WO2008032839A1 - Base material covered with metal layer and process for producing the same - Google Patents

Base material covered with metal layer and process for producing the same Download PDF

Info

Publication number
WO2008032839A1
WO2008032839A1 PCT/JP2007/068002 JP2007068002W WO2008032839A1 WO 2008032839 A1 WO2008032839 A1 WO 2008032839A1 JP 2007068002 W JP2007068002 W JP 2007068002W WO 2008032839 A1 WO2008032839 A1 WO 2008032839A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal layer
layer
functional group
substrate
Prior art date
Application number
PCT/JP2007/068002
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekatsu Kuroda
Original Assignee
Ube Nitto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co., Ltd. filed Critical Ube Nitto Kasei Co., Ltd.
Priority to JP2008534416A priority Critical patent/JPWO2008032839A1/en
Priority to CN2007800340020A priority patent/CN101517123B/en
Publication of WO2008032839A1 publication Critical patent/WO2008032839A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals

Definitions

  • the present invention relates to a metal layer coating substrate that can be used for a conductive material, an electromagnetic shielding material, and the like, and a method for producing the same.
  • an electroless plating method As a method for coating a metal on a non-conductive substrate, an electroless plating method is generally used.
  • An example of the electroless plating method is a method of forming a metal layer by immersing the base material in an electroless plating bath containing a metal salt, a metal complexing agent, a pH adjusting agent, a reducing agent, etc. (For example, “Electrical electrolysis mecha-ichi basics and applied one”, 4th edition, edited by the Electroplating Institute, published by Nikkan Egyo Shimbun, published on 1 9 9 9 10th, 1 0 1 ⁇ 1 2 See page 7.)
  • a catalyst for initiating electroless plating is attached to the substrate before activating the substrate surface.
  • a processing step is required. Generally, this step is performed as follows. Before the substrate is electrolessly attached, it is brought into contact with an aqueous solution of stannous chloride to adsorb tin ions, and then brought into contact with an aqueous solution of palladium chloride. Adsorb palladium colloid. This palladium colloid will act as a catalyst for initiating the electroless union.
  • the substrate is immersed in an electroless plating bath containing components other than a reducing agent such as a metal salt, a metal complexing agent, and a pH adjuster, and then a reducing agent is added, or a metal Immerse the substrate in an electroless plating bath containing components other than metal salts and reducing agents such as complexing agents and pH adjusters, and then add the reducing agent and metal salt to the surface of the substrate.
  • a reducing agent such as a metal salt, a metal complexing agent, and a pH adjuster
  • the distribution of tin or palladium becomes non-uniform due to the difference in adsorptivity, etc. Variation in surface potential occurs. Therefore, when electroless plating is performed, a portion where the metal layer is easily deposited and a portion where the metal layer is difficult to deposit are generated, and the metal layer is formed only in a part, resulting in an undeposited portion and exposing the substrate surface. A part arises. Therefore, there is a problem that stable conductivity cannot be secured in the obtained metal layer-coated substrate.
  • the tin salt used in the active-rich treatment process is corrosive, so it is necessary to wash before the start of electroless plating to remove the remaining tin salt. There is also a problem that the number of palladium colloids is reduced and electroless plating is difficult to proceed. Disclosure of the invention
  • the present invention provides a metal layer-coated base material having stable conductivity, and the metal layer-coated base material is inexpensive without using special equipment or equipment.
  • the object is to provide a manufacturing method that is simple and has little impact on the environment.
  • the substrate, the interspersed material or layered material of metal nanoparticles formed on the substrate via a chelate-forming functional group-containing silane coupling agent, and the metal A novel metal layer-coated substrate comprising a metal layer formed on a nanoparticle interspersed material or a layered material, the substrate is formed into a hydrolysis catalyst, a chelate-forming functional group-containing silane force pulling agent, and metal nanoparticles.
  • the metal nanoparticles are dispersed or layered via a silane coupling agent containing a biofunctional group containing a chelating agent on the substrate by treating with a reducing agent. And then forming a metal layer on the metal nanoparticle interspersed or layered material, and finding that the obtained metal layer-coated substrate has stable conductivity, Based on such knowledge Thus, the present invention has been completed.
  • the substrate comprises at least one selected from the group consisting of silica, ceramics and glass,
  • the shape of the substrate is one selected from the group consisting of a spherical shape, a rod shape, a plate shape, a needle shape, a hollow shape and an unspecified shape ,
  • chelate-forming functional group according to any one of the above (1) to (4), wherein the chelate-forming functional group is a functional group having at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom Metal layer coated substrate,
  • metal nanoparticle is a nanoparticle composed of at least one metal selected from the group consisting of gold, silver, copper and nickel.
  • Layer coated substrate
  • the substrate is brought into contact with an aqueous solution containing a hydrolysis catalyst, a chelate-forming functional group-containing silane coupling agent and a metal nanoparticle-forming metal salt, and then treated with a reducing agent to form a base.
  • a metal nanoparticle interspersed or layered material is formed on the material via a chelate-forming functional group-containing silane coupling agent, and then a metal layer is formed on the metal nanoparticle interspersed or layered material.
  • a metal nanoparticle interspersed or layered material is formed on a substrate, whereby each metal nanoparticle serves as a starting point and the metal nanoparticle interspersed or layered material is contained.
  • a metal layer can be easily formed, and when a layered product of metal nanoparticles is formed on a substrate, even if an unformed part of the metal layer is formed on the metal nanoparticle layer, Since the metal nanoparticle layer is present between the metal layer and the resulting metal layer-coated substrate, the substrate surface is not exposed, and stable conductivity can be ensured.
  • FIG. 1 is a SEM photograph of the gold nanoparticle layer-forming sili-power particles obtained in Example 1.
  • FIG. 2 is an SEM photograph of the silver layer-coated silica particles obtained in Example 1.
  • FIG. 3 is a SEM photograph of the silver layer-coated polyimide particles obtained in Example 2.
  • FIG. 4 is an SEM photograph of the gold nanoparticle layer-forming silli force particles obtained in Example 7.
  • FIG. 5 is an SEM photograph of the silver layer-coated silli force particles obtained in Example 8.
  • FIG. 6 is an SEM photograph of the silver layer-coated soda-lime glass beads obtained in Example 9.
  • FIG. 7 is an SEM photograph of the gold nanoparticle layer-forming silica particles obtained in Example 10.
  • FIG. 8 is an SEM photograph of the silver nanoparticle layer-forming silica particles obtained in Example 11-1.
  • FIG. 9 is an SEM photograph of the gold layer-coated sili-force particles obtained in Example 12.
  • the metal layer-coated base material of the present invention includes a base material, interspersed or layered materials of metal nanoparticles formed on the base material via a chelate-forming functional group-containing silane coupling agent, and the metal And a metal layer formed on a nanoparticle interspersed or layered material.
  • the substrate used in the metal layer-coated substrate of the present invention preferably has an OH group on the substrate surface and interacts with a silane coupling agent described later.
  • examples of such a substrate include at least one selected from the group consisting of silica, ceramics, and glass.
  • silica examples include completely crystallized dry silica (cristobalite), water-dispersed silica (colloidal silica), and the like.
  • Ceramics include aluminum oxide (anoremina), sapphire, mullite, titanium oxide (titania), carbide, nitride, aluminum nitride, and zirconium.
  • the glass examples include various shot glasses such as B K 7, SF 11 and La S F N 9, optical crown glass, soda glass, soda lime glass, low expansion borosilicate glass, and the like.
  • resins can also be used as a base material on the condition that they interact with a silane coupling agent.
  • the resins include silicone resins, phenol resins, and naturally-modified phenols.
  • the shape of the substrate is not particularly limited, and at least 1 selected from the group consisting of spherical, particulate, beaded, rod, plate, needle, powder, hollow, hollow fiber and unspecified shape. It is preferable that it is a seed or more.
  • the shape of the substrate is more preferably a fine particle shape, and the average particle diameter is preferably 0.1 to 100 ⁇ , more preferably 1 to 20 ⁇ .
  • the average particle diameter means the volume average particle diameter, and the volume average particle diameter can be measured by, for example, a particle size distribution measuring instrument.
  • the substrate has an uneven surface because the surface treatment is easy.
  • a base material include frosted glass and porous particles.
  • the base material is preferably one whose surface is oxidized.
  • the chelate-forming functional group-containing silane force coupling agent interposed between the base material and the interspersed material or layered material of the metal nanoparticles described later, It consists of a compound having a chelate-forming functional group at one end of the molecule and a silanol group (Si-OH) and / or a hydrolyzable functional group that gives a silanol group by hydrolysis at the other end.
  • Examples of the chelate-forming functional group include a polar group and a hydrophilic group, and are preferably functional groups having at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom. , 1 SH, _ CN, 1 NH 2 , 1 S 0 2 0 H, 1 S 0 OH, 1 OP 0 (OH) 2 , _C 0 0 H, at least one functional group selected from the group consisting of It is more preferable that
  • hydrolyzable functional group examples include an alkoxy (1 o R) group directly bonded to a Si atom, and the R constituting the alkoxy group is a straight chain having 1 to 6 carbon atoms.
  • a chain, branched, or cyclic alkyl group is preferable. Specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec_ptenole 3 ⁇ 4, a tert-butylene group. ;, Henotenore, hennore group, cyclopentyl group, cyclohexyl group and the like.
  • chelate-forming functional group-containing silane coupling agent used for the metal layer-coated substrate of the present invention include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (amino Ethyl) -1-3-aminopropyltrimethyoxysilane, N-2_ (aminoethyl) -1-3-aminomino triethoxysilane, and 3-silaneminopropyl because of the cost and ease of handling of silane coupling agents Trimethysilane is particularly preferred.
  • the chelate-formed synthetic functional group at one end of the silane force coupling agent is coordinated to the metal nanoparticles, and the silanol group at the other end of the silane coupling agent is It interacts with the ⁇ H group on the surface of the material.
  • the metal nanoparticles are preferably nanoparticles made of at least one metal selected from the group consisting of gold, silver, copper, and nickel.
  • a metal layer metal layer made of silver
  • the metal nanoparticles are gold nanoparticles in consideration of the familiarity with silver.
  • the metal nanoparticles only have to be attached to at least a part of the substrate via the silane coupling agent.
  • the state of existence of the metal nanoparticles for example, the metal nanoparticles are scattered on the substrate. And a state in which a layered product is uniformly formed on the substrate. Even if the metal nanoparticles are not uniformly deposited on the substrate, the metal layer described later is formed on the metal nanoparticle scattered material starting from each metal nanoparticle. Therefore, the obtained metal layer-coated substrate can ensure stable conductivity.
  • the metal nanoparticles are uniformly deposited on the substrate to form a layered material, it is possible to form a metal layer to be described later on the entire surface of the metal nanoparticle layer. Even if an unformed part of the metal layer occurs, the metal nanoparticle layer is present between the base material and the metal layer, so that the resulting metal layer coated base material is stable without exposing the base material surface. The conductivity can be ensured.
  • the metal nanoparticles mean very small particles made of a metal having a particle size of 100 nm or less. Comparing the surface area of nanoparticles with the same volume of Balta atoms, the surface area of the nanoparticles is larger and the surface energy is larger (the ratio to the total energy is higher), so it shows different characteristics from the conventional fine particles.
  • metal nanoparticles act as a catalyst when the metal layer is formed by electroless plating.
  • the metal species constituting the metal layer formed on the metal nanoparticle layer is not particularly limited, but is preferably silver, gold, copper, or nickel. Since the layer is preferably formed by a silver mirror reaction, the metal species constituting the metal layer is more preferably silver.
  • the metal layer-coated substrate of the present invention can be suitably produced by the method for producing the metal layer-coated substrate of the present invention described below.
  • the method for producing a metal layer-coated substrate according to the present invention comprises an aqueous solution comprising a hydrolysis catalyst, a chelate-forming functional group-containing silane force pulling agent, and a metal nanoparticle-forming metal salt. After contacting with the solution, by treating with a reducing agent, a metal nanoparticle interspersed or layered product is formed on the substrate via the chelating agent-functional group-containing silane force pulling agent. It is characterized in that a metal layer is formed on a nanoparticle interspersed or layered material.
