloy particles granulated to have an average particle size of 1 m or more is 0.05 to 10 am
  • the Ti particles or Ti alloy The grain can be regarded as Ti grain or Ti alloy grain produced by the method for producing Ti grain or Ti alloy grain of the present invention.
  • the desirable particle size range of the constituent particles is 0.115 111 to 3.O ⁇ m, and granulation with a particle size of this level enables granulation relatively easily.
  • the Ti grain or Ti alloy grain production method of the present invention is obtained by concentrating the Ti grain or Ti alloy grain granulated by the production method of the present invention (described in (1) above). It can be a manufacturing method.
  • Concentration can increase the particle density (the ratio of particles in the system) as a main factor (granulation factor) that affects the granulation in the molten salt described above. It is possible to promote the granulation by increasing the probability of collision (contact) with each other and to facilitate the separation of the granulated Ti grains or Ti alloy grains.
  • the method for producing Ti grains or Ti alloy grains of the present invention it is desirable to concentrate the Ti grains or Ti alloy grains after granulation by a liquid cyclone. Since the hydrocyclone also has a granulating function as described above, it can be effectively granulated and concentrated by using it together with other concentrating means.
  • the concentration of Ti particles or Ti alloy particles after granulation can also be performed by centrifugation.
  • centrifugation molten particles containing Ti grains or Ti alloy grains are placed in a high-speed rotating field, and the granulated particles are concentrated and separated by applying centrifugal force. Since each particle moves uniformly toward the outer periphery of the separator, a granulation effect as in the case of using a hydrocyclone cannot be expected! /, But efficient concentration can be achieved.
  • Fig. 3 is a diagram schematically showing an example of the configuration of an apparatus in the case where the granulated Ti grains or Ti alloy grains are concentrated by using a liquid cyclone and a filter separator together.
  • hydrocyclone A cyclone of the same type as shown in Fig. 2 (b) is used, and a filter separator using a wire mesh is used for filtration.
  • the filter separator 7 has a cylindrical shape, and a helical fin 8 is attached to the inner wall of the tube (tube), and a fine wire mesh (not shown) is stretched near the inside of the inner wall. .
  • the filter separator 7 is configured such that the outlet side is inclined slightly upward with respect to the inlet side and is rotatable about the axis C.
  • the granulation of particles further proceeds due to the collision (contact) of the particles, and part of the molten salt. Is separated and discharged from the fluid outlet 6a, and the Ti particles or Ti alloy particles after granulation are concentrated. On the other hand, the Ti particles or Ti alloy particles after concentration are discharged from the solid outlet 6b together with the remaining molten salt and supplied to the filter separator 7.
  • Concentration by mechanical compression is also effective depending on the method of use. Since it is mechanically dehydrated (ie, pressed), it is effective when it is desired to eliminate molten salt as much as possible and to separate only Ti grains or Ti alloy grains.
  • Fig. 4 is a diagram showing a schematic configuration example of a manufacturing apparatus used when the Ti or Ti alloy manufacturing method of the present invention is carried out.
  • the basic construction of the manufacturing equipment shown in Fig. 4 is based on the OYIK method, and the method developed by the present inventors is implemented as a manufacturing process that can perform stable and efficient operation on an industrial scale. It is an example of a device that can be used.
  • the production apparatus of the present invention includes a melt containing CaCl and dissolving Ca.
  • the salt is retained and TiCl supplied in this molten salt reacts with the Ca to produce Ti grains.
  • a separation means 10 for granulating and separating Ti particles produced in the molten salt, and continuously dissolving the separated Ti particles to form metal Ti A melting means 11 as an ingot, an electrolytic cell 12 for electrolyzing the molten salt after the Ti grains are separated to produce Ca, and a concentration of Ca produced by electrolysis to be constant
  • a Ca concentration removal device 14 for removing and recovering Ca dissolved in the molten salt separated by the separation means 10 and sent to the electrolytic cell 12.
  • the separation means 10 includes a granulation means and a separation means, and includes all of the reaction vessel, granulation means, separation means, and dissolution means of the production apparatus of the present invention. Yes.
  • the above-described method for producing Ti grains or Ti alloy grains of the present invention is applied to the separation step performed using the separation means 10 of this production apparatus, and the liquid cyclone 6 shown in FIG. 3 is granulated.
  • a filter separator 7 using a wire mesh is used for concentration and separation.
  • molten salt continuously supplied from the electrolytic cell 12 through the adjustment vessel 13 is introduced into the reaction vessel 9.
  • the TiCl supplied from the TiCl supply port 15 is allowed to react with Ca in the molten salt, and Ti particles are added to the molten salt.
  • the fine Ti particles generated in the molten salt in the reduction step are granulated by the liquid cyclone 6 in the separation step, and at the same time, part of the molten salt is separated upward and concentrated. .
  • the granulated Ti grains are discharged from the bottom of the hydrocyclone 6 together with the remaining molten salt.
  • the discharged Ti particles are concentrated and separated after the molten salt is removed by the filter separator 7.
  • the separated Ti grains are continuously heated and melted by the plasma irradiated from the plasma torch 24 in the separation tank 23, and poured into the vertical mold 25 to become a Ti ingot 26.
  • the molten salt separated by the liquid cyclone 6, the molten salt removed by the filter separator 7, and the molten salt separated as an upper layer by heating and melting with the plasma torch 24 are: Then, they are sent to the Ca recovery process using the Ca concentration removal device 14 via the routes La, Lb and Lc, respectively.
  • the Ca concentration removal device 14 holds the molten salt separated by a partition wall 16 into a Ca concentration region 17 and a Ca removal region 18, and uses a molten Mg-Ca alloy electrode 19 held on the molten salt. To remove Ca in molten salt or high concentration It has a function to convert.
  • the molten salt from which Ca that has an adverse effect on electrolysis in the Ca recovery process is removed and recovered is sent to the electrolysis process, where it is electrolyzed to produce Ca, and the Ca concentration of the molten salt is increased.
  • the electrolytic cell 12 includes a cylindrical electrolytic cell container 12a that holds molten salt, and a cylindrical anode 2
  • the molten salt continuously supplied between 0 and the cathode 21 can be electrolyzed to extract the molten salt enriched with Ca! /.
  • Ca produced by electrolysis in the electrolysis step is introduced together with the molten salt into the adjustment tank 13 having a Ca supply source, and after the Ca concentration of the molten salt is made constant, the Ca is introduced into the reaction vessel 9.
  • the production of metal Ti is carried out continuously.
  • the hydrocyclone 6 is used as the granulating means
  • a filtration separator 7 using a wire mesh is used as a concentration and separation means, and Ti particles are granulated, concentrated and separated.
  • the produced Ti particles are granulated with a hydrocyclone, and further concentrated and separated with a filter separator 7. That is, a manufacturing apparatus incorporating the apparatus for carrying out the manufacturing method of Ti particles or Ti alloy particles accompanied by the concentration of the granulated Ti particles or Ti alloy particles described in (2) above, Even when only the equipment that implements the manufacturing method of Ti grains or Ti alloy grains is applied, the separation efficiency of Ti grains is improved, so that the productivity improvement effect is recognized.
  • the Ti grain or Ti alloy grain production method of the present invention is a method in which Ti grains or Ti alloy grains produced by reduction in molten salt are brought into contact with each other or further concentrated to reduce the sedimentation of the particles. It can be promoted to significantly increase the efficiency of separation. Concentration after granulation can further enhance the effect of improving the separation efficiency of Ti grains or Ti alloy grains.
  • the Ti grain or Ti alloy grain production method, metal Ti or Ti alloy production method and production apparatus of the present invention can be effectively used in the production of metal Ti or Ti alloy by Ca reduction. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed is a method for producing a Ti granule or a Ti alloy granule, which comprises the step of contacting Ti particles or Ti alloy particles produced by the reduction in a molten salt with one another to produce the Ti granule or Ti alloy granule. The method may further comprise the step of condensing the Ti granule or the Ti alloy granule in the molten salt that contains the Ti granule or the Ti alloy granule produced by the method. The method for producing a Ti granule or a Ti alloy granule in a molten salt may be applied to a step for separating the produced Ti granule or the Ti alloy granule from the molten salt in the process forthe production of metal Ti or a Ti alloy by Ca reduction. In this case, the productivity rate can be improved and it becomes possible to produce metal Ti or a Ti alloy at low cost.

