JP2006111512A - Lead-free glass having low melting point - Google Patents

Lead-free glass having low melting point Download PDF

Info

Publication number
JP2006111512A
JP2006111512A JP2004326809A JP2004326809A JP2006111512A JP 2006111512 A JP2006111512 A JP 2006111512A JP 2004326809 A JP2004326809 A JP 2004326809A JP 2004326809 A JP2004326809 A JP 2004326809A JP 2006111512 A JP2006111512 A JP 2006111512A
Authority
JP
Japan
Prior art keywords
glass
lead
sio
zno
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004326809A
Other languages
Japanese (ja)
Inventor
Naoya Hayakawa
直也 早川
Yasumasa Shimooka
泰真 下岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004326809A priority Critical patent/JP2006111512A/en
Priority to KR1020067017051A priority patent/KR20070009992A/en
Priority to PCT/JP2005/009356 priority patent/WO2005118500A1/en
Priority to TW094118018A priority patent/TW200602281A/en
Publication of JP2006111512A publication Critical patent/JP2006111512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lead-free glass having a low melting point, which is prevented from yellowing due to silver reaction and has high visible light transmittance, and which is required in the development of an electronic material substrate represented by a plasma display panel. <P>SOLUTION: The lead-free glass having a low melting point is an SiO<SB>2</SB>-B<SB>2</SB>O<SB>3</SB>-ZnO-R<SB>2</SB>O-CuO-based glass, which contains, by weight, 7-20% SiO<SB>2</SB>, 32-50% B<SB>2</SB>O<SB>3</SB>, 25-42% ZnO, 7-20% R<SB>2</SB>O(Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O), 0.1-2% CuO, 0-2% MnO<SB>2</SB>, and 0-10% RO(MgO+CaO+SrO+BaO) and is characterized in that the weight ratio of B<SB>2</SB>O<SB>3</SB>to ZnO is within a range of 0.85-2, the weight ratio of (B<SB>2</SB>O<SB>3</SB>+R<SB>2</SB>O) to SiO<SB>2</SB>is within a range of 2-7, and Co or Mn is contained in an amount of 0-2 wt.% expressed in terms of oxide. Further, the SiO<SB>2</SB>-B<SB>2</SB>O<SB>3</SB>-ZnO-R<SB>2</SB>O-CuO-based glass is characterized in that the coefficient of thermal expansion in a temperature range of 30-300°C is (65-95)×10<SP>-7</SP>/°C and the softening point is within a range of 500-600°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマディスプレイパネル、液晶表示パネル、エレクトロルミネッセンスパネル、蛍光表示パネル、エレクトロクロミック表示パネル、発光ダイオード表示パネル、ガス放電式表示パネル等に代表される電子材料基板用の絶縁性被膜材料及び封着材料として用いられる低融点ガラスに関する。   The present invention relates to an insulating coating material for an electronic material substrate typified by a plasma display panel, a liquid crystal display panel, an electroluminescence panel, a fluorescent display panel, an electrochromic display panel, a light emitting diode display panel, a gas discharge display panel, and the like. The present invention relates to a low melting point glass used as a sealing material.

近年の電子部品の発達に伴い、プラズマディスプレイパネル、液晶表示パネル、エレクトロルミネッセンスパネル、蛍光表示パネル、エレクトロクロミック表示パネル、発光ダイオード表示パネル、ガス放電式表示パネル等、多くの種類の表示パネルが開発されている。その中でも、プラズマディスプレイパネル(以下、PDPと略す)が薄型かつ大型の平板型カラー表示装置として注目を集めている。PDPにおいては、表示面として使用される前面基板と背面基板の間に多くのセルを有し、そのセル中でプラズマ放電させることにより画像が形成される。このセルは、隔壁で区画形成されており、画像を形成する各画素での表示状態を制御するため、各画素単位に電極が形成されている。   With the recent development of electronic components, many types of display panels such as plasma display panels, liquid crystal display panels, electroluminescence panels, fluorescent display panels, electrochromic display panels, light emitting diode display panels, and gas discharge display panels have been developed. Has been. Among them, a plasma display panel (hereinafter abbreviated as PDP) is attracting attention as a thin and large flat color display device. In a PDP, a large number of cells are provided between a front substrate and a rear substrate used as a display surface, and an image is formed by performing plasma discharge in the cells. This cell is partitioned by partition walls, and an electrode is formed for each pixel unit in order to control the display state of each pixel forming an image.

