WO2008032622A1 - Lead-free low-melting-point glass - Google Patents

Lead-free low-melting-point glass Download PDF

Info

Publication number
WO2008032622A1
WO2008032622A1 PCT/JP2007/067296 JP2007067296W WO2008032622A1 WO 2008032622 A1 WO2008032622 A1 WO 2008032622A1 JP 2007067296 W JP2007067296 W JP 2007067296W WO 2008032622 A1 WO2008032622 A1 WO 2008032622A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
lead
melting
free low
zno
Prior art date
Application number
PCT/JP2007/067296
Other languages
French (fr)
Japanese (ja)
Inventor
Taishin Shimooka
Nobuyuki Nakai
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2008032622A1 publication Critical patent/WO2008032622A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8605Front or back plates
    • H01J2329/8615Front or back plates characterised by the material

Definitions

  • the present invention is for an electronic material substrate typified by a plasma display panel, a liquid crystal display panel, an electoluminescence panel, a fluorescent display panel, an electochromic display panel, a light emitting diode display panel, a gas discharge display panel, and the like.
  • the present invention relates to a low-melting glass used as an insulating coating material.
  • PDPs plasma display panels
  • LCDs liquid crystal display panels
  • fluorescent display panels electoric luminescence panels
  • electoric chromic display panels light emitting diode display panels
  • gas discharge display panels Different types of display panels have been developed.
  • plasma display panels hereinafter abbreviated as PDPs
  • a PDP there are many cells between a front substrate and a rear substrate used as a display surface, and an image is formed by performing plasma discharge in the cells. This cell is partitioned by partition walls, and an electrode is formed for each pixel unit in order to control the display state of each pixel forming an image.
  • An electrode for discharging plasma is formed on the front glass plate of the plasma display panel, and thin linear silver is often used as the electrode.
  • an insulating coating material having high transparency is arranged around the electrode.
  • This insulating coating material is excellent in plasma durability and is preferably transparent.
  • dielectric glass is often used as the insulating coating material.
  • a low-melting glass is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-52621
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-80934
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-48577
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-226549
  • lead glass has been adopted as the low-melting glass.
  • lead is an important component for making glass have a low melting point, it has a tendency to avoid its adoption in recent years because it has a great negative impact on the human body and the environment, and lead-free electronic materials such as PDP are being investigated. ing.
  • JP-A-2001-52621, JP-A-2001-80934, and JP-A-2001-48577 show considerable improvement against yellowing, but contain lead.
  • JP 2003-226549 A contains bismuth, which does not contain lead and has a tendency to be avoided from the environmental point of view, as well as lead, which can be considerably improved against yellowing! /
  • SiO is 5 to 5; 11, BO is 45 to 65, ZnO is 20 to 30, R 0 (Li 2 O + Na O + KO) 10 ⁇ ; 18, BaO 0.1 ⁇ 3, ZrO 0.1 ⁇ 7, CeO 0 ⁇ 2, CoO 0 ⁇ 2, CuO 0 ⁇ 2 transparent insulation Si ⁇ 2 — BO —ZnO—R O—BaO—ZrO 2 is a lead-free low melting glass.
  • the lead-free low-melting glass as described above which contains 0 to 2 MnO by weight%
  • the present invention is an electronic material substrate using the above lead-free low-melting glass as an insulating coating material.
  • the present invention is a PDP panel using the above lead-free low melting point glass as an insulating coating material!
  • a low-melting-point dielectric glass which is a conventional insulating coating material, has become a problem! /
  • a glass that reduces the phenomenon of yellowing (yellowing) due to the reaction between the glass and the silver electrode Obtainable.
  • the present invention relates to a transparent insulating lead-free low melting point glass in which SiO is 5 to 5% by weight, 11, BO is 45 to 65, ZnO is 20 to 30, R 0 (Li O + Na O + KO) 18--, BaO 0.1--3, ZrO 0-!-7, CeO 0-2, CoO 0-2, CuO 0-2 SiO-BO —ZnO—RO—BaO—ZrO lead-free low melting point glass.
  • Si_ ⁇ 2 is a glass forming component, more coexist with a another glass forming component BO, those capable of forming a stable glass, 5% (wt%, the true in the following It is contained. If it exceeds 11%, the softening point of the glass will rise, making formability and workability difficult. More preferably, it is in the range of 6 to 10%.
  • B is 2 ⁇ 3 is a glass forming component Si_ ⁇ 2 Similarly, the glass melt is facilitated, suppresses an excessive increase in the thermal expansion coefficient of the glass, and, given an appropriate fluidity to the glass upon baking, Together with SiO, it decreases the dielectric constant of the glass. It is preferably contained in the glass at 45 to 65%. If it is less than 45%, the fluidity of the glass becomes insufficient, and the sinterability is impaired. On the other hand, if it exceeds 65%, the stability of the glass is lowered. More preferably, it is in the range of 48-60%.
  • ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, and is preferably contained in the glass in a range of 20 to 30%. If it is less than 20%, the above-mentioned action cannot be exhibited. On the other hand, if it exceeds 30%, the glass becomes unstable and devitrification tends to occur. More preferably, it is 22 to 29% of range.
