JP2007008764A - Unleaded low-melting glass - Google Patents

Unleaded low-melting glass Download PDF

Info

Publication number
JP2007008764A
JP2007008764A JP2005191729A JP2005191729A JP2007008764A JP 2007008764 A JP2007008764 A JP 2007008764A JP 2005191729 A JP2005191729 A JP 2005191729A JP 2005191729 A JP2005191729 A JP 2005191729A JP 2007008764 A JP2007008764 A JP 2007008764A
Authority
JP
Japan
Prior art keywords
glass
yellowing
lead
cuo
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191729A
Other languages
Japanese (ja)
Inventor
Jun Hamada
潤 濱田
Naoya Hayakawa
直也 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2005191729A priority Critical patent/JP2007008764A/en
Publication of JP2007008764A publication Critical patent/JP2007008764A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unleaded low-melting glass which is restrained in yellowing in silver reaction, and is high in the transmissivity of visible light, in the development of electronic material substrates typified by a plasma display panel. <P>SOLUTION: This SiO<SB>2</SB>-B<SB>2</SB>O<SB>3</SB>-ZnO-R<SB>2</SB>O unleaded low-melting glass contains 8-20 wt% SiO<SB>2</SB>, 16-32 wt% B<SB>2</SB>O<SB>3</SB>, 37-52 wt% ZnO, 10-15 wt% R<SB>2</SB>O (Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O), 0-2 wt% CuO, 0-3 wt% La<SB>2</SB>O<SB>3</SB>, 0-2 wt% CeO<SB>2</SB>, 0-1 wt% CoO, and 0-1 wt% MnO<SB>2</SB>, but 0.1-3 wt% (CuO+La<SB>2</SB>O<SB>3</SB>+CeO<SB>2</SB>+CoO+MnO<SB>2</SB>). It has a coefficient of thermal expansion at 30-300°C of (65-90)×10<SP>-7</SP>/°C and a softening point of not lower than 500°C but not higher than 600°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマディスプレイパネル、液晶表示パネル、エレクトロルミネッセンスパネル、蛍光表示パネル、エレクトロクロミック表示パネル、発光ダイオード表示パネル、ガス放電式表示パネル等に代表される電子材料基板用の絶縁性被膜材料及び封着材料として用いられる低融点ガラスに関する。   The present invention relates to an insulating coating material for an electronic material substrate typified by a plasma display panel, a liquid crystal display panel, an electroluminescence panel, a fluorescent display panel, an electrochromic display panel, a light emitting diode display panel, a gas discharge display panel, and the like. The present invention relates to a low melting point glass used as a sealing material.

近年の電子部品の発達に伴い、プラズマディスプレイパネル、液晶表示パネル、エレクトロルミネッセンスパネル、蛍光表示パネル、エレクトロクロミック表示パネル、発光ダイオード表示パネル、ガス放電式表示パネル等、多くの種類の表示パネルが開発されている。その中でも、プラズマディスプレイパネル(以下、PDPと略す)が薄型かつ大型の平板型カラー表示装置として注目を集めている。PDPにおいては、表示面として使用される前面基板と背面基板の間に多くのセルを有し、そのセル中でプラズマ放電させることにより画像が形成される。このセルは、隔壁で区画形成されており、画像を形成する各画素での表示状態を制御するため、各画素単位に電極が形成されている。   With the recent development of electronic components, many types of display panels such as plasma display panels, liquid crystal display panels, electroluminescence panels, fluorescent display panels, electrochromic display panels, light emitting diode display panels, and gas discharge display panels have been developed. Has been. Among them, a plasma display panel (hereinafter abbreviated as PDP) is attracting attention as a thin and large flat color display device. In the PDP, a large number of cells are provided between a front substrate and a rear substrate used as a display surface, and an image is formed by performing plasma discharge in the cells. This cell is partitioned by partition walls, and an electrode is formed in each pixel unit in order to control the display state in each pixel forming an image.