このプラズマディスプレイパネルの前面ガラス板には、プラズマを放電させるための電極が形成され、電極として細い線状の銀が多く使われている。その電極の周りには、透明度の高い絶縁材料が配されている。この絶縁材料は、プラズマ耐久性に優れており、かつ透明であることが好ましい。このため、絶縁材料としては誘電体ガラスが使われていることが多い。またこの誘電体ガラスには、工程上、当然基体となるガラス板より低い融点が求められるため、低融点ガラスが使用される。   An electrode for discharging plasma is formed on the front glass plate of the plasma display panel, and thin linear silver is often used as the electrode. A highly transparent insulating material is disposed around the electrode. This insulating material is preferably excellent in plasma durability and transparent. For this reason, dielectric glass is often used as an insulating material. The dielectric glass is naturally required to have a melting point lower than that of the glass plate serving as the substrate in the process, and therefore low-melting glass is used.

しかしながら、従来の低融点誘電体ガラスでは、450〜600℃といった低温焼成では、誘電体ガラスとバス電極の銀が反応して誘電体ガラスが黄色に着色(黄変)する現象が生じ、高透過率が得られないという大きな問題があった。   However, with conventional low melting point dielectric glass, firing at a low temperature of 450 to 600 ° C. causes a phenomenon that the dielectric glass reacts with the silver of the bus electrode and the dielectric glass is colored yellow (yellowing), resulting in high transmission. There was a big problem that the rate could not be obtained.

この黄変に関しては、ガラス成分を調整することにより解決しようとする種々の公知技術が存在する。SiO、Al等を必須成分とし、例えば、PbOと
CuOの含有量を限定し、Cuによって銀の拡散を防ごうとしたプラズマディスプレイ用材料(例えば、特許文献1参照)、またCuOの他にさらにSrOを加えることで同様の効果を得、BaO+SrO+MgOの含有量を限定したプラズマディスプレイ用材料(例えば、特許文献2参照)、BaO+CaO+Biの含有量を限定したプラズマディスプレイ用材料(例えば、特許文献3参照)、SiO、B、ZnO、Bi、BaO、Alの含有量を限定したプラズマディスプレイ用材料(例えば、特許文献4参照)、が開示されている。
特開2001−52621号公報 特開2001−80934号公報 特開2001−48577号公報 特開2003−226549号公報
Regarding this yellowing, there are various known techniques to be solved by adjusting the glass component. A material for plasma display which contains SiO 2 , Al 2 O 3, etc. as essential components, for example, limits the contents of PbO and CuO and prevents silver diffusion by Cu (for example, see Patent Document 1), and CuO In addition to the above, the same effect can be obtained by further adding SrO, and a material for plasma display in which the content of BaO + SrO + MgO is limited (see, for example, Patent Document 2), and a material for plasma display in which the content of BaO + CaO + Bi 2 O 3 is limited ( For example, see Patent Document 3), and materials for plasma display (see, for example, Patent Document 4) with limited contents of SiO 2 , B 2 O 3 , ZnO, Bi 2 O 3 , BaO, and Al 2 O 3 are disclosed. Has been.
JP 2001-52621 A JP 2001-80934 A JP 2001-48577 A JP 2003-226549 A

従来の誘電体ガラス(絶縁材料)では、該ガラスと銀電極が反応して誘電体層が黄色に着色(黄変)する現象が生じ、可視光透過率が低下するという問題がある。この黄変現象に対する対応は難しく、まだ市場が望むレベルまでは対応できていない。   The conventional dielectric glass (insulating material) has a problem that the glass and silver electrode react with each other to cause the dielectric layer to be colored yellow (yellowing), resulting in a decrease in visible light transmittance. It is difficult to respond to this yellowing phenomenon, and it has not yet been able to respond to the level desired by the market.

また従来、低融点ガラス、例えば基板被覆用低融点ガラスには鉛系のガラスが採用されてきた。鉛成分はガラスを低融点とするうえで重要な成分ではあるものの、人体や環境に与える弊害が大きく、近年その採用を避ける趨勢にあり、PDPを始めとする電子材料では無鉛化が検討されている。   Conventionally, lead glass has been employed for low melting glass, for example, low melting glass for coating a substrate. The lead component is an important component for lowering the melting point of glass, but it has a great adverse effect on the human body and the environment. In recent years, there is a tendency to avoid its use. Lead-free electronic materials such as PDP are being studied. Yes.