  • RO Li 0, Na 0, KO
  • the softening point of glass imparts moderate fluidity, and adjusts the coefficient of thermal expansion to an appropriate range, and is contained in the range of 10 to 18%. It is preferable to let them. If it is less than 10%, the above-mentioned action cannot be exerted. On the other hand, if it exceeds 18%, the thermal expansion coefficient is excessively increased. More preferably, it is 11 to 17%.
  • BaO has an effect of imparting moderate fluidity to glass and increasing transparency, and is contained in a range of 0.;! To 3%. If it exceeds 3%, the above effect cannot be exhibited. More preferably, it is in the range of ! to 2%.
  • ZrO has the effect of increasing the water resistance of the glass, and is contained in the range of 0.;! To 7%. More preferably, it is in the range of 1% to 6%.
  • CeO has the effect of mitigating the coloration of silver colloid (yellowing) due to the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer. It is preferably contained in a range of ⁇ 2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, the range is 0.;! ⁇ 1%.
  • CoO has the effect of mitigating the coloration of silver colloid (yellowing) due to the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer. It is preferably contained in a range of ⁇ 2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, the range is 0.;! ⁇ 1%.
  • CuO reacts with a silver electrode used as a bus electrode wire and a dielectric layer, and silver is contained in the dielectric layer. Is effective to alleviate silver colloid coloration (yellowing) due to diffusion, and is preferably contained in the range of 0 to 2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, the range is 0.;! ⁇ 1%.
  • MnO has an effect of mitigating the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer to cause silver colloid coloration (yellowing). It is preferably contained in the range of ⁇ 2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, it is in the range of 0.;! To 1%.
  • RO MgO + CaO + SrO
  • substantially not containing PbO By substantially not containing PbO, it is possible to eliminate the influence on the human body and the environment.
  • substantially free of PbO means that PbO is mixed in as an impurity in the glass raw material. For example, within the range of 0.3 wt% or less in low-melting glass, the above-mentioned adverse effects, that is, the effects on the human body and the environment, the influence on the insulation characteristics, etc., are hardly affected by PbO. become.
  • [0033] is 30 ° C ⁇ 300 thermal expansion coefficient (65 to 95) in ° C X 10- 7 / ° C , softening point 500 ° C or more on the 630 ° above lead-free low-melting-point glass is C or less .
  • Thermal expansion coefficient (65 ⁇ 95) X 10 - 7 / ° C outside the thick film formation at the time of peeling of the coating, and problems such as warpage of the substrate occurs.
  • Preferred details in the range of (75 ⁇ 85) X 10- 7 / ° C.
  • the softening point exceeds 630 ° C, problems such as softening deformation of the substrate occur.
  • it is 500 ° C or higher and 590 ° C or lower.
  • the present invention is a substrate for an electronic material using the above low-melting glass as an insulating coating material.
  • the above low-melting glass By using the above-mentioned low-melting glass, it is possible to obtain a substrate for electronic materials in which yellowing is suppressed.
  • the present invention is a panel for PDP using the above-mentioned low melting point glass as an insulating coating material.
  • the above-mentioned low melting point glass it is possible to obtain a PDP panel in which yellowing is suppressed with the force S.
  • the present invention is a disclosure of a low-melting-point glass corresponding to the yellowing phenomenon due to the reaction with silver, and its object is limited to a silver electrode!
  • the glass substrate is a transparent glass substrate, in particular, soda-lime-silica glass, or similar glass (high strain point glass), or an alumino-lime borosilicate system with little (or almost no) alkali content. Glass is used a lot!
  • These are prepared to have a desired low melting point glass composition, and then put into a platinum crucible and heated and melted in an electric heating furnace at 1000 to 1300 ° C for! To 2 hours. ! ⁇ 4, Comparative Example in Table 2; Glasses having compositions shown in! ⁇ 4 were obtained.
  • a part of the glass was poured into a mold and made into a block shape for use in measuring thermal properties (thermal expansion coefficient, softening point).
  • the remaining glass was flaked with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder with an average particle size of 1 to 3 ⁇ m and a maximum particle size of less than 10 m.
  • ethyl cellulose as a binder and the above glass powder were mixed with paste oil consisting of terbinol and butyl carbitol acetate to prepare a paste having a viscosity of about 300 ⁇ 50 poise.
  • paste oil consisting of terbinol and butyl carbitol acetate.
  • the thermal expansion coefficient was determined from the amount of elongation at 30 to 300 ° C when the temperature was raised at 5 ° C / min using a thermal dilatometer.
  • Comparative Examples 1 to 4 in Table 2 outside the composition range of the present invention are markedly yellowed or do not show favorable physical properties and are used for coating substrates such as PDP. It can not be applied as low melting point glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