Description

明 細 書  Specification
Ti粒又は Ti合金粒の製造方法、並びに金属 Ti又は Ti合金の製造方法 及び製造装置  Ti grain or Ti alloy grain manufacturing method, metal Ti or Ti alloy manufacturing method and manufacturing apparatus
技術分野  Technical field
[0001] 本発明は、溶融塩中で還元により生成した Ti粒又は Ti合金粒を造粒することを特 徴とする Ti粒又は Ti合金粒の製造方法、並びにこの Ti粒又は Ti合金粒の製造方法 を適用した金属 Ti又は Ti合金の製造方法及びそれに用いる製造装置に関する。 背景技術  [0001] The present invention relates to a method for producing Ti grains or Ti alloy grains, characterized by granulating Ti grains or Ti alloy grains produced by reduction in molten salt, and the Ti grains or Ti alloy grains. The present invention relates to a manufacturing method of metal Ti or Ti alloy to which the manufacturing method is applied and a manufacturing apparatus used therefor. Background art
[0002] 金属 Tiの工業的な製法としては、 TiClを Mgにより還元するクロール法が一般的で  [0002] As an industrial production method of metal Ti, a crawl method in which TiCl is reduced with Mg is common.
4  Four
あり、高純度の製品を製造することが可能である。しかし、生成した Ti粉が凝集した状 態で沈降し、反応容器外へ回収することが困難であるため、操業をバッチ式で行わ ざるを得ない。  Yes, it is possible to produce high-purity products. However, since the generated Ti powder settles in an aggregated state and is difficult to recover outside the reaction vessel, the operation must be carried out batchwise.
[0003] また、 TiClが反応容器内の溶融 Mg液の液面に上方から液体状で供給され、溶融  [0003] Further, TiCl is supplied in a liquid form from above to the molten Mg liquid surface in the reaction vessel, and melted.
4  Four
Mg液の液面近傍だけで反応が行われるので、 TiClの利用効率の低下を回避し、  Since the reaction takes place only near the surface of the Mg solution, avoiding a decrease in the efficiency of TiCl use,
4  Four
反応に伴う局所的な発熱を避けるため、 TiClの供給速度が制限される。その結果、  TiCl supply rate is limited to avoid local heat generation due to reaction. as a result,
4  Four
製造コストが嵩み、製品価格が非常に高くなる。  Manufacturing costs are high and product prices are very high.
[0004] そのため、クロール法以外の金属 Tiの製造方法に関して多くの研究開発がなされ てきた。例えば、米国特許第 4820339号明細書には、反応容器内に CaClの溶融  [0004] For this reason, much research and development has been conducted on methods for producing metallic Ti other than the crawl method. For example, US Pat. No. 4,820,339 describes the melting of CaCl in a reaction vessel.
2 塩を保持し、その溶融塩中に上方から金属 Ca粉末を供給して、溶融塩中に Caを溶 け込ませると共に、下方力 TiClガスを供給して、 CaClの溶融塩中で溶解 Caと Ti  2 Hold the salt, supply metal Ca powder from above into the molten salt, dissolve Ca in the molten salt, and supply downward force TiCl gas to dissolve in the molten salt of CaCl And Ti
4 2  4 2
C1を反応させる方法が記載されている。しかし、金属 Caの粉末が極めて高価であり A method of reacting C1 is described. However, metal Ca powder is extremely expensive.
4 Four
、加えて、反応性が強い Caは取り扱いが非常に難しぐこの方法は工業的な Ti製造 法としては成立し得ない。  In addition, since the highly reactive Ca is very difficult to handle, this method cannot be established as an industrial Ti production method.
[0005] そこで、本発明者らは、 Ca還元による金属 Tiの製造方法を工業的に確立するため には、 TiClの Caによる還元が不可欠であり、還元反応で消費される溶融塩中の Ca [0005] Therefore, in order to industrially establish a method for producing metal Ti by reduction of Ca, the present inventors need to reduce TiCl with Ca, and Ca contained in molten salt consumed in the reduction reaction.
4  Four
を経済的に補充する必要があると考え、溶融 CaClの電気分解により生成する Caを  Therefore, it is necessary to replenish the Ca produced by the electrolysis of molten CaCl.
2  2
利用すると共に、この Caを循環使用する方法、即ち「OYIK法 (ォーイツク法)」を提 案した(特開 2005— 133195号公報、特開 2005— 133196号公報参照)。 In addition to using it, we propose a method of recycling this Ca, that is, the “OYIK method”. (See JP-A-2005-133195 and JP-A-2005-133196).
[0006] 特開 2005— 133195号公報では、電気分解により Caが生成、補充され、 Caリッチ となった溶融 CaClを反応容器に導入し、 Ca還元による Ti粒の生成に使用する方法 [0006] In Japanese Patent Laid-Open No. 2005-133195, Ca is generated and replenished by electrolysis, and Ca-rich molten CaCl is introduced into a reaction vessel and used to generate Ti particles by Ca reduction.
2  2
が記載され、特開 2005— 133196号公報では、更に、陰極として合金電極 (例えば 、 Mg— Ca合金電極)を用いることにより、電解に伴うバックリアクションを効果的に抑 制する方法が示されている。  JP-A-2005-133196 further discloses a method for effectively suppressing back reaction due to electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as a cathode. Yes.
[0007] これら特開 2005— 133195号公報および特開 2005— 133196号公報に記載さ れた方法においては、いずれも TiClと Caとの反応により生成した Ti粒又は Ti合金 [0007] In the methods described in JP-A-2005-133195 and JP-A-2005-133196, both Ti grains or Ti alloys formed by the reaction of TiCl and Ca
4  Four
粒を溶融塩から分離する工程が含まれている。即ち、溶融 CaClの電気分解による C  A step of separating the grains from the molten salt is included. That is, C by electrolysis of molten CaCl
2  2
aの生成と、この Caによる TiClの還元(Ti粒又は Ti合金粒の生成)を連続して行うと  When the generation of a and the reduction of TiCl by Ca (generation of Ti grains or Ti alloy grains) are performed continuously,
4  Four
同時に、生成した Ti粒又は Ti合金粒の溶融 CaClからの分離を連続的に且つ速や  At the same time, the separation of the produced Ti grains or Ti alloy grains from the molten CaCl is performed continuously and rapidly.
2  2
かに行うことが、前記 OYIK法により連続的に金属 Tiを製造するに際し極めて重要で ある。  This is extremely important when continuously producing metallic Ti by the OYIK method.
[0008] OYIK法を適用した Ca還元による金属 Ti又は Ti合金の製造プロセスでは、前記の 分離の工程は重力を利用した沈降分離により行われる。 Ca還元により生成した直後 の Ti粒はサブミクロンの微粒子である力 生成時の熱(還元熱)で粒同士の結合が促 進され合体するとともに、ブラウン運動によっても粒の凝集が進行するので、沈降分 離が可能となる。  [0008] In the manufacturing process of metallic Ti or Ti alloy by Ca reduction using the OYIK method, the separation step is performed by sedimentation separation using gravity. The Ti grains immediately after being generated by Ca reduction are submicron fine particles. The heat generated during the force generation (reduction heat) promotes the bonding between the grains and coalesces. Sediment separation is possible.
[0009] しかし、このような粒同士の合体、凝集が起こるにしても Ti粒又は Ti合金粒は非常 に細かぐ回収率が低下する。また、 Ti粒又は Ti合金粒は浴塩と混合した状態で生 成し、し力、もその濃度が低いため、例えば、 Ti粒又は Ti合金粒を溶解して液相とし、 上層の浴塩を除去する溶解分離等の方法を使用すると、多量のエネルギーを要し、 製造コストの上昇は避けられな!/、。  [0009] However, even if such coalescence and agglomeration of grains occur, the recovery rate of Ti grains or Ti alloy grains is very fine, and the recovery rate decreases. In addition, Ti grains or Ti alloy grains are formed in a mixed state with bath salt, and its strength and strength are low. For example, Ti grains or Ti alloy grains are dissolved to form a liquid phase, and the upper layer bath salt is dissolved. If a method such as dissolution separation is used, a large amount of energy is required, and an increase in manufacturing cost is inevitable!
[0010] 生成した Ti粒の粒径を大きくできれば (この粒径を大きくする操作又は処理を、ここ では「造粒」と記す)、粒子は沈降しやすぐ前述の問題の解決に向けた大きな改善 につながると考えられる。し力もながら、そのような試みは、従来なされていない。 [0010] If the particle size of the generated Ti particles can be increased (the operation or treatment for increasing the particle size is referred to as “granulation” in this case), the particles settle and immediately become large in order to solve the above problems. This is thought to lead to improvement. However, no such attempt has been made in the past.
[0011] 造粒という操作は、古くから種々の目的で様々な方法により行われてきた。例えば、 医薬の顆粒や錠剤、農薬や化学肥料などの粒状品を得るために、あるいは生産プロ セスにおいて、ノヽンドリング†生、焼結生などの良好なペレット、ブリケット等の造粒物を 得るために、粉状物 (微粒子)から種々の形状を持った成形物とする造粒操作が行わ れている。 [0011] The operation of granulation has long been performed by various methods for various purposes. For example, to obtain pharmaceutical granules and tablets, granular products such as pesticides and chemical fertilizers, In order to obtain good pellets such as non-ringed and sintered raw materials, and briquettes, etc., granulation operations are performed from powders (fine particles) to molded products having various shapes. It is.
[0012] また、造粒方法としては、一般に、湿らせた粉状物を、回転パンや回転ドラムを用い た転動、攪拌、振動などの作用により凝集現象を利用して顆粒や粒状物とする方法 、乾燥した(又は湿らせた)粉状物をロール間圧縮その他の機械的成形により粒状物 等とする方法などが用いられてレ、る。  [0012] In addition, as a granulation method, generally, a moistened powdery substance is separated from granules and granular substances by utilizing an agglomeration phenomenon by an action such as rolling, stirring, and vibration using a rotary pan or a rotary drum. The dry powder (or moistened) is made into a granular material by compression between rolls or other mechanical forming.
[0013] しかし、これら造粒操作の目的、方法はいずれも粉状物 (微粒子)を大気中で所定 の形状の成形物とするもので、溶融塩のような液体中で微粒子を凝集させ、造粒す るものではない。  [0013] However, the purpose and method of these granulation operations are all to form a powdery product (fine particles) into a molded product having a predetermined shape in the air. The fine particles are aggregated in a liquid such as a molten salt. It is not granulated.
発明の開示  Disclosure of the invention
[0014] 前述のとおり、本発明者らが提案した前記 OYIK法では、生成した Ti粒又は Ti合 金粒の浴塩からの分離を連続的に且つ速やかに行うことが極めて重要である。しか し、分離操作を行う前の Ti粒又は Ti合金粒は非常に細かぐ回収率を高めることは 困難で、生産速度が低下し製造コストが上昇する。  [0014] As described above, in the OYIK method proposed by the present inventors, it is extremely important to continuously and rapidly separate the produced Ti grains or Ti alloy grains from the bath salt. However, it is difficult to increase the recovery rate of Ti grains or Ti alloy grains before the separation operation is very fine, resulting in a decrease in production speed and an increase in manufacturing cost.
[0015] また、 Ti粒又は Ti合金粒は浴塩と混合した状態で生成し、し力、もその濃度が低!/、。  [0015] Ti grains or Ti alloy grains are formed in a state of being mixed with a bath salt and have low strength and / or low concentration.
そのため、前記の溶解分離により浴塩を除去する方法、あるいは水洗により浴塩を除 去する方法などを使用すると、多量のエネルギーを要するので、製造コストの上昇は 避けられない。  For this reason, if the method for removing bath salt by the above-described dissolution separation or the method for removing bath salt by washing with water is used, a large amount of energy is required, so an increase in production cost is inevitable.
[0016] 更に、粉末状の金属 Ti又は Ti合金を製造する場合、得られる金属 Ti、 Ti合金のサ ィズが小さく、粒度、品質調整が難しいという問題もある。  [0016] Further, when producing powdered metal Ti or Ti alloy, there is a problem that the size of the obtained metal Ti or Ti alloy is small, and it is difficult to adjust the particle size and quality.
これらの問題は、生成した Ti粒又は Ti合金粒を溶融塩から分離する前に造粒し、 粒子の沈降を促進して分離の効率を高めることにより解決することが可能と考えられ  These problems can be solved by granulating the produced Ti grains or Ti alloy grains before separating them from the molten salt and promoting the sedimentation of the particles to increase the separation efficiency.