すなわち、特開2001−52621号公報、特開2001−80934号公報、及び特開2001−48577号公報は、黄変に対してはかなりの改良が認められるが、鉛を含んでいるという基本的な問題がある。さらに、特開2003−226549号公報は、鉛を含んでおらず、黄変に対してかなりの改良が認められるが、鉛と同様に環境の見地から採用を避けられる趨勢のあるビスマスを含んでいる。   That is, Japanese Patent Application Laid-Open Nos. 2001-52621, 2001-80934, and 2001-48577 show a considerable improvement against yellowing, but basically contain lead. There is a problem. Furthermore, JP 2003-226549 A does not contain lead, and a considerable improvement against yellowing is recognized, but as well as lead, it contains bismuth which has a tendency to be avoided from an environmental standpoint. Yes.

本発明は、透明絶縁性の無鉛低融点ガラスにおいて、重量%でSiOを7〜20、Bを32〜50、ZnOを25〜42、RO(LiO+NaO+KO)を7〜20、RO(MgO+CaO+SrO+BaO)を0〜10、CuOを0.1〜2含むことを特徴とするSiO−B−ZnO−RO−CuO系無鉛低融点ガラスである。 The present invention is a transparent insulating lead-free low melting point glass in which 7 to 20 SiO 2 , 32 to 50 B 2 O 3 , 25 to 42 ZnO, R 2 O (Li 2 O + Na 2 O + K 2 O) by weight%. ) 7-20 is the RO (MgO + CaO + SrO + BaO) of 0~10, SiO 2 -B 2 O 3 -ZnO-R 2 O-CuO system lead-free low-melting glass, which comprises a CuO 0.1 to 2 .

また、B/ZnOの重量比が0.85以上、2以下であることを特徴とする上記の無鉛低融点ガラスである。 The lead-free low-melting glass as described above, wherein the weight ratio of B 2 O 3 / ZnO is 0.85 or more and 2 or less.

また、(B+RO)/SiOの重量比が2以上、7以下であることを特徴とする無鉛低融点ガラスである。 The lead-free low-melting glass is characterized in that the weight ratio of (B 2 O 3 + R 2 O) / SiO 2 is 2 or more and 7 or less.

また、重量%で、Co、Mnを酸化物として0〜2含むことを特徴とする上記の無鉛低融点ガラスである。   Further, the lead-free low-melting glass as described above, which contains 0 to 2 of Co and Mn as oxides by weight%.

また、30℃〜300℃における熱膨張係数が(65〜95)×10−7/℃、軟化点が500℃以上600℃以下である上記の無鉛低融点ガラスである。 Moreover, it is said lead-free low melting glass whose thermal expansion coefficient in 30 degreeC-300 degreeC is (65-95) * 10 < -7 > / degreeC, and a softening point is 500 degreeC or more and 600 degrees C or less.

さらに、上記の無鉛低融点ガラスを使っている電子材料用基板である。   Furthermore, it is an electronic material substrate using the above lead-free low-melting glass.

さらにまた、上記の無鉛低融点ガラスを使っているPDP用パネルである。   Still further, the present invention is a PDP panel using the above lead-free low melting point glass.

本発明により、プラズマディスプレイパネルに代表される電子基板材料において、銀反応による黄変が抑制され、かつ可視光透過率の高い無鉛低融点ガラス組成物を得ることが出来る。   According to the present invention, in an electronic substrate material typified by a plasma display panel, it is possible to obtain a lead-free low-melting-point glass composition that suppresses yellowing due to a silver reaction and has high visible light transmittance.

また、実質的にPbOを含まないことにより、人体や環境に与える影響を皆無とすることができる。ここで、実質的にPbOを含まないとは、PbOがガラス原料中に不純物として混入する程度の量を意味する。例えば、低融点ガラス中における0.3wt%以下の範囲であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与える影響は殆どなく、実質的にPbOの影響を受けないことになる。   In addition, since PbO is not substantially contained, there is no influence on the human body and the environment. Here, “substantially free of PbO” means an amount of PbO mixed as an impurity in the glass raw material. For example, if it is in the range of 0.3 wt% or less in the low-melting glass, there is almost no influence on the adverse effects described above, that is, the influence on the human body and the environment, the insulation characteristics, etc., and it is not substantially affected by PbO. Become.