[PROBLEMS] A lead-free low-melting-point glass of high visible light transmission that inhibits yellowing by silver reaction is demanded in the development of electronic material substrate represented by a plasma display panel. [MEANS FOR SOLVING PROBLEMS] There is provided a SiO2-B2O3-ZnO-R2O-BaO-ZrO2 based lead-free low-melting-point glass characterized by containing, by weight, 5 to 11% SiO2, 45 to 65% B2O3, 20 to 30% ZnO, 10 to 18% R2O(Li2O+Na2O+K2O), 0.1 to 3% BaO, 0.1 to 7% ZrO2, 0 to 2% CeO2, 0 to 2% CoO and 0 to 2% CuO wherein the weight ratio of B2O3/ZnO is in the range of 1.5 to 3. The glass is characterized by having a thermal expansion coefficient of (65 to 95)x10-7/°C at a temperature of from 30° to 300°C and a softening point of 500° to 630°C.

Description

明 細 書  Specification
無鉛低融点ガラス  Lead-free low melting point glass
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイパネル、液晶表示パネル、エレクト口ルミネッセンス パネル、蛍光表示パネル、エレクト口クロミック表示パネル、発光ダイオード表示パネ ノレ、ガス放電式表示パネル等に代表される電子材料基板用の絶縁性被膜材料とし て用いられる低融点ガラスに関する。  The present invention is for an electronic material substrate typified by a plasma display panel, a liquid crystal display panel, an electoluminescence panel, a fluorescent display panel, an electochromic display panel, a light emitting diode display panel, a gas discharge display panel, and the like. The present invention relates to a low-melting glass used as an insulating coating material.
背景技術  Background art
[0002] 近年の電子部品の発達に伴い、プラズマディスプレイパネル、液晶表示パネル、ェ レクト口ルミネッセンスパネル、蛍光表示パネル、エレクト口クロミック表示パネル、発光 ダイオード表示パネル、ガス放電式表示パネル等、多くの種類の表示パネルが開発 されている。その中でも、プラズマディスプレイパネル(以下、 PDPと略す)が薄型か つ大型の平板型カラー表示装置として注目を集めている。 PDPにおいては、表示面 として使用される前面基板と背面基板の間に多くのセルを有し、そのセル中でプラズ マ放電させることにより画像が形成される。このセルは、隔壁で区画形成されており、 画像を形成する各画素での表示状態を制御するため、各画素単位に電極が形成さ れている。  [0002] With the development of electronic components in recent years, there are many such as plasma display panels, liquid crystal display panels, electoric luminescence panels, fluorescent display panels, electoric chromic display panels, light emitting diode display panels, and gas discharge display panels. Different types of display panels have been developed. Among them, plasma display panels (hereinafter abbreviated as PDPs) are attracting attention as thin and large flat color display devices. In a PDP, there are many cells between a front substrate and a rear substrate used as a display surface, and an image is formed by performing plasma discharge in the cells. This cell is partitioned by partition walls, and an electrode is formed for each pixel unit in order to control the display state of each pixel forming an image.
[0003] このプラズマディスプレイパネルの前面ガラス板には、プラズマを放電させるための 電極が形成され、電極として細い線状の銀が多く使われている。その電極の周りには 、透明度の高い絶縁性被膜材料が配されている。この絶縁性被膜材料は、プラズマ 耐久性に優れており、かつ透明であることが好ましい。このため、絶縁性被膜材料と しては誘電体ガラスが使われていることが多い。またこの誘電体ガラスには、工程上、 当然基体となるガラス板より低い融点が求められるため、低融点ガラスが使用される。  [0003] An electrode for discharging plasma is formed on the front glass plate of the plasma display panel, and thin linear silver is often used as the electrode. Around the electrode, an insulating coating material having high transparency is arranged. This insulating coating material is excellent in plasma durability and is preferably transparent. For this reason, dielectric glass is often used as the insulating coating material. In addition, since the dielectric glass is naturally required to have a lower melting point than the glass plate serving as the substrate in the process, a low-melting glass is used.
[0004] しかしながら、従来の低融点誘電体ガラスでは、 450〜600°Cと!/、つた低温焼成で は、誘電体ガラスとバス電極の銀が反応して誘電体ガラスが黄色に着色(黄変)する 現象が生じ、高透過率が得られな!/、と!/、う大きな問題があった。  [0004] However, in the conventional low melting point dielectric glass, at 450 to 600 ° C! /, The low temperature firing, the dielectric glass reacts with the silver of the bus electrode, and the dielectric glass is colored yellow (yellow The phenomenon of changing) occurred, and high transmittance was not obtained!
[0005] この黄変に関しては、ガラス成分を調整することにより解決しょうとする種々の公知 技術が存在する。 Si〇2、 Al23等を必須成分とし、例えば、 PbOと CuOの含有量を 限定し、 Cuによって銀の拡散を防ごうとしたプラズマディスプレイ用材料 (例えば、特 許文献 1参照)、また CuOの他にさらに SrOを加えることで同様の効果を得、 BaO + SrO + MgOの含有量を限定したプラズマディスプレイ用材料 (例えば、特許文献 2 参照)、 BaO + CaO + Bi Oの含有量を限定したプラズマディスプレイ用材料(例え ば、特許文献 3参照)、 Si〇、 B〇、 Zn〇、 Bi O、 Ba〇、 Al Oの含有量を限定した プラズマディスプレイ用材料 (例えば、特許文献 4参照)、が開示されている。 [0005] Regarding this yellowing, there are various known methods to be solved by adjusting the glass component. Technology exists. Si_〇 and 2, Al 23 such as essential components, for example, PbO and limit the content of CuO, for plasma display materials tries to prevent diffusion of the silver by Cu (for example, see Patent Document 1), The same effect can be obtained by adding SrO in addition to CuO. Material for plasma display with limited content of BaO + SrO + MgO (see, for example, Patent Document 2) Content of BaO + CaO + BiO Materials for plasma displays with limited content (eg, see Patent Document 3), materials for plasma displays with limited content of Si〇, B〇, Zn〇, BiO, Ba〇, AlO (for example, Patent Document 4) Reference).