  • silica, ceramics, glass, various resins and the like can be used in the same manner as described in the explanation of the metal layer-coated base material of the present invention. Can be mentioned.
  • the hydrolysis catalyst used in the method for producing a metal layer-coated substrate of the present invention is not particularly limited.
  • acetic anhydride, glacial acetic acid, propionic acid, citrate, formic acid, oxalic acid and other organic acids aluminum
  • aluminum chelate compounds such as alkyl acetates
  • inorganic alkaline compounds such as aqueous ammonia.
  • aqueous ammonia is preferable in consideration of the reactivity and cost with 3-aminopropyl trimethoxysilane, which is a preferred silane coupling agent.
  • the chelate-forming functional group-containing silane coupling agent used in the method for producing a metal layer-coated substrate of the present invention has a chelate-forming functional group at one end of the molecule as described above, and a silanol group and / or at the other end. Or it has a hydrolyzable functional group which gives a silanol group by hydrolysis.
  • Examples of the chelate-forming biofunctional group include those described above, but can also be provided in the form of a salt of each functional group.
  • the functional group is an acidic group such as 1 OH, 1 SH, 1 S 0 2 0 H, 1 SOOH, 1 OPO (OH) 2 , 1 COOH
  • the salt is an alkali metal such as sodium, potassium, or lithium. Salt or ammoyuum salt.
  • a basic group such as single NH 2
  • hydrochloric acid, sulfuric, inorganic acids such as nitric acid, formic acid, acetic acid, propionic acid, and addition salts of organic acids such as Torifuruoro acetic acid.
  • hydrolyzable functional group examples include the same ones as mentioned in the explanation of the metal layer-coated substrate of the present invention.
  • Examples of the metal species constituting the metal nanoparticle-forming metal salt used in the method for producing a metal layer-coated substrate of the present invention include those mentioned in the description of the metal layer-coated substrate of the present invention. Like, gold, silver, copper, nickel, etc. can be mentioned. Examples of the metal salt include chloroauric acid, silver nitrate, copper sulfate, nickel sulfate and the like.
  • the aqueous solution used in the method for producing a metal layer-coated substrate of the present invention is not particularly limited as long as it contains water as a main component, and may contain a water-miscible organic compound together with water.
  • examples of the water-miscible organic compound include lower alcohols such as methanol, ethanol, propanol, and butanol, and ketones such as acetone.
  • the water-miscible organic compound may be mixed with water alone or in combination of two or more.
  • the reducing agent may be appropriately used in consideration of the redox potential of the metal component of the metal nanoparticle-forming metal salt to be used.
  • the reducing agent is not particularly limited as long as it can be dissolved in an aqueous solution, and can be appropriately selected from conventionally known reducing agents.
  • reducing agents include borohydrides such as sodium tetrahydroborate (alkali metal borohydrides such as sodium borohydride, ammonium borohydrides, etc.), hydrazine compounds, Inorganic reducing agents such as hypochlorite and organic reducing agents such as formaldehyde, acetonitrile, citrate, and sodium citrate can be used.
  • borohydrides such as sodium tetrahydroborate (alkali metal borohydrides such as sodium borohydride, ammonium borohydrides, etc.), hydrazine compounds, Inorganic reducing agents such as hypochlorite and organic reducing agents such as formaldehyde, acet
  • the formation of a dot or layered product of metal nanoparticles is performed by using a substrate, a hydrolysis catalyst, a chelate-forming functional group-containing silane coupling agent, and metal nanoparticles. This is done by contacting with an aqueous solution containing a forming metal salt and then treating with a reducing agent.
  • a solution (liquid B) containing a chelate-forming functional group-containing silane coupling agent and a metal nanoparticle-forming metal salt is added to an aqueous solution (liquid A) containing a base material and a hydrolysis catalyst.
  • a solution containing the reducing agent (solution C) is dropped into this mixed solution, followed by heating and stirring.
  • the temperature at the time of mixing and stirring the liquid A and the liquid B is preferably 10 to 40 ° C., and the stirring time is preferably 1 to 30 minutes.
  • the heating temperature after adding the C liquid dropwise to the mixed liquid of the A liquid and the B liquid is preferably 30 to 70 ° C, and the heating time is preferably 2 to 5 hours.
  • the amount of the hydrolysis catalyst used relative to 1 mol of the chelate-forming functional group-containing silane coupling agent is preferably 0.5 to 5.0 mol, and more preferably 1.5 to 2.5 mol.
  • the amount of the metal nanoparticle-forming metal salt used per 1 mol of the chelate-forming functional group-containing silane coupling agent is preferably from 0.05 to 0.05 mol, and from 0.15 to More preferably, it is 0.025 mol. Furthermore, the amount of the reducing agent used relative to 1 mol of the metal nanoparticle-forming metal salt is preferably 0.025 to 0.25 mol, and 0.07 5 to 0.125 mol. More preferably.
  • a metal layer is formed on the interspersed or layered material of metal nanoparticles.
  • metal forming the metal layer silver, gold, copper, nickel, or the like can be used as described above.
  • the electroless plating method is preferable, and the silver mirror reaction is particularly preferable in view of the progress and stability of the reaction.
  • the metal layer does not necessarily have to be covered on the entire surface of the metal nanoparticle layer.
  • a metal nanoparticle interspersed or layered material stabilized with a silane coupling agent is formed on the substrate, and then the metal layer is formed by an electroless plating method.
  • Example 1 (Production example of silver layer coated silli force particles)
  • solution A In a 50 OmL Erlenmeyer flask, 10 g of silica particles (average particle size 6.4 ⁇ ) was added, 63 g of isopropyl alcohol (IPA) was added, and sonicated for 10 minutes. Further, 63 g of methanol was added and stirred for 10 minutes with a magnetic stirrer, and 5 Og of 25% aqueous ammonia solution was added and stirred for 10 minutes at 30 ° C. in an oil path (this solution is referred to as solution A).
  • IPA isopropyl alcohol
  • solution C Sodium tetraborate (NaBH 4 ) (0.17 g) was charged with methanol (5 OmL) and stirred with a magnetic stirrer for 10 minutes (this solution is referred to as solution C).
  • FIG. 1 An electron microscope (SEM) photograph of the resulting gold nanoparticle layer-forming silica particles is shown in Fig. 1. From Fig. 1, it can be seen that the gold nanoparticles are uniformly attached to the entire surface of the silica particles.
  • FIG. Figure 2 An electron microscope (SEM) photograph of the resulting silver layer-coated silica particles is shown in FIG. Figure 2 shows that a layer of silver is laminated on the entire surface of the gold nanoparticle layer. Using a micro compression tester, measure the electrical resistance of 20 silver layer-coated silica particles and determine the average value. It was. The results obtained are shown in Table 1 together with the standard deviation.
  • Example 2 (Production example of silver layer-coated polyimide particles)
  • solution C Methanol 5 OmL was added to 0.23 g of sodium tetrahydroborate (NaBH 4 ), and the mixture was stirred with a magnetic stirrer for 10 minutes (this solution is referred to as solution C).
  • FIG. Figure 3 An electron microscope (SEM) photograph of the obtained silver layer-coated polyimide particles is shown in FIG. Figure 3 shows that a layer of silver is laminated on the entire surface of the gold nanoparticle layer.
  • SEM electron microscope
  • Titanium oxide powder (Ishihara Sangyo Co., Ltd .: ST-01) 5 g was placed in a 30 OmL Erlenmeyer flask, and 31.5 g of isopropyl alcohol (IPA) was added!] And sonicated for 10 minutes. Further, 31.5 g of methanol was added, and the mixture was stirred with a magnetic stirrer for 10 minutes, 25 g of 25% aqueous ammonia solution was added, and the mixture was stirred for 10 minutes at 30 ° C. in an oil bath (this solution is referred to as solution A).
  • IPA isopropyl alcohol
  • solution C Sodium tetrahydroborate (NaBH 4 ) (0.092 g) was mixed with 5 OmL of methanol and stirred with a magnetic stirrer for 10 minutes (this solution is referred to as solution C).
  • Example 4 Example of production of silver layer-coated polypropylene powder
  • a silver-coated polypropylene powder was obtained in the same manner as in Example 3, except that titanium oxide was changed to 5 g of polypropylene powder (Prime Polymer Co., Ltd.).
  • Example 5 Example of production of silver layer-coated glass plate
  • a silver-coated glass plate was obtained in the same manner as in Example 3 except that titanium oxide was changed to a microslide glass plate (manufactured by Matsunami Glass Industry Co., Ltd.) 1 X 1 cm 2 in an Erlenmeyer flask and immersed.
  • Example 6 Example of production of silver layer-coated hollow fiber nylon 12
  • Example 3 the same procedure was followed except that titanium oxide was changed to hollow fiber nylon 1 2 (Ube Industries, Ltd.) with an inner diameter of 48 mm, an outer diameter of 5 O mm, and a length of 2 cm. Nylon 1 2 was obtained.
  • nylon 1 2 Ube Industries, Ltd.
  • Example ⁇ Example of production of silica particles with gold nanoparticles using 3-mercaptoprovir trimethoxysilane
  • Example 1 (1) The same operation was performed except that 4.5 mL of 3-aminoprovir trimethoxysilane was changed to 4.5 mL of 3-mercaptoprovir trimethoxysilane in Example 1 (1).
  • a sample in which agglomerated gold nanoparticles adhered to the silica particles was obtained.
  • the SEM photograph is shown in Fig. 4.
  • Example 8 Example in which a silver layer is not laminated on a part of a gold nanoparticle layer
  • Example 2 200 g L of water was added to 1 g of the gold nanoparticle layer-forming silica particles obtained in Example 1 (1), sonicated for 10 minutes, 0.44 g of silver nitrate was added, and the mixture was stirred with a magnetic stirrer for 10 minutes. did. After adding 8.2 mL of 25% aqueous ammonia solution, 12.6 mL of 0.24 mmol / L formalin aqueous solution was added and stirred for 5 minutes. The precipitated silver layer-coated silli force particles were collected by suction filtration, washed with methanol, and then dried in an oven at 70 ° C for 3 hours.
  • FIG. Figure 5 An electron microscope (SEM) photograph of the obtained silver layer-coated silica particles is shown in FIG. Figure 5 shows that a silver layer is not laminated on a part of the gold nanoparticle layer.
  • the electrical resistance value of 20 silver layer-coated silica particles was measured with a micro compression tester, and the average value was obtained. The results obtained are shown in Table 2 together with the standard deviation.
  • Example 9 (Production example of silver layer coated soda lime glass beads)
  • a gold nanoparticle layer was formed on the soda lime glass beads in the same manner as in Example 1 (1) except that soda lime glass beads (particle size 5 to 63 ⁇ m) were used instead of the silli force particles. .
  • Example 1 (2) Using the gold nanoparticle layer-forming soda-lime glass beads, a silver layer was formed on the entire surface of the gold nanoparticle layer in the same manner as in Example 1 (2).
  • Figure 6 shows an electron microscope (SEM) photograph of the obtained silver layer-coated soda-lime glass beads.
  • the electrical resistance value of 20 silver layer coated soda lime glass beads was measured with a micro compression tester, and the average value was obtained. The results obtained are shown in Table 3 together with the standard deviation.
  • Example 10 Example of production of silver layer-coated silli force particles
  • FIG. 7 shows an electron microscope (SEM) photograph of the resulting gold nanoparticle layer-forming silicon force particles. As compared with the gold nanoparticle layer-forming silica particles obtained in Example 1 (1), it can be seen that the agglomerated gold nanoparticles are adhered on the silica particles.
  • Example 1 Formation of silver layer on gold nanoparticle layer A silver layer was formed on the entire surface of the gold nanoparticle layer in the same manner as in Example 1 (2) using the gold nanoparticle layer-forming silica particles.
  • Example 1 1 Example of production of silver layer-coated silli force particles
  • Fig. 8 shows an electron microscope (SEM) photograph of the resulting silver nanoparticle layer-forming silica particles.
  • a silver layer was formed on the entire surface of the silver nanoparticle layer in the same manner as in Example 1 (2) using the silver nanoparticle layer-forming silica particles.
  • Example 12 (Production example of gold layer-coated silli force particles)
  • Example 1 500 g L of water was added to 1 g of the gold nanoparticle layer-forming silica particles obtained in Example 1 (1) and subjected to ultrasonic treatment for 10 minutes, followed by addition of 0.25 g of chloroauric acid, and an aqueous solution. 2.5 to make it alkaline. /. 5 ml of an aqueous ammonia solution was added and stirred with a magnetic stirrer for 10 minutes. A reducing agent, 1.87 mmol / L tetrakishydroxymethyl phosphine chloride aqueous solution 250 mL was slowly added dropwise. The precipitated gold layer-coated silica particles were collected by suction filtration, washed with methanol, and then dried in an oven at 70 ° C for 3 hours.
  • a metal layer-coated substrate having stable conductivity can be provided, and the metal layer-coated substrate is inexpensive and simple without using special equipment and equipment. In this way, it is possible to provide a manufacturing method with little influence on the environment.
  • the metal-coated substrate of the present invention can be used for a conductive material, an electromagnetic shielding material, and the like.