本発明は、透明絶縁性の無鉛低融点ガラスにおいて、重量%でSiOを7〜20、Bを32〜50、ZnOを25〜42、RO(LiO+NaO+KO)を7〜20、RO(MgO+CaO+SrO+BaO)を0〜10、CuOを0.1〜2含むことを特徴とするSiO−B−ZnO−RO−CuO系無鉛低融点ガラスである。 The present invention is a transparent insulating lead-free low melting point glass in which 7 to 20 SiO 2 , 32 to 50 B 2 O 3 , 25 to 42 ZnO, R 2 O (Li 2 O + Na 2 O + K 2 O) by weight%. ) 7-20 is the RO (MgO + CaO + SrO + BaO) of 0~10, SiO 2 -B 2 O 3 -ZnO-R 2 O-CuO system lead-free low-melting glass, which comprises a CuO 0.1 to 2 .

SiOはガラス形成成分であり、安定したガラスを形成することができるものであるとともにガラス焼成時の流動性を制御する成分である。7%(重量%、以下においても同様である)未満では上記作用を発揮し得ず、20%を越えると、ガラスの軟化点が上昇し、成形性、作業性が困難となる。より好ましくは、9〜18%の範囲である。 SiO 2 is a glass-forming component that can form a stable glass and is a component that controls fluidity during glass firing. If the amount is less than 7% (weight percent, the same applies to the following), the above-described effect cannot be exhibited. If it exceeds 20%, the softening point of the glass increases, and the formability and workability become difficult. More preferably, it is 9 to 18% of range.

はSiO同様のガラス形成成分であり、ガラス溶融を容易とし、ガラスの熱膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与え、SiOとともにガラスの誘電率を低下させるものである。ガラス中に32〜50%で含有させるのが好ましい。32%未満ではガラスの流動性が不充分となり、焼結性が損なわれる。他方50%を越えるとガラスの安定性を低下させる。より好ましくは36〜45%の範囲である。 B 2 O 3 is a glass-forming component similar to SiO 2 , facilitates glass melting, suppresses an excessive increase in the thermal expansion coefficient of the glass, and imparts moderate fluidity to the glass during baking, together with SiO 2 It decreases the dielectric constant. It is preferable to make it contain at 32 to 50% in glass. If it is less than 32%, the flowability of the glass becomes insufficient, and the sinterability is impaired. On the other hand, if it exceeds 50%, the stability of the glass is lowered. More preferably, it is 36 to 45% of range.

ZnOはガラスの軟化点を下げ、熱膨張係数を適宜範囲に調整するもので、ガラス中に25〜42%の範囲で含有させるのが好ましい。25%未満では上記作用を発揮し得ず、他方42%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは28〜37%の範囲である。   ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, and is preferably contained in the glass in a range of 25 to 42%. If it is less than 25%, the above-mentioned action cannot be exhibited, while if it exceeds 42%, the glass becomes unstable and devitrification tends to occur. More preferably, it is 28 to 37% of range.

O(LiO、NaO、KO)はガラスの軟化点を下げ、適度に流動性を与え、熱膨張係数を適宜範囲に調整するものであり、7〜20%の範囲で含有させることが好ましい。7%未満では上記作用を発揮し得ず、他方20%を越えると熱膨張係数を過度に上昇させる。より好ましくは10〜17%の範囲である。 R 2 O (Li 2 O, Na 2 O, K 2 O) lowers the softening point of glass, imparts moderate fluidity, and adjusts the thermal expansion coefficient to an appropriate range, and is in the range of 7 to 20%. It is preferable to contain. If it is less than 7%, the above-mentioned action cannot be exhibited, and if it exceeds 20%, the thermal expansion coefficient is excessively increased. More preferably, it is 10 to 17% of range.

CuOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、0.1〜2%の範囲で含有させることが好ましい。0.1%未満では上記作用を発揮し得ず、他方2%を越えるとガラスが着色し、透明性が低下する。より好ましくは0.1〜1%の範囲である。   CuO has the effect of relieving the silver electrode used as the bus electrode wire and the dielectric layer reacting to diffuse silver into the dielectric layer and causing silver colloid coloration (yellowing). It is preferable to make it contain in 2% of range. If it is less than 0.1%, the above effect cannot be exhibited, and if it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, it is 0.1 to 1% of range.