このプラズマディスプレイパネルの前面ガラス板には、プラズマを放電させるための電極が形成され、電極として細い線状の銀が多く使われている。その電極の周りには、透明度の高い絶縁材料が配されている。この絶縁材料は、プラズマ耐久性に優れており、かつ透明であることが好ましい。このため、絶縁材料としては誘電体ガラスが使われていることが多い。またこの誘電体ガラスには、工程上、当然基体となるガラス板より低い融点が求められるため、低融点ガラスが使用される。   An electrode for discharging plasma is formed on the front glass plate of the plasma display panel, and thin linear silver is often used as the electrode. A highly transparent insulating material is disposed around the electrode. This insulating material is preferably excellent in plasma durability and transparent. For this reason, dielectric glass is often used as an insulating material. The dielectric glass is naturally required to have a melting point lower than that of the glass plate serving as the substrate in the process, and therefore low melting point glass is used.

しかしながら、従来の低融点誘電体ガラスでは、450〜600℃といった低温焼成では、誘電体ガラスとバス電極の銀が反応して誘電体ガラスが黄色に着色(黄変)する現象が生じ、高透過率が得られないという大きな問題があった。   However, in the conventional low melting point dielectric glass, when firing at a low temperature of 450 to 600 ° C., the dielectric glass reacts with the silver of the bus electrode and the dielectric glass is colored yellow (yellowing), resulting in high transmission. There was a big problem that the rate could not be obtained.

この黄変に関しては、ガラス成分を調整することにより解決しようとする種々の公知技術が存在する。SiO、Al等を必須成分とし、例えば、PbOと
CuOの含有量を限定し、Cuによって銀の拡散を防ごうとしたプラズマディスプレイ用材料(例えば、特許文献1参照)、またCuOの他にさらにSrOを加えることで同様の効果を得、BaO+SrO+MgOの含有量を限定したプラズマディスプレイ用材料(例えば、特許文献2参照)、BaO+CaO+Biの含有量を限定したプラズマディスプレイ用材料(例えば、特許文献3参照)、SiO、B、ZnO、Bi、BaO、Alの含有量を限定したプラズマディスプレイ用材料(例えば、特許文献4参照)、が開示されている。
特開2001−52621号公報 特開2001−80934号公報 特開2001−48577号公報 特開2003−226549号公報
Regarding this yellowing, there are various known techniques to be solved by adjusting the glass component. A material for plasma display which contains SiO 2 , Al 2 O 3, etc. as essential components, for example, limits the contents of PbO and CuO, and prevents diffusion of silver by Cu (for example, see Patent Document 1), and CuO In addition to the above, the same effect can be obtained by further adding SrO, and a material for plasma display in which the content of BaO + SrO + MgO is limited (see, for example, Patent Document 2), and a material for plasma display in which the content of BaO + CaO + Bi 2 O 3 is limited ( For example, see Patent Document 3), and materials for plasma display (see, for example, Patent Document 4) with limited contents of SiO 2 , B 2 O 3 , ZnO, Bi 2 O 3 , BaO, and Al 2 O 3 are disclosed. Has been.
JP 2001-52621 A JP 2001-80934 A JP 2001-48577 A JP 2003-226549 A

従来の誘電体材料(絶縁材料)では、ガラスと銀電極が反応して誘電体層が黄色に着色(黄変)する現象が生じ、可視光透過率が低下するという問題がある。この黄変現象に対する対応は難しく、まだ市場が望むレベルまでは対応できていない。   In the conventional dielectric material (insulating material), there is a problem that a phenomenon occurs in which the dielectric layer is colored yellow (yellowing) due to the reaction between the glass and the silver electrode, and the visible light transmittance is lowered. It is difficult to respond to this yellowing phenomenon, and it has not yet been able to respond to the level desired by the market.

また従来、低融点ガラス、例えば基板被覆用低融点ガラスには鉛系のガラスが採用されてきた。鉛成分はガラスを低融点とするうえで重要な成分ではあるものの、人体や環境に与える弊害が大きく、近年その採用を避ける趨勢にあり、PDPを始めとする電子材料では無鉛化が検討されている。   Conventionally, lead glass has been employed for low melting glass, for example, low melting glass for coating a substrate. Although the lead component is an important component for making the glass have a low melting point, it has a great detrimental effect on the human body and the environment. In recent years, there is a tendency to avoid its use. Yes.