Abstract

A base material covered with metal layer characterized by having a base material, metal nanoparticles in dotted or layered form provided on the base material via a silane coupling agent containing a chelate forming functional group, and a metal layer superimposed on the metal nanoparticles in dotted or layered form. Further, there is provided a process for producing a base material covered with metal layer, characterized by including bringing a base material into contact with a water base solution containing a hydrolysis catalyst, a silane coupling agent containing a chelate forming functional group and a metal nanoparticle forming metal salt and treating the resultant mixture with a reducing agent to thereby obtain metal nanoparticles in dotted or layered form provided on the base material via the silane coupling agent containing a chelate forming functional group, and thereafter forming a metal layer on the metal nanoparticles in dotted or layered form.

Description

金属層被覆基材ぉよびその製造方法 技術分野  Technical Field
本発明は、 導電材、 電磁波シールド材等に利用可能な金属層被膜基材およびそ の製造方法に関する。 背景技術  The present invention relates to a metal layer coating substrate that can be used for a conductive material, an electromagnetic shielding material, and the like, and a method for producing the same. Background art
非導電性基材上に金属を被覆する方法としては、 無電解めつき法が一般的であ る。無電解めつき法の一例を挙げると、基材を、金属塩、金属錯化剤、 pH調整剤、 還元剤等を含有する無電解めつき浴に浸漬して金属層を形成する方法がある (例 えば、 「無電解めつき一基礎と応用一」 、 第 4版、 電気鍍金研究会編集、 日刊ェ 業新聞社発行、 発行日 1 9 9 9年 1 0月、 第 1 0 1〜1 2 7頁参照) 。  As a method for coating a metal on a non-conductive substrate, an electroless plating method is generally used. An example of the electroless plating method is a method of forming a metal layer by immersing the base material in an electroless plating bath containing a metal salt, a metal complexing agent, a pH adjusting agent, a reducing agent, etc. (For example, “Electrical electrolysis mecha-ichi basics and applied one”, 4th edition, edited by the Electroplating Institute, published by Nikkan Egyo Shimbun, published on 1 9 9 9 10th, 1 0 1 ~ 1 2 See page 7.)
通常、 無電解めつき法により金属層被覆基材を製造する場合は、 活性化処理工 程と称する、 無電解めつきを開始させる触媒を基材に付着して基材表面を活性化 する前処理工程が必要となり、 一般的に、 この工程は次のように行われている。 基材を無電解めつきする前に、 塩化第一錫の水溶液と接触させて錫イオンを吸 着させ、 次いで塩化パラジウムの水溶液に接触させて、 錫イオンの還元作用によ り基材表面にパラジウムコロイドを吸着させる。 このパラジウムコロイドが無電 解めつきを開始させる触媒として作用することになる。  Normally, when a metal layer-coated substrate is produced by the electroless plating method, a catalyst for initiating electroless plating, called the activation process, is attached to the substrate before activating the substrate surface. A processing step is required. Generally, this step is performed as follows. Before the substrate is electrolessly attached, it is brought into contact with an aqueous solution of stannous chloride to adsorb tin ions, and then brought into contact with an aqueous solution of palladium chloride. Adsorb palladium colloid. This palladium colloid will act as a catalyst for initiating the electroless union.
活性化処理後、 金属塩、 金属錯化剤、 pH調整剤等の還元剤以外の成分を含有す る無電解めつき浴中に基材を浸漬し、 次いで還元剤を添加するか、 あるいは金属 錯化剤、 pH調整剤等の金属塩および還元剤以外の成分を含有する無電解めつき浴 中に基材を浸漬し、 次いで還元剤と金属塩を添加することにより、 基材表面に金 属層を形成する。  After the activation treatment, the substrate is immersed in an electroless plating bath containing components other than a reducing agent such as a metal salt, a metal complexing agent, and a pH adjuster, and then a reducing agent is added, or a metal Immerse the substrate in an electroless plating bath containing components other than metal salts and reducing agents such as complexing agents and pH adjusters, and then add the reducing agent and metal salt to the surface of the substrate. Form a genus layer.
上記方法により基材表面に金属層を析出する場合、 基材表面の活性ィヒ処理工程 において、 吸着性等の差により、 錫あるいはパラジウムの分布が不均一になり、 表面電位にばらつきが生じる。 そのため、 無電解めつきの際、 金属層が析出しや すい部分と析出しにくい部分が生じ、 一部分にのみ金属層が形成されることにな つて、 未析出部が生じ、 基材表面が露出する部分が生じる。 そのため得られる金 属層被覆基材において安定した導電性を確保することができないという問題があ る。 また、 活性ィヒ処理工程で用いる錫塩は腐食性があるため、 残留する錫塩を除 くために、 無電解めつき開始前に洗浄する必要があるが、 あまり洗浄を頻繁に行 うと、 パラジウムコロイドまで減少し、 無電解めつきが進みにくくなるという問 題もある。 発明の開示 When the metal layer is deposited on the surface of the substrate by the above method, the distribution of tin or palladium becomes non-uniform due to the difference in adsorptivity, etc. Variation in surface potential occurs. Therefore, when electroless plating is performed, a portion where the metal layer is easily deposited and a portion where the metal layer is difficult to deposit are generated, and the metal layer is formed only in a part, resulting in an undeposited portion and exposing the substrate surface. A part arises. Therefore, there is a problem that stable conductivity cannot be secured in the obtained metal layer-coated substrate. In addition, the tin salt used in the active-rich treatment process is corrosive, so it is necessary to wash before the start of electroless plating to remove the remaining tin salt. There is also a problem that the number of palladium colloids is reduced and electroless plating is difficult to proceed. Disclosure of the invention
本発明は、 ·このような事情の下で、 安定した導電性を有する金属層被覆基材を 提供すること、 および上記金属層被覆基材を、 特別な設備や装置を用いずに、 安 価で、 かつ簡易な工程で、 環境に対する影響も少なく製造する方法を提供するこ とを目的とするものである。  Under such circumstances, the present invention provides a metal layer-coated base material having stable conductivity, and the metal layer-coated base material is inexpensive without using special equipment or equipment. In addition, the object is to provide a manufacturing method that is simple and has little impact on the environment.
本発明者が銳意研究を重ねた結果、 基材と、 該基材上にキレート形成性官能基 含有シラン力ップリング剤を介して形成された金属ナノ粒子の点在物または層状 物と、 該金属ナノ粒子の点在物または層状物上に形成された金属層とを含む新規 金属層被覆基材が、 基材を、 加水分解触媒、 キレート形成性官能基含有シラン力 ップリング剤および金属ナノ粒子形成性金属塩を含む水性溶液に接触させた後、 還元剤で処理することにより、 基材上にキレート形成†生官能基含有シランカップ リング剤を介して金属ナノ粒子の点在物または層状物を形成し、 次いで該金属ナ ノ粒子の点在物または層状物上に金属層を形成することにより得られること、 お よび得られた金属層被覆基材が安定した導電性を有することを見出し、 かかる知 見に基づいて本発明を完成するに至った。  As a result of repeated studies by the inventor of the present invention, the substrate, the interspersed material or layered material of metal nanoparticles formed on the substrate via a chelate-forming functional group-containing silane coupling agent, and the metal A novel metal layer-coated substrate comprising a metal layer formed on a nanoparticle interspersed material or a layered material, the substrate is formed into a hydrolysis catalyst, a chelate-forming functional group-containing silane force pulling agent, and metal nanoparticles. After contact with an aqueous solution containing a functional metal salt, the metal nanoparticles are dispersed or layered via a silane coupling agent containing a biofunctional group containing a chelating agent on the substrate by treating with a reducing agent. And then forming a metal layer on the metal nanoparticle interspersed or layered material, and finding that the obtained metal layer-coated substrate has stable conductivity, Based on such knowledge Thus, the present invention has been completed.
すなわち、 本発明は、  That is, the present invention
( 1 ) 基材と、 該基材上にキレート形成性官能基含有シランカップリング剤を介 して形成された金属ナノ粒子の点在物または層状物と、 該金属ナノ粒子の点在物 または層状物上に形成された金属層とを含むことを特徴とする金属層被覆基材、 (2) 基材がシリカ、 セラミックスおよびガラスからなる群から選ばれる少なく とも 1種以上からなる上記 (1) に記載の金属層被覆基材、 (1) A substrate, a dot or layered product of metal nanoparticles formed on the substrate via a chelate-forming functional group-containing silane coupling agent, and a dot or layer of the metal nanoparticles or A metal layer-coated substrate comprising a metal layer formed on a layered material, (2) The metal layer-coated substrate according to (1) above, wherein the substrate comprises at least one selected from the group consisting of silica, ceramics and glass,
(3) 基材の形状が球状、 棒状、 板状、 針状、 中空状および不特定形状からなる 群から選ばれる 1種である上記 (1) または (2) に記載の金属層被覆基材、 (3) The metal layer-coated substrate according to (1) or (2) above, wherein the shape of the substrate is one selected from the group consisting of a spherical shape, a rod shape, a plate shape, a needle shape, a hollow shape and an unspecified shape ,
( 4 ) 基材の形状が、 平均粒径 0. :!〜 100 /imの微粒子形状である上記 ( 3 ) に記載の金属層被覆基材、 (4) The metal layer-coated substrate according to the above (3), wherein the shape of the substrate is a fine particle shape having an average particle size of 0 :! to 100 / im,
(5) キレート形成性官能基が、 窒素原子、 硫黄原子および酸素原子からなる群 から選ばれる少なくとも 1種以上の原子を有する官能基である上記 (1) 〜 (4) のいずれかに記載の金属層被覆基材、  (5) The chelate-forming functional group according to any one of the above (1) to (4), wherein the chelate-forming functional group is a functional group having at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom Metal layer coated substrate,
(6) キレート形成性官能基が、 一 SH、 一 CN、 一NH2、 -S02OH, _S 〇OH, -OPO (OH) 2および一COOHからなる群から選ばれる少なくとも 1種以上の官能基である上記 (5) に記載の金属層被覆基材、 (6) at least one functional group selected from the group consisting of 1 SH, 1 CN, 1 NH 2 , -S0 2 OH, _S 0 OH, -OPO (OH) 2 and 1 COOH. The metal layer-coated substrate according to (5) above,
(7) 金属ナノ粒子が、 金、 銀、 銅およびニッケルからなる群から選ばれる少な くとも 1種以上の金属からなるナノ粒子である上記 (1) 〜 (6) のいずれかに 記載の金属層被覆基材、  (7) The metal according to any one of (1) to (6), wherein the metal nanoparticle is a nanoparticle composed of at least one metal selected from the group consisting of gold, silver, copper and nickel. Layer coated substrate,
(8) 金属層が銀からなる層である上記 (1) 〜 (7) のいずれかに記載の金属 層被覆基材、  (8) The metal layer-coated substrate according to any one of (1) to (7), wherein the metal layer is a layer made of silver,
(9) 基材を、 加水分解触媒、 キレート形成性官能基含有シランカップリング剤 およぴ金属ナノ粒子形成性金属塩を含む水性溶液に接触させた後、 還元剤で処理 することにより、 基材上にキレート形成性官能基含有シランカツプリング剤を介 して金属ナノ粒子の点在物または層状物を形成し、 次いで該金属ナノ粒子の点在 物または層状物上に金属層を形成することを特徴とする金属層被覆基材の製造方 法、 および  (9) The substrate is brought into contact with an aqueous solution containing a hydrolysis catalyst, a chelate-forming functional group-containing silane coupling agent and a metal nanoparticle-forming metal salt, and then treated with a reducing agent to form a base. A metal nanoparticle interspersed or layered material is formed on the material via a chelate-forming functional group-containing silane coupling agent, and then a metal layer is formed on the metal nanoparticle interspersed or layered material. A method for producing a metal-layer-coated substrate, and
(10) 金属層を無電解めつき法により形成する上記 (9) に記載の金属層被覆 基材の製造方法  (10) The method for producing a metal layer-coated substrate according to (9) above, wherein the metal layer is formed by an electroless plating method
を提供するものである。 Is to provide.
本発明によれば、 基材上に金属ナノ粒子の点在物または層状物を形成すること により、 各金属ナノ粒子を起点にして金属ナノ粒子の点在物または層状物上に容 易に金属層を形成することができるとともに、 金属ナノ粒子の層状物を基材上に 形成した場合には、 金属ナノ粒子層上に金属層の未形成部分が生じたとしても、 基材と金属層との間に金属ナノ粒子層が存在するため、 得られる金属層被覆基材 は、 基材表面が露出せず、 安定した導電性を確保することができる。 According to the present invention, a metal nanoparticle interspersed or layered material is formed on a substrate, whereby each metal nanoparticle serves as a starting point and the metal nanoparticle interspersed or layered material is contained. A metal layer can be easily formed, and when a layered product of metal nanoparticles is formed on a substrate, even if an unformed part of the metal layer is formed on the metal nanoparticle layer, Since the metal nanoparticle layer is present between the metal layer and the resulting metal layer-coated substrate, the substrate surface is not exposed, and stable conductivity can be ensured.
