WO2008040241A1 - Méthode et système de désulfuration du thiophène et du benzothiophène du fioul - Google Patents

Méthode et système de désulfuration du thiophène et du benzothiophène du fioul Download PDF

Info

Publication number
WO2008040241A1
WO2008040241A1 PCT/CN2007/070732 CN2007070732W WO2008040241A1 WO 2008040241 A1 WO2008040241 A1 WO 2008040241A1 CN 2007070732 W CN2007070732 W CN 2007070732W WO 2008040241 A1 WO2008040241 A1 WO 2008040241A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
thiophene
benzothiophene
desulfurizing agent
reactor
Prior art date
Application number
PCT/CN2007/070732
Other languages
English (en)
French (fr)
Inventor
Li Zhou
Yaping Zhou
Original Assignee
Li Zhou
Yaping Zhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Zhou, Yaping Zhou filed Critical Li Zhou
Publication of WO2008040241A1 publication Critical patent/WO2008040241A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • C10G29/24Aldehydes or ketones

Definitions

  • the present invention relates to a method for desulfurizing a fuel in petroleum processing, and more particularly to a method for removing thiophene and benzothiophene sulfide in a fuel by a phenolic catalytic reaction in a pore of a porous material.
  • BACKGROUND OF THE INVENTION Sulfur oxides contained in fuels are one of the main pollutants in the combustion process. SOx generated by the engine exhaust gas catalytic purifier machine poisoning, affect the performance of the catalytic converter to play, resulting in an increase of other pollutant emissions CO, hydrocarbons and NO x based, resulting in even more serious pollution.
  • the sulfur content of the fuel has a significant effect on the emission of particulate matter. Sulfides fuel combustion of 98% is converted to SO x, the remaining 2% is converted to sulfate emissions, particulate matter eventually become part of the lubricating oil leaking SOx additional calcium-containing additive of calcium sulfate, is formed smaller than 2.5 ⁇ Ultrafine particles, about 10% of the total amount of particles. In addition, diesel particulate filters that remove more than 90% of the particles typically require diesel sulfur levels to be less than 30 ppm. The combustion products of sulfides in the fuel accelerate the corrosion and wear of the engine.
  • the SOx produced by the combustion of sulfide not only corrodes the combustion chamber and exhaust system of the engine, but also enters the crankcase through the gap of the piston ring, and the lubricating oil generates sulfonic acid and various gelatinous substances to accelerate the deterioration of the lubricating oil.
  • the higher the sulfur content of the fuel the more carbon deposits are generated during combustion, which increases engine wear, resulting in reduced engine power and increased fuel consumption.
  • some new engine technologies also require the use of low-sulfur fuels, such as gasoline engine lean direct injection, diesel vehicle new post-processing technology applications.
  • hydrotreating is not very effective for the removal of thiophene and benzothiophene sulfides, because the double bonds of olefins and aromatics are more active than the double bonds of thiophene sulfides in the hydrogenation reaction, so they are given priority.
  • Saturity not only leads to an increase in hydrogen consumption, but also leads to a decrease in the quality of the oil, such as a decrease in the octane number, since the actual hydrofining process does not completely remove the sulfide.
  • the fuel desulfurization method in the study the most representative The properties are oxidation and complex adsorption.
  • the oxidation process uses hydrogen peroxide to oxidize the thiophene sulfide to a sulfone sulfide, and then extracts the sulfone sulfide from the fuel.
  • the main problem with the oxidation process is that the process is completely ineffective if the fuel contains a large amount of aromatic components.
  • the complex adsorption method utilizes the principle that a monovalent silver or copper ion can ⁇ complex with a double bond to adsorb a thiophenolic substance. The key to this method is very sensitive to dissolved water or aromatic components in the fuel.
