WO2008038650A1 - Dispositif et système d'inspection du potentiel évoqué - Google Patents

Dispositif et système d'inspection du potentiel évoqué Download PDF

Info

Publication number
WO2008038650A1
WO2008038650A1 PCT/JP2007/068638 JP2007068638W WO2008038650A1 WO 2008038650 A1 WO2008038650 A1 WO 2008038650A1 JP 2007068638 W JP2007068638 W JP 2007068638W WO 2008038650 A1 WO2008038650 A1 WO 2008038650A1
Authority
WO
WIPO (PCT)
Prior art keywords
evoked potential
waveform
assr
signal data
processing unit
Prior art date
Application number
PCT/JP2007/068638
Other languages
English (en)
Japanese (ja)
Inventor
Takashi Yahagi
Nobuko Ikawa
Kusuma Dewi
Original Assignee
National University Corporation Chiba University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Chiba University filed Critical National University Corporation Chiba University
Priority to JP2008536389A priority Critical patent/JP5099453B2/ja
Publication of WO2008038650A1 publication Critical patent/WO2008038650A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses

Definitions

  • the present invention relates to an evoked potential test apparatus, and is particularly suitable for testing an auditory steady-state response (hereinafter referred to as “ASSR”).
  • ASSR auditory steady-state response
  • ASSR is an auditory evoked response obtained by applying frequency-specific sound stimulation to both ears in advance. For example, an objective hearing test is performed by examining four frequency thresholds simultaneously. Can be performed with high accuracy.
  • the ASSR signal (hereinafter referred to as the “ASSR signal”) is a frequency-specific response, so it is used as a means to objectively and accurately evaluate the audiograms required for hearing aids for infants, especially in otolaryngology.
  • the power to do is S.
  • the “objective auditory test” means that subjects, including newborns and infants, can say “I can hear or hear it!” This is useful when it is difficult to express intentions due to anesthetized subjects or serious physical disabilities, or when there is a possibility of so-called deception deafness, such as pretending to be inaudible even though the subject's power is being heard in criminal investigations. This is an inspection that is conducted.
  • the ASSR signal is a weak signal and contains a lot of noise, and it is necessary to remove this noise for high-accuracy inspection.
  • a method for removing noise for example, there is a method of adding a plurality of ASSR signals and calculating an average thereof (hereinafter referred to as “addition averaging method”, for example, see Non-Patent Document 1 below).
  • the above-mentioned averaging method has a problem that it takes time for measurement because it is necessary to perform ASSR signal measurement many times (on average, about 500 times per reaction threshold). For example, in a typical example of the averaging method, the examination takes about 30 minutes, and the burden on the subject is large.
  • Non-Patent Documents 2 and 3 describe a method for obtaining a transfer function using a force Normanfinoletter in ABR (Auditory Brainstem Response). Is listed! / [0006]
  • Non-patent document 1 “Auditory steady-state reaction, analysis method, clinical application and origin”, Aoyagi Yuu, Lion Corporation, 2005
  • Non-Patent Document 2 Nobuko Igawa, Takaaki Tanibe, "Estimation and feature extraction of auditory brainstem response waveform by minimum variance estimation using Kalman filter", Journal of Signal Processing (signal processing), 2004, 8 Volume 4, Issue 335-349
  • Non-Patent Document 3 Nobuko Ikawa, Takashi Yahagi, Feature Extraction an d Identification of Transfer Function for Auditory Brainstem Resp onse ' ⁇ Journal of Signal Processings 2004 ⁇ Vol. 8, No. 6, pp. 473— 48 4
  • Non-Patent Documents 2 and 3 described above are technologies related to ABR, not technologies related to ASSR.
  • ASSR it is necessary to reduce the measurement time in order to reduce the burden imposed on the person undergoing the inspection.
  • an object of the present invention is to provide an evoked potential inspection apparatus capable of reducing the measurement time while having high inspection accuracy.
  • the present invention includes an ASSR evoked potential signal data recording unit for recording ASSR evoked potential signal data, and an ASSR evoked potential signal data recording unit.
  • a waveform estimation processing unit that performs waveform estimation processing by the Kalman filter on the recorded ASSR evoked potential signal data
  • an audio determination processing unit that performs audio determination processing on the waveform signal data estimated by the waveform estimation processing unit
  • An evoked potential inspection device having a display control unit for displaying a result processed by the determination processing unit on a display device.
  • ASSR means an auditory steady-state response, and specifically, a composite sound in which a plurality of waves (AM waves) obtained by applying amplitude modulation (AM) to amplitude carrier frequency (CF) is combined. This means the reaction that occurs when given to.
  • the “ASSR evoked potential signal data” is data in which the ASSR V and the strength of the evoked potential signal of the ASSR and the time when the signal was measured are stored correspondingly. Via multiple electrodes connected to the device. This is the data obtained.
