WO2008035698A1 - Variable attenuation circuit - Google Patents

Variable attenuation circuit Download PDF

Info

Publication number
WO2008035698A1
WO2008035698A1 PCT/JP2007/068152 JP2007068152W WO2008035698A1 WO 2008035698 A1 WO2008035698 A1 WO 2008035698A1 JP 2007068152 W JP2007068152 W JP 2007068152W WO 2008035698 A1 WO2008035698 A1 WO 2008035698A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
attenuation
fet
circuit
bias
Prior art date
Application number
PCT/JP2007/068152
Other languages
French (fr)
Japanese (ja)
Inventor
Takahito Miyazaki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008035698A1 publication Critical patent/WO2008035698A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • H03G1/007Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using FET type devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/24Frequency-independent attenuators
    • H03H11/245Frequency-independent attenuators using field-effect transistor

Definitions

  • the present invention relates to a variable attenuation circuit and a high-frequency wireless circuit system using the same.
  • the variable attenuation circuit of the present invention is used for attenuation of high-frequency signals in various wireless communication devices. It realizes linear attenuation control characteristics, improves noise characteristics, and electrical characteristics of elements depending on the manufacturing process and temperature. This is intended to compensate for variations in the quality.
  • FIG. 2 is a circuit diagram showing a configuration of a conventional variable attenuation circuit using a GaAsFET (see JP 2005-27062 A).
  • the conventional variable attenuating circuit is attenuated by a signal attenuating unit 260 including a signal attenuating GaAs FET 240 in which a high frequency signal inputted from a signal input terminal (IN) 231 is inserted in series. Output from the signal output terminal (OUT) 232.
  • the high frequency signal input from the signal input terminal 231 includes a signal attenuation GaAsFET 245 inserted between the signal input terminal 231 and the ground terminal (GND) 236.
  • the signal attenuation unit 261, the signal output terminal 232, and the ground terminal The signal is attenuated by a signal attenuating unit 262 including a signal attenuating GaAsFET 251 inserted between the signal output terminal 232 and the signal attenuating unit 237.
  • the attenuation amount of the signal attenuation GaAsFETs 240, 245, and 251 can be controlled by the attenuation amount control signal input from the attenuation amount control terminal (Vc) 233.
  • a resistor 255 for supplying a gate bias is provided between the attenuation control terminal 233 and the gate of the GaAsFET 240 for signal attenuation
  • a resistor 222 for supplying a drain bias is provided between the attenuation control terminal 233 and the source of the GaAsFET 245 for signal attenuation 259.
  • a drain bias supply resistor 256 is provided between the attenuation control terminal 233 and the source of the signal attenuation GaAsFET 251.
  • a source bias supply resistor 239 is provided between the source bias supply terminal (Vref 1) 234 of the signal attenuation GaAsFET 240 and the source of the signal attenuation GaAsFET 240, and the gate bias of the signal attenuation GaAsFETs 245 and 251.
  • Gate bias supply resistors 257 and 258 are provided between the supply terminal (Vref2) 235 and the gates of the signal attenuation Ga AsFETs 245 and 251, respectively.
  • a drain bias supply resistor 241 is provided between the source and drain of the signal attenuation GaAsFET 240, 245, 251 respectively.
  • a source potential supply resistor 246 and a source potential supply resistor 252 are provided.
  • Reference numerals 238, 242, 243, 248, 249, and 254 denote DC blocking capacities
  • reference numerals 244, 247, 250, and 253 denote input / output matching resistors, respectively.
  • This variable attenuation circuit uses the attenuation control signal supplied from the attenuation control terminal 233, the signal attenuation GaAsFET 240 inserted in series, the signal attenuation GaAsFET 245 inserted in the shunt, By connecting to the 251 source terminal, it is possible to control three attenuation GaAsFETs 240, 245, 251 with one type of attenuation control signal.
  • a variable attenuation circuit has a signal attenuation GaAsFET 240 that is controlled by continuously changing the voltage at the attenuation control terminal 233, the force that requires linearity of its control characteristics from a high attenuation state to a low attenuation state.
  • Low resistance, GaAsFET 245 and 251 for signal attenuation can be controlled to the desired attenuation from low attenuation state with high resistance to GaAsFET 240 for signal attenuation and high resistance to GaAsFET 245 and 251 for signal attenuation with low resistance.
  • the high-frequency variable attenuation circuit configured on a single substrate such as a GaAs substrate has also been fabricated on the same Si semiconductor substrate as other semiconductor circuits such as oscillators and mixers. As a result, it has become necessary to fabricate a high-frequency variable attenuation circuit on a Si substrate that has a lower substrate resistance than GaAs processes.
  • the second problem is that noise characteristics deteriorate due to noise generated in the control circuit mixed into the high-frequency circuit.
  • the noise generated in the control circuit is mixed into the high-frequency signal line via the gate of the signal attenuation MOSFET, and the recent severe resolution characteristics corresponding to the multi-communication system are not satisfied! Power S can be raised.
  • the fourth point is the influence of variations due to manufacturing processes and temperature fluctuations.
  • variable attenuation circuits more stringent linearity is required, and there is a problem that the desired linearity is not satisfied with respect to attenuation control characteristics due to variations in threshold voltage of MOSFET for signal attenuation due to manufacturing process and temperature fluctuation. is there.
  • the fifth point is that when a high-frequency circuit is fabricated on a Si semiconductor substrate, the signal of Leakage is a problem.
  • the variable attenuation circuit it is necessary to add a resistor between the source and the drain in order to supply the source bias and drain bias and to improve the frequency characteristics. There is a problem if the attenuation control characteristics deteriorate!
  • an object of the present invention is to provide a variable attenuation circuit that has linear attenuation control characteristics and excellent noise characteristics, and is resistant to variations in MOSFET thresholds due to the manufacturing process and temperature, and a high-frequency radio circuit system using the same Is to provide.
  • a variable attenuation circuit is a variable attenuation circuit in which the first, second, third, and fourth points of the above-mentioned problem have been solved.
  • the variable attenuation circuit includes a signal attenuating unit having a signal attenuating element inserted in series in a signal path between the signal input unit and the signal output unit, an attenuation control circuit unit for controlling the signal attenuating element, And a bias circuit section that provides a bias that compensates for variations in the manufacturing process of the signal attenuating element and temperature variation, and has a capacitance between the connection between the signal attenuating element and the attenuation control circuit and the ground terminal.
  • the signal attenuating element has a configuration for attenuating the high-frequency signal with an attenuation amount corresponding to the attenuation amount control signal generated by the attenuation amount control circuit unit.
  • the signal attenuating element is generally preferably an FET, particularly a MOSFET.
  • the attenuation control circuit section for controlling the signal attenuating element is connected to the gate terminal of the signal attenuating FET that is the signal attenuating element.
  • the noise circuit section is made up of FETs that have the same manufacturing process as the signal attenuating FETs, with variations in temperature fluctuations, and the source terminals and drains of the signal attenuating FETs are connected via source bias resistors and drain bias resistors. Connected to the terminal. Capacitance is inserted between the gate terminal and ground terminal of the signal attenuation FET.
  • the signal attenuating FET well has a triple well structure, and a resistor having a high resistance value is inserted between the back gate and the substrate.
  • the capacitance is provided between the gate terminal and the ground terminal of the signal attenuation FET, the capacitance between the drain and the gate of the signal attenuation FET and the capacitance between the gate and the source are increased. Therefore, it is possible to block the signal leakage path and improve the attenuation characteristics during high isolation.
  • the attenuation control circuit unit composed of resistors, etc. Noise generated can be prevented from entering the high-frequency signal line via the gate of the signal attenuation FET, and noise characteristics can be improved. As a result, the first and second issues can be solved.
  • the signal attenuating FET has a triple-well structure, and a high resistance is inserted between the back gate and the substrate, so that the back gate of the signal attenuating FET is Thus, the path through which the signal leaks to the substrate can be blocked, and the attenuation control characteristic can be improved. As a result, the third problem can be solved.
  • the same manufacturing process as the signal attenuating FET 'For signal attenuating by applying a source bias to the signal attenuating FET in the bias circuit configured using FET that has a threshold variation of temperature fluctuation The FET threshold manufacturing process and temperature variations can be corrected.
  • the bias value generated by the (source) bias circuit section decreases when the threshold voltage of the signal attenuation FET increases due to the manufacturing process' temperature fluctuation, and conversely the threshold voltage of the signal attenuation FET. It is preferably controlled so that it increases when the value decreases.
  • a variable attenuation circuit is a variable attenuation circuit that solves the second, third, and fourth points of the above problems.
  • the variable attenuation circuit includes a signal attenuation unit having a signal attenuation element inserted into a ground terminal from a signal path between a signal input unit and a signal output unit, and an attenuation amount control circuit for controlling the signal attenuation element. And a bias circuit section that provides a bias that compensates for the manufacturing process and temperature variation of the signal attenuating element, and a capacitance is provided between the connection between the signal attenuating element and the attenuation control circuit section and the ground terminal.
  • the signal attenuating element has a configuration for attenuating the high-frequency signal with an attenuation amount corresponding to the attenuation amount control signal generated by the attenuation amount control circuit unit.
  • the signal attenuating element is generally preferably an FET.
  • the attenuation control circuit unit for controlling the signal is connected to the source terminal of the signal attenuating FET which is a signal attenuating element.
  • the noise circuit section is configured using a FET that has the same manufacturing process as the signal attenuating FET and temperature variation variation, and is connected to the gate terminal of the signal attenuating FET.
  • the capacitor is inserted between the gate terminal and the ground terminal of the signal attenuation FET.
  • the signal attenuating FET has a triple-well structure, and a high resistance is inserted between the back gate and the substrate.
  • the signal attenuating FET has a triple-well structure, and a resistor having a high resistance is inserted between the back gate and the substrate.
  • a resistor having a high resistance is inserted between the back gate and the substrate.
  • the same manufacturing process as the signal attenuating FET 'For signal attenuating by applying a gate bias to the signal attenuating FET in the bias circuit configured using FET with a threshold variation of temperature fluctuation The FET threshold manufacturing process and temperature variations can be corrected.
  • the bias value generated in the (gate) bias circuit section increases when the threshold voltage of the signal attenuation FET increases due to temperature fluctuations in the manufacturing process, and conversely the threshold voltage of the signal attenuation FET. It is preferable to control to decrease when the value decreases.
  • a variable attenuation circuit is a variable attenuation circuit that solves the first, second, third, fourth, and fifth points of the above-described problem.
  • This variable attenuation circuit has signal input and signal output A signal attenuating unit having a signal attenuating element inserted in series in the signal path between the signal attenuating unit, an attenuation control circuit unit for controlling the signal attenuating element, and correcting the manufacturing process and temperature variation of the signal attenuating element A bias circuit section for applying a bias, a capacitance between a connection section between the signal attenuation element and the attenuation control circuit and the ground terminal, and a signal attenuation element and a noise circuit section.
  • the signal attenuating element attenuates the high-frequency signal with an attenuation corresponding to the attenuation control signal generated by the attenuation control circuit. Have the configuration to do! /
  • the signal attenuating element is generally preferably an FET.
  • the attenuation control circuit that controls the signal attenuating element is connected to the gate terminal of the signal attenuating FET that is the signal attenuating element, and the bias circuit is the same manufacturing process as the signal attenuating FET. It is configured using a FET that has a signal bias, and is connected to the source and drain terminals of the signal attenuating FET via a source bias resistor and drain bias resistor.
  • the capacitance added to the connection between the signal attenuating element and the attenuation control circuit is inserted between the gate terminal of the signal attenuating FET and the ground terminal, and the connection between the signal attenuating element and the bias circuit section
  • the capacitance added to the block is inserted between the connection between the source bias resistor and drain bias resistor of the signal attenuating FET and the ground terminal.
  • the signal attenuating FET has a triple-well structure, and a resistor having a high resistance value is inserted between the back gate and the substrate.
  • the capacitance between the gate terminal and the ground terminal of the signal attenuating FET increases the capacitance between the drain and the gate of the signal attenuating FET and the capacitance between the gate and the source. Therefore, it is possible to block the signal leakage path and improve the attenuation characteristics during high isolation.
  • the signal attenuating FET has a triple-well structure, and a resistor having a high resistance value is inserted between the back gate of the signal attenuating FET and the substrate. A path through which a signal leaks to the substrate is blocked, and the attenuation control characteristic can be improved. As a result, the third problem can be solved.
  • the same manufacturing process as the signal attenuating FET ⁇ By providing a source bias for the signal attenuating FET in the bias circuit configured using a FET that has a threshold variation due to temperature fluctuations, the signal attenuating FET The threshold manufacturing process and temperature variations can be corrected. As a result, the fourth problem can be solved.
  • the bias value generated by the (source) bias circuit decreases when the threshold voltage of the signal attenuation FET increases due to temperature fluctuations in the manufacturing process, and conversely the threshold value of the signal attenuation FET. It is preferable that the voltage is controlled so as to increase when the voltage decreases.
  • the signal leakage path can be cut off more than the variable attenuation circuit of the first invention, and the noise leakage path equivalent to the circuit of the first invention can be cut off.
  • the stabilization of the threshold voltage can be achieved, and the original performance of the transistor, such as attenuation characteristics and noise characteristics, can be maximized.
  • a linear attenuation control characteristic can be realized in any attenuation state that changes continuously, and a variable attenuation circuit that has excellent noise characteristics and is resistant to variations can be realized.
  • a high-frequency radio circuit system includes at least one first, second, or second
  • a wireless transmission device including the variable attenuation circuit according to the third aspect of the invention, at least one oscillator, and at least one high-frequency amplifier, and at least one antenna connected to the wireless transmission device for transmitting and receiving a radio frequency.
  • a first variable attenuation circuit of the present invention includes a signal attenuator having a signal attenuating element inserted in series in a signal path between a signal input unit and a signal output unit, and a signal attenuating element.
  • Attenuation control circuit section for supplying an attenuation control signal, bias circuit section for applying a bias to the signal attenuation element, and a connection between the signal attenuation element and the attenuation control circuit section and the ground terminal.
  • the signal attenuating element is an FET
  • the attenuation control circuit section applies an attenuation control signal to the gate terminal of the FET to control the ON resistance of the FET.
  • the bias circuit section applies a bias to the source terminal of the FET, and the capacitance is connected between the gate terminal of the FET and the ground terminal.
  • the second variable attenuation circuit of the present invention includes a signal attenuator having a signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit, and a signal attenuating FET.
  • An attenuation control circuit that controls the ON resistance of the signal attenuating FET by giving an attenuation control signal to the gate terminal, and a bias circuit that applies a bias to the source terminal of the signal attenuating FET.
  • the circuit section has a bias FET that compensates for variations in the threshold voltage of the signal attenuating FET.
  • the third variable attenuation circuit of the present invention includes a signal attenuator having a signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit, and a signal attenuating FET. Attenuation control circuit that controls the ON resistance of the signal attenuation FET by applying an attenuation control signal to the gout terminal, a bias circuit that applies a bias to the source terminal of the signal attenuation FET, and a signal attenuation FET And a resistor connected between the back gate portion and the substrate.
  • a fourth variable attenuation circuit of the present invention includes a signal attenuation unit having a signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit, and a signal attenuation FET.
  • Attenuation control circuit that controls the ON resistance of the signal attenuation FET by applying an attenuation control signal to the gate terminal, a bias circuit that applies a bias to the source terminal of the signal attenuation FET, and a bias circuit
  • a capacitor or a capacitor and a switch connected to the ground terminal are provided.
  • FET is inserted into the signal path between the signal input unit and the signal output unit, and the signal applied to the gate terminal of this FET is applied to the signal input unit.
  • a signal attenuator that controls and outputs the attenuation of a given signal
  • an attenuation control circuit that applies a signal to the gate terminal to vary the ON resistance value of the FET, and a terminal connected to the source terminal of the FET
  • a first capacitive element is connected between the other end of the resistive element and the ground terminal, and a bias circuit section that applies a DC voltage via the resistive element is connected between the back gate section of the FET and the ground terminal.
  • a second capacitor element between the gate terminal and the ground terminal. Is connected.
  • a sixth variable attenuation circuit of the present invention includes a signal attenuation unit having a signal attenuation element inserted between a signal path between the signal input unit and the signal output unit and the ground terminal,
  • An attenuation control circuit unit for providing an attenuation control signal to the signal attenuation element
  • a bias circuit section for applying a bias to the signal attenuating element
  • the signal attenuating element comprises a FET
  • the attenuation control circuit unit applies an attenuation control signal to the drain terminal of the FET to control the ON resistance of the FET
  • the bias circuit section applies a bias to the gate terminal of the FET
  • the capacitance is connected between the gate terminal of the FET and the ground terminal.
  • a seventh variable attenuation circuit of the present invention includes a signal attenuation unit including a signal attenuation FET inserted between a signal path between the signal input unit and the signal output unit and a ground terminal, and a signal Provided with an attenuation control circuit that controls the ON resistance of the signal attenuation FET by giving an attenuation control signal to the drain terminal of the attenuation FET and a bias circuit that applies a bias to the gate terminal of the signal attenuation FET
  • the bias circuit section has a bias FET that compensates for variations in the threshold voltage of the signal attenuating FET.
  • An eighth variable attenuation circuit of the present invention includes a signal attenuation unit having a signal attenuation FET inserted between a signal path between a signal input unit and a signal output unit and a ground terminal, and a signal Attenuation control circuit that controls the ON resistance of the signal attenuation FET by applying an attenuation control signal to the drain terminal of the attenuation FET, a bias circuit that applies a bias to the gate terminal of the signal attenuation FET, and a signal Provided with a resistor connected between the back gate of the attenuating FET and the substrate
  • the first capacitive element and the FET current path terminal pair are connected in series between the signal path between the signal input section and the signal output section and the AC ground.
  • a signal attenuator that controls the amount of attenuation of the signal applied to the signal input by the signal applied to the connection between the first capacitor element and one end of the current path of the FET that is inserted and connected, and the FET Attenuation control circuit that applies a signal to one end to vary the ON resistance of the FET, and the gate of the FET
  • a bias circuit section for applying a DC voltage to the terminal via a resistance element; a resistor connected between the back gate section of the FET and the ground terminal; and a second capacitive element between the gate terminal and the ground terminal. Is connected.
  • a tenth variable attenuation circuit includes a first signal attenuation unit having a first signal attenuation element inserted in series in a signal path between a signal input unit and a signal output unit; A first attenuation control circuit for supplying an attenuation control signal to the first signal attenuation element, a first bias circuit for applying a bias to the first signal attenuation element, and a first signal attenuation Between the first capacitor connected between the connection between the element and the first attenuation control circuit section and the ground terminal, and between the signal path between the signal input section and the signal output section and the ground terminal.
  • a second signal attenuating unit having a second signal attenuating element inserted; a second attenuation control circuit for supplying an attenuation control signal to the second signal attenuating element; and a second signal attenuating unit.
  • a second noise circuit section for applying a bias to the device, a connection between the second signal attenuating element and the second bias circuit section, and grounding And a second capacitor connected between the child.
  • the first signal attenuating element is composed of the first FET force, and the first attenuation control circuit unit is attenuated to the gate terminal of the first FET.
  • the first bias circuit block applies a bias to the source terminal of the first FET, and the first capacitor is grounded with the gate terminal of the first FET.
  • the second signal attenuating element is composed of the second FET, and the second attenuation control circuit section applies the attenuation control signal to the drain terminal of the second FET to provide the second FET.
  • the ON resistance of the FET is controlled, the second bias circuit section applies a bias to the gate terminal of the second FET, and the second capacitor is connected between the gate terminal of the second FET and the ground terminal.
  • it is.
  • An eleventh variable attenuation circuit of the present invention includes a first signal attenuation unit having a first signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit.
  • the first attenuation control circuit that controls the ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET, and the first signal attenuation FET
  • a second bias circuit section having a first bias circuit section for applying noise to the source terminal, and a second signal attenuating FET inserted between the signal path between the signal input section and the signal output section and the ground terminal.
  • Attenuation control signals are applied to the signal attenuator and the drain terminal of the second signal attenuating FET to reduce the second signal.
  • the first bias circuit includes a second attenuation control circuit that controls the ON resistance of the attenuation FET, and a second bias circuit that applies a bias to the gate terminal of the second signal attenuation FET.
  • Part has a first bias FET that compensates for variations in threshold voltage of the first signal attenuating FET,
  • the second bias circuit section includes a second bias FET that compensates for variations in threshold voltage of the second signal attenuating FET.
  • a twelfth variable attenuation circuit includes a first signal attenuation unit having a first signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit.
  • the first attenuation control circuit that controls the ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET, and the first signal attenuation FET
  • a second bias circuit section having a first bias circuit section for applying noise to the source terminal, and a second signal attenuating FET inserted between the signal path between the signal input section and the signal output section and the ground terminal.
  • a second attenuation control circuit for controlling the ON resistance of the second signal attenuation FET by supplying an attenuation control signal to the drain terminal of the second signal attenuation FET,
  • a second bias circuit for applying a bias to the gate terminal of the signal attenuating FET, and a back gate for the first signal attenuating FET.
  • a thirteenth variable attenuation circuit of the present invention includes a first signal attenuation unit having a first signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit.
  • the first attenuation control circuit that controls the ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET, and the first signal attenuation FET
  • a second bias circuit section having a first bias circuit section for applying noise to the source terminal, and a second signal attenuating FET inserted between the signal path between the signal input section and the signal output section and the ground terminal.
  • a second attenuation control circuit for controlling the ON resistance of the second signal attenuation FET by supplying an attenuation control signal to the drain terminal of the second signal attenuation FET,
  • the second bias circuit section that applies a bias to the gate terminal of the signal attenuation FET, and the first bias circuit section and the ground terminal It has a connected capacity or capacity and switch.
  • the back gate of the first signal attenuation FET Preferably, a first resistor is connected between the first terminal and the ground terminal, and a second resistor is connected between the back gate section of the second signal attenuating FET and the ground terminal.
  • a high frequency radio circuit system includes a radio including at least one variable attenuation circuit including at least one of the variable attenuation circuits according to the present invention, at least one high frequency amplification circuit, and at least one oscillator.
  • the transmitter includes a transmitter and an antenna that is connected to the radio transmitter and transmits a radio frequency.
  • the path for signal leakage through the parasitic capacitance generated between the drain gate and the gate source of the signal attenuation FET is interrupted.
  • the isolation characteristic at the time of attenuation can be improved.
  • a resistor with a high resistance between the back gate of the signal attenuation FET and the substrate the path through which the signal leaks to the substrate through the back gate is blocked to improve the attenuation control characteristics. be able to.
  • FIG. 1 is a circuit diagram showing a circuit configuration of a variable attenuation circuit according to Embodiment 1 of the present invention.
  • Figure 2 shows a conventional example of a variable attenuation circuit fabricated using the GaAs process.
  • FIG. 3 is a circuit diagram showing a circuit configuration of a variable attenuation circuit according to Embodiment 2 of the present invention.
  • FIG. 4 is a circuit diagram showing a circuit configuration of the variable attenuation circuit according to the third embodiment of the present invention.
  • FIG. 5 is a block diagram showing a circuit configuration of the variable attenuation circuit according to the fourth embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a circuit configuration of the variable attenuation circuit according to the fourth embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of a high-frequency wireless transmission circuit system to which the present invention is applied.
  • FIG. 8 is a schematic diagram showing fluctuation of each bias value of the MOSFET with respect to temperature in the conventional variable attenuation circuit as shown in FIG.
  • FIG. 9 is a schematic diagram showing the attenuation amount of the variable attenuation circuit with respect to the control voltage in the conventional variable attenuation circuit as shown in FIG.
  • FIG. 10 is a schematic diagram showing fluctuations of each bias value of the MOSFET with respect to temperature in the variable attenuation circuit of FIGS. 1 and 4 in Example 1 and Example 3 of the present invention.
  • FIG. 11 is a schematic diagram showing the attenuation amount of the variable attenuation circuit with respect to the control voltage in the variable attenuation circuit of FIGS. 1 and 4 in Example 1 and Example 3 of the present invention.
  • FIG. 12 is a schematic diagram showing fluctuation of each bias value of the MOSFET with respect to temperature in the variable attenuation circuit of FIG. 3 in Example 2 of the present invention.
  • FIG. 13 is a schematic diagram showing the attenuation amount of the variable attenuation circuit with respect to the control voltage in the variable attenuation circuit of FIG. 3 in Example 2 of the present invention.
  • FIG. 14A is a diagram showing a simulation result of the attenuation with respect to the control voltage in the variable attenuation circuit of FIG. 4 and the conventional variable attenuation circuit in Example 3 of the present invention.
  • FIG. 14B shows a variable attenuation circuit of FIG. 4 in Example 3 of the present invention and a conventional variable attenuation circuit. It is a figure which shows the simulation result of the noise characteristic with respect to control voltage in an attenuation circuit.
  • FIG. 15A is a diagram showing a simulation result of attenuation with respect to control voltage in the variable attenuation circuit of FIG. 6 and the conventional variable attenuation circuit in Example 4 of the present invention.
  • FIG. 15B is a diagram showing simulation results of noise characteristics with respect to control voltage in the variable attenuation circuit in FIG. 6 and the conventional variable attenuation circuit in Example 4 of the present invention.
  • FIG. 16 is a block diagram showing a circuit configuration of a conventional variable attenuation circuit.
  • Embodiment 1 of the present invention is a variable attenuation circuit (integrated circuit) corresponding to the first, second, third, and fourth points of the problem. This will be described below with reference to FIG.
  • the variable attenuation circuit according to the first embodiment of the present invention shown in FIG. 1 is an attenuation circuit that attenuates a high frequency signal input from the signal input terminal 104 and outputs the attenuated signal from the signal output terminal 105.
  • a variable attenuation circuit that can be controlled from the attenuation control terminal 106 is assumed.
  • this variable attenuation circuit is assumed to be fabricated on, for example, a Si semiconductor substrate.
  • the variable attenuation circuit according to the present invention includes a signal attenuation MOSFET (signal attenuation element) 111 inserted in series between the signal input terminal 104 and the signal output terminal 105.
  • MOSFET signal attenuation element
  • the signal attenuation MOSFET 111 includes an attenuation unit 100, an attenuation amount control circuit unit 101 that controls the ON resistance of the signal attenuation MOSFET 111, and a source bias circuit unit 102 that applies a bias to the source of the signal attenuation MOSFET 111.
  • the high frequency signal is attenuated by an attenuation amount corresponding to the attenuation amount control signal generated by the amount control circuit unit 101.
  • First point force Attenuation control circuit unit 101 prevents noise component force S from entering the high-frequency signal line (the line from signal input terminal 104 to signal output terminal 105) via the gate of MOSFET 111 for signal attenuation. It is. Prevents leakage of high-frequency signals between the signal input terminal 104 and the signal output terminal 105 in the high attenuation state due to the influence of parasitic capacitance generated between the drain gate of the second-point force S and the MOSFET 111 for signal attenuation and between the gate and source. That is.
  • the source bias circuit unit 102 of this variable attenuation circuit generates the bias voltage using the source bias generation MOSFET 117 having the same threshold voltage / variation (temperature characteristic) as the signal attenuation MOSFET 111!
  • the manufacturing process of the signal attenuating MOSFET 111 has an effect of correcting variations in threshold voltage due to temperature fluctuations.
  • the signal attenuating MOSFET 111 of this variable attenuating circuit has a triple-well structure, and a resistor 124 having a high resistance value is additionally provided between the back gate portion and the substrate. The effect of the resistor 124 having this high resistance value is to prevent a signal from leaking to the substrate through the back gate.
  • the signal attenuating element for example, an N-channel MOS FET having a triple-well structure is suitable.
  • the signal attenuating MOSFET 111 is inserted in series in the signal path between the signal input terminal 104 and the signal output terminal 105 of the high frequency variable attenuating circuit, and between the signal input terminal 104 and the signal attenuating MOSFET 111.
  • the DC component is cut off and the high frequency
  • a DC blocking capacitor 112 that passes only the component is inserted, and a DC blocking capacitor 113 is inserted between the signal attenuation MOSFET 111 and the signal output terminal 105.
  • a resistor 124 having a high resistance value is inserted to block signal leakage.
  • the attenuation control circuit unit 101 is connected to the gate of the signal attenuation MOSFET 111.
  • the configuration of the attenuation control circuit unit 101 will be described.
  • the attenuation control resistor 115 and the attenuation control resistor 116 are connected in series.
  • the other end of the attenuation control resistor 115 is connected to the attenuation control terminal (Vc) 106, and the other end of the resistor 116 is connected.
  • One terminal is connected to the ground terminal.
  • a resistor 114 having a high resistance value that cuts off high frequency and allows only DC to pass. It is connected.
  • a capacitor 103 is added between the gate of the signal attenuating MOSFET 111 and the ground terminal.
  • the source bias circuit section 102 connected to the source terminal of the signal attenuating MOSFET 111 will be described.
  • the resistor 120 and the resistor 121 are connected in series, the other terminal of the resistor 120 is connected to the power supply voltage terminal (Vdd) 107, and the other terminal of the resistor 121 is connected to the ground terminal.
  • the gate of the source bias generating MOSFET 117 is connected to the connection portion between the resistor 120 and the resistor 121, and the source bias generating MOSFET 117 has the same manufacturing process and temperature variation variation as the signal attenuating MOSFET 111.