また、本発明によれば、上記金属層被覆基材を、特別な設備や装置を用いずに、 安価で、 かつ簡易な工程で、 環境に対する影響も少なく製造する方法を提供する ことができる。 図面の簡単な説明  In addition, according to the present invention, it is possible to provide a method for producing the metal layer-coated substrate at a low cost and with a simple process, with little influence on the environment, without using special equipment or equipment. Brief Description of Drawings
図 1は、 実施例 1で得られた金ナノ粒子層形成シリ力粒子の SEM写真である。 図 2は、 実施例 1で得られた銀層被覆シリカ粒子の SEM写真である。  FIG. 1 is a SEM photograph of the gold nanoparticle layer-forming sili-power particles obtained in Example 1. FIG. 2 is an SEM photograph of the silver layer-coated silica particles obtained in Example 1.
図 3は、 実施例 2で得られた銀層被覆ポリイミド粒子の SEM写真である。  FIG. 3 is a SEM photograph of the silver layer-coated polyimide particles obtained in Example 2.
図 4は、 実施例 7で得られた金ナノ粒子層形成シリ力粒子の SEM写真である。 図 5は、 実施例 8で得られた銀層被覆シリ力粒子の SEM写真である。  FIG. 4 is an SEM photograph of the gold nanoparticle layer-forming silli force particles obtained in Example 7. FIG. 5 is an SEM photograph of the silver layer-coated silli force particles obtained in Example 8.
図 6は、 実施例 9で得られた銀層被覆ソーダ石灰ガラスビーズの SEM写真であ る。  FIG. 6 is an SEM photograph of the silver layer-coated soda-lime glass beads obtained in Example 9.
図 7は、実施例 1 0で得られた金ナノ粒子層形成シリカ粒子の SEM写真である。 図 8は、実施例 1 1で得られた銀ナノ粒子層形成シリカ粒子の SEM写真である。 図 9は、 実施例 1 2で得られた金層被覆シリ力粒子の SEM写真である。 発明を実施するための最良の形態  FIG. 7 is an SEM photograph of the gold nanoparticle layer-forming silica particles obtained in Example 10. FIG. 8 is an SEM photograph of the silver nanoparticle layer-forming silica particles obtained in Example 11-1. FIG. 9 is an SEM photograph of the gold layer-coated sili-force particles obtained in Example 12. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 本発明の金属層被覆基材について説明する。  First, the metal layer-coated substrate of the present invention will be described.
本発明の金属層被覆基材は、 基材と、 該基材上にキレート形成性官能基含有シ ランカツプリング剤を介して形成された金属ナノ粒子の点在物または層状物と、 該金属ナノ粒子の点在物または層状物上に形成された金属層とを含むことを特徴 とする。  The metal layer-coated base material of the present invention includes a base material, interspersed or layered materials of metal nanoparticles formed on the base material via a chelate-forming functional group-containing silane coupling agent, and the metal And a metal layer formed on a nanoparticle interspersed or layered material.
本発明の金属層被覆基材において用いられる基材としては、 基材表面に O H基 を有し、 後述するシランカップリング剤と相互作用するものであることが好まし く、 このような基材としては、 例えば、 シリカ、 セラミックスおよびガラスから なる群から選ばれる少なくとも 1種以上を挙げることができる。 The substrate used in the metal layer-coated substrate of the present invention preferably has an OH group on the substrate surface and interacts with a silane coupling agent described later. In addition, examples of such a substrate include at least one selected from the group consisting of silica, ceramics, and glass.
シリカとしては、 例えば、 完全結晶化した乾式シリカ (クリストバライ ト) 、 水分散型シリカ (コロイダルシリカ) 等を挙げることができる。  Examples of the silica include completely crystallized dry silica (cristobalite), water-dispersed silica (colloidal silica), and the like.
また、 セラミックスとしては、 例えば、 酸化アルミニウム (ァノレミナ) 、 サフ アイァ、 ムライ ト、 酸^^チタン (チタニア) 、 炭化ケィ素、 窒化ケィ素、 窒化ァ ルミ二ゥム、 ジルコ二ァ等を挙げることができ、  Examples of ceramics include aluminum oxide (anoremina), sapphire, mullite, titanium oxide (titania), carbide, nitride, aluminum nitride, and zirconium. Can
ガラスとしては、 例えば、 B K 7、 S F 1 1、 L a S F N 9等の各種ショット ガラス、 光学クラウンガラス、 ソーダガラス、 ソーダ石灰ガラス、 低膨張ボロシ リケートガラス等を挙げることができる。  Examples of the glass include various shot glasses such as B K 7, SF 11 and La S F N 9, optical crown glass, soda glass, soda lime glass, low expansion borosilicate glass, and the like.
また、 基材としては、 上述したものの他、 シランカップリング剤と相互作用す ることを条件に樹脂類を用いることもでき、 樹脂類としては、 例えば、 シリコー ン樹脂、 フエノール樹脂、 天然変性フエノール樹脂、 エポキシ樹脂、 ポリビュル アルコール系樹脂、 セ^/ロース系榭脂、 ポリアミ ド樹脂 (ナイロン) 等や、 ポリ ォレフィン系樹脂、 スチレン系樹脂、 アクリル系樹脂等、 またはこれらの変性物 またはコロナ放電等による表面処理物を挙げることができる。  In addition to the materials described above, resins can also be used as a base material on the condition that they interact with a silane coupling agent. Examples of the resins include silicone resins, phenol resins, and naturally-modified phenols. Resin, Epoxy resin, Polybulu alcohol resin, Cellulose / Loose resin, Polyamide resin (Nylon), Polyolefin resin, Styrene resin, Acrylic resin, etc., Modified products thereof, Corona discharge, etc. Can be mentioned.
基材の形状については特に制限がなく、球状、 粒子状、 ビーズ状、 棒状、 板状、 針状、 粉末状、 中空状、 中空繊維状および不特定形状からなる群から選ばれる少 なくとも 1種以上であることが好ましい。 基材の形状は微粒子形状であることが より好ましく、 その平均粒径は 0 . 1〜1 0 0 μ πιであることが好ましく、 1〜 2 0 μ πιであることがより好ましい。 なお、 本明細書において、 平均粒径とは体 積平均粒径を意味し、 体積平均粒径は、 例えば粒度分布測定器等で測定すること ができる。  The shape of the substrate is not particularly limited, and at least 1 selected from the group consisting of spherical, particulate, beaded, rod, plate, needle, powder, hollow, hollow fiber and unspecified shape. It is preferable that it is a seed or more. The shape of the substrate is more preferably a fine particle shape, and the average particle diameter is preferably 0.1 to 100 μππι, more preferably 1 to 20 μππι. In the present specification, the average particle diameter means the volume average particle diameter, and the volume average particle diameter can be measured by, for example, a particle size distribution measuring instrument.
基材は、 その表面が凹凸を有していると、 下地処理がされやすく好ましい。 こ のような基材としては、 擦りガラス、 多孔質粒子等が挙げられる。 また基材は、 その表面が酸化されているものが好ましい。  It is preferable that the substrate has an uneven surface because the surface treatment is easy. Examples of such a base material include frosted glass and porous particles. Further, the base material is preferably one whose surface is oxidized.
本発明の金属層被覆基材において、 前記基材と後記金属ナノ粒子の点在物また は層状物との間に介在するキレート形成性官能基含有シラン力ップリング剤は、 分子の一端にキレート形成性官能基を有し、 他端にシラノール基 (S i - O H) および/または加水分解によりシラノール基を与える加水分解性官能基を有する 化合物からなる。 In the metal layer-coated base material of the present invention, the chelate-forming functional group-containing silane force coupling agent interposed between the base material and the interspersed material or layered material of the metal nanoparticles described later, It consists of a compound having a chelate-forming functional group at one end of the molecule and a silanol group (Si-OH) and / or a hydrolyzable functional group that gives a silanol group by hydrolysis at the other end.
キレート形成性官能基としては、 極性基や親水性基を挙げることができ、 窒素 原子、 硫黄原子および酸素原子からなる群から選ばれる少なくとも 1種以上の原 子を有する官能基であることが好ましく、 一 S H、 _ C N、 一 NH 2、 一 S 0 20 H、 一 S〇O H、 一 O P〇 (O H) 2、 _ C〇〇Hからなる群から選ばれる少なく とも 1種以上の官能基であることがより好ましい。 Examples of the chelate-forming functional group include a polar group and a hydrophilic group, and are preferably functional groups having at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom. , 1 SH, _ CN, 1 NH 2 , 1 S 0 2 0 H, 1 S 0 OH, 1 OP 0 (OH) 2 , _C 0 0 H, at least one functional group selected from the group consisting of It is more preferable that
また、 加水分解性官能基としては、 S i原子に直接結合したアルコキシ (一 o R) 基等を挙げることができ、 上記アルコキシ基を構成する Rとしては、 炭素数 が 1〜 6である直鎖状、 分岐状、 環状いずれかのアルキル基が好ましく、 具体的 には、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 ィソプチル基、 s e c _プテノレ ¾、 t e r t一ブナノレ; ;、 へノテノレ 、 へ ンノレ 基、 シクロペンチル基、 シクロへキシル基などを挙げることができる。  Examples of the hydrolyzable functional group include an alkoxy (1 o R) group directly bonded to a Si atom, and the R constituting the alkoxy group is a straight chain having 1 to 6 carbon atoms. A chain, branched, or cyclic alkyl group is preferable. Specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec_ptenole ¾, a tert-butylene group. ;, Henotenore, hennore group, cyclopentyl group, cyclohexyl group and the like.
本発明の金属層被覆基材に用いられるキレート形成性官能基含有シランカップ リング剤の具体例としては、 3—ァミノプロピルトリメ トキシシラン、 3—アミ ノプロピルトリエトキシシラン、 N— 2— (アミノエチル) 一 3—ァミノプロピ ルトリメ トキシシラン、 N— 2 _ (アミノエチル) 一 3—ァミノプロビルトリエ トキシシランを挙げることができ、 シランカップリング剤のコスト、 および扱い 易さから 3—ァミノプロビルトリメ トキシシランが特に好ましレ、。  Specific examples of the chelate-forming functional group-containing silane coupling agent used for the metal layer-coated substrate of the present invention include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (amino Ethyl) -1-3-aminopropyltrimethyoxysilane, N-2_ (aminoethyl) -1-3-aminomino triethoxysilane, and 3-silaneminopropyl because of the cost and ease of handling of silane coupling agents Trimethysilane is particularly preferred.
本発明の金属層被覆基材において、 シラン力ップリング剤の一端のキレート形 成十生官能基は、 金属ナノ粒子に配位結合しており、 シランカップリング剤の他端 のシラノール基は、 基材表面の〇 H基と相互作用している。  In the metal layer-coated base material of the present invention, the chelate-formed synthetic functional group at one end of the silane force coupling agent is coordinated to the metal nanoparticles, and the silanol group at the other end of the silane coupling agent is It interacts with the ○ H group on the surface of the material.
従って、 シランカツプリング剤を介して基材に金属ナノ粒子層の点在物または 層状物を安定して固定することが可能になる。  Therefore, it becomes possible to stably fix the interspersed material or layered material of the metal nanoparticle layer to the substrate via the silane coupling agent.
本発明の金属層被覆基材において、 金属ナノ粒子は、 金、 銀、 銅およびニッケ ルからなる群から選ばれる少なくとも 1種以上の金属からなるナノ粒子であるこ とが好ましい。 金属ナノ粒子上に銀鏡反応による金属層 (銀からなる金属層) を 形成する場合は、 銀との馴染みの良さを考慮して、 金属ナノ粒子を金のナノ粒子 とすることが好ましい。 In the metal layer-coated substrate of the present invention, the metal nanoparticles are preferably nanoparticles made of at least one metal selected from the group consisting of gold, silver, copper, and nickel. A metal layer (metal layer made of silver) by silver mirror reaction on metal nanoparticles In the case of forming, it is preferable that the metal nanoparticles are gold nanoparticles in consideration of the familiarity with silver.
金属ナノ粒子は、 シランカップリング剤を介して基材上の少なくとも一部に付 着していればよく、 金属ナノ粒子の存在状態としては、 例えば、 基材上に点在し て点在物を形成している状態や、 基材上に一様に付着して層状物を形成している 状態を挙げることができる。 金属ナノ粒子が、 基材上に一様に付着せず点在して いる場合であっても、 各金属ナノ粒子を起点にして、 金属ナノ粒子の点在物上に 後述する金属層を形成することができるので、 得られる金属層被覆基材は安定し た導電性を確保することができる。  The metal nanoparticles only have to be attached to at least a part of the substrate via the silane coupling agent. As the state of existence of the metal nanoparticles, for example, the metal nanoparticles are scattered on the substrate. And a state in which a layered product is uniformly formed on the substrate. Even if the metal nanoparticles are not uniformly deposited on the substrate, the metal layer described later is formed on the metal nanoparticle scattered material starting from each metal nanoparticle. Therefore, the obtained metal layer-coated substrate can ensure stable conductivity.
また、 金属ナノ粒子が、 基材上に一様に付着して層状物を形成している場合に は、 該金属ナノ粒子層上の全面に後述する金属層を形成することができることは もちろん、 仮に金属層の未形成部分が生じたとしても、 基材と金属層との間に金 属ナノ粒子層が存在するため、得られる金属層被覆基材は、基材表面が露出せず、 安定した導電性を確保することができる。  In addition, when the metal nanoparticles are uniformly deposited on the substrate to form a layered material, it is possible to form a metal layer to be described later on the entire surface of the metal nanoparticle layer. Even if an unformed part of the metal layer occurs, the metal nanoparticle layer is present between the base material and the metal layer, so that the resulting metal layer coated base material is stable without exposing the base material surface. The conductivity can be ensured.
なお、 本明細書において、 金属ナノ粒子とは、 粒径 1 0 0 n m以下の金属から なる極小粒子を意味する。 同じ体積のバルタ原子とナノ粒子の表面積を比較する と、 ナノ粒子の表面積の方が大きく、 表面エネルギーが大きい (全エネルギーに 対する割合が高い) ことから、 従来の微粒子とは異なった特性を示すことが期待 されているが、 本発明の金属層被覆基材においては、 金属層を無電解めつきによ り形成する場合に、 金属ナノ粒子が触媒として作用すると考えられる。  In the present specification, the metal nanoparticles mean very small particles made of a metal having a particle size of 100 nm or less. Comparing the surface area of nanoparticles with the same volume of Balta atoms, the surface area of the nanoparticles is larger and the surface energy is larger (the ratio to the total energy is higher), so it shows different characteristics from the conventional fine particles However, in the metal layer-coated substrate of the present invention, it is considered that metal nanoparticles act as a catalyst when the metal layer is formed by electroless plating.