  • the double bond of an aromatic hydrocarbon (e.g., benzene) is more susceptible to ⁇ complexation with monovalent copper or silver ions than the double bond of thiophene, thereby completely defeating the process. So far, there is no fuel deep desulfurization method that can be used practically.
  • SUMMARY OF THE INVENTION The present invention is directed to a deficiencies of the prior art and provides a method of selectively removing thiophene and benzothiophene sulfides from fuel oil.
  • the principle is that a chemical reaction of thiophene with an aldehyde under catalysis produces a sulfur-containing resin. Since the sulfide content is only in the order of ppm, the desulfurization reaction design of the present invention occurs in the pores of the porous material, that is, the aldehyde and the catalyst are preliminarily loaded in the pores of the porous material such as activated carbon or silica gel to form a desulfurizing agent, so that the desulfurization reaction is locally obtained. strengthen.
  • the abundant surface area of the porous material greatly increases the chance of contact of the sulfide in the fuel with the reactants and the catalyst, and the reaction product is adsorbed in the pores, simplifying the separation operation from the purified fuel.
  • There are two ways to contact the desulfurizer with the fuel One is to fill the desulfurizer in the adsorption tower, and the fuel flows down from the top of the tower. The second is to suspend the desulfurizer in the fuel and stir it well.
  • the aldehyde and the catalyst are pre-loaded on the porous material to form a desulfurizing agent, and the desulfurizing agent is loaded in the adsorption tower or placed in the fuel in the agitation tank, and the fuel and the desulfurizing agent are sufficiently made at a normal pressure and a temperature of 50-70 °C.
  • the thiophene in the fuel and the aldehyde in the desulfurizing agent react chemically under the action of the catalyst, thereby converting the thiophene and the benzothiophene compound in the fuel into a resin and being adsorbed in the desulfurizing agent.
  • the porous adsorbent is preferably activated carbon or silica gel, and the aldehyde is formaldehyde or acetaldehyde.
  • the aldehyde loading may be from 10 to 50% by weight of the adsorbent, and the loading of the catalyst may be from 20 to 80% by weight of the adsorbent.
  • the catalyst used includes sulfuric acid, hydrochloric acid, phosphotungstic acid, and a solid acid, which can catalyze the reaction of a thiophene with an aldehyde.
  • the liquid (fuel) solid (desulfurizer) contacting apparatus used in the present invention is a column reactor or a kettle (stirring) reactor. When the desulfurizing agent suspension contact mode is employed, the desulfurized fuel is separated from the desulfurizing agent by a filtering operation.
  • the column reactor comprises a fluidized bed reactor and a fixed bed reactor.
  • the fluidized bed reactor is to place a certain amount of desulfurizing agent in the tower, and the raw material fuel is sprayed from the bottom of the tower, and the heating coil ensures that the desulfurization reaction temperature reaches 50-70 °C. Clean fuel is discharged from the top of the tower and filtered to obtain sulfur-free fuel.
  • the desulfurizing agent is filled in the tower, the raw material fuel flows down from the top of the tower, and the heating coil ensures that the desulfurization reaction temperature reaches 50-70 ° C, and the fuel flowing out from the bottom of the tower is sulfur-free fuel.
  • the reaction kettle reactor In the kettle reactor, a certain amount of fuel oil and a desulfurizing agent are placed in the reaction kettle, and the desulfurizing agent is kept in a suspended state by stirring, and the fuel temperature is maintained at 50-70° by heating in a coil or an outer jacket of the kettle. In the C range, the reaction until the sampling analysis of the oil indicates that the fuel has stopped containing sulfur, and the clean fuel is separated from the desulfurizing agent by filtration.
  • the desulphurization agent After the desulphurization agent is saturated, it is washed with absolute ethanol or acetone, and then the washed thiophene monoaldehyde polymer and solvent are divided. Leaving. The recovered solvent can be recycled, and the thiophene monoaldehyde polymer is also a useful chemical.