[0017] 本発明の目的は、溶融塩中で還元により生成した Ti粒又は Ti合金粒同士を当該 溶融塩中で造粒して Ti粒又は Ti合金粒を製造する方法、並びにこの Ti粒又は Ti合 金粒の製造方法を Ca還元による金属 Ti又は Ti合金の製造プロセスにおいて生成 Ti 粒又は Ti合金粒の溶融塩からの分離工程で適用し、生産性を向上させて、金属 Ti 又は Ti合金を安価に製造する方法、及びその方法の実施に用いられる製造装置を 提供することにある。 [0017] An object of the present invention is to produce Ti grains or Ti alloy grains by granulating Ti grains or Ti alloy grains produced by reduction in a molten salt in the molten salt, as well as the Ti grains or The production method of Ti alloy grains is applied in the process of separating the Ti grains or Ti alloy grains from the molten salt in the production process of metallic Ti or Ti alloys by Ca reduction, and the productivity is improved. Another object is to provide a method for producing a Ti alloy at a low cost and a production apparatus used for carrying out the method.
[0018] 上記の課題を解決するために、本発明者らは、溶融塩 (溶融 CaCl )中で Ca還元  [0018] In order to solve the above problem, the present inventors reduced Ca in molten salt (molten CaCl 2).
2  2
により生成した Ti粒同士の当該溶融塩中での造粒について検討した。その結果、溶 融 CaCl中に TiClを添加し、 Ti粒が生成した時点における溶融塩の流れ(以下、溶 We examined the granulation of Ti grains produced by the above method in the molten salt. As a result, TiCl was added to the molten CaCl, and the molten salt flow at the time when Ti grains formed (hereinafter referred to as the molten salt).
2 4 twenty four
融塩を「浴塩」又は「浴」ともレ、い、溶融塩の流れを「浴流れ」ともレ、う)の状態を粒同士 の接触が起こりやすいように変えることにより、 Ti粒同士を結合させ、浴塩中で造粒で きることを見出した。浴流れを変えるには、浴を攪拌する、浴中に案内板 (邪魔板)を 設ける、などの方法が有効である。  By changing the state of molten salt to “bath salt” or “bath”, and changing the flow of molten salt to “bath flow” to make contact between grains easy to occur, It was found that they can be combined and granulated in bath salt. To change the bath flow, methods such as stirring the bath and providing a guide plate (baffle plate) in the bath are effective.
[0019] 更に、このように造粒した Ti粒が含まれる浴塩を例えば液体サイクロン等で濃縮し、 [0019] Further, the bath salt containing the Ti particles granulated in this way is concentrated using, for example, a liquid cyclone,
Ti粒の濃度 (含有率)を高め得ることを確認した。 It was confirmed that the concentration (content rate) of Ti grains could be increased.
[0020] そして、この溶融塩中での造粒を Ca還元による金属 Ti又は Ti合金の製造プロセス にお!/、て生成 Ti粒又は Ti合金粒の溶融塩からの分離工程で適用すれば、生産性を 向上させて金属 Ti又は Ti合金を安価に製造することが可能となる。その場合、前記 の濃縮を伴う造粒を適用することによって、生産性の向上効果は一層増大する。 [0020] Then, if the granulation in the molten salt is applied to the production process of metal Ti or Ti alloy by Ca reduction in the process of separating the Ti grain or Ti alloy grain from the molten salt, Productivity can be improved and metal Ti or Ti alloys can be manufactured at low cost. In that case, the productivity improvement effect is further increased by applying the granulation accompanied by the concentration.
[0021] 本発明はこれらの知見に基づいてなされたもので、その要旨は、下記(1)又は(2) の Ti粒又は Ti合金粒の製造方法、並びに(3)の金属 Ti又は Ti合金の製造方法及 びその方法の実施に用いる(4)の製造装置にある。 [0021] The present invention has been made on the basis of these findings. The gist of the present invention is the following (1) or (2) Ti grain or Ti alloy grain production method, and (3) metal Ti or Ti alloy. The manufacturing method of (4) and the manufacturing apparatus of (4) used for the implementation of the method are.
[0022] ( 1 )溶融塩中で還元により生成した Ti粒又は Ti合金粒同士を接触させることにより 造粒することを特徴とする Ti粒又は Ti合金粒の製造方法である。 [0022] (1) A method for producing Ti grains or Ti alloy grains, characterized in that granulation is performed by bringing Ti grains or Ti alloy grains produced by reduction in molten salt into contact with each other.
(2)前記(1)に記載の製造方法で造粒した Ti粒又は Ti合金粒を含む溶融塩中の T i粒又は Ti合金粒を濃縮することを特徴とする Ti粒又は Ti合金粒の製造方法である。  (2) Concentration of Ti grains or Ti alloy grains in molten salt containing Ti grains or Ti alloy grains granulated by the production method described in (1) above. It is a manufacturing method.
[0023] ここで、「溶融塩」とは、常温で固体の塩や酸化物を加熱融解して液体の状態にし た物質、又はそれらの混合物をいう。例えば、溶融 CaClのみからなる溶融塩、溶融 Here, the “molten salt” refers to a substance obtained by heating and melting a solid salt or oxide at room temperature into a liquid state, or a mixture thereof. For example, molten salt consisting only of molten CaCl, molten
2  2
CaClに CaF等を加えた、 CaClを含有する溶融塩などが挙げられる。  Examples thereof include molten salts containing CaCl, such as CaF added to CaCl.
2 2 2  2 2 2
[0024] また、ここで!/、う「接触させる」には、近づけ触れさせると!/、う本来の意味に加え、衝 突させることも含まれる。  [0024] Here,! /, "Contact" includes impingement in addition to the original meaning of! /, U.
[0025] 前記(1)に記載の Ti粒又は Ti合金粒の製造方法において、粒同士の接触による 造粒を、浴流れを変えることにより行うこととすれば、造粒を著しく促進させることが可 能である。 [0025] In the method for producing Ti grains or Ti alloy grains described in (1) above, by contact between grains. If granulation is carried out by changing the bath flow, it is possible to significantly accelerate the granulation.
[0026] 「浴流れを変える」とは、 Ti粒又は Ti合金粒が生成した時点における浴塩の流れの 状態 (ここでは、静止状態も含む)を変化させることを意味する。接触させることにより 造粒するという目的から、浴塩の動きを粒同士の接触が起こりやすいように変えると いうことが前提である。例えば、 Ti粒又は Ti合金粒が生成した時点で浴が静止状態 にある場合は、浴を流動状態に、また、浴流れが層流又はそれに近い状態である場 合は、乱流状態等に変えることを意味する。  “Changing the bath flow” means changing the state of the bath salt flow (including the resting state here) at the time when Ti grains or Ti alloy grains are formed. For the purpose of granulation by contact, the premise is to change the movement of the bath salt so that contact between the grains is likely to occur. For example, if the bath is stationary when Ti grains or Ti alloy grains are formed, the bath is in a fluid state, and if the bath flow is in a laminar flow or a state close thereto, the bath is in a turbulent state. It means changing.
[0027] この「浴流れを変える」ことは、浴を静止状態から流動状態にしたり、浴の流れを乱 流にする他に、浴を攪拌する、浴中に案内板 (邪魔板)を設ける、浴流れの速度を変 ィ匕させる、又は浴流れを回転させることによつても fiうこと力 Sできる。  [0027] This "changing the bath flow" is to change the bath from a stationary state to a fluid state, or to make the bath flow turbulent. In addition to stirring the bath, a guide plate (baffle plate) is provided in the bath. It is also possible to change the speed of the bath flow or to rotate the bath flow.
[0028] 前記(1)に記載の Ti粒又は Ti合金粒の製造方法にお!/、て、造粒後の粒の平均粒 径を 1 μ m以上とすれば、粒子の沈降を促進して分離の効率を高めることができる。 また、造粒後の粒の平均粒径を 100 m以上とすれば、粒子の分離効率が著しく向 上するので、望ましい。なお、「平均粒径」とは、質量基準で表した粒径分布 (積算分 布)において、篩上又は篩下の粒子が 50%となる粒径 (D )をいう。  [0028] In the method for producing Ti grains or Ti alloy grains described in (1) above, if the average grain size of the granulated grains is 1 μm or more, the sedimentation of the grains is promoted. The separation efficiency can be increased. In addition, if the average particle size after granulation is 100 m or more, it is desirable because the separation efficiency of the particles is remarkably improved. The “average particle size” means the particle size (D) at which the particle on the sieve or under the sieve is 50% in the particle size distribution (integrated distribution) expressed on a mass basis.
50  50
[0029] 更に、前記平均粒径が 1 a m以上となるように造粒した Ti粒又は Ti合金粒の構成 粒子の粒径が 0. 05 m以上 10 m以下であれば、この Ti粒又は Ti合金粒は前記 (1)又は(2)に記載の Ti粒又は Ti合金粒の製造方法で製造した Ti粒又は Ti合金粒 であるとみなすことができる。  [0029] Furthermore, if the particle size of the Ti particles or Ti alloy particles granulated so that the average particle size is 1 am or more is 0.05 m or more and 10 m or less, the Ti particles or Ti The alloy grains can be regarded as Ti grains or Ti alloy grains produced by the method for producing Ti grains or Ti alloy grains described in (1) or (2) above.
[0030] なお、ここで!/、う「構成粒子の粒径」とは、 SEM (走査電子顕微鏡)で観察した画像 において、粒の長径と短径を測定し、粒を楕円とみなしてその面積を求め、それと同 面積の円の直径を求める操作を、サンプル数 50個以上の粒について行って得られ る前記円の直径の平均値である。  [0030] Here,! /, “Particle size of the constituent particles” means that the major axis and minor axis of a particle are measured in an image observed with a SEM (scanning electron microscope), and the particle is regarded as an ellipse. This is an average value of the diameters of the circles obtained by performing the operation of obtaining the area and obtaining the diameter of the circle of the same area on the grains having 50 or more samples.
[0031] 前記(2)に記載の Ti粒又は Ti合金粒の製造方法にお!/、て、「造粒後の Ti粒又は T i合金粒を含む溶融塩中の Ti粒又は Ti合金粒の濃縮」は、液体サイクロン、遠心分離 、濾過分離、又は機械的圧縮により行うことができる。  [0031] In the method for producing Ti grains or Ti alloy grains as described in (2) above, "/ Ti grains or Ti alloy grains in molten salt containing Ti grains or Ti alloy grains after granulation" "Concentration" can be done by hydrocyclone, centrifugation, filtration separation, or mechanical compression.
[0032] (3)溶融塩中での Ca還元による金属 Ti又は Ti合金の製造方法であって、 CaClを 含み且つ Caが溶解した溶融塩中に TiClを含む金属塩化物を連続的に供給して溶 [0032] (3) A method for producing metal Ti or Ti alloy by Ca reduction in molten salt, A metal chloride containing TiCl is continuously fed into a molten salt containing Ca and dissolved therein to dissolve it.
4  Four
融塩中に Ti粒又は Ti合金粒を生成させる還元工程と、生成直後の Ti粒又は Ti合金 粒をブラウン運動により合体させた後、更に粒同士を接触させることにより造粒する造 粒工程と、前記造粒後の Ti粒又は Ti合金粒を溶融塩から分離する分離工程と、前 記分離後の Ti粒又は Ti合金粒を連続的に溶解して金属 Ti又は Ti合金のインゴットと する溶解工程を含む金属 Ti又は Ti合金の製造方法である。  A reduction process for generating Ti grains or Ti alloy grains in the molten salt, a granulation process for granulating the Ti grains or Ti alloy grains immediately after the formation by coalescence by Brownian motion and then bringing the grains into contact with each other A separation step of separating the granulated Ti particles or Ti alloy particles from the molten salt, and melting to separate the Ti particles or Ti alloy particles after the separation into metal Ti or Ti alloy ingots. It is a manufacturing method of metal Ti or Ti alloy including a process.
[0033] 前記(3)に記載の製造方法にお!/、て、更に、造粒後の Ti粒又は Ti合金粒を濃縮 する濃縮工程を含むこととすれば、分離の効率を一層高めることができる。 [0033] If the production method described in (3) above further includes a concentration step of concentrating the granulated Ti particles or Ti alloy particles, the separation efficiency can be further increased. Can do.
[0034] (4) CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に連続的に [0034] (4) A molten salt containing CaCl and dissolving Ca is retained, and continuously in the molten salt.
2  2
供給される TiClを含む金属塩化物を Caと反応させて Ti粒又は Ti合金粒を生成させ  The supplied metal chloride containing TiCl reacts with Ca to produce Ti grains or Ti alloy grains.
4  Four
るための反応容器と、前記溶融塩中に生成された Ti粒又は Ti合金粒をブラウン運動 により合体させた後、更に粒同士を接触させて造粒する造粒手段と、前記造粒手段 で造粒した後の Ti粒又は Ti合金粒を溶融塩から分離するための分離手段と、前記 分離手段で分離した後の Ti粒又は Ti合金粒を連続的に溶解して金属 Ti又は Ti合 金のインゴットとする溶解手段とを有する金属 Ti又は Ti合金の製造装置である。 A granulation means for bringing together Ti particles or Ti alloy particles produced in the molten salt by Brownian motion and then bringing the particles into contact with each other, and the granulation means Separation means for separating the granulated Ti grains or Ti alloy grains from the molten salt, and the Ti grains or Ti alloy grains separated by the separation means are continuously melted to form metal Ti or Ti alloy. It is the manufacturing apparatus of metal Ti or Ti alloy which has a melt | dissolution means used as an ingot.