本発明の金属層被覆基材において、 金属ナノ粒子層上に形成される金属層を構 成する金属種は、 特に制限されないが、 銀、 金、 銅、 ニッケルであることが好ま しく、 上記金属層は銀鏡反応により形成することが好ましいことから、 金属層を 構成する金属種は銀であることがより好ましい。  In the metal layer-coated substrate of the present invention, the metal species constituting the metal layer formed on the metal nanoparticle layer is not particularly limited, but is preferably silver, gold, copper, or nickel. Since the layer is preferably formed by a silver mirror reaction, the metal species constituting the metal layer is more preferably silver.
本発明の金属層被覆基材は、 以下に説明する本発明の金属層被覆基材の製造方 法により好適に製造することができる。  The metal layer-coated substrate of the present invention can be suitably produced by the method for producing the metal layer-coated substrate of the present invention described below.
本発明の金属層被覆基材の製造方法は、 基材を、 加水分解触媒、 キレート形成 性官能基含有シラン力ップリング剤および金属ナノ粒子形成性金属塩を含む水性 溶液に接触させた後、 還元剤で処理することにより、 基材上にキレート形成性官 能基含有シラン力ップリング剤を介して金属ナノ粒子の点在物または層状物を形 成し、 該金属ナノ粒子の点在物または層状物上に金属層を形成することを特徴と する。 The method for producing a metal layer-coated substrate according to the present invention comprises an aqueous solution comprising a hydrolysis catalyst, a chelate-forming functional group-containing silane force pulling agent, and a metal nanoparticle-forming metal salt. After contacting with the solution, by treating with a reducing agent, a metal nanoparticle interspersed or layered product is formed on the substrate via the chelating agent-functional group-containing silane force pulling agent. It is characterized in that a metal layer is formed on a nanoparticle interspersed or layered material.
本発明の金属層被覆基材の製造方法において用いられる基材としては、 上記本 発明の金属層被覆基材の説明で挙げたものと同様に、 シリカ、 セラミックス、 ガ ラス、 各種樹脂類等を挙げることができる。  As the base material used in the method for producing a metal layer-coated base material of the present invention, silica, ceramics, glass, various resins and the like can be used in the same manner as described in the explanation of the metal layer-coated base material of the present invention. Can be mentioned.
本発明の金属層被覆基材の製造方法において用いられる加水分解触媒としては、 特に制限はないが、例えば、 無水酢酸、氷酢酸、 プロピオン酸、 クェン酸、 ギ酸、 シユウ酸等の有機酸、 アルミニウムアルキルァセテ一ト等のアルミニウムキレー ト化合物、 アンモニア水等の無機アルカリ性ィヒ合物等を挙げることができる。 こ れらの中でも好ましいシランカツプリング剤である 3—ァミノプロビルトリメ ト キシシランとの反応性、 コストを考慮するとアンモニア水が好ましい。  The hydrolysis catalyst used in the method for producing a metal layer-coated substrate of the present invention is not particularly limited. For example, acetic anhydride, glacial acetic acid, propionic acid, citrate, formic acid, oxalic acid and other organic acids, aluminum Examples thereof include aluminum chelate compounds such as alkyl acetates, and inorganic alkaline compounds such as aqueous ammonia. Among these, aqueous ammonia is preferable in consideration of the reactivity and cost with 3-aminopropyl trimethoxysilane, which is a preferred silane coupling agent.
本発明の金属層被覆基材の製造方法において用いられるキレート形成性官能基 含有シランカップリング剤は、 上述したように分子の一端にキレート形成性官能 基を有し、 他端にシラノール基および/または加水分解によりシラノール基を与 える加水分解性官能基を有するものである。  The chelate-forming functional group-containing silane coupling agent used in the method for producing a metal layer-coated substrate of the present invention has a chelate-forming functional group at one end of the molecule as described above, and a silanol group and / or at the other end. Or it has a hydrolyzable functional group which gives a silanol group by hydrolysis.
キレート形成†生官能基としては上記と同様のものを挙げることができるが、 上 記各官能基の塩の形で供することもできる。 官能基が一 O H、 一 S H、 一 S 0 2〇 H、 一 S O O H、 一 O P O (O H) 2、 一 C O O Hなどの酸性基である場合、 その 塩としては、 ナトリウム、 カリウム、 リチウムなどのアルカリ金属の塩、 あるい はアンモユウム塩などが挙げられる。 一方、 一 NH 2などの塩基性基である場合、 その塩としては、 塩酸、 硫酸、 硝酸などの無機酸、 ギ酸、 酢酸、 プロピオン酸、 トリフルォロ酢酸などの有機酸の付加塩などが挙げられる。 Examples of the chelate-forming biofunctional group include those described above, but can also be provided in the form of a salt of each functional group. When the functional group is an acidic group such as 1 OH, 1 SH, 1 S 0 2 0 H, 1 SOOH, 1 OPO (OH) 2 , 1 COOH, the salt is an alkali metal such as sodium, potassium, or lithium. Salt or ammoyuum salt. On the other hand, if a basic group, such as single NH 2, as a salt thereof, hydrochloric acid, sulfuric, inorganic acids such as nitric acid, formic acid, acetic acid, propionic acid, and addition salts of organic acids such as Torifuruoro acetic acid.
また、 加水分解性官能基としては、 上記本発明の金属層被覆基材の説明で挙げ たものと同様のものを挙げることができる。  In addition, examples of the hydrolyzable functional group include the same ones as mentioned in the explanation of the metal layer-coated substrate of the present invention.
本発明の金属層被覆基材の製造方法において用いられる金属ナノ粒子形成性金 属塩を構成する金属種としては、 上記本発明の金属層被覆基材の説明で挙げたも のと同様に、 金、 銀、 銅、 ニッケル等を挙げることができる。 金属塩としては、 例えば、 塩化金酸、 硝酸銀、 硫酸銅、 硫酸ニッケル等を挙げることができる。 本発明の金属層被覆基材の製造方法において用いられる水性溶液は、 水を主成 分とするものであれば特に制限されず、 水とともに水混和性有機化合物を含んで いてもよい。 ここで、 水混和'性有機化合物の例としては、 メタノール、 エタノー ル、 プロパノール、 ブタノーノレなどの低級アルコール類、 アセトンなどのケトン 類などが挙げられる。 この場合、 水混和性有機化合物は単独で水と混合してもよ く、 2種以上を組み合わせて水と混合してもよい。 Examples of the metal species constituting the metal nanoparticle-forming metal salt used in the method for producing a metal layer-coated substrate of the present invention include those mentioned in the description of the metal layer-coated substrate of the present invention. Like, gold, silver, copper, nickel, etc. can be mentioned. Examples of the metal salt include chloroauric acid, silver nitrate, copper sulfate, nickel sulfate and the like. The aqueous solution used in the method for producing a metal layer-coated substrate of the present invention is not particularly limited as long as it contains water as a main component, and may contain a water-miscible organic compound together with water. Here, examples of the water-miscible organic compound include lower alcohols such as methanol, ethanol, propanol, and butanol, and ketones such as acetone. In this case, the water-miscible organic compound may be mixed with water alone or in combination of two or more.
還元剤は、 使用する金属ナノ粒子形成性金属塩の金属成分の酸化還元電位を勘 案して、 適宜用いればよい。 還元剤としては、 水性溶液に溶解し得るものであれ ば特に制限されず、 従来公知の還元剤の中から、 適宜選択して用いることができ る。 このような還元剤としては、 例えばテトラヒドロホウ酸ナトリウム等の水素 化ホウ素酸塩 (水素化ホウ素ナトリウム等のアルカリ金属水素化ホウ酸塩類、 ァ ンモニゥム水素化ホウ酸塩類等) 、 ヒドラジン系化合物類、 次亜塩素酸塩などの 無機系還元剤、 ホルムアルデヒド、 ァセトアルデヒ ド、 クェン酸、 クェン酸ナト リウムなどの有機系還元剤を用いることができる。 これらの還元剤は、 1種を単 独で用いてもよく、 2種以上を組み合わせて用いてもよい。  The reducing agent may be appropriately used in consideration of the redox potential of the metal component of the metal nanoparticle-forming metal salt to be used. The reducing agent is not particularly limited as long as it can be dissolved in an aqueous solution, and can be appropriately selected from conventionally known reducing agents. Examples of such reducing agents include borohydrides such as sodium tetrahydroborate (alkali metal borohydrides such as sodium borohydride, ammonium borohydrides, etc.), hydrazine compounds, Inorganic reducing agents such as hypochlorite and organic reducing agents such as formaldehyde, acetonitrile, citrate, and sodium citrate can be used. One of these reducing agents may be used alone, or two or more thereof may be used in combination.
本発明の金属層被覆基材の製造方法において、 金属ナノ粒子の点在物または層 状物の形成は、 基材を、 加水分解触媒、 キレート形成性官能基含有シランカップ リング剤および金属ナノ粒子形成性金属塩を含む水性溶液に接触させた後、 還元 剤で処理することにより行われる。 具体的な方法としては、 基材および加水分解 触媒を含む水性溶液 (A液) に、 キレート形成性官能基含有シランカップリング 剤および金属ナノ粒子形成性金属塩を含む溶液 (B液) を加えて攪拌した後、 こ の混合溶液に還元剤を含む溶液 (C液) を滴下し、 加熱、 攪拌する方法を挙げる ことができる。  In the method for producing a metal layer-coated substrate according to the present invention, the formation of a dot or layered product of metal nanoparticles is performed by using a substrate, a hydrolysis catalyst, a chelate-forming functional group-containing silane coupling agent, and metal nanoparticles. This is done by contacting with an aqueous solution containing a forming metal salt and then treating with a reducing agent. As a specific method, a solution (liquid B) containing a chelate-forming functional group-containing silane coupling agent and a metal nanoparticle-forming metal salt is added to an aqueous solution (liquid A) containing a base material and a hydrolysis catalyst. After stirring, a solution containing the reducing agent (solution C) is dropped into this mixed solution, followed by heating and stirring.
A液と B液を混合し、 攪拌する際の温度は 1 0〜4 0 °Cが好ましく、 攪拌時間 は 1〜 3 0分間が好ましい。 A液と B液の混合液に C液を滴下した後の加熱温度 は 3 0〜 7 0 °Cが好ましく、 加熱時間は 2〜 5時間が好ましい。 キレート形成性官能基含有シランカップリング剤 1モルに対する加水分解触媒 の使用量は、 0 . 5〜5 . 0モルであることが好ましく、 1 . 5〜2 . 5モルで あることがより好ましい。 また、 キレート形成性官能基含有シランカップリング 剤 1モルに対する金属ナノ粒子形成性金属塩の使用量は 0 . 0 0 5〜0 . 0 5モ ルであることが好ましく、 0 . 0 1 5〜0 . 0 2 5 モルであることがより好ま しい。 さらに、金属ナノ粒子形成性金属塩 1モルに対する還元剤の使用量は、 0 . 0 2 5〜0 . 2 5モルであることが好ましく、 0 . 0 7 5〜0 . 1 2 5モルであ ることがより好ましい。 The temperature at the time of mixing and stirring the liquid A and the liquid B is preferably 10 to 40 ° C., and the stirring time is preferably 1 to 30 minutes. The heating temperature after adding the C liquid dropwise to the mixed liquid of the A liquid and the B liquid is preferably 30 to 70 ° C, and the heating time is preferably 2 to 5 hours. The amount of the hydrolysis catalyst used relative to 1 mol of the chelate-forming functional group-containing silane coupling agent is preferably 0.5 to 5.0 mol, and more preferably 1.5 to 2.5 mol. The amount of the metal nanoparticle-forming metal salt used per 1 mol of the chelate-forming functional group-containing silane coupling agent is preferably from 0.05 to 0.05 mol, and from 0.15 to More preferably, it is 0.025 mol. Furthermore, the amount of the reducing agent used relative to 1 mol of the metal nanoparticle-forming metal salt is preferably 0.025 to 0.25 mol, and 0.07 5 to 0.125 mol. More preferably.
本発明の金属層被覆基材の製造方法においては、 最終工程として、 金属ナノ粒 子の点在物または層状物上に金属層を形成する。  In the method for producing a metal layer-coated substrate of the present invention, as a final step, a metal layer is formed on the interspersed or layered material of metal nanoparticles.
金属層を形成する金属としては、 上述したように、 銀、 金、 銅、 ニッケル等を 用いることができる。  As the metal forming the metal layer, silver, gold, copper, nickel, or the like can be used as described above.
金属層の形成方法としては、 無電界めつき法が好ましく、 反応の進行度および 安定性を考慮すると特に銀鏡反応が好ましい。  As the method for forming the metal layer, the electroless plating method is preferable, and the silver mirror reaction is particularly preferable in view of the progress and stability of the reaction.