特許文献 1 :特開 2001— 52621号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-52621
特許文献 2:特開 2001— 80934号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-80934
特許文献 3:特開 2001—48577号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-48577
特許文献 4 :特開 2003— 226549号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2003-226549
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 従来の絶縁性被膜材料である低融点誘電体ガラスでは、ガラスと銀電極が反応し て誘電体層(ガラス)が黄色に着色 (黄変)する現象が生じ、可視光透過率が低下す るという問題がある。この黄変現象に対する対応は難しぐまだ市場が望むレベルま では対応できていない。 [0006] In a low-melting-point dielectric glass, which is a conventional insulating coating material, a phenomenon occurs in which the dielectric layer (glass) is colored yellow (yellowing) due to the reaction between the glass and the silver electrode, and the visible light transmittance is reduced. There is a problem of decline. It is difficult to respond to this yellowing phenomenon, but it has not yet been achieved to the level desired by the market.
[0007] また従来、低融点ガラスには鉛系のガラスが採用されてきた。鉛成分はガラスを低 融点とするうえで重要な成分ではあるものの、人体や環境に与える弊害が大きぐ近 年その採用を避ける趨勢にあり、 PDPを始めとする電子材料では無鉛化が検討され ている。 [0007] Conventionally, lead glass has been adopted as the low-melting glass. Although lead is an important component for making glass have a low melting point, it has a tendency to avoid its adoption in recent years because it has a great negative impact on the human body and the environment, and lead-free electronic materials such as PDP are being investigated. ing.
[0008] すなわち、特開 2001— 52621号公報、特開 2001— 80934号公報、及び特開 20 01— 48577号公報は、黄変に対してはかなりの改良が認められるが、鉛を含んでい るという基本的な問題がある。さらに、特開 2003— 226549号公報は、鉛を含んで おらず、黄変に対してかなりの改良が認められる力 鉛と同様に環境の見地から採用 を避けられる趨勢のあるビスマスを含んで!/、る。  [0008] That is, JP-A-2001-52621, JP-A-2001-80934, and JP-A-2001-48577 show considerable improvement against yellowing, but contain lead. There is a basic problem. Furthermore, JP 2003-226549 A contains bismuth, which does not contain lead and has a tendency to be avoided from the environmental point of view, as well as lead, which can be considerably improved against yellowing! /
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、重量%で SiOを 5〜; 11、 B Oを 45〜65、 ZnOを 20〜30、 R 0 (Li O + Na O + K O)を 10〜; 18、 BaOを 0. 1 ~3, ZrOを 0. 1 ~7, CeOを 0〜2、 CoO を 0〜2、 CuOを 0〜2含む、透明絶縁性の Si〇2— B O -ZnO-R O-BaO-ZrO 2系無鉛低融点ガラスである。 [0009] According to the present invention, by weight, SiO is 5 to 5; 11, BO is 45 to 65, ZnO is 20 to 30, R 0 (Li 2 O + Na O + KO) 10 ~; 18, BaO 0.1 ~ 3, ZrO 0.1 ~ 7, CeO 0 ~ 2, CoO 0 ~ 2, CuO 0 ~ 2 transparent insulation Si ○ 2 — BO —ZnO—R O—BaO—ZrO 2 is a lead-free low melting glass.
[0010] また、 B O /ZnOの重量比が 1. 5以上、 3以下であることを特徴とする上記の無鉛 低融点ガラスである。 [0010] The lead-free low-melting glass described above, wherein the weight ratio of B 2 O 3 / ZnO is 1.5 or more and 3 or less.
[0011] また、重量%で、 MnOを 0〜2含むことを特徴とする上記の無鉛低融点ガラスであ  [0011] Further, the lead-free low-melting glass as described above, which contains 0 to 2 MnO by weight%
[0012] また、重量%で、 RO (MgO + CaO + SrO)を 0〜10含むことを特徴とする上記の 無鉛低融点ガラスである。 [0012] Further, the lead-free low-melting glass as described above, wherein the glass contains RO (MgO + CaO + SrO) in an amount of 0 to 10% by weight.
[0013] また、 30°C〜300°Cにおける熱膨張係数が(65〜95) X 10— 7/°C、軟化点が 500[0013] Further, 30 ° C~300 thermal expansion coefficient in ° C is (65~95) X 10- 7 / ° C, softening point 500
°C以上 630°C以下である上記の無鉛低融点ガラスである。 It is the above lead-free low melting point glass having a temperature of from ° C to 630 ° C.
[0014] さらに、上記の無鉛低融点ガラスを絶縁性被膜材料として使用して!/、る電子材料用 基板である。 [0014] Furthermore, the present invention is an electronic material substrate using the above lead-free low-melting glass as an insulating coating material.
[0015] さらにまた、上記の無鉛低融点ガラスを絶縁性被膜材料として使用して!/、る PDP用 パネルである。  [0015] Furthermore, the present invention is a PDP panel using the above lead-free low melting point glass as an insulating coating material!
発明の効果  The invention's effect