[0035] 前記 (4)に記載の製造方法にお!/、て、更に、造粒手段で造粒した後の Ti粒又は Ti 合金粒を濃縮するための濃縮手段を有することとすれば、分離の効率を一層高める こと力 Sでさる。  [0035] If the production method according to (4) above has a concentration means for concentrating Ti particles or Ti alloy particles after granulation by the granulation means! The power S is used to further increase the efficiency of separation.
[0036] 本発明の Ti粒又は Ti合金粒の製造方法によれば、溶融塩中で還元により生成した Ti粒又は Ti合金粒を造粒し、粒子の沈降を促進して分離の効率を著しく高めること 力できる。造粒後に濃縮すれば、分離効率の向上効果を一層高めることができる。  [0036] According to the method for producing Ti grains or Ti alloy grains of the present invention, Ti grains or Ti alloy grains produced by reduction in molten salt are granulated, and the sedimentation of the grains is promoted to significantly increase the efficiency of separation. You can increase your power. If it concentrates after granulation, the improvement effect of a separation efficiency can be heightened further.
[0037] また、この Ti粒又は Ti合金粒の製造方法を Ca還元による金属 Ti又は Ti合金の製 造プロセスにおいて生成 Ti粒又は Ti合金粒の溶融塩からの分離工程で適用すれば 、生産性を向上させて金属 Ti又は Ti合金を安価に製造することが可能である。その 場合、前記の造粒した後濃縮する Ti粒又は Ti合金粒の製造方法を適用すれば、生 産性の向上効果は一層増大する。  [0037] Further, if this method for producing Ti grains or Ti alloy grains is applied in the process of separating the Ti grains or Ti alloy grains from the molten salt in the production process of metallic Ti or Ti alloys by Ca reduction, the productivity will be improved. This makes it possible to produce metal Ti or Ti alloys at low cost. In that case, the productivity improvement effect can be further enhanced by applying the method for producing Ti grains or Ti alloy grains which are concentrated after granulation.
図面の簡単な説明  Brief Description of Drawings
[0038] 図 1は、 Ca還元により生成する Ti粒又は Ti合金粒の生成から造粒を経て分離する までの過程を模式的に示す図である。 [0038] Figure 1 shows the separation from the formation of Ti grains or Ti alloy grains produced by Ca reduction through granulation. It is a figure which shows typically the process until.
図 2は、スタティックミキサーにより Ti粒又は Ti合金粒を含有する溶融塩を攪拌する 方法の説明図であり、(a)はスタティックミキサーの要部の構造、(b)はこのミキサーを 用いた溶融塩の攪拌状況をそれぞれ模式的に示す図である。  Fig. 2 is an explanatory diagram of a method for stirring molten salt containing Ti grains or Ti alloy grains using a static mixer. (A) is the structure of the main part of the static mixer, and (b) is a melt using this mixer. It is a figure which shows typically the stirring condition of a salt, respectively.
図 3は、液体サイクロンと濾過分離器を併用して Ti粒又は Ti合金粒を濃縮する場合 の装置の構成例を模式的に示す図である。  Fig. 3 is a diagram schematically showing an example of the configuration of an apparatus for concentrating Ti grains or Ti alloy grains by using a liquid cyclone and a filter separator together.
図 4は、本発明の Ti又は Ti合金の製造方法の実施に用いられる装置の概略構成 例を示す図である。  FIG. 4 is a diagram showing a schematic configuration example of an apparatus used for carrying out the Ti or Ti alloy manufacturing method of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下に、本発明の Ti粒又は Ti合金粒の製造方法、並びに本発明の金属 Ti又は Ti 合金の製造方法及びその製造装置について、項分けして説明する。 [0039] Hereinafter, the method for producing Ti particles or Ti alloy particles of the present invention, the method for producing metal Ti or Ti alloy of the present invention, and the apparatus for producing the same will be described.
[0040] 1.本発明の Ti粒又は Ti合金粒の製造方法 [0040] 1. Method for producing Ti grain or Ti alloy grain of the present invention
本発明の Ti粒又は Ti合金粒の製造方法について、溶融塩として CaClを含有し且  The method for producing Ti grains or Ti alloy grains of the present invention contains CaCl as a molten salt and
2 つ Caが溶解して!/、る溶融塩を対象とする場合につ!/、て詳述する。  2 When Ca is dissolved! /, When the target is molten salt!
本発明の Ti粒又は Ti合金粒の製造方法は、溶融塩中で還元により生成した Ti粒 又は Ti合金粒同士を接触させることにより造粒して Ti粒又は Ti合金粒を製造する方 法である。  The method for producing Ti grains or Ti alloy grains of the present invention is a method of producing Ti grains or Ti alloy grains by granulating Ti grains or Ti alloy grains produced by reduction in molten salt by bringing them into contact with each other. is there.
[0041] Caが溶解した CaCl含有溶融塩中に TiClを添加すると、 TiCl力 Caにより還元さ  [0041] When TiCl is added to CaCl-containing molten salt in which Ca is dissolved, TiCl force is reduced by Ca.
2 4 4  2 4 4
れて Ti粒が生成する。 TiClを含む金属塩化物 (V、 Al、 Cr等、 Tiの合金成分となり  Ti particles are generated. Metal chlorides containing TiCl (V, Al, Cr, etc.
4  Four
得る金属の塩化物)を添加すると、これら金属塩化物も TiClの還元と同時に Caによ  The resulting metal chlorides are reduced by Ti simultaneously with the reduction of TiCl.
4  Four
り還元されるので、 Ti合金粒が生成する。  Ti alloy grains are generated.
[0042] このように溶融塩中で還元により生成した Ti粒又は Ti合金粒は、サブミクロン (例え ば、粒径 150nm以下)の微細な粒子である力 S、還元反応の際に生じる熱(還元熱) で合体する。更に、これら微細粒子は、溶融塩構成成分(分子)の粒子への衝突に 起因するブラウン運動により粒同士が接触 (衝突)し、凝集する。なお、凝集により粒 径が増すに伴いブラウン運動は緩慢になるので、それ以上の粒径の増大は期待でき ない。  [0042] Ti grains or Ti alloy grains formed by reduction in molten salt in this way are fine particles of submicron (for example, particle size of 150 nm or less), force S, and heat generated during the reduction reaction ( Combine with heat of reduction. Furthermore, these fine particles are brought into contact (collision) with each other due to Brownian motion resulting from collision of molten salt constituents (molecules) with the particles, and aggregate. As the particle size increases due to agglomeration, the Brownian motion becomes slow, and no further increase in particle size can be expected.
[0043] 溶融塩 (浴)が静止状態又は緩やかな流動状態であれば、 Ti粒又は Ti合金粒の粒 径の増大はブラウン運動による凝集で達せられる粒径 (最大でも 1〜3 m程度)にと どまるが、本発明の Ti粒又は Ti合金粒の製造方法では、更に「造粒」という操作を加 えて粒径の増大を図るのである。 [0043] If the molten salt (bath) is in a static state or a gentle fluid state, Ti grains or Ti alloy grains The increase in diameter is limited to the particle size that can be achieved by agglomeration due to Brownian motion (up to about 1 to 3 m). In addition, the particle size is increased.
[0044] 図 1は、本発明の Ti粒又は Ti合金粒の製造方法において、 Ti粒又は Ti合金粒の 生成から造粒を経て分離するまでの過程を模式的に示す図である。図中に付記した 粒径は、途中段階における粒径の大まかな目安として示したものである。  FIG. 1 is a diagram schematically showing a process from generation of Ti grains or Ti alloy grains to separation through granulation in the method for producing Ti grains or Ti alloy grains of the present invention. The particle size indicated in the figure is a rough guide for the particle size in the middle stage.
[0045] 図 1に示すように、生成した Ti粒は、還元熱やブラウン運動により合体、凝集し、そ の後、凝集した各粒子が浴流れに伴い運動する間における衝突による合体 (これを、 「慣性力合体」という)が進行し、分離に必要な粒径(望ましくは、 20〜; ίθθ πι)まで 造粒が行われる。特に、造粒過程においては、衝突した粒子間で浴塩が保有してい る熱による焼結が起こるので、慣性力合体が進行し易い。  [0045] As shown in FIG. 1, the produced Ti particles coalesce and aggregate due to reduction heat or Brownian motion, and then coalesce due to collision during the movement of the aggregated particles along with the bath flow (this , “Inertial force coalescence” proceeds, and granulation is performed to a particle size (desirably 20 to; ίθθπι) necessary for separation. In particular, in the granulation process, sintering due to the heat possessed by the bath salt occurs between the collided particles, so that inertial force coalescence easily proceeds.
[0046] 本発明の Ti粒又は Ti合金粒の製造方法で、 Ti粒又は Ti合金粒同士を接触させる ことにより造粒するのは、前記の還元熱による合体、ブラウン運動による衝突 ·凝集、 及び慣性力による合体が生じやすい条件をつくり、特に造粒効果が大きい慣性力合 体を進行させるためである。  [0046] In the method for producing Ti grains or Ti alloy grains of the present invention, the granulation by bringing the Ti grains or Ti alloy grains into contact with each other is performed by coalescence by the reduction heat, collision / aggregation by Brownian motion, and This is to create a condition where coalescence due to inertial force is likely to occur, and to promote inertial force coalescence that has a particularly large granulation effect.
[0047] この浴塩中での造粒過程に影響を及ぼす要因(影響因子)とその制御性つ!/、て以 下に考察する。  [0047] Factors affecting the granulation process in the bath salt (influencing factors) and their controllability will be discussed below.
通常は、「造粒」といえば、顆粒その他の粒状品や、ペレット、ブリケット、その他特 定の形態の造粒物をつくる操作を指す力 本発明でいう「造粒」とは、浴塩中で微細 な粒子を合体(固着)させて粒径を増大させることを意味する。微細粒子を集合させ て粒を粗大化するとレ、う点で両者間に差はなレ、ので、本発明でも「造粒」とレ、う用語を 使用している。  Usually, “granulation” refers to the operation of producing granules and other granular products, pellets, briquettes, and other specific forms of granulated products. This means that fine particles are combined (fixed) to increase the particle size. When fine particles are aggregated to increase the size of the grains, there is no difference between the two points. Therefore, the term “granulation” is also used in the present invention.
[0048] 浴塩中での造粒は、単純化すると、 [0048] Granulation in bath salt is simplified,
「造粒」 =「粒子同士の固着」 「固着粒子の分離」  “Granulation” = “Fixing particles” “Separation of fixed particles”
と表される。即ち、固着した粒子のうち、粒子が分離して崩壊した分を差し引いた残り が固着粒子として存続する。「固着粒子の分離」は主として固着粒子に作用する剪断 力による崩壊に起因するものである。  It is expressed. That is, among the fixed particles, the remainder obtained by subtracting the amount of particles that have separated and collapsed remains as fixed particles. “Separation of fixed particles” is mainly caused by the collapse due to the shearing force acting on the fixed particles.
[0049] 前記「粒子同士の固着」に影響を及ぼす因子として、粒子の凝集力と浴塩の顕熱 による焼結作用とがある。ここでいう凝集力とは、主に、粒子間に作用するファンデル ワールス力と粒子表面に形成される電気二重層に起因する力である。前者は引力と して、後者は反発力として作用し、これらの力の総和が凝集力として発現する。なお、 溶融塩中での造粒では、浴の濡れ性の影響も考慮する必要がある力 CaClを主体 [0049] As factors affecting the "adhesion between particles", the cohesive force of particles and the sensible heat of bath salt There is a sintering action. The cohesive force here is mainly a force caused by van der Waals force acting between particles and an electric double layer formed on the particle surface. The former acts as attractive force, the latter acts as repulsive force, and the sum of these forces is expressed as cohesive force. In granulation in molten salt, it is necessary to consider the effect of bath wettability.
2 とする溶融塩の場合はその影響は無視できる。  The effect is negligible in the case of a molten salt of 2.
[0050] 前記の焼結作用は CaClを含有する溶融塩中での Ti粒又は Ti合金粒の造粒の場 [0050] The sintering action described above is performed when the Ti grains or Ti alloy grains are granulated in a molten salt containing CaCl.
2  2
合、 850°C以上で顕著になり、焼結効果が得られる。焼結効果は高温になるほど大 きいが、あまり高温にすると多量のエネルギーが必要となり、設備の耐久性にも支障 が生じるので、上限温度は 1050°Cとするのが望ましい。  When the temperature is 850 ° C or higher, the sintering effect is obtained. The higher the temperature, the greater the sintering effect. However, if the temperature is too high, a large amount of energy is required and the durability of the equipment is impaired, so the upper limit temperature is desirably 1050 ° C.
