WO2008032526A1 - Process for production of flexible sealing film and organic electroluminescent devices made by using the film - Google Patents

Process for production of flexible sealing film and organic electroluminescent devices made by using the film Download PDF

Info

Publication number
WO2008032526A1
WO2008032526A1 PCT/JP2007/066021 JP2007066021W WO2008032526A1 WO 2008032526 A1 WO2008032526 A1 WO 2008032526A1 JP 2007066021 W JP2007066021 W JP 2007066021W WO 2008032526 A1 WO2008032526 A1 WO 2008032526A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas barrier
substrate
barrier layer
organic
Prior art date
Application number
PCT/JP2007/066021
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Kojima
Keiichi Furukawa
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008534275A priority Critical patent/JPWO2008032526A1/en
Publication of WO2008032526A1 publication Critical patent/WO2008032526A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to a method for producing a flexible sealing film having a gas barrier layer that provides a new bonding method, and an organic material excellent in adhesion using the same and long-term storage in a high-temperature and high-humidity environment.
  • the present invention relates to an electo-luminescence element. Background art
  • ELD electoluminescence display
  • the components of ELD include inorganic electorium luminescence elements (inorganic EL elements) and organic electoric luminescence elements.
  • Inorganic electoric luminescence elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • An organic electoluminescence device has a configuration in which a light-emitting layer containing an organic light-emitting material that emits light is sandwiched between a cathode and an anode, and recombines by injecting electrons and holes into the light-emitting layer.
  • fluorescence / phosphorescence the emission of light
  • it since it is a self-luminous type, it has a wide viewing angle and is a thin-film type completely solid element with high visibility, so it has been attracting attention from the viewpoints of space saving and portability.
  • the organic-electric-luminescence element itself is designed to be extremely thin, it has the thickness of the sealing member and the space for placing the hygroscopic material. It is a mouth luminescence element.
  • a close-contact type sealing method for example, a method is known in which a metal oxide thin film is formed on a film substrate to form a film sealing substrate to which gas barrier properties are imparted.
  • Japanese Laid-Open Patent Publication No. 53-12953 discloses a film in which silicon oxide is deposited on a plastic film, and Japanese Laid-Open Patent Publication No. 58-217344, in which aluminum oxide is deposited, both of which have a water vapor transmission rate of lg / m 2. Has a water vapor barrier of about / day.
  • the adhesion between the base material and the sealing member deteriorates,
  • the gas barrier layer made of ceramic is particularly susceptible to the residual stress caused by the difference in thermal expansion coefficient.
  • the gas barrier layer was easily cracked, and peeling occurred between the base material and the gas barrier layer, or between the sealing film base material and the gas barrier layer.
  • the outside air containing oxygen and moisture enters the organic electroluminescence device from the location where the gas layer is peeled off, causing serious damage to the organic layer composed of organic light emitting materials. As a result!
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-45652
  • Patent Document 2 JP 2004-95503 A
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is adhesion between an organic electoluminescence device excellent in adhesion and long-term storage under a high-temperature and high-humidity environment, and a substrate used therefor.
  • the object is to provide a method for producing a flexible sealing film having a gas barrier layer having excellent properties.
  • a flexible seal having a gas barrier layer on the flexible film on the organic electroluminescence device member.
  • a stop film is provided, the substrate is a glass substrate, and the flexible sealing film has a gas barrier layer on at least the organic electroluminescence port luminescence side so as to surround the periphery of the organic electroluminescence device element.
  • the flexible sealing film in the inner peripheral area of the close contact area with the substrate is a gas.
  • the gas barrier layer of the flexible sealing film and the substrate are bonded to each other, and the gas sealing layer is provided on the flexible sealing film in the outer peripheral region of the close contact region with the substrate.
  • an organic electoluminescence device having an organic electoluminescence device on a substrate, a flexible seal having a gas barrier layer on the flexible film on the organic electroluminescence device.
  • a stop film is provided, the substrate is a flexible film substrate having a gas barrier layer, and the flexible sealing film and the substrate have a gas barrier layer at least on the organic electroluminescence port luminescence side;
  • Organic Electrum Luminescence Adhesive so as to surround the element member, and the flexible sealing film in the inner peripheral area of the contact area with the substrate is provided with a gas barrier layer.
  • the gas barrier layer and the substrate are bonded together, and the outer peripheral area of the contact area between the flexible sealing film and the substrate is the gas barrier layer.
  • Organic elect port Ruminessen scan element and the flexible film substrate and the flexible film not layer is provided is characterized in that it is bonded.
  • a method for producing a flexible sealing film comprising: arranging a plurality of mask members, and applying a gas barrier film forming material to form a plurality of gas barrier layers having gas noriality.
  • a gas containing a discharge gas and a gas barrier film-forming gas is supplied to a discharge space formed between the counter electrodes under atmospheric pressure or a pressure in the vicinity thereof.