[0016] 従来の絶縁性被膜材料である低融点誘電体ガラスで問題となって!/、た、ガラスと銀 電極が反応してガラスが黄色に着色(黄変)する現象を低減したガラスを得ることがで きる。  [0016] A low-melting-point dielectric glass, which is a conventional insulating coating material, has become a problem! / In addition, a glass that reduces the phenomenon of yellowing (yellowing) due to the reaction between the glass and the silver electrode. Obtainable.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明は、透明絶縁性の無鉛低融点ガラスにおいて、重量%で SiOを 5〜; 11、 B Oを 45〜65、 ZnOを 20〜30、 R 0 (Li O + Na O + K O)を 10〜; 18、 BaOを 0. 1 〜3、 ZrOを 0·;!〜 7、 CeOを 0〜2、 CoOを 0〜2、 CuOを 0〜2含むことを特徴とす る SiO— B O— ZnO— R O— BaO— ZrO系無鉛低融点ガラスである。  [0017] The present invention relates to a transparent insulating lead-free low melting point glass in which SiO is 5 to 5% by weight, 11, BO is 45 to 65, ZnO is 20 to 30, R 0 (Li O + Na O + KO) 18--, BaO 0.1--3, ZrO 0-!-7, CeO 0-2, CoO 0-2, CuO 0-2 SiO-BO —ZnO—RO—BaO—ZrO lead-free low melting point glass.
[0018] Si〇2はガラス形成成分であり、別のガラス形成成分である B Oと共存させることに より、安定したガラスを形成することができるもので、 5% (重量%、以下においても同 様である)以上で含有させる。 11 %を越えると、ガラスの軟化点が上昇し、成形性、作 業性が困難となる。より好ましくは、 6〜; 10%の範囲である。 [0019] B23は Si〇2同様のガラス形成成分であり、ガラス溶融を容易とし、ガラスの熱膨張 係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与え、 SiOとともにガラスの誘電率を低下させるものである。ガラス中に 45〜65%で含有さ せるのが好ましい。 45%未満ではガラスの流動性が不充分となり、焼結性が損なわ れる。他方 65%を越えるとガラスの安定性を低下させる。より好ましくは 48〜60%の 範囲である。 [0018] Si_〇 2 is a glass forming component, more coexist with a another glass forming component BO, those capable of forming a stable glass, 5% (wt%, the true in the following It is contained. If it exceeds 11%, the softening point of the glass will rise, making formability and workability difficult. More preferably, it is in the range of 6 to 10%. [0019] B is 23 is a glass forming component Si_〇 2 Similarly, the glass melt is facilitated, suppresses an excessive increase in the thermal expansion coefficient of the glass, and, given an appropriate fluidity to the glass upon baking, Together with SiO, it decreases the dielectric constant of the glass. It is preferably contained in the glass at 45 to 65%. If it is less than 45%, the fluidity of the glass becomes insufficient, and the sinterability is impaired. On the other hand, if it exceeds 65%, the stability of the glass is lowered. More preferably, it is in the range of 48-60%.
[0020] ZnOはガラスの軟化点を下げ、熱膨張係数を適宜範囲に調整するもので、ガラス 中に 20〜30%の範囲で含有させるのが好ましい。 20%未満では上記作用を発揮し 得ず、他方 30%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは 22 〜29%の範囲である。  ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, and is preferably contained in the glass in a range of 20 to 30%. If it is less than 20%, the above-mentioned action cannot be exhibited. On the other hand, if it exceeds 30%, the glass becomes unstable and devitrification tends to occur. More preferably, it is 22 to 29% of range.
[0021] R O (Li 0、 Na〇、 K O)はガラスの軟化点を下げ、適度に流動性を与え、熱膨張 係数を適宜範囲に調整するものであり、 10〜; 18%の範囲で含有させることが好まし い。 10%未満では上記作用を発揮し得ず、他方 18%を越えると熱膨張係数を過度 に上昇させる。より好ましくは 11〜; 17%の範囲である。  [0021] RO (Li 0, Na 0, KO) lowers the softening point of glass, imparts moderate fluidity, and adjusts the coefficient of thermal expansion to an appropriate range, and is contained in the range of 10 to 18%. It is preferable to let them. If it is less than 10%, the above-mentioned action cannot be exerted. On the other hand, if it exceeds 18%, the thermal expansion coefficient is excessively increased. More preferably, it is 11 to 17%.
[0022] BaOは、はガラスに適度に流動性を与え、透明性を上げる効果があり、 0.;!〜 3% の範囲で含有させる。 3%を越えると上記作用を発揮し得ない。より好ましくは、;!〜 2 %の範囲である。  [0022] BaO has an effect of imparting moderate fluidity to glass and increasing transparency, and is contained in a range of 0.;! To 3%. If it exceeds 3%, the above effect cannot be exhibited. More preferably, it is in the range of !! to 2%.
[0023] ZrOは、ガラスの耐水性を上げる効果があり、 0.;!〜 7%の範囲で含有させる。より 好ましくは、 1 %〜6%の範囲である。  [0023] ZrO has the effect of increasing the water resistance of the glass, and is contained in the range of 0.;! To 7%. More preferably, it is in the range of 1% to 6%.
[0024] CeOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀 が拡散して、銀コロイド発色 (黄変)するのを緩和させる効果があり、 0〜2%の範囲で 含有させることが好ましい。 2%を越えるとガラスが着色し、透明性が低下する。より好 ましくは 0.;!〜 1 %の範囲である。 [0024] CeO has the effect of mitigating the coloration of silver colloid (yellowing) due to the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer. It is preferably contained in a range of ˜2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, the range is 0.;! ~ 1%.
[0025] CoOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀 が拡散して、銀コロイド発色 (黄変)するのを緩和させる効果があり、 0〜2%の範囲で 含有させることが好ましい。 2%を越えるとガラスが着色し、透明性が低下する。より好 ましくは 0.;!〜 1 %の範囲である。 [0025] CoO has the effect of mitigating the coloration of silver colloid (yellowing) due to the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer. It is preferably contained in a range of ˜2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, the range is 0.;! ~ 1%.