[0051] この凝集力と焼結作用は、「粒子同士の固着」、即ち「造粒」に対し相乗的に働くと 考えられるが、単純化して表すと、下記(1)式のようになる。なお、(1)式中の (A)〜( D)は説明の便宜上付した符号である。 [0051] This cohesive force and sintering action are considered to work synergistically with "adhesion between particles", that is, "granulation", but when expressed in a simplified manner, the following equation (1) is obtained. . In addition, (A)-(D) in (1) Formula is the code | symbol attached | subjected for convenience of explanation.
「造粒」 = (A)「ファンデルワールス力、電気二重層に起因する力による凝集力」  "Granulation" = (A) "Van der Waals force, cohesive force due to electric double layer force"
+ (B)「粒子の衝突 (接触)」  + (B) "Particle collision (contact)"
+ (C)「衝突 (接触)後の合体」  + (C) "Merge after collision (contact)"
一(D)「剪断力による崩壊」 · · · (1)  1 (D) "Disruption due to shear force" (1)
[0052] (1)式における(C)「衝突 (接触)後の合体」は、主として浴塩の顕熱による焼結作 用によるものである。これらの影響因子を制御することによって、融塩中での Ti粒又 は Ti合金粒の造粒における固着粒子径の増大、造粒速度の向上が可能となる。 [0052] (C) “Merging after collision (contact)” in the equation (1) is mainly due to a sintering action of the bath salt by sensible heat. By controlling these influencing factors, it is possible to increase the fixed particle size and improve the granulation rate in the granulation of Ti grains or Ti alloy grains in the molten salt.
[0053] 前記(1)式にお!/、て、造粒過程に影響を及ぼす因子の制御性と!/、う観点からみた 場合、(A)は、系が決まっているので(上記説明では、 CaClを含有する溶融塩)、制 [0053] From the viewpoint of the controllability of the factors affecting the granulation process and! /, In the above formula (1), (A) is because the system is determined (explained above) In the case of molten salt containing CaCl),
2  2
御することは難しい。また、(C)は焼結作用で、溶融塩の温度とその中での造粒を行 う時間との関数になるが、造粒時間を!/、くら力、延長できる程度で、高!/、制御性は望め ない。 (D)は個々の粒子に作用する剪断力の大きさと個々の粒子の強度が関係する 力 焼結作用が働く溶融塩中での造粒においてはそれ程大きな影響因子とは考えら れなレ、。  It is difficult to control. In addition, (C) is a sintering action, which is a function of the temperature of the molten salt and the time during which granulation is performed, but the granulation time is high enough to extend the time! / Controllability cannot be expected. (D) is a force related to the strength of the shearing force acting on each particle and the strength of each particle. In granulation in molten salt where the sintering action works, it is not considered to be a significant influence factor. .
[0054] 結局、制御可能で、し力、も効果が大き!/、と考えられるのは、(B)の「粒子の衝突 (接 触)」で、粒子同士の衝突 (接触)の確率を高めることが造粒の進行(固着粒子径の増 大、造粒速度の向上)に大きく寄与すると推測される。 [0054] In the end, it is possible to control the force and the effect is great! / (B) “Particle Collision (Contact)”. Increasing the granulation (increasing the fixed particle size) It is speculated that it will greatly contribute to the improvement of granulation speed.
[0055] 溶融塩 (つまり、液相)中での粒子の衝突については、媒体の影響が大きぐ理論 的な考察は難しい。しかし、気固系のモデルにおける固体粒子の衝突については理 論的な取り扱いがなされており、それを参考にすると、溶融塩中での造粒に影響を及 ぼす主要な因子(造粒 factor)としては、各粒子の相対速度、粒子密度(系内におけ る粒子の存在割合)、滞留時間(造粒時間)及び衝突粒子径が考えられる。  [0055] Regarding the collision of particles in the molten salt (that is, the liquid phase), it is difficult to theoretically consider the influence of the medium. However, the collision of solid particles in the gas-solid model is handled theoretically, and referring to it, the main factors that affect the granulation in molten salt (granulation factor) ) May be the relative speed of each particle, the particle density (the proportion of particles in the system), the residence time (granulation time), and the impact particle size.
[0056] これら影響因子(造粒 factor)のうち、各粒子の相対速度、粒子密度、滞留時間(造 粒時間)を変化させて造粒テストを行った結果、これらレ、ずれの因子も造粒を進行さ せる効果があることを確認した。  [0056] Of these influencing factors (granulation factors), the relative speed, particle density, and residence time (granulation time) of each particle were changed, and as a result of the granulation test, these factors were also generated. It was confirmed that there was an effect of advancing the grains.
[0057] 本発明の Ti粒又は Ti合金粒の製造方法において、 Ti粒又は Ti合金粒同士の接触 による造粒を、浴流れを変えることにより行うのが望ましい。浴流れを変えることにより 、前記 (B)の浴塩中における粒子の衝突 (接触)の確率を高めることができるので、 造粒を著しく促進させることが可能となる。  [0057] In the method for producing Ti grains or Ti alloy grains of the present invention, it is desirable to perform granulation by contacting Ti grains or Ti alloy grains by changing the bath flow. By changing the bath flow, the probability of particle collision (contact) in the bath salt (B) can be increased, and granulation can be promoted remarkably.
[0058] 浴流れを変えるための具体的な方法の一つとして、浴を攪拌する方法が挙げられ 通常、固液攪拌などに用いられる種々の形態の攪拌翼による攪拌方法が適用でき る。これによつて浴塩中の Ti粒又は Ti合金粒の衝突 (接触)頻度が高まり、造粒が促 進される。攪拌翼の形状、攪拌速度等、攪拌の条件は、造粒が好適に行われるよう に適宜選定すればよい。  [0058] As a specific method for changing the bath flow, there is a method of stirring the bath. Usually, stirring methods using various types of stirring blades used for solid-liquid stirring and the like can be applied. This increases the collision (contact) frequency of Ti grains or Ti alloy grains in the bath salt and promotes granulation. The stirring conditions such as the shape of the stirring blade and the stirring speed may be appropriately selected so that granulation is suitably performed.
[0059] 前記の浴の攪拌は、特定のミキサー用いることによつても行うことができる。本発明 の Ti粒又は Ti合金粒の製造方法により得られる Ti粒又は Ti合金粒の利用目的によ つては、このミキサーの適用が特に効果的である。  [0059] The stirring of the bath can also be performed by using a specific mixer. The application of this mixer is particularly effective for the purpose of use of Ti grains or Ti alloy grains obtained by the method for producing Ti grains or Ti alloy grains of the present invention.
[0060] 図 2は、スタティックミキサーにより浴を攪拌する方法の説明図であり、 (a)はスタティ ックミキサーの要部の構造、(b)はこのミキサーを用いた浴の攪拌状況をそれぞれ模 式的に示す図である。 [0060] Fig. 2 is an explanatory diagram of a method of stirring a bath with a static mixer. (A) is a structure of the main part of the static mixer, and (b) is a schematic diagram of the stirring state of the bath using this mixer. FIG.
[0061] スタティックミキサー 1は、円筒状の管内に揷入して使用される。その要部は、図 2 (a )に示すように、流体を右方向へ回転させる右エレメント 2と左方向へ回転させる左ェ レメント 3をミキサー 1の軸周りに互いに 90° ずらした状態で順次接続させた構造を 有している。 [0061] The static mixer 1 is used by being inserted into a cylindrical tube. As shown in Fig. 2 (a), the main parts are sequentially placed with the right element 2 that rotates the fluid in the right direction and the left element 3 that rotates the fluid in the left direction shifted by 90 ° around the axis of the mixer 1. Connected structures Have.
[0062] この図 2 (a)に示した状態で管内に揷入されたスタティックミキサー 1に Ti又は Ti合 金の微細粒子を含む溶融塩を供給すると、該溶融塩は右エレメント 2で手前側とその 反対側(奥側と記す)に 2分割される。前記手前側の溶融塩は右エレメント 2内のねじ れ面に沿って管の中央部から壁側へ右回転しながら奥側へ移行し、前記奥側の溶 融塩は、同じく右回転しながら手前側へ移行する。  [0062] When the molten salt containing fine particles of Ti or Ti alloy is supplied to the static mixer 1 inserted in the pipe in the state shown in Fig. 2 (a), the molten salt is moved to the front side by the right element 2. And the other side (indicated as the back side). The molten salt on the near side moves along the twisted surface in the right element 2 from the central part of the pipe to the wall side while rotating rightward, and the molten salt on the far side also rotates rightward. Move to the front side.
[0063] 続!/、て、溶融塩は左エレメント 3で上下に 2分割され、それぞれ左回転しながら移行 し、上下位置が逆になる。次の右エレメント 2で手前側と奥側に 2分割され、以下、上 記と同様の作用をうける。  [0063] Next, the molten salt is divided into two parts up and down by the left element 3 and moves while rotating counterclockwise, and the up and down positions are reversed. The next right element 2 is divided into two parts, the front side and the back side.
このように、 Ti又は Ti合金の微細粒子を含む溶融塩は、各エレメントを通過するごと に回転方向が変わるので、急激な反転作用により激しく攪拌され、造粒が著しく促進 される。  As described above, the molten salt containing fine particles of Ti or Ti alloy changes its rotation direction every time it passes through each element, so that it is vigorously stirred by abrupt reversal action and remarkably promotes granulation.
[0064] 図 2 (b)は、このスタティックミキサー 1を Ti又は Ti合金の微細粒子を含む溶融塩が 通過する配管 4の途中に取り付けたときの攪拌状況を示している。なお、この例では 、スタティックミキサー 1の出側に、造粒後の粒子を濃縮 '分離するための液体サイク ロン 5が取り付けられており、スタティックミキサー 1を通過して粒径が 3〜; 100 m程 度となった Ti粒又は Ti合金粒を含む溶融塩は、液体サイクロン 5で処理される間に 粒子の衝突(接触)が生じるため、さらに造粒が進行し、粒子全体の粒径が 100〃 m 程度となる。即ち、液体サイクロンは、後述するように造粒後の粒子を濃縮するために 用いられるが、造粒機能も併せ備えている。  [0064] Fig. 2 (b) shows a stirring state when the static mixer 1 is attached in the middle of the pipe 4 through which the molten salt containing fine particles of Ti or Ti alloy passes. In this example, a hydrocyclone 5 for concentrating and separating the granulated particles is attached to the exit side of the static mixer 1, and the particle diameter is 3 to 100 after passing through the static mixer 1. The molten salt containing Ti grains or Ti alloy grains, which has reached about m, is subject to particle collision (contact) during the treatment with hydrocyclone 5, so that granulation proceeds further, and the particle size of the whole particle is reduced. It is about 100〃 m. That is, the liquid cyclone is used to concentrate the granulated particles as will be described later, but also has a granulating function.
[0065] 浴流れを変えるには、浴塩が通過する配管内に案内板 (邪魔板)を設ける方法も簡 便で且つ有効である。邪魔板の形状や設置箇所を適切に選定することにより浴流れ を変えて造粒を促進することができる。  [0065] In order to change the bath flow, a method of providing a guide plate (baffle plate) in the pipe through which the bath salt passes is simple and effective. By appropriately selecting the baffle shape and location, granulation can be promoted by changing the bath flow.
[0066] 浴流れの速度を変化させることも浴流れを変えるのに有効である。例えば、配管内 を通過する浴塩の速度を間欠的に速めたり、遅くしたりすることにより、流れは乱流状 態となるので、粒子同士の衝突 (接触)の確率が高められ、造粒が促進される。  [0066] Changing the speed of the bath flow is also effective in changing the bath flow. For example, by intermittently increasing or decreasing the speed of the bath salt that passes through the pipe, the flow becomes turbulent, increasing the probability of particle collision (contact) and granulation. Is promoted.
[0067] 浴流れを変えるのに効果的な方法は、浴流れを乱流にすることである。そのために は様々な方法があり、前記の浴の攪拌、邪魔板の設置、浴流れ速度の変化などはい ずれも乱流状態の流れを生じさせる。 [0067] An effective way to change the bath flow is to make the bath flow turbulent. There are various ways to do this, such as stirring the bath, installing baffles, and changing the bath flow rate. Misalignment also causes turbulent flow.
[0068] 浴流れを回転させることも、浴流れを変えるのに効果的である。回転により引き起こ される乱流により粒子同士が激しく衝突するので、造粒が促進される。 [0068] Rotating the bath flow is also effective in changing the bath flow. Granulation is promoted because the particles collide violently due to the turbulence caused by the rotation.