すなわち、特開2001−52621号公報、特開2001−80934号公報、及び特開2001−48577号公報は、黄変に対してはかなりの改良が認められるが、鉛を含んでいるという基本的な問題がある。さらに、特開2003−226549号公報は、鉛を含んでおらず、黄変に対してかなりの改良が認められるが、鉛と同様に環境の見地から採用を避けられる趨勢のあるビスマスを含んでいる。   That is, Japanese Patent Application Laid-Open Nos. 2001-52621, 2001-80934, and 2001-48577 show a considerable improvement against yellowing, but the basics that lead is contained. There is a problem. Furthermore, JP 2003-226549 A does not contain lead, and a considerable improvement against yellowing is recognized, but as well as lead, it contains bismuth that tends to be avoided from an environmental standpoint. Yes.

本発明は、透明絶縁性の無鉛低融点ガラスにおいて、重量%でSiOを8〜20、Bを16〜32、ZnOを37〜52、RO(LiO+NaO+KO)を10〜15、CuOを0〜2、Laを0〜3、CeOを0〜2、CoOを0〜1、MnOを0〜1かつ(CuO+La+CeO+CoO+MnO)を0.1〜3含むことを特徴とするSiO−B−ZnO−RO系無鉛低融点ガラスである。 The present invention is a transparent insulating lead-free low melting point glass in which 8 to 20% by weight, 16 to 32 B 2 O 3 , 37 to 52 ZnO, and R 2 O (Li 2 O + Na 2 O + K 2 O) by weight%. ) 10-15, 0-2 and CuO, La 2 O 3 and 0 to 3, CeO 2 0 to 2, 0-1 and CoO, the MnO 2 0-1 and (CuO + La 2 O 3 + CeO 2 + CoO + MnO 2 ) 0.1 to 3 is a SiO 2 —B 2 O 3 —ZnO—R 2 O-based lead-free low melting point glass.

また、30℃〜300℃における熱膨張係数が(65〜90)×10−7/℃、軟化点が500℃以上600℃以下である上記の無鉛低融点ガラスである。 Moreover, it is said lead-free low melting glass whose thermal expansion coefficient in 30 degreeC-300 degreeC is (65-90) x10 < -7 > / degreeC, and a softening point is 500 degreeC or more and 600 degrees C or less.

さらに、上記の無鉛低融点ガラスを使っている電子材料用基板である。   Furthermore, it is an electronic material substrate using the above lead-free low-melting glass.

さらにまた、上記の無鉛低融点ガラスを使っているPDP用パネルである。   Still further, the present invention is a PDP panel using the above lead-free low melting point glass.

本発明によれば、ガラスと銀電極の反応による黄変現象に対して好適であり、無鉛であるということから環境にも配慮した低融点ガラスを得ることができる。   According to the present invention, it is suitable for the yellowing phenomenon due to the reaction between the glass and the silver electrode, and since it is lead-free, it is possible to obtain a low melting glass considering the environment.

本発明は、透明絶縁性の無鉛低融点ガラスにおいて、重量%でSiOを8〜20、Bを16〜32、ZnOを37〜52、RO(LiO+NaO+KO)を10〜15、CuOを0〜2、Laを0〜3、CeOを0〜2、CoOを0〜1、MnOを0〜1かつ(CuO+La+CeO+CoO+MnO)を0.1〜3含むことを特徴とするSiO−B−ZnO−RO系無鉛低融点ガラスである。 The present invention relates to transparent insulating lead-free low-melting glass in which SiO 2 is 8 to 20, B 2 O 3 is 16 to 32, ZnO is 37 to 52, and R 2 O (Li 2 O + Na 2 O + K 2 O). ) 10-15, 0-2 and CuO, La 2 O 3 and 0 to 3, CeO 2 0 to 2, 0-1 and CoO, the MnO 2 0-1 and (CuO + La 2 O 3 + CeO 2 + CoO + MnO 2 ) 0.1 to 3 is a SiO 2 —B 2 O 3 —ZnO—R 2 O-based lead-free low melting point glass.