Co、Mnの酸化物は、PDPパネルなどのバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、0〜2%の範囲で含有させることが好ましい。2%を越えるとガラスが着色し、透明性が低下する。より好ましくは0〜1%の範囲である。
RO(MgO+CaO+SrO+BaO)はガラスに適度に流動性を与え、熱膨張係数を適宜範囲に調整するもので、0〜10%の範囲で含有させる。10%を越えると熱膨張係数が過度に上昇する。より好ましくは、0〜7%の範囲である。
Co and Mn oxides react with silver electrodes used as bus electrode wires for PDP panels and dielectric layers, and silver diffuses into the dielectric layers, causing silver colloid coloration (yellowing). It has an effect of mitigating and is preferably contained in a range of 0 to 2%. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, it is 0 to 1% of range.
RO (MgO + CaO + SrO + BaO) imparts moderate fluidity to the glass and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the range of 0 to 10%. If it exceeds 10%, the thermal expansion coefficient excessively increases. More preferably, it is 0 to 7% of range.

/ZnOの重量比は0.85以上2以下が好ましい。0.85未満であると黄変の発現が顕著となり、2を越えると軟化点が高くなりすぎる。より好ましくは、1.0〜1.6の範囲である。 The weight ratio of B 2 O 3 / ZnO is preferably 0.85 or more and 2 or less. If it is less than 0.85, the yellowing is remarkably exhibited, and if it exceeds 2, the softening point becomes too high. More preferably, it is the range of 1.0-1.6.

(B+RO)/SiOの重量比は2以上、7以下が好ましい。2未満であるとガラス粘性が高く焼結不足となり、7を越えると流動性が高くなりすぎ透過率の変動が大きくなる。より好ましくは、4〜6の範囲である。 The weight ratio of (B 2 O 3 + R 2 O) / SiO 2 is preferably 2 or more and 7 or less. If it is less than 2, the glass viscosity is high and sintering is insufficient, and if it exceeds 7, the fluidity becomes too high and the fluctuation of the transmittance becomes large. More preferably, it is the range of 4-6.

この他にも、一般的な酸化物で表すIn、TiO、V、Fe、SnO、TeOなどを、本発明の目的を損なわない範囲で、合量で0.5%まで加えてもよい。 In addition, the total amount of In 2 O 3 , TiO 2 , V 2 O 5 , Fe 2 O 3 , SnO 2 , TeO 2 and the like represented by a general oxide is within a range that does not impair the object of the present invention. Up to 0.5%.

30℃〜300℃における熱膨張係数は(65〜95)×10−7/℃、軟化点が500℃以上600℃以下が好ましい。熱膨張係数が(65〜95)×10−7/℃を外れると厚膜形成時に被膜の剥離、基板の反り等の問題が発生する。好ましくは、(75〜85)×10−7/℃の範囲である。 The thermal expansion coefficient at 30 ° C. to 300 ° C. is preferably (65 to 95) × 10 −7 / ° C., and the softening point is preferably 500 ° C. or more and 600 ° C. or less. When the thermal expansion coefficient is outside (65 to 95) × 10 −7 / ° C., problems such as peeling of the coating film and warping of the substrate occur when the thick film is formed. Preferably, it is in the range of (75 to 85) × 10 −7 / ° C.

また、軟化点が600℃を越えると基板の軟化変形などの問題が発生する。好ましくは、520℃以上580℃以下である。   If the softening point exceeds 600 ° C., problems such as softening deformation of the substrate occur. Preferably, they are 520 degreeC or more and 580 degrees C or less.

さらにまた、上記の低融点ガラスを使っている電子材料用基板である。上述の低融点ガラスを使うことにより、黄変が抑制された電子材料用基板とすることができる。   Furthermore, it is a substrate for electronic materials using the low melting point glass. By using the low-melting glass described above, a substrate for electronic material in which yellowing is suppressed can be obtained.

さらにまた、上記の低融点ガラスを使っているPDP用パネルである。上述の低融点ガラスを使うことにより、黄変が抑制されたPDP用パネルとすることができる。   Furthermore, the present invention is a PDP panel using the above-mentioned low melting point glass. By using the low melting point glass described above, a PDP panel in which yellowing is suppressed can be obtained.