  • a resistor 118 is connected between the drain of the source bias generating MOSFET 117 and the power supply voltage terminal 107, and a resistor 119 is connected between the source of the source bias generating MOSFET 117 and the ground terminal. Also, a resistor 122 having a high resistance value that cuts off the high frequency and passes only DC is connected between the source of the source bias generating MOSFET 117 and the source of the signal attenuating MOSFET 111. A resistor 123 having a resistance value is connected between the drain of the MOSFET 111 for attenuating and high so that only a DC is allowed to pass through the high frequency!
  • wireless communication systems have become multiband and multicommunication systems!
  • multi-communication systems such as UMTS communication system and GSM communication system.
  • the UMTS communication system requires a transmission power variable range of 80 dB or more in the transmission circuit. Highly accurate transmission power control linearity is required.
  • the GSM communication system requires high noise characteristics.
  • the variable attenuation circuit used in the high-frequency radio transmission circuit block must satisfy the characteristics of these two communication methods. In that case, process variations and high linearity and noise characteristics are required regardless of temperature fluctuations. Explain how to satisfy each requirement!
  • FIG. 8 (A) and (B) are diagrams showing fluctuations of each voltage value with respect to the temperature of the variable attenuation circuit as shown in FIG. 2, and FIG. 9 is a diagram showing gain characteristics with respect to the control voltage.
  • the horizontal axis represents temperature and the vertical axis represents voltage.
  • the horizontal axis represents the attenuation control voltage Vc, and the vertical axis represents the gain of the variable attenuation circuit. It shows three control characteristics at normal temperature (for example, 25 ° C), low temperature lower than normal temperature, and high temperature higher than normal temperature.
  • Vg represents the gate potential of the signal attenuating GaAsFET 240 in FIG. 2
  • Vref is the potential applied to the source bias supply terminal 234 in FIG. 2, ie, the signal attenuating GaAsFET 240.
  • This represents the source potential
  • Vth represents the threshold voltage Vth of the signal attenuating GaAsFET 240 in FIG.
  • Vg – Vref – Vth in Fig. 8 (B) is the calculation result calculated using Vg, V ref and Vth shown in Fig. 8 (A).
  • the signal attenuation GaAsFET240 begins to operate at a small Vg, and the V force decreases to V. That
  • control characteristics have a large difference depending on the temperature as shown in Fig. 9, and the linearity deteriorates.
  • FIGS. 10A and 10B are diagrams showing the variation of each voltage value with respect to the temperature of the variable attenuation circuit when the source bias circuit unit 102 as shown in FIG. 1 is used
  • FIG. FIG. 6 is a diagram showing a gain characteristic with respect to a control voltage at that time. 10 and 11, the vertical axis and The horizontal axis is the same as in Fig. 8 and Fig. 9, respectively.
  • the source bias voltage Vref is reduced as the temperature rises.
  • Vg—Vref—Vth is always constant and the temperature Regardless of the fluctuation (low temperature, normal temperature, high temperature), the same control characteristics can be drawn as shown in Fig. 11.
  • Vg is the gate voltage of the MOSFET 111 for signal attenuation.
  • the gate potential of the source bias generating MOSFET 117 of the source bias circuit unit 102 in FIG. 1 is determined by resistance division between the resistor 120 and the resistor 121.
  • the source bias generation MOSFET 117 has the characteristic that the threshold voltage increases as the temperature rises.Therefore, the threshold voltage increases as the temperature rises, while the gate potential increases. Since it is constant, the source potential decreases and the current flowing through the source bias generating MOSFET 117 decreases. As a result, the source bias potential Vref of the signal attenuating MOSFET 111 is decreased, and the threshold voltage fluctuation can be corrected.
  • a continuous control voltage from 0 V to the power supply voltage potential is input to the attenuation control terminal (Vc) 106 of the attenuation control circuit unit 101 in FIG.
  • This control voltage is divided by the attenuation control resistor 115 and the attenuation control resistor 116 and input to the gate of the signal attenuation MOSFET 111.
  • the signal attenuating MOSFET 111 is used with a drain-source bias of 0 V.
  • the attenuation of the pass characteristic from the signal input terminal 104 to the signal output terminal 105 also varies. Further, by dividing the voltage of the attenuation control terminal 106 by the attenuation control resistor 115 and the attenuation control resistor 116, an arbitrary control characteristic can be realized.
  • the capacitor 103 is inserted between the gate of the signal attenuating MOSFET 111 and the ground terminal. By inserting the capacitor 103, the signal leakage path between the drain gate and the gate source of the MOSFET 111 for signal attenuation is cut off to ensure linearity.
  • variable attenuation circuit When the variable attenuation circuit is realized with the same Si substrate as described above, for example, the impedance between the back gate of the signal attenuating MOSFET 111 and the substrate is lowered due to the low substrate resistance. Through this part, the signal leaks to the board, and the attenuation determined by the ON resistance of the MOSF ET111 for signal attenuation cannot be obtained, and linearity cannot be ensured.
  • the signal attenuation MOSFET 111 is manufactured in a triple-well structure, and a resistor 124 having a high resistance value is inserted between the back gate of the signal attenuation MOSFET 111 and the substrate. Thus, the path through which the signal leaks is blocked to ensure linearity.
  • this variable attenuation circuit has improved noise characteristics due to the addition of the capacitor 103.
  • the attenuation amount control circuit unit 101 is usually composed of a resistor. Therefore, the noise generated by this resistor enters through the gate of the signal attenuating MOSFET 111 and is applied to the high-frequency signal coming from the signal input terminal 104, deteriorating the noise characteristics, for example, GSM communication system reception band noise, etc. No longer meet the requirements.
  • the addition of the capacitor 103 reduces the noise generated in the attenuation control circuit unit 101 to the capacitor.
  • the noise characteristics can be improved in any state of the variable attenuation circuit which is cut off by the filter effect of 103 and resistor 114 and continuously changes.
  • the manufacturing process is performed. 'It is possible to correct the threshold variation of the signal attenuating MOSFET 111 due to variations in temperature fluctuations, eliminate the signal leakage in the signal attenuating MOSFET 111 in any attenuation state, and improve the linearity. Came. Furthermore, the noise generated in the attenuation control circuit unit 101 can be reduced, and the noise characteristics can be improved.
  • variable attenuation circuit compatible with the multi-band 'multi-communication system can be realized by the Si process, and it can be made into a single chip with other wireless circuit blocks.
  • the source bias circuit unit 102, the capacitor 103, and the resistor 124, or only two of them may be connected.
  • the MOSFET may be a P-channel MOSFET.
  • any structure that can achieve the same effect without using a triple-well structure is acceptable.
  • the second embodiment of the present invention is a variable attenuation circuit (integrated circuit) corresponding to the first, second, third, and fourth points of the problem. This will be described below with reference to FIG.
  • the variable attenuation circuit according to the second embodiment of the present invention shown in FIG. 3 is an attenuation circuit that attenuates a high-frequency signal input from the signal input terminal 304 and outputs the attenuated signal from the signal output terminal 305, and the attenuation amount is external.
  • a variable attenuation circuit that can be controlled by the attenuation control terminal 306, which is a terminal.
  • this variable attenuation circuit is assumed to be fabricated on, for example, a Si semiconductor substrate.
  • variable attenuation circuit is a signal attenuation MOSFET (signal attenuation) inserted between the signal path between the signal input terminal 304 and the signal output terminal 305 and the ground terminal.
  • Element) 311 a signal attenuation unit 311 that controls the ON resistance of the signal attenuation MOSFET 311, and a gate bias circuit unit 302 that applies bias to the gate of the signal attenuation MOSFET 311.
  • the signal attenuation MOSFET 311 attenuates the high-frequency signal with an attenuation amount corresponding to the attenuation amount control signal generated by the attenuation amount control circuit unit 301.
  • a capacitor 303 is added between the gate of the signal attenuation MOSFET 311 and the ground terminal. The effect of the capacitor 303 is to prevent the noise component force S generated in the gate bias circuit section 302 from entering the high-frequency signal line via the gate of the MOSFET 311 for signal attenuation.
  • the gate bias circuit section 302 of this variable attenuation circuit creates a bias by using a gate bias generation MOSFET 318 having the same threshold voltage fluctuation as the signal attenuation MOSFET 311, thereby reducing the signal attenuation. This has the effect of correcting the threshold voltage due to the manufacturing process and temperature fluctuation of the MOSFET 311 and correcting the variation of the value voltage.
  • the signal attenuating MOSFET 311 of this variable attenuating circuit has a triple wel A resistor 325 having a high resistance value is added between the back gate portion and the substrate. The effect of the resistor 325 having this high resistance value is to prevent a signal from leaking to the substrate through the back gate.
  • variable attenuation circuit the circuit connection of the variable attenuation circuit will be specifically described.
  • the signal attenuating element is preferably an N-channel MOSFET having a triple-well structure, for example.
  • the MOSFET 311 for signal attenuation is inserted between the signal path between the signal input terminal 304 and the signal output terminal 305 of the high-frequency variable attenuation circuit and the ground terminal, and the signal attenuation terminal 300 and the signal attenuation unit 300 are connected to each other. Between them, a DC blocking capacitor 312 that blocks the DC component and passes only the high frequency component is inserted, and a DC blocking capacitor 313 is also inserted between the signal attenuating unit 300 and the signal output terminal 305.
  • Reference numeral 314 indicates an impedance adjusting resistor, and reference numerals 315 and 316 indicate DC breaking capacities.
  • Reference numeral 324 denotes a source bias generating resistor. Between the back gate portion of the signal attenuating MOSFET 311 and the substrate, a resistor 325 having a high resistance value is inserted to block signal leakage!
  • an attenuation amount control circuit unit 301 is connected to the drain of the signal attenuation MOSFET 311.
  • the attenuation control circuit unit 301 is connected to a resistor 317 having a high resistance value that cuts high frequency and allows only DC to pass between the attenuation control terminal (Vc) 306 and the drain of the signal attenuation MOS FET 311! / Has a structure to speak! /
  • the gate bias circuit unit 302 connected to the gate of the signal attenuating MOSFET 311 will be described.
  • Resistor 319 and resistor 320 are connected in series, the other terminal of resistor 319 is connected to power supply voltage terminal (Vdd) 307, and the other terminal of resistor 320 is connected to the ground terminal.
  • the gate of the gate bias generating MOSFET 318 is connected to the connection between the resistor 319 and the resistor 320, and this gate bias generating MOSFET 318 has the same manufacturing process as the signal attenuating MOSFET 311 'temperature variation variation.
  • a resistor 321 is connected between the drain of the MOSFET 318 for generating the gate bias and the power supply voltage terminal (Vdd) 307, and a resistor 322 is connected between the source of the MOSFET 318 for generating the gate bias and the ground terminal.
  • a resistor 323 having a high resistance value that cuts off high frequency and allows only DC to pass is connected between the drain of the gate bias generating MOSFET 318 and the gate of the signal attenuating MOSFET 311.
  • signal attenuation A capacitor 303 is added between the gate of the MOSFET 311 and the ground terminal.
  • Fig. 3 A method for realizing highly accurate linearity regardless of process variations and temperature fluctuations in the second embodiment will be described.
  • the difference between Fig. 3 and Fig. 1 is whether the attenuation control circuit is connected to the gate or the drain.In Fig. 3, the attenuation control circuit is connected to the drain.
  • the bias circuit unit is connected to the gate.
  • FIGS. 12 (A) and 12 (B) are graphs showing changes in each voltage value with respect to the temperature of the variable attenuation circuit as shown in FIG. 3, and FIG. 13 is a gain with respect to the control voltage at that time. It is a diagram showing the characteristics.
  • Vref represents the gate potential of the signal attenuating MOSFET 311 in FIG. 3
  • Vc represents the drain potential of the signal attenuating MOSFET 311
  • Vth is the threshold voltage of the signal attenuating MOSFET 311! /
  • Vref—Vc—Vth in FIG. 12B is a calculation result calculated using Vref, Vc, and Vth shown in FIG.
  • Vref—Vc—Vth>0 the FET starts to operate, the ON resistance begins to decrease gradually, and the attenuation decreases gradually.
  • Vref is reduced as the temperature rises.
  • Vref—Vc—Vth is always constant, resulting in temperature fluctuations. Regardless, the same control characteristics can be drawn as shown in FIG.
  • the gate potential of the MOSFET 318 for generating the gate bias in the gate bias circuit section 302 in FIG. 3 is determined by resistance division between the resistor 319 and the resistor 320.
  • the MOSFET 318 for gate bias generation has the characteristic that the threshold voltage increases as the temperature rises, like the MOSFET 311 for signal attenuation. Therefore, the threshold voltage increases as the temperature rises, while the gate potential remains constant. Therefore, the source potential decreases and the current flowing through the MOS bias 318 for generating the gate bias occurs.
  • the voltage drop due to the bias resistor 321 also decreases, the drain potential of the gate bias generating MOSFET 318 increases, the gate bias potential of the signal attenuating MOSFET 311 increases, and threshold voltage fluctuation correction can be realized.
  • a continuous control voltage from 0 V to the power supply voltage potential is input to the attenuation control terminal (Vc) 306 of the attenuation control circuit unit 301 in FIG.
  • This control voltage is input to the drain potential of the MOSFET 311 for attenuation control.
  • the signal attenuating MOSFET 311 is used with a drain-source bias of 0 V.
  • the ON resistance is the largest, and as the drain potential decreases, the ON resistance gradually decreases and the drain potential force S0V minimizes ON resistance.
  • the ON resistance changes, the attenuation of the pass characteristic from the signal input terminal 304 to the signal output terminal 305 also changes.
  • the signal between the back gate of the MOSFET 111 for signal attenuation and the substrate is low due to the low substrate resistance. Leaks to the board and the attenuation determined by the ON resistance of MOSFET 311 for signal attenuation cannot be obtained, and linearity cannot be ensured.
  • the MOSFET 311 is manufactured in a triple-well structure, and a high-resistance resistor is inserted between the back gate of the MOSFET 311 and the substrate to block the signal leakage path. And the linearity is ensured.
  • this variable attenuation circuit has improved noise characteristics by adding a capacitor 303.
  • the gate bias circuit section 302 that performs value voltage compensation is generally composed of a resistor and a transistor. Therefore, noise generated by these resistors and transistors enters through the gate of the MOSFET 311 for signal attenuation, and is applied to the high-frequency signal that enters from the signal input terminal 304, deteriorating the noise characteristics. For example, the reception band of the GSM communication system The noise and other requirements are not met.
  • the noise generated in the gate bias circuit 302 can be cut off by the filter effect of the capacitor and the resistance, and the noise characteristics can be improved in any state of the continuously changing variable attenuation circuit.
  • the manufacturing process 'It is possible to correct the threshold variation of the signal attenuation MOSFET 311 due to variations in temperature, and to eliminate signal leakage in the signal attenuation MOSFET 311 in any attenuation state, improving the linearity. did it.
  • noise generated in the gate bias circuit section 302 that performs threshold voltage compensation can be reduced, and noise characteristics can be improved.
  • a variable attenuation circuit compatible with multi-band and multi-communication systems can be realized with the Si process, making it possible to make a single chip with other wireless circuit blocks.
  • the MOSFET may be a P-channel MOSFET. In addition, even if it is not a triple wel structure, it is sufficient if the same effect can be exhibited.
  • Example 3 of the present invention is a variable attenuation circuit (integrated circuit) corresponding to the first, second, third, fourth, and fifth points of the problem. This will be described below with reference to FIG.
  • the variable attenuation circuit according to the third embodiment of the present invention shown in FIG. 4 is an attenuation circuit that attenuates a high-frequency signal input from the signal input terminal 404 and outputs it from the signal output terminal 405, and the attenuation amount is external.
  • a variable attenuation circuit that can be controlled from an attenuation control terminal 406, which is a terminal, is assumed.
  • this variable attenuation circuit is assumed to be fabricated on, for example, a Si semiconductor substrate.
  • variable attenuation circuit in the present invention has a signal attenuation MOSFET (signal attenuation element) 411 inserted in series between the signal input terminal 404 and the signal output terminal 405. It has an attenuation unit 400, an attenuation amount control circuit unit 401 that controls the ON resistance of the signal attenuation MOSFET 411, and a source bias circuit unit 402 that applies a bias to the source of the signal attenuation MOSFET 411.
  • the high frequency signal is attenuated by an attenuation amount corresponding to the attenuation amount control signal generated by the amount control circuit unit 401.
  • a capacitor 403 is added between the gate of the signal attenuation MOSFET 411 and the ground terminal.
  • the effect of this capacity 403 can be broadly divided into two points.
  • First point Attenuation control circuit block Noise component force S generated in 401, prevention of mixing into high frequency signal line (line from signal input terminal 404 to signal output terminal 405) via gate of MOSFET 411 for signal attenuation It is.
  • Second-point force S high-attenuation state due to parasitic capacitance generated between drain gate and gate source of MOSFET411 for signal attenuation This is to prevent a high frequency signal from leaking between the signal input terminal 404 and the signal output terminal 405.
  • the source bias circuit section 402 of this variable attenuating circuit creates a bias voltage by using the source bias generating MOSFET 417 having the same threshold voltage fluctuation / temperature characteristics as the signal attenuating MOSFET 411! As a result, the manufacturing process of the signal attenuating MOSFET 411 has an effect of correcting variations in threshold voltage due to temperature fluctuations.
  • the signal attenuating MOSFET 411 of the variable attenuating circuit has a triple well structure, and a resistor 424 having a high resistance value is additionally provided between the back gate portion and the substrate.
  • the effect of the resistor 424 having the high resistance value is to prevent a signal from leaking to the substrate through the back gate.
  • This variable attenuation circuit includes a capacitor 425 and a switch 426 between the connection between the resistor 422 for supplying the source bias to the MOSFET 411 for signal attenuation and the resistor 423 for supplying the drain bias and the ground terminal. Naoki IJ circuit power S has been added.
  • the effect of the capacitor 425 and the switch 426 is that a high-frequency signal is supplied in the signal input terminal 404 in a high attenuation state via a resistor inserted between the drain and source of the signal attenuation MOSFET 411 to supply the source bias and the drain bias. Is to prevent leakage to the signal output terminal 405. In other words, signal leakage is prevented by dividing the resistor and grounding at high frequency. Insert a switch to eliminate the signal leakage in the low attenuation state where the signal passes, so that the capacity is not visible in the low attenuation state.
  • the switch 426 is an analog switch, mainly a MOSFET.
  • control circuit for the switch (MOSFET) 426 for example, the gate potential of the MOSFET is fixed and the source / drain terminal of the MOSFET is connected to the attenuation control terminal 406 through a resistor as described above. Performs continuous on / off operation.
  • MOSFET switch
  • the gate potential of the MOSFET is fixed and the source / drain terminal of the MOSFET is connected to the attenuation control terminal 406 through a resistor as described above. Performs continuous on / off operation.
  • the circuit connection of the variable attenuation circuit will be specifically described below.
  • a signal attenuating element for example, an N-channel MOS FET having a triple-well structure is suitable.
  • the signal attenuating MOSFET 411 is inserted in series in the signal path between the signal input terminal 404 and the signal output terminal 405 of the high-frequency variable attenuating circuit, and between the signal input terminal 404 and the signal attenuating MOSFET 411.
  • the DC blocking capacitor 412 that blocks the DC component and passes only the high frequency component is inserted, and the DC blocking capacitor 413 is also inserted between the signal attenuation MOSFET 411 and the signal output terminal 405. Yes.
  • a resistor 424 having a high resistance value for blocking signal leakage is inserted! /.
  • an attenuation control circuit unit 401 is connected to the gate of the signal attenuation MOSFET 411.
  • the configuration of the attenuation control circuit unit 401 will be described.
  • Attenuation control resistor 415 and attenuation control resistor 416 are connected in series, and the other terminal of attenuation control resistor 415 is connected to attenuation control terminal (Vc) 406 for attenuation control.
  • the other terminal of resistor 416 is connected to the ground terminal.
  • a resistor 414 having a high resistance value that blocks high frequency and allows only DC to pass.
  • a capacitor 403 is added between the gate of the signal attenuation MOSFET 411 and the ground terminal.
  • the source bias circuit portion 402 connected to the source terminal of the signal attenuating MOSFET 411 will be described.
  • the resistor 420 and the resistor 421 are connected in series, the other terminal of the resistor 420 is connected to the power supply voltage terminal (Vdd) 407, and the other terminal of the resistor 421 is connected to the ground terminal.
  • the gate of the source bias generating MOSFET 417 is connected to the connection portion between the resistor 420 and the resistor 421, and this source bias generating MOSFET 417 has the same manufacturing process as the signal attenuating MOSFET 411, “temperature variation variation.
  • a resistor 418 is connected between the drain of the source bias generating MOSFET 417 and the power supply voltage terminal 407, and a resistor 419 is connected between the source of the source bias generating MOSFET 417 and the ground terminal.
  • a resistor 422 having a high resistance value that cuts off the high frequency and passes only DC is connected between the source of the source bias generating MOSFET 417 and the source of the signal attenuating MOSFET 411.
  • a resistor 423 having a resistance value is connected between the source of the signal and the drain of the MOSFET 411 for signal attenuation.
  • a series circuit of a capacitor 425 and a switch 426 is added between the connection between the resistor 422 that supplies the source bias to the MOSFE T411 for signal attenuation and the resistor 423 that supplies the drain bias and the ground terminal.
  • Fig. 10 is a diagram showing the variation of each voltage value with respect to the temperature of the variable attenuation circuit when the source bias circuit unit 402 as shown in Fig. 1 is used, and Fig. 11 shows the control voltage at that time.
  • FIG. 6 is a diagram showing gain characteristics for the same.
  • Vref is reduced as the temperature rises.
  • Vg—Vref—Vth is always constant regardless of temperature fluctuations, whether the temperature increases and the threshold voltage Vth increases or the temperature decreases and the threshold voltage Vth decreases.
  • the same control characteristics can be drawn.
  • the circuit operation for realizing the variation correction as shown in Fig. 11 will be described using the variable attenuation circuit of Fig. 4 as V.
  • the gate potential of the source bias generating MOSFET 417 in the source bias circuit section 402 in FIG. 4 is determined by resistance division between the resistor 420 and the resistor 421. Since the source bias generation MOSFET 417 has the characteristic that the threshold voltage increases as the temperature rises the same as the signal attenuation MOSFET 411, the threshold voltage increases as the temperature rises, while the gate potential increases. Since it is constant, the source potential decreases and the current flowing through the source bias generating MOSFET 417 decreases. As a result, the source bias potential of the signal attenuating MOSFET 411 is reduced, and correction of the threshold voltage fluctuation can be realized.
  • a continuous control voltage from 0 V to the power supply voltage potential is input to the attenuation control terminal (Vc) 406 of the attenuation control circuit unit 401 in FIG.
  • This control voltage is divided by the attenuation control resistor 415 and the attenuation control resistor 416 and input to the gate of the signal attenuation MOSFET 411.
  • the signal attenuating MOSFET 411 is used with a drain-source bias of 0 V.
  • the ON resistance is the largest and the ON resistance gradually decreases as the gate potential increases.
  • the ON resistance is minimized.
  • any voltage can be controlled by dividing with resistors 415 and 416. Characteristics are feasible.
  • the impedance between the back gate of the signal attenuation MOSFET 411 and the substrate is lowered due to the low substrate resistance.
  • the signal leaks to the board, and the attenuation determined by the ON resistance of the signal attenuation MOSF ET411 cannot be obtained, and linearity cannot be ensured.
  • the signal attenuating MOSFET 411 is manufactured in a triple-well structure, and a resistor having a high resistance value is inserted between the back gate of the signal attenuating MOSFET 411 and the substrate. The path through which the signal leaks is blocked to ensure linearity.
  • the voltage generated by the source bias circuit 402 is supplied to the source via the source bias generating resistor 422 having a high resistance value, and is supplied to the drain via the drain bias generating resistor 423 having a high resistance value.
  • the method is generally used. In this case, in a high attenuation state, a signal leaks from the drain to the source via the resistor, and there is a problem that the attenuation amount cannot be as high as the attenuation characteristic when the MOSFE T411 for signal attenuation is cut off.
  • a series circuit of a capacitor 425 and a switch 426 is connected between the connection between the source bias generating resistor 422 and the drain bias generating resistor 423 of the signal attenuating MOSFET 411 and the ground terminal.
  • the switch 426 In the high isolation state, when the switch 426 is turned on, a signal leaks from the input terminal 404 to the output terminal 405 via the source bias generating resistor 422 and the drain bias generating resistor 423. It can cut off and improve the attenuation characteristics at the time of high isolation.
  • switch 426 In the passing state, switch 426 is set to OFF. This prevents the signal from leaking when passing due to the influence of the capacity 425.
  • FIG. 14A shows the results (attenuation control characteristics) of circuit simulation using the variable attenuation circuit of FIGS. 4 and 2.
  • symbol E1 indicates the characteristics of the conventional circuit (Fig. 2)
  • symbol E2 indicates the characteristics of the circuit of the present invention (Fig. 4).
  • Vc l.8V
  • the capacitor 403 added to the gate of the signal attenuating MOSFET 411, the resistor 424 added to the back gate of the signal attenuating MOSFET 411, and the source bias circuit 402 are added.
  • a series circuit consisting of a capacitance 425 and a switch 426 an attenuation close to the original performance of the signal attenuation MOSFET 411 was obtained, and the attenuation control characteristics were greatly improved.
  • variable attenuation circuit has improved noise characteristics due to the addition of the capacitor 403.
  • the attenuation amount control circuit unit 401 is usually composed of a resistor. Therefore, noise generated by this resistor enters through the gate of the MOSFET 411 for signal attenuation and is applied to the high-frequency signal that enters from the signal input terminal 404 to deteriorate the noise characteristics, for example, GSM communication system reception band noise, etc. No longer meet the requirements.
  • the noise generated in the attenuation control circuit unit 401 is reduced by adding the capacitor 403.
  • Fig. 14B shows the results (noise characteristics) of a circuit simulation using the variable attenuation circuit of Figs. 4 and 2.
  • symbol F1 indicates the characteristics of the conventional circuit (Fig. 2)
  • symbol F2 indicates the characteristics of the circuit of the present invention (Fig. 4).
  • Example 3 the addition of the capacitor 403 greatly improved the noise characteristics.
  • the variable bias circuit having the signal attenuating MOSFET 411 includes the source bias circuit 402, the capacitor 403, the resistor 424 added to the back gate, the capacitor 425 added to the source bias circuit, and the switch 426.
  • the source bias circuit 402 the capacitor 403, the resistor 424 added to the back gate
  • the capacitor 425 added to the source bias circuit
  • the switch 426 By adding a series circuit, it becomes possible to compensate for variations in the threshold value of the MOSFET 411 for signal attenuation due to variations in temperature variations, and the signal attenuation MOSFET 411 and other resistors can be compensated for in any attenuation state. Signal leakage could be eliminated and linearity could be improved.
  • the noise generated by the attenuation control circuit unit 401 can be reduced, and the noise characteristics can be improved.
  • a variable attenuation circuit compatible with multi-band and multi-communication systems can be realized by the Si process, and it can be integrated into a single chip with other radio circuit blocks.
  • the MOSFET may be a P-channel MOSFET. Moreover, it is sufficient that the same effect can be exhibited even if the triple-well structure is not used.
  • the source bias circuit additional capacitor 425 and the switch 425 in series may be provided with only the source bias circuit additional capacitor 425.
  • variable attenuation circuit integrated circuit
  • FIG. 6 shows a variable attenuation circuit using at least one of the variable attenuation circuit of FIG. 1, the variable attenuation circuit of FIG. 3, or the variable attenuation circuit of FIG.
  • the circuit configuration and operating principle will be described.
  • variable attenuation circuit using GaAs or the like is often fabricated independently on a substrate. In that case, both input and output must be terminated at 50 ⁇ at high frequencies.
  • reference numerals 1601 to 1604 denote variable resistors (variable attenuation circuits), respectively.
  • Vc is the attenuation control terminal, Vref;! To Vref4 is the bias terminal, IN is the input terminal, and OUT is the output terminal.
  • the variable resistance part inserted in parallel (shunt) is terminated at 50 ⁇ for both input and output from the high attenuation state to the low attenuation state.
  • both input and output need not be terminated at 50 ⁇ .
  • the input side is a digital circuit such as an inverter
  • the input impedance of the variable attenuation circuit is low.
  • the input impedance of the variable attenuation circuit is lowered, and a large driving force is required for the preceding circuit. In such a case, as shown in Figure 5.
  • a ladder-type variable attenuation circuit is desirable.
  • 501 and 502 are variable attenuation circuits as shown in FIG. 1 or FIG. 4
  • 503 and 504 are variable attenuation circuits as shown in FIG. 3
  • 505 is a signal input terminal
  • 506 is a signal output terminal
  • 507 Is an attenuation control terminal.
  • FIG. 6 shows a variable attenuation circuit using the variable attenuation circuit of FIGS. 4 and 3 in the circuit configuration of FIG.
  • the high-frequency signal that has entered from the signal input terminal 601 is attenuated by the attenuation operation units 611, 612, 613, and 614 and is output from the signal output terminal 602.
  • the attenuation operation units 611, 612, 613, and 614 are a combination of the signal attenuation unit and the attenuation amount control circuit unit in FIG. 4 or FIG.
  • a common source bias generation circuit 615 shown in FIG. 4 is added as a threshold voltage variation correction circuit for the MOSFET for signal attenuation of the attenuation operation unit 611 and the attenuation operation unit 613.
  • the gate bias generation circuit 616 shown in Fig. 3 was added as a correction circuit for the threshold voltage variation of the 612 signal attenuating MO SFET, and the variation of the threshold voltage of the signal attenuating MOSFET in the attenuation unit 614 was corrected.
  • Attenuation operation unit 611 and attenuation operation unit 613 signals A series circuit of a capacitor and a switch is inserted between the connection between the source bias generation resistor and drain bias generation resistor of the attenuation MOSFET and the ground terminal. Yes.
  • FIG. 15A and 15B are circuit simulations using the variable attenuation circuit of FIG. It is the result of having gone.
  • Fig. 15A shows the attenuation control characteristic
  • Fig. 15B shows the noise characteristic.
  • symbol G1 indicates the characteristics of the conventional circuit (for example, the circuit of FIG. 2)
  • symbol G2 indicates the characteristics of the circuit of the present invention (FIG. 4)
  • symbol HI indicates the characteristics of the conventional circuit (for example, the circuit of FIG. 2)
  • symbol H2 indicates the characteristics of the circuit of the present invention (FIG. 6).
  • At least one of the capacitances added between the gate of each signal attenuation MOSFET and the ground terminal, or a high between the back gate and the substrate. It is added to at least one of the resistors having the resistance value, at least one of the threshold voltage variation correction circuits of the signal attenuation MOSFET, or the source bias generating resistor and the drain bias generating resistor. As long as at least one of the capacities is added, all need not be connected. In addition, the connection of the parallel (shunt) signal attenuator and the series (series) signal attenuator does not have to be in this order, and any number of stages may be used.
  • the MOSFET may be a P-channel MOSFET. Moreover, it is sufficient that the same effect can be exhibited even if the triple-luel structure is not used.
  • FIG. 7 is a block diagram showing an example of a high-frequency radio transmission circuit system (apparatus) using the variable attenuation circuit of FIG. 1, FIG. 3, FIG. 4, or FIG. The circuit configuration and operating principle will be described.
  • this high-frequency wireless transmission circuit system divides the oscillation signal of an oscillator (VCO) 701 by a divider 702, and a buffer (Buffer) composed of an inverter or the like. ) After passing through 703, the gain is controlled by variable attenuation circuit (Variable Attenuator) 704 The signal is attenuated, amplified by a driver amplifier (Driver) 705, further amplified by a high frequency amplifier (PA) 706, and transmitted from an antenna 707.
  • VCO oscillator
  • Buffer buffer
  • Variable Attenuator variable attenuation circuit
  • variable attenuation circuit 704 of the high-frequency wireless transmission circuit system in FIG. 7 By applying the present invention to the variable attenuation circuit 704 of the high-frequency wireless transmission circuit system in FIG. 7, even when the variable attenuation circuit is constructed on the same Si semiconductor substrate as other circuit blocks, the variation characteristics A variable attenuation circuit with excellent linearity, isolation characteristics, and noise characteristics can be realized, and a system with good pass characteristics can be obtained.
  • the configuration example of the high-frequency wireless transmission circuit system is not limited to the above, and a wireless transmission device and a wireless transmission device each including at least one variable attenuation circuit, at least one oscillator, and at least one amplifier. Any wireless transmission circuit system having an antenna connected to and capable of transmitting and receiving at least one radio frequency may be used.
  • the present invention is useful for attenuation of high-frequency signals in various wireless communication devices.