  • the desulfurizer that cleans the polymer requires aldehydes for use in the next desulfurization cycle.
  • Another method of regeneration of the desulfurizer is to purge with nitrogen at 200 ° C for 2 hours, and then add the reagent after cooling to normal temperature.
  • the advantages of the present invention are:
  • the desulfurizing agent used in the method is highly selective for the phenol and the benzothiophene sulfide, and is insensitive to water and aromatic hydrocarbons, and the thiophene can be completely removed.
  • the desulfurization conditions are mild, the desulfurizer regeneration conditions are mild, the process and equipment are simple, the operation is easy, and the desulfurization cost is low.
  • Figure 1 Flow chart of desulfurization of the fixed bed reactor of the present invention
  • Figure 2 Flow chart of the desulfurization of the fluidized bed reactor of the present invention
  • FIG. 3 Flow chart of the desulfurization of the kettle reactor of the present invention. detailed description
  • Example 1 The catalyst sulfuric acid and the reactant formaldehyde were placed in the pores of the activated carbon to prepare a desulfurizing agent.
  • the formaldehyde was 20% by weight of the activated carbon
  • the sulfuric acid was 60% by weight of the activated carbon.
  • 180 kg of desulfurizing agent 1 is packed in the packed tower as shown in Fig. 1, the fuel 2 flows down from the top of the tower, and the temperature of the desulfurizing agent bed is maintained at 70 ° C through the heating coil 3, and the sulfur content of the outgoing oil is monitored. . If the sampling analysis results indicate that the total sulfur content is close to the set value, close the fuel inlet and outlet valves.
  • Example 2 The catalyst hydrochloric acid and the reactant formalin (40% aqueous solution containing formaldehyde) were preliminarily placed in the pores of the silica gel to prepare a desulfurizing agent.
  • Formalin was 55 % by weight of the silica gel
  • HC1 was a silica gel weight of 14 %.
  • 50 kg of desulfurizing agent is placed in a fluidized bed reactor as shown in Fig. 2, and sulfur-containing fuel 5 enters the reactor from the bottom of the reactor, and the flow rate causes the desulfurizing agent to be fluidized to form a fuel and desulfurizing agent suspension. 6.
  • the heating coil 7 ensures that the suspension reaches 60 ° C and the clean fuel 8 flows out through the filter 9 at the top of the reactor. Monitor the sulphur content of the fuel flowing from the top of the tower. If the sulfur content is close to the set value, the oil is stopped, and the material is discharged through the discharge port 10, and the fuel in the tower is separated from the desulfurizing agent by filtration.
  • the desulfurizing agent regeneration operation described in Example 1 was carried out by washing the desulfurizing agent with absolute ethanol until the sulfur content of the washing liquid reached a preset value. A certain amount of formalin and a small amount of HC1 are added to the desulfurizing agent to regenerate the desulfurizing agent and put into the next batch of desulfurization operation.
  • Example 3 The phosphotungstic acid catalyst was supported on silica gel by a dipping method at a loading of 50% by weight of the silica gel.
  • the reactant formaldehyde was preliminarily placed in the pores of the silica gel by an adsorption method to prepare a desulfurizing agent, and the formaldehyde was 20% by weight of the silica gel.
  • a 20 kg desulfurizer and 350 kg of fuel 11 were charged into a kettle reactor as shown in Fig. 3, and the heating coil 12 was maintained at a fuel temperature of 50 V, and the agitator 13 kept the desulfurizing agent suspended. Sampling monitors the sulphur content of the fuel. If the sulphur content drops to a preset value, stop the operation.
  • the material in the kettle is discharged from the discharge port 14 and the desulfurizing agent is filtered out.
  • the desulfurizing agent was placed in the packed column shown in Fig. 1, and a desulfurizing agent was introduced by introducing a nitrogen gas at 200 ° C for 2 hours from the bottom of the column, and then cooled to a normal temperature to supplement the formaldehyde vapor by adsorption, and the desulfurizing agent was reused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