  • the waveform estimation processing by the waveform estimation processing filter is expressed by the following equation.
  • the waveform estimation processing by the Kalman filter performed by the waveform estimation processing unit is performed using a wave represented by the following equation as a model waveform.
  • f is the number of liquids, ⁇ sign, ⁇ sign.
  • the "waveform estimation processing unit that performs waveform estimation processing using the Kalman filter for ASSR evoked potential signal data” refers to the waveform generated by the Kalman filter for ASSR evoked potential signal data. This is the part that applies the estimation module to perform the automatic waveform conformity judgment process for the derived potential signal data.
  • the waveform estimation processing unit is not limited, but the waveform estimation processing unit It is preferable to perform wavelet conversion on the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit before the waveform estimation processing by the Man filter. By doing so, it becomes possible to discriminate and delete an observation waveform that is not synchronized with the phase, and the effect of the present invention becomes more remarkable.
  • the present invention provides a plurality of electrodes to be attached to a subject, an earphone for giving sound pressure stimulation to the subject, a display device, and an ASSR-induced potential signal.
  • the ASSR evoked potential signal data recording unit that records data
  • the waveform estimation processing unit that performs waveform estimation processing by the Kalman filter for the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit
  • the waveform estimation processing unit An evoked potential testing device having an audio determination processing unit that performs an audio determination process on the estimated waveform signal data, and a display control unit for displaying a result processed by the audio determination processing unit on a display device; It has an evoked potential test system.
  • the present means is not limited, but the invitation is... 2... 2-“Waveform estimation processing in the power generation position inspection device:
  • the waveform estimation processing is as follows: It is preferably represented by the formula.
  • the wave in the evoked potential test apparatus is not limited.
  • the waveform estimation processing by the Kalman filter performed by the shape estimation processing unit is preferably performed using the wave represented by the following formula as a model waveform.
  • the waveform estimation processing unit is not limited, but the waveform estimation processing unit records the ASSR evoked potential signal recorded by the ASSR evoked potential signal data recording unit before the waveform estimation processing by the Kalman filter. It is preferable to perform wavelet conversion on the data. By doing so, it becomes possible to discriminate and delete an observation waveform that is not synchronized with the phase, and the effect of the present invention becomes more remarkable.
  • FIG. 1 shows a schematic configuration diagram of an evoked potential inspection system according to the present embodiment.
  • the evoked potential inspection system 1 includes an evoked potential signal inspection device 2, a plurality of electrodes 3 connected to the evoked potential signal inspection device, an earphone 4 that transmits a sound signal to the ear of the subject, and Display device 5.
  • FIG. 2 shows a functional block diagram of the evoked potential test system 1 according to the present embodiment.
  • the evoked potential test apparatus 2 in the evoked potential test system 1 generates a sound signal and transmits the sound signal to the earphone in order to give a sound stimulus to the subject.
  • Part 21 and ASSR invitations input from multiple electrodes attached to the subject Amplifier 22 that amplifies the power generation signal, A / D converter 23 that converts the ASSR evoked potential signal into a digital signal, and ASSR evoked potential signal data that records this ASSR evoked potential signal as ASSR evoked potential signal data Recording unit 24, waveform estimation processing unit 25 for performing waveform estimation processing by the Kalman filter for the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data, and waveform signal data estimated by the waveform estimation processing unit And a display control unit 27 for displaying the result on a display device for displaying the result on the display device.
  • the sound stimulus generator 21, ASSR evoked potential signal data recorder 24, waveform estimation processor 25, hearing determination processor 26, and display controller 27 are not limited to the hard disk in the computer. It functions as each part above by executing a program stored in a storage medium such as RAM.
  • the sound stimulus generator 21 can generate a sound signal and transmit the generated sound signal to the earphone in order to give a sound stimulus to the subject.
  • the sound signal is not limited to the extent that ASSR can be performed, but is usually a composite of multiple waves (AM waves) obtained by applying amplitude modulation (AM) to the amplitude carrier frequency (CF).
  • AM amplitude modulation
  • CF amplitude carrier frequency
  • the CF range is not limited, but it is preferred that the frequency range is 25 OHz or more and 8000 Hz or less.
  • the AM range is not limited, but it is 10 Hz or more and 500 Hz or less.