[0069] 本発明の Ti粒又は Ti合金粒の製造方法にお!/、て、造粒後の粒の平均粒径を 1 μ m以上とすれば、粒子の沈降を促進して分離の効率を高めることができる。粒径が大 きいほど分離し易いので、平均粒径を 20 m以上とし、粒径範囲で 20〜100 111と するのが望ましい。 [0069] In the method for producing Ti grains or Ti alloy grains of the present invention, if the average grain size of the granulated grains is 1 μm or more, the sedimentation of the grains is promoted and the separation efficiency is increased. Can be increased. The larger the particle size, the easier the separation, so it is desirable that the average particle size be 20 m or more and the particle size range 20-100 111.
[0070] 造粒後の粒の平均粒径を 100 m以上とすれば、粒子の分離効率が著しく向上す るので、一層望ましい。造粒後の粒径は、 CaClを含有する溶融塩中での Ti粒又は  [0070] If the average particle size of the granulated particles is 100 m or more, the particle separation efficiency is remarkably improved, which is more desirable. The particle size after granulation is either Ti grains in molten salt containing CaCl or
2  2
Ti合金粒の造粒の場合、通常は、平均粒径で 100 m程度である力 S、後に詳述する Ti粒又は Ti合金粒の製造方法を適用すれば、平均粒径を 100 m以上とすることが 可能である。  In the case of granulation of Ti alloy grains, the average grain size is usually set to 100 m or more by applying the force S with an average grain size of about 100 m, and the Ti grain or Ti alloy grain production method described in detail later. It is possible to do.
[0071] 前記の平均粒径が 1 a m以上となるように造粒した Ti粒又は Ti合金粒の構成粒子 の粒径が 0· 05 m以上 10 m以下であれば、以下に述べるように、この Ti粒又は Ti合金粒は、本発明の Ti粒又は Ti合金粒の製造方法で製造した Ti粒又は Ti合金 粒であるとみなすことができる。  [0071] If the particle size of the constituent particles of Ti particles or Ti alloy particles granulated so that the average particle size is 1 am or more is from 0 · 05 m to 10 m, as described below, These Ti grains or Ti alloy grains can be regarded as Ti grains or Ti alloy grains produced by the method for producing Ti grains or Ti alloy grains of the present invention.
[0072] 本発明の Ti粒又は Ti合金粒の製造方法において、溶融塩中で造粒が進行するに は、 Ti粒又は Ti合金粒同士が接触し、合体することが必要である。即ち、造粒によつ て得られる造粒粒子は、合体する前の Ti粒又は Ti合金粒 (これを、造粒粒子を構成 する粒子という意味で、「構成粒子」という)同士が接触し、合体したもので、本発明の Ti粒又は Ti合金粒の製造方法で合体させ得る構成粒子の粒径は 10 a m程度以下 である。この粒径を超える粒子は、それ自身が独立した造粒粒子として存在し易ぐ 構成粒子にはなり難い。  [0072] In the method for producing Ti grains or Ti alloy grains of the present invention, in order for the granulation to proceed in the molten salt, the Ti grains or Ti alloy grains must be brought into contact with each other and coalesced. That is, the granulated particles obtained by granulation are Ti particles or Ti alloy particles (which are called “constituting particles” in the sense of particles constituting the granulated particles) in contact with each other. The particle diameter of the constituent particles that have been combined and can be combined by the Ti grain or Ti alloy grain manufacturing method of the present invention is about 10 am or less. Particles exceeding this particle size are not likely to be constituent particles that are easily present as independent granulated particles.
[0073] 一方、粒径が小さい粒子を造粒させて(このとき、粒径が小さい粒子は造粒粒子中 に構成粒子として存在することになる)粒径 1 a m以上にするには、接触(衝突)回数 を短時間で極端に増加させる必要がある。本発明の Ti粒又は Ti合金粒の製造方法 では、このような衝突回数の極端な増加は期待できないので、 0. 05 111未満の粒子 を造粒させ、造粒粒子中に 0. 05 m未満の構成粒子として存在させることは困難で ある。 [0073] On the other hand, in order to granulate particles having a small particle size (in this case, particles having a small particle size exist as constituent particles in the granulated particles), a particle size of 1 am or more is required. It is necessary to increase the number of (collisions) extremely in a short time. In the method for producing Ti grains or Ti alloy grains of the present invention, such an extreme increase in the number of collisions cannot be expected. Therefore, particles less than 0.05 111 are granulated and less than 0.05 m in the granulated particles. It is difficult to exist as a constituent particle of is there.
[0074] したがって、平均粒径が 1 m以上となるように造粒した Ti粒又は Ti合金粒の構成 粒子の粒径が 0. 05 a m以上 10 a m以下であれば、この Ti粒又は Ti合金粒は、本 発明の Ti粒又は Ti合金粒の製造方法で製造した Ti粒又は Ti合金粒であるとみなす こと力 Sできる。なお、造粒の観点から、構成粒子の望ましい粒径範囲は 0. 15 111〜 3. O ^ mであり、この程度の粒径のものを造粒すると、比較的容易に造粒を行える。  [0074] Therefore, if the particle size of the Ti particles or Ti alloy particles granulated to have an average particle size of 1 m or more is 0.05 to 10 am, the Ti particles or Ti alloy The grain can be regarded as Ti grain or Ti alloy grain produced by the method for producing Ti grain or Ti alloy grain of the present invention. From the viewpoint of granulation, the desirable particle size range of the constituent particles is 0.115 111 to 3.O ^ m, and granulation with a particle size of this level enables granulation relatively easily.
[0075] 本発明の Ti粒又は Ti合金粒の製造方法は、本発明の製造方法 (前記(1)に記載) で造粒した Ti粒又は Ti合金粒を濃縮する Ti粒又は Ti合金粒の製造方法とすること ができる。  [0075] The Ti grain or Ti alloy grain production method of the present invention is obtained by concentrating the Ti grain or Ti alloy grain granulated by the production method of the present invention (described in (1) above). It can be a manufacturing method.
[0076] 濃縮することによって、前述した溶融塩中での造粒に影響を及ぼす主要な因子(造 粒 factor)としての粒子密度(系内における粒子の存在割合)を高めることができ、粒 子同士の衝突 (接触)の確率を高めて造粒を促進するとともに、造粒した Ti粒又は Ti 合金粒の分離を容易にすること力 Sできる。  [0076] Concentration can increase the particle density (the ratio of particles in the system) as a main factor (granulation factor) that affects the granulation in the molten salt described above. It is possible to promote the granulation by increasing the probability of collision (contact) with each other and to facilitate the separation of the granulated Ti grains or Ti alloy grains.
[0077] 本発明の Ti粒又は Ti合金粒の製造方法において、造粒後の Ti粒又は Ti合金粒の 濃縮を、液体サイクロンにより行うのが望ましい。液体サイクロンは前述のように造粒 機能も有しているので、他の濃縮手段等と併用することにより効果的な造粒、濃縮を 行うことが可能である。  [0077] In the method for producing Ti grains or Ti alloy grains of the present invention, it is desirable to concentrate the Ti grains or Ti alloy grains after granulation by a liquid cyclone. Since the hydrocyclone also has a granulating function as described above, it can be effectively granulated and concentrated by using it together with other concentrating means.
[0078] 造粒後の Ti粒又は Ti合金粒の濃縮は、遠心分離によっても行うことができる。遠心 分離では、 Ti粒又は Ti合金粒を含む溶融塩を高速回転場に置いて、遠心力を加え ることにより造粒後の粒子を濃縮、分離する。各粒子は分離器の外周へ向けて一様 に移動するので、液体サイクロンを用いた場合のような造粒効果は期待できな!/、が、 効率の良い濃縮が行える。  [0078] The concentration of Ti particles or Ti alloy particles after granulation can also be performed by centrifugation. In centrifugation, molten particles containing Ti grains or Ti alloy grains are placed in a high-speed rotating field, and the granulated particles are concentrated and separated by applying centrifugal force. Since each particle moves uniformly toward the outer periphery of the separator, a granulation effect as in the case of using a hydrocyclone cannot be expected! /, But efficient concentration can be achieved.
[0079] 濾過分離により、造粒後の Ti粒又は Ti合金粒を濃縮することも有効である。造粒に より粒子の平均粒径が増大して!/、るので、 目の細か!/、金網を用いることが可能であり 、濾過分離を簡便に行える。また、他の濃縮手段と併用するなどして効果的な濃縮を 行うことも可能である。  [0079] It is also effective to concentrate Ti particles or Ti alloy particles after granulation by filtration separation. Since the average particle size of the particles is increased by granulation! /, It is possible to use fine mesh! / And a wire mesh, and filtration separation can be performed easily. It is also possible to perform effective concentration by using in combination with other concentration means.
[0080] 図 3は、液体サイクロンと濾過分離器を併用して造粒後の Ti粒又は Ti合金粒を濃 縮する場合の装置の構成例を模式的に示す図である。液体サイクロンとしては前記 図 2 (b)に示したものと同タイプのサイクロンを、濾過分離には金網を用いた濾過分 離器を使用している。 [0080] Fig. 3 is a diagram schematically showing an example of the configuration of an apparatus in the case where the granulated Ti grains or Ti alloy grains are concentrated by using a liquid cyclone and a filter separator together. As hydrocyclone A cyclone of the same type as shown in Fig. 2 (b) is used, and a filter separator using a wire mesh is used for filtration.
[0081] 濾過分離器 7は円筒状で、筒(管)の内壁にらせん状のひれ 8が取り付けられ、更に 、該内壁の内側近傍に目の細かい金網(図示せず)が張られている。濾過分離器 7 は、出側が入側に対して若干上向きに傾斜し、軸 Cを中心に回転可能に構成されて いる。  [0081] The filter separator 7 has a cylindrical shape, and a helical fin 8 is attached to the inner wall of the tube (tube), and a fine wire mesh (not shown) is stretched near the inside of the inner wall. . The filter separator 7 is configured such that the outlet side is inclined slightly upward with respect to the inlet side and is rotatable about the axis C.
[0082] 造粒後の Ti粒又は Ti合金粒を含有する溶融塩が液体サイクロン 6に供給されると、 粒子の衝突 (接触)により更に粒の造粒が進行するとともに、溶融塩の一部が分離し て流体出口 6aから排出され、造粒後の Ti粒又は Ti合金粒は濃縮される。一方、濃縮 後の Ti粒又は Ti合金粒は残りの溶融塩とともに固体出口 6bから排出され、濾過分離 器 7に供給される。  [0082] When the molten salt containing Ti particles or Ti alloy particles after granulation is supplied to the hydrocyclone 6, the granulation of particles further proceeds due to the collision (contact) of the particles, and part of the molten salt. Is separated and discharged from the fluid outlet 6a, and the Ti particles or Ti alloy particles after granulation are concentrated. On the other hand, the Ti particles or Ti alloy particles after concentration are discharged from the solid outlet 6b together with the remaining molten salt and supplied to the filter separator 7.
[0083] 供給された濃縮後の Ti粒又は Ti合金粒を含有する溶融塩の殆どは、濾過分離器 7 で処理される間に金網を通過して濾過分離器 7の入側へ移行し、排出され、金網上 の Ti粒又は Ti合金粒は濾過分離器 7の回転に伴いらせん状のひれ 8により押し上げ られ、出側から排出される。排出後の Ti粒又は Ti合金粒には付着溶融塩が同伴して いるのみで、極めて効果的な濃縮を行える。  [0083] Most of the supplied molten salt containing the concentrated Ti particles or Ti alloy particles passes through the wire mesh while being processed in the filter separator 7 and moves to the inlet side of the filter separator 7, The Ti particles or Ti alloy particles on the wire mesh are pushed up by the spiral fin 8 as the filter separator 7 rotates, and discharged from the outlet side. The Ti grains or Ti alloy grains after discharge are only accompanied by the adhering molten salt, and extremely effective concentration can be achieved.
[0084] 機械的圧縮による濃縮も用い方によっては有効である。機械的に圧縮脱水(即ち、 圧搾)するので、溶融塩を極力排除し、 Ti粒又は Ti合金粒のみを分離したい場合等 におレ、ては効果を発揮する。  [0084] Concentration by mechanical compression is also effective depending on the method of use. Since it is mechanically dehydrated (ie, pressed), it is effective when it is desired to eliminate molten salt as much as possible and to separate only Ti grains or Ti alloy grains.
[0085] 2.本発明の金属 Ti又は Ti合金の製造方法及びその製造装置  [0085] 2. Metal Ti or Ti alloy production method and production apparatus of the present invention