Landscapes

  • Networks Using Active Elements (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

Provided is a variable attenuation circuit, which has linear attenuation control characteristics and excellent noise characteristics and is strong against variance on a Si substrate. The variable attenuation circuit is provided with a signal attenuation section (400) having a variable attenuation MOSFET (411) in series with a signal line which connects a signal input terminal (404) with a signal output terminal (405); an attenuation quantity control circuit section (401) for controlling the gate potential of the variable attenuation MOSFET (411); and a source bias circuit section (402) for biasing the variable attenuation MOSFET (411). The source bias circuit section (402) has a MOSFET (417), and the source potential of the MOSFET (417) is applied to the source potential of the variable attenuation MOSFET (411). Furthermore, a resistor (424) is added between the back gate and the substrate of the variable attenuation MOSFET (411), a capacitor (403) is added between a gate and a grounding terminal, and a circuit connecting the capacitor (425) and a switch (426) in series is added between the source bias circuit section (402) and the grounding terminal.

Description

明 細 書  Specification
可変減衰回路  Variable attenuation circuit
技術分野  Technical field
[0001] 本発明は、可変減衰回路およびそれを用いた高周波無線回路システムに関するも のである。特に、本発明の可変減衰回路は、各種の無線通信機器において高周波 信号の減衰に用いられるものであって、線形な減衰制御特性の実現、ノイズ特性の 向上、製造プロセスや温度による素子の電気特性のばらつき補正等を図ったもので ある。  [0001] The present invention relates to a variable attenuation circuit and a high-frequency wireless circuit system using the same. In particular, the variable attenuation circuit of the present invention is used for attenuation of high-frequency signals in various wireless communication devices. It realizes linear attenuation control characteristics, improves noise characteristics, and electrical characteristics of elements depending on the manufacturing process and temperature. This is intended to compensate for variations in the quality.
背景技術  Background art
[0002] 電界効果トランジスタを用いた半導体集積回路は、近年、通信分野の高周波回路 用に開発が進められている。この半導体集積回路ブロックの一つに減衰量制御、す なわち利得制御の必要な減衰回路がある。  In recent years, semiconductor integrated circuits using field effect transistors have been developed for high-frequency circuits in the communication field. One of these semiconductor integrated circuit blocks is an attenuation circuit that requires attenuation control, that is, gain control.
[0003] 図 2は、 GaAsFETを用いた従来の可変減衰回路の構成を示す回路図である(特 開 2005— 27062号公報参照)。図 2に示すように、従来の可変減衰回路は、信号入 力端子(IN) 231から入力された高周波信号が直列に揷入された信号減衰用 GaAs FET240を含む信号減衰部 260により減衰されて、信号出力端子(OUT) 232より 出力される。また、信号入力端子 231から入力された高周波信号は、信号入力端子 231と接地端子(GND) 236との間に挿入された信号減衰用 GaAsFET245を含む 信号減衰部 261、信号出力端子 232と接地端子 237との間に挿入された信号減衰 用 GaAsFET251を含む信号減衰部 262によっても減衰されて、信号出力端子 232 より出力される。  FIG. 2 is a circuit diagram showing a configuration of a conventional variable attenuation circuit using a GaAsFET (see JP 2005-27062 A). As shown in FIG. 2, the conventional variable attenuating circuit is attenuated by a signal attenuating unit 260 including a signal attenuating GaAs FET 240 in which a high frequency signal inputted from a signal input terminal (IN) 231 is inserted in series. Output from the signal output terminal (OUT) 232. The high frequency signal input from the signal input terminal 231 includes a signal attenuation GaAsFET 245 inserted between the signal input terminal 231 and the ground terminal (GND) 236. The signal attenuation unit 261, the signal output terminal 232, and the ground terminal The signal is attenuated by a signal attenuating unit 262 including a signal attenuating GaAsFET 251 inserted between the signal output terminal 232 and the signal attenuating unit 237.
[0004] この際、減衰量制御端子 (Vc) 233から入力される減衰量制御信号によって信号減 衰用 GaAsFET240、 245、 251の減衰量を制御できる。減衰量制御端子 233と信 号減衰用 GaAsFET240のゲートとの間にはゲートバイアス供給用抵抗 255が、減 衰量制御端子 233と信号減衰用 GaAsFET245のソースとの間にはドレインバイアス 供給用抵抗 259が、減衰量制御端子 233と信号減衰用 GaAsFET251のソースとの 間にはドレインバイアス供給用抵抗 256が、それぞれ設けられている。 [0005] また、信号減衰用 GaAsFET240のソースバイアス供給端子(Vref 1) 234と信号減 衰用 GaAsFET240のソースとの間にはソースバイアス供給用抵抗 239が、信号減 衰用 GaAsFET245、 251のゲートバイアス供給端子(Vref2) 235と信号減衰用 Ga AsFET245、 251のゲートとの間にはそれぞれゲートバイアス供給用抵抗 257、 25 8が設けられている。 At this time, the attenuation amount of the signal attenuation GaAsFETs 240, 245, and 251 can be controlled by the attenuation amount control signal input from the attenuation amount control terminal (Vc) 233. A resistor 255 for supplying a gate bias is provided between the attenuation control terminal 233 and the gate of the GaAsFET 240 for signal attenuation, and a resistor 222 for supplying a drain bias is provided between the attenuation control terminal 233 and the source of the GaAsFET 245 for signal attenuation 259. However, a drain bias supply resistor 256 is provided between the attenuation control terminal 233 and the source of the signal attenuation GaAsFET 251. [0005] In addition, a source bias supply resistor 239 is provided between the source bias supply terminal (Vref 1) 234 of the signal attenuation GaAsFET 240 and the source of the signal attenuation GaAsFET 240, and the gate bias of the signal attenuation GaAsFETs 245 and 251. Gate bias supply resistors 257 and 258 are provided between the supply terminal (Vref2) 235 and the gates of the signal attenuation Ga AsFETs 245 and 251, respectively.
[0006] 信号減衰用 GaAsFETの高減衰時の通過特性の周波数依存性を軽減するために 、信号減衰用 GaAsFET240、 245、 251のソースとドレインとの間には、それぞれ、 ドレインバイアス供給用抵抗 241、ソース電位供給用抵抗 246、ソース電位供給用抵 抗 252が設けられている。  [0006] In order to reduce the frequency dependence of the pass characteristic of the signal attenuation GaAsFET at the time of high attenuation, a drain bias supply resistor 241 is provided between the source and drain of the signal attenuation GaAsFET 240, 245, 251 respectively. A source potential supply resistor 246 and a source potential supply resistor 252 are provided.
[0007] 符号 238、 242、 243、 248、 249、 254はそれぞれ DC遮断容量を示し、符号 244 、 247、 250、 253はそれぞれ入出力整合用抵抗を示す。  Reference numerals 238, 242, 243, 248, 249, and 254 denote DC blocking capacities, and reference numerals 244, 247, 250, and 253 denote input / output matching resistors, respectively.
[0008] この可変減衰回路は、減衰量制御端子 233から供給される減衰量制御信号を、直 列に挿入された信号減衰用 GaAsFET240のゲート端子、シャントに揷入された信 号減衰用 GaAsFET245、 251のソース端子に接続することで、 1種類の減衰量制 御信号で 3箇所の減衰用 GaAsFET240、 245、 251を制御することを可能としてい  [0008] This variable attenuation circuit uses the attenuation control signal supplied from the attenuation control terminal 233, the signal attenuation GaAsFET 240 inserted in series, the signal attenuation GaAsFET 245 inserted in the shunt, By connecting to the 251 source terminal, it is possible to control three attenuation GaAsFETs 240, 245, 251 with one type of attenuation control signal.
[0009] また、可変減衰回路の状態として、低インピーダンス状態と高インピーダンス状態の [0009] In addition, as a state of the variable attenuation circuit, a low impedance state and a high impedance state
2つの状態のみならず、低インピーダンス状態から高インピーダンス状態まで連続的 にインピーダンス状態を変化させることを可能としている。一般に、可変減衰回路は、 高減衰状態から低減衰状態にわたって、その制御特性の線形性が要求される力、減 衰量制御端子 233の電圧値を連続的に変えることで、信号減衰用 GaAsFET240が 低抵抗で、信号減衰用 GaAsFET245、 251が高抵抗の低減衰状態から、信号減 衰用 GaAsFET240が高抵抗で、信号減衰用 GaAsFET245、 251が低抵抗の高 減衰状態まで所望の減衰量に制御可能であり、線形な制御特性を実現して!/、る。 特許文献 1 :特開 2005— 27062号公報  In addition to two states, it is possible to continuously change the impedance state from a low impedance state to a high impedance state. In general, a variable attenuation circuit has a signal attenuation GaAsFET 240 that is controlled by continuously changing the voltage at the attenuation control terminal 233, the force that requires linearity of its control characteristics from a high attenuation state to a low attenuation state. Low resistance, GaAsFET 245 and 251 for signal attenuation can be controlled to the desired attenuation from low attenuation state with high resistance to GaAsFET 240 for signal attenuation and high resistance to GaAsFET 245 and 251 for signal attenuation with low resistance. Realize linear control characteristics! Patent Document 1: Japanese Patent Laid-Open No. 2005-27062
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、近年、無線回路システムの規模は拡大の傾向をたどっており、従来 は、 GaAs基板など単独の基板上に構成されていた高周波可変減衰回路も、発振器 や混合器等の他の半導体回路と同一の Si半導体基板上に作製されるようになってき た。その結果、 GaAsプロセス等に比べると基板抵抗の低い Si基板上に高周波可変 減衰回路を作製する必要がでてきた。 [0010] However, in recent years, the scale of wireless circuit systems has been increasing. The high-frequency variable attenuation circuit configured on a single substrate such as a GaAs substrate has also been fabricated on the same Si semiconductor substrate as other semiconductor circuits such as oscillators and mixers. As a result, it has become necessary to fabricate a high-frequency variable attenuation circuit on a Si substrate that has a lower substrate resistance than GaAs processes.
[0011] また、近年の無線回路システムの小型化 ·多機能化に伴い、出力可変範囲の広い UMTS (Universal Mobile Telecommunication System)通信方式と厳格なノイズ特性 の要求される GSM(Global System for Mobile Communications)通信方式とのマルチ 通信方式に対応した無線回路を作製する必要が出てきたりしてきた。  [0011] In addition, with recent miniaturization and multi-functionalization of wireless circuit systems, the UMTS (Universal Mobile Telecommunication System) communication system with a wide output variable range and GSM (Global System for Mobile Communications), which requires strict noise characteristics, are required. ) It has become necessary to produce a wireless circuit that supports a multi-communication system.
[0012] 上記のような無線回路システムに対応した可変減衰回路を Si半導体プロセスにて 作製する場合、次の 5つの課題がある。  [0012] There are the following five problems when a variable attenuation circuit corresponding to the wireless circuit system as described above is manufactured by a Si semiconductor process.
[0013] 一点目は、 Si半導体基板で高周波回路を作製する場合、寄生容量の影響による 信号の漏れが問題となっている。可変減衰回路に関しても、高減衰状態において、 信号減衰用 MOSFETのドレイン ゲート間、およびゲート ソース間に発生する寄 生容量を介してドレインからソース側へ信号が漏れ、高減衰状態でのアイソレーショ ン特性を悪化させ、減衰制御特性を悪化させて!/、る。  [0013] First, when a high-frequency circuit is manufactured using a Si semiconductor substrate, signal leakage due to the influence of parasitic capacitance is a problem. Also in the variable attenuation circuit, in the high attenuation state, the signal leaks from the drain to the source side through the parasitic capacitance generated between the drain and gate of the MOSFET for signal attenuation and between the gate and source, and the isolation in the high attenuation state Deteriorate the characteristics and deteriorate the damping control characteristics!
[0014] 二点目は、制御回路で発生したノイズが高周波回路に混入することによりノイズ特 性が劣化することが問題となっている。可変減衰回路に関しても、制御回路で発生し たノイズが信号減衰用 MOSFETのゲートを介して高周波信号ラインに混入し、マル チ通信方式に対応した近年の厳しレゾィズ特性を満足しな!/、こと力 Sあげられる。  [0014] The second problem is that noise characteristics deteriorate due to noise generated in the control circuit mixed into the high-frequency circuit. Regarding the variable attenuation circuit, the noise generated in the control circuit is mixed into the high-frequency signal line via the gate of the signal attenuation MOSFET, and the recent severe resolution characteristics corresponding to the multi-communication system are not satisfied! Power S can be raised.
[0015] 三点目は、 Si半導体基板で作製する場合、基板抵抗成分が低いことの影響による 信号の漏れが問題となっている。可変減衰回路に関しても、高減衰状態において、 信号減衰用 MOSFETのバックゲートを介して基板に信号が漏れ、減衰制御特性を 悪化させている。  [0015] Third, in the case of manufacturing with a Si semiconductor substrate, there is a problem of signal leakage due to the low substrate resistance component. With regard to the variable attenuation circuit, in the high attenuation state, the signal leaks to the substrate through the back gate of the signal attenuation MOSFET, which deteriorates the attenuation control characteristics.
[0016] 四点目は、製造プロセスや温度変動によるばらつきの影響が挙げられる。可変減衰 回路に関しても、より厳しい線形性が要求されるようになり、製造プロセスや温度変動 による信号減衰用 MOSFETのしきい値電圧ばらつきによって減衰制御特性に関し て所望の線形性が満たさなくなるという問題がある。  [0016] The fourth point is the influence of variations due to manufacturing processes and temperature fluctuations. As for variable attenuation circuits, more stringent linearity is required, and there is a problem that the desired linearity is not satisfied with respect to attenuation control characteristics due to variations in threshold voltage of MOSFET for signal attenuation due to manufacturing process and temperature fluctuation. is there.
[0017] 五点目は、 Si半導体基板で高周波回路を作製する場合、抵抗の影響による信号の 漏れが問題となっている。可変減衰回路に関しても、ソースバイアス、ドレインバイァ ス供給のためと周波数特性の改善のためにソース ドレイン間に抵抗を追加する必 要があるが、高減衰状態において、この抵抗を介して信号がソース ドレイン間を伝 播し、減衰制御特性が悪化すると!/、う問題がある。 [0017] The fifth point is that when a high-frequency circuit is fabricated on a Si semiconductor substrate, the signal of Leakage is a problem. As for the variable attenuation circuit, it is necessary to add a resistor between the source and the drain in order to supply the source bias and drain bias and to improve the frequency characteristics. There is a problem if the attenuation control characteristics deteriorate!
[0018] したがって、本発明の目的は、線形な減衰制御特性、優れたノイズ特性をもち、製 造プロセスや温度による MOSFETのしきい値ばらつきに強い可変減衰回路および それを用いた高周波無線回路システムを提供することである。  [0018] Accordingly, an object of the present invention is to provide a variable attenuation circuit that has linear attenuation control characteristics and excellent noise characteristics, and is resistant to variations in MOSFET thresholds due to the manufacturing process and temperature, and a high-frequency radio circuit system using the same Is to provide.
課題を解決するための手段  Means for solving the problem
[0019] 第 1の発明の可変減衰回路は、上記課題の一点目、二点目、三点目、四点目を解 決した可変減衰回路である。この可変減衰回路は、信号入力部と信号出力部との間 の信号経路に直列に揷入された信号減衰用素子を有する信号減衰部と、信号減衰 用素子を制御する減衰量制御回路部と、信号減衰用素子の製造プロセスや温度変 動ばらつきを補正したバイアスを与えるバイアス回路部とを有し、信号減衰用素子と 減衰量制御回路との接続部と接地端子との間に容量を有し、信号減衰用素子は、減 衰量制御回路部で生成された減衰量制御信号に応じた減衰量で高周波信号の減 衰を行う構成を有している。  [0019] A variable attenuation circuit according to a first aspect of the present invention is a variable attenuation circuit in which the first, second, third, and fourth points of the above-mentioned problem have been solved. The variable attenuation circuit includes a signal attenuating unit having a signal attenuating element inserted in series in a signal path between the signal input unit and the signal output unit, an attenuation control circuit unit for controlling the signal attenuating element, And a bias circuit section that provides a bias that compensates for variations in the manufacturing process of the signal attenuating element and temperature variation, and has a capacitance between the connection between the signal attenuating element and the attenuation control circuit and the ground terminal. The signal attenuating element has a configuration for attenuating the high-frequency signal with an attenuation amount corresponding to the attenuation amount control signal generated by the attenuation amount control circuit unit.
[0020] 上記構成において、信号減衰用素子としては、一般に FET、特に MOSFETが好 ましい。信号減衰用素子を制御する減衰量制御回路部は、信号減衰用素子である 信号減衰用 FETのゲート端子に接続される。ノ^ァス回路部は、信号減衰用 FETと 同じ製造プロセス '温度変動ばらつきを持つ FETを用いて構成されて、ソースバイァ ス抵抗およびドレインバイアス抵抗を介して信号減衰用 FETのソース端子およびドレ イン端子に接続される。容量は信号減衰用 FETのゲート端子と接地端子との間に揷 入されている。また、信号減衰用 FETのゥエルはトリプルゥエル構造をしており、バッ クゲートと基板との間に高い抵抗値を有する抵抗が揷入されている。  [0020] In the above configuration, the signal attenuating element is generally preferably an FET, particularly a MOSFET. The attenuation control circuit section for controlling the signal attenuating element is connected to the gate terminal of the signal attenuating FET that is the signal attenuating element. The noise circuit section is made up of FETs that have the same manufacturing process as the signal attenuating FETs, with variations in temperature fluctuations, and the source terminals and drains of the signal attenuating FETs are connected via source bias resistors and drain bias resistors. Connected to the terminal. Capacitance is inserted between the gate terminal and ground terminal of the signal attenuation FET. The signal attenuating FET well has a triple well structure, and a resistor having a high resistance value is inserted between the back gate and the substrate.
[0021] この構成によれば、信号減衰用 FETのゲート端子と接地端子との間に容量を有し たことで、信号減衰用 FETのドレイン一ゲート間の容量、ゲート一ソース間の容量を 介して信号が漏れる経路を遮断し、高アイソレーション時の減衰特性を向上させるこ と力 Sできる。また同構成をとることにより、抵抗等で構成される減衰量制御回路部で発 生したノイズが信号減衰用 FETのゲートを介して高周波信号ラインに混入するのを 防ぎ、ノイズ特性を向上させることができる。その結果、一点目、二点目の課題が解 決できる。 [0021] According to this configuration, since the capacitance is provided between the gate terminal and the ground terminal of the signal attenuation FET, the capacitance between the drain and the gate of the signal attenuation FET and the capacitance between the gate and the source are increased. Therefore, it is possible to block the signal leakage path and improve the attenuation characteristics during high isolation. In addition, by adopting the same configuration, the attenuation control circuit unit composed of resistors, etc. Noise generated can be prevented from entering the high-frequency signal line via the gate of the signal attenuation FET, and noise characteristics can be improved. As a result, the first and second issues can be solved.
[0022] また、信号減衰用 FETのゥエルをトリプルゥエル構造にし、バックゲートと基板との 間に高!/、抵抗値を有する抵抗を揷入したことで、信号減衰用 FETのバックゲートを 介して基板に信号が漏れる経路を遮断し、減衰制御特性を向上させることができる。 その結果、三点目の課題が解決できる。  [0022] In addition, the signal attenuating FET has a triple-well structure, and a high resistance is inserted between the back gate and the substrate, so that the back gate of the signal attenuating FET is Thus, the path through which the signal leaks to the substrate can be blocked, and the attenuation control characteristic can be improved. As a result, the third problem can be solved.
[0023] さらに、信号減衰用 FETと同じ製造プロセス '温度変動のしきい値ばらつきを持つ F ETを用いて構成されたバイアス回路部で信号減衰用 FETにソースバイアスを与える ことで、信号減衰用 FETのしきい値の製造プロセスや温度ばらつきを補正することが できる。その結果、四点目の課題が解決できる。この場合、(ソース)バイアス回路部 で生成されるバイアス値は、信号減衰用 FETのしきい値電圧が製造プロセス '温度 変動によって増加したときには減少し、逆に信号減衰用 FETのしきい値電圧が減少 したときには増加するように制御されることが好ましい。  [0023] Furthermore, the same manufacturing process as the signal attenuating FET 'For signal attenuating by applying a source bias to the signal attenuating FET in the bias circuit configured using FET that has a threshold variation of temperature fluctuation The FET threshold manufacturing process and temperature variations can be corrected. As a result, the fourth problem can be solved. In this case, the bias value generated by the (source) bias circuit section decreases when the threshold voltage of the signal attenuation FET increases due to the manufacturing process' temperature fluctuation, and conversely the threshold voltage of the signal attenuation FET. It is preferably controlled so that it increases when the value decreases.
[0024] 上記の四点の改善効果を組み合わせることで、信号やノイズの漏れ経路の遮断、 およびしき!/、値電圧の安定化が達成でき、トランジスタの持つ本来の性能を生かすこ とが可能となる。その結果、連続的に変化する如何なる減衰状態においても線形な 減衰制御特性が実現でき、優れたノイズ特性を持ったばらつきに強い可変減衰回路 が実現できる。  [0024] By combining the above four points of improvement effects, signal and noise leakage paths can be blocked, and threshold values can be stabilized, making it possible to take advantage of the original performance of the transistor. It becomes. As a result, a linear attenuation control characteristic can be realized in any attenuation state that changes continuously, and a variable attenuation circuit that has excellent noise characteristics and is resistant to variations can be realized.
[0025] 第 2の発明の可変減衰回路は、上記課題の二点目、三点目、四点目を解決した可 変減衰回路である。この可変減衰回路は、信号入力部と信号出力部との間の信号経 路から接地端子に揷入された信号減衰用素子を有する信号減衰部と、信号減衰用 素子を制御する減衰量制御回路部と、信号減衰用素子の製造プロセスや温度ばら つきを補正したバイアスを与えるバイアス回路部とを有し、信号減衰用素子と減衰量 制御回路部との接続部と接地端子との間に容量を有し、信号減衰用素子は、減衰量 制御回路部で生成された減衰量制御信号に応じた減衰量で高周波信号の減衰を 行う構成を有している。  [0025] A variable attenuation circuit according to a second aspect of the present invention is a variable attenuation circuit that solves the second, third, and fourth points of the above problems. The variable attenuation circuit includes a signal attenuation unit having a signal attenuation element inserted into a ground terminal from a signal path between a signal input unit and a signal output unit, and an attenuation amount control circuit for controlling the signal attenuation element. And a bias circuit section that provides a bias that compensates for the manufacturing process and temperature variation of the signal attenuating element, and a capacitance is provided between the connection between the signal attenuating element and the attenuation control circuit section and the ground terminal. The signal attenuating element has a configuration for attenuating the high-frequency signal with an attenuation amount corresponding to the attenuation amount control signal generated by the attenuation amount control circuit unit.
[0026] 上記構成において、信号減衰用素子は一般に FETが好ましい。信号減衰用素子 を制御する減衰量制御回路部は、信号減衰用素子である信号減衰用 FETのソース 端子に接続される。ノ ィァス回路部は、信号減衰用 FETと同じ製造プロセス '温度変 動ばらつきを持つ FETを用いて構成されて、信号減衰用 FETのゲート端子に接続さ れる。容量は信号減衰用 FETのゲート端子と接地端子との間に挿入されている。ま た、信号減衰用 FETのゥエルはトリプルゥエル構造をしており、バックゲートと基板と の間に高!/、抵抗値を有する抵抗が揷入されて!/、る。 In the above configuration, the signal attenuating element is generally preferably an FET. Signal attenuation element The attenuation control circuit unit for controlling the signal is connected to the source terminal of the signal attenuating FET which is a signal attenuating element. The noise circuit section is configured using a FET that has the same manufacturing process as the signal attenuating FET and temperature variation variation, and is connected to the gate terminal of the signal attenuating FET. The capacitor is inserted between the gate terminal and the ground terminal of the signal attenuation FET. In addition, the signal attenuating FET has a triple-well structure, and a high resistance is inserted between the back gate and the substrate.
[0027] この構成によれば、信号減衰用 FETのゲート端子と接地端子との間に容量を有し たことで、抵抗等で構成されるゲートバイアス回路部で発生したノイズがゲートを介し て高周波信号ラインに混入するのを防ぎ、ノイズ特性を向上させることができる。その 結果、二点目の課題が解決できる。  [0027] According to this configuration, since the capacitance is provided between the gate terminal and the ground terminal of the signal attenuating FET, noise generated in the gate bias circuit unit configured by a resistor or the like passes through the gate. It is possible to prevent mixing in the high frequency signal line and improve noise characteristics. As a result, the second problem can be solved.
[0028] また、信号減衰用 FETのゥエルをトリプルゥエル構造にし、バックゲートと基板との 間に高!/、抵抗値を有する抵抗を揷入したことで、信号減衰用 FETのバックゲートを 介して基板に信号が漏れる経路を遮断し、減衰制御特性を向上させることができる。 その結果、三点目の課題が解決できる。  [0028] In addition, the signal attenuating FET has a triple-well structure, and a resistor having a high resistance is inserted between the back gate and the substrate. Thus, the path through which the signal leaks to the substrate can be blocked, and the attenuation control characteristic can be improved. As a result, the third problem can be solved.
[0029] さらに、信号減衰用 FETと同じ製造プロセス '温度変動のしきい値ばらつきを持つ F ETを用いて構成されたバイアス回路部で信号減衰用 FETにゲートバイアスを与える ことで、信号減衰用 FETのしきい値の製造プロセスや温度ばらつきを補正することが できる。その結果、四点目の課題が解決できる。この場合、(ゲート)バイアス回路部 で生成されるバイアス値は、信号減衰用 FETのしきい値電圧が製造プロセス '温度 変動によって増加したときには増加し、逆に信号減衰用 FETのしきい値電圧が減少 したときには減少するように制御されることが好ましい。  [0029] Furthermore, the same manufacturing process as the signal attenuating FET 'For signal attenuating by applying a gate bias to the signal attenuating FET in the bias circuit configured using FET with a threshold variation of temperature fluctuation The FET threshold manufacturing process and temperature variations can be corrected. As a result, the fourth problem can be solved. In this case, the bias value generated in the (gate) bias circuit section increases when the threshold voltage of the signal attenuation FET increases due to temperature fluctuations in the manufacturing process, and conversely the threshold voltage of the signal attenuation FET. It is preferable to control to decrease when the value decreases.
[0030] 上記の三点の改善効果を組み合わせることで、信号やノイズの漏れ経路の遮断、 およびしき!/、値電圧の安定化が達成でき、トランジスタの持つ本来の性能を生かすこ とが可能となる。その結果、連続的に変化する如何なる減衰状態においても線形な 減衰制御特性が実現でき、優れたノイズ特性を持ったばらつきに強い可変減衰回路 が実現できる。  [0030] By combining the above three improvement effects, signal and noise leakage paths can be blocked, and threshold values can be stabilized, making it possible to take advantage of the original performance of the transistor. It becomes. As a result, a linear attenuation control characteristic can be realized in any attenuation state that changes continuously, and a variable attenuation circuit that has excellent noise characteristics and is resistant to variations can be realized.
[0031] 第 3の発明の可変減衰回路は、上記課題の一点目、二点目、三点目、四点目、五 点目を解決した可変減衰回路である。この可変減衰回路は、信号入力部と信号出力 部との間の信号経路に直列に挿入された信号減衰用素子を有する信号減衰部と、 信号減衰用素子を制御する減衰量制御回路部と、信号減衰用素子の製造プロセス や温度ばらつきを補正したバイアスを与えるバイアス回路部とを有し、信号減衰用素 子と減衰量制御回路との接続部と接地端子との間に容量を有し、信号減衰用素子と ノ^ァス回路部との接続部と接地端子との間に容量または容量とスィッチを有し、信 号減衰用素子は、減衰量制御回路部で生成された減衰量制御信号に応じた減衰量 で高周波信号の減衰を行う構成を有して!/、る。 [0031] A variable attenuation circuit according to a third aspect of the present invention is a variable attenuation circuit that solves the first, second, third, fourth, and fifth points of the above-described problem. This variable attenuation circuit has signal input and signal output A signal attenuating unit having a signal attenuating element inserted in series in the signal path between the signal attenuating unit, an attenuation control circuit unit for controlling the signal attenuating element, and correcting the manufacturing process and temperature variation of the signal attenuating element A bias circuit section for applying a bias, a capacitance between a connection section between the signal attenuation element and the attenuation control circuit and the ground terminal, and a signal attenuation element and a noise circuit section. The signal attenuating element attenuates the high-frequency signal with an attenuation corresponding to the attenuation control signal generated by the attenuation control circuit. Have the configuration to do! /
[0032] 上記構成において、信号減衰用素子は一般に FETが好ましい。信号減衰用素子 を制御する減衰量制御回路部は、信号減衰用素子である信号減衰用 FETのゲート 端子に接続され、バイアス回路部は、信号減衰用 FETと同じ製造プロセス '温度変 動ばらつきを持つ FETを用いて構成されてソースバイアス抵抗、ドレインバイアス抵 抗を介して信号減衰用 FETのソース端子、ドレイン端子に接続される。信号減衰用 素子と減衰量制御回路との接続部に付加された容量は信号減衰用 FETのゲート端 子と接地端子との間に挿入されており、信号減衰用素子とバイアス回路部との接続 部に付加された容量は信号減衰用 FETのソースバイアス抵抗とドレインバイアス抵 抗との接続部と接地端子との間に挿入されている。また、信号減衰用 FETのゥエル はトリプルゥエル構造をしており、バックゲートと基板との間に高い抵抗値を有する抵 抗が揷入されている。 In the above configuration, the signal attenuating element is generally preferably an FET. The attenuation control circuit that controls the signal attenuating element is connected to the gate terminal of the signal attenuating FET that is the signal attenuating element, and the bias circuit is the same manufacturing process as the signal attenuating FET. It is configured using a FET that has a signal bias, and is connected to the source and drain terminals of the signal attenuating FET via a source bias resistor and drain bias resistor. The capacitance added to the connection between the signal attenuating element and the attenuation control circuit is inserted between the gate terminal of the signal attenuating FET and the ground terminal, and the connection between the signal attenuating element and the bias circuit section The capacitance added to the block is inserted between the connection between the source bias resistor and drain bias resistor of the signal attenuating FET and the ground terminal. The signal attenuating FET has a triple-well structure, and a resistor having a high resistance value is inserted between the back gate and the substrate.