  • the number of AM waves is not limited, but it is preferable that the number of AM waves is about four for the left and right ears, for a total of about eight.
  • the amplifier 22 is a device that can amplify a weak ASSR evoked potential signal, and is preferably provided in order to increase the accuracy of the test in the evoked potential test system according to the present embodiment.
  • a well-known amplifier can be adopted as the amplifier to be used, and is not limited.
  • the A / D converter 23 converts an ASSR evoked potential signal, which is an analog signal, into digital data for data processing.
  • the A / D converter 23 it is easy to use a semiconductor integrated circuit prepared so that the above processing can be performed. This configuration is not limited to this.
  • recording in a computer is possible. Medium It can also be realized by executing a program stored in the.
  • the ASSR evoked potential signal data recording unit 24 can record the ASSR evoked potential signal from the subject obtained through the plurality of electrodes as ASSR evoked potential signal data.
  • ASSR evoked potential signal data is data indicating changes in the ASSR evoked potential with respect to time.
  • the ASSR evoked potential data has a plurality of sets of ASSR evoked potential data corresponding to the time data in time series. It is configured. Multiple ASSR evoked potential signal data are stored according to the number of measurements.
  • the waveform estimation processing unit 25 is a unit that can perform waveform estimation using a Kalman filter for the A SSR evoked potential signal data recorded in the ASSR evoked potential signal data recording unit. Conventionally, the simple average addition process is used, but by providing the waveform estimation processing unit 25 as in this embodiment, the measurement time can be shortened while maintaining high accuracy.
  • FIG. 3 is a diagram showing an image of waveform estimation processing according to the present embodiment. This waveform estimation process creates estimated waveform data by applying the Kalman filter to the evoked potential signal data and model waveform data that were actually acquired.
  • the transfer function coefficient matrix is set to ⁇ , and the parameters are estimated by applying a sequential estimation algorithm by minimum variance estimation using a Kalman filter.
  • the value (order) of ⁇ in the above formula (1) is 15 or more and 7 or less, and the optimum value is 16.
  • this value is estimated using the following equation. (In ti. Parameter ⁇ number, ⁇ ⁇ is 3 ⁇ 4 difference ⁇ 2 ⁇ ⁇ , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ . ⁇ ,
  • the waveform estimation processing unit 25 creates and stores estimated waveform data.
  • the ASSR waveform estimation processing unit 25 performs wavelet conversion on the ASSR evoked potential signal before the waveform estimation processing by the Kalman filter.
  • the ASSR response is an evoked brain wave using sound stimulation on a composite modulated sine wave, and is not a direct response from the source of the evoked response, so it is a noise force for detecting an ASSR signal such as an ⁇ wave Human living body There are also some meaningful response signals. If wavelet transformation is performed in this embodiment, and then waveform estimation processing using a Kalman filter is performed, phase synchronization can be achieved while extracting frequency specificity while retaining time latency information.
  • the hearing determination processing unit 26 is a unit that can perform the hearing determination processing of the subject using the estimated waveform data subjected to the waveform estimation processing.
  • the determination process is not limited as long as it is possible to accurately determine whether or not the subject's hearing is normal. For example, (1) fast Fourier transform (FFT) is performed, and then the power of the frequency component of the desired response is obtained.
  • FFT fast Fourier transform
  • a method of comparing the power of frequency components around the frequency component with an F test, or a method of (2) a so-called phase spectrum analysis method (for example, Non-Patent Document 1) can be used.
  • a CSM value (Component Synchrony Measure) is obtained using the following formula, and whether or not this value is higher than a predetermined threshold value. Make a decision.
  • the predetermined threshold value in this case is not limited, but is the theoretical value force / n of the average value of the CSM value when there is no reaction, and the theoretical value of the standard deviation is (n— 1) / n 3 For example, it is preferable to use the average value + 3 X standard deviation.
  • the display control unit 27 is a unit that can display the data related to the acquired hearing determination processing result, such as estimated waveform data and actually measured evoked potential signal data. Display each data. This can be realized by executing a program recorded on a recording medium such as a hard disk.
  • an evoked potential inspection device capable of reducing measurement time with high accuracy by performing waveform estimation processing by Kalman filter on ASSR evoked potential signal data.
  • the provision of this device made it possible to improve the hearing judgment processing device using ASSR evoked potential signal data.