本発明は銀との反応による黄変現象に対応する低融点ガラスとして好ましいが、その使用対象を銀電極の周りの絶縁材料に限定しているわけではない。   Although the present invention is preferable as a low melting point glass corresponding to the yellowing phenomenon due to the reaction with silver, the object of use is not limited to the insulating material around the silver electrode.

なお、本発明の無鉛低融点ガラスは、例えばPDP用ガラスの前面板でも背面板でも使用することができる。背面板として使用するときは、封着材、被覆材として用いられ、粉末化して使用されることが多い。この粉末化されたガラスは、必要に応じてムライトやアルミナに代表される低膨張セラミックスフィラー、耐熱顔料等と0.6{ガラス/(ガラス+フィラー)重量比}以上で混合され、次に有機オイルと混練してペースト化されるのが一般的である。   The lead-free low-melting glass of the present invention can be used, for example, on the front plate or the back plate of PDP glass. When used as a back plate, it is used as a sealing material or a covering material, and is often used after being powdered. This powdered glass is mixed with a low expansion ceramic filler represented by mullite or alumina, a heat-resistant pigment, etc. at a ratio of 0.6 {glass / (glass + filler) weight ratio} or more, and then organically. Generally, it is kneaded with oil to form a paste.

ガラス基板としては透明なガラス基板、特にソーダ石灰シリカ系ガラス、または、それに類似するガラス(高歪点ガラス)、あるいは、アルカリ分の少ない(又は殆ど無い)アルミノ石灰ホウ珪酸系ガラスが多用されている。   As the glass substrate, a transparent glass substrate, particularly soda-lime-silica glass, or similar glass (high strain point glass), or an alumino-lime borosilicate glass with little (or almost no) alkali content is used. Yes.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(低融点ガラス混合ペーストの作製)
SiO源として微粉珪砂を、B源としてほう酸を、ZnO源として亜鉛華を、LiO源として炭酸リチウムを、NaO源として炭酸ナトリウムを、KO源として炭酸カリウムを、CuO源として酸化第二銅を、MnO源として二酸化マンガンを、MgO源として炭酸マグネシウムを、CaO源として炭酸カルシウムを、SrO源として炭酸ストロンチウムを、BaO源として炭酸バリウムを要した。これらを所望の低融点ガラス組成となるべく調合したうえで、白金ルツボに投入し、電気加熱炉内で1000〜1300℃、1〜2時間で加熱溶融して表1の実施例1〜6、表2の比較例1〜6に示す組成のガラスを得た。
(Production of low melting point glass mixed paste)
The fine silica sand as a SiO 2 source, a boric acid as a B 2 O 3 source, a zinc oxide as a ZnO source, lithium carbonate as Li 2 O source, sodium carbonate as Na 2 O source, potassium carbonate as K 2 O source Further, cupric oxide was required as the CuO source, manganese dioxide as the MnO 2 source, magnesium carbonate as the MgO source, calcium carbonate as the CaO source, strontium carbonate as the SrO source, and barium carbonate as the BaO source. After preparing these as a desired low melting glass composition, it puts into a platinum crucible and heat-melts in 1000-1300 degreeC and 1-2 hours in an electric heating furnace, Examples 1-6 of Table 1, Table 1 The glass of the composition shown in 2 comparative examples 1-6 was obtained.

Figure 2006111512
Figure 2006111512

Figure 2006111512
Figure 2006111512

ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1〜3μm、最大粒径10μm未満の粉末状に整粒した。   A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was formed into flakes with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 1 to 3 μm and a maximum particle size of less than 10 μm.

次いで、αテルピネオールとブチルカルビトールアセテートからなるペーストオイルにバインダーとしてのエチルセルロースと上記ガラス粉を混合し、粘度、300±50ポイズ程度のペーストを調製した。   Next, paste oil composed of α-terpineol and butyl carbitol acetate was mixed with ethyl cellulose as a binder and the above glass powder to prepare a paste having a viscosity of about 300 ± 50 poise.

(絶縁性被膜の形成)
厚み2〜3mm、サイズ100mm角のソーダ石灰系ガラス基板に、焼付け後の膜厚が約20μmとなるべく勘案して、アプリケーターを用いて前記ペーストを塗布し、塗布層を形成した。
(Formation of insulating coating)
The paste was applied using an applicator to a soda-lime glass substrate having a thickness of 2 to 3 mm and a size of 100 mm square so that the film thickness after baking was about 20 μm, thereby forming an application layer.