[0033] この構成によれば、信号減衰用 FETのゲート端子と接地端子との間に容量を有し たことで、信号減衰用 FETのドレイン一ゲート間の容量、ゲート一ソース間の容量を 介して信号が漏れる経路を遮断し、高アイソレーション時の減衰特性を向上させるこ と力 Sできる。また同構成をとることにより、抵抗等で構成される減衰量制御回路部で発 生したノイズがゲートを介して高周波信号ラインに混入するのを防ぎ、ノイズ特性を向 上させること力 Sできる。その結果、一点目、二点目の課題が解決できる。  [0033] According to this configuration, the capacitance between the gate terminal and the ground terminal of the signal attenuating FET increases the capacitance between the drain and the gate of the signal attenuating FET and the capacitance between the gate and the source. Therefore, it is possible to block the signal leakage path and improve the attenuation characteristics during high isolation. In addition, by adopting the same configuration, it is possible to prevent noise generated in the attenuation control circuit unit composed of resistors, etc., from entering the high-frequency signal line via the gate and improve the noise characteristics. As a result, the first and second problems can be solved.
[0034] また、信号減衰用 FETのゥエルをトリプルゥエル構造にし、信号減衰用 FETのバッ クゲートと基板との間に高い抵抗値を有する抵抗を揷入したことで、バックゲートを介 して基板に信号が漏れる経路を遮断し、減衰制御特性を向上させることができる。そ の結果、三点目の課題が解決できる。 さらに、信号減衰用 FETと同じ製造プロセス ·温度変動によるしきい値ばらつきを持 つ FETを用いて構成されたバイアス回路部で信号減衰用 FETのソースバイアスを与 えることで、信号減衰用 FETのしきい値の製造プロセスや温度ばらつきを補正するこ とができる。その結果、四点目の課題が解決できる。この場合、(ソース)バイアス回路 部で生成されるバイアス値は、信号減衰用 FETのしきい値電圧が製造プロセス '温 度変動によって増加したときには減少し、逆に信号減衰用 FETのしきい値電圧が減 少したときには増加するように制御されることが好ましい。 [0034] In addition, the signal attenuating FET has a triple-well structure, and a resistor having a high resistance value is inserted between the back gate of the signal attenuating FET and the substrate. A path through which a signal leaks to the substrate is blocked, and the attenuation control characteristic can be improved. As a result, the third problem can be solved. In addition, the same manufacturing process as the signal attenuating FET · By providing a source bias for the signal attenuating FET in the bias circuit configured using a FET that has a threshold variation due to temperature fluctuations, the signal attenuating FET The threshold manufacturing process and temperature variations can be corrected. As a result, the fourth problem can be solved. In this case, the bias value generated by the (source) bias circuit decreases when the threshold voltage of the signal attenuation FET increases due to temperature fluctuations in the manufacturing process, and conversely the threshold value of the signal attenuation FET. It is preferable that the voltage is controlled so as to increase when the voltage decreases.
[0035] またさらに、信号減衰用 FETのソースバイアス抵抗とドレインバイアス抵抗との接続 部と接地端子との間に容量または容量とスィッチ(の直列回路)を有したことで、ソー スバイアス抵抗、ドレインバイアス抵抗を介して、入力端子から出力端子に信号が漏 れる経路を遮断し、高アイソレーション時の減衰特性を向上させることができる。その 結果、五点目の課題が解決できる。  [0035] Furthermore, since a capacitor or a capacitor and a switch (a series circuit) are provided between the connection portion of the source bias resistor and the drain bias resistor of the signal attenuation FET and the ground terminal, the source bias resistor, the drain The path through which the signal leaks from the input terminal to the output terminal can be blocked via the bias resistor, and the attenuation characteristic at the time of high isolation can be improved. As a result, the fifth problem can be solved.
[0036] 前記五点の改善効果を組み合わせることで、第 1の発明の可変減衰回路よりもさら に信号の漏れ経路を遮断でき、第 1の発明の回路と同等のノイズの漏れ経路の遮断 、しきい値電圧の安定化の達成が実現でき、減衰特性、ノイズ特性などトランジスタの 持つ本来の性能を最大限生かすことが可能となる。その結果、連続的に変化する如 何なる減衰状態においても線形な減衰制御特性が実現でき、優れたノイズ特性を持 つたばらつきに強い可変減衰回路が実現できる。  [0036] By combining the improvement effects of the above five points, the signal leakage path can be cut off more than the variable attenuation circuit of the first invention, and the noise leakage path equivalent to the circuit of the first invention can be cut off. The stabilization of the threshold voltage can be achieved, and the original performance of the transistor, such as attenuation characteristics and noise characteristics, can be maximized. As a result, a linear attenuation control characteristic can be realized in any attenuation state that changes continuously, and a variable attenuation circuit that has excellent noise characteristics and is resistant to variations can be realized.
[0037] 第 4の発明の高周波無線回路システムは、少なくとも一つの第 1または第 2または第  [0037] A high-frequency radio circuit system according to a fourth aspect of the present invention includes at least one first, second, or second
3の発明の可変減衰回路と少なくとも一つの発振器と少なくとも一つの高周波増幅器 とを備えた無線送信装置と、無線送信装置に接続されて無線周波数を送受信する 少なくとも一つのアンテナとを備えている。  A wireless transmission device including the variable attenuation circuit according to the third aspect of the invention, at least one oscillator, and at least one high-frequency amplifier, and at least one antenna connected to the wireless transmission device for transmitting and receiving a radio frequency.
[0038] この構成によれば、第 1、第 2または第 3の発明と同様の効果を奏する。  [0038] According to this configuration, the same effects as those of the first, second or third invention can be obtained.
[0039] 以下、請求項毎に説明する。  [0039] Each claim will be described below.
[0040] 本発明の第 1の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された信号減衰用素子を有する信号減衰部と、信号減衰用素子に減衰 量制御信号を与える減衰量制御回路部と、信号減衰用素子にバイアスを与えるバイ ァス回路部と、信号減衰用素子と減衰量制御回路部との接続部と接地端子との間に 接続された容量とを備えて!/、る。 [0040] A first variable attenuation circuit of the present invention includes a signal attenuator having a signal attenuating element inserted in series in a signal path between a signal input unit and a signal output unit, and a signal attenuating element. Attenuation control circuit section for supplying an attenuation control signal, bias circuit section for applying a bias to the signal attenuation element, and a connection between the signal attenuation element and the attenuation control circuit section and the ground terminal. With connected capacity!
[0041] 本発明の第 1の可変減衰回路においては、信号減衰用素子が FETからなり、減衰 量制御回路部は FETのゲート端子に減衰量制御信号を与えて FETの ON抵抗を制 御し、バイアス回路部は FETのソース端子にバイアスを与え、容量は FETのゲート端 子と接地端子との間に接続されてレ、ること力 S好ましレ、。  [0041] In the first variable attenuation circuit of the present invention, the signal attenuating element is an FET, and the attenuation control circuit section applies an attenuation control signal to the gate terminal of the FET to control the ON resistance of the FET. The bias circuit section applies a bias to the source terminal of the FET, and the capacitance is connected between the gate terminal of the FET and the ground terminal.
[0042] 本発明の第 2の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された信号減衰用 FETを有する信号減衰部と、信号減衰用 FETのグー ト端子に減衰量制御信号を与えて信号減衰用 FETの ON抵抗を制御する減衰量制 御回路部と、信号減衰用 FETのソース端子にバイアスを与えるバイアス回路部とを 備え、ノ^ァス回路部は、信号減衰用 FETのしきい値電圧ばらつきを補償するバイ ァス用 FETを有する。  [0042] The second variable attenuation circuit of the present invention includes a signal attenuator having a signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit, and a signal attenuating FET. An attenuation control circuit that controls the ON resistance of the signal attenuating FET by giving an attenuation control signal to the gate terminal, and a bias circuit that applies a bias to the source terminal of the signal attenuating FET. The circuit section has a bias FET that compensates for variations in the threshold voltage of the signal attenuating FET.
[0043] 本発明の第 3の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された信号減衰用 FETを有する信号減衰部と、信号減衰用 FETのグー ト端子に減衰量制御信号を与えて信号減衰用 FETの ON抵抗を制御する減衰量制 御回路部と、信号減衰用 FETのソース端子にバイアスを与えるバイアス回路部と、信 号減衰用 FETのバックゲート部と基板との間に接続された抵抗とを備える。  [0043] The third variable attenuation circuit of the present invention includes a signal attenuator having a signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit, and a signal attenuating FET. Attenuation control circuit that controls the ON resistance of the signal attenuation FET by applying an attenuation control signal to the gout terminal, a bias circuit that applies a bias to the source terminal of the signal attenuation FET, and a signal attenuation FET And a resistor connected between the back gate portion and the substrate.
[0044] 本発明の第 4の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された信号減衰用 FETを有する信号減衰部と、信号減衰用 FETのグー ト端子に減衰量制御信号を与えて信号減衰用 FETの ON抵抗を制御する減衰量制 御回路部と、信号減衰用 FETのソース端子にバイアスを与えるバイアス回路部と、バ ィァス回路部と接地端子との間に接続された容量もしくは容量とスィッチとを備える。  [0044] A fourth variable attenuation circuit of the present invention includes a signal attenuation unit having a signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit, and a signal attenuation FET. Attenuation control circuit that controls the ON resistance of the signal attenuation FET by applying an attenuation control signal to the gate terminal, a bias circuit that applies a bias to the source terminal of the signal attenuation FET, and a bias circuit A capacitor or a capacitor and a switch connected to the ground terminal are provided.
[0045] 本発明の第 5の可変減衰回路は、信号入力部と信号出力部との間の信号経路に F ETが揷入接続されてこの FETのゲート端子に与えられる信号によって信号入力部 に与えられた信号の減衰量を制御して出力する信号減衰部と、ゲート端子に信号を 与えて FETの ON抵抗値を異ならせる減衰量制御回路部と、 FETのソース端子に一 端を接続した抵抗素子の他端と接地端子との間に第 1の容量素子を接続し、この抵 抗素子を介して直流電圧を与えるバイアス回路部と、 FETのバックゲート部と接地端 子との間に接続された抵抗とを備え、ゲート端子と接地端子との間に第 2の容量素子 を接続している。 [0045] In the fifth variable attenuation circuit of the present invention, FET is inserted into the signal path between the signal input unit and the signal output unit, and the signal applied to the gate terminal of this FET is applied to the signal input unit. A signal attenuator that controls and outputs the attenuation of a given signal, an attenuation control circuit that applies a signal to the gate terminal to vary the ON resistance value of the FET, and a terminal connected to the source terminal of the FET A first capacitive element is connected between the other end of the resistive element and the ground terminal, and a bias circuit section that applies a DC voltage via the resistive element is connected between the back gate section of the FET and the ground terminal. And a second capacitor element between the gate terminal and the ground terminal. Is connected.
[0046] 本発明の第 6の可変減衰回路は、信号入力部と信号出力部との間の信号経路と接 地端子との間に挿入された信号減衰用素子を有する信号減衰部と、  [0046] A sixth variable attenuation circuit of the present invention includes a signal attenuation unit having a signal attenuation element inserted between a signal path between the signal input unit and the signal output unit and the ground terminal,
信号減衰用素子に減衰量制御信号を与える減衰量制御回路部と、  An attenuation control circuit unit for providing an attenuation control signal to the signal attenuation element;
信号減衰用素子にバイアスを与えるバイアス回路部と、  A bias circuit section for applying a bias to the signal attenuating element;
信号減衰用素子とバイアス回路部との接続部と接地端子との間に接続された容量 とを備えている。  And a capacitor connected between a connection portion between the signal attenuating element and the bias circuit portion and a ground terminal.
[0047] 本発明の第 6の可変減衰回路においては、信号減衰用素子が FETからなり、減衰 量制御回路部は FETのドレイン端子に減衰量制御信号を与えて FETの ON抵抗を 制御し、バイアス回路部は FETのゲート端子にバイアスを与え、容量は FETのゲート 端子と接地端子との間に接続されてレ、ること力 S好ましレ、。  [0047] In the sixth variable attenuation circuit of the present invention, the signal attenuating element comprises a FET, and the attenuation control circuit unit applies an attenuation control signal to the drain terminal of the FET to control the ON resistance of the FET, The bias circuit section applies a bias to the gate terminal of the FET, and the capacitance is connected between the gate terminal of the FET and the ground terminal.
[0048] 本発明の第 7の可変減衰回路は、信号入力部と信号出力部との間の信号経路と接 地端子との間に挿入された信号減衰用 FETを有する信号減衰部と、信号減衰用 FE Tのドレイン端子に減衰量制御信号を与えて信号減衰用 FETの ON抵抗を制御する 減衰量制御回路部と、信号減衰用 FETのゲート端子にバイアスを与えるバイアス回 路部とを備え、バイアス回路部は、信号減衰用 FETのしきい値電圧ばらつきを補償 するバイアス用 FETを有する。  [0048] A seventh variable attenuation circuit of the present invention includes a signal attenuation unit including a signal attenuation FET inserted between a signal path between the signal input unit and the signal output unit and a ground terminal, and a signal Provided with an attenuation control circuit that controls the ON resistance of the signal attenuation FET by giving an attenuation control signal to the drain terminal of the attenuation FET and a bias circuit that applies a bias to the gate terminal of the signal attenuation FET The bias circuit section has a bias FET that compensates for variations in the threshold voltage of the signal attenuating FET.
[0049] 本発明の第 8の可変減衰回路は、信号入力部と信号出力部との間の信号経路と接 地端子との間に挿入された信号減衰用 FETを有する信号減衰部と、信号減衰用 FE Tのドレイン端子に減衰量制御信号を与えて信号減衰用 FETの ON抵抗を制御する 減衰量制御回路部と、信号減衰用 FETのゲート端子にバイアスを与えるバイアス回 路部と、信号減衰用 FETのバックゲート部と基板との間に接続された抵抗とを備える  [0049] An eighth variable attenuation circuit of the present invention includes a signal attenuation unit having a signal attenuation FET inserted between a signal path between a signal input unit and a signal output unit and a ground terminal, and a signal Attenuation control circuit that controls the ON resistance of the signal attenuation FET by applying an attenuation control signal to the drain terminal of the attenuation FET, a bias circuit that applies a bias to the gate terminal of the signal attenuation FET, and a signal Provided with a resistor connected between the back gate of the attenuating FET and the substrate
[0050] 本発明の第 9の可変減衰回路は、信号入力部と信号出力部との間の信号経路と交 流接地との間に第 1の容量素子と FETの電流経路端子対が直列に揷入接続されて 第 1の容量素子と FETの電流経路の一端との接続部に与えられる信号によって信号 入力部に与えられた信号の減衰量を制御して出力する信号減衰部と、 FETの一端 に信号を与えて FETの ON抵抗値を異ならせる減衰量制御回路部と、 FETのゲート 端子に抵抗素子を介して直流電圧を与えるバイアス回路部と、 FETのバックゲート部 と接地端子との間に接続された抵抗とを備え、ゲート端子と接地端子との間に第 2の 容量素子を接続したことを特徴とする。 [0050] In the ninth variable attenuation circuit of the present invention, the first capacitive element and the FET current path terminal pair are connected in series between the signal path between the signal input section and the signal output section and the AC ground. A signal attenuator that controls the amount of attenuation of the signal applied to the signal input by the signal applied to the connection between the first capacitor element and one end of the current path of the FET that is inserted and connected, and the FET Attenuation control circuit that applies a signal to one end to vary the ON resistance of the FET, and the gate of the FET A bias circuit section for applying a DC voltage to the terminal via a resistance element; a resistor connected between the back gate section of the FET and the ground terminal; and a second capacitive element between the gate terminal and the ground terminal. Is connected.
[0051] 本発明の第 10の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に挿入された第 1の信号減衰用素子を有する第 1の信号減衰部と、第 1の信号 減衰用素子に減衰量制御信号を与える第 1の減衰量制御回路部と、第 1の信号減 衰用素子にバイアスを与える第 1のバイアス回路部と、第 1の信号減衰用素子と第 1 の減衰量制御回路部との接続部と接地端子との間に接続された第 1の容量と、信号 入力部と信号出力部との間の信号経路と接地端子との間に挿入された第 2の信号減 衰用素子を有する第 2の信号減衰部と、第 2の信号減衰用素子に減衰量制御信号を 与える第 2の減衰量制御回路部と、第 2の信号減衰用素子にバイアスを与える第 2の ノ ィァス回路部と、第 2の信号減衰用素子と第 2のバイアス回路部との接続部と接地 端子との間に接続された第 2の容量とを備えている。  [0051] A tenth variable attenuation circuit according to the present invention includes a first signal attenuation unit having a first signal attenuation element inserted in series in a signal path between a signal input unit and a signal output unit; A first attenuation control circuit for supplying an attenuation control signal to the first signal attenuation element, a first bias circuit for applying a bias to the first signal attenuation element, and a first signal attenuation Between the first capacitor connected between the connection between the element and the first attenuation control circuit section and the ground terminal, and between the signal path between the signal input section and the signal output section and the ground terminal. A second signal attenuating unit having a second signal attenuating element inserted; a second attenuation control circuit for supplying an attenuation control signal to the second signal attenuating element; and a second signal attenuating unit. A second noise circuit section for applying a bias to the device, a connection between the second signal attenuating element and the second bias circuit section, and grounding And a second capacitor connected between the child.
[0052] 本発明の第 10の可変減衰回路においては、第 1の信号減衰用素子が第 1の FET 力、らなり、第 1の減衰量制御回路部は第 1の FETのゲート端子に減衰量制御信号を 与えて第 1の FETの ON抵抗を制御し、第 1のバイアス回路部は第 1の FETのソース 端子にバイアスを与え、第 1の容量は第 1の FETのゲート端子と接地端子との間に接 続され、第 2の信号減衰用素子が第 2の FETからなり、第 2の減衰量制御回路部は 第 2の FETのドレイン端子に減衰量制御信号を与えて第 2の FETの ON抵抗を制御 し、第 2のバイアス回路部は第 2の FETのゲート端子にバイアスを与え、第 2の容量 は第 2の FETのゲート端子と接地端子との間に接続されていることが好ましい。  [0052] In the tenth variable attenuation circuit of the present invention, the first signal attenuating element is composed of the first FET force, and the first attenuation control circuit unit is attenuated to the gate terminal of the first FET. The first bias circuit block applies a bias to the source terminal of the first FET, and the first capacitor is grounded with the gate terminal of the first FET. The second signal attenuating element is composed of the second FET, and the second attenuation control circuit section applies the attenuation control signal to the drain terminal of the second FET to provide the second FET. The ON resistance of the FET is controlled, the second bias circuit section applies a bias to the gate terminal of the second FET, and the second capacitor is connected between the gate terminal of the second FET and the ground terminal. Preferably it is.
[0053] 本発明の第 11の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された第 1の信号減衰用 FETを有する第 1の信号減衰部と、第 1の信号 減衰用 FETのゲート端子に減衰量制御信号を与えて第 1の信号減衰用 FETの ON 抵抗を制御する第 1の減衰量制御回路部と、第 1の信号減衰用 FETのソース端子に ノ ィァスを与える第 1のバイアス回路部と、信号入力部と信号出力部との間の信号経 路と接地端子との間に挿入された第 2の信号減衰用 FETを有する第 2の信号減衰部 と、第 2の信号減衰用 FETのドレイン端子に減衰量制御信号を与えて第 2の信号減 衰用 FETの ON抵抗を制御する第 2の減衰量制御回路部と、第 2の信号減衰用 FE Tのゲート端子にバイアスを与える第 2のバイアス回路部とを備え、第 1のバイアス回 路部は、第 1の信号減衰用 FETのしきい値電圧ばらつきを補償する第 1のバイアス 用 FETを有し、 [0053] An eleventh variable attenuation circuit of the present invention includes a first signal attenuation unit having a first signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit. The first attenuation control circuit that controls the ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET, and the first signal attenuation FET A second bias circuit section having a first bias circuit section for applying noise to the source terminal, and a second signal attenuating FET inserted between the signal path between the signal input section and the signal output section and the ground terminal. Attenuation control signals are applied to the signal attenuator and the drain terminal of the second signal attenuating FET to reduce the second signal. The first bias circuit includes a second attenuation control circuit that controls the ON resistance of the attenuation FET, and a second bias circuit that applies a bias to the gate terminal of the second signal attenuation FET. Part has a first bias FET that compensates for variations in threshold voltage of the first signal attenuating FET,
第 2のバイアス回路部は、第 2の信号減衰用 FETのしきい値電圧ばらつきを補償す る第 2のバイアス用 FETを有する。  The second bias circuit section includes a second bias FET that compensates for variations in threshold voltage of the second signal attenuating FET.
[0054] 本発明の第 12の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された第 1の信号減衰用 FETを有する第 1の信号減衰部と、第 1の信号 減衰用 FETのゲート端子に減衰量制御信号を与えて第 1の信号減衰用 FETの ON 抵抗を制御する第 1の減衰量制御回路部と、第 1の信号減衰用 FETのソース端子に ノ ィァスを与える第 1のバイアス回路部と、信号入力部と信号出力部との間の信号経 路と接地端子との間に挿入された第 2の信号減衰用 FETを有する第 2の信号減衰部 と、第 2の信号減衰用 FETのドレイン端子に減衰量制御信号を与えて第 2の信号減 衰用 FETの ON抵抗を制御する第 2の減衰量制御回路部と、第 2の信号減衰用 FE Tのゲート端子にバイアスを与える第 2のバイアス回路部と、第 1の信号減衰用 FET のバックゲート部と基板との間に接続された第 1の抵抗と、第 2の信号減衰用 FETの ノ ックゲート部と基板との間に接続された第 2の抵抗とを備える。  [0054] A twelfth variable attenuation circuit according to the present invention includes a first signal attenuation unit having a first signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit. The first attenuation control circuit that controls the ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET, and the first signal attenuation FET A second bias circuit section having a first bias circuit section for applying noise to the source terminal, and a second signal attenuating FET inserted between the signal path between the signal input section and the signal output section and the ground terminal. A second attenuation control circuit for controlling the ON resistance of the second signal attenuation FET by supplying an attenuation control signal to the drain terminal of the second signal attenuation FET, A second bias circuit for applying a bias to the gate terminal of the signal attenuating FET, and a back gate for the first signal attenuating FET. Comprising a first resistor connected between the plate and a second resistor connected between the Roh Kkugeto and the substrate of the second signal attenuating FET.
[0055] 本発明の第 13の可変減衰回路は、信号入力部と信号出力部との間の信号経路に 直列に揷入された第 1の信号減衰用 FETを有する第 1の信号減衰部と、第 1の信号 減衰用 FETのゲート端子に減衰量制御信号を与えて第 1の信号減衰用 FETの ON 抵抗を制御する第 1の減衰量制御回路部と、第 1の信号減衰用 FETのソース端子に ノ ィァスを与える第 1のバイアス回路部と、信号入力部と信号出力部との間の信号経 路と接地端子との間に挿入された第 2の信号減衰用 FETを有する第 2の信号減衰部 と、第 2の信号減衰用 FETのドレイン端子に減衰量制御信号を与えて第 2の信号減 衰用 FETの ON抵抗を制御する第 2の減衰量制御回路部と、第 2の信号減衰用 FE Tのゲート端子にバイアスを与える第 2のバイアス回路部と、第 1のバイアス回路部と 接地端子との間に接続された容量もしくは容量とスィッチとを備える。  [0055] A thirteenth variable attenuation circuit of the present invention includes a first signal attenuation unit having a first signal attenuation FET inserted in series in a signal path between a signal input unit and a signal output unit. The first attenuation control circuit that controls the ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET, and the first signal attenuation FET A second bias circuit section having a first bias circuit section for applying noise to the source terminal, and a second signal attenuating FET inserted between the signal path between the signal input section and the signal output section and the ground terminal. A second attenuation control circuit for controlling the ON resistance of the second signal attenuation FET by supplying an attenuation control signal to the drain terminal of the second signal attenuation FET, The second bias circuit section that applies a bias to the gate terminal of the signal attenuation FET, and the first bias circuit section and the ground terminal It has a connected capacity or capacity and switch.
[0056] 本発明の第 13の可変減衰回路においては、第 1の信号減衰用 FETのバックゲート 部と接地端子との間に第 1の抵抗を接続し、第 2の信号減衰用 FETのバックゲート部 と接地端子との間に第 2の抵抗を接続することが好ましい。 In the thirteenth variable attenuation circuit of the present invention, the back gate of the first signal attenuation FET Preferably, a first resistor is connected between the first terminal and the ground terminal, and a second resistor is connected between the back gate section of the second signal attenuating FET and the ground terminal.
[0057] 本発明の高周波無線回路システムは、上記した本発明の可変減衰回路のいずれ かからなる少なくとも一つの可変減衰回路と、少なくとも一つの高周波増幅回路と、 少なくとも一つの発振器とを備えた無線送信装置と、無線送信装置に接続されて無 線周波数を送信するアンテナとを備えてレ、る。 [0057] A high frequency radio circuit system according to the present invention includes a radio including at least one variable attenuation circuit including at least one of the variable attenuation circuits according to the present invention, at least one high frequency amplification circuit, and at least one oscillator. The transmitter includes a transmitter and an antenna that is connected to the radio transmitter and transmits a radio frequency.
[0058] この発明の構成によれば、本発明の可変減衰回路と同様の効果を奏する。 [0058] According to the configuration of the present invention, the same effect as the variable attenuation circuit of the present invention can be obtained.
発明の効果  The invention's effect
[0059] 本発明の可変減衰回路および高周波無線回路システムによれば、信号減衰用 FE Tのドレイン ゲート間およびゲート ソース間に発生する寄生容量を介して信号が 漏れる経路を遮断することで、高減衰時のアイソレーション特性を改善できる。同時 に、減衰量制御回路部で発生するノイズ等がゲートを介して信号線に混入するのを 阻止すること力 Sできる。また、信号減衰用 FETのバックゲートと基板との間に高い抵 抗値を有する抵抗を揷入したことで、バックゲートを介して基板に信号が漏れる経路 を遮断し、減衰制御特性を向上させることができる。さらに、製造プロセスや温度変動 による信号減衰用 FETのしきい値ばらつきの影響を受けに《することができる。そし て、ソースバイアス抵抗とドレインバイアス抵抗との接続部と接地端子との間に容量ま たは容量とスィッチを有したことで、ソースバイアス抵抗、ドレインバイアス抵抗を介し て、入力端子から出力端子に信号が漏れる経路を遮断し、高アイソレーション時の減 衰特性を向上させることができる。上記の全ての効果によって、高減衰状態から低減 衰状態まで広範囲に渡って連続的に線形な減衰制御特性を実現することができる。 結果的に、従来、信号の漏れやノイズ、プロセスばらつきの影響により困難だったマ ルチバンド '·マルチ通信方式対応の可変減衰回路を Siプロセスにて作製することが 可能となった。  [0059] According to the variable attenuation circuit and the high-frequency radio circuit system of the present invention, the path for signal leakage through the parasitic capacitance generated between the drain gate and the gate source of the signal attenuation FET is interrupted. The isolation characteristic at the time of attenuation can be improved. At the same time, it is possible to prevent the noise generated in the attenuation control circuit unit from entering the signal line via the gate. In addition, by inserting a resistor with a high resistance between the back gate of the signal attenuation FET and the substrate, the path through which the signal leaks to the substrate through the back gate is blocked to improve the attenuation control characteristics. be able to. In addition, it can be affected by variations in the threshold value of the signal attenuation FET due to manufacturing processes and temperature fluctuations. In addition, since a capacitor or a capacitor and a switch are provided between the connection portion of the source bias resistor and the drain bias resistor and the ground terminal, the input terminal is connected to the output terminal via the source bias resistor and the drain bias resistor. It is possible to block the signal leakage path and improve the attenuation characteristics during high isolation. With all the above effects, linear attenuation control characteristics can be realized continuously over a wide range from a high attenuation state to a reduced attenuation state. As a result, it has become possible to fabricate a multi-band, multi-communication variable attenuation circuit that has been difficult due to signal leakage, noise, and process variations.
図面の簡単な説明  Brief Description of Drawings
[0060] [図 1]図 1は、本発明の実施例 1における可変減衰回路の一回路構成を示す回路図 である。  FIG. 1 is a circuit diagram showing a circuit configuration of a variable attenuation circuit according to Embodiment 1 of the present invention.
[図 2]図 2は、 GaAsプロセスを用いて作製された可変減衰回路の従来例を示す回路 図である。 [Figure 2] Figure 2 shows a conventional example of a variable attenuation circuit fabricated using the GaAs process. FIG.
[図 3]図 3は、本発明の実施例 2における可変減衰回路の一回路構成を示す回路図 である。  FIG. 3 is a circuit diagram showing a circuit configuration of a variable attenuation circuit according to Embodiment 2 of the present invention.
園 4]図 4は、本発明の実施例 3における可変減衰回路の一回路構成を示す回路図 である。 4] FIG. 4 is a circuit diagram showing a circuit configuration of the variable attenuation circuit according to the third embodiment of the present invention.
園 5]図 5は、本発明の実施例 4における可変減衰回路の一回路構成を示すブロック 図である。 5] FIG. 5 is a block diagram showing a circuit configuration of the variable attenuation circuit according to the fourth embodiment of the present invention.
園 6]図 6は、本発明の実施例 4における可変減衰回路の一回路構成を示す回路図 である。 6] FIG. 6 is a circuit diagram showing a circuit configuration of the variable attenuation circuit according to the fourth embodiment of the present invention.
園 7]図 7は、本発明を適用した高周波無線送信回路システムの一例を示すブロック 図である。 7] FIG. 7 is a block diagram showing an example of a high-frequency wireless transmission circuit system to which the present invention is applied.
[図 8]図 8は、図 2のような従来の可変減衰回路において、温度に対する MOSFET の各バイアス値の変動を表した模式図である。  [FIG. 8] FIG. 8 is a schematic diagram showing fluctuation of each bias value of the MOSFET with respect to temperature in the conventional variable attenuation circuit as shown in FIG.
[図 9]図 9は、図 2のような従来の可変減衰回路において、制御電圧に対する可変減 衰回路の減衰量を表した模式図である。  FIG. 9 is a schematic diagram showing the attenuation amount of the variable attenuation circuit with respect to the control voltage in the conventional variable attenuation circuit as shown in FIG.
[図 10]図 10は、本発明の実施例 1および実施例 3における図 1および図 4の可変減 衰回路において、温度に対する MOSFETの各バイアス値の変動を表した模式図で ある。  [FIG. 10] FIG. 10 is a schematic diagram showing fluctuations of each bias value of the MOSFET with respect to temperature in the variable attenuation circuit of FIGS. 1 and 4 in Example 1 and Example 3 of the present invention.