  • the evoked potential inspection apparatus and system according to the present embodiment can reduce the number of times of averaging while maintaining accuracy.
  • the evoked potential test system according to the above embodiment was created, and the evaluation of this function was compared with the conventional case. This will be described below.
  • the number of AM waves to be combined with the sound signals is 8 solids (left 4 solids, right 4 solids, both ears are CF 500Hz, 1000Hz, 20000Hz, 4000Hz, 84Hz, 89Hz, 93Hz, 98Hz as AM for the right ear and 82Hz, 86Hz, 91Hz, 96Hz as AM for the left ear)), and the stimulation sound pressure is 80dB, the order in the above formula (1) ( The value of n) was 16. The result is shown in FIG. In FIG.
  • the upper graph is a graph showing the estimated waveform and the model waveform by the Kalman filter
  • the middle graph is a diagram showing the conventional addition waveform and the model waveform
  • the lower graph is the upper graph. The correlation coefficient between the estimated waveform by the Kalman filter and the model waveform for the conventional additive waveform in the middle stage is shown.
  • FIG. 6 shows the result of the CSM value in this example.
  • the horizontal axis represents frequency and the vertical axis represents CSM value.
  • the graph on the left shows the CSM value for the response frequency of the left and right ears, and whether or not there is a response (button lights up if there is a response). As a result, it was confirmed that the determination can be made with high accuracy.
  • Example 1 the conditions were the same as in Example 1 except for the stimulating sound pressure.
  • Example 1 the conditions were the same as in Example 1 except for the stimulating sound pressure.
  • Example 2 is an example when the stimulation sound pressure is 70 dB
  • Example 3 is an example when the stimulation sound pressure is 60 dB.
  • the results of Example 2 are shown in FIG. 7, and the results of Example 3 are shown in FIG.
  • DWT Multiresolution analysis
  • Reconstruction DWT was performed for each level decomposed by MR-DWT.
  • the structure of 80HzASSR is based on the mechanism of slowABR (see Non-Patent Document 1 above), and the bi-orthogonal spline wavelet (Bior5.5), which is the wavelet basis function used in ABR, was applied to ASSR as well (Nobuko Ikawa, Takashi Yahagi ⁇ Huiqin Jian, 'Waveform an alysis based on latency—frequency characteristic of auditory brains tern response using wavelet transform ”, Journal of Signal Processing, 2005, Vol. 9, No. 6, pp. 505—518).
  • Figure 11 shows the MR-DWT and RE DWT results and the FFT at each decomposition level in the same addition as in the conventional technology.
  • the original waveform and the reconstructed waveform at the decomposition level are shown from the upper left, and the FFT power spectrum is shown on the right.
  • the FFT power spectrum shows only 80-120Hz.
  • a high correlation was obtained between the FFT results of the original waveform and the D3 level reconstructed ASSR waveform.
  • D3 is the main component waveform, so the amplitude ratio of both is almost half, but there is a correlation with the FFT shape (there is a response at the same frequency). is there. Therefore, if the correlation coefficient is smaller than the threshold value, it is determined that the degree of phase synchronization is low, so that it is not added to the addition.
  • Figures 14, 15, and 16 show the original waveform and level D3 when sweep addition is 3, 4, and 5 times (in the figure, it is 2, 3, and 4 times because 0 force is counted in the program) Shows the FFT of the reconstructed waveform at.
  • cd3 and cd4 display MR—DWT levels cD3 and cD4.
  • Four additions have a lower correlation than three additions, and the effect of adding waveforms that are out of phase is considered. In this way, as shown in Fig. 17, the 8th addition, and in fact 2 times were excluded, so the conventional technology (MASTER, B io-logic)).
  • MASTER B io-logic
  • the present invention can provide an evoked potential inspection apparatus and system capable of reducing the number of times of averaging while maintaining accuracy.
  • FIG. 1 is a schematic configuration diagram of an evoked potential test system according to an embodiment.
  • FIG. 2 is a functional block diagram of an evoked potential inspection system according to the present embodiment.
  • FIG. 3 is a diagram showing an image of waveform estimation processing according to the present embodiment.
  • FIG. 4 is a diagram showing the result of a simulation using an AIC equation.
  • FIG. 5 is a diagram showing the results of waveform evaluation in Example 1.
  • FIG. 6 is a diagram showing the results of CSM in Example 1.
  • FIG. 7 is a diagram showing the results of waveform evaluation in Example 2.
  • FIG. 8 is a diagram showing the results of CSM in Example 2.
  • FIG. 9 is a view showing the results of waveform evaluation in Example 3.
  • FIG. 10 shows CSM results in Example 3.
  • FIG. 11 shows the results of MR-DWT and RE-DWT and the results of FFT at each decomposition level in Example 4.
  • Evoked potential signal inspection system 2. Evoked potential signal inspection device, 3 ... Electrode, 4 ... Earphone, 5 ... Display device, 21 ... Sound stimulus generator, 22 ⁇ Amplifier, converter, 24 ⁇ Induction power level signal data recording unit, 25 ⁇ Waveform estimation processing unit, 26 ⁇ Hearing judgment processing unit, 27 ⁇ Display control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