脱除燃油中的噻吩和苯并噻吩类硫化物的方法和系统
技术领域 本发明属于石油加工中的燃油脱硫方法, 特别是通过在多孔材料的孔中发生酚醛催化 反应脱除燃油中噻酚和苯并噻吩类硫化物的方法。 背景技术 燃油所含的硫杂质在燃烧过程中生成的硫氧化物是主要污染物之一。 产生的 SOx使发 动机尾气净化器中的三元催化机中毒, 影响催化转化器的性能发挥, 导致 CO、 烃类和 NOx 等其他污染物排放量的增多, 造成更加严重的污染。 燃料含硫对颗粒物的排放有明显的促 进作用。燃料中的硫化物燃烧后有 98%转化为 SOx, 其余 2%转化为硫酸盐排放, 最终成为 颗粒物的一部分, 另外 SOx与泄漏的润滑油中含钙添加剂生成硫酸钙, 形成小于 2.5μιη的 超细颗粒物, 约占颗粒物总量的 10%。 此外, 能去除 90%以上颗粒的柴油机颗粒过滤器通 常要求柴油硫含量必须低于 30ppm。燃料中硫化物的燃烧产物会加速发动机的腐蚀与磨损。 硫化物燃烧生成的 SOx不仅腐蚀发动机的燃烧室和排气系统, 而且还会通过活塞环的间隙 进入曲轴箱, 和润滑油生成磺酸和各种胶状物质, 加速润滑油的变质。燃油的硫含量越高, 燃烧时生成的积炭越多, 使发动机磨损增加, 导致发动机功率下降, 燃料消耗增多。此外, 一些发动机新技术的应用也要求使用低硫燃油, 比如汽油机稀燃直喷、 柴油车新型后处理 技术的应用等。
为此, 各国政府开始对液体燃料油的含硫量作出越来越严格的规定。美国规定到 2007 年, 柴油中的总硫含量要从目前的平均 500 ppm降到 15 ppm, 汽油中的总硫含量要从目前 的平均 350 ppm降到 30 ppm, 欧洲和日本也出台了类似法规。我国规定的车用柴油和汽油 中的硫含量要高于上述标准。随着石油资源的日趋紧缺,高硫原油越来越多地进入炼油厂。 尽管在炼厂已经采取了脱硫措施, 但现有脱硫技术难以脱掉噻酚和苯并噻吩类硫化物, 使 得某些地方市场出售的燃油含硫量远远高于法定标准。 我国汽车数量的急剧增长造成大城 市严重的空气污染, 酸性气体及酸雨对环境的伤害十分严重。 燃油脱硫已是我国经济发展 总体形势下一个亟待解决的问题。
以现有的脱硫技术, 硫醇、 硫醚等类硫化物比较容易脱除, 噻吩和苯并噻吩类硫化物 却难以脱除, 这使得噻吩和苯并噻吩类化合物成为工业燃油所含硫化物的主体。 目前汽、 柴油二次精制的基本工业技术是加氢精制。 反应总压为 3-8MPa, 反应温度 300-360°C。 工 艺条件比较苛刻, 导致脱硫成本上升。 尽管如此, 加氢精制对于脱除噻吩及苯并噻吩类硫 化物却并非十分有效, 因为烯烃和芳烃的双键比噻吩类硫化物的双键在加氢反应中的活性 更高, 所以被优先饱和, 不但导致氢气耗量增大, 而且导致油品质量的下降, 例如辛烷值 降低, 因次实际加氢精制过程并不将硫化物完全脱除。 研究中的燃油脱硫方法, 最具代表 性的是氧化法和络合吸附法。 氧化法是使用双氧水把噻酚类硫化物氧化为砜类硫化物, 然 后把砜类硫化物从燃油中萃取出去。 氧化法的主要问题是, 若燃油含有大量芳烃组分则该 方法完全失效。 络合吸附法是利用一价的银或铜离子能够与双键发生 π络合原理而将噻酚 类物质吸附下来。 此法的要害是对燃油中的溶解水或芳烃组份非常敏感。 芳烃 (例如苯) 的双键比噻酚的双键更容易与一价铜或银离子发生 π络合, 从而使该方法完全失效。 到目 前为止, 还没有一个可以实际使用的燃油深度脱硫方法。 发明内容 本发明针对现有技术的不足, 提供一种选择性脱除燃油中噻酚和苯并噻吩类硫化物的 方法。
其原理是噻酚与醛在催化作用下发生化学反应生成一种含硫树脂。 由于硫化物含量仅 为 ppm量级, 本发明将脱硫反应设计在多孔材料的孔内发生, 即将醛和催化剂预先负载在 活性炭、 硅胶等多孔材料的孔内做成脱硫剂, 使脱硫反应得到局部强化。 多孔材料丰富的 表面积大大增加了燃油中的硫化物与反应物和催化剂的接触机会, 反应产物被吸附在孔 内, 简化了与净化燃油的分离操作。 脱硫剂与燃油的接触方式有两种, 一是把脱硫剂装填 在吸附塔中, 燃油自塔顶流下; 二是把脱硫剂悬浮于燃油中, 并进行充分搅拌。
本发明的脱除燃油中噻酚和苯并噻吩类硫化物的具体方法如下:
将醛和催化剂预先负载在多孔材料上做成脱硫剂, 把脱硫剂装填在吸附塔中或置于搅 拌槽内的燃油中, 在常压和 50-70 °C温度下使燃油与脱硫剂充分接触, 燃油中的噻酚与脱 硫剂中的醛在催化剂作用下即发生化学反应, 从而把燃油中的噻酚和苯并噻吩类化合物转 变为一种树脂而被吸附在脱硫剂中。