[図 11]図 11は、本発明の実施例 1および実施例 3における図 1および図 4の可変減 衰回路において、制御電圧に対する可変減衰回路の減衰量を表した模式図である  FIG. 11 is a schematic diagram showing the attenuation amount of the variable attenuation circuit with respect to the control voltage in the variable attenuation circuit of FIGS. 1 and 4 in Example 1 and Example 3 of the present invention.
[図 12]図 12は、本発明の実施例 2における図 3の可変減衰回路において、温度に対 する MOSFETの各バイアス値の変動を表した模式図である。 FIG. 12 is a schematic diagram showing fluctuation of each bias value of the MOSFET with respect to temperature in the variable attenuation circuit of FIG. 3 in Example 2 of the present invention.
[図 13]図 13は、本発明の実施例 2における図 3の可変減衰回路において、制御電圧 に対する可変減衰回路の減衰量を表した模式図である。  FIG. 13 is a schematic diagram showing the attenuation amount of the variable attenuation circuit with respect to the control voltage in the variable attenuation circuit of FIG. 3 in Example 2 of the present invention.
[図 14A]図 14Aは、本発明の実施例 3における図 4の可変減衰回路と従来の可変減 衰回路において、制御電圧に対する減衰量のシミュレーション結果を示す図である。  FIG. 14A is a diagram showing a simulation result of the attenuation with respect to the control voltage in the variable attenuation circuit of FIG. 4 and the conventional variable attenuation circuit in Example 3 of the present invention.
[図 14B]図 14Bは、本発明の実施例 3における図 4の可変減衰回路と従来の可変減 衰回路において、制御電圧に対するノイズ特性のシミュレーション結果を示す図であ [FIG. 14B] FIG. 14B shows a variable attenuation circuit of FIG. 4 in Example 3 of the present invention and a conventional variable attenuation circuit. It is a figure which shows the simulation result of the noise characteristic with respect to control voltage in an attenuation circuit.
[図 15A]図 15Aは、本発明の実施例 4における図 6の可変減衰回路と従来の可変減 衰回路において、制御電圧に対する減衰量のシミュレーション結果を示す図である。 FIG. 15A is a diagram showing a simulation result of attenuation with respect to control voltage in the variable attenuation circuit of FIG. 6 and the conventional variable attenuation circuit in Example 4 of the present invention.
[図 15B]図 15Bは、本発明の実施例 4における図 6の可変減衰回路と従来の可変減 衰回路において、制御電圧に対するノイズ特性のシミュレーション結果を示す図であ FIG. 15B is a diagram showing simulation results of noise characteristics with respect to control voltage in the variable attenuation circuit in FIG. 6 and the conventional variable attenuation circuit in Example 4 of the present invention.
[図 16]図 16は、従来の可変減衰回路の一回路構成を示すブロック図である。 FIG. 16 is a block diagram showing a circuit configuration of a conventional variable attenuation circuit.
符号の説明 Explanation of symbols
100 信号減衰部  100 Signal attenuation part
101 減衰量制御回路部  101 Attenuation control circuit
102 しきい値バイアス補正機能付きのソースバイアス回路部  102 Source bias circuit with threshold bias correction function
103 FETのゲートに付加された容量  103 Capacitance added to FET gate
104 信号入力端子  104 Signal input terminal
105 信号出力端子  105 Signal output terminal
106 減衰量制御端子  106 Attenuation control terminal
107 電源電圧端子  107 Power supply voltage terminal
111 信号減衰用 MOSFET  111 Signal attenuation MOSFET
112、 113 DC遮断容量  112, 113 DC breaking capacity
114 ゲートバイアス供給用抵抗  114 Gate bias supply resistor
115、 116 減衰量制御用抵抗  115, 116 Resistance for attenuation control
117 ソースバイアス生成用 MOSFET  117 MOSFET for source bias generation
118、 119、 120、 121 ソースノ ィァス生成用抵抗  118, 119, 120, 121 Source noise generating resistor
122 ソースバイアス生成用抵抗  122 Source bias generation resistor
123 ドレインバイアス生成用抵抗  123 Resistance for drain bias generation
124 FETのバックゲートに付加された抵抗  124 Resistance added to the back gate of the FET
231 信号入力端子  231 signal input terminal
232 信号出力端子 233 減衰量制御端子 232 signal output terminal 233 Attenuation control terminal
234 ソースバイアス供給端子  234 Source bias supply pin
235 ゲートバイアス供給端子  235 Gate bias supply pin
236、 237 接地端子  236, 237 Ground terminal
238、 242 DC遮断容量  238, 242 DC breaking capacity
239 ソースバイアス供給用抵抗  239 Source bias supply resistor
240 信号減衰用 FET  240 Signal attenuation FET
241 ドレインバイアス供給用抵抗  241 Drain bias supply resistor
243、 248、 249、 254 DC遮断容量  243, 248, 249, 254 DC breaking capacity
244、 247、 250、 253 入出力整合用抵抗  244, 247, 250, 253 I / O matching resistors
245、 251 シャント側信号減衰用 FET  245, 251 Shunt side signal attenuating FET
246、 252 ソース電位供給用抵抗  246, 252 Source potential supply resistor
255、 257、 258 ゲートバイアス供給用抵抗  255, 257, 258 Gate bias resistor
256、 259 ドレインバイアス供給用抵抗  256, 259 Drain bias supply resistors
260 信号減衰部 260 Signal attenuator
261、 262 シャント側信号減衰部  261, 262 Shunt side signal attenuator
300 シャント側信号減衰部 300 Shunt side signal attenuator
301 減衰量制御回路部 301 Attenuation control circuit
302 しき!/、値バイアス補正機能付きのゲートバイアス回路部 302 Shiki! /, Gate bias circuit with value bias correction function
303 FETのゲートに付加された容量 303 Capacitance added to FET gate
304 信号入力端子  304 signal input terminal
305 信号出力端子  305 Signal output terminal
306 減衰量制御端子  306 Attenuation control terminal
307 電源電圧端子  307 Power supply voltage terminal
311 信号減衰用 MOSFET  311 MOSFET for signal attenuation
312、 313 DC遮断容量  312, 313 DC breaking capacity
314 インピーダンス調整用抵抗  314 Impedance adjustment resistor
315、 316 DC遮断容量 317 ドレインバイアス供給用抵抗 315, 316 DC breaking capacity 317 Drain bias supply resistor
318 ゲートバイアス生成用 MOSFET  318 MOSFET for generating gate bias
319、 320、 321、 322 ゲー卜ノ ィァス生成用抵抗  319, 320, 321, 322 Resistance for generating a gate noise
323 ゲートバイアス生成用抵抗  323 Gate bias generation resistor
324 ソースバイアス生成用抵抗  324 Source bias generation resistor
325 FETのバックゲートに付加された抵抗  Resistance added to the back gate of the 325 FET
400 信号減衰部  400 Signal attenuator
401 減衰量制御回路部  401 Attenuation control circuit
402 しき!/、値バイアス補正機能付きソースバイアス回路部 402 Shiki! /, Source bias circuit with value bias correction function
403 FETのゲートに付加された容量 403 Capacitance added to FET gate
404 信号入力端子  404 signal input terminal
405 信号出力端子  405 Signal output terminal
406 減衰量制御端子  406 Attenuation control terminal
407 電源電圧端子  407 Power supply voltage terminal
411 信号減衰用 MOSFET  411 Signal attenuation MOSFET
412、 413 DC遮断容量  412, 413 DC breaking capacity
414 ゲートバイアス供給用抵抗  414 Gate bias supply resistor
415、 416 減衰量制御用抵抗  415, 416 Resistance for attenuation control
417 ソースバイアス生成用 MOSFET  417 MOSFET for source bias generation
418、 419、 420、 421 ソースノ ィァス生成用抵抗  418, 419, 420, 421 Source noise generating resistor
422 ソースバイアス生成用抵抗  422 Source bias generation resistor
423 ドレインバイアス生成用抵抗  423 Resistor for drain bias generation
424 FETのバックゲートに付加された抵抗  424 Resistor added to FET back gate
425 ソースバイアス回路に付加された容量  425 Capacitance added to the source bias circuit
426 ソースバイアス回路に付加されたスィッチ  426 Switch added to source bias circuit
501、 502 図 4に示す可変減衰回路  501 and 502 Variable attenuation circuit shown in Fig. 4
503、 504 図 3に示す可変減衰回路  503, 504 Variable attenuation circuit shown in Fig. 3
505 信号入力端子 506 信号出力端子 505 signal input terminal 506 Signal output terminal
507 減衰量制御端子  507 Attenuation control terminal
601 信号入力端子  601 signal input terminal
602 信号出力端子  602 signal output terminal
603 減衰量制御端子  603 Attenuation control terminal
611、 613 図 4に示す可変減衰回路  611, 613 Variable attenuation circuit shown in Fig. 4
612、 614 図 3に示す可変減衰回路  612, 614 Variable attenuation circuit shown in Fig. 3
615 図 4に示すソースバイアス生成回路  615 Source bias generation circuit shown in Figure 4
616, 617 図 3に示すゲートバイアス生成回路  616, 617 Gate bias generation circuit shown in Figure 3
701 発振器  701 oscillator
702 分周器  702 divider
703 バッファ  703 buffer
704 可変減衰回路  704 Variable attenuation circuit
705 ドライバアンプ  705 Driver amplifier
706 高周波増幅回路  706 High frequency amplifier circuit
707 アンテナ  707 antenna
1601、 1602 図 2の符号 260に示す可変減衰部  1601, 1602 Variable attenuator shown by reference numeral 260 in FIG.
1603 図 2の符号 261に示す可変減衰部  1603 Variable attenuator indicated by reference numeral 261 in FIG.
1604 図 2の符号 262に示す可変減衰部  1604 Variable attenuation section indicated by reference numeral 262 in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0062] 以下、本発明の実施例を、図面を参照しながら説明する。  [0062] Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0063] (実施例 1)  [0063] (Example 1)
本発明の実施例 1は、課題の一点目、二点目、三点目、四点目に対応した可変減 衰回路 (集積回路)である。以下、図 1を参照しながら説明する。  Embodiment 1 of the present invention is a variable attenuation circuit (integrated circuit) corresponding to the first, second, third, and fourth points of the problem. This will be described below with reference to FIG.
[0064] 図 1に示す本発明の実施例 1における可変減衰回路は、信号入力端子 104から入 力した高周波信号を減衰して信号出力端子 105から出力する減衰回路であり、その 減衰量が外部端子である減衰量制御端子 106より制御可能な可変減衰回路を想定 する。また、この可変減衰回路は、例えば Si半導体基板上に作製されることを想定す [0065] 具体的には、本発明における可変減衰回路は、信号入力端子 104と信号出力端 子 105との間に直列に揷入された信号減衰用 MOSFET (信号減衰用素子) 111を 有する信号減衰部 100と、信号減衰用 MOSFET111の ON抵抗を制御する減衰量 制御回路部 101と、信号減衰用 MOSFET111のソースにバイアスを与えるソースバ ィァス回路部 102とを有し、信号減衰用 MOSFET111は、減衰量制御回路部 101 で生成された減衰量制御信号に応じた減衰量で高周波信号の減衰を行う。 [0064] The variable attenuation circuit according to the first embodiment of the present invention shown in FIG. 1 is an attenuation circuit that attenuates a high frequency signal input from the signal input terminal 104 and outputs the attenuated signal from the signal output terminal 105. A variable attenuation circuit that can be controlled from the attenuation control terminal 106 is assumed. In addition, this variable attenuation circuit is assumed to be fabricated on, for example, a Si semiconductor substrate. [0065] Specifically, the variable attenuation circuit according to the present invention includes a signal attenuation MOSFET (signal attenuation element) 111 inserted in series between the signal input terminal 104 and the signal output terminal 105. The signal attenuation MOSFET 111 includes an attenuation unit 100, an attenuation amount control circuit unit 101 that controls the ON resistance of the signal attenuation MOSFET 111, and a source bias circuit unit 102 that applies a bias to the source of the signal attenuation MOSFET 111. The high frequency signal is attenuated by an attenuation amount corresponding to the attenuation amount control signal generated by the amount control circuit unit 101.
[0066] また、この可変減衰回路は、信号減衰用 MOSFET111のゲートと接地端子との間 に、容量 103が追加されている。この容量 103の効果は大きく分けて二点ある。一点 目力 減衰量制御回路部 101で発生したノイズ成分力 S、信号減衰用 MOSFET111 のゲートを介して高周波信号ライン (信号入力端子 104から信号出力端子 105へ至 るライン)に混入するのを防ぐことである。二点目力 S、信号減衰用 MOSFET111のド レイン ゲート間、およびゲート ソース間に発生する寄生容量の影響によって、高 減衰状態で高周波信号が信号入力端子 104および信号出力端子 105間で漏れる のを防ぐことである。  In this variable attenuation circuit, a capacitor 103 is added between the gate of the signal attenuation MOSFET 111 and the ground terminal. The effect of the capacity 103 is roughly divided into two points. First point force Attenuation control circuit unit 101 prevents noise component force S from entering the high-frequency signal line (the line from signal input terminal 104 to signal output terminal 105) via the gate of MOSFET 111 for signal attenuation. It is. Prevents leakage of high-frequency signals between the signal input terminal 104 and the signal output terminal 105 in the high attenuation state due to the influence of parasitic capacitance generated between the drain gate of the second-point force S and the MOSFET 111 for signal attenuation and between the gate and source. That is.
[0067] さらに、この可変減衰回路のソースバイアス回路部 102は、信号減衰用 MOSFET 111と同じしき!/、値電圧変動(温度特性)を持つソースバイアス生成用 MOSFET11 7を用いてバイアス電圧を作成することで、信号減衰用 MOSFET111の製造プロセ スゃ温度変動によるしきい値電圧のばらつきを補正する効果を有している。  [0067] Further, the source bias circuit unit 102 of this variable attenuation circuit generates the bias voltage using the source bias generation MOSFET 117 having the same threshold voltage / variation (temperature characteristic) as the signal attenuation MOSFET 111! As a result, the manufacturing process of the signal attenuating MOSFET 111 has an effect of correcting variations in threshold voltage due to temperature fluctuations.
[0068] その上、この可変減衰回路の信号減衰用 MOSFET111のゥエルはトリプルゥエル 構造となっており、バックゲート部と基板との間に高い抵抗値を有する抵抗 124が追 カロされている。この高い抵抗値を有する抵抗 124の効果は、バックゲートを介して基 板に信号が漏れるのを防ぐことである。  In addition, the signal attenuating MOSFET 111 of this variable attenuating circuit has a triple-well structure, and a resistor 124 having a high resistance value is additionally provided between the back gate portion and the substrate. The effect of the resistor 124 having this high resistance value is to prevent a signal from leaking to the substrate through the back gate.
[0069] 以下、具体的に可変減衰回路の回路接続について説明する。  [0069] Hereinafter, the circuit connection of the variable attenuation circuit will be specifically described.
[0070] まず、信号減衰用素子としては、例えばトリプルゥエル構造をした Nチャネル MOS FETが好適である。信号減衰用 MOSFET111は、高周波可変減衰回路の信号入 力端子 104と信号出力端子 105との間の信号経路に直列に揷入されており、信号入 力端子 104と信号減衰用 MOSFET111との間には、 DC成分を遮断して、高周波 成分のみ通過する DC遮断容量 112が揷入されており、信号減衰用 MOSFET111 と信号出力端子 105との間には、同じく DC遮断容量 113が揷入されている。信号減 衰用 MOSFET111のバックゲート部と基板との間には、信号の漏れを遮断する高レ、 抵抗値を有する抵抗 124が揷入されている。 First, as the signal attenuating element, for example, an N-channel MOS FET having a triple-well structure is suitable. The signal attenuating MOSFET 111 is inserted in series in the signal path between the signal input terminal 104 and the signal output terminal 105 of the high frequency variable attenuating circuit, and between the signal input terminal 104 and the signal attenuating MOSFET 111. The DC component is cut off and the high frequency A DC blocking capacitor 112 that passes only the component is inserted, and a DC blocking capacitor 113 is inserted between the signal attenuation MOSFET 111 and the signal output terminal 105. Between the back gate portion of the signal attenuation MOSFET 111 and the substrate, a resistor 124 having a high resistance value is inserted to block signal leakage.
[0071] 次に、信号減衰用 MOSFET111のゲートには、減衰量制御回路部 101が接続さ れている。減衰量制御回路部 101の構成を説明する。減衰量制御用抵抗 115と減 衰量制御用抵抗 116とが直列に接続され、減衰量制御用抵抗 115のもう片側の端 子が減衰量制御端子 (Vc) 106に接続され、抵抗 116のもう片側の端子が接地端子 に接続されて!/、る。減衰量制御用抵抗 115と減衰量制御用抵抗 116との接続部と信 号減衰用 MOSFET111のゲートとの間には、高周波を遮断して、 DCのみ通過させ る高い抵抗値を有する抵抗 114が接続されている。さらに、信号減衰用 MOSFET1 11のゲートと接地端子との間に、容量 103が追加されている。  Next, the attenuation control circuit unit 101 is connected to the gate of the signal attenuation MOSFET 111. The configuration of the attenuation control circuit unit 101 will be described. The attenuation control resistor 115 and the attenuation control resistor 116 are connected in series. The other end of the attenuation control resistor 115 is connected to the attenuation control terminal (Vc) 106, and the other end of the resistor 116 is connected. One terminal is connected to the ground terminal. Between the connection between the attenuation control resistor 115 and the attenuation control resistor 116 and the gate of the signal attenuation MOSFET 111, there is a resistor 114 having a high resistance value that cuts off high frequency and allows only DC to pass. It is connected. Further, a capacitor 103 is added between the gate of the signal attenuating MOSFET 111 and the ground terminal.
[0072] 信号減衰用 MOSFET111のソース端子に接続されて!/、るソースバイアス回路部 1 02について説明する。抵抗 120と抵抗 121とが直列に接続され、抵抗 120のもう片 側の端子が電源電圧端子 (Vdd) 107に接続され、抵抗 121のもう片側の端子が接 地端子に接続されている。抵抗 120と抵抗 121との接続部には、ソースバイアス生成 用 MOSFET117のゲートが接続され、このソースバイアス生成用 MOSFET117は 、信号減衰用 MOSFET111と同じ製造プロセス ·温度変動ばらつきを有している。ソ ースバイアス生成用 MOSFET117のドレインと電源電圧端子 107との間には、抵抗 118が接続され、ソースバイアス生成用 MOSFET117のソースと接地端子との間に は、抵抗 119が接続されている。また、ソースバイアス生成用 MOSFET117のソース と信号減衰用 MOSFET111のソースの間には高周波を遮断して DCのみ通過させ る高い抵抗値を有する抵抗 122が接続され、ソースバイアス生成用 MOSFET117 のソースと信号減衰用 MOSFET111のドレインとの間には高周波を遮断して DCの み通過させる高!/、抵抗値を有する抵抗 123が接続されて!/、る。  The source bias circuit section 102 connected to the source terminal of the signal attenuating MOSFET 111 will be described. The resistor 120 and the resistor 121 are connected in series, the other terminal of the resistor 120 is connected to the power supply voltage terminal (Vdd) 107, and the other terminal of the resistor 121 is connected to the ground terminal. The gate of the source bias generating MOSFET 117 is connected to the connection portion between the resistor 120 and the resistor 121, and the source bias generating MOSFET 117 has the same manufacturing process and temperature variation variation as the signal attenuating MOSFET 111. A resistor 118 is connected between the drain of the source bias generating MOSFET 117 and the power supply voltage terminal 107, and a resistor 119 is connected between the source of the source bias generating MOSFET 117 and the ground terminal. Also, a resistor 122 having a high resistance value that cuts off the high frequency and passes only DC is connected between the source of the source bias generating MOSFET 117 and the source of the signal attenuating MOSFET 111. A resistor 123 having a resistance value is connected between the drain of the MOSFET 111 for attenuating and high so that only a DC is allowed to pass through the high frequency!
[0073] 近年、無線通信システムはマルチバンド化、マルチ通信方式化が進んで!/、る。その 中でも例えば UMTS通信方式と GSM通信方式のマルチ通信方式がある。 UMTS 通信方式では、送信回路において、 80dB以上の送信電力可変範囲が必要であり、 高精度な送信電力制御の線形性が要求される。また、 GSM通信方式では、高いノィ ズ特性が要求される。高周波無線送信回路ブロックに用いられる可変減衰回路にお いても、これら二つの通信方式の特性を満足する必要がある。その場合、プロセスば らつき、温度変動によらず高い線形性、ノイズ特性が要求される。それぞれの要求を 満足する手法につ!/、て説明する。 [0073] In recent years, wireless communication systems have become multiband and multicommunication systems! Among them, for example, there are multi-communication systems such as UMTS communication system and GSM communication system. The UMTS communication system requires a transmission power variable range of 80 dB or more in the transmission circuit. Highly accurate transmission power control linearity is required. The GSM communication system requires high noise characteristics. The variable attenuation circuit used in the high-frequency radio transmission circuit block must satisfy the characteristics of these two communication methods. In that case, process variations and high linearity and noise characteristics are required regardless of temperature fluctuations. Explain how to satisfy each requirement!
[0074] まず、プロセスばらつき、温度変動によらず精度の高い線形性を実現する手法につ いて説明する。図 8 (A)、(B)は、図 2に示すような可変減衰回路の温度に対する各 電圧値の変動を表した図であり、図 9は、制御電圧に対する利得特性を表した図で ある。図 8は、横軸に温度をとり、縦軸に電圧値をとつている。図 9は、横軸に減衰量 制御電圧 Vcをとり、縦軸に可変減衰回路の利得をとつている。常温 (例えば、 25°C) 、常温より低い低温、常温より高い高温の場合の 3本の制御特性を表している。  First, a method for realizing highly accurate linearity regardless of process variations and temperature variations will be described. 8 (A) and (B) are diagrams showing fluctuations of each voltage value with respect to the temperature of the variable attenuation circuit as shown in FIG. 2, and FIG. 9 is a diagram showing gain characteristics with respect to the control voltage. . In Fig. 8, the horizontal axis represents temperature and the vertical axis represents voltage. In Fig. 9, the horizontal axis represents the attenuation control voltage Vc, and the vertical axis represents the gain of the variable attenuation circuit. It shows three control characteristics at normal temperature (for example, 25 ° C), low temperature lower than normal temperature, and high temperature higher than normal temperature.
[0075] 図 8 (A)において、 Vgは、図 2の信号減衰用 GaAsFET240のゲート電位を表し、 Vrefは、図 2のソースバイアス供給端子 234に与えた電位、すなわち、信号減衰用 G aAsFET240のソース電位を表し、 Vthは、図 2の信号減衰用 GaAsFET240のしき い値電圧 Vthを表している。図 8 (B)の Vg— Vref— Vthは、図 8 (A)に記載の Vg、 V ref、 Vthを用いて計算した計算結果である。 Vg—Vref—Vth〉0となると信号減衰 用 GaAsFET240は動作をし始め、 ON抵抗が少しずつ下がり始めて、減衰量が少 しずつ小さくなる。この点が、図 9で言う A点であり、この時の電圧が Vである。ここで  In FIG. 8A, Vg represents the gate potential of the signal attenuating GaAsFET 240 in FIG. 2, and Vref is the potential applied to the source bias supply terminal 234 in FIG. 2, ie, the signal attenuating GaAsFET 240. This represents the source potential, and Vth represents the threshold voltage Vth of the signal attenuating GaAsFET 240 in FIG. Vg – Vref – Vth in Fig. 8 (B) is the calculation result calculated using Vg, V ref and Vth shown in Fig. 8 (A). When Vg−Vref−Vth> 0, the GaAsFET 240 for signal attenuation starts to operate, the ON resistance begins to decrease gradually, and the attenuation decreases gradually. This point is point A in Fig. 9, and the voltage at this time is V. here
X  X
、温度が上昇した場合、信号減衰用 GaAsFET240のしきい値電圧 Vthは、温度の 上昇に伴って大きくなる。したがって、 Vg— Vref—Vth = 0とするためには、常温の 場合よりもより大きなゲート電位 Vgが必要となり、信号減衰用 GaAsFET240が動作 し始める電圧値は大きくなり、 V力 V に増加する。逆に温度が低下した場合、より  When the temperature rises, the threshold voltage Vth of the signal attenuating GaAsFET 240 increases as the temperature rises. Therefore, in order to set Vg−Vref−Vth = 0, a larger gate potential Vg is required than at normal temperature, and the voltage value at which the signal attenuating GaAsFET 240 starts to operate increases and increases to V force V. Conversely, if the temperature drops,
X Y  X Y
小さな Vgで信号減衰用 GaAsFET240が動作し始め、 V力も Vに減少する。その  The signal attenuation GaAsFET240 begins to operate at a small Vg, and the V force decreases to V. That
X Z  X Z
結果、制御特性は、図 9に示すように温度によって大きな差を持ち、線形性が悪化す  As a result, the control characteristics have a large difference depending on the temperature as shown in Fig. 9, and the linearity deteriorates.
[0076] 図 10 (A)、(B)は図 1のようなソースバイアス回路部 102を用いた場合の可変減衰 回路の温度に対する各電圧値の変動を表した図であり、図 11は、そのときの制御電 圧に対する利得特性を表した図である。図 10および図 11においては、縦軸および 横軸はそれぞれ図 8および図 9と同じにとっている。図 10では、図 8と違い、温度の上 昇に伴って、ソースバイアス電圧 Vrefを減少させる構成とする。その結果、温度が増 カロしてしき!/、値電圧 Vthが増加した場合も、温度が低下してしき!/、値電圧 Vthが減少 した場合も Vg— Vref—Vthは常に一定となり、温度変動によらず (低温、常温、高温 )、図 11のように同じ制御特性を描くことが可能となる。 Vgは信号減衰用 MOSFET 111のゲート電圧である。 FIGS. 10A and 10B are diagrams showing the variation of each voltage value with respect to the temperature of the variable attenuation circuit when the source bias circuit unit 102 as shown in FIG. 1 is used, and FIG. FIG. 6 is a diagram showing a gain characteristic with respect to a control voltage at that time. 10 and 11, the vertical axis and The horizontal axis is the same as in Fig. 8 and Fig. 9, respectively. In Fig. 10, unlike Fig. 8, the source bias voltage Vref is reduced as the temperature rises. As a result, when the temperature increases and / or when the value voltage Vth increases and when the temperature decreases and when the value voltage Vth decreases, Vg—Vref—Vth is always constant and the temperature Regardless of the fluctuation (low temperature, normal temperature, high temperature), the same control characteristics can be drawn as shown in Fig. 11. Vg is the gate voltage of the MOSFET 111 for signal attenuation.
[0077] 図 11のようなばらつき補正を実現する回路動作について図 1の可変減衰回路を用 いて説明する。図 1のソースバイアス回路部 102のソースバイアス生成用 MOSFET 117のゲート電位は抵抗 120と抵抗 121との抵抗分割で決定される。ソースバイアス 生成用 MOSFET117は信号減衰用 MOSFET111と同じく、温度が上昇するとしき い値電圧が増加する特性を持っているため、温度の上昇に伴い、しきい値電圧が増 加し、一方ゲート電位は一定であるため、ソース電位の減少、ソースバイアス生成用 MOSFET117に流れる電流の減少が起こる。その結果、信号減衰用 MOSFET11 1のソースバイアス電位 Vrefは減少し、しきい値電圧変動の補正が実現できる。  A circuit operation for realizing the variation correction as shown in FIG. 11 will be described using the variable attenuation circuit of FIG. The gate potential of the source bias generating MOSFET 117 of the source bias circuit unit 102 in FIG. 1 is determined by resistance division between the resistor 120 and the resistor 121. Like the signal attenuation MOSFET 111, the source bias generation MOSFET 117 has the characteristic that the threshold voltage increases as the temperature rises.Therefore, the threshold voltage increases as the temperature rises, while the gate potential increases. Since it is constant, the source potential decreases and the current flowing through the source bias generating MOSFET 117 decreases. As a result, the source bias potential Vref of the signal attenuating MOSFET 111 is decreased, and the threshold voltage fluctuation can be corrected.
[0078] 次に線形な制御特性を実現する回路動作について図 1の可変減衰回路を用いて 説明する。図 1の減衰量制御回路部 101の減衰量制御端子 (Vc) 106には、 0Vから 電源電圧電位まで、連続的な制御電圧が入力される。この制御電圧を減衰量制御 用抵抗 115と減衰量制御用抵抗 116とによって分圧して、信号減衰用 MOSFET11 1のゲートに入力する。信号減衰用 MOSFET111はドレイン ソース間バイアスが 0 Vの状態で用いられ、ゲート電位が 0Vの時は ON抵抗が最も大きぐゲート電位の増 加に伴って、徐々に ON抵抗が減少し、ゲート電位が電源電圧となると、 ON抵抗が 最小となる。 ON抵抗の変化に伴い、信号入力端子 104から信号出力端子 105への 通過特性の減衰量も変動する。また、減衰量制御用抵抗 115と減衰量制御用抵抗 1 16とで減衰量制御端子 106の電圧を分圧することで、任意の制御特性が実現可能 である。  Next, a circuit operation for realizing a linear control characteristic will be described using the variable attenuation circuit in FIG. A continuous control voltage from 0 V to the power supply voltage potential is input to the attenuation control terminal (Vc) 106 of the attenuation control circuit unit 101 in FIG. This control voltage is divided by the attenuation control resistor 115 and the attenuation control resistor 116 and input to the gate of the signal attenuation MOSFET 111. The signal attenuating MOSFET 111 is used with a drain-source bias of 0 V. When the gate potential is 0 V, the ON resistance gradually increases as the gate resistance increases, and the gate potential decreases. When becomes the power supply voltage, the ON resistance is minimized. As the ON resistance changes, the attenuation of the pass characteristic from the signal input terminal 104 to the signal output terminal 105 also varies. Further, by dividing the voltage of the attenuation control terminal 106 by the attenuation control resistor 115 and the attenuation control resistor 116, an arbitrary control characteristic can be realized.
[0079] しかし、ここで例えば Si基板で可変減衰回路を実現する場合、信号減衰用 MOSF ET 111のドレイン ゲート間およびゲート ソース間に発生する寄生容量の影響で 信号が漏れ、信号減衰用 MOSFET111の ON抵抗で決まる減衰量がとれず、線形 性が確保できない。その影響をなくすために、容量 103を信号減衰用 MOSFET11 1のゲートと接地端子との間に揷入する。容量 103を揷入することで、信号減衰用 M OSFET111のドレイン ゲート間およびゲート ソース間を介して信号が漏れる経 路を遮断し、線形性を確保している。 [0079] However, when a variable attenuation circuit is realized on a Si substrate, for example, the signal leaks due to the parasitic capacitance generated between the drain gate and the gate source of the signal attenuation MOSF ET 111, and the signal attenuation MOSFET 111 The attenuation determined by the ON resistance cannot be obtained, and is linear Sex cannot be secured. In order to eliminate the influence, the capacitor 103 is inserted between the gate of the signal attenuating MOSFET 111 and the ground terminal. By inserting the capacitor 103, the signal leakage path between the drain gate and the gate source of the MOSFET 111 for signal attenuation is cut off to ensure linearity.
[0080] また、ここで上記と同じぐ例えば Si基板で可変減衰回路を実現する場合、基板抵 抗が低いことの影響により、信号減衰用 MOSFET111のバックゲートと基板との間 のインピーダンスが低ぐこの部分を通じて信号が基板に漏れ、信号減衰用 MOSF ET111の ON抵抗で決まる減衰量がとれず、線形性が確保できない。その影響をな くすために、例えば、信号減衰用 MOSFET111をトリプルゥエル構造で作製し、信 号減衰用 MOSFET111のバックゲートと基板との間に高い抵抗値を有する抵抗 12 4を揷入することで、信号が漏れる経路を遮断し、線形性を確保している。  [0080] When the variable attenuation circuit is realized with the same Si substrate as described above, for example, the impedance between the back gate of the signal attenuating MOSFET 111 and the substrate is lowered due to the low substrate resistance. Through this part, the signal leaks to the board, and the attenuation determined by the ON resistance of the MOSF ET111 for signal attenuation cannot be obtained, and linearity cannot be ensured. In order to eliminate the influence, for example, the signal attenuation MOSFET 111 is manufactured in a triple-well structure, and a resistor 124 having a high resistance value is inserted between the back gate of the signal attenuation MOSFET 111 and the substrate. Thus, the path through which the signal leaks is blocked to ensure linearity.
[0081] また、本可変減衰回路は、容量 103を追加したことによってノイズ特性も改善してい る。減衰量制御回路部 101は通常、抵抗で構成されている。したがって、この抵抗で 発生したノイズが信号減衰用 MOSFET111のゲートを介して混入し、信号入力端 子 104から入ってきた高周波信号にのり、ノイズ特性を悪化させ、例えば GSM通信 方式の受信帯域ノイズなどの要求を満たさなくなる。  In addition, this variable attenuation circuit has improved noise characteristics due to the addition of the capacitor 103. The attenuation amount control circuit unit 101 is usually composed of a resistor. Therefore, the noise generated by this resistor enters through the gate of the signal attenuating MOSFET 111 and is applied to the high-frequency signal coming from the signal input terminal 104, deteriorating the noise characteristics, for example, GSM communication system reception band noise, etc. No longer meet the requirements.