次いで、乾燥後、600℃以下で10〜60分間焼成することにより、クリアな誘電体層を形成させた。   Next, after drying, a clear dielectric layer was formed by firing at 600 ° C. or lower for 10 to 60 minutes.

得られた試料について、肉眼および顕微鏡により観察し、従来よりも黄変現象が格段に抑制されたと判断できたものについては○を、それ以外については×とした。   The obtained sample was observed with the naked eye and a microscope, and it was judged that the yellowing phenomenon was markedly suppressed as compared with the conventional sample, and the others were marked with x.

透過率の変動については、焼成温度を30℃変動させたときの透過率(550nm)の変動が4%以下のものを○、それ以外を×とした。   Regarding the variation in transmittance, the transmittance (550 nm) variation when the firing temperature was varied by 30 ° C. was 4% or less, and the others were evaluated as x.

なお、軟化点は、リトルトン粘度計を用い、粘度係数η=107.6 に達したときの温度とした。また、熱膨張係数は、熱膨張計を用い、5℃/分で昇温したときの30〜300℃での伸び量から求めた。 The softening point was the temperature when the viscosity coefficient η = 10 7.6 was reached using a Littleton viscometer. Moreover, the thermal expansion coefficient was calculated | required from the amount of elongation at 30-300 degreeC when it heated up at 5 degree-C / min using the thermal dilatometer.

(結果)
低融点ガラス組成および、各種試験結果を表に示す。
(result)
The low melting point glass composition and various test results are shown in the table.

表1における実施例1〜6に示すように、本発明の組成範囲内においては、黄変の発現が従来と比べて格段に抑制されていた。   As shown in Examples 1 to 6 in Table 1, within the composition range of the present invention, the occurrence of yellowing was significantly suppressed as compared with the conventional case.

他方、本発明の組成範囲を外れる表2における比較例1〜6は、従来と同様、黄変の発現が顕著である、或いは、好ましい物性値を示さず、PDP等の基板被覆用低融点ガラスとして適用し得ない。   On the other hand, Comparative Examples 1 to 6 in Table 2 outside the compositional range of the present invention show remarkable yellowing as in the prior art, or do not show preferable physical properties, and low melting point glass for substrate coating such as PDP. As inapplicable.

Claims (7)

透明絶縁性の無鉛低融点ガラスにおいて、重量%でSiOを7〜20、Bを32〜50、ZnOを25〜42、RO(LiO+NaO+KO)を7〜20、CuOを0.1〜2、RO(MgO+CaO+SrO+BaO)を0〜10含むことを特徴とするSiO−B−ZnO−RO−CuO系無鉛低融点ガラス。 7 in the transparent insulating lead-free low-melting-point glass, SiO 2 7-20 weight%, B 2 O 3 and 32-50, the ZnO 25 to 42, R 2 O and (Li 2 O + Na 2 O + K 2 O) 20. A SiO 2 —B 2 O 3 —ZnO—R 2 O—CuO-based lead-free low-melting glass characterized by containing 0.1 to 2 CuO and 0 to 10 RO (MgO + CaO + SrO + BaO). /ZnOの重量比が0.85以上、2以下であることを特徴とする請求項1に記載の無鉛低融点ガラス。 The lead-free low-melting glass according to claim 1, wherein the weight ratio of B 2 O 3 / ZnO is 0.85 or more and 2 or less. (B+RO)/SiOの重量比が2以上、7以下であることを特徴とする請求項1又は請求項2に記載の無鉛低融点ガラス。 The lead-free low-melting glass according to claim 1 or 2, wherein a weight ratio of (B 2 O 3 + R 2 O) / SiO 2 is 2 or more and 7 or less. 重量%で、Co又はMnを酸化物として0〜2含むことを特徴とする請求項1乃至3のいずれかに記載の無鉛低融点ガラス。 The lead-free low-melting glass according to any one of claims 1 to 3, wherein the lead-free low-melting glass contains Co or Mn as an oxide in an amount of 0 to 2% by weight. 30℃〜300℃における熱膨張係数が(65〜95)×10−7/℃、軟化点が500℃以上600℃以下であることを特徴とする請求項1乃至4のいずれかに記載の無鉛低融点ガラス。 The lead-free lead according to any one of claims 1 to 4, wherein the coefficient of thermal expansion at 30 to 300 ° C is (65 to 95) x 10 -7 / ° C, and the softening point is 500 to 600 ° C. Low melting glass. 請求項1乃至5のいずれかの無鉛低融点ガラスを使っていることを特徴とする電子材料用基板。 6. A substrate for electronic materials, wherein the lead-free low-melting glass according to claim 1 is used. 請求項1乃至5のいずれかの無鉛低融点ガラスを使っていることを特徴とするPDP用パネル。
6. A PDP panel using the lead-free low-melting glass according to claim 1.
JP2004326809A 2004-06-02 2004-11-10 Lead-free glass having low melting point Pending JP2006111512A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004326809A JP2006111512A (en) 2004-09-14 2004-11-10 Lead-free glass having low melting point
KR1020067017051A KR20070009992A (en) 2004-06-02 2005-05-23 Lead-free glass having low melting point
PCT/JP2005/009356 WO2005118500A1 (en) 2004-06-02 2005-05-23 Lead-free glass having low melting point
TW094118018A TW200602281A (en) 2004-06-02 2005-06-01 Lead-free low melting point glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004266948 2004-09-14
JP2004326809A JP2006111512A (en) 2004-09-14 2004-11-10 Lead-free glass having low melting point