上述したように、 金属ナノ粒子が基材上に一様に付着して層を形成している場 合には、 金属層は、 必ずしも金属ナノ粒子層上の全面に被覆されなくてもよい。 本発明の金属被覆基材の製造方法においては、 基材上にシランカツプリング剤 で安定ィヒした金属ナノ粒子の点在物または層状物を形成した後、 無電解めつき法 で金属層を形成することにより、 一般の無電解めつきで必須となる基材表面の活 性化処理工程を必要とせずに基材上に金属層を形成することができる。 また、 金 属ナノ粒子の層状物を基材上に形成した場合には、 仮に金属ナノ粒子層上に金属 層である無電解めっき層の未形成部分が生じたとしても、 基材と金属層との間に 金属ナノ粒子層が存在するため、 得られる金属層被覆基材は、 基材表面が露出せ ず、 安定した導電性を確保することができる。 しかも、 上記金属層被覆基材を、 特別な設備や装置を用いずに、 安価で、 かつ簡易な工程で、 環境に対する影響も 少なく製造することができる。 実施例 次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 この例に よってなんら限定されるものではない。 As described above, when the metal nanoparticles are uniformly deposited on the substrate to form a layer, the metal layer does not necessarily have to be covered on the entire surface of the metal nanoparticle layer. In the method for producing a metal-coated substrate of the present invention, a metal nanoparticle interspersed or layered material stabilized with a silane coupling agent is formed on the substrate, and then the metal layer is formed by an electroless plating method. By forming, a metal layer can be formed on the base material without the need for an activation treatment step for the base material surface, which is essential for general electroless plating. In addition, when a layered product of metal nanoparticles is formed on a substrate, even if an unformed portion of an electroless plating layer, which is a metal layer, is formed on the metal nanoparticle layer, the substrate and the metal layer Since the metal nanoparticle layer exists between the two, the obtained metal layer-coated base material does not expose the base material surface, and can ensure stable conductivity. In addition, the metal layer-coated substrate can be produced at a low cost and with a simple process, with little influence on the environment, without using special equipment or equipment. Example EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.
実施例 1 (銀層被覆シリ力粒子の製造例) Example 1 (Production example of silver layer coated silli force particles)
( 1 ) シリ力粒子上への金ナノ粒子層の形成  (1) Formation of gold nanoparticle layer on Siri force particles
50 OmLの三角フラスコにシリカ粒子 (平均粒径 6. 4 μπι) 10gを入れ、 イソプロピルアルコール (IPA) 63gを加え、 10分間超音波処理した。 更にメ タノール 63gを加えてマグネチックスターラーで 10分間攪拌し、 25%アンモ ユア水溶液 5 Ogを加えオイルパス中 30°Cで 10分間攪拌した(この溶液を A液 とする) 。  In a 50 OmL Erlenmeyer flask, 10 g of silica particles (average particle size 6.4 μπι) was added, 63 g of isopropyl alcohol (IPA) was added, and sonicated for 10 minutes. Further, 63 g of methanol was added and stirred for 10 minutes with a magnetic stirrer, and 5 Og of 25% aqueous ammonia solution was added and stirred for 10 minutes at 30 ° C. in an oil path (this solution is referred to as solution A).
塩化金酸 (HAuCl4 · 4H20) 0. 23 gにメタノール 5 OmLを加えてマグネチ ックスターラーで 10分間攪拌後、 3—ァミノプロビルトリメ トキシシラン 4. 5raLを加えて更に 10分間攪拌した (この溶液を B液とする) 。 Chloroauric acid (HAuCl 4 · 4H 2 0) 0.25 g of methanol 5 OmL was added and stirred with a magnetic stirrer for 10 minutes, then 3-amaminoprovir trimethoxysilane 4.5 raL was added and stirred for another 10 minutes ( This solution is designated as solution B).
テトラヒ ドロホウ酸ナトリゥム (NaBH4) 0. 107 gにメタノーノレ 5 OmLをカロ えてマグネチックスターラーで 10分間攪拌した (この溶液を C液とする) 。 Sodium tetraborate (NaBH 4 ) (0.17 g) was charged with methanol (5 OmL) and stirred with a magnetic stirrer for 10 minutes (this solution is referred to as solution C).
A液に B液を加えて 30°Cで 5分間攪拌した後、 C液をゆつくり滴下したところ、 反応系は赤色へと変化した。 C液滴下後、 オイルバスを 6 5 °Cに過熱して 3時間攪 拌した。 攪拌を止め、 メタノール分級を 3回行った後、 吸引ろ過して金ナノ粒子 層が形成されたシリカ粒子を採取し、 オーブンで 70 °C、 3時間乾燥させた。 得 られた粒子は赤色を呈した。  After adding solution B to solution A and stirring at 30 ° C for 5 minutes, when solution C was slowly added dropwise, the reaction system turned red. After dropping C droplets, the oil bath was heated to 65 ° C and stirred for 3 hours. Stirring was stopped, methanol classification was performed three times, and then suction filtration was performed to collect silica particles on which a gold nanoparticle layer was formed, followed by drying in an oven at 70 ° C. for 3 hours. The resulting particles were red.
得られた金ナノ粒子層形成シリカ粒子の電子顕微鏡 (SEM) 写真を図 1に示 す。 図 1から、 シリカ粒子の全表面に金ナノ粒子が均一に付着していることがわ かる。  An electron microscope (SEM) photograph of the resulting gold nanoparticle layer-forming silica particles is shown in Fig. 1. From Fig. 1, it can be seen that the gold nanoparticles are uniformly attached to the entire surface of the silica particles.
(2) 金ナノ粒子層上への銀層の形成  (2) Formation of silver layer on gold nanoparticle layer
上記( 1 ) で得られた金ナノ粒子層形成シリカ粒子 1 gに水 200 m Lを加えて 10分間超音波処理した後、 硝酸銀 0. 65 gを加えてマグネチックスターラー で 10分間攪拌した。 25 %ァンモニァ水溶液 13 mLを加えた後、 0. 24 mmol/ Lホルマリン水溶液を 20 mL添加して 5分間攪拌した。 沈殿した銀層被覆シリ力 粒子を吸引ろ過で採取し、 メタノ一ノレで洗つた後、 オーブン 70。Cで 3時間乾燥 した。 To 1 g of the gold nanoparticle layer-forming silica particles obtained in (1) above, 200 mL of water was added and subjected to ultrasonic treatment for 10 minutes, then 0.65 g of silver nitrate was added, and the mixture was stirred with a magnetic stirrer for 10 minutes. After adding 13 mL of 25% ammonia aqueous solution, 20 mL of 0.24 mmol / L formalin aqueous solution was added and stirred for 5 minutes. Precipitated silver layer coating force Oven 70 after collecting particles by suction filtration and washing with methanol. Dry with C for 3 hours.
得られた銀層被覆シリカ粒子の電子顕微鏡 (SEM) 写真を図 2に示す。 図 2 から、 金ナノ粒子層上の全面に銀からなる層が積層されていることがわかる 微小圧縮試験機で、 銀層被覆シリカ粒子 20個の電気抵抗値を測定して、 平均 値を求めた。 得られた結果を標準偏差と共に表 1に示す。  An electron microscope (SEM) photograph of the resulting silver layer-coated silica particles is shown in FIG. Figure 2 shows that a layer of silver is laminated on the entire surface of the gold nanoparticle layer. Using a micro compression tester, measure the electrical resistance of 20 silver layer-coated silica particles and determine the average value. It was. The results obtained are shown in Table 1 together with the standard deviation.
表 1
Figure imgf000014_0001
表 1の結果から、 実施例 1で得られた銀層被覆シリカ粒子は、 平均電気抵抗値 が 3. 9 Ωと低く、 標準偏差が 2. 2であって、 導電性が安定していることが分 かる。 実施例 2 (銀層被覆ポリイミド粒子の製造例)
table 1
Figure imgf000014_0001
From the results in Table 1, the silver layer-coated silica particles obtained in Example 1 have a low average electrical resistance value of 3.9 Ω, a standard deviation of 2.2, and stable conductivity. I know. Example 2 (Production example of silver layer-coated polyimide particles)
50 OmLの三角フラスコにポリイミド粒子(住友ベータライト㈱製:平均粒径 0. 5 μηι) 3gを入れ、 イソプロピルアルコール (IPA) 6 3gをカ卩え、 1 0分間 超音波処理した。更にメタノール 6 3gを加えてマグネチックスターラーで 1 0分 間攪拌し、 25 %ァンモユア水溶液 5 0 gを加えオイルバス中 30 °Cで 1 0分間攪 拌した (この溶液を A液とする) 。  3 g of polyimide particles (manufactured by Sumitomo Betalite Co., Ltd .: average particle size 0.5 μηι) were placed in a 50 OmL Erlenmeyer flask, and 6 g of isopropyl alcohol (IPA) was added and sonicated for 10 minutes. Further, 63 g of methanol was added and stirred with a magnetic stirrer for 10 minutes, 50 g of 25% aqueous solution was added, and the mixture was stirred for 10 minutes at 30 ° C. in an oil bath (this solution is referred to as solution A).
塩化金酸 (HAuCl4 · 4H20) 0. 5 Ogにメタノール 5 OmLを加えてマグネチ ックスターラーで 1 0分間攪拌後、 3—ァミノプロピ トリメトキシシラン 7. OmLを加えて更に 1 0分間攪拌した (この溶液を B液とする) 。 Chloroauric acid (HAuCl 4 · 4H 2 0) 0.5 Og methanol 5 OmL was added and stirred with a magnetic stirrer for 10 minutes, then 3-amaminopropyltrimethoxysilane 7. OmL was added and stirred for another 10 minutes ( This solution is designated as solution B).
テトラヒドロホウ酸ナトリウム (NaBH4) 0. 23gにメタノール 5 OmLを加え てマグネチックスターラーで 1 0分間攪拌した (この溶液を C液とする) 。 Methanol 5 OmL was added to 0.23 g of sodium tetrahydroborate (NaBH 4 ), and the mixture was stirred with a magnetic stirrer for 10 minutes (this solution is referred to as solution C).
A液に B液を加えて 30°Cで 5分間攪拌した後、 C液をゆつくり滴下したところ、 反応系は赤紫色へと変化した。 C液滴下後、オイルパスを 6 5 °Cに過熱して 3時間 攪拌した。 攪拌を止め、 メタノール分級を 3回行った後、 吸引ろ過して金ナノ粒 子層が形成されたシリカ粒子を採取し、 オーブンで 70°C、 3時間乾燥させた。 得られた粒子は赤紫色を呈した。 After adding solution B to solution A and stirring at 30 ° C for 5 minutes, when solution C was slowly added dropwise, the reaction system turned reddish purple. After dropping C droplets, the oil path was heated to 65 ° C and stirred for 3 hours. Stop stirring, perform methanol classification three times, and then suction filter to obtain gold nanoparticles The silica particles on which the child layer was formed were collected and dried in an oven at 70 ° C. for 3 hours. The obtained particles were reddish purple.
得られた金ナノ粒子層形成ポリイミド粒子 0. 5gに水 30 OmLを加えて 15 分間超音波処理した後、 硝酸銀 0. 67 gを加えてマグネチックスターラーで 1 0分間攪拌した。 25%アンモニア水溶液 2 OmLを加えた後、 0. 24mmol/Lホ ルマリン水溶液を 3 OmL添加して 5分間攪拌した。 沈殿した銀層被覆ポリイミド 粒子を吸引ろ過で採取し、 メタノールで洗った後、 オーブン 70°Cで 3時間乾燥 した。  After adding 30 OmL of water to 0.5 g of the obtained gold nanoparticle layer-forming polyimide particles and sonicating for 15 minutes, 0.667 g of silver nitrate was added, and the mixture was stirred with a magnetic stirrer for 10 minutes. After adding 2 OmL of 25% aqueous ammonia, 3 OmL of 0.24 mmol / L formalin aqueous solution was added and stirred for 5 minutes. Precipitated silver layer-coated polyimide particles were collected by suction filtration, washed with methanol, and then dried in an oven at 70 ° C for 3 hours.
得られた銀層被覆ポリイミド粒子の電子顕微鏡 (SEM) 写真を図 3に示す。 図 3力、ら、金ナノ粒子層上の全面に銀からなる層が積層されていることがわかる。 実施例 3 (銀層被覆酸化チタン粉末の製造例)  An electron microscope (SEM) photograph of the obtained silver layer-coated polyimide particles is shown in FIG. Figure 3 shows that a layer of silver is laminated on the entire surface of the gold nanoparticle layer. Example 3 (Example of production of silver layer-coated titanium oxide powder)
30 OmLの三角フラスコに酸化チタン粉末 (石原産業㈱製: S T— 01 ) 5 g を入れ、 イソプロピルアルコール (IPA) 31. 5gを力!]え、 10分間超音波処理 した。更にメタノール 31. 5 gを加えてマグネチックスターラーで 10分間攪拌 し、 25%アンモニア水溶液 25 gを加えオイルバス中 30°Cで 10分間攪拌した (この溶液を A液とする) 。  Titanium oxide powder (Ishihara Sangyo Co., Ltd .: ST-01) 5 g was placed in a 30 OmL Erlenmeyer flask, and 31.5 g of isopropyl alcohol (IPA) was added!] And sonicated for 10 minutes. Further, 31.5 g of methanol was added, and the mixture was stirred with a magnetic stirrer for 10 minutes, 25 g of 25% aqueous ammonia solution was added, and the mixture was stirred for 10 minutes at 30 ° C. in an oil bath (this solution is referred to as solution A).
塩化金酸 (HAuCl4 · 4H20) 0. 2 Ogにメタノール 5 OmLを加えてマグネチ ックスタ ラーで 10分間攪拌後、 3—ァミノプロビルトリメトキシシラン 2. 2mLを加えて更に 10分間攪拌した (この溶液を B液とする) 。 Chloroauric acid (HAuCl 4 · 4H 2 0) Add 0.2 mL of methanol to 5 OmL and stir with a magnetic stirrer for 10 minutes, then add 2.2 mL of 3-amaminoprovirtrimethoxysilane and stir for an additional 10 minutes. (This solution is referred to as solution B).
テトラヒドロホウ酸ナトリウム (NaBH4) 0. 092gにメタノール 5 OmLをカロ えてマグネチックスターラーで 10分間攪拌した (この溶液を C液とする) 。 Sodium tetrahydroborate (NaBH 4 ) (0.092 g) was mixed with 5 OmL of methanol and stirred with a magnetic stirrer for 10 minutes (this solution is referred to as solution C).
A液に B液を加えて 30°Cで 5分間攪拌した後、 C液をゆつくり滴下したところ、 反応系は赤紫色へと変化した。 C液滴下後、オイルバスを 65 °Cに過熱して 3時間 攪拌した。 攪拌を止め、 メタノール分級を 3回行った後、 吸引ろ過して金ナノ粒 子層が形成された酸ィヒチタン粉末を採取し、 オーブンで 70°C、 3時間乾燥させ た。 得られた粒子は赤紫色を呈した。 得られた金ナノ粒子層形成酸ィ匕チタン粉末 3 . 0 gに水 3 0 0 m Lを加えて 1 5 分間超音波処理した後、 硝酸銀 0 . 6 7 gを加えてマグネチックスターラーで 1 0分間攪拌した。 2 5 %アンモニア水溶液 2 O mLを加えた後、 0 . 2 4讓01/ ホ ルマリン水溶液を 3 O mL添カ卩して 5分間攪拌した。 沈殿した銀層被覆酸化チタン 粒子を吸引ろ過で採取し、 メタノールで洗つた後、 オーブン 7 0 で 3時間乾燥 して回収した。 After adding solution B to solution A and stirring at 30 ° C for 5 minutes, when solution C was slowly added dropwise, the reaction system turned reddish purple. After dropping C droplets, the oil bath was heated to 65 ° C and stirred for 3 hours. Stirring was stopped and methanol classification was performed three times, and then suction filtration was performed to collect oxy-titanium powder on which a gold nanoparticle layer was formed, followed by drying in an oven at 70 ° C. for 3 hours. The obtained particles were reddish purple. After adding 300 mL of water to 3.0 g of the obtained gold nanoparticle layer-formed acid-titanium powder and sonicating for 15 minutes, 0.67 g of silver nitrate was added, and then using a magnetic stirrer. Stir for 0 min. After adding 2 O mL of 25% aqueous ammonia, 0.24% 0 1 / formalin aqueous solution was added with 3 O mL and stirred for 5 minutes. The precipitated silver layer-coated titanium oxide particles were collected by suction filtration, washed with methanol, and then collected by drying in an oven 70 for 3 hours.