[0082] しかし、容量 103の追加によって、減衰量制御回路部 101で発生したノイズを容量  However, the addition of the capacitor 103 reduces the noise generated in the attenuation control circuit unit 101 to the capacitor.
103と抵抗 114のフィルタ効果によって遮断し、連続的に変化する可変減衰回路の 如何なる状態においてもノイズ特性を向上させることができる。  The noise characteristics can be improved in any state of the variable attenuation circuit which is cut off by the filter effect of 103 and resistor 114 and continuously changes.
[0083] 以上のように、信号減衰用 MOSFET111を持つ可変減衰回路に、ソースバイアス 回路部 102と容量 103とバックゲートに付加した高い抵抗値を有する抵抗 124とを追 加することで、製造プロセス '温度変動ばらつきによる信号減衰用 MOSFET111の しきい値ばらつきを補正することが可能となり、また如何なる減衰状態でも信号減衰 用 MOSFET111での信号の漏れをなくすことができ、線形性を向上させることがで きた。さらに減衰量制御回路部 101で発生するノイズを落とすことができ、ノイズ特性 を向上させることができた。結果として、マルチバンド '·マルチ通信方式対応の可変減 衰回路を Siプロセスにて実現でき、他の無線回路ブロックとの 1チップ化も可能となつ た。 [0084] なお、上記のソースバイアス回路部 102と容量 103と抵抗 124のどれか一つのみ、 もしくはどれか二つのみ接続されている構成でもよい。また、 MOSFETとしては Pチ ャネル MOSFETでもよい。また、トリプルゥエル構造でなくとも同等の効果が発揮で きる構成であればどのような構造でもよレ、。 [0083] As described above, by adding the source bias circuit unit 102, the capacitor 103, and the resistor 124 having a high resistance value added to the back gate to the variable attenuation circuit having the signal attenuation MOSFET 111, the manufacturing process is performed. 'It is possible to correct the threshold variation of the signal attenuating MOSFET 111 due to variations in temperature fluctuations, eliminate the signal leakage in the signal attenuating MOSFET 111 in any attenuation state, and improve the linearity. Came. Furthermore, the noise generated in the attenuation control circuit unit 101 can be reduced, and the noise characteristics can be improved. As a result, a variable attenuation circuit compatible with the multi-band 'multi-communication system can be realized by the Si process, and it can be made into a single chip with other wireless circuit blocks. [0084] Note that the source bias circuit unit 102, the capacitor 103, and the resistor 124, or only two of them may be connected. The MOSFET may be a P-channel MOSFET. In addition, any structure that can achieve the same effect without using a triple-well structure is acceptable.
[0085] (実施例 2)  [0085] (Example 2)
本発明の実施例 2は、課題の一点目、二点目、三点目、四点目に対応した可変減 衰回路 (集積回路)である。以下、図 3を参照しながら説明する。  The second embodiment of the present invention is a variable attenuation circuit (integrated circuit) corresponding to the first, second, third, and fourth points of the problem. This will be described below with reference to FIG.
[0086] 図 3に示す本発明の実施例 2における可変減衰回路は、信号入力端子 304から入 力した高周波信号を減衰して信号出力端子 305から出力する減衰回路であり、その 減衰量が外部端子である減衰量制御端子 306より制御可能な可変減衰回路を想定 する。また、この可変減衰回路は、例えば Si半導体基板上に作製されることを想定す  The variable attenuation circuit according to the second embodiment of the present invention shown in FIG. 3 is an attenuation circuit that attenuates a high-frequency signal input from the signal input terminal 304 and outputs the attenuated signal from the signal output terminal 305, and the attenuation amount is external. Assume a variable attenuation circuit that can be controlled by the attenuation control terminal 306, which is a terminal. In addition, this variable attenuation circuit is assumed to be fabricated on, for example, a Si semiconductor substrate.
[0087] 具体的には、本発明における可変減衰回路は、信号入力端子 304と信号出力端 子 305との間の信号経路と接地端子との間に挿入された信号減衰用 MOSFET (信 号減衰用素子) 311を有する信号減衰部 300と、信号減衰用 MOSFET311の ON 抵抗を制御する減衰量制御回路部 301と、信号減衰用 MOSFET311のゲートにバ ィァスを与えるゲートバイアス回路部 302とを有し、信号減衰用 MOSFET311は、 減衰量制御回路部 301で生成された減衰量制御信号に応じた減衰量で高周波信 号の減衰を行う。 Specifically, the variable attenuation circuit according to the present invention is a signal attenuation MOSFET (signal attenuation) inserted between the signal path between the signal input terminal 304 and the signal output terminal 305 and the ground terminal. Element) 311, a signal attenuation unit 311 that controls the ON resistance of the signal attenuation MOSFET 311, and a gate bias circuit unit 302 that applies bias to the gate of the signal attenuation MOSFET 311. The signal attenuation MOSFET 311 attenuates the high-frequency signal with an attenuation amount corresponding to the attenuation amount control signal generated by the attenuation amount control circuit unit 301.
[0088] また、この可変減衰回路は、信号減衰用 MOSFET311のゲートと接地端子との間 に、容量 303が追加されている。この容量 303の効果はゲートバイアス回路部 302で 発生したノイズ成分力 S、信号減衰用 MOSFET311のゲートを介して高周波信号ライ ンに混入するのを防ぐことである。  In this variable attenuation circuit, a capacitor 303 is added between the gate of the signal attenuation MOSFET 311 and the ground terminal. The effect of the capacitor 303 is to prevent the noise component force S generated in the gate bias circuit section 302 from entering the high-frequency signal line via the gate of the MOSFET 311 for signal attenuation.
[0089] さらに、この可変減衰回路のゲートバイアス回路部 302は、信号減衰用 MOSFET 311と同じしきい値電圧変動を持つゲートバイアス生成用 MOSFET318を用いてバ ィァスを作成することで、信号減衰用 MOSFET311の製造プロセスや温度変動によ るしき!/、値電圧のばらつきを補正する効果を有して!/、る。  Further, the gate bias circuit section 302 of this variable attenuation circuit creates a bias by using a gate bias generation MOSFET 318 having the same threshold voltage fluctuation as the signal attenuation MOSFET 311, thereby reducing the signal attenuation. This has the effect of correcting the threshold voltage due to the manufacturing process and temperature fluctuation of the MOSFET 311 and correcting the variation of the value voltage.
[0090] その上、この可変減衰回路の信号減衰用 MOSFET311のゥエルはトリプルゥエル 構造となっており、バックゲート部と基板との間に高い抵抗値を有する抵抗 325が追 カロされている。この高い抵抗値を有する抵抗 325の効果は、バックゲートを介して基 板に信号が漏れるのを防ぐことである。 [0090] In addition, the signal attenuating MOSFET 311 of this variable attenuating circuit has a triple wel A resistor 325 having a high resistance value is added between the back gate portion and the substrate. The effect of the resistor 325 having this high resistance value is to prevent a signal from leaking to the substrate through the back gate.
[0091] 以下、具体的に可変減衰回路の回路接続について説明する。  Hereinafter, the circuit connection of the variable attenuation circuit will be specifically described.
[0092] まず、信号減衰用素子は、例えばトリプルゥエル構造をした Nチャネル MOSFET が好適である。信号減衰用 MOSFET311は、高周波可変減衰回路の信号入力端 子 304と信号出力端子 305との間の信号経路と接地端子との間に挿入されており、 信号入力端子 304と信号減衰部 300との間には、 DC成分を遮断して、高周波成分 のみ通過する DC遮断容量 312が揷入されており、信号減衰部 300と信号出力端子 305との間には、同じく DC遮断容量 313が揷入されている。符号 314はインピーダ ンス調整用抵抗を示し、符号 315、 316は DC遮断容量である。符号 324はソースバ ィァス生成用抵抗である。信号減衰用 MOSFET311のバックゲート部と基板との間 には、信号の漏れを遮断する高!、抵抗値を有する抵抗 325が揷入されて!/、る。  First, the signal attenuating element is preferably an N-channel MOSFET having a triple-well structure, for example. The MOSFET 311 for signal attenuation is inserted between the signal path between the signal input terminal 304 and the signal output terminal 305 of the high-frequency variable attenuation circuit and the ground terminal, and the signal attenuation terminal 300 and the signal attenuation unit 300 are connected to each other. Between them, a DC blocking capacitor 312 that blocks the DC component and passes only the high frequency component is inserted, and a DC blocking capacitor 313 is also inserted between the signal attenuating unit 300 and the signal output terminal 305. Has been. Reference numeral 314 indicates an impedance adjusting resistor, and reference numerals 315 and 316 indicate DC breaking capacities. Reference numeral 324 denotes a source bias generating resistor. Between the back gate portion of the signal attenuating MOSFET 311 and the substrate, a resistor 325 having a high resistance value is inserted to block signal leakage!
[0093] 次に、信号減衰用 MOSFET311のドレインには、減衰量制御回路部 301が接続 されている。減衰量制御回路部 301は、減衰量制御端子 (Vc) 306と信号減衰用 M OSFET311のドレインとの間に高周波を遮断して、 DCのみ通過させる高い抵抗値 を有する抵抗 317が接続されて!/ヽる構成を有して!/、る。  Next, an attenuation amount control circuit unit 301 is connected to the drain of the signal attenuation MOSFET 311. The attenuation control circuit unit 301 is connected to a resistor 317 having a high resistance value that cuts high frequency and allows only DC to pass between the attenuation control terminal (Vc) 306 and the drain of the signal attenuation MOS FET 311! / Has a structure to speak! /
[0094] つぎに、信号減衰用 MOSFET311のゲートに接続されているゲートバイアス回路 部 302について説明する。抵抗 319と抵抗 320とが直列に接続され、抵抗 319のもう 片側の端子が電源電圧端子 (Vdd) 307に接続され、抵抗 320のもう片側の端子が 接地端子に接続されている。抵抗 319と抵抗 320との接続部には、ゲートバイアス生 成用 MOSFET318のゲートが接続され、このゲートバイアス生成用 MOSFET318 は、信号減衰用 MOSFET311と同じ製造プロセス '温度変動ばらつきを有している 。ゲートバイアス生成用 MOSFET318のドレインと電源電圧端子(Vdd) 307との間 には、抵抗 321が接続され、ゲートバイアス生成用 MOSFET318のソースと接地端 子との間には、抵抗 322が接続されている。また、ゲートバイアス生成用 MOSFET3 18のドレインと信号減衰用 MOSFET311のゲートとの間には高周波を遮断して、 D Cのみ通過させる高い抵抗値を有する抵抗 323が接続されている。さらに、信号減衰 用 MOSFET311のゲートと接地端子との間に、容量 303が追加されている。 Next, the gate bias circuit unit 302 connected to the gate of the signal attenuating MOSFET 311 will be described. Resistor 319 and resistor 320 are connected in series, the other terminal of resistor 319 is connected to power supply voltage terminal (Vdd) 307, and the other terminal of resistor 320 is connected to the ground terminal. The gate of the gate bias generating MOSFET 318 is connected to the connection between the resistor 319 and the resistor 320, and this gate bias generating MOSFET 318 has the same manufacturing process as the signal attenuating MOSFET 311 'temperature variation variation. A resistor 321 is connected between the drain of the MOSFET 318 for generating the gate bias and the power supply voltage terminal (Vdd) 307, and a resistor 322 is connected between the source of the MOSFET 318 for generating the gate bias and the ground terminal. Yes. Further, a resistor 323 having a high resistance value that cuts off high frequency and allows only DC to pass is connected between the drain of the gate bias generating MOSFET 318 and the gate of the signal attenuating MOSFET 311. In addition, signal attenuation A capacitor 303 is added between the gate of the MOSFET 311 and the ground terminal.
[0095] 実施例 2において、プロセスばらつき、温度変動によらず精度の高い線形性を実現 する手法について説明する。図 3と図 1の違いは、減衰量制御回路部がゲートにつな がっているか、ドレインにつながっているかの違いであり、図 3では減衰量制御回路 部がドレインにつながつているため、バイアス回路部はゲートにつながつている。 A method for realizing highly accurate linearity regardless of process variations and temperature fluctuations in the second embodiment will be described. The difference between Fig. 3 and Fig. 1 is whether the attenuation control circuit is connected to the gate or the drain.In Fig. 3, the attenuation control circuit is connected to the drain. The bias circuit unit is connected to the gate.
[0096] 図 12 (A)、 (B)は、図 3に示すような可変減衰回路の温度に対する各電圧値の変 動を表した図であり、図 13は、そのときの制御電圧に対する利得特性を表した図であ る。図 12 (A)において、 Vrefは、図 3の信号減衰用 MOSFET311のゲート電位を 表し、 Vcは、信号減衰用 MOSFET311のドレイン電位を表し、 Vthは、信号減衰用 MOSFET311のしき!/、値電圧を表して!/、る。 FIGS. 12 (A) and 12 (B) are graphs showing changes in each voltage value with respect to the temperature of the variable attenuation circuit as shown in FIG. 3, and FIG. 13 is a gain with respect to the control voltage at that time. It is a diagram showing the characteristics. In FIG. 12A, Vref represents the gate potential of the signal attenuating MOSFET 311 in FIG. 3, Vc represents the drain potential of the signal attenuating MOSFET 311, and Vth is the threshold voltage of the signal attenuating MOSFET 311! /, The value voltage Represents! /
[0097] 図 12 (B)の Vref— Vc— Vthは、図 12 (A)に記載の Vref、 Vc、 Vthを用いて計算 した計算結果である。 Vref— Vc— Vth〉0となると FETは動作をし始め、 ON抵抗が 少しずつ下がり始めて、減衰量が少しずつ小さくなる。図 12では、温度の上昇に伴つ て、 Vrefを減少させる構成とする。その結果、温度が増加してしきい値電圧 Vthが増 カロした場合も、温度が低下してしき!/、値電圧 Vthが減少した場合も Vref—Vc— Vth は常に一定となり、温度変動によらず、図 13のように同じ制御特性を描くことが可能と なる。 [0097] Vref—Vc—Vth in FIG. 12B is a calculation result calculated using Vref, Vc, and Vth shown in FIG. When Vref—Vc—Vth> 0, the FET starts to operate, the ON resistance begins to decrease gradually, and the attenuation decreases gradually. In Fig. 12, Vref is reduced as the temperature rises. As a result, even if the temperature increases and the threshold voltage Vth increases, the temperature also decreases! / Even if the value voltage Vth decreases, Vref—Vc—Vth is always constant, resulting in temperature fluctuations. Regardless, the same control characteristics can be drawn as shown in FIG.
[0098] 図 13のようなばらつき補正を実現する回路動作について図 3の可変減衰回路を用 いて説明する。図 3のゲートバイアス回路部 302のゲートバイアス生成用 MOSFET3 18のゲート電位は抵抗 319と抵抗 320との抵抗分割で決定される。ゲートバイアス生 成用 MOSFET318は信号減衰用 MOSFET311と同じく温度が上昇するとしきい 値電圧が増加する特性を持っているため、温度の上昇に伴い、しきい値電圧が増加 し、一方ゲート電位は一定であるため、ソース電位の減少、ゲートバイアス生成用 M OSFET318に流れる電流の減少が起こる。その結果、バイアス抵抗 321による電圧 降下も減少し、ゲートバイアス生成用 MOSFET318のドレイン電位は増加し、信号 減衰用 MOSFET311のゲートバイアス電位は増加し、しきい値電圧変動の補正が 実現できる。  The circuit operation for realizing the variation correction as shown in FIG. 13 will be described using the variable attenuation circuit of FIG. The gate potential of the MOSFET 318 for generating the gate bias in the gate bias circuit section 302 in FIG. 3 is determined by resistance division between the resistor 319 and the resistor 320. The MOSFET 318 for gate bias generation has the characteristic that the threshold voltage increases as the temperature rises, like the MOSFET 311 for signal attenuation. Therefore, the threshold voltage increases as the temperature rises, while the gate potential remains constant. Therefore, the source potential decreases and the current flowing through the MOS bias 318 for generating the gate bias occurs. As a result, the voltage drop due to the bias resistor 321 also decreases, the drain potential of the gate bias generating MOSFET 318 increases, the gate bias potential of the signal attenuating MOSFET 311 increases, and threshold voltage fluctuation correction can be realized.
[0099] 次に線形な制御特性を実現する回路動作について図 3の可変減衰回路を用いて 説明する。図 3の減衰量制御回路部 301の減衰量制御端子 (Vc) 306には、 0Vから 電源電圧電位まで、連続的な制御電圧が入力される。この制御電圧を減衰制御用 MOSFET311のドレイン電位に入力する。信号減衰用 MOSFET311は、ドレイン ソース間バイアスが 0V状態で用いられ、ドレイン電位が電源電圧の時は ON抵抗 が最も大きく、ドレイン電位の減少に伴って、徐々に ON抵抗が減少し、ドレイン電位 力 S0Vで ON抵抗が最小となる。 ON抵抗の変化に伴い、信号入力端子 304から信号 出力端子 305への通過特性の減衰量も変動する。 [0099] Next, the circuit operation for realizing the linear control characteristics will be described using the variable attenuation circuit in FIG. explain. A continuous control voltage from 0 V to the power supply voltage potential is input to the attenuation control terminal (Vc) 306 of the attenuation control circuit unit 301 in FIG. This control voltage is input to the drain potential of the MOSFET 311 for attenuation control. The signal attenuating MOSFET 311 is used with a drain-source bias of 0 V. When the drain potential is at the power supply voltage, the ON resistance is the largest, and as the drain potential decreases, the ON resistance gradually decreases and the drain potential force S0V minimizes ON resistance. As the ON resistance changes, the attenuation of the pass characteristic from the signal input terminal 304 to the signal output terminal 305 also changes.
[0100] しかし、ここで例えば Si基板で可変減衰回路を実現する場合、基板抵抗が低いこと の影響により、信号減衰用 MOSFET111のバックゲートと基板との間のインピーダ ンスが低ぐこの部分を通じて信号が基板に漏れ、信号減衰用 MOSFET311の ON 抵抗で決まる減衰量がとれず、線形性が確保できない。その影響をなくすために、例 えば、 MOSFET311をトリプルゥエル構造で作製し、 MOSFET311のバックゲート と基板との間に高い抵抗値を有する抵抗を揷入することで、信号が漏れる経路を遮 断し、線形性を確保している。  [0100] However, when a variable attenuation circuit is realized with, for example, a Si substrate here, the signal between the back gate of the MOSFET 111 for signal attenuation and the substrate is low due to the low substrate resistance. Leaks to the board and the attenuation determined by the ON resistance of MOSFET 311 for signal attenuation cannot be obtained, and linearity cannot be ensured. In order to eliminate this effect, for example, the MOSFET 311 is manufactured in a triple-well structure, and a high-resistance resistor is inserted between the back gate of the MOSFET 311 and the substrate to block the signal leakage path. And the linearity is ensured.
[0101] また、本可変減衰回路は容量 303を追加したことによってノイズ特性も改善している  [0101] In addition, this variable attenuation circuit has improved noise characteristics by adding a capacitor 303.
[0102] しき!/、値電圧補償を行うゲートバイアス回路部 302は通常抵抗とトランジスタで構成 されている。したがって、これらの抵抗やトランジスタで発生したノイズが信号減衰用 MOSFET311のゲートを介して混入し、信号入力端子 304から入ってきた高周波 信号にのり、ノイズ特性を悪化させ、例えば GSM通信方式の受信帯域ノイズなどの 要求を満たさなくなる。容量 303の追加によって、ゲートバイアス回路部 302で発生し たノイズを容量と抵抗のフィルタ効果によって遮断し、連続的に変化する可変減衰回 路の如何なる状態においてもノイズ特性を向上させることができる。 [0102] Threshold! /, And the gate bias circuit section 302 that performs value voltage compensation is generally composed of a resistor and a transistor. Therefore, noise generated by these resistors and transistors enters through the gate of the MOSFET 311 for signal attenuation, and is applied to the high-frequency signal that enters from the signal input terminal 304, deteriorating the noise characteristics. For example, the reception band of the GSM communication system The noise and other requirements are not met. By adding the capacitor 303, the noise generated in the gate bias circuit 302 can be cut off by the filter effect of the capacitor and the resistance, and the noise characteristics can be improved in any state of the continuously changing variable attenuation circuit.
[0103] 以上のように、減衰制御用 MOSFET311を持つ可変減衰回路に、しきい値電圧 補償ゲートバイアス回路部 302と容量 303とバックゲートに付加された抵抗 325とを 追加することで、製造プロセス '温度変動ばらつきによる信号減衰用 MOSFET311 のしきい値ばらつきを補正することが可能となり、また如何なる減衰状態でも信号減 衰用 MOSFET311での信号の漏れをなくすことができ、線形性を向上させることが できた。さらに、しきい値電圧補償を行うゲートバイアス回路部 302で発生するノイズ を落とすことができ、ノイズ特性を向上させることができた。結果として、マルチバンド' マルチ通信方式対応の可変減衰回路を Siプロセスにて実現でき、他の無線回路ブ ロックとの 1チップ化も可能となった。 [0103] As described above, by adding the threshold voltage compensation gate bias circuit section 302, the capacitor 303, and the resistor 325 added to the back gate to the variable attenuation circuit having the MOSFET 311 for attenuation control, the manufacturing process 'It is possible to correct the threshold variation of the signal attenuation MOSFET 311 due to variations in temperature, and to eliminate signal leakage in the signal attenuation MOSFET 311 in any attenuation state, improving the linearity. did it. Furthermore, noise generated in the gate bias circuit section 302 that performs threshold voltage compensation can be reduced, and noise characteristics can be improved. As a result, a variable attenuation circuit compatible with multi-band and multi-communication systems can be realized with the Si process, making it possible to make a single chip with other wireless circuit blocks.
[0104] なお、上記のゲートバイアス回路部 302と容量 303と抵抗 325のどれか一つのみ、 もしくはどれか二つのみ接続されている構成でもよい。また、 MOSFETとしては Pチ ャネル MOSFETでもよい。また、トリプルゥエル構造でなくとも同等の効果が発揮で きればよい。  Note that only one of or two of the gate bias circuit 302, the capacitor 303, and the resistor 325 may be connected. The MOSFET may be a P-channel MOSFET. In addition, even if it is not a triple wel structure, it is sufficient if the same effect can be exhibited.
[0105] (実施例 3)  [0105] (Example 3)
本発明の実施例 3は、課題の一点目、二点目、三点目、四点目、五点目に対応し た可変減衰回路 (集積回路)である。以下、図 4を参照しながら説明する。  Example 3 of the present invention is a variable attenuation circuit (integrated circuit) corresponding to the first, second, third, fourth, and fifth points of the problem. This will be described below with reference to FIG.
[0106] 図 4に示す本発明の実施例 3における可変減衰回路は、信号入力端子 404から入 力した高周波信号を減衰して信号出力端子 405から出力する減衰回路であり、その 減衰量が外部端子である減衰量制御端子 406より制御可能な可変減衰回路を想定 する。また、この可変減衰回路は、例えば Si半導体基板上に作製されることを想定す  The variable attenuation circuit according to the third embodiment of the present invention shown in FIG. 4 is an attenuation circuit that attenuates a high-frequency signal input from the signal input terminal 404 and outputs it from the signal output terminal 405, and the attenuation amount is external. A variable attenuation circuit that can be controlled from an attenuation control terminal 406, which is a terminal, is assumed. In addition, this variable attenuation circuit is assumed to be fabricated on, for example, a Si semiconductor substrate.
[0107] 具体的には、本発明における可変減衰回路は、信号入力端子 404と信号出力端 子 405との間に直列に揷入された信号減衰用 MOSFET (信号減衰用素子) 411を 有する信号減衰部 400と、信号減衰用 MOSFET411の ON抵抗を制御する減衰量 制御回路部 401と、信号減衰用 MOSFET411のソースにバイアスを与えるソースバ ィァス回路部 402とを有し、信号減衰用 MOSFET411は、減衰量制御回路部 401 で生成された減衰量制御信号に応じた減衰量で高周波信号の減衰を行う。 Specifically, the variable attenuation circuit in the present invention has a signal attenuation MOSFET (signal attenuation element) 411 inserted in series between the signal input terminal 404 and the signal output terminal 405. It has an attenuation unit 400, an attenuation amount control circuit unit 401 that controls the ON resistance of the signal attenuation MOSFET 411, and a source bias circuit unit 402 that applies a bias to the source of the signal attenuation MOSFET 411. The high frequency signal is attenuated by an attenuation amount corresponding to the attenuation amount control signal generated by the amount control circuit unit 401.
[0108] また、この可変減衰回路は、信号減衰用 MOSFET411のゲートと接地端子との間 に、容量 403が追加されている。この容量 403の効果は大きく分けて二点ある。一点 目力 減衰量制御回路部 401で発生したノイズ成分力 S、信号減衰用 MOSFET411 のゲートを介して高周波信号ライン (信号入力端子 404から信号出力端子 405へ至 るライン)に混入するのを防ぐことである。二点目力 S、信号減衰用 MOSFET411のド レイン ゲート間、ゲート ソース間に発生する寄生容量の影響で、高減衰状態で 高周波信号が信号入力端子 404および信号出力端子 405間に漏れるのを防ぐこと である。 In addition, in this variable attenuation circuit, a capacitor 403 is added between the gate of the signal attenuation MOSFET 411 and the ground terminal. The effect of this capacity 403 can be broadly divided into two points. First point Attenuation control circuit block Noise component force S generated in 401, prevention of mixing into high frequency signal line (line from signal input terminal 404 to signal output terminal 405) via gate of MOSFET 411 for signal attenuation It is. Second-point force S, high-attenuation state due to parasitic capacitance generated between drain gate and gate source of MOSFET411 for signal attenuation This is to prevent a high frequency signal from leaking between the signal input terminal 404 and the signal output terminal 405.
[0109] さらに、この可変減衰回路のソースバイアス回路部 402は、信号減衰用 MOSFET 411と同じしき!/、値電圧変動(温度特性)を持つソースバイアス生成用 MOSFET41 7を用いてバイアス電圧を作成することで、信号減衰用 MOSFET411の製造プロセ スゃ温度変動によるしきい値電圧のばらつきを補正する効果を有している。  [0109] Further, the source bias circuit section 402 of this variable attenuating circuit creates a bias voltage by using the source bias generating MOSFET 417 having the same threshold voltage fluctuation / temperature characteristics as the signal attenuating MOSFET 411! As a result, the manufacturing process of the signal attenuating MOSFET 411 has an effect of correcting variations in threshold voltage due to temperature fluctuations.
[0110] その上、この可変減衰回路の信号減衰用 MOSFET411のゥエルはトリプルゥエル 構造となっており、バックゲート部と基板との間に高い抵抗値を有する抵抗 424が追 カロされている。この高い抵抗値を有する抵抗 424の効果は、バックゲートを介して基 板に信号が漏れるのを防ぐことである。  In addition, the signal attenuating MOSFET 411 of the variable attenuating circuit has a triple well structure, and a resistor 424 having a high resistance value is additionally provided between the back gate portion and the substrate. The effect of the resistor 424 having the high resistance value is to prevent a signal from leaking to the substrate through the back gate.
[0111] また、この可変減衰回路は、信号減衰用 MOSFET411にソースバイアスを供給す る抵抗 422とドレインバイアスを供給する抵抗 423との接続部と接地端子との間に、 容量 425とスィッチ 426の直歹 IJ回路力 S追カロされている。この容量 425とスィッチ 426 の効果としては、ソースバイアスおよびドレインバイアスを供給するために信号減衰用 MOSFET411のドレイン ソース間に挿入されている抵抗を介して、高減衰状態で 高周波信号が信号入力端子 404から信号出力端子 405に漏れるのを防ぐことである 。つまり、抵抗を分割して、高周波接地することで、信号の漏れを防ぐ。信号が通過 する低減衰状態での信号の漏れをなくすためにスィッチを揷入して、低減衰状態で は容量が見えな!/、ようにする。  [0111] This variable attenuation circuit includes a capacitor 425 and a switch 426 between the connection between the resistor 422 for supplying the source bias to the MOSFET 411 for signal attenuation and the resistor 423 for supplying the drain bias and the ground terminal. Naoki IJ circuit power S has been added. The effect of the capacitor 425 and the switch 426 is that a high-frequency signal is supplied in the signal input terminal 404 in a high attenuation state via a resistor inserted between the drain and source of the signal attenuation MOSFET 411 to supply the source bias and the drain bias. Is to prevent leakage to the signal output terminal 405. In other words, signal leakage is prevented by dividing the resistor and grounding at high frequency. Insert a switch to eliminate the signal leakage in the low attenuation state where the signal passes, so that the capacity is not visible in the low attenuation state.
[0112] ここで、スィッチ 426の制御の仕方について説明する。減衰量制御端子 406の電圧 Vcが低いときは、スィッチ 426はオンとなり、電圧 Vcが高いときは、スィッチ 426はォ フとなる。電圧 Vcは連続的に変化するため、スィッチ 426は正確には、オンまたはォ フ動作ではなぐオン状態から徐々にオフ状態に変化することになる(連続的なオン オフ動作)。上記スィッチ 426は、アナログ的なスィッチ、主に MOSFETで構成され  [0112] Here, a method of controlling the switch 426 will be described. When the voltage Vc at the attenuation control terminal 406 is low, the switch 426 is turned on, and when the voltage Vc is high, the switch 426 is turned off. Since the voltage Vc changes continuously, the switch 426 accurately changes from an ON state to an OFF state rather than an ON or OFF operation (continuous ON / OFF operation). The switch 426 is an analog switch, mainly a MOSFET.
[0113] スィッチ(MOSFET) 426の制御回路としては、例えば、 MOSFETのゲート電位を 固定して、 MOSFETのソース/ドレイン端子を抵抗を介して減衰量制御端子 406に 接続することで、上記のような連続的なオンオフ動作を行う。 [0114] 以下、具体的に可変減衰回路の回路接続について説明する。 [0113] As a control circuit for the switch (MOSFET) 426, for example, the gate potential of the MOSFET is fixed and the source / drain terminal of the MOSFET is connected to the attenuation control terminal 406 through a resistor as described above. Performs continuous on / off operation. [0114] The circuit connection of the variable attenuation circuit will be specifically described below.
[0115] まず、信号減衰用素子としては、例えばトリプルゥエル構造をした Nチャネル MOS FETが好適である。信号減衰用 MOSFET411は、高周波可変減衰回路の信号入 力端子 404と信号出力端子 405との間の信号経路に直列に揷入されており、信号入 力端子 404と信号減衰用 MOSFET411との間には、 DC成分を遮断して、高周波 成分のみ通過する DC遮断容量 412が揷入されており、信号減衰用 MOSFET411 と信号出力端子 405との間には、同じく DC遮断容量 413が揷入されている。信号減 衰用 MOSFET411のバックゲート部と基板との間には、信号の漏れを遮断する高い 抵抗値を有する抵抗 424が揷入されて!/、る。  First, as a signal attenuating element, for example, an N-channel MOS FET having a triple-well structure is suitable. The signal attenuating MOSFET 411 is inserted in series in the signal path between the signal input terminal 404 and the signal output terminal 405 of the high-frequency variable attenuating circuit, and between the signal input terminal 404 and the signal attenuating MOSFET 411. The DC blocking capacitor 412 that blocks the DC component and passes only the high frequency component is inserted, and the DC blocking capacitor 413 is also inserted between the signal attenuation MOSFET 411 and the signal output terminal 405. Yes. Between the back gate portion of the MOSFET 411 for signal attenuation and the substrate, a resistor 424 having a high resistance value for blocking signal leakage is inserted! /.
[0116] 次に、信号減衰用 MOSFET411のゲートには、減衰量制御回路部 401が接続さ れている。減衰量制御回路部 401の構成を説明する。減衰量制御用抵抗 415と減 衰量制御用抵抗 416とが直列に接続され、減衰量制御用抵抗 415のもう片側の端 子が減衰量制御端子 (Vc) 406に接続され、減衰量制御用抵抗 416のもう片側の端 子が接地端子に接続されている。減衰量制御用抵抗 415と減衰量制御用抵抗 416 との接続部と信号減衰用 MOSFET411のゲートとの間には、高周波を遮断して、 D Cのみ通過させる高い抵抗値を有する抵抗 414が接続されている。さらに、信号減衰 用 MOSFET411のゲートと接地端子との間に、容量 403が追加されている。  Next, an attenuation control circuit unit 401 is connected to the gate of the signal attenuation MOSFET 411. The configuration of the attenuation control circuit unit 401 will be described. Attenuation control resistor 415 and attenuation control resistor 416 are connected in series, and the other terminal of attenuation control resistor 415 is connected to attenuation control terminal (Vc) 406 for attenuation control. The other terminal of resistor 416 is connected to the ground terminal. Between the connection between the attenuation control resistor 415 and the attenuation control resistor 416 and the gate of the signal attenuation MOSFET 411 is connected a resistor 414 having a high resistance value that blocks high frequency and allows only DC to pass. ing. Further, a capacitor 403 is added between the gate of the signal attenuation MOSFET 411 and the ground terminal.