次に、本発明の金属 Ti又は Ti合金の製造方法、及びその製造装置について、図 面を参照して説明する。  Next, the manufacturing method of the metal Ti or Ti alloy of the present invention and the manufacturing apparatus thereof will be described with reference to the drawings.
[0086] 図 4は、本発明の Ti又は Ti合金の製造方法を実施する際に用いられる製造装置の 概略構成例を示す図である。なお、図 4に示す製造装置は、基本的な構成は OYIK 法に立脚し、更に、工業的規模で、効率よぐ安定した操業を行い得る製造プロセス として本発明者らが開発した方法を実施できる装置の一例である。  [0086] Fig. 4 is a diagram showing a schematic configuration example of a manufacturing apparatus used when the Ti or Ti alloy manufacturing method of the present invention is carried out. The basic construction of the manufacturing equipment shown in Fig. 4 is based on the OYIK method, and the method developed by the present inventors is implemented as a manufacturing process that can perform stable and efficient operation on an industrial scale. It is an example of a device that can be used.
[0087] 図 4に示すように、本発明の製造装置は、 CaClを含有し且つ Caが溶解した溶融  [0087] As shown in FIG. 4, the production apparatus of the present invention includes a melt containing CaCl and dissolving Ca.
2  2
塩を保持し、この溶融塩中に供給される TiClを前記 Caと反応させて Ti粒を生成さ せるための反応容器 9と、前記溶融塩中に生成された Ti粒を造粒し、溶融塩から分 離するための分離手段 10と、分離後の Ti粒を連続的に溶解して金属 Tiのインゴット とする溶解手段 11と、前記 Ti粒が分離された後の溶融塩を電気分解して Caを生成 させるための電解槽 12と、電気分解により生成された Caの濃度を一定とするための 調整槽 13と、前記分離手段 10で分離され前記電解槽 12へ送られる溶融塩中に溶 解している Caを除去、回収するための Ca濃縮除去装置 14とを有している。 The salt is retained and TiCl supplied in this molten salt reacts with the Ca to produce Ti grains. And a separation means 10 for granulating and separating Ti particles produced in the molten salt, and continuously dissolving the separated Ti particles to form metal Ti A melting means 11 as an ingot, an electrolytic cell 12 for electrolyzing the molten salt after the Ti grains are separated to produce Ca, and a concentration of Ca produced by electrolysis to be constant And a Ca concentration removal device 14 for removing and recovering Ca dissolved in the molten salt separated by the separation means 10 and sent to the electrolytic cell 12.
[0088] なお、この製造装置は、分離手段 10に造粒手段及び分離手段が含まれており、本 発明の製造装置が有する反応容器、造粒手段、分離手段、溶解手段の全てを備え ている。 In this production apparatus, the separation means 10 includes a granulation means and a separation means, and includes all of the reaction vessel, granulation means, separation means, and dissolution means of the production apparatus of the present invention. Yes.
[0089] 前述した本発明の Ti粒又は Ti合金粒の製造方法は、この製造装置の分離手段 10 を用いて行う分離工程に適用されており、前記図 3に示した液体サイクロン 6が造粒 及び濃縮に、金網を用いた濾過分離器 7が濃縮、分離に使用されている。  The above-described method for producing Ti grains or Ti alloy grains of the present invention is applied to the separation step performed using the separation means 10 of this production apparatus, and the liquid cyclone 6 shown in FIG. 3 is granulated. For concentration and filtration, a filter separator 7 using a wire mesh is used for concentration and separation.
[0090] 図 4に示した製造装置を使用して金属 Tiを製造するには、先ず、電解槽 12から調 整槽 13を介して連続的に供給される溶融塩を、反応容器 9内に保持し、その溶融塩 中の Caに、 TiCl供給口 15から供給した TiClを反応させ、前記溶融塩中に Ti粒を  In order to produce metal Ti using the production apparatus shown in FIG. 4, first, molten salt continuously supplied from the electrolytic cell 12 through the adjustment vessel 13 is introduced into the reaction vessel 9. The TiCl supplied from the TiCl supply port 15 is allowed to react with Ca in the molten salt, and Ti particles are added to the molten salt.
4 4  4 4
生成させる(還元工程)。  Generate (reduction step).
[0091] 前記還元工程で溶融塩中に生成した微細な Ti粒は、分離工程で前記の液体サイ クロン 6により造粒が行われ、同時に溶融塩の一部が上方へ分離され、濃縮される。 造粒後の Ti粒は液体サイクロン 6の下方から残りの溶融塩とともに排出される。排出 された Ti粒は、濾過分離器 7で溶融塩が除去され、濃縮、分離される。  [0091] The fine Ti particles generated in the molten salt in the reduction step are granulated by the liquid cyclone 6 in the separation step, and at the same time, part of the molten salt is separated upward and concentrated. . The granulated Ti grains are discharged from the bottom of the hydrocyclone 6 together with the remaining molten salt. The discharged Ti particles are concentrated and separated after the molten salt is removed by the filter separator 7.
[0092] 分離後の Ti粒は、分離槽 23内でプラズマトーチ 24から照射されるプラズマにより連 続的に加熱溶融され、铸型 25に流し込まれ、 Tiインゴット 26となる。  The separated Ti grains are continuously heated and melted by the plasma irradiated from the plasma torch 24 in the separation tank 23, and poured into the vertical mold 25 to become a Ti ingot 26.
[0093] 分離工程にお!/、て、液体サイクロン 6で分離された溶融塩、濾過分離器 7で除去さ れた溶融塩、及びプラズマトーチ 24による加熱溶融により上層として分離された溶融 塩は、それぞれ経路 La、 Lb、 Lcを経て Ca濃縮除去装置 14を用いて行う Ca回収ェ 程へ送られる。 Ca濃縮除去装置 14は、溶融塩が隔壁 16により Ca濃縮領域 17と Ca 除去領域 18に隔てられた状態で保持され、その上に保持された溶融 Mg— Ca合金 電極 19を利用して溶融塩を電解することにより溶融塩中の Caを除去し、又は高濃度 化する機能を有している。 [0093] In the separation process, the molten salt separated by the liquid cyclone 6, the molten salt removed by the filter separator 7, and the molten salt separated as an upper layer by heating and melting with the plasma torch 24 are: Then, they are sent to the Ca recovery process using the Ca concentration removal device 14 via the routes La, Lb and Lc, respectively. The Ca concentration removal device 14 holds the molten salt separated by a partition wall 16 into a Ca concentration region 17 and a Ca removal region 18, and uses a molten Mg-Ca alloy electrode 19 held on the molten salt. To remove Ca in molten salt or high concentration It has a function to convert.
[0094] Ca回収工程で電解に悪影響を及ぼす Caが除去、回収された溶融塩は電解工程 へ送られ、電気分解されて Caが生成され、溶融塩の Ca濃度が高められる。なお、電 解槽 12は、溶融塩を保持する円筒状の電解槽容器 12aと、同じく円筒形状の陽極 2[0094] The molten salt from which Ca that has an adverse effect on electrolysis in the Ca recovery process is removed and recovered is sent to the electrolysis process, where it is electrolyzed to produce Ca, and the Ca concentration of the molten salt is increased. The electrolytic cell 12 includes a cylindrical electrolytic cell container 12a that holds molten salt, and a cylindrical anode 2
0及び円柱状の陰極 21を、隔膜 22を隔てて有しており、電解槽 12の下端から陽極 20 and a cylindrical cathode 21 with a diaphragm 22 therebetween, and the anode 2 from the lower end of the electrolytic cell 12
0と陰極 21の間に連続的に供給された溶融塩を電気分解して、 Caが濃化した溶融 塩を抜き出すことができるように構成されて!/、る。 The molten salt continuously supplied between 0 and the cathode 21 can be electrolyzed to extract the molten salt enriched with Ca! /.
[0095] 電解工程で電気分解により生成された Caは、溶融塩とともに、 Ca供給源を有する 調整槽 13へ導入され、溶融塩の Ca濃度が一定とされた後、前記反応容器 9へ投入 され、金属 Tiの製造が連続的に行われる。 [0095] Ca produced by electrolysis in the electrolysis step is introduced together with the molten salt into the adjustment tank 13 having a Ca supply source, and after the Ca concentration of the molten salt is made constant, the Ca is introduced into the reaction vessel 9. The production of metal Ti is carried out continuously.
[0096] このように、図 4に例示した製造装置では、造粒手段として液体サイクロン 6が、またThus, in the manufacturing apparatus illustrated in FIG. 4, the hydrocyclone 6 is used as the granulating means,
、濃縮、分離手段として金網を用いた濾過分離器 7が使用され、 Ti粒の造粒と、濃縮 及び分離が行われる。 Then, a filtration separator 7 using a wire mesh is used as a concentration and separation means, and Ti particles are granulated, concentrated and separated.
[0097] 従来は、溶融塩中で生成した Ti粒を造粒し、あるいは更に濃縮すると!/、う技術は開 発されておらず、そのため、前述のように、分離操作を行う前の Ti粒は非常に細かく 、回収率を高めることが困難で、生産速度が低下し製造コストが上昇するという問題 があった。  [0097] Conventionally, when Ti grains formed in molten salt are granulated or further concentrated, no technology has been developed. Therefore, as described above, Ti before the separation operation is performed. The grains are very fine, and it is difficult to increase the recovery rate, resulting in a problem that the production speed is reduced and the production cost is increased.
[0098] これに対し、本発明の金属 Ti又は Ti合金の製造方法によれば、金属 Tiの分離-回 収を効率よく行えるので、生産性を向上させて金属 Tiを安価に製造することができる 。また、この製造方法は、前記 (4)に記載の製造装置により容易に実施することがで きる。  [0098] In contrast, according to the method for producing metal Ti or Ti alloy of the present invention, separation and recovery of metal Ti can be performed efficiently, so that productivity can be improved and metal Ti can be produced at low cost. it can . In addition, this manufacturing method can be easily performed by the manufacturing apparatus described in (4) above.
[0099] なお、前記図 4に例示した装置では、生成した Ti粒を液体サイクロンで造粒し、更 に濾過分離器 7で濃縮、分離する。即ち、前述した(2)に記載の造粒した Ti粒又は T i合金粒の濃縮を伴う Ti粒又は Ti合金粒の製造方法を実施する装置を組み込んだ 製造装置であるが、前記(1)の Ti粒又は Ti合金粒の製造方法を実施する装置のみ を適用した場合でも、 Ti粒の分離効率が向上するので、生産性の向上効果が認めら れる。  In the apparatus illustrated in FIG. 4, the produced Ti particles are granulated with a hydrocyclone, and further concentrated and separated with a filter separator 7. That is, a manufacturing apparatus incorporating the apparatus for carrying out the manufacturing method of Ti particles or Ti alloy particles accompanied by the concentration of the granulated Ti particles or Ti alloy particles described in (2) above, Even when only the equipment that implements the manufacturing method of Ti grains or Ti alloy grains is applied, the separation efficiency of Ti grains is improved, so that the productivity improvement effect is recognized.
産業上の利用の可能性 [0100] 本発明の Ti粒又は Ti合金粒の製造方法は、溶融塩中で還元により生成した Ti粒 又は Ti合金粒同士を接触させ、又は、更にこれを濃縮する方法で、粒子の沈降を促 進して分離の効率を著しく高めることができる。造粒後の濃縮により Ti粒又は Ti合金 粒の分離効率の向上効果を一層高めることができる。 Industrial applicability [0100] The Ti grain or Ti alloy grain production method of the present invention is a method in which Ti grains or Ti alloy grains produced by reduction in molten salt are brought into contact with each other or further concentrated to reduce the sedimentation of the particles. It can be promoted to significantly increase the efficiency of separation. Concentration after granulation can further enhance the effect of improving the separation efficiency of Ti grains or Ti alloy grains.
[0101] また、この Ti粒又は Ti合金粒の製造方法を Ca還元による金属 Ti又は Ti合金の製 造プロセスにおいて生成 Ti粒又は Ti合金粒の溶融塩からの分離工程で適用すれば 、生産性を向上させて金属 Ti又は Ti合金を安価に製造することが可能である。  [0101] Further, if this method for producing Ti grains or Ti alloy grains is applied in the process of separating the produced Ti grains or Ti alloy grains from the molten salt in the production process of metallic Ti or Ti alloys by Ca reduction, the productivity This makes it possible to produce metal Ti or Ti alloys at low cost.
[0102] したがって、本発明の Ti粒又は Ti合金粒の製造方法、並びに金属 Ti又は Ti合金 の製造方法及び製造装置は、 Ca還元による金属 Ti又は Ti合金の製造において有 効に利用することができる。  [0102] Therefore, the Ti grain or Ti alloy grain production method, metal Ti or Ti alloy production method and production apparatus of the present invention can be effectively used in the production of metal Ti or Ti alloy by Ca reduction. it can.