得られた金ナノ粒子層形成酸化チタン粉末を電子顕微鏡 (S EM) で観察した 結果、 金ナノ粒子層上の全面に銀からなる層が積層されていることがわかった。 実施例 4 (銀層被覆ポリプロピレン粉末の製造例)  As a result of observing the obtained gold nanoparticle layer-formed titanium oxide powder with an electron microscope (SEM), it was found that a layer made of silver was laminated on the entire surface of the gold nanoparticle layer. Example 4 (Example of production of silver layer-coated polypropylene powder)
実施例 3において酸化チタンをポリプロピレン粉末 (プライムポリマー社製) 5 gに変えた以外は同様の作業を行い、 銀被覆ポリプロピレン粉末を得た。  A silver-coated polypropylene powder was obtained in the same manner as in Example 3, except that titanium oxide was changed to 5 g of polypropylene powder (Prime Polymer Co., Ltd.).
得られた銀被覆ポリプロピレン粉末を電子顕微鏡 ( S EM) で観察した結果、 金ナノ粒子層上の全面に銀からなる層が積層されていることがわかった。 実施例 5 (銀層被覆ガラス板の製造例)  As a result of observing the obtained silver-coated polypropylene powder with an electron microscope (SEM), it was found that a layer made of silver was laminated on the entire surface of the gold nanoparticle layer. Example 5 (Example of production of silver layer-coated glass plate)
実施例 3において酸化チタンを三角フラスコにマイクロスライドガラス板 (松 浪硝子工業㈱製) 1 X 1 c m 2に変え、 浸積した以外は同様の作業を行い、 銀被覆 ガラス板を得た。 A silver-coated glass plate was obtained in the same manner as in Example 3 except that titanium oxide was changed to a microslide glass plate (manufactured by Matsunami Glass Industry Co., Ltd.) 1 X 1 cm 2 in an Erlenmeyer flask and immersed.
得られた銀被覆ガラス板を電子顕微鏡 ( S EM) で観察した結果、 金ナノ粒子 層上の全面に銀からなる層が積層されていることがわかった。 実施例 6 (銀層被覆中空繊維状ナイロン 1 2の製造例)  As a result of observing the obtained silver-coated glass plate with an electron microscope (SEM), it was found that a layer made of silver was laminated on the entire surface of the gold nanoparticle layer. Example 6 (Example of production of silver layer-coated hollow fiber nylon 12)
実施例 3において酸化チタンを中空繊維状ナイロン 1 2 (宇部興産㈱製) 内径 4 8 mm、 外径 5 O mm、 長さ 2 c mに変えた以外は同様の作業を行い、 銀被覆 中空繊維状ナイロン 1 2を得た。  In Example 3, the same procedure was followed except that titanium oxide was changed to hollow fiber nylon 1 2 (Ube Industries, Ltd.) with an inner diameter of 48 mm, an outer diameter of 5 O mm, and a length of 2 cm. Nylon 1 2 was obtained.
得られた銀被覆中空繊維状ナイロン 1 2を電子顕微鏡 ( S EM) で観察した結 果、 金ナノ粒子層上の全面に銀からなる層が積層されていることがわかつた。 実施例 Ί ( 3—メルカプトプロビルトリメ トキシシランを使用した金ナノ粒子 付着シリカ粒子の製造例) As a result of observing the obtained silver-coated hollow fiber nylon 12 with an electron microscope (SEM), it was found that a layer made of silver was laminated on the entire surface of the gold nanoparticle layer. Example Ί (Example of production of silica particles with gold nanoparticles using 3-mercaptoprovir trimethoxysilane)
実施例 1 (1) において 3—ァミノプロビルトリメ トキシシラン 4. 5mLを 3—メルカプトプロビルトリメ トキシシラン 4. 5 mLに変えた以外は同様の作 業を行った。 実施例 1 (1) で得られた金ナノ粒子層形成シリカ粒子と比較する と、 凝集した金ナノ粒子がシリカ粒子上に付着したサンプルを得た。 その SEM 写真を図 4に示す。 実施例 8 (金ナノ粒子層上の一部に銀層が積層されていない例)  The same operation was performed except that 4.5 mL of 3-aminoprovir trimethoxysilane was changed to 4.5 mL of 3-mercaptoprovir trimethoxysilane in Example 1 (1). When compared with the gold nanoparticle layer-forming silica particles obtained in Example 1 (1), a sample in which agglomerated gold nanoparticles adhered to the silica particles was obtained. The SEM photograph is shown in Fig. 4. Example 8 (Example in which a silver layer is not laminated on a part of a gold nanoparticle layer)
実施例 1 ( 1 ) で得られた金ナノ粒子層形成シリカ粒子 1 gに水 200 m L加 えて 10分間超音波処理した後、 硝酸銀 0. 41 gを加えてマグネチックスター ラーで 10分間攪拌した。 25%アンモニア水溶液 8. 2 mLを加えた後、 0. 2 4 mmol/ Lホルマリン水溶液を 12. 6 mL添加して 5分間攪拌した。 沈殿した銀 層被覆シリ力粒子を吸引ろ過で採取し、 メタノールで洗った後、 オーブン 70 °C で 3時間乾燥した。  200 g L of water was added to 1 g of the gold nanoparticle layer-forming silica particles obtained in Example 1 (1), sonicated for 10 minutes, 0.44 g of silver nitrate was added, and the mixture was stirred with a magnetic stirrer for 10 minutes. did. After adding 8.2 mL of 25% aqueous ammonia solution, 12.6 mL of 0.24 mmol / L formalin aqueous solution was added and stirred for 5 minutes. The precipitated silver layer-coated silli force particles were collected by suction filtration, washed with methanol, and then dried in an oven at 70 ° C for 3 hours.
得られた銀層被覆シリカ粒子の電子顕微鏡 (SEM) 写真を図 5に示す。 図 5 から、 金ナノ粒子層上の一部に銀層が積層されていないことがわかる。  An electron microscope (SEM) photograph of the obtained silver layer-coated silica particles is shown in FIG. Figure 5 shows that a silver layer is not laminated on a part of the gold nanoparticle layer.
微小圧縮試験機で、 銀層被覆シリカ粒子 20個の電気抵抗値を測定して、 平均 値を求めた。 得られた結果を標準偏差と共に表 2に示す。  The electrical resistance value of 20 silver layer-coated silica particles was measured with a micro compression tester, and the average value was obtained. The results obtained are shown in Table 2 together with the standard deviation.
表 2
Figure imgf000017_0001
表 2の結果から、 実施例 8で得られた銀層被覆シリカ粒子は、 金ナノ粒子層上 の一部に銀層が積層されていないが、 金ナノ粒子層が存在することにより、 平均 電気抵抗値が 1 1. 8 Ωと低いことがわかる。 実施例 9 (銀層被覆ソーダ石灰ガラスビーズの製造例)
Table 2
Figure imgf000017_0001
From the results shown in Table 2, the silver layer-coated silica particles obtained in Example 8 have no silver layer laminated on a part of the gold nanoparticle layer. It can be seen that the resistance is as low as 11.8 Ω. Example 9 (Production example of silver layer coated soda lime glass beads)
(1) ソーダ石灰ガラスビーズ上への金ナノ粒子層の形成  (1) Formation of gold nanoparticle layer on soda-lime glass beads
シリ力粒子に代えてソーダ石灰ガラスビーズ (粒径 5〜 63 μ m) を使用した以 外は実施例 1 (1) と同様の方法で、 ソーダ石灰ガラスビーズ上に金ナノ粒子層 を形成した。  A gold nanoparticle layer was formed on the soda lime glass beads in the same manner as in Example 1 (1) except that soda lime glass beads (particle size 5 to 63 μm) were used instead of the silli force particles. .
(2) 金ナノ粒子層上への銀層の形成  (2) Formation of silver layer on gold nanoparticle layer
上記金ナノ粒子層形成ソーダ石灰ガラスビーズを用い、 実施例 1 (2) と同様 にして金ナノ粒子層上の全面に、 銀層を形成した。  Using the gold nanoparticle layer-forming soda-lime glass beads, a silver layer was formed on the entire surface of the gold nanoparticle layer in the same manner as in Example 1 (2).
得られた銀層被覆ソ一ダ石灰ガラスビーズの電子顕微鏡 (SEM) 写真を図 6 に示す。  Figure 6 shows an electron microscope (SEM) photograph of the obtained silver layer-coated soda-lime glass beads.
微小圧縮試験機で、 銀層被覆ソーダ石灰ガラスビーズ 20個の電気抵抗値を測 定して、 平均値を求めた。 得られた結果を標準偏差と共に表 3に示す。  The electrical resistance value of 20 silver layer coated soda lime glass beads was measured with a micro compression tester, and the average value was obtained. The results obtained are shown in Table 3 together with the standard deviation.
表 3
Figure imgf000018_0001
表 3の結果から、 実施例 9で得られた銀層被覆ソーダ石灰ガラスビーズは、 平 均電気抵抗値が 14. 3 Ωと低いことが分かる。 実施例 10 (銀層被覆シリ力粒子の製造例)
Table 3
Figure imgf000018_0001
From the results in Table 3, it can be seen that the silver layer-covered soda-lime glass beads obtained in Example 9 have a low average electrical resistance value of 14.3 Ω. Example 10 (Example of production of silver layer-coated silli force particles)
( 1 ) シリ力粒子上への金ナノ粒子層の形成  (1) Formation of gold nanoparticle layer on Siri force particles
3—ァミノプロビルトリメ トキシシランに代えて N— 2 (アミノエチノレ) 3 - ァミノプロピルトリメ トキシシランを使用した以外は実施例 1 ( 1 ) と同様の方 法で、 シリカ粒子上に金ナノ粒子層を形成した。 得られた金ナノ粒子層形成シリ 力粒子の電子顕微鏡 (SEM) 写真を図 7に示す。 実施例 1 (1) で得られた金 ナノ粒子層形成シリカ粒子と比較すると、 凝集した金ナノ粒子がシリカ粒子上に 付着していることがわかる。  A gold nanoparticle layer on silica particles in the same manner as in Example 1 (1) except that N-2 (aminoethinole) 3-aminopropyltrimethoxysilane was used instead of 3-aminomino trimethoxysilane. Formed. Fig. 7 shows an electron microscope (SEM) photograph of the resulting gold nanoparticle layer-forming silicon force particles. As compared with the gold nanoparticle layer-forming silica particles obtained in Example 1 (1), it can be seen that the agglomerated gold nanoparticles are adhered on the silica particles.
(2) 金ナノ粒子層上への銀層の形成 上記金ナノ粒子層形成シリカ粒子を用い、 実施例 1 (2) と同様にして金ナノ 粒子層上の全面に、 銀層を形成した。 実施例 1 1 (銀層被覆シリ力粒子の製造例) (2) Formation of silver layer on gold nanoparticle layer A silver layer was formed on the entire surface of the gold nanoparticle layer in the same manner as in Example 1 (2) using the gold nanoparticle layer-forming silica particles. Example 1 1 (Example of production of silver layer-coated silli force particles)
( 1 ) シリ力粒子上への銀ナノ粒子層の形成  (1) Formation of silver nanoparticle layer on Siri force particles
塩化金酸 (HAuC 14 · 4H20) 0. 23 gを硝酸銀 0. 48 gに代え、 N a BH40. 1 07 gを同 0. 092 gに代えた以外は実施例 1 (1) と同様の方 法で銀ナノ粒子層形成シリカ粒子を得た。 得られた銀ナノ粒子層形成シリカ粒子 の電子顕微鏡 (SEM) 写真を図 8に示す。 Instead of chloroauric acid (HAuC 1 4 · 4H 2 0 ) 0. 23 g of silver nitrate 0. 48 g, N a BH 4 except that the 0. 1 07 g was changed to the 0. 092 g Example 1 (1 ) To obtain silver nanoparticle layer-formed silica particles. Fig. 8 shows an electron microscope (SEM) photograph of the resulting silver nanoparticle layer-forming silica particles.
(2) 銀ナノ粒子層上への銀層の形成  (2) Formation of silver layer on silver nanoparticle layer
上記銀ナノ粒子層形成シリカ粒子を用い、 実施例 1 (2) と同様にして銀ナノ 粒子層上の全面に、 銀層を形成した。 実施例 12 (金層被覆シリ力粒子の製造例)  A silver layer was formed on the entire surface of the silver nanoparticle layer in the same manner as in Example 1 (2) using the silver nanoparticle layer-forming silica particles. Example 12 (Production example of gold layer-coated silli force particles)
実施例 1 ( 1 ) で得られた金ナノ粒子層形成シリカ粒子 1 gに水 500 m Lを加 えて 10分間超音波処理した後、 塩化金酸 0. 25 gを添カ卩し、 更に水溶液をアル カリ性にするために 2. 5。/。アンモニア水溶液 5 ml加えてマグネチックスターラー で 10分間攪拌した。 還元剤である 1. 87mmol/Lテトラキスヒ ドロキシメチル ホスフィンク口ライド水溶液 250mLをゆっく り滴下した。 沈殿した金層被覆 シリカ粒子を吸引ろ過で採取し、 メタノールで洗った後、 オーブン 70°Cで 3時 間乾燥した。  500 g L of water was added to 1 g of the gold nanoparticle layer-forming silica particles obtained in Example 1 (1) and subjected to ultrasonic treatment for 10 minutes, followed by addition of 0.25 g of chloroauric acid, and an aqueous solution. 2.5 to make it alkaline. /. 5 ml of an aqueous ammonia solution was added and stirred with a magnetic stirrer for 10 minutes. A reducing agent, 1.87 mmol / L tetrakishydroxymethyl phosphine chloride aqueous solution 250 mL was slowly added dropwise. The precipitated gold layer-coated silica particles were collected by suction filtration, washed with methanol, and then dried in an oven at 70 ° C for 3 hours.
得られた金層被覆シリカ粒子の電子顕微鏡 (SEM) 写真を図 9に示す。 微小圧縮試験機で、 金層被覆シリカ粒子 10個の電気抵抗値を測定して、 平均 値を求めた。 得られた結果を標準偏差と共に表 4に示す。  An electron microscope (SEM) photograph of the resulting gold layer-coated silica particles is shown in FIG. The electrical resistance value of 10 gold layer-coated silica particles was measured with a micro compression tester, and the average value was obtained. The results obtained are shown in Table 4 together with the standard deviation.
表 4
Figure imgf000019_0001
表 4の結果から、 実施例 1 2で得られた金層被覆シリカ粒子は、 平均電気抵抗 値が 2 2 . 2 Ωと低いことが分かる。 産業上の利用可能性
Table 4
Figure imgf000019_0001
From the results of Table 4, it can be seen that the gold layer-coated silica particles obtained in Example 12 have a low average electrical resistance value of 22.2 Ω. Industrial applicability
本発明によれば、 安定した導電性を有する金属層被覆基材を提供することがで き、 また、 上記金属層被覆基材を、 特別な設備や装置を用いずに、 安価で、 かつ 簡易な工程で、環境に対する影響も少なく製造する方法を提供することができる。 本発明の金属被覆基材は、導電材、電磁波シールド材等に用いることができる。  According to the present invention, a metal layer-coated substrate having stable conductivity can be provided, and the metal layer-coated substrate is inexpensive and simple without using special equipment and equipment. In this way, it is possible to provide a manufacturing method with little influence on the environment. The metal-coated substrate of the present invention can be used for a conductive material, an electromagnetic shielding material, and the like.