[0026] CuOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀 が拡散して、銀コロイド発色 (黄変)するのを緩和させる効果があり、 0〜2%の範囲で 含有させることが好ましい。 2%を越えるとガラスが着色し、透明性が低下する。より好 ましくは 0.;!〜 1 %の範囲である。 [0026] CuO reacts with a silver electrode used as a bus electrode wire and a dielectric layer, and silver is contained in the dielectric layer. Is effective to alleviate silver colloid coloration (yellowing) due to diffusion, and is preferably contained in the range of 0 to 2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, the range is 0.;! ~ 1%.
[0027] MnOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に 銀が拡散して、銀コロイド発色 (黄変)するのを緩和させる効果があり、 0〜2%の範囲 で含有させることが好ましい。 2%を越えるとガラスが着色し、透明性が低下する。より 好ましくは 0.;!〜 1 %の範囲である。 [0027] MnO has an effect of mitigating the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer to cause silver colloid coloration (yellowing). It is preferably contained in the range of ˜2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, it is in the range of 0.;! To 1%.
[0028] CeO、 CoO、 CuO、 MnOは上に述べたように同様の効果を持っため、その合計 にも望ましい範囲があり、それは 3%以下である。 3%を越えるとガラスが着色し、透明 性が低下する。より好ましくは 0. 3〜2%の範囲である。 [0028] Since CeO, CoO, CuO, and MnO have the same effect as described above, there is a desirable range of the total, which is less than 3%. If it exceeds 3%, the glass is colored and the transparency is lowered. More preferably, it is 0.3 to 2% of range.
[0029] RO (MgO + CaO + SrO)はガラスに適度に流動性を与え、熱膨張係数を適宜範 囲に調整するもので、 0〜; 10%の範囲で含有させる。 10%を越えると熱膨張係数が 過度に上昇する。より好ましくは、 0〜6%の範囲である。 [0029] RO (MgO + CaO + SrO) imparts moderate fluidity to the glass and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the range of 0 to 10%. If it exceeds 10%, the thermal expansion coefficient will rise excessively. More preferably, it is in the range of 0 to 6%.
[0030] B O /ZnOの重量比が 1. 5以上 3以下である上記の無鉛低融点ガラスである。 1. [0030] The lead-free low-melting glass described above, wherein the weight ratio of B 2 O 3 / ZnO is 1.5 or more and 3 or less. 1.
5未満であると黄変の発現が顕著になり、 3を越えると安定性が劣化する。より好ましく は、 1. 8〜2· 5の範囲である。  If it is less than 5, yellowing becomes prominent, and if it exceeds 3, stability deteriorates. More preferably, it is in the range of 1.8 to 2.5.
[0031] この他にも、一般的な酸化物で表す In O、 TiO、 SnO、 TeOなどを加えてもよい[0031] In addition, In O, TiO, SnO, TeO and the like represented by general oxides may be added.
Yes
[0032] 実質的に PbOを含まないことにより、人体や環境に与える影響を皆無とすることが できる。ここで、実質的に PbOを含まないとは、 PbOがガラス原料中に不純物として 混入する程度の量を意味する。例えば、低融点ガラス中における 0. 3wt%以下の範 囲であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与え る影響は殆どなぐ実質的に PbOの影響を受けないことになる。  [0032] By substantially not containing PbO, it is possible to eliminate the influence on the human body and the environment. Here, “substantially free of PbO” means that PbO is mixed in as an impurity in the glass raw material. For example, within the range of 0.3 wt% or less in low-melting glass, the above-mentioned adverse effects, that is, the effects on the human body and the environment, the influence on the insulation characteristics, etc., are hardly affected by PbO. become.
[0033] 30°C〜300°Cにおける熱膨張係数が(65〜95) X 10— 7/°C、軟化点が 500°C以 上 630°C以下である上記の無鉛低融点ガラスである。熱膨張係数が(65〜95) X 10 —7/°Cを外れると厚膜形成時に被膜の剥離、基板の反り等の問題が発生する。好ま しくは、(75〜85) X 10— 7/°Cの範囲である。また、軟化点が 630°Cを越えると基板 の軟化変形などの問題が発生する。好ましくは、 500°C以上 590°C以下である。 [0034] さらにまた、上記の低融点ガラスを絶縁性被膜材料として使用して!/、る電子材料用 基板である。上述の低融点ガラスを使うことにより、黄変が抑制された電子材料用基 板とすること力でさる。 [0033] is 30 ° C~300 thermal expansion coefficient (65 to 95) in ° C X 10- 7 / ° C , softening point 500 ° C or more on the 630 ° above lead-free low-melting-point glass is C or less . Thermal expansion coefficient (65~95) X 10 - 7 / ° C outside the thick film formation at the time of peeling of the coating, and problems such as warpage of the substrate occurs. Preferred details, in the range of (75~85) X 10- 7 / ° C. In addition, if the softening point exceeds 630 ° C, problems such as softening deformation of the substrate occur. Preferably, it is 500 ° C or higher and 590 ° C or lower. [0034] Furthermore, the present invention is a substrate for an electronic material using the above low-melting glass as an insulating coating material. By using the above-mentioned low-melting glass, it is possible to obtain a substrate for electronic materials in which yellowing is suppressed.
[0035] さらにまた、上記の低融点ガラスを絶縁性被膜材料として使用して!/、る PDP用パネ ルである。上述の低融点ガラスを使うことにより、黄変が抑制された PDP用パネルと すること力 Sでさる。  [0035] Further, the present invention is a panel for PDP using the above-mentioned low melting point glass as an insulating coating material. By using the above-mentioned low melting point glass, it is possible to obtain a PDP panel in which yellowing is suppressed with the force S.
[0036] 本発明は銀との反応による黄変現象に対応する低融点ガラスの開示であり、その 対象を銀電極に限定して!/、るわけではなレ、。  [0036] The present invention is a disclosure of a low-melting-point glass corresponding to the yellowing phenomenon due to the reaction with silver, and its object is limited to a silver electrode!