SiOはガラス形成成分であり、安定したガラスを形成することができるものであるとともにガラス焼成時の流動性を制御する成分である。8%(重量%、以下においても同様である)未満では上記作用を発揮し得ず、20%を越えると、ガラスの軟化点が上昇し、成形性、作業性が困難となる。より好ましくは、9〜18%の範囲である。 SiO 2 is a glass forming component that can form a stable glass and is a component that controls fluidity during glass firing. If the amount is less than 8% (weight percent, the same applies to the following), the above-described effect cannot be exhibited. If the amount exceeds 20%, the softening point of the glass increases, and the formability and workability become difficult. More preferably, it is 9 to 18% of range.

はSiO同様のガラス形成成分であり、ガラス溶融を容易とし、ガラスの熱膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与え、SiOとともにガラスの誘電率を低下させるものである。ガラス中に16〜32%で含有させるのが好ましい。16%未満ではガラスの流動性が不充分となり、焼結性が損なわれる。他方32%を越えると黄変が発現しはじめる。より好ましくは20〜30%の範囲である。 B 2 O 3 is a glass-forming component similar to SiO 2 , facilitates glass melting, suppresses an excessive increase in the thermal expansion coefficient of the glass, and imparts moderate fluidity to the glass during baking, together with SiO 2 It decreases the dielectric constant. It is preferable to make it contain at 16 to 32% in glass. If it is less than 16%, the fluidity of the glass becomes insufficient and the sinterability is impaired. On the other hand, when it exceeds 32%, yellowing begins to appear. More preferably, it is 20 to 30% of range.

ZnOはガラスの軟化点を下げ、熱膨張係数を適宜範囲に調整するもので、ガラス中に37〜52%の範囲で含有させるのが好ましい。37%未満では上記作用を発揮し得ず、他方52%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは38〜50%の範囲である。   ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, and is preferably contained in the glass in a range of 37 to 52%. If it is less than 37%, the above-mentioned effect cannot be exhibited. More preferably, it is 38 to 50% of range.

O(LiO、NaO、KO)はガラスの軟化点を下げ、適度に流動性を与え、熱膨張係数を適宜範囲に調整するものであり、10〜15%の範囲で含有させることが好ましい。10%未満では上記作用を発揮し得ず、他方20%を越えると熱膨張係数を過度に上昇させる。より好ましくは12〜14%の範囲である。 R 2 O (Li 2 O, Na 2 O, K 2 O) lowers the softening point of glass, imparts moderate fluidity, and adjusts the thermal expansion coefficient to an appropriate range, and is in the range of 10 to 15%. It is preferable to contain. If it is less than 10%, the above-mentioned action cannot be exhibited. On the other hand, if it exceeds 20%, the thermal expansion coefficient is excessively increased. More preferably, it is 12 to 14% of range.

CuOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、2%以下の範囲で含有させることが好ましい。2%を越えるとガラスが着色し、透明性が低下する。より好ましくは0.2〜1%の範囲である。   CuO has the effect of relaxing the silver electrode used as the bus electrode wire and the dielectric layer reacting to diffuse silver in the dielectric layer and causing silver colloid coloration (yellowing). It is preferable to make it contain in the range. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, it is 0.2 to 1% of range.

Laはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、3%以下の範囲で含有させることが好ましい。3%を越えるとガラスが不安定になる。より好ましくは0.2〜1%の範囲である。 La 2 O 3 has the effect of mitigating silver colloid coloration (yellowing) caused by the reaction between the silver electrode used as the bus electrode line and the dielectric layer, and the diffusion of silver into the dielectric layer. It is preferable to make it contain in the range of% or less. If it exceeds 3%, the glass becomes unstable. More preferably, it is 0.2 to 1% of range.

CeOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、2%以下の範囲で含有させることが好ましい。2%を越えるとガラスが着色し、透明性が低下する。より好ましくは0.2〜1%の範囲である。 CeO 2 has the effect of mitigating silver colloid coloration (yellowing) due to the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer, which is less than 2% It is preferable to contain in the range. If it exceeds 2%, the glass is colored and the transparency is lowered. More preferably, it is 0.2 to 1% of range.

CoOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、1%以下の範囲で含有させることが好ましい。1%を越えるとガラスが着色し、透明性が低下する。より好ましくは0.1〜0.7%の範囲である。   CoO has the effect of relaxing the silver electrode used as the bus electrode wire and the dielectric layer reacting to diffuse silver into the dielectric layer and causing silver colloid coloration (yellowing), and is less than 1%. It is preferable to make it contain in the range. If it exceeds 1%, the glass is colored and the transparency is lowered. More preferably, it is 0.1 to 0.7% of range.

MnOはバス電極線として使われる銀電極と誘電体層とが反応し、誘電体層中に銀が拡散して、銀コロイド発色(黄変)するのを緩和させる効果があり、1%以下の範囲で含有させることが好ましい。1%を越えるとガラスが着色し、透明性が低下する。より好ましくは0.2〜0.8%の範囲である。 MnO 2 has the effect of mitigating silver colloid coloration (yellowing) due to the reaction between the silver electrode used as the bus electrode wire and the dielectric layer, and the diffusion of silver into the dielectric layer. It is preferable to contain in the range. If it exceeds 1%, the glass is colored and the transparency is lowered. More preferably, it is 0.2 to 0.8% of range.

CuO、La3、CeO2、CoO、MnOこれらは同様の効果をもつので、合計にも適正な範囲があり、それは0.1〜3.0%である
またアルカリ土類金属であるRO(MgO+CaO+SrO+BaO)を適宜加えてもよい。
CuO, La 2 O 3, CeO 2, CoO, MnO 2 Since these have the same effect, the sum is also in the proper range, which is 0.1 to 3.0% and is also an alkaline earth metal RO (MgO + CaO + SrO + BaO) may be added as appropriate.

この他にも、一般的な酸化物で表すIn、TiO、V、Fe、SnO、TeOなどを加えてもよい。 In addition, In 2 O 3 , TiO 2 , V 2 O 5 , Fe 2 O 3 , SnO 2 , TeO 2, and the like represented by a general oxide may be added.

実質的にPbOを含まないことにより、人体や環境に与える影響を皆無とすることができる。ここで、実質的にPbOを含まないとは、PbOがガラス原料中に不純物として混入する程度の量を意味する。例えば、低融点ガラス中における0.3wt%以下の範囲であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与える影響は殆どなく、実質的にPbOの影響を受けないことになる。   By substantially not containing PbO, it is possible to eliminate the influence on the human body and the environment. Here, “substantially free of PbO” means an amount of PbO mixed as an impurity in the glass raw material. For example, if it is in the range of 0.3 wt% or less in the low-melting glass, there is almost no influence on the adverse effects described above, that is, the influence on the human body and the environment, the insulation characteristics, etc., and it is not substantially affected by PbO. Become.

30℃〜300℃における熱膨張係数が(65〜90)×10−7/℃、軟化点が500℃以上600℃以下である上記の無鉛低融点ガラスである。熱膨張係数が(65〜90)×10−7/℃を外れると厚膜形成時に被膜の剥離、基板の反り等の問題が発生する。好ましくは、(75〜85)×10−7/℃の範囲である。また、軟化点が600℃を越えると基板の軟化変形などの問題が発生する。好ましくは、520℃以上580℃以下である。 The lead-free low melting point glass having a thermal expansion coefficient of (65 to 90) × 10 −7 / ° C. and a softening point of 500 ° C. or more and 600 ° C. or less at 30 ° C. to 300 ° C. When the thermal expansion coefficient is outside (65 to 90) × 10 −7 / ° C., problems such as peeling of the coating film and warping of the substrate occur when the thick film is formed. Preferably, it is in the range of (75 to 85) × 10 −7 / ° C. If the softening point exceeds 600 ° C., problems such as softening deformation of the substrate occur. Preferably, they are 520 degreeC or more and 580 degrees C or less.