所述的多孔吸附剂最好是活性炭或者硅胶, 所述的醛为甲醛或乙醛。 醛的加载量可为 吸附剂重量的 10-50 %, 催化剂的加载量可为吸附剂重量的 20-80 %。
所用的催化剂包括硫酸、盐酸、磷钨酸和固体酸等可以催化噻酚与醛发生反应的试剂。 本发明使用的液 (燃油) 固 (脱硫剂) 接触设备, 是塔式反应器或釜式 (搅拌) 反应 器。 在采用脱硫剂悬浮接触方式时, 通过过滤操作将脱硫后燃油与脱硫剂分离。
所述的塔式反应器包括流化床反应器和固定床反应器。 流化床反应器是将一定量脱硫 剂置于塔内, 原料燃油从塔底部喷出, 加热盘管保证脱硫反应温度达到 50-70°C。 洁净燃 油从塔顶部流出后经过滤即得到无硫燃油。 固定床反应器是将脱硫剂填充于塔内, 原料燃 油从塔顶部流下, 加热盘管保证脱硫反应温度达到 50-70°C, 从塔底部流出的燃油即为无 硫燃油。
所述的釜式反应器, 是将一定量燃油和脱硫剂置于反应釜内, 通过搅拌使脱硫剂保持 悬浮状态, 通过釜中盘管或外夹套加热使燃油温度保持在 50-70°C范围, 反应直至对油品 的采样分析表明, 燃油已不含硫后停止操作, 通过过滤将洁净燃油与脱硫剂分离。
待脱硫剂饱和后用无水乙醇或丙酮清洗,然后将清洗下来的噻酚一醛聚合物与溶剂分 离。 回收的溶剂可循环使用, 噻酚一醛聚合物亦是一种有用的化学品。 清洗掉聚合物的脱 硫剂需要补醛, 以备下一个脱硫操作周期使用。 脱硫剂另一种再生方法是用 200°C氮气吹 扫 2小时, 冷至常温后补加试剂。
本发明的优点是: 该方法采用的脱硫剂对塞酚和苯并噻吩类硫化物具有高度选择性, 对水和芳烃不敏感, 噻酚可以被完全脱除。 脱硫条件温和, 脱硫剂再生条件也温和, 工艺 和设备简单, 易于大规模操作, 脱硫成本低。 附图说明
图 1 : 本发明的固定床反应器脱硫流程图;
图 2: 本发明的流化床反应器脱硫流程图;
图 3 : 本发明的釜式反应器脱硫流程图。 具体实施方式
实施例 1 : 将催化剂硫酸和反应物甲醛预置于活性炭的孔内制成脱硫剂, 甲醛为活性 炭重量的 20 %, 硫酸为活性炭重量的 60 %。 将 180 kg脱硫剂 1装填在如附图 1所示之填 料塔中, 燃油 2从塔顶流下, 通过加热盘管 3把脱硫剂床层温度维持在 70°C, 监控流出油 品的硫含量。 若采样分析结果表明总硫含量接近设定值, 关闭燃油进出口阀门。 打开阀门 4将填充塔放空, 然后自塔顶加入无水乙醇, 监控流出乙醇液中的总硫含量。 若采样分析 结果表明总硫含量接近设定值, 停止洗涤, 放空吸附塔。 自塔底引入预定量甲醛气体, 使 脱硫剂完成再生, 开始第二批脱硫操作。
实施例 2: 将催化剂盐酸和反应物福尔马林 (含甲醛 40 %水溶液) 预置于硅胶的孔内 制成脱硫剂, 福尔马林为硅胶重量的 55 %, HC1为硅胶重量的 14 %。 将 50 kg脱硫剂置于 如附图 2所示之流化床式反应器内, 含硫燃油 5从反应器底部进入反应器, 其流速使脱硫 剂呈流化状态形成燃油与脱硫剂悬浮液 6, 加热盘管 7保证悬浮液达到 60°C, 洁净燃油 8 经反应器顶部的过滤器 9流出。 监测塔顶流出燃油的含硫量。 若含硫量接近设定值, 停止 进油, 经卸料口 10泄出物料, 将塔内燃油与脱硫剂过滤分离。 采用实施例 1所描述的脱 硫剂再生操作, 即采用无水乙醇洗涤脱硫剂, 直至洗涤液硫含量达到预设值。 向脱硫剂补 加一定量福尔马林和少量 HC1, 使脱硫剂再生, 投入下一批脱硫操作。
实施例 3: 以浸渍法将磷钨酸催化剂负载在硅胶上, 负载量为硅胶重量的 50 %。 用吸 附法将反应物甲醛预置于硅胶的孔内制成脱硫剂, 甲醛为硅胶重量的 20 %。 将 20 kg脱硫 剂和 350 kg燃油 11投入如附图 3所示之釜式反应器中, 加热盘管 12维持燃油温度在 50 V, 搅拌器 13 使脱硫剂保持悬浮。 取样监测燃油的含硫量, 若含硫量降低到预设值, 停 止操作。 从卸料口 14放出釜内物料, 过滤出脱硫剂。 将脱硫剂置于附图 1所示的填料塔 中,从塔底引入 200 ° C氮气吹扫脱硫剂 2小时,然后冷却至常温, 以吸附法补充甲醛蒸气, 脱硫剂重新使用。
本发明公开和揭示的方法和系统可通过借鉴本文公开内容。 尽管本发明的方法已通过 较佳实施例进行了描述, 但是本领域技术人员明显能在不脱离本发明内容、 精神和范围内 对本文所述的方法和系统改动, 更具体地说, 所有相类似的替换和改动对本领域技术人员 来说是显而易见的, 他们都被视为包括在本发明精神、 范围和内容中。