[0037] ガラス基板としては透明なガラス基板、特にソーダ石灰シリカ系ガラス、または、そ れに類似するガラス (高歪点ガラス)、あるいは、アルカリ分の少ない(又は殆ど無い) アルミノ石灰ホウ珪酸系ガラスが多用されて!/、る。 [0037] The glass substrate is a transparent glass substrate, in particular, soda-lime-silica glass, or similar glass (high strain point glass), or an alumino-lime borosilicate system with little (or almost no) alkali content. Glass is used a lot!
実施例 1  Example 1
[0038] 以下、実施例に基づき、説明する。  Hereinafter, description will be made based on examples.
[0039] (低融点ガラス混合ペーストの作製) SiO源として微粉珪砂を、 B O源としてほう 酸を、 ZnO源として亜鉛華を、 Li O源として炭酸リチウムを、 Na O源として炭酸ナトリ ゥムを、 K O源として炭酸カリウムを、 CeOとして炭酸セリウムを、 CoOとして酸化コ ノ ノレトを、 CuO源として酸化第二銅を、 MnO源として二酸化マンガンを、 MgO源と して炭酸マグネシウムを、 CaO源として炭酸カルシウムを、 SrO源として炭酸ストロン チウムを、 BaO源として炭酸バリウムを要した。これらを所望の低融点ガラス組成とな るべく調合したうえで、白金ルツボに投入し、電気加熱炉内で 1000〜1300°C、;!〜 2時間で加熱溶融して表 1の実施例;!〜 4、表 2の比較例;!〜 4に示す組成のガラスを 得た。  (Preparation of low melting point glass mixed paste) Fine silica sand as SiO source, boric acid as BO source, zinc white as ZnO source, lithium carbonate as Li O source, sodium carbonate as Na O source Potassium carbonate as KO source, Cerium carbonate as CeO, Connole oxide as CoO, Cupric oxide as CuO source, Manganese dioxide as MnO source, Magnesium carbonate as MgO source, CaO source as CaO source Calcium carbonate was required, strontium carbonate as the SrO source, and barium carbonate as the BaO source. These are prepared to have a desired low melting point glass composition, and then put into a platinum crucible and heated and melted in an electric heating furnace at 1000 to 1300 ° C for! To 2 hours. ! ~ 4, Comparative Example in Table 2; Glasses having compositions shown in! ~ 4 were obtained.
[0040] [表 1]
Figure imgf000008_0001
[表 2]
[0040] [Table 1]
Figure imgf000008_0001
[Table 2]
Figure imgf000008_0002
ガラスの一部は型に流し込み、ブロック状にして熱物性 (熱膨張係数、軟化点)測定 用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平 均粒径 1〜3 μ m、最大粒径 10 m未満の粉末状に整粒した。
Figure imgf000008_0002
A part of the glass was poured into a mold and made into a block shape for use in measuring thermal properties (thermal expansion coefficient, softening point). The remaining glass was flaked with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder with an average particle size of 1 to 3 μm and a maximum particle size of less than 10 m.
次いで、 ひテルビネオールとブチルカルビトールアセテートからなるペーストオイル にバインダーとしてのェチルセルロースと上記ガラス粉を混合し、粘度、 300 ± 50ポ ィズ程度のペーストを調製した。 [0043] (絶縁性被膜の形成) 厚み 2〜3mm、サイズ 100mm角のソーダ石灰系ガラス 基板に、焼付け後の膜厚が約 30 πιとなるべく勘案して、アプリケーターを用いて前 記ペーストを塗布し、塗布層を形成した。 次いで、乾燥後、 630°C以下で 10〜60 分間焼成することにより、クリアな誘電体層を形成させた。 Subsequently, ethyl cellulose as a binder and the above glass powder were mixed with paste oil consisting of terbinol and butyl carbitol acetate to prepare a paste having a viscosity of about 300 ± 50 poise. [0043] (Formation of insulating coating) Apply the above paste to a soda-lime glass substrate with a thickness of 2 to 3 mm and a size of 100 mm square using an applicator, taking into consideration that the film thickness after baking should be about 30 πι. Then, a coating layer was formed. Next, after drying, a clear dielectric layer was formed by firing at 630 ° C. or lower for 10 to 60 minutes.
[0044] 得られた試料について、肉眼および顕微鏡により観察し、従来よりも黄変現象が格 段に抑制されたと判断できたものについては Aを、それ以外については Bとした。 [0044] The obtained samples were observed with the naked eye and a microscope, and A was determined for those in which the yellowing phenomenon was judged to be significantly suppressed as compared with the conventional sample, and B was set for the others.
[0045] なお、軟化点は、リトルトン粘度計を用い、粘度係数 7] = 107·6に達したときの温度と した。また、熱膨張係数は、熱膨張計を用い、 5°C/分で昇温したときの 30〜300°C での伸び量から求めた。 [0045] The softening point was the temperature at which the viscosity coefficient 7] = 10 7 · 6 was reached using a Littleton viscometer. The thermal expansion coefficient was determined from the amount of elongation at 30 to 300 ° C when the temperature was raised at 5 ° C / min using a thermal dilatometer.
[0046] (結果) 低融点ガラス組成および、各種試験結果を表に示す。 (Results) The low melting point glass composition and various test results are shown in the table.
[0047] 表 1における実施例;!〜 4に示すように、本発明の組成範囲内においては、黄変の 発現が従来と比べて格段に抑制されていた。 [0047] As shown in Examples in Table 1;! To 4, within the composition range of the present invention, the occurrence of yellowing was remarkably suppressed as compared with the prior art.
[0048] 他方、本発明の組成範囲を外れる表 2における比較例 1〜4は、従来と同様、黄変 の発現が顕著である、或いは、好ましい物性値を示さず、 PDP等の基板被覆用低融 点ガラスとして適用し得なレ、。 [0048] On the other hand, Comparative Examples 1 to 4 in Table 2 outside the composition range of the present invention, as in the prior art, are markedly yellowed or do not show favorable physical properties and are used for coating substrates such as PDP. It can not be applied as low melting point glass.