さらにまた、上記の低融点ガラスを使っている電子材料用基板である。上述の低融点ガラスを使うことにより、黄変が抑制された電子材料用基板とすることができる。   Furthermore, it is a substrate for electronic materials using the low melting point glass. By using the low-melting glass described above, a substrate for electronic material in which yellowing is suppressed can be obtained.

さらにまた、上記の低融点ガラスを使っているPDP用パネルである。上述の低融点ガラスを使うことにより、黄変が抑制されたPDP用パネルとすることができる。   Furthermore, the present invention is a PDP panel using the above-mentioned low melting point glass. By using the low melting point glass described above, a PDP panel in which yellowing is suppressed can be obtained.

本発明は銀との反応による黄変現象に対応する低融点ガラスの開示であり、その対象を銀電極に限定しているわけではない。   The present invention is a disclosure of a low-melting glass corresponding to the yellowing phenomenon due to reaction with silver, and the object is not limited to the silver electrode.

なお、本発明の無鉛低融点ガラスは、例えばPDP用ガラスの前面板でも背面板でも使用することができる。背面板として使用するときは、封着材、被覆材として用いられ、粉末化して使用されることが多い。この粉末化されたガラスは、必要に応じてムライトやアルミナに代表される低膨張セラミックスフィラー、耐熱顔料等と0.6{ガラス/(ガラス+フィラー)重量比}以上で混合され、次に有機オイルと混練してペースト化されるのが一般的である。   The lead-free low-melting glass of the present invention can be used, for example, on the front plate or back plate of PDP glass. When used as a back plate, it is used as a sealing material or a covering material, and is often used after being powdered. This powdered glass is mixed with a low expansion ceramic filler represented by mullite or alumina, a heat-resistant pigment, etc. at a ratio of 0.6 {glass / (glass + filler) weight ratio} or more, and then organically. Generally, it is kneaded with oil to form a paste.

ガラス基板としては透明なガラス基板、特にソーダ石灰シリカ系ガラス、または、それに類似するガラス(高歪点ガラス)、あるいは、アルカリ分の少ない(又は殆ど無い)アルミノ石灰ホウ珪酸系ガラスが多用されている。   As the glass substrate, a transparent glass substrate, particularly soda-lime-silica glass, or similar glass (high strain point glass), or an alumino-lime borosilicate glass with little (or almost no) alkali content is used. Yes.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(低融点ガラス混合ペーストの作製)
SiO源として微粉珪砂を、B源としてほう酸を、ZnO源として亜鉛華を、LiO源として炭酸リチウムを、NaO源として炭酸ナトリウムを、KO源として炭酸カリウムを、CuO源として酸化第二銅を、CeO源として酸化セリウムを、La源として酸化ランタンを、MnO源として二酸化マンガンを、CoO源として酸化コバルトを要した。これらを所望の低融点ガラス組成となるべく調合したうえで、白金ルツボに投入し、電気加熱炉内で1000〜1300℃、1〜2時間で加熱溶融して表1の実施例1〜5、表2の比較例1〜5に示す組成のガラスを得た。
(Production of low melting point glass mixed paste)
The fine silica sand as a SiO 2 source, a boric acid as a B 2 O 3 source, a zinc oxide as a ZnO source, lithium carbonate as Li 2 O source, sodium carbonate as Na 2 O source, potassium carbonate as K 2 O source Further, cupric oxide as a CuO source, cerium oxide as a CeO 2 source, lanthanum oxide as a La 2 O 3 source, manganese dioxide as a MnO 2 source, and cobalt oxide as a CoO source were required. After preparing these as a desired low melting-point glass composition, it puts into a platinum crucible and heat-melts in 1000-1300 degreeC and 1-2 hours in an electric heating furnace, Examples 1-5 of Table 1, Table 1 The glass of the composition shown in 2 comparative examples 1-5 was obtained.

Figure 2007008764
Figure 2007008764

Figure 2007008764
Figure 2007008764

ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1〜3μm、最大粒径10μm未満の粉末状に整粒した。   A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was made into flakes with a rapid cooling twin roll molding machine, and sized with a pulverizer into a powder having an average particle size of 1 to 3 μm and a maximum particle size of less than 10 μm.