Claims

权 利 要 求
1. 一种脱除燃油中噻酚和苯并噻吩类硫化物的方法, 其特征是: 将醛和催化剂预吸附在多 孔吸附剂中作为脱硫剂, 在 50-70°C温度下使燃油与脱硫剂接触, 使燃油中的噻酚和苯并 噻吩类硫化物被截留在脱硫剂中。
2. 如权利要求 1所述的脱除燃油的噻酚和苯并噻吩类硫化物的方法, 其特征是所述的多孔 吸附剂是活性炭或硅胶; 所述的醛为甲醛或乙醛; 所述的催化剂是促使噻酚与醛发生反 应的试剂。
3. 如权利要求 2所述的脱除燃油的噻酚和苯并噻吩类硫化物的方法, 其特征是醛的加载量 可为多孔吸附剂重量的 10-50 %, 催化剂的加载量为多孔吸附剂重量的 20-80 %。
4. 如权利要求 3所述的脱除燃油的噻酚和苯并噻吩类硫化物的方法, 其特征是所述的催化 剂是硫酸、 盐酸、 磷钨酸或固体酸。
5. 如权利要求 1所述的脱除燃油的噻酚和苯并噻吩类硫化物的方法的系统, 其特征是由反 应器和过滤系统组成, 过滤系统可以设在反应器内或设在反应器外。
6. 如权利要求 5所述的脱除燃油的噻酚和苯并噻吩类硫化物的系统, 其特征是所述的反应 器采用釜式或塔式反应器。
7. 如权利要求 6所述的脱除燃油的噻酚和苯并噻吩类硫化物的系统, 其特征是所述的釜式 反应器, 是将燃油和脱硫剂置于反应釜内, 通过搅拌使脱硫剂保持悬浮状态, 通过釜中 盘管或外夹套加热使燃油温度保持在 50-70°C范围, 反应完全后, 通过固液分离将洁净燃 油与脱硫剂分离。
8. 如权利要求 5所述的脱除燃油的噻酚和苯并噻吩类硫化物的系统, 其特征是所述的塔式 反应器包括流化床反应器和固定床反应器。
9. 如权利要求 8所述的脱除燃油的噻酚和苯并噻吩类硫化物的系统, 其特征是所述的流化 床反应器是将一定量脱硫剂置于塔内, 原料燃油从塔底部喷出, 加热盘管保证脱硫反应 温度达到 50-70°C, 洁净燃油从塔顶部流出后经过滤即得到无硫燃油。
10.如权利要求 8所述的脱除燃油的噻酚和苯并噻吩类硫化物的系统, 其特征是所述的固定 床反应器是将脱硫剂填充于塔内, 原料燃油从塔顶部流下, 加热盘管保证脱硫反应温度 达到 50-70°C, 从塔底部流出的燃油即为无硫燃油。
PCT/CN2007/070732 2006-09-30 2007-09-20 Méthode et système de désulfuration du thiophène et du benzothiophène du fioul WO2008040241A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610016087.7 2006-09-30
CNB2006100160877A CN100390253C (zh) 2006-09-30 2006-09-30 脱除燃油噻酚类硫化物的方法和系统