[0117] 信号減衰用 MOSFET411のソース端子に接続されているソースバイアス回路部 4 02について説明する。抵抗 420と抵抗 421とが直列に接続され、抵抗 420のもう片 側の端子が電源電圧端子 (Vdd) 407に接続され、抵抗 421のもう片側の端子が接 地端子に接続されている。抵抗 420と抵抗 421との接続部には、ソースバイアス生成 用 MOSFET417のゲートが接続され、このソースバイアス生成用 MOSFET417は 、信号減衰用 MOSFET411と同じ製造プロセス '温度変動ばらつきを有している。ソ ースバイアス生成用 MOSFET417のドレインと電源電圧端子 407との間には、抵抗 418力 S接続され、ソースバイアス生成用 MOSFET417のソースと接地端子との間に は、抵抗 419が接続されている。また、ソースバイアス生成用 MOSFET417のソース と信号減衰用 MOSFET411のソースの間には高周波を遮断して DCのみ通過させ る高い抵抗値を有する抵抗 422が接続され、ソースバイアス生成用 MOSFET417 のソースと信号減衰用 MOSFET411のドレインとの間には高周波を遮断して DCの み通過させる高!/、抵抗値を有する抵抗 423が接続されて!/、る。信号減衰用 MOSFE T411にソースバイアスを供給する抵抗 422とドレインバイアスを供給する抵抗 423と の接続部と接地端子との間に、容量 425とスィッチ 426の直列回路が追加されている The source bias circuit portion 402 connected to the source terminal of the signal attenuating MOSFET 411 will be described. The resistor 420 and the resistor 421 are connected in series, the other terminal of the resistor 420 is connected to the power supply voltage terminal (Vdd) 407, and the other terminal of the resistor 421 is connected to the ground terminal. The gate of the source bias generating MOSFET 417 is connected to the connection portion between the resistor 420 and the resistor 421, and this source bias generating MOSFET 417 has the same manufacturing process as the signal attenuating MOSFET 411, “temperature variation variation. A resistor 418 is connected between the drain of the source bias generating MOSFET 417 and the power supply voltage terminal 407, and a resistor 419 is connected between the source of the source bias generating MOSFET 417 and the ground terminal. In addition, a resistor 422 having a high resistance value that cuts off the high frequency and passes only DC is connected between the source of the source bias generating MOSFET 417 and the source of the signal attenuating MOSFET 411. A resistor 423 having a resistance value is connected between the source of the signal and the drain of the MOSFET 411 for signal attenuation. A series circuit of a capacitor 425 and a switch 426 is added between the connection between the resistor 422 that supplies the source bias to the MOSFE T411 for signal attenuation and the resistor 423 that supplies the drain bias and the ground terminal.
[0118] 図 10は図 1のようなソースバイアス回路部 402を用いた場合の可変減衰回路の温 度に対する各電圧値の変動を表した図であり、図 11は、そのときの制御電圧に対す る利得特性を表した図である。図 10では、図 8と違い、温度の上昇に伴って、 Vrefを 減少させる構成とする。その結果、温度が増加してしきい値電圧 Vthが増加した場合 も、温度が低下してしきい値電圧 Vthが減少した場合も Vg— Vref— Vthは常に一定 となり、温度変動によらず、図 11のように同じ制御特性を描くことが可能となる。 [0118] Fig. 10 is a diagram showing the variation of each voltage value with respect to the temperature of the variable attenuation circuit when the source bias circuit unit 402 as shown in Fig. 1 is used, and Fig. 11 shows the control voltage at that time. FIG. 6 is a diagram showing gain characteristics for the same. In Fig. 10, unlike Fig. 8, Vref is reduced as the temperature rises. As a result, Vg—Vref—Vth is always constant regardless of temperature fluctuations, whether the temperature increases and the threshold voltage Vth increases or the temperature decreases and the threshold voltage Vth decreases. As shown in Fig. 11, the same control characteristics can be drawn.
[0119] 図 11のようなばらつき補正を実現する回路動作について図 4の可変減衰回路を用 V、て説明する。図 4のソースバイアス回路部 402のソースバイアス生成用 MOSFET 417のゲート電位は抵抗 420と抵抗 421との抵抗分割で決定される。ソースバイアス 生成用 MOSFET417は信号減衰用 MOSFET411と同じぐ温度が上昇するとしき い値電圧が増加する特性を持っているため、温度の上昇に伴い、しきい値電圧が増 加し、一方ゲート電位は一定であるため、ソース電位の減少、ソースバイアス生成用 MOSFET417に流れる電流の減少が起こる。その結果、信号減衰用 MOSFET41 1のソースバイアス電位は減少し、しきい値電圧変動の補正が実現できる。  [0119] The circuit operation for realizing the variation correction as shown in Fig. 11 will be described using the variable attenuation circuit of Fig. 4 as V. The gate potential of the source bias generating MOSFET 417 in the source bias circuit section 402 in FIG. 4 is determined by resistance division between the resistor 420 and the resistor 421. Since the source bias generation MOSFET 417 has the characteristic that the threshold voltage increases as the temperature rises the same as the signal attenuation MOSFET 411, the threshold voltage increases as the temperature rises, while the gate potential increases. Since it is constant, the source potential decreases and the current flowing through the source bias generating MOSFET 417 decreases. As a result, the source bias potential of the signal attenuating MOSFET 411 is reduced, and correction of the threshold voltage fluctuation can be realized.
[0120] 次に線形な制御特性を実現する回路動作について図 4の可変減衰回路を用いて 説明する。図 4の減衰量制御回路部 401の減衰量制御端子 (Vc) 406には、 0Vから 電源電圧電位まで、連続的な制御電圧が入力される。この制御電圧を減衰量制御 用抵抗 415と減衰量制御用抵抗 416とによって分圧して、信号減衰用 MOSFET41 1のゲートに入力する。信号減衰用 MOSFET411はドレイン一ソース間バイアスが 0 Vで用いられ、ゲート電位が 0Vの時は ON抵抗が最も大きぐゲート電位の増加に伴 つて、徐々に ON抵抗が減少し、ゲート電位が電源電圧となると、 ON抵抗が最小とな る。 ON抵抗の変化に伴い、信号入力端子 404から信号出力端子 405への通過特 性の減衰量も変動する。また、抵抗 415と抵抗 416とで分圧することで、任意の制御 特性が実現可能である。 Next, the circuit operation for realizing the linear control characteristics will be described using the variable attenuation circuit in FIG. A continuous control voltage from 0 V to the power supply voltage potential is input to the attenuation control terminal (Vc) 406 of the attenuation control circuit unit 401 in FIG. This control voltage is divided by the attenuation control resistor 415 and the attenuation control resistor 416 and input to the gate of the signal attenuation MOSFET 411. The signal attenuating MOSFET 411 is used with a drain-source bias of 0 V. When the gate potential is 0 V, the ON resistance is the largest and the ON resistance gradually decreases as the gate potential increases. When the voltage is reached, the ON resistance is minimized. As the ON resistance changes, the attenuation of the passage characteristic from the signal input terminal 404 to the signal output terminal 405 also changes. In addition, any voltage can be controlled by dividing with resistors 415 and 416. Characteristics are feasible.
[0121] しかし、ここで例えば Si基板で可変減衰回路を実現する場合、信号減衰用 MOSF ET411のドレイン ゲート間およびゲート ソース間に発生する寄生容量の影響で 信号が漏れ、信号減衰用 MOSFET411の ON抵抗で決まる減衰量がとれず、線形 性が確保できない。その影響をなくすために、容量 403を信号減衰用 MOSFET41 1のゲートと接地端子との間に揷入する。容量 403を揷入することで、信号減衰用 M OSFET411のドレイン ゲート間およびゲート ソース間を介して信号が漏れる経 路を遮断し、線形性を確保している。  [0121] However, when a variable attenuation circuit is realized on a Si substrate, for example, the signal leaks due to the parasitic capacitance generated between the drain and gate and between the gate and source of the signal attenuation MOSF ET411, and the signal attenuation MOSFET 411 is turned on. The attenuation determined by resistance cannot be obtained, and linearity cannot be ensured. In order to eliminate the influence, a capacitor 403 is inserted between the gate of the signal attenuating MOSFET 411 and the ground terminal. By inserting the capacitor 403, the signal leakage path between the drain gate and the gate source of the signal attenuating MOS FET 411 is cut off to ensure linearity.
[0122] また、ここで上記と同じぐ例えば Si基板で可変減衰回路を実現する場合、基板抵 抗が低いことの影響により、信号減衰用 MOSFET411のバックゲートと基板との間 のインピーダンスが低ぐこの部分を通じて信号が基板に漏れ、信号減衰用 MOSF ET411の ON抵抗で決まる減衰量がとれず、線形性が確保できない。その影響をな くすために、例えば、信号減衰用 MOSFET411をトリプルゥエル構造で作製し、信 号減衰用 MOSFET411のバックゲートと基板との間に高い抵抗値を有する抵抗を 揷入することで、信号が漏れる経路を遮断し、線形性を確保している。  [0122] In addition, when a variable attenuation circuit is realized with the same Si substrate as described above, for example, the impedance between the back gate of the signal attenuation MOSFET 411 and the substrate is lowered due to the low substrate resistance. Through this part, the signal leaks to the board, and the attenuation determined by the ON resistance of the signal attenuation MOSF ET411 cannot be obtained, and linearity cannot be ensured. In order to eliminate the influence, for example, the signal attenuating MOSFET 411 is manufactured in a triple-well structure, and a resistor having a high resistance value is inserted between the back gate of the signal attenuating MOSFET 411 and the substrate. The path through which the signal leaks is blocked to ensure linearity.
[0123] また、例えば Si基板で MOSFETを用いて可変減衰回路を実現する場合、信号減 衰用 MOSFET411のソースとドレインに同電位を与える必要がある。その際、ソース バイアス回路 402で生成した電圧を高い抵抗値を有するソースバイアス生成用抵抗 422を介してソースに供給し、高い抵抗値を有するドレインバイアス生成用抵抗 423 を介してドレインに供給するという方法が一般に用いられる。し力、しその場合、高減衰 状態において、抵抗を介してドレインからソースに信号が漏れ、信号減衰用 MOSFE T411の遮断時の減衰特性ほど減衰量がとれないという問題がある。その影響をなく すために、例えば、信号減衰用 MOSFET411のソースバイアス生成用抵抗 422とド レインバイアス生成用抵抗 423との接続部と接地端子との間に容量 425とスィッチ 42 6の直列回路を揷入し、高アイソレーション状態では、スィッチ 426を ONにすることで 、ソースバイアス生成用抵抗 422、およびドレインバイアス生成用抵抗 423を介して、 入力端子 404から出力端子 405に信号が漏れる経路を遮断し、高アイソレーション 時の減衰特性を向上させることができる。また、通過状態には、スィッチ 426を OFFと することで、容量 425の影響で通過時に信号が漏れるのを防ぐ。 Further, for example, when a variable attenuation circuit is realized using a MOSFET on a Si substrate, it is necessary to apply the same potential to the source and drain of the signal attenuation MOSFET 411. At that time, the voltage generated by the source bias circuit 402 is supplied to the source via the source bias generating resistor 422 having a high resistance value, and is supplied to the drain via the drain bias generating resistor 423 having a high resistance value. The method is generally used. In this case, in a high attenuation state, a signal leaks from the drain to the source via the resistor, and there is a problem that the attenuation amount cannot be as high as the attenuation characteristic when the MOSFE T411 for signal attenuation is cut off. In order to eliminate this effect, for example, a series circuit of a capacitor 425 and a switch 426 is connected between the connection between the source bias generating resistor 422 and the drain bias generating resistor 423 of the signal attenuating MOSFET 411 and the ground terminal. In the high isolation state, when the switch 426 is turned on, a signal leaks from the input terminal 404 to the output terminal 405 via the source bias generating resistor 422 and the drain bias generating resistor 423. It can cut off and improve the attenuation characteristics at the time of high isolation. In the passing state, switch 426 is set to OFF. This prevents the signal from leaking when passing due to the influence of the capacity 425.
[0124] 図 14Aは、実際に図 4と図 2の可変減衰回路を用いて、回路シミュレーションを行つ た結果 (減衰量制御特性)を示している。同図において、記号 E1は従来回路(図 2) の特性を示し、記号 E2は本発明回路(図 4)の特性を示している。従来回路と本発明 回路において、最大出力時 (Vc = l . 8V)のレベルに差異はないが、 Vc=l . 5V以下 において、従来回路では信号の漏れが大きぐ十分に減衰量が取れていないが、逆 に実施例 3を適用した本発明回路では、信号減衰用 MOSFET411のゲートに付加 される容量 403、信号減衰用 MOSFET411のバックゲートに付加される抵抗 424、 ソースバイアス回路 402に付加される容量 425とスィッチ 426の直列回路を追加した ことにより、信号減衰用 MOSFET411の本来の性能に近い減衰量が得られ、減衰 量制御特性として大きく改善された。  FIG. 14A shows the results (attenuation control characteristics) of circuit simulation using the variable attenuation circuit of FIGS. 4 and 2. In the figure, symbol E1 indicates the characteristics of the conventional circuit (Fig. 2), and symbol E2 indicates the characteristics of the circuit of the present invention (Fig. 4). There is no difference in the maximum output level (Vc = l.8V) between the conventional circuit and the circuit of the present invention.However, at Vc = l.5V or less, the conventional circuit has a large amount of signal leakage and sufficient attenuation. Conversely, in the circuit of the present invention to which Example 3 is applied, the capacitor 403 added to the gate of the signal attenuating MOSFET 411, the resistor 424 added to the back gate of the signal attenuating MOSFET 411, and the source bias circuit 402 are added. By adding a series circuit consisting of a capacitance 425 and a switch 426, an attenuation close to the original performance of the signal attenuation MOSFET 411 was obtained, and the attenuation control characteristics were greatly improved.
[0125] また、本可変減衰回路は、容量 403を追加したことによってノイズ特性も改善してい る。減衰量制御回路部 401は通常抵抗で構成されている。したがって、この抵抗で 発生したノイズが信号減衰用 MOSFET411のゲートを介して混入し、信号入力端 子 404から入ってきた高周波信号にのり、ノイズ特性を悪化させ、例えば GSM通信 方式の受信帯域ノイズなどの要求を満たさなくなる。  [0125] In addition, the variable attenuation circuit has improved noise characteristics due to the addition of the capacitor 403. The attenuation amount control circuit unit 401 is usually composed of a resistor. Therefore, noise generated by this resistor enters through the gate of the MOSFET 411 for signal attenuation and is applied to the high-frequency signal that enters from the signal input terminal 404 to deteriorate the noise characteristics, for example, GSM communication system reception band noise, etc. No longer meet the requirements.
[0126] しかし、容量 403の追加によって、減衰量制御回路部 401で発生したノイズを容量  However, the noise generated in the attenuation control circuit unit 401 is reduced by adding the capacitor 403.
403と抵抗 414のフィルタ効果によって遮断し、連続的に変化する可変減衰回路の 如何なる状態においてもノイズ特性を向上させることができる。図 14Bは、実際に図 4 と図 2の可変減衰回路を用いて、回路シミュレーションを行った結果(ノイズ特性)を 示している。同図において、記号 F1は従来回路(図 2)の特性を示し、記号 F2は本 発明回路(図 4)の特性を示している。実施例 3では、容量 403を追加したことにより、 ノイズ特性が大きく改善された。  Noise characteristics can be improved in any state of the variable attenuation circuit which is blocked by the filter effect of 403 and resistor 414 and continuously changes. Fig. 14B shows the results (noise characteristics) of a circuit simulation using the variable attenuation circuit of Figs. 4 and 2. In the figure, symbol F1 indicates the characteristics of the conventional circuit (Fig. 2), and symbol F2 indicates the characteristics of the circuit of the present invention (Fig. 4). In Example 3, the addition of the capacitor 403 greatly improved the noise characteristics.
[0127] 以上のように、信号減衰用 MOSFET411を持つ可変減衰回路に、ソースバイアス 回路部 402と容量 403とバックゲートに付加される抵抗 424とソースバイアス回路に 付加される容量 425とスィッチ 426の直列回路を追加することで、製造プロセス '温度 変動ばらつきによる信号減衰用 MOSFET411のしきい値ばらつきを補正することが 可能となり、また如何なる減衰状態でも信号減衰用 MOSFET411やその他抵抗の 信号の漏れをなくすことができ、線形性を向上させることができた。さらに減衰量制御 回路部 401で発生するノイズを落とすことができ、ノイズ特性を向上させることができ た。結果として、マルチバンド '·マルチ通信方式対応の可変減衰回路を Siプロセスに て実現でき、他の無線回路ブロックとの 1チップ化も可能となった。 As described above, the variable bias circuit having the signal attenuating MOSFET 411 includes the source bias circuit 402, the capacitor 403, the resistor 424 added to the back gate, the capacitor 425 added to the source bias circuit, and the switch 426. By adding a series circuit, it becomes possible to compensate for variations in the threshold value of the MOSFET 411 for signal attenuation due to variations in temperature variations, and the signal attenuation MOSFET 411 and other resistors can be compensated for in any attenuation state. Signal leakage could be eliminated and linearity could be improved. Furthermore, the noise generated by the attenuation control circuit unit 401 can be reduced, and the noise characteristics can be improved. As a result, a variable attenuation circuit compatible with multi-band and multi-communication systems can be realized by the Si process, and it can be integrated into a single chip with other radio circuit blocks.
[0128] なお、上記のソースバイアス回路部 402と容量 403とバックゲートに付加される抵抗  Note that the source bias circuit 402, the capacitor 403, and the resistor added to the back gate
424とソースバイアス回路に付加される容量 425とスィッチ 426の直列回路、のどれ か一つのみ、もしくはどれか二つのみ、もしくはどれか三つのみ、もしくはすべて接続 されている構成でもよい。なお、 MOSFETとしては Pチャネル MOSFETでもよい。ま た、トリプルゥエル構造でなくとも同等の効果が発揮できればよい。また、ソースバイァ ス回路付加容量 425とスィッチ 425の直列回路ではなぐソースバイアス回路付加容 量 425のみを設ける構成でもよい。  It may be configured such that only one, only two, only three, or all of the series circuit 424 and the capacitance 425 and switch 426 added to the source bias circuit are connected. The MOSFET may be a P-channel MOSFET. Moreover, it is sufficient that the same effect can be exhibited even if the triple-well structure is not used. Alternatively, the source bias circuit additional capacitor 425 and the switch 425 in series may be provided with only the source bias circuit additional capacitor 425.
[0129] (実施例 4)  [Example 4]
以下、本発明の実施例 4に係る可変減衰回路 (集積回路)について、図 6を参照し ながら説明する。  A variable attenuation circuit (integrated circuit) according to Example 4 of the present invention will be described below with reference to FIG.
[0130] 図 6は、図 1の可変減衰回路もしくは図 3の可変減衰回路もしくは図 4の可変減衰回 路を少なくとも一つ用いた可変減衰回路である。回路構成、動作原理について説明 する。  FIG. 6 shows a variable attenuation circuit using at least one of the variable attenuation circuit of FIG. 1, the variable attenuation circuit of FIG. 3, or the variable attenuation circuit of FIG. The circuit configuration and operating principle will be described.
[0131] GaAs等を用いた可変減衰回路は、一般に基板上に単独で作製する場合が多ぐ その場合、高周波においては入出力ともに 50 Ωで終端する必要があり、図 16のよう に可変減衰回路を構成する。図 16において、 1601〜; 1604はそれぞれ可変抵抗( 可変減衰回路)である。 Vcは減衰量制御端子、 Vref;!〜 Vref4はバイアス端子、 IN は入力端子、 OUTは出力端子である。この回路構成においては、並列(シャント)に 揷入した可変抵抗部分で、高減衰状態から低減衰状態まで、入出力ともに 50 Ωで 終端されている。しかし、 Si基板上で作製する場合、必ずしも入出力ともに 50 Ωで終 端する必要がない。例えば、入力側がインバータ等のデジタル回路の場合、可変減 衰回路の入力インピーダンスは低ぐ初段の並列の可変抵抗を揷入しても効果がな い。また、初段に可変抵抗を揷入することで、可変減衰回路の入力インピーダンスが 低くなり、前段回路に大きな駆動力が必要となる。そのような場合、図 5で示すような はしご型の可変減衰回路が望ましい。図 5において、 501、 502は図 1もしくは図 4に 示したような可変減衰回路、 503、 504は図 3に示したような可変減衰回路、 505は 信号入力端子、 506は信号出力端子、 507は減衰量制御端子である。 [0131] In general, a variable attenuation circuit using GaAs or the like is often fabricated independently on a substrate. In that case, both input and output must be terminated at 50 Ω at high frequencies. Configure the circuit. In FIG. 16, reference numerals 1601 to 1604 denote variable resistors (variable attenuation circuits), respectively. Vc is the attenuation control terminal, Vref;! To Vref4 is the bias terminal, IN is the input terminal, and OUT is the output terminal. In this circuit configuration, the variable resistance part inserted in parallel (shunt) is terminated at 50 Ω for both input and output from the high attenuation state to the low attenuation state. However, when fabricated on a Si substrate, both input and output need not be terminated at 50 Ω. For example, if the input side is a digital circuit such as an inverter, the input impedance of the variable attenuation circuit is low. In addition, by inserting a variable resistor in the first stage, the input impedance of the variable attenuation circuit is lowered, and a large driving force is required for the preceding circuit. In such a case, as shown in Figure 5. A ladder-type variable attenuation circuit is desirable. In FIG. 5, 501 and 502 are variable attenuation circuits as shown in FIG. 1 or FIG. 4, 503 and 504 are variable attenuation circuits as shown in FIG. 3, 505 is a signal input terminal, 506 is a signal output terminal, 507 Is an attenuation control terminal.
[0132] 初段に揷入されて!/、た可変抵抗を中段に揷入することで抵抗を揷入した効果を出 し、減衰特性を改善させ、また、可変減衰回路の入力インピーダンスを常に高くする ことができるため、前段回路の駆動力を小さくすることが可能となり、低消費電力化が 実現できる。 [0132] By inserting a variable resistor in the first stage, the effect of inserting the resistance is obtained, improving the attenuation characteristics, and constantly increasing the input impedance of the variable attenuation circuit. As a result, the driving power of the previous circuit can be reduced, and low power consumption can be realized.
[0133] 図 5の回路構成に図 4と図 3の可変減衰回路を用いた可変減衰回路が図 6である。  FIG. 6 shows a variable attenuation circuit using the variable attenuation circuit of FIGS. 4 and 3 in the circuit configuration of FIG.
図 6では、信号入力端子 601から入ってきた高周波信号が、減衰動作部 611、 612、 613、 614で減衰されて、信号出力端子 602より出力される。ここでいう減衰動作部 6 11、 612、 613、 614は、図 4または図 3における、信号減衰部と減衰量制御回路部 とをまとめたものである。  In FIG. 6, the high-frequency signal that has entered from the signal input terminal 601 is attenuated by the attenuation operation units 611, 612, 613, and 614 and is output from the signal output terminal 602. Here, the attenuation operation units 611, 612, 613, and 614 are a combination of the signal attenuation unit and the attenuation amount control circuit unit in FIG. 4 or FIG.
[0134] 減衰量は、減衰量制御端子 (Vc) 603によって、高減衰状態から低減衰状態まで 連続的に制御される。この可変減衰回路において、減衰動作部 611と減衰動作部 6 13の信号減衰用 MOSFETのしきい値電圧のばらつき補正回路として図 4に示した 共通のソースバイアス生成回路 615が追加され、減衰動作部 612の信号減衰用 MO SFETのしきい値電圧のばらつき補正回路として図 3に示したゲートバイアス生成回 路 616が追加され、減衰動作部 614の信号減衰用 MOSFETのしきい値電圧のばら つき補正回路として図 3に示したゲートバイアス生成回路 617が追加されている。ま た、線形性の確保、ノイズ特性の向上のために、各信号減衰用 MOSFETのゲートと 接地端子との間には容量が追加されている。各 MOSFETはトリプルゥエル構造とな つており、バックゲートと基板との間には基板への信号の漏れを軽減するために高い 抵抗値を有する抵抗が揷入されている。減衰動作部 611と減衰動作部 613の信号 減衰用 MOSFETのソースバイアス生成用抵抗とドレインバイアス生成用抵抗との接 続部と接地端子との間には容量とスィッチの直列回路が揷入されている。  The attenuation is continuously controlled from the high attenuation state to the low attenuation state by the attenuation amount control terminal (Vc) 603. In this variable attenuation circuit, a common source bias generation circuit 615 shown in FIG. 4 is added as a threshold voltage variation correction circuit for the MOSFET for signal attenuation of the attenuation operation unit 611 and the attenuation operation unit 613. The gate bias generation circuit 616 shown in Fig. 3 was added as a correction circuit for the threshold voltage variation of the 612 signal attenuating MO SFET, and the variation of the threshold voltage of the signal attenuating MOSFET in the attenuation unit 614 was corrected. As a circuit, a gate bias generation circuit 617 shown in FIG. 3 is added. In addition, a capacitor is added between the gate of each signal attenuation MOSFET and the ground terminal to ensure linearity and improve noise characteristics. Each MOSFET has a triple-well structure, and a resistor having a high resistance value is inserted between the back gate and the substrate to reduce signal leakage to the substrate. Attenuation operation unit 611 and attenuation operation unit 613 signals A series circuit of a capacitor and a switch is inserted between the connection between the source bias generation resistor and drain bias generation resistor of the attenuation MOSFET and the ground terminal. Yes.
[0135] ここで、減衰動作部 12、 14を構成するコンデンサと MOSFETとの直列回路力 上 記の容量とスィッチの役割を果たして!/、る。  [0135] Here, the series circuit force of the capacitors and MOSFETs constituting the damping operation units 12 and 14 plays the role of the above capacitance and switch.
[0136] 図 15A、図 15Bは、実際に図 6の可変減衰回路を用いて、回路シミュレーションを 行った結果である。図 15Aが減衰量制御特性を示し、図 15Bがノイズ特性を示す。 図 15Aにおいて、記号 G1は従来回路 (例えば、図 2の回路)の特性を示し、記号 G2 は本発明回路(図 4)の特性を示している。また、図 15Bにおいて、記号 HIは従来回 路 (例えば、図 2の回路)の特性を示し、記号 H2は本発明回路(図 6)の特性を示して いる。ゲートに付加される容量、バックゲートに付加される抵抗、ソースバイアス回路 に付加される容量とスィッチの直列回路を追加した効果で、線形性が大きく改善され 、直列(シリーズ)の信号減衰部、並列(シャント)の信号減衰部を交互に 2段接続す ることで、図 15Aのような減衰量制御特性を実現し、 800MHz帯、 2GHz帯ともに 50 dB以上の可変減衰範囲を実現した。また、図 15Bより、ノイズ特性も大きく向上したこ とが分かる。結果として、ばらつき特性、線形性、ノイズ特性に優れた可変減衰回路 の作製を可能とした。 15A and 15B are circuit simulations using the variable attenuation circuit of FIG. It is the result of having gone. Fig. 15A shows the attenuation control characteristic, and Fig. 15B shows the noise characteristic. In FIG. 15A, symbol G1 indicates the characteristics of the conventional circuit (for example, the circuit of FIG. 2), and symbol G2 indicates the characteristics of the circuit of the present invention (FIG. 4). In FIG. 15B, symbol HI indicates the characteristics of the conventional circuit (for example, the circuit of FIG. 2), and symbol H2 indicates the characteristics of the circuit of the present invention (FIG. 6). Capacitance added to the gate, resistance added to the back gate, capacitance added to the source bias circuit and the series circuit of the switch, the linearity is greatly improved, the series (series) signal attenuation unit, By connecting two stages of parallel (shunt) signal attenuators alternately, the attenuation control characteristics shown in Fig. 15A were realized, and a variable attenuation range of 50 dB or more was achieved in both the 800 MHz band and 2 GHz band. From Fig. 15B, it can be seen that the noise characteristics have also been greatly improved. As a result, it was possible to produce a variable attenuation circuit with excellent variation characteristics, linearity, and noise characteristics.
[0137] なお、図 6の可変減衰回路において、各信号減衰用 MOSFETのゲートと接地端 子との間に追加されている容量のうち少なくとも一つ、もしくは、バックゲートと基板と の間の高い抵抗値を有する抵抗のうち少なくとも一つ、もしくは、信号減衰用 MOSF ETのしきい値電圧のばらつき補正回路のうち少なくとも一つ、もしくは、ソースバイァ ス生成用抵抗およびドレインバイアス生成用抵抗に付加される容量のうち少なくとも 一つが追加されていればよぐ全て接続されている必要はない。また、並列(シャント) の信号減衰部と直列(シリーズ)の信号減衰部の接続は、この順でなくてもよぐ段数 も何段でも構わない。 MOSFETとしては Pチャネル MOSFETでもよい。また、トリプ ルゥエル構造でなくとも同等の効果が発揮できればよい。  In the variable attenuation circuit of FIG. 6, at least one of the capacitances added between the gate of each signal attenuation MOSFET and the ground terminal, or a high between the back gate and the substrate. It is added to at least one of the resistors having the resistance value, at least one of the threshold voltage variation correction circuits of the signal attenuation MOSFET, or the source bias generating resistor and the drain bias generating resistor. As long as at least one of the capacities is added, all need not be connected. In addition, the connection of the parallel (shunt) signal attenuator and the series (series) signal attenuator does not have to be in this order, and any number of stages may be used. The MOSFET may be a P-channel MOSFET. Moreover, it is sufficient that the same effect can be exhibited even if the triple-luel structure is not used.
[0138] (実施例 5)  [Example 5]
以下、本発明の実施例 5に係る集積回路について、図 7を参照しながら説明する。  Hereinafter, an integrated circuit according to Embodiment 5 of the present invention will be described with reference to FIG.
[0139] 図 7は、図 1もしくは図 3もしくは図 4もしくは図 6の可変減衰回路を用いた高周波無 線送信回路システム(装置)の一例を示すブロック図である。回路構成、動作原理に ついて説明する。  FIG. 7 is a block diagram showing an example of a high-frequency radio transmission circuit system (apparatus) using the variable attenuation circuit of FIG. 1, FIG. 3, FIG. 4, or FIG. The circuit configuration and operating principle will be described.
[0140] この高周波無線送信回路システムは、図 7に示すように、発振器 (VCO) 701の発 振信号を分周器 (Divider) 702で分周し、インバータ等で構成されたバッファ (Buff er) 703を通った後、可変減衰回路(Variable Attenuator) 704で利得を制御して 減衰し、ドライバアンプ (Driver) 705で増幅した後、高周波増幅器 (PA) 706で更に 増幅し、アンテナ 707から送信する。 [0140] As shown in Fig. 7, this high-frequency wireless transmission circuit system divides the oscillation signal of an oscillator (VCO) 701 by a divider 702, and a buffer (Buffer) composed of an inverter or the like. ) After passing through 703, the gain is controlled by variable attenuation circuit (Variable Attenuator) 704 The signal is attenuated, amplified by a driver amplifier (Driver) 705, further amplified by a high frequency amplifier (PA) 706, and transmitted from an antenna 707.
[0141] 図 7の高周波無線送信回路システムの可変減衰回路 704に本発明を適用すること で、可変減衰回路を他の回路ブロックと同一 Si半導体基板上にシステムを構築した 場合においても、ばらつき特性、線形性、アイソレーション特性、ノイズ特性に優れた 可変減衰回路を実現でき、通過特性の良好なシステムが得られる。  [0141] By applying the present invention to the variable attenuation circuit 704 of the high-frequency wireless transmission circuit system in FIG. 7, even when the variable attenuation circuit is constructed on the same Si semiconductor substrate as other circuit blocks, the variation characteristics A variable attenuation circuit with excellent linearity, isolation characteristics, and noise characteristics can be realized, and a system with good pass characteristics can be obtained.
[0142] なお、高周波無線送信回路システムの構成例としては、上記にとどまらず、少なくと も一つの可変減衰回路と少なくとも一つの発振器と少なくとも一つの増幅器とを備え た無線送信装置と無線送信装置に接続されて少なくとも一つの無線周波数を送受 信することの可能なアンテナを備えた無線送信回路システムならば何でもよい。  [0142] The configuration example of the high-frequency wireless transmission circuit system is not limited to the above, and a wireless transmission device and a wireless transmission device each including at least one variable attenuation circuit, at least one oscillator, and at least one amplifier. Any wireless transmission circuit system having an antenna connected to and capable of transmitting and receiving at least one radio frequency may be used.
[0143] この実施例 5によれば、上記各実施例と同様の効果が得られる。  [0143] According to the fifth embodiment, the same effects as those of the above-described embodiments can be obtained.
産業上の利用可能性  Industrial applicability
[0144] 本発明は、各種の無線通信機器において高周波信号の減衰に用いるのに有用で ある。 [0144] The present invention is useful for attenuation of high-frequency signals in various wireless communication devices.