  • the high-frequency voltage is applied to the discharge space from at least one of the electrodes to excite the gas, and the mask member having a plurality of flexible films and openings is exposed to the excited gas.
  • a method for producing a flexible sealing film having a gas barrier layer having excellent adhesion to a substrate, adhesion using the same, and excellent long-term storage in a high-temperature and high-humidity environment are provided.
  • An organic electoluminescence device could be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an organic-electric-luminescence panel constructed by a conventional sealing method.
  • FIG. 2 is a schematic cross-sectional view showing another example of a contact-type organic electricular luminescence panel configuration configured by a conventional sealing method.
  • FIG. 3 is a schematic view of an organic electoric luminescence element in a state in which a flexible sealing film having a gas barrier layer provided on the entire surface is superimposed on the organic electrifying luminescence element shown in FIG. .
  • FIG. 4 is a schematic view showing an example of a comparison composed of an organic electoluminescence device, a base material, and a flexible sealing film having a gas barrier layer.
  • FIG. 5 is a schematic cross-sectional view showing an example of the configuration of a flexible sealing film applied to the present invention.
  • FIG. 6 is a schematic view showing an example of the present invention composed of an organic electoluminescence device, a base material, and a flexible sealing film having a gas barrier layer according to the present invention.
  • FIG. 7 is a schematic cross-sectional view showing an example in which a gas barrier layer is continuously formed on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
  • FIG. 8 is a schematic view showing an example of a mask member having a plurality of predetermined openings.
  • FIG. 9 is a schematic view showing an example of a flexible sealing film sheet in which a plurality of gas noble layers are formed on a flexible film.
  • FIG. 10 is a schematic cross-sectional view showing another example of continuously forming a gas barrier layer on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
  • FIG. 11 is a schematic view showing an example of a bonding process between the flexible sealing film of the present invention and an organic electoluminescence device.
  • the inventor of the present invention has an organic electroluminescent element having an organic electroluminescent element on a glass substrate.
  • a flexible sealing film having a gas barrier layer is provided on the flexible film, and the flexible sealing film has a gas barrier layer at least on the organic-elect luminescence side, and is an organic-elect luminescence device
  • the adhesion portion which is an area where the flexible sealing film and the substrate are bonded
  • the flexible sealing film is provided with a gas barrier layer.
  • the flexible sealing film is not provided with a gas barrier layer, and it is possible to directly bond the flexible film and the board.
  • a gas barrier layer By further improving the adhesion between the flexible sealing film and the substrate, it was found that an organic electoluminescence device excellent in adhesion and long-term storage under high-temperature and high-humidity environments could be realized. It depends on you.
  • the flexible film is formed on the organic electroluminescence device member.
  • a flexible sealing film having a gas barrier layer is provided on the substrate.
  • the flexible sealing film and the substrate have a gas barrier layer on at least the organic electroluminescence port luminescence side, and surround the organic electroluminescence device member.
  • the flexible sealing film By adhering so as to surround, it prevents the ingress of moisture and oxygen into the organic-elect mouth luminescence element member, and furthermore, the inner peripheral area of the close contact area, which is the area where the flexible sealing film and the substrate are bonded
  • the flexible sealing film is provided with a gas barrier layer, and the flexible barrier film gas barrier layer and the substrate As for the outer peripheral area of the close contact area, neither the flexible sealing film nor the substrate is provided with a gas barrier layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an organic electoluminescence panel (hereinafter also referred to as an organic EL panel) configured by a conventional sealing method.
  • reference numeral 100 denotes an organic electoluminescence element member (hereinafter also referred to as an organic EL element member).
  • the organic EL element member 100 includes a first electrode 102, a hole transport layer (hole injection layer) 103, an organic compound layer (light emitting layer) 104, an electron injection layer 105,
  • the second electrode 106, the adhesive 107, and the sealing member 108 having a gas barrier layer on the surface facing the adhesive 107 are provided in this order.
  • 102a represents an external extraction electrode of the first electrode 102
  • 106a represents an external extraction electrode of the second electrode 106.
  • the organic electroluminescence device 1 shown in the figure is sealed through an adhesive layer 107 except for the tip of the external extraction electrode 102a of the first electrode 102 and the external extraction electrode 106a of the second electrode 106.
  • the structure is tightly sealed with member 108.
  • a glass substrate is mainly used as the substrate.
  • a hole injection layer (not shown) may be provided between the first electrode 102 and the hole transport layer 103. Further, an electron transport layer (not shown) may be provided between the second electrode 106, the organic compound layer (light emitting layer) 104, and the electron injection layer 105.
  • the layer configuration of the organic electroluminescence device shown in this figure is an example, and the following configuration can be given as the layer configuration of force S, and another typical organic electroluminescence device.