次いで、αテルピネオールとブチルカルビトールアセテートからなるペーストオイルにバインダーとしてのエチルセルロースと上記ガラス粉を混合し、粘度、300±50ポイズ程度のペーストを調製した。   Next, paste oil composed of α-terpineol and butyl carbitol acetate was mixed with ethyl cellulose as a binder and the above glass powder to prepare a paste having a viscosity of about 300 ± 50 poise.

(絶縁性被膜の形成)
厚み2〜3mm、サイズ100mm角のソーダ石灰系ガラス基板に、焼付け後の膜厚が約20μmとなるべく勘案して、アプリケーターを用いて前記ペーストを塗布し、塗布層を形成した。
(Formation of insulating coating)
The paste was applied using an applicator to a soda-lime glass substrate having a thickness of 2 to 3 mm and a size of 100 mm square so that the film thickness after baking was about 20 μm, thereby forming an application layer.

次いで、乾燥後、600℃以下で10〜60分間焼成することにより、クリアな誘電体層を形成させた。   Next, after drying, a clear dielectric layer was formed by firing at 600 ° C. or lower for 10 to 60 minutes.

また、黄変評価は上記方法にて銀電極付きガラス基板上に誘電体ガラス層を形成させ、銀との反応を観察した。肉眼及び顕微鏡観察により、従来よりも黄変現象が格段に抑制されたと判断できたものについては○を、それ以外については×とした。   Moreover, yellowing evaluation formed the dielectric material glass layer on the glass substrate with a silver electrode by the said method, and observed the reaction with silver. The case where it was judged that the yellowing phenomenon was remarkably suppressed by the naked eye and microscopic observation was marked with ◯, and the others were marked with x.

なお、軟化点は、リトルトン粘度計を用い、粘度係数η=107.6 に達したときの温度とした。また、熱膨張係数は、熱膨張計を用い、5℃/分で昇温したときの30〜300℃での伸び量から求めた。 The softening point was the temperature when the viscosity coefficient η = 10 7.6 was reached using a Littleton viscometer. Moreover, the thermal expansion coefficient was calculated | required from the amount of elongation at 30-300 degreeC when it heated up at 5 degree-C / min using the thermal dilatometer.

(結果)
低融点ガラス組成および、各種試験結果を表に示す。
(result)
The low melting point glass composition and various test results are shown in the table.

表1における実施例1〜5に示すように、本発明の組成範囲内においては、黄変の発現が従来と比べて格段に抑制されていた。   As shown in Examples 1 to 5 in Table 1, within the composition range of the present invention, the occurrence of yellowing was significantly suppressed as compared with the conventional one.

他方、本発明の組成範囲を外れる表2における比較例1〜5は、従来と同様、黄変の発現が顕著である、或いは、好ましい物性値を示さず、PDP等の基板被覆用低融点ガラスとして適用し得ない。   On the other hand, Comparative Examples 1 to 5 in Table 2 outside the compositional range of the present invention show remarkable yellowing as in the prior art, or do not show preferable physical properties, and low melting point glass for substrate coating such as PDP. As inapplicable.

Claims (4)