Claims

請求の範囲 The scope of the claims
[1] 透明絶縁性の Si〇2 - B23 - ZnO - R O— BaO— Zr〇2系無鉛低融点ガラスであつ て、重量%で SiOを 5〜; 11、 B Oを 45〜65、 ZnOを 20〜30、 R 0 (Li O + Na O + K Ο)を 10〜; 18、 BaOを 0. 1— 3, ZrOを 0. 1— 7, CeOを 0〜2、 CoOを 0〜2、 CuOを 0〜2含む。 [1] Si_〇 of the transparent insulating 2 - B 23 - ZnO - RO- BaO- Zr_〇 shall apply in 2-based lead-free low-melting-point glass, 5 to SiO by weight%; 11, BO 45 to 65, ZnO 20 ~ 30, R 0 (Li O + Na O + K Ο) 10 ~; 18, BaO 0.1 ~ 3, ZrO 0.1 ~ 7, CeO 0 ~ 2, CoO 0 ~ 2. Contains 0-2 CuO.
[2] 請求項 1に記載の無鉛低融点ガラスであって、 B O /ZnOの重量比が 1. 5以上、 3 以下である。  [2] The lead-free low-melting glass according to claim 1, wherein the weight ratio of B 2 O 3 / ZnO is 1.5 or more and 3 or less.
[3] 請求項 1又は請求項 2に記載の無鉛低融点ガラスであって、重量%で、 MnOを 0〜  [3] The lead-free low melting point glass according to claim 1 or claim 2, wherein the MnO is 0 to 0% by weight.
2含む。  2 included.
[4] 請求項 1乃至 3のいずれかに記載の無鉛低融点ガラスであって、重量%で、 RO (Mg [4] A lead-free low-melting glass according to any one of claims 1 to 3, wherein the glass is RO (Mg
O + CaO + SrO)を 0〜; 10含む。 O + CaO + SrO) 0-;
[5] 請求項 1乃至 4のいずれかに記載の無鉛低融点ガラスであって、 30°C〜300°Cにお ける熱膨張係数が(65〜95) X 10— 7/°C、軟化点が 500°C以上 630°C以下である。 [5] A lead-free low-melting-point glass according to any one of claims 1 to 4, 30 ° C~300 Contact Keru thermal expansion coefficient ° C is (65~95) X 10- 7 / ° C, softening The point is between 500 ° C and 630 ° C.
[6] 請求項 1乃至 5の!/、ずれかの無鉛低融点ガラスを絶縁性被膜材料として使用する電 子材料用基板。 [6] A substrate for electronic materials using the lead-free low melting point glass of any one of claims 1 to 5 as an insulating coating material.
[7] 請求項 1乃至 6の!/、ずれかの無鉛低融点ガラスを絶縁性被膜材料として使用する P DP用パネル。  [7] A panel for PDP using the lead / low melting point glass of any one of claims 1 to 6 as an insulating coating material.
PCT/JP2007/067296 2006-09-13 2007-09-05 Lead-free low-melting-point glass WO2008032622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006248094A JP2008069032A (en) 2006-09-13 2006-09-13 Lead-free low melting point glass
JP2006-248094 2006-09-13

Publications (1)

Publication Number Publication Date
WO2008032622A1 true WO2008032622A1 (en) 2008-03-20

Family

ID=39183683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067296 WO2008032622A1 (en) 2006-09-13 2007-09-05 Lead-free low-melting-point glass

Country Status (2)

Country Link
JP (1) JP2008069032A (en)
WO (1) WO2008032622A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883031B2 (en) 2008-03-18 2012-02-22 パナソニック株式会社 Receiving device and electronic device using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278482A (en) * 1996-04-12 1997-10-28 Nippon Electric Glass Co Ltd Low dielectric constant glass composition
JPH10297937A (en) * 1997-04-25 1998-11-10 Kyocera Corp Composition for partition wall of plasma display panel and partition wall for plasma display panel using the same
JP2004002199A (en) * 2003-07-16 2004-01-08 Asahi Glass Co Ltd Glass for coating electrode and plasma display panel
JP2004307329A (en) * 2003-03-24 2004-11-04 Nippon Electric Glass Co Ltd Insulating material for display tube
JP2005111512A (en) * 2003-10-07 2005-04-28 Yokohama Rubber Co Ltd:The Sheet metal cylinder welding machine
JP2005145772A (en) * 2003-11-17 2005-06-09 Central Glass Co Ltd Lead-free low melting glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278482A (en) * 1996-04-12 1997-10-28 Nippon Electric Glass Co Ltd Low dielectric constant glass composition
JPH10297937A (en) * 1997-04-25 1998-11-10 Kyocera Corp Composition for partition wall of plasma display panel and partition wall for plasma display panel using the same
JP2004307329A (en) * 2003-03-24 2004-11-04 Nippon Electric Glass Co Ltd Insulating material for display tube
JP2004002199A (en) * 2003-07-16 2004-01-08 Asahi Glass Co Ltd Glass for coating electrode and plasma display panel
JP2005111512A (en) * 2003-10-07 2005-04-28 Yokohama Rubber Co Ltd:The Sheet metal cylinder welding machine
JP2005145772A (en) * 2003-11-17 2005-06-09 Central Glass Co Ltd Lead-free low melting glass

Also Published As

Publication number Publication date
JP2008069032A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
WO2006115143A1 (en) Lead-free low-melting-point glass
JP2008069033A (en) Lead-free low melting point glass
JP5309629B2 (en) Lead-free glass composition having acid resistance
WO1996009259A1 (en) Substrate glasses for plasma displays
JP2000313635A (en) Material for plasma display panel
JP5957847B2 (en) Bismuth glass composition
JP2008019148A (en) Lead free low melting point glass
JP2007070196A (en) Lead-free low melting-point glass
JP2006169047A (en) Lead-free low melting point glass
JP4774746B2 (en) Lead-free low melting point glass
JP4765269B2 (en) Lead-free low melting point glass
JP2005231923A (en) Lead-free low melting glass
JP2006151763A (en) Lead-free low melting glass
WO2008007596A1 (en) Lead-free low-melting glass
JP4892860B2 (en) Lead-free low melting point glass
JP2008201596A (en) Lead-free low-melting-point glass
JP2007008764A (en) Unleaded low-melting glass
US7910507B2 (en) Glass ceramic material for plasma display
JP2006111512A (en) Lead-free glass having low melting point
WO2008032622A1 (en) Lead-free low-melting-point glass
JP2008201597A (en) Lead-free low-melting-point glass
JP2006117440A (en) Lead-free glass having low melting point
WO2005118500A1 (en) Lead-free glass having low melting point
JP2009084137A (en) Lead-free low-melting glass
JP2008201595A (en) Lead-free low-melting-point glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806739

Country of ref document: EP

Kind code of ref document: A1