L'invention vise à fournir un dispositif d'inspection du potentiel évoqué permettant de réduire la durée de la mesure tout en conservant une précision d'inspection élevée. Un dispositif d'inspection du potentiel évoqué est constitué d'une unité d'enregistrement des données de signal de potentiel évoqué ASSR permettant d'enregistrer les données de signal de potentiel évoqué ASSR, d'une unité de traitement des inférences de formes d'ondes permettant de procéder à l'aide d'un filtre de Kalman au traitement des inférences de formes d'ondes sur les données de signal de potentiel évoqué ASSR enregistrées par l'unité d'enregistrement précitée, d'une unité de traitement de l'appréciation de la capacité auditive permettant de procéder au traitement de l'appréciation de la capacité auditive sur les données de signal de formes d'ondes déduites par l'unité de traitement des inférences de formes d'ondes, et d'une unité de contrôle de la visualisation permettant de visualiser, sur un dispositif d'affichage, le résultat du traitement effectué par l'unité de traitement de l'appréciation de la capacité auditive.
PCT/JP2007/068638 2006-09-27 2007-09-26 Dispositif et système d'inspection du potentiel évoqué WO2008038650A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536389A JP5099453B2 (ja) 2006-09-27 2007-09-26 誘発電位検査装置及び誘発電位検査システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-262220 2006-09-27
JP2006262220 2006-09-27
JP2007-052088 2007-03-01
JP2007052088 2007-03-01