Claims

請求の範囲 The scope of the claims
1 . 基材と、 該基材上にキレート形成性官能基含有シラン力ップリング剤を介 して形成された金属ナノ粒子の点在物または層状物と、 該金属ナノ粒子の点在物 または層状物上に形成された金属層とを含むことを特徴とする金属層被覆基材。1. Substrate, interspersed or layered metal nanoparticles formed on the substrate via a chelate-forming functional group-containing silane coupling agent, and interspersed or layered metal nanoparticles A metal layer-coated substrate comprising a metal layer formed on an object.
2 . 基材がシリカ、 セラミックスおよびガラスからなる群から選ばれる少なく とも 1種以上からなる請求項 1に記載の金属層被覆基材。 2. The metal layer-coated substrate according to claim 1, wherein the substrate comprises at least one selected from the group consisting of silica, ceramics and glass.
3 . 基材の形状が球状、 棒状、 板状、 針状、 中空状および不特定形状からなる 群から選ばれる 1種である請求項 1または請求項 2に記載の金属層被覆基材。 3. The metal layer-coated substrate according to claim 1 or 2, wherein the shape of the substrate is one selected from the group consisting of a spherical shape, a rod shape, a plate shape, a needle shape, a hollow shape and an unspecified shape.
4 . 基材の形状が、平均粒径 0 . 1〜: L 0 0 mの微粒子形状である請求項 3に 記載の金属層被覆基材。 4. The metal layer-coated substrate according to claim 3, wherein the shape of the substrate is a fine particle shape having an average particle size of 0.1 to L0 m.
5 . キレート形成性官能基が、 窒素原子、 硫黄原子および酸素原子からなる群 から選ばれる少なくとも 1種以上の原子を有する官能基である請求項 1〜4のい ずれかに記載の金属層被覆基材。  5. The metal layer coating according to any one of claims 1 to 4, wherein the chelate-forming functional group is a functional group having at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom and an oxygen atom. Base material.
6 . キレート形成性官能基が、 一 S H、 —C N、 一 NH 2、 一 S 0 2 O H, — S O O H, 一〇P〇 (O H) 2および一 C O O Hからなる群から選ばれる少なくとも 1種以上の官能基である請求項 5に記載の金属層被覆基材。 6. The chelate-forming functional group is at least one selected from the group consisting of one SH, —CN, one NH 2 , one S 0 2 OH, — SOOH, one hundred P (OH) 2 and one COOH. 6. The metal layer-coated substrate according to claim 5, which is a functional group.
7 . 金属ナノ粒子が、 金、 銀、 銅およびニッケルからなる群から選ばれる少な くとも 1種以上の金属からなるナノ粒子である請求項 1〜 6のいずれかに記載の 金属層被覆基材。  7. The metal layer-coated substrate according to any one of claims 1 to 6, wherein the metal nanoparticles are nanoparticles composed of at least one metal selected from the group consisting of gold, silver, copper and nickel. .
8 . 金属層が銀からなる層である請求項 1〜 7のいずれかに記載の金属層被覆 基材。  8. The metal layer-coated substrate according to any one of claims 1 to 7, wherein the metal layer is a layer made of silver.
9 . 基材を、 加水分解触媒、 キレート形成性官能基含有シランカップリング剤 および金属ナノ粒子形成性金属塩を含む水性溶液に接触させた後、 還元剤で処理 することにより、 基材上にキレート形成性官能基含有シランカップリング剤を介 して金属ナノ粒子の点在物または層状物を形成し、 次いで該金属ナノ粒子の点在 物または層状物上に金属層を形成することを特徴とする金属層被覆基材の製造方 法。 9. The substrate is contacted with an aqueous solution containing a hydrolysis catalyst, a chelate-forming functional group-containing silane coupling agent and a metal nanoparticle-forming metal salt, and then treated with a reducing agent on the substrate. A metal nanoparticle interspersed or layered product is formed via a chelate-forming functional group-containing silane coupling agent, and then a metal layer is formed on the metal nanoparticle interspersed or layered product. A method for producing a metal layer-coated substrate.
1 0 . 金属層を無電解めつき法により形成する請求項 9に記載の金属層被覆基 材の製造方法。 10. The method for producing a metal layer-coated substrate according to claim 9, wherein the metal layer is formed by an electroless plating method.
PCT/JP2007/068002 2006-09-15 2007-09-07 Base material covered with metal layer and process for producing the same WO2008032839A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008534416A JPWO2008032839A1 (en) 2006-09-15 2007-09-07 Metal layer-coated substrate and method for producing the same
CN2007800340020A CN101517123B (en) 2006-09-15 2007-09-07 Base material covered with metal layer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-251653 2006-09-15
JP2006251653 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032839A1 true WO2008032839A1 (en) 2008-03-20

Family

ID=39183890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068002 WO2008032839A1 (en) 2006-09-15 2007-09-07 Base material covered with metal layer and process for producing the same

Country Status (5)

Country Link
JP (1) JPWO2008032839A1 (en)
KR (1) KR20090073091A (en)
CN (1) CN101517123B (en)
TW (1) TWI449804B (en)
WO (1) WO2008032839A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170320A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2010277992A (en) * 2009-04-30 2010-12-09 Fujitsu Ltd Conductive particle and its manufacturing method
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring
JP2013249403A (en) * 2012-06-01 2013-12-12 Asahi Kasei Chemicals Corp Composite particle and particle dispersion containing the same
JP2019085593A (en) * 2017-11-01 2019-06-06 公立大学法人大阪府立大学 Metal plating method and resistor
CN113664213A (en) * 2021-08-04 2021-11-19 湖南伟方生命科技有限公司 Preparation method and application of nano-silver antibacterial liquid
CN114016011A (en) * 2021-10-16 2022-02-08 复旦大学 Glass cloth substrate surface metallization method for 5G base station
CN115678124A (en) * 2022-11-28 2023-02-03 中国重汽集团济南动力有限公司 Natural rubber composite material for rubber support of heavy truck leaf spring and application thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528071A (en) * 2012-01-18 2012-07-04 常州大学 Preparation method of nano-silver powder taking rod-like silicate clay as core body
JP6266353B2 (en) * 2013-02-20 2018-01-24 三菱製紙株式会社 Conductive material precursor and method for producing conductive material
CN105177537B (en) * 2015-09-16 2018-02-23 东莞深圳清华大学研究院创新中心 A kind of preparation method of copper clad monocrystalline sapphire fiber
CN105369229B (en) * 2015-09-16 2017-12-08 东莞深圳清华大学研究院创新中心 It is a kind of to increase monocrystalline sapphire whisker and the method for metal composite wellability
CN105177538B (en) * 2015-09-16 2018-11-23 东莞深圳清华大学研究院创新中心 A kind of preparation method of nanometer of copper clad monocrystalline sapphire fiber
KR20190015341A (en) * 2016-06-02 2019-02-13 엠. 테크닉 가부시키가이샤 UV and / or near IR blocking composition for transparent materials
CN110355381B (en) * 2019-08-21 2022-02-15 无锡帝科电子材料股份有限公司 Nano silver powder and preparation method and application thereof
CN111587056A (en) * 2020-05-14 2020-08-25 湖南省国银新材料有限公司 Electromagnetic shielding silver paste for communication equipment and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194183A (en) * 1985-02-21 1986-08-28 Hitachi Chem Co Ltd Electroless plating method
JPH0570961A (en) * 1991-09-17 1993-03-23 Hitachi Chem Co Ltd Catalyst for electroless plating, production of the same and its utilization method
JP2000212758A (en) * 1999-01-18 2000-08-02 Inoac Corp Laminated article with metal skin by electroless plating and its production
JP2001011503A (en) * 1999-06-25 2001-01-16 Catalysts & Chem Ind Co Ltd New conductive fine particle and its use
JP2001295058A (en) * 2000-04-13 2001-10-26 Mitsuboshi Belting Ltd Method for manufacturing metallized substrate
JP2002068782A (en) * 2000-08-29 2002-03-08 Mitsuboshi Belting Ltd Pattern-plating method for glass substrate surface and glass substrate pattern-plated by using the same
JP2002145609A (en) * 2000-11-02 2002-05-22 Oji Paper Co Ltd Production process of liquid dispersion of fine silica particles
JP2003201444A (en) * 2001-10-09 2003-07-18 Mitsubishi Chemicals Corp Active energy ray-curable antistatic coating composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227784A (en) * 1987-03-16 1988-09-22 Toyobo Co Ltd Method for providing electroless plating catalyst
JPH0696771B2 (en) * 1988-03-24 1994-11-30 日本化学工業株式会社 Electroless plating powder, conductive filler and method for producing the same
JP3741192B2 (en) * 2000-01-17 2006-02-01 信越化学工業株式会社 Method for producing conductive powder
JP2002121679A (en) * 2000-10-13 2002-04-26 Mitsuboshi Belting Ltd Method for manufacturing conductive bead
JP3758532B2 (en) * 2001-06-28 2006-03-22 株式会社日鉱マテリアルズ Pretreatment liquid for electroless nickel plating on copper or copper alloy and electroless nickel plating method
JP2005292216A (en) * 2004-03-31 2005-10-20 Nikko Materials Co Ltd Cleaning member and its manufacturing method
JP4637559B2 (en) * 2004-12-14 2011-02-23 エスケー化研株式会社 Method for producing colored particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194183A (en) * 1985-02-21 1986-08-28 Hitachi Chem Co Ltd Electroless plating method
JPH0570961A (en) * 1991-09-17 1993-03-23 Hitachi Chem Co Ltd Catalyst for electroless plating, production of the same and its utilization method
JP2000212758A (en) * 1999-01-18 2000-08-02 Inoac Corp Laminated article with metal skin by electroless plating and its production
JP2001011503A (en) * 1999-06-25 2001-01-16 Catalysts & Chem Ind Co Ltd New conductive fine particle and its use
JP2001295058A (en) * 2000-04-13 2001-10-26 Mitsuboshi Belting Ltd Method for manufacturing metallized substrate
JP2002068782A (en) * 2000-08-29 2002-03-08 Mitsuboshi Belting Ltd Pattern-plating method for glass substrate surface and glass substrate pattern-plated by using the same
JP2002145609A (en) * 2000-11-02 2002-05-22 Oji Paper Co Ltd Production process of liquid dispersion of fine silica particles
JP2003201444A (en) * 2001-10-09 2003-07-18 Mitsubishi Chemicals Corp Active energy ray-curable antistatic coating composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170320A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring
JP2010277992A (en) * 2009-04-30 2010-12-09 Fujitsu Ltd Conductive particle and its manufacturing method
JP2013249403A (en) * 2012-06-01 2013-12-12 Asahi Kasei Chemicals Corp Composite particle and particle dispersion containing the same
JP7072811B2 (en) 2017-11-01 2022-05-23 公立大学法人大阪 Metal plating
JP2019085593A (en) * 2017-11-01 2019-06-06 公立大学法人大阪府立大学 Metal plating method and resistor
JP2021101047A (en) * 2017-11-01 2021-07-08 公立大学法人大阪 Metal plated product
CN113664213A (en) * 2021-08-04 2021-11-19 湖南伟方生命科技有限公司 Preparation method and application of nano-silver antibacterial liquid
CN113664213B (en) * 2021-08-04 2023-11-21 湖南伟方生命科技有限公司 Preparation method and application of nano silver antibacterial liquid
CN114016011A (en) * 2021-10-16 2022-02-08 复旦大学 Glass cloth substrate surface metallization method for 5G base station
CN114016011B (en) * 2021-10-16 2024-04-23 复旦大学 Glass cloth substrate surface metallization method for 5G base station
CN115678124A (en) * 2022-11-28 2023-02-03 中国重汽集团济南动力有限公司 Natural rubber composite material for rubber support of heavy truck leaf spring and application thereof
CN115678124B (en) * 2022-11-28 2024-01-26 中国重汽集团济南动力有限公司 Natural rubber composite material for heavy-duty truck spring rubber support and application thereof

Also Published As

Publication number Publication date
KR20090073091A (en) 2009-07-02
CN101517123B (en) 2012-12-05
TW200835809A (en) 2008-09-01
JPWO2008032839A1 (en) 2010-01-28
TWI449804B (en) 2014-08-21
CN101517123A (en) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2008032839A1 (en) Base material covered with metal layer and process for producing the same
JP2008133535A (en) Method for producing metal nanoparticle-adhered base material, composition for forming base material adherable metal nanoparticle, method for producing metal layer-coated base material, method for pretreatment to electroless plating, composition for pretreatment to electroless plating, and electroless plated article
JP5620678B2 (en) Metal film forming method and conductive particles
JP5049624B2 (en) Metal fine particle dispersed film and method for producing metal fine particle dispersed film
JP6195841B2 (en) A novel adhesion promoter for metallization of substrate surfaces.
JP5422563B2 (en) Metal film forming method, conductive particles and method for producing the same
CN107424665B (en) The manufacturing method of electroconductive particle, conductive material and electroconductive particle
CN1966765A (en) Activation method for chemical plating of non-metallic material and chemical plating therefor
JP5649150B1 (en) Pretreatment liquid for electroless plating and electroless plating method
JP2007184115A (en) Manufacturing method of conductive fine particle
US8697233B2 (en) Metal-coated lipid bilayer vesicles and process for producing same
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
WO2007119417A1 (en) Conductive powder plated by electroless plating and process for producing the same
Gao et al. Electroless nickel deposition on amino-functionalized silica spheres
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2002266079A (en) Method for manufacturing silver coated conductive powder, silver coated conductive powder and electroless plating bath for coating conductive powder
JP4565181B2 (en) Metal coating method
Thomas et al. Combined experimental and simulation study of self-assembly of colloidal gold nanoparticles on silanized glass
JP5505149B2 (en) Conductive particles, method for producing the same, and anisotropic conductive adhesive
JP2010242136A (en) Metal particulate, plating solution, lead wire and related method
JP2005076102A (en) Electroless plating method for smooth substrate, electroless plating structure, and product
WO2007043380A1 (en) Catalyst treatment method, electroless plating method, and method for formation of circuit by using the electroless plating method
JPH04354882A (en) Aluminum electroless plating powder and conductive filler and production thereof
WO2011158783A1 (en) Conductive particles, method for producing same and anisotropically conductive adhesive
KR20240049614A (en) Conductive polymer particles with excellent corrosion resistance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034002.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534416

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097003885

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807406

Country of ref document: EP

Kind code of ref document: A1