Claims

請求の範囲 The scope of the claims
[I] 溶融塩中で還元により生成した Ti粒又は Ti合金粒同士を接触させることにより造粒 することを特徴とする Ti粒又は Ti合金粒の製造方法。  [I] A method for producing Ti grains or Ti alloy grains, characterized by granulating Ti grains or Ti alloy grains produced by reduction in molten salt.
[2] 更に、前記造粒した Ti粒又は Ti合金粒を含む溶融塩中の Ti粒又は Ti合金粒を濃 縮することを特徴とする請求項 1に記載の Ti粒又は Ti合金粒の製造方法。  [2] The production of Ti grains or Ti alloy grains according to claim 1, further comprising concentrating Ti grains or Ti alloy grains in a molten salt containing the granulated Ti grains or Ti alloy grains. Method.
[3] 前記粒同士の接触による造粒を、浴流れを変えることにより行うことを特徴とする請 求項 1に記載の Ti粒又は Ti合金粒の製造方法。 [3] The method for producing Ti grains or Ti alloy grains according to claim 1, wherein granulation by contact between the grains is performed by changing a bath flow.
[4] 前記浴流れを変えるために浴を攪拌することを特徴とする請求項 3に記載の Ti粒 又は Ti合金粒の製造方法。 4. The method for producing Ti grains or Ti alloy grains according to claim 3, wherein the bath is stirred to change the bath flow.
[5] 前記浴流れを変えるために浴中に案内板を設けることを特徴とする請求項 3に記載 の Ti粒又は Ti合金粒の製造方法。 5. The method for producing Ti grains or Ti alloy grains according to claim 3, wherein a guide plate is provided in the bath to change the bath flow.
[6] 前記浴流れを変えるために浴流れの速度を変化させることを特徴とする請求項 3に 記載の Ti粒又は Ti合金粒の製造方法。 6. The method for producing Ti grains or Ti alloy grains according to claim 3, wherein the bath flow speed is changed in order to change the bath flow.
[7] 前記浴流れを変えるために浴流れを乱流にすることを特徴とする請求項 3に記載の7. The bath flow according to claim 3, wherein the bath flow is turbulent to change the bath flow.
Ti粒又は Ti合金粒の製造方法。 Manufacturing method of Ti grain or Ti alloy grain.
[8] 前記浴流れを変えるために浴流れを回転させることを特徴とする請求項 3に記載の8. The bath flow according to claim 3, wherein the bath flow is rotated to change the bath flow.
Ti粒又は Ti合金粒の製造方法。 Manufacturing method of Ti grain or Ti alloy grain.
[9] 前記粒同士の接触による造粒に際し、造粒後の粒の平均粒径を 1 a m以上とする ことを特徴とする請求項 1に記載の Ti粒又は Ti合金粒の製造方法。 [9] The method for producing Ti particles or Ti alloy particles according to [1], wherein the average particle size of the particles after granulation is 1 am or more when granulating by contact between the particles.
[10] 前記粒同士の接触による造粒に際し、造粒後の粒の平均粒径を 10011 m以上とす ることを特徴とする請求項 1に記載の Ti粒又は Ti合金粒の製造方法。 [10] The method for producing Ti particles or Ti alloy particles according to [1], wherein an average particle size of the particles after granulation is set to 10011 m or more when granulating by contact between the particles.
[I I] 前記平均粒径が 1 a m以上となるように造粒した Ti粒又は Ti合金粒の構成粒子の 粒径が 0· 05 ,1 m以上 10 m以下であることを特徴とする請求項 9に記載の Ti粒又 は Ti合金粒の製造方法。  [II] The constituent particles of Ti particles or Ti alloy particles granulated to have an average particle size of 1 am or more have a particle size of 0 · 05, 1 m or more and 10 m or less. 9. The method for producing Ti grains or Ti alloy grains according to 9.
[12] 前記造粒した Ti粒又は Ti合金粒の濃縮を液体サイクロンにより行うことを特徴とす る請求項 2に記載の Ti粒又は Ti合金粒の製造方法。  12. The method for producing Ti particles or Ti alloy particles according to claim 2, wherein concentration of the granulated Ti particles or Ti alloy particles is performed by a liquid cyclone.
[13] 前記造粒した Ti粒又は Ti合金粒の濃縮を遠心分離により行うことを特徴とする請求 項 2に記載の Ti粒又は Ti合金粒の製造方法。 13. The method for producing Ti particles or Ti alloy particles according to claim 2, wherein the granulated Ti particles or Ti alloy particles are concentrated by centrifugation.
[14] 前記造粒した Ti粒又は Ti合金粒の濃縮を濾過分離により行うことを特徴とする請求 項 2に記載の Ti粒又は Ti合金粒の製造方法。 14. The method for producing Ti particles or Ti alloy particles according to claim 2, wherein the granulated Ti particles or Ti alloy particles are concentrated by filtration separation.
[15] 前記造粒した Ti粒又は Ti合金粒の濃縮を機械的圧縮により行うことを特徴とする請 求項 2に記載の Ti粒又は Ti合金粒の製造方法。 [15] The method for producing Ti grains or Ti alloy grains according to claim 2, wherein the granulated Ti grains or Ti alloy grains are concentrated by mechanical compression.
[16] 溶融塩中での Ca還元による金属 Ti又は Ti合金の製造方法であって、 [16] A method for producing metal Ti or Ti alloy by reducing Ca in molten salt,
CaClを含み且つ Caが溶解した溶融塩中に TiClを含む金属塩化物を連続的に Metal chloride containing TiCl is continuously added to the molten salt containing CaCl and dissolved in Ca.
2 4 twenty four
供給して溶融塩中に Ti粒又は Ti合金粒を生成させる還元工程と、  A reduction step of supplying Ti to produce Ti grains or Ti alloy grains in the molten salt;
生成直後の Ti粒又は Ti合金粒をブラウン運動により合体させた後、更に粒同士を 接触させることにより造粒する造粒工程と、  A granulation process in which Ti grains or Ti alloy grains immediately after formation are combined by Brownian motion and then granulated by bringing the grains into contact with each other;
前記造粒後の Ti粒又は Ti合金粒を溶融塩から分離する分離工程と、  A separation step of separating the granulated Ti particles or Ti alloy particles from the molten salt;
前記分離後の Ti粒又は Ti合金粒を連続的に溶解して金属 Ti又は Ti合金のインゴ ットとする溶解工程を含むことを特徴とする金属 Ti又は Ti合金の製造方法。  A method for producing a metal Ti or Ti alloy, comprising a melting step of continuously melting the separated Ti particles or Ti alloy particles to form an ingot of metal Ti or Ti alloy.
[17] 更に、前記造粒後の Ti粒又は Ti合金粒を濃縮する濃縮工程を含むことを特徴とす る請求項 16に記載の金属 Ti又は Ti合金の製造方法。 17. The method for producing metal Ti or Ti alloy according to claim 16, further comprising a concentration step of concentrating the granulated Ti particles or Ti alloy particles.
[18] CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に連続的に供給 [18] Hold molten salt containing CaCl and dissolved in Ca, and supply continuously into the molten salt
2  2
される TiClを含む金属塩化物を Caと反応させて Ti粒又は Ti合金粒を生成させるた  To react Ti with TiCl containing metal chloride with Ca to produce Ti grains or Ti alloy grains
4  Four
めの反応容器と、  A reaction vessel,
前記溶融塩中に生成された Ti粒又は Ti合金粒をブラウン運動により合体させた後 After coalescence of Ti grains or Ti alloy grains formed in the molten salt by Brownian motion
、更に粒同士を接触させて造粒する造粒手段と、 A granulating means for granulating the particles by bringing them into contact with each other;
前記造粒手段で造粒した後の Ti粒又は Ti合金粒を溶融塩から分離するための分 離手段と、  Separating means for separating Ti particles or Ti alloy particles after granulation by the granulating means from molten salt;
前記分離手段で分離した後の Ti粒又は Ti合金粒を連続的に溶解して金属 Ti又は Ti合金のインゴットとする溶解手段とを有することを特徴とする金属 Ti又は Ti合金の 製造装置。  A manufacturing apparatus for metal Ti or Ti alloy, comprising: melting means for continuously melting Ti grains or Ti alloy grains after being separated by the separating means to form an ingot of metal Ti or Ti alloy.
[19] 更に、前記造粒手段で造粒した後の Ti粒又は Ti合金粒を濃縮するための濃縮手 段を有することを特徴とする請求項 18に記載の金属 Ti又は Ti合金の製造装置。  [19] The apparatus for producing a metal Ti or Ti alloy according to claim 18, further comprising a concentration means for concentrating the Ti grains or Ti alloy grains after granulation by the granulation means. .
PCT/JP2007/064635 2006-10-03 2007-07-26 METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS WO2008041407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006271787A JP2008088513A (en) 2006-10-03 2006-10-03 METHOD FOR MANUFACTURING Ti PARTICLE OR Ti-ALLOY PARTICLE, AND METHOD AND EQUIPMENT FOR MANUFACTURING METAL Ti OR Ti ALLOY
JP2006-271787 2006-10-03

Publications (1)

Publication Number Publication Date
WO2008041407A1 true WO2008041407A1 (en) 2008-04-10

Family

ID=39268272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064635 WO2008041407A1 (en) 2006-10-03 2007-07-26 METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS

Country Status (2)

Country Link
JP (1) JP2008088513A (en)
WO (1) WO2008041407A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063750A1 (en) * 2007-11-12 2009-05-22 Osaka Titanium Technologies Co., Ltd. Method and apparatus for concentrating ti powder in molten material
CN104462816A (en) * 2014-12-09 2015-03-25 鞍钢集团矿业公司 Method for determining separation size of hydrocyclone
WO2018089062A3 (en) * 2016-08-12 2018-06-14 Nanoscale Powders, LLC Methods for producing metal powders and metal masterbatches
JP2020139187A (en) * 2019-02-27 2020-09-03 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder, and gas collection apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135160B1 (en) 2011-11-18 2012-04-16 한국지질자원연구원 Deoxidation apparatus for manufacturing titanium powder with low oxygen concentration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068540A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp METHOD AND APPARATUS FOR PRODUCING METAL THROUGH REDUCTION BY Ca
JP2005264181A (en) * 2004-03-16 2005-09-29 Sumitomo Titanium Corp METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM
JP2006104555A (en) * 2004-10-08 2006-04-20 Sumitomo Titanium Corp METHOD FOR MANUFACTURING Ti BY Ca REDUCTION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068540A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp METHOD AND APPARATUS FOR PRODUCING METAL THROUGH REDUCTION BY Ca
JP2005264181A (en) * 2004-03-16 2005-09-29 Sumitomo Titanium Corp METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM
JP2006104555A (en) * 2004-10-08 2006-04-20 Sumitomo Titanium Corp METHOD FOR MANUFACTURING Ti BY Ca REDUCTION

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063750A1 (en) * 2007-11-12 2009-05-22 Osaka Titanium Technologies Co., Ltd. Method and apparatus for concentrating ti powder in molten material
JP2009120865A (en) * 2007-11-12 2009-06-04 Osaka Titanium Technologies Co Ltd Method and apparatus for enriching titanium powder in molten material
CN104462816A (en) * 2014-12-09 2015-03-25 鞍钢集团矿业公司 Method for determining separation size of hydrocyclone
WO2018089062A3 (en) * 2016-08-12 2018-06-14 Nanoscale Powders, LLC Methods for producing metal powders and metal masterbatches
JP2020139187A (en) * 2019-02-27 2020-09-03 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder, and gas collection apparatus
WO2020174976A1 (en) * 2019-02-27 2020-09-03 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder and gas collection device

Also Published As

Publication number Publication date
JP2008088513A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP6828036B2 (en) Aluminum melting and black dross recycling systems and methods
JP2014515792A (en) Low cost processing method to produce spherical titanium and spherical titanium alloy powder
JP2014515792A5 (en)
US20080199348A1 (en) Elemental material and alloy
WO2008041407A1 (en) METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS
US4152143A (en) Method and apparatus for precipitating metal cement
US20080187455A1 (en) Titanium and titanium alloys
TW200848519A (en) Method for recovering platinum group metal from waste
KR101711363B1 (en) Apparatus and method for recycling black dross of aluminium scrap
JP2010512456A (en) Melting method using alkali metal metalate
CN110834090A (en) Metal powder shaping, refining and purifying device and method
JP2010168650A (en) Fine particle recovery method for valve metal powder
JP5533601B2 (en) High purity silicon fine powder production equipment
KR101735493B1 (en) System and method for aluminium black dross recycling
CN210996482U (en) Metal powder plastic refines and purifier
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
JP2008144280A (en) METHOD FOR MANUFACTURING Ti GRAIN OR Ti-ALLOY GRAIN, AND METHOD AND DEVICE FOR MANUFACTURING METAL Ti OR Ti ALLOY
CN104480498B (en) Molten-salt electrolysis cathode deposition separation method and separation equipment
JP2009132970A (en) Method for granulating metal particle, and method for separating metal particle in molten salt
WO2007105616A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
CN101708484B (en) Magnetic mechanical device, method for separating dust particles, system and method for recycling metal components
JP6156160B2 (en) Slurry process of metal sulfide
WO2009150961A2 (en) Metal manufacturing method
JP2017155319A5 (en)
CN207222101U (en) The classification retracting device of aluminium in a kind of aluminium lime-ash

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07791335

Country of ref document: EP

Kind code of ref document: A1