Publications (1)

Publication Number Publication Date
JP2006111512A true JP2006111512A (en) 2006-04-27

Family

ID=36380335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326809A Pending JP2006111512A (en) 2004-06-02 2004-11-10 Lead-free glass having low melting point

Country Status (1)

Country Link
JP (1) JP2006111512A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099916A1 (en) * 2007-02-16 2008-08-21 Central Glass Company, Limited Lead-free low-melting-point glass
JP2009234816A (en) * 2008-03-26 2009-10-15 Nippon Electric Glass Co Ltd Sealing material for organic el display
JP2009256116A (en) * 2008-04-14 2009-11-05 Nippon Electric Glass Co Ltd Glass composition for sealing and sealing material
JP2010042962A (en) * 2008-08-14 2010-02-25 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel
JP2010280538A (en) * 2009-06-05 2010-12-16 Nippon Electric Glass Co Ltd Glass composition for forming insulating layer and insulation layer forming material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099916A1 (en) * 2007-02-16 2008-08-21 Central Glass Company, Limited Lead-free low-melting-point glass
JP2009234816A (en) * 2008-03-26 2009-10-15 Nippon Electric Glass Co Ltd Sealing material for organic el display
JP2009256116A (en) * 2008-04-14 2009-11-05 Nippon Electric Glass Co Ltd Glass composition for sealing and sealing material
JP2010042962A (en) * 2008-08-14 2010-02-25 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel
JP2010280538A (en) * 2009-06-05 2010-12-16 Nippon Electric Glass Co Ltd Glass composition for forming insulating layer and insulation layer forming material

Similar Documents

Publication Publication Date Title
JP2006298733A (en) Lead-free low melting glass
JP5309629B2 (en) Lead-free glass composition having acid resistance
JP2008069033A (en) Lead-free low melting point glass
JP5957847B2 (en) Bismuth glass composition
JP2008019148A (en) Lead free low melting point glass
JP2006169047A (en) Lead-free low melting point glass
JP2007070196A (en) Lead-free low melting-point glass
JP4765269B2 (en) Lead-free low melting point glass
JP4774746B2 (en) Lead-free low melting point glass
JP2005231923A (en) Lead-free low melting glass
JP2006151763A (en) Lead-free low melting glass
JP4892860B2 (en) Lead-free low melting point glass
JP2008019147A (en) Lead-free low-melting glass
JP2006111512A (en) Lead-free glass having low melting point
JP2008201596A (en) Lead-free low-melting-point glass
JP2007008764A (en) Unleaded low-melting glass
JP2006117440A (en) Lead-free glass having low melting point
JP2008201597A (en) Lead-free low-melting-point glass
WO2005118500A1 (en) Lead-free glass having low melting point
JP2007001782A (en) Low melting point glass
JP2008069032A (en) Lead-free low melting point glass
JP2008201595A (en) Lead-free low-melting-point glass
JP2009120407A (en) Lead-free low-melting glass
JP2007070198A (en) Low melting-point glass
JP2009084137A (en) Lead-free low-melting glass

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424