Claims

請求の範囲 The scope of the claims
[1] 信号入力部と信号出力部との間の信号経路に直列に挿入された信号減衰用素子を 有する信号減衰部と、  [1] A signal attenuating unit having a signal attenuating element inserted in series in a signal path between the signal input unit and the signal output unit;
前記信号減衰用素子に減衰量制御信号を与える減衰量制御回路部と、 前記信号減衰用素子にバイアスを与えるバイアス回路部と、  An attenuation amount control circuit unit that applies an attenuation amount control signal to the signal attenuation element; a bias circuit unit that applies a bias to the signal attenuation element;
前記信号減衰用素子と前記減衰量制御回路部との接続部と接地端子との間に接 続された容量とを備えた可変減衰回路。  A variable attenuation circuit comprising a capacitor connected between a connection portion between the signal attenuation element and the attenuation amount control circuit portion and a ground terminal.
[2] 前記信号減衰用素子が FETからなり、前記減衰量制御回路部は前記 FETのゲート 端子に減衰量制御信号を与えて前記 FETの ON抵抗を制御し、前記バイアス回路 部は前記 FETのソース端子にバイアスを与え、前記容量は前記 FETのゲート端子と 前記接地端子との間に接続されている請求項 1記載の可変減衰回路。  [2] The signal attenuating element is an FET, the attenuation control circuit unit applies an attenuation control signal to the gate terminal of the FET to control the ON resistance of the FET, and the bias circuit unit is the FET The variable attenuation circuit according to claim 1, wherein a bias is applied to a source terminal, and the capacitor is connected between a gate terminal of the FET and the ground terminal.
[3] 信号入力部と信号出力部との間の信号経路に直列に挿入された信号減衰用 FETを 有する信号減衰部と、 [3] A signal attenuating unit having a signal attenuating FET inserted in series in the signal path between the signal input unit and the signal output unit;
前記信号減衰用 FETのゲート端子に減衰量制御信号を与えて前記信号減衰用 F ETの ON抵抗を制御する減衰量制御回路部と、  An attenuation control circuit unit that applies an attenuation control signal to the gate terminal of the signal attenuation FET to control the ON resistance of the signal attenuation FET;
前記信号減衰用 FETのソース端子にバイアスを与えるバイアス回路部とを備え、 前記バイアス回路部は、前記信号減衰用 FETのしきい値電圧ばらつきを補償する ノ ィァス用 FETを有する可変減衰回路。  And a bias circuit unit that applies a bias to a source terminal of the signal attenuation FET, wherein the bias circuit unit compensates for variation in threshold voltage of the signal attenuation FET.
[4] 信号入力部と信号出力部との間の信号経路に直列に挿入された信号減衰用 FETを 有する信号減衰部と、 [4] A signal attenuating unit having a signal attenuating FET inserted in series in the signal path between the signal input unit and the signal output unit,
前記信号減衰用 FETのゲート端子に減衰量制御信号を与えて前記信号減衰用 F ETの ON抵抗を制御する減衰量制御回路部と、  An attenuation control circuit unit that applies an attenuation control signal to the gate terminal of the signal attenuation FET to control the ON resistance of the signal attenuation FET;
前記信号減衰用 FETのソース端子にバイアスを与えるバイアス回路部と、 前記信号減衰用 FETのバックゲート部と基板との間に接続された抵抗とを備えた 可変減衰回路。  A variable attenuation circuit comprising: a bias circuit unit that applies a bias to a source terminal of the signal attenuation FET; and a resistor connected between a back gate unit of the signal attenuation FET and a substrate.
[5] 信号入力部と信号出力部との間の信号経路に直列に挿入された信号減衰用 FETを 有する信号減衰部と、  [5] A signal attenuation unit having a signal attenuation FET inserted in series in the signal path between the signal input unit and the signal output unit,
前記信号減衰用 FETのゲート端子に減衰量制御信号を与えて前記信号減衰用 F ETの ON抵抗を制御する減衰量制御回路部と、 Applying an attenuation control signal to the gate terminal of the signal attenuating FET, the signal attenuating F Attenuation control circuit that controls the ON resistance of the ET,
前記信号減衰用 FETのソース端子にバイアスを与えるバイアス回路部と、 前記バイアス回路部と接地端子との間に接続された容量もしくは容量とスィッチとを 備えた可変減衰回路。  A variable attenuation circuit comprising: a bias circuit section that applies a bias to a source terminal of the signal attenuation FET; and a capacitor or a capacitor and a switch connected between the bias circuit section and a ground terminal.
[6] 信号入力部と信号出力部との間の信号経路に FETが揷入接続されてこの FETのゲ ート端子に与えられる信号によって前記信号入力部に与えられた信号の減衰量を制 御して出力する信号減衰部と、  [6] A FET is inserted in the signal path between the signal input unit and the signal output unit, and the signal applied to the gate terminal of this FET controls the attenuation of the signal applied to the signal input unit. A signal attenuating unit for output by controlling,
前記ゲート端子に信号を与えて前記 FETの ON抵抗値を異ならせる減衰量制御回 路部と、  An attenuation control circuit unit that applies a signal to the gate terminal to vary the ON resistance value of the FET;
前記 FETのソース端子に一端を接続した抵抗素子の他端と接地端子との間に第 1 の容量素子を接続し、この抵抗素子を介して直流電圧を与えるバイアス回路部と、 前記 FETのバックゲート部と前記接地端子との間に接続された抵抗とを備え、 前記ゲート端子と前記接地端子との間に第 2の容量素子を接続したことを特徴とす る可変減衰回路。  A first capacitor element connected between the other end of the resistance element having one end connected to the source terminal of the FET and the ground terminal, and a DC circuit for applying a DC voltage through the resistance element; and a backside of the FET A variable attenuation circuit comprising: a resistor connected between a gate portion and the ground terminal; and a second capacitor element connected between the gate terminal and the ground terminal.
[7] 信号入力部と信号出力部との間の信号経路と接地端子との間に挿入された信号減 衰用素子を有する信号減衰部と、  [7] A signal attenuating unit having a signal attenuating element inserted between the signal path between the signal input unit and the signal output unit and the ground terminal;
前記信号減衰用素子に減衰量制御信号を与える減衰量制御回路部と、 前記信号減衰用素子にバイアスを与えるバイアス回路部と、  An attenuation amount control circuit unit that applies an attenuation amount control signal to the signal attenuation element; a bias circuit unit that applies a bias to the signal attenuation element;
前記信号減衰用素子と前記バイアス回路部との接続部と前記接地端子との間に接 続された容量とを備えた可変減衰回路。  A variable attenuation circuit including a capacitor connected between a connection portion between the signal attenuating element and the bias circuit portion and the ground terminal.
[8] 前記信号減衰用素子が FETからなり、前記減衰量制御回路部は前記 FETのドレイ ン端子に減衰量制御信号を与えて前記 FETの ON抵抗を制御し、前記バイアス回 路部は前記 FETのゲート端子にバイアスを与え、前記容量は前記 FETのゲート端子 と前記接地端子との間に接続されている請求項 7記載の可変減衰回路。  [8] The signal attenuating element is an FET, and the attenuation control circuit unit applies an attenuation control signal to the drain terminal of the FET to control the ON resistance of the FET, and the bias circuit unit 8. The variable attenuation circuit according to claim 7, wherein a bias is applied to a gate terminal of the FET, and the capacitor is connected between the gate terminal of the FET and the ground terminal.
[9] 信号入力部と信号出力部との間の信号経路と接地端子との間に挿入された信号減 衰用 FETを有する信号減衰部と、  [9] A signal attenuator having a signal attenuating FET inserted between the signal path between the signal input unit and the signal output unit and the ground terminal,
前記信号減衰用 FETのドレイン端子に減衰量制御信号を与えて前記信号減衰用 FETの ON抵抗を制御する減衰量制御回路部と、 前記信号減衰用 FETのゲート端子にバイアスを与えるバイアス回路部とを備え、 前記バイアス回路部は、前記信号減衰用 FETのしきい値電圧ばらつきを補償する ノ ィァス用 FETを有する可変減衰回路。 An attenuation control circuit unit that provides an attenuation control signal to the drain terminal of the signal attenuation FET to control the ON resistance of the signal attenuation FET; And a bias circuit unit that applies a bias to the gate terminal of the signal attenuation FET, wherein the bias circuit unit compensates for variations in threshold voltage of the signal attenuation FET.
[10] 信号入力部と信号出力部との間の信号経路と接地端子との間に挿入された信号減 衰用 FETを有する信号減衰部と、 [10] A signal attenuating unit having a signal attenuating FET inserted between the signal path between the signal input unit and the signal output unit and the ground terminal,
前記信号減衰用 FETのドレイン端子に減衰量制御信号を与えて前記信号減衰用 Applying an attenuation control signal to the drain terminal of the signal attenuating FET
FETの ON抵抗を制御する減衰量制御回路部と、 Attenuation control circuit that controls the ON resistance of the FET,
前記信号減衰用 FETのゲート端子にバイアスを与えるバイアス回路部と、 前記信号減衰用 FETのバックゲート部と基板との間に接続された抵抗とを備えた 可変減衰回路。  A variable attenuation circuit comprising: a bias circuit section that applies a bias to the gate terminal of the signal attenuation FET; and a resistor connected between the back gate section of the signal attenuation FET and the substrate.
[11] 信号入力部と信号出力部との間の信号経路と交流接地との間に第 1の容量素子と F ETの電流経路端子対が直列に揷入接続されて前記第 1の容量素子と前記 FETの 電流経路の一端との接続部に与えられる信号によって前記信号入力部に与えられ た信号の減衰量を制御して出力する信号減衰部と、  [11] The first capacitive element is configured such that a first capacitive element and a current path terminal pair of FET are inserted and connected in series between the signal path between the signal input unit and the signal output unit and the AC ground. And a signal attenuating unit for controlling and outputting the attenuation amount of the signal applied to the signal input unit by a signal applied to a connection part between the FET and one end of the current path of the FET,
前記 FETの前記一端に信号を与えて前記 FETの ON抵抗値を異ならせる減衰量 制御回路部と、  Attenuation control circuit unit that applies a signal to the one end of the FET to vary the ON resistance value of the FET,
前記 FETのゲート端子に抵抗素子を介して直流電圧を与えるバイアス回路部と、 前記 FETのバックゲート部と前記接地端子との間に接続された抵抗とを備え、 前記ゲート端子と前記接地端子との間に第 2の容量素子を接続した可変減衰回路  A bias circuit section for applying a DC voltage to the gate terminal of the FET via a resistance element; and a resistor connected between the back gate section of the FET and the ground terminal; and the gate terminal and the ground terminal Variable attenuating circuit with a second capacitive element connected between
[12] 信号入力部と信号出力部との間の信号経路に直列に挿入された第 1の信号減衰用 素子を有する第 1の信号減衰部と、 [12] a first signal attenuating unit having a first signal attenuating element inserted in series in a signal path between the signal input unit and the signal output unit;
前記第 1の信号減衰用素子に減衰量制御信号を与える第 1の減衰量制御回路部 と、  A first attenuation control circuit unit for supplying an attenuation control signal to the first signal attenuation element;
前記第 1の信号減衰用素子にバイアスを与える第 1のバイアス回路部と、 前記第 1の信号減衰用素子と前記第 1の減衰量制御回路部との接続部と接地端子 との間に接続された第 1の容量と、  A first bias circuit for applying a bias to the first signal attenuating element; a connection between the first signal attenuating element and the first attenuation control circuit; and a ground terminal. With the first capacity made,
前記信号入力部と前記信号出力部との間の信号経路と接地端子との間に挿入さ れた第 2の信号減衰用素子を有する第 2の信号減衰部と、 Inserted between the signal path between the signal input unit and the signal output unit and the ground terminal. A second signal attenuating unit having a second signal attenuating element,
前記第 2の信号減衰用素子に前記減衰量制御信号を与える第 2の減衰量制御回 路部と、  A second attenuation control circuit unit for supplying the attenuation control signal to the second signal attenuation element;
前記第 2の信号減衰用素子にバイアスを与える第 2のバイアス回路部と、 前記第 2の信号減衰用素子と前記第 2のバイアス回路部との接続部と前記接地端 子との間に接続された第 2の容量とを備えた可変減衰回路。  A second bias circuit section for applying a bias to the second signal attenuating element; a connection section between the second signal attenuating element and the second bias circuit section; and a ground terminal. And a variable attenuation circuit having a second capacitance.
[13] 前記第 1の信号減衰用素子が第 1の FETからなり、前記第 1の減衰量制御回路部は 前記第 1の FETのゲート端子に減衰量制御信号を与えて前記第 1の FETの ON抵 抗を制御し、前記第 1のバイアス回路部は前記第 1の FETのソース端子にバイアスを 与え、前記第 1の容量は前記第 1の FETのゲート端子と前記接地端子との間に接続 され、 [13] The first signal attenuating element includes a first FET, and the first attenuation control circuit unit applies an attenuation control signal to the gate terminal of the first FET to provide the first FET. The first bias circuit unit applies a bias to the source terminal of the first FET, and the first capacitor is between the gate terminal of the first FET and the ground terminal. Connected to
前記第 2の信号減衰用素子が第 2の FETからなり、前記第 2の減衰量制御回路部 は前記第 2の FETのドレイン端子に減衰量制御信号を与えて前記第 2の FETの ON 抵抗を制御し、前記第 2のバイアス回路部は前記第 2の FETのゲート端子にバイアス を与え、前記第 2の容量は前記第 2の FETのゲート端子と前記接地端子との間に接 続されている請求項 12記載の可変減衰回路。  The second signal attenuating element is a second FET, and the second attenuation control circuit unit applies an attenuation control signal to the drain terminal of the second FET to turn on the ON resistance of the second FET. The second bias circuit unit applies a bias to the gate terminal of the second FET, and the second capacitor is connected between the gate terminal of the second FET and the ground terminal. The variable attenuation circuit according to claim 12.
[14] 信号入力部と信号出力部との間の信号経路に直列に挿入された第 1の信号減衰用 FETを有する第 1の信号減衰部と、 [14] a first signal attenuating unit having a first signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit;
前記第 1の信号減衰用 FETのゲート端子に減衰量制御信号を与えて前記第 1の 信号減衰用 FETの ON抵抗を制御する第 1の減衰量制御回路部と、  A first attenuation control circuit that controls an ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET;
前記第 1の信号減衰用 FETのソース端子にバイアスを与える第 1のバイアス回路部 と、  A first bias circuit section for applying a bias to a source terminal of the first signal attenuating FET;
前記信号入力部と前記信号出力部との間の信号経路と接地端子との間に挿入さ れた第 2の信号減衰用 FETを有する第 2の信号減衰部と、  A second signal attenuating unit having a second signal attenuating FET inserted between a signal path between the signal input unit and the signal output unit and a ground terminal;
前記第 2の信号減衰用 FETのドレイン端子に減衰量制御信号を与えて前記第 2の 信号減衰用 FETの ON抵抗を制御する第 2の減衰量制御回路部と、  A second attenuation control circuit unit that provides an attenuation control signal to the drain terminal of the second signal attenuation FET to control the ON resistance of the second signal attenuation FET;
前記第 2の信号減衰用 FETのゲート端子にバイアスを与える第 2のバイアス回路部 とを備え、 前記第 1のバイアス回路部は、前記第 1の信号減衰用 FETのしき!/、値電圧ばらつ きを補償する第 1のバイアス用 FETを有し、 A second bias circuit section for applying a bias to the gate terminal of the second signal attenuating FET, The first bias circuit section includes a first bias FET for compensating for a threshold voltage of the first signal attenuating FET! /, A value voltage variation,
前記第 2のバイアス回路部は、前記第 2の信号減衰用 FETのしきい値電圧ばらつ きを補償する第 2のバイアス用 FETを有する可変減衰回路。  The variable bias circuit, wherein the second bias circuit section includes a second bias FET that compensates for a threshold voltage variation of the second signal attenuating FET.
[15] 信号入力部と信号出力部との間の信号経路に直列に挿入された第 1の信号減衰用 FETを有する第 1の信号減衰部と、 [15] a first signal attenuating unit having a first signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit;
前記第 1の信号減衰用 FETのゲート端子に減衰量制御信号を与えて前記第 1の 信号減衰用 FETの ON抵抗を制御する第 1の減衰量制御回路部と、  A first attenuation control circuit that controls an ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET;
前記第 1の信号減衰用 FETのソース端子にバイアスを与える第 1のバイアス回路部 と、  A first bias circuit section for applying a bias to a source terminal of the first signal attenuating FET;
前記信号入力部と前記信号出力部との間の信号経路と接地端子との間に挿入さ れた第 2の信号減衰用 FETを有する第 2の信号減衰部と、  A second signal attenuating unit having a second signal attenuating FET inserted between a signal path between the signal input unit and the signal output unit and a ground terminal;
前記第 2の信号減衰用 FETのドレイン端子に減衰量制御信号を与えて前記第 2の 信号減衰用 FETの ON抵抗を制御する第 2の減衰量制御回路部と、  A second attenuation control circuit unit that provides an attenuation control signal to the drain terminal of the second signal attenuation FET to control the ON resistance of the second signal attenuation FET;
前記第 2の信号減衰用 FETのゲート端子にバイアスを与える第 2のバイアス回路部 と、  A second bias circuit section for applying a bias to the gate terminal of the second signal attenuating FET;
前記第 1の信号減衰用 FETのバックゲート部と基板との間に接続された第 1の抵抗 と、  A first resistor connected between the back gate portion of the first signal attenuating FET and the substrate;
前記第 2の信号減衰用 FETのバックゲート部と基板との間に接続された第 2の抵抗 とを備えた可変減衰回路。  A variable attenuation circuit comprising: a second resistor connected between a back gate portion of the second signal attenuation FET and the substrate.
[16] 信号入力部と信号出力部との間の信号経路に直列に挿入された第 1の信号減衰用 FETを有する第 1の信号減衰部と、 [16] a first signal attenuating unit having a first signal attenuating FET inserted in series in a signal path between the signal input unit and the signal output unit;
前記第 1の信号減衰用 FETのゲート端子に減衰量制御信号を与えて前記第 1の 信号減衰用 FETの ON抵抗を制御する第 1の減衰量制御回路部と、  A first attenuation control circuit that controls an ON resistance of the first signal attenuation FET by applying an attenuation control signal to the gate terminal of the first signal attenuation FET;
前記第 1の信号減衰用 FETのソース端子にバイアスを与える第 1のバイアス回路部 と、  A first bias circuit section for applying a bias to a source terminal of the first signal attenuating FET;
前記信号入力部と前記信号出力部との間の信号経路と接地端子との間に挿入さ れた第 2の信号減衰用 FETを有する第 2の信号減衰部と、 前記第 2の信号減衰用 FETのドレイン端子に減衰量制御信号を与えて前記第 2の 信号減衰用 FETの ON抵抗を制御する第 2の減衰量制御回路部と、 A second signal attenuating unit having a second signal attenuating FET inserted between a signal path between the signal input unit and the signal output unit and a ground terminal; A second attenuation control circuit unit that provides an attenuation control signal to the drain terminal of the second signal attenuation FET to control the ON resistance of the second signal attenuation FET;
前記第 2の信号減衰用 FETのゲート端子にバイアスを与える第 2のバイアス回路部 と、  A second bias circuit section for applying a bias to the gate terminal of the second signal attenuating FET;
前記第 1のバイアス回路部と接地端子との間に接続された容量もしくは容量とスイツ チとを備えた可変減衰回路。  A variable attenuation circuit including a capacitor or a capacitor and a switch connected between the first bias circuit section and a ground terminal.
[17] 前記第 1の信号減衰用 FETのバックゲート部と前記接地端子との間に第 1の抵抗を 接続し、 [17] A first resistor is connected between the back gate portion of the first signal attenuating FET and the ground terminal,
前記第 2の信号減衰用 FETのバックゲート部と前記接地端子との間に第 2の抵抗 を接続したことを特徴とする請求項 16記載の可変減衰回路。  17. The variable attenuation circuit according to claim 16, wherein a second resistor is connected between the back gate portion of the second signal attenuation FET and the ground terminal.
[18] 少なくとも一つの請求項 1記載の可変減衰回路と、少なくとも一つの高周波増幅回路 と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接続さ れて無線周波数を送信するアンテナとを備えた高周波無線回路システム。  [18] A wireless transmission device including at least one variable attenuation circuit according to claim 1, at least one high-frequency amplification circuit, and at least one oscillator, and is connected to the wireless transmission device to transmit a radio frequency. A high-frequency radio circuit system including an antenna to perform.
[19] 少なくとも一つの請求項 3記載の可変減衰回路と、少なくとも一つの高周波増幅回路 と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接続さ れて無線周波数を送信するアンテナとを備えた高周波無線回路システム。  [19] A wireless transmission device comprising at least one variable attenuation circuit according to claim 3, at least one high-frequency amplification circuit, and at least one oscillator, and is connected to the wireless transmission device to transmit a radio frequency. A high-frequency radio circuit system including an antenna to perform.
[20] 少なくとも一つの請求項 4記載の可変減衰回路と、少なくとも一つの高周波増幅回路 と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接続さ れて無線周波数を送信するアンテナとを備えた高周波無線回路システム。  [20] A wireless transmission device including at least one variable attenuation circuit according to claim 4, at least one high-frequency amplification circuit, and at least one oscillator, and is connected to the wireless transmission device to transmit a radio frequency. A high-frequency radio circuit system including an antenna to perform.
[21] 少なくとも一つの請求項 5記載の可変減衰回路と、少なくとも一つの高周波増幅回路 と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接続さ れて無線周波数を送信するアンテナとを備えた高周波無線回路システム。  [21] A wireless transmission device including at least one variable attenuation circuit according to claim 5, at least one high-frequency amplification circuit, and at least one oscillator, and is connected to the wireless transmission device to transmit a radio frequency. A high-frequency radio circuit system including an antenna to perform.
[22] 少なくとも一つの請求項 7記載の可変減衰回路と、少なくとも一つの高周波増幅回路 と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接続さ れて無線周波数を送信するアンテナとを備えた高周波無線回路システム。  [22] A wireless transmission device comprising at least one variable attenuation circuit according to claim 7, at least one high-frequency amplification circuit, and at least one oscillator, and connected to the wireless transmission device to transmit a radio frequency A high-frequency radio circuit system including an antenna to perform.
[23] 少なくとも一つの請求項 9記載の可変減衰回路と、少なくとも一つの高周波増幅回路 と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接続さ れて無線周波数を送信するアンテナとを備えた高周波無線回路システム。 [23] A wireless transmission device including at least one variable attenuation circuit according to claim 9, at least one high-frequency amplification circuit, and at least one oscillator, and is connected to the wireless transmission device to transmit a radio frequency. A high-frequency radio circuit system including an antenna to perform.
[24] 少なくとも一つの請求項 11記載の可変減衰回路と、少なくとも一つの高周波増幅回 路と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接 続されて無線周波数を送信するアンテナとを備えた高周波無線回路システム。 [24] A wireless transmission device comprising at least one variable attenuation circuit according to claim 11, at least one high-frequency amplification circuit, and at least one oscillator; and a wireless frequency connected to the wireless transmission device. A high-frequency radio circuit system including an antenna for transmitting.
[25] 少なくとも一つの請求項 12記載の可変減衰回路と、少なくとも一つの高周波増幅回 路と、少なくとも一つの発振器とを備えた無線送信装置と、前記無線送信装置に接 続されて無線周波数を送信するアンテナとを備えた高周波無線回路システム。  [25] A wireless transmission device comprising at least one variable attenuation circuit according to claim 12, at least one high-frequency amplification circuit, and at least one oscillator, and a wireless frequency connected to the wireless transmission device. A high-frequency radio circuit system including an antenna for transmitting.
PCT/JP2007/068152 2006-09-20 2007-09-19 Variable attenuation circuit WO2008035698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006254515A JP2008078898A (en) 2006-09-20 2006-09-20 Variable attenuation circuit
JP2006-254515 2006-09-20

Publications (1)

Publication Number Publication Date
WO2008035698A1 true WO2008035698A1 (en) 2008-03-27

Family

ID=39200523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068152 WO2008035698A1 (en) 2006-09-20 2007-09-19 Variable attenuation circuit

Country Status (2)

Country Link
JP (1) JP2008078898A (en)
WO (1) WO2008035698A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129092B2 (en) * 2008-11-13 2013-01-23 旭化成エレクトロニクス株式会社 Voltage controlled oscillator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130422A (en) * 1994-06-24 1996-05-21 Sgs Thomson Microelettronica Spa Low voltage switching capacitance circuit using switching operational amplifier with maximum voltage swing
JPH10261925A (en) * 1997-03-17 1998-09-29 Toshiba Corp High frequency amplifier
JP2002368562A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Attenuator
JP2003046278A (en) * 2001-05-24 2003-02-14 Matsushita Electric Ind Co Ltd Power amplifier for mobile device
JP2004207437A (en) * 2002-12-25 2004-07-22 Nec Corp Ground switch circuit
JP2005027062A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd High frequency amplifying circuit and mobile communication terminal using the same
JP2006191277A (en) * 2005-01-05 2006-07-20 Mitsubishi Electric Corp Pulse modulating circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130422A (en) * 1994-06-24 1996-05-21 Sgs Thomson Microelettronica Spa Low voltage switching capacitance circuit using switching operational amplifier with maximum voltage swing
JPH10261925A (en) * 1997-03-17 1998-09-29 Toshiba Corp High frequency amplifier
JP2003046278A (en) * 2001-05-24 2003-02-14 Matsushita Electric Ind Co Ltd Power amplifier for mobile device
JP2002368562A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Attenuator
JP2004207437A (en) * 2002-12-25 2004-07-22 Nec Corp Ground switch circuit
JP2005027062A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd High frequency amplifying circuit and mobile communication terminal using the same
JP2006191277A (en) * 2005-01-05 2006-07-20 Mitsubishi Electric Corp Pulse modulating circuit

Also Published As

Publication number Publication date
JP2008078898A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US8288895B2 (en) High-power tunable capacitor
US7898332B2 (en) Semiconductor integrated circuit device
US20080032661A1 (en) Circuit with Q-enhancement cell having programmable bias current slope
US9525415B2 (en) Radio frequency semiconductor switch
KR100851702B1 (en) Rf variable gain amplifying device
US11095256B2 (en) Semiconductor device
JP4746648B2 (en) High frequency amplifier circuit and mobile communication terminal using the same
JPH09284170A (en) Antenna switch and switch power amplifier integrated semiconductor device
WO1999056389A1 (en) Amplifier
US7239205B2 (en) High frequency amplifier circuit and mobile communication terminal using the same
JPH08228138A (en) Semiconductor integrated circuit
JP2006115441A (en) Transmitting device and portable communication terminal device
KR20010076268A (en) High frequency variable attenuator having a controllable reference voltage
KR100295678B1 (en) Linear gain control amplifier
WO2008035698A1 (en) Variable attenuation circuit
US8503960B2 (en) Amplifier and associated receiver
US8089316B2 (en) Wideband active circuit with feedback structure
US20070132512A1 (en) Variable gain amplifier
JP5807762B2 (en) High frequency module and portable terminal using the same
US7852967B2 (en) Automatic power output control circuit
EP2814171A2 (en) Variable inductor circuit and high frequency circuit
US20200220503A1 (en) Low noise amplifier and semiconductor device
JP4154406B2 (en) High frequency amplifier circuit and mobile communication terminal using the same
CN110661494A (en) High-frequency amplifier circuit and semiconductor device
JP2000323944A (en) High frequency gain variable amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807538

Country of ref document: EP

Kind code of ref document: A1