Publications (1)

Publication Number Publication Date
WO2008038650A1 true WO2008038650A1 (fr) 2008-04-03

Family

ID=39230086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068638 WO2008038650A1 (fr) 2006-09-27 2007-09-26 Dispositif et système d'inspection du potentiel évoqué

Country Status (2)

Country Link
JP (2) JP5099453B2 (fr)
WO (1) WO2008038650A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082375A (ja) * 2008-10-02 2010-04-15 Kanazawa Inst Of Technology 音信号処理装置、ヘッドホン装置および音信号処理方法
JP2010521906A (ja) * 2007-03-23 2010-06-24 ヴェーデクス・アクティーセルスカプ 個人の聴力の他覚的測定システムおよび方法
WO2012063423A1 (fr) * 2010-11-12 2012-05-18 パナソニック株式会社 Système d'évaluation de pression sonore et procédé et programme correspondants
WO2013001836A1 (fr) * 2011-06-30 2013-01-03 パナソニック株式会社 Système d'estimation de niveau seuil d'inconfort, procédé et programme associés, système d'ajustement de prothèse auditive et circuit de traitement d'estimation de niveau seuil d'inconfort
WO2013001835A1 (fr) * 2011-06-30 2013-01-03 パナソニック株式会社 Système de détermination de pression sonore inconfortable, procédé et programme associés, système de réglage de prothèse auditive et dispositif de détermination de pression sonore inconfortable
WO2013057929A1 (fr) * 2011-10-18 2013-04-25 パナソニック株式会社 Système, dispositif, et procédé d'évaluation du niveau d'isosonie inconfortable, et programme d'ordinateur à cet effet
WO2013140735A1 (fr) * 2012-03-19 2013-09-26 パナソニック株式会社 Système d'estimation de pression sonore désagréable, dispositif d'estimation de pression sonore désagréable, procédé d'estimation de pression sonore désagréable et programme informatique associé
WO2013161189A1 (fr) * 2012-04-24 2013-10-31 パナソニック株式会社 Système et procédé de détermination de gain de prothèse auditive et programme d'ordinateur
WO2014049979A1 (fr) * 2012-09-27 2014-04-03 パナソニック株式会社 Système d'évaluation d'un niveau de volume sonore inconfortable, dispositif d'évaluation d'un niveau de volume sonore inconfortable, dispositif d'ajustement d'un niveau de volume sonore inconfortable, procédé d'évaluation d'un niveau de volume sonore inconfortable et programme informatique correspondant
CN109284009A (zh) * 2018-11-27 2019-01-29 中国医学科学院生物医学工程研究所 一种提高听觉稳态响应脑-机接口性能的系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004868A1 (fr) * 2020-07-02 2022-01-06 国立大学法人東京大学 Système de test d'acuité auditive et procédé de test d'acuité auditive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027284A1 (fr) * 1998-11-09 2000-05-18 Xinde Li Systeme et procede de traitement de signaux a faible rapport signal-bruit
JP2003533258A (ja) * 2000-05-19 2003-11-11 サシャ ジョン マイケル 聴覚上の定常状態応答を使用した聴力を客観的に評価するためのシステム及び方法
WO2004071280A2 (fr) * 2003-02-07 2004-08-26 Michael Sasha John Depistage rapide, seuil et tests de diagnostic pour evaluer l'audition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027284A1 (fr) * 1998-11-09 2000-05-18 Xinde Li Systeme et procede de traitement de signaux a faible rapport signal-bruit
JP2003533258A (ja) * 2000-05-19 2003-11-11 サシャ ジョン マイケル 聴覚上の定常状態応答を使用した聴力を客観的に評価するためのシステム及び方法
WO2004071280A2 (fr) * 2003-02-07 2004-08-26 Michael Sasha John Depistage rapide, seuil et tests de diagnostic pour evaluer l'audition