Publications (1)

Publication Number Publication Date
WO2008040241A1 true WO2008040241A1 (fr) 2008-04-10

Family

ID=37816796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070732 WO2008040241A1 (fr) 2006-09-30 2007-09-20 Méthode et système de désulfuration du thiophène et du benzothiophène du fioul

Country Status (2)

Country Link
CN (1) CN100390253C (zh)
WO (1) WO2008040241A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897726B (zh) * 2012-12-27 2015-08-19 中国石油天然气股份有限公司 一种汽油脱硫剂及其制备方法
CN105964219B (zh) * 2016-05-11 2018-07-31 上海应用技术学院 一种用于活性炭吸附燃油中硫化合物的优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355556A (ja) * 1999-06-15 2000-12-26 Nippon Steel Chem Co Ltd 低硫黄芳香族炭化水素の製造方法
CN1449432A (zh) * 2000-09-01 2003-10-15 尤尼普瑞公司 从烃类燃料中除去少量有机硫的方法
WO2005073348A1 (ja) * 2004-02-02 2005-08-11 Japan Energy Corporation 炭化水素油の脱硫方法
US20060108263A1 (en) * 2004-11-23 2006-05-25 Chinese Petroleum Corporation Oxidative desulfurization and denitrogenation of petroleum oils

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482210A (zh) * 2002-09-11 2004-03-17 上海博申工程技术有限公司 催化裂化汽油吸附精制技术

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355556A (ja) * 1999-06-15 2000-12-26 Nippon Steel Chem Co Ltd 低硫黄芳香族炭化水素の製造方法
CN1449432A (zh) * 2000-09-01 2003-10-15 尤尼普瑞公司 从烃类燃料中除去少量有机硫的方法
WO2005073348A1 (ja) * 2004-02-02 2005-08-11 Japan Energy Corporation 炭化水素油の脱硫方法
US20060108263A1 (en) * 2004-11-23 2006-05-25 Chinese Petroleum Corporation Oxidative desulfurization and denitrogenation of petroleum oils

Also Published As

Publication number Publication date
CN1923968A (zh) 2007-03-07
CN100390253C (zh) 2008-05-28

Similar Documents

Publication Publication Date Title
RU2225755C2 (ru) Композиция сорбента, способ ее получения и применение в десульфурации
CA2387986C (en) Desulfurization and novel sorbents for same
US8088711B2 (en) Process and catalyst for desulfurization of hydrocarbonaceous oil stream
US8216461B2 (en) Method of adding fuel additive to diesel fuel
KR20020080331A (ko) 탈황 및 이를 위한 신규 흡착제
US7575688B2 (en) Apparatus and method for removing sulfur containing compounds from a post-refinery fuel stream
WO2017040754A1 (en) Non-oxidized desulfurization process and method of using the same
CN101721876A (zh) 一种含烃废气的回收处理方法
WO2008040241A1 (fr) Méthode et système de désulfuration du thiophène et du benzothiophène du fioul
US20100133193A1 (en) Diesel sulfur filter-nanoadsorber and method of filtering a liquid fuel
CN108570335B (zh) 轻石脑油脱硫脱胺的方法和装置
WO2007100499A9 (en) Apparatus and method for removing sulfur containing compounds from a post-refinery fuel stream
US20100163456A1 (en) Surface modification of inorganic metal oxides for enhanced sulfur selectivity in transportion fuels
US20090095683A1 (en) Portable fuel desulturization unit
CN110628475B (zh) 炼厂富气的预处理方法以及干气和/或液化气的脱硫方法
TASHEVA ADSORPTION PROCESS OF SULPHUR REMOVAL FROM MIDDLE DISTILLATE FRACTIONS USING SORBENT MATERIAL.
CA2698211A1 (en) Method for purifying mineral oil fractions and device suited to carrying out the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07816923

Country of ref document: EP

Kind code of ref document: A1