透明絶縁性の無鉛低融点ガラスにおいて、重量%でSiOを8〜20、Bを16〜32、ZnOを37〜52、RO(LiO+NaO+KO)を10〜15、CuOを0〜2、Laを0〜3、CeOを0〜2、CoOを0〜1、MnOを0〜1かつ(CuO+La+CeO+CoO+MnO)を0.1〜3含むことを特徴とするSiO−B−ZnO−RO系無鉛低融点ガラス。 In transparent insulating lead-free low melting point glass, SiO 2 is 8 to 20, B 2 O 3 is 16 to 32, ZnO is 37 to 52, and R 2 O (Li 2 O + Na 2 O + K 2 O) is 10 to 10% by weight. 15, 0 to 2 for CuO, 0 to 3 for La 2 O 3 , 0 to 2 for CeO 2 , 0 to 1 for CoO, 0 to 1 for MnO 2 and 0 for (CuO + La 2 O 3 + CeO 2 + CoO + MnO 2 ). 1 to 3 containing SiO 2 —B 2 O 3 —ZnO—R 2 O-based lead-free low-melting glass. 30℃〜300℃における熱膨張係数が(65〜90)×10−7/℃、軟化点が500℃以上600℃以下であることを特徴とする請求項1又は請求項2に記載の無鉛低融点ガラス。 The coefficient of thermal expansion at 30 ° C to 300 ° C is (65 to 90) x 10 -7 / ° C, and the softening point is 500 ° C or higher and 600 ° C or lower. Melting point glass. 請求項1乃至3のいずれかの無鉛低融点ガラスを使っていることを特徴とする電子材料用基板。 A lead-free low-melting glass according to any one of claims 1 to 3 is used. 請求項1乃至3のいずれかの無鉛低融点ガラスを使っていることを特徴とするPDP用パネル。 4. A PDP panel using the lead-free low melting point glass according to claim 1.
JP2005191729A 2005-06-30 2005-06-30 Unleaded low-melting glass Pending JP2007008764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191729A JP2007008764A (en) 2005-06-30 2005-06-30 Unleaded low-melting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191729A JP2007008764A (en) 2005-06-30 2005-06-30 Unleaded low-melting glass

Publications (1)

Publication Number Publication Date
JP2007008764A true JP2007008764A (en) 2007-01-18

Family

ID=37747734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191729A Pending JP2007008764A (en) 2005-06-30 2005-06-30 Unleaded low-melting glass

Country Status (1)

Country Link
JP (1) JP2007008764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054199A1 (en) * 2007-10-24 2009-04-30 Nippon Electric Glass Co., Ltd. Dielectric material for plasma display panel
WO2009054198A1 (en) * 2007-10-24 2009-04-30 Nippon Electric Glass Co., Ltd. Dielectric material for plasma display panel
JPWO2008117797A1 (en) * 2007-03-27 2010-07-15 日本山村硝子株式会社 Lead-free glass composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008117797A1 (en) * 2007-03-27 2010-07-15 日本山村硝子株式会社 Lead-free glass composition
WO2009054199A1 (en) * 2007-10-24 2009-04-30 Nippon Electric Glass Co., Ltd. Dielectric material for plasma display panel
WO2009054198A1 (en) * 2007-10-24 2009-04-30 Nippon Electric Glass Co., Ltd. Dielectric material for plasma display panel
JP2009120472A (en) * 2007-10-24 2009-06-04 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel

Similar Documents

Publication Publication Date Title
JP2006298733A (en) Lead-free low melting glass
JP2008069033A (en) Lead-free low melting point glass
JP5309629B2 (en) Lead-free glass composition having acid resistance
US20030228471A1 (en) Lead-free low-melting glass
JP5957847B2 (en) Bismuth glass composition
JP2007070196A (en) Lead-free low melting-point glass
JP2008019148A (en) Lead free low melting point glass
JP2006169047A (en) Lead-free low melting point glass
WO2012073662A1 (en) Unleaded low-melting glass composition
JP4774746B2 (en) Lead-free low melting point glass
JP4765269B2 (en) Lead-free low melting point glass
JP2005231923A (en) Lead-free low melting glass
JP2007008764A (en) Unleaded low-melting glass
JP2006151763A (en) Lead-free low melting glass
JP2008019147A (en) Lead-free low-melting glass
JP2008201596A (en) Lead-free low-melting-point glass
JP4892860B2 (en) Lead-free low melting point glass
JP2006111512A (en) Lead-free glass having low melting point
JP2006117440A (en) Lead-free glass having low melting point
JP2008201597A (en) Lead-free low-melting-point glass
JP2008069032A (en) Lead-free low melting point glass
JP2009084137A (en) Lead-free low-melting glass
JP2007001782A (en) Low melting point glass
JP2008201595A (en) Lead-free low-melting-point glass
JP2007070198A (en) Low melting-point glass