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521906A (ja) * 2007-03-23 2010-06-24 ヴェーデクス・アクティーセルスカプ 個人の聴力の他覚的測定システムおよび方法
JP2010082375A (ja) * 2008-10-02 2010-04-15 Kanazawa Inst Of Technology 音信号処理装置、ヘッドホン装置および音信号処理方法
WO2012063423A1 (fr) * 2010-11-12 2012-05-18 パナソニック株式会社 Système d'évaluation de pression sonore et procédé et programme correspondants
JP5091366B2 (ja) * 2010-11-12 2012-12-05 パナソニック株式会社 音圧評価システム、その方法およびそのプログラム
US9100758B2 (en) 2010-11-12 2015-08-04 Panasonic Corporation Sound pressure assessment system, and method and program thereof
WO2013001836A1 (fr) * 2011-06-30 2013-01-03 パナソニック株式会社 Système d'estimation de niveau seuil d'inconfort, procédé et programme associés, système d'ajustement de prothèse auditive et circuit de traitement d'estimation de niveau seuil d'inconfort
WO2013001835A1 (fr) * 2011-06-30 2013-01-03 パナソニック株式会社 Système de détermination de pression sonore inconfortable, procédé et programme associés, système de réglage de prothèse auditive et dispositif de détermination de pression sonore inconfortable
US9241226B2 (en) 2011-06-30 2016-01-19 Panasonic Intellectual Property Management Co., Ltd. Uncomfortableness threshold value estimation system and method, and a program thereof; hearing aid adjustment system; and uncomfortableness threshold value processing circuit
JP5215507B1 (ja) * 2011-06-30 2013-06-19 パナソニック株式会社 不快音圧決定システム、その方法およびそのプログラム、補聴器調整システムおよび不快音圧決定装置
JP5215508B1 (ja) * 2011-06-30 2013-06-19 パナソニック株式会社 不快閾値推定システム、方法およびそのプログラム、補聴器調整システムおよび不快閾値推定処理回路
US9215533B2 (en) 2011-06-30 2015-12-15 Panasonic Intellectual Property Management Co., Ltd. Uncomfortable sound pressure determination system, method and program thereof, hearing aid adjustment system, and uncomfortable sound pressure determination apparatus
JP5406414B2 (ja) * 2011-10-18 2014-02-05 パナソニック株式会社 不快音圧推定システム、不快音圧推定装置、不快音圧推定システムの作動方法およびそのコンピュータプログラム
US9232905B2 (en) 2011-10-18 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Uncomfortable loudness level estimating system, uncomfortable loudness level estimating device, uncomfortable loudness level estimating method, and computer program for same
WO2013057929A1 (fr) * 2011-10-18 2013-04-25 パナソニック株式会社 Système, dispositif, et procédé d'évaluation du niveau d'isosonie inconfortable, et programme d'ordinateur à cet effet
US9332357B2 (en) 2012-03-19 2016-05-03 Panasonic Intellectual Property Management Co., Ltd. Uncomfortable sound pressure estimation system, uncomfortable sound pressure estimation apparatus, uncomfortable sound pressure estimation method, and computer program thereof
JPWO2013140735A1 (ja) * 2012-03-19 2015-08-03 パナソニックIpマネジメント株式会社 不快音圧推定システム、不快音圧推定装置、不快音圧推定方法およびそのコンピュータプログラム
WO2013140735A1 (fr) * 2012-03-19 2013-09-26 パナソニック株式会社 Système d'estimation de pression sonore désagréable, dispositif d'estimation de pression sonore désagréable, procédé d'estimation de pression sonore désagréable et programme informatique associé
WO2013161189A1 (fr) * 2012-04-24 2013-10-31 パナソニック株式会社 Système et procédé de détermination de gain de prothèse auditive et programme d'ordinateur
JPWO2013161189A1 (ja) * 2012-04-24 2015-12-21 パナソニックIpマネジメント株式会社 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム
CN103548364A (zh) * 2012-04-24 2014-01-29 松下电器产业株式会社 助听器增益决定系统、助听器增益决定方法以及计算机程序
US9712931B2 (en) 2012-04-24 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Hearing aid gain determination system, hearing aid gain determination method, and computer program
JP5579352B1 (ja) * 2012-09-27 2014-08-27 パナソニック株式会社 不快音圧評価システム、不快音圧評価装置、不快音圧調整装置、不快音圧評価方法およびそのコンピュータプログラム
WO2014049979A1 (fr) * 2012-09-27 2014-04-03 パナソニック株式会社 Système d'évaluation d'un niveau de volume sonore inconfortable, dispositif d'évaluation d'un niveau de volume sonore inconfortable, dispositif d'ajustement d'un niveau de volume sonore inconfortable, procédé d'évaluation d'un niveau de volume sonore inconfortable et programme informatique correspondant
US9439013B2 (en) 2012-09-27 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Uncomfortable sound pressure evaluation system, uncomfortable sound pressure evaluation apparatus, uncomfortable sound pressure adjustment apparatus, uncomfortable sound pressure evaluation method, and computer program thereof
CN109284009A (zh) * 2018-11-27 2019-01-29 中国医学科学院生物医学工程研究所 一种提高听觉稳态响应脑-机接口性能的系统及方法

Also Published As

Publication number Publication date
JP5099453B2 (ja) 2012-12-19
JP2012228525A (ja) 2012-11-22
JPWO2008038650A1 (ja) 2010-01-28
JP5553088B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2008038650A1 (fr) Dispositif et système d'inspection du potentiel évoqué
US8177726B2 (en) Rapid screening, threshold, and diagnostic tests for evaluation of hearing
Long et al. Measuring distortion product otoacoustic emissions using continuously sweeping primaries
Poling et al. Characteristics of the 2f1-f2 distortion product otoacoustic emission in a normal hearing population
JP4707920B2 (ja) 聴覚上の定常状態応答を使用した聴力を客観的に評価するためのシステム及び方法
Small et al. Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing
RU2481789C2 (ru) Способ и устройство для объективного обнаружения нарушений слуха
Choi et al. Envelope following responses elicited by English sentences
Deeter et al. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions
Vanheusden et al. Improved detection of vowel envelope frequency following responses using Hotelling’s T2 analysis
CN102232833A (zh) 基于过采样多频多幅联合估计听觉诱发电位的测听装置
Feeney et al. Wideband reflectance measures of the ipsilateral acoustic stapedius reflex threshold
Finneran et al. Place specificity of the click-evoked auditory brainstem response in the bottlenose dolphin (Tursiops truncatus)
Chen et al. Stimulus frequency otoacoustic emissions evoked by swept tones
Purcell et al. Evaluating the modulation transfer function of auditory steady state responses in the 65 Hz to 120 Hz range
Abdala et al. Distortion product otoacoustic emission phase and component analysis in human newborns
Almeqbel et al. Objective measurement of high-level auditory cortical function in children
Jedrzejczak et al. Time–frequency analysis of linear and nonlinear otoacoustic emissions and removal of a short-latency stimulus artifact
Felix et al. A spatial approach of magnitude-squared coherence applied to selective attention detection
Felix et al. Avoiding spectral leakage in objective detection of auditory steady-state evoked responses in the inferior colliculus of rat using coherence
John et al. Introduction to technical principles of auditory steady-state response testing
JP4547498B2 (ja) 誘発電位検査装置及びそれを用いた誘発電位検査システム
JP3613794B2 (ja) 聴覚測定装置
Johnson et al. Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions
JP4997579B2 (ja) 誘発電位検査プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536389

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828411

Country of ref document: EP

Kind code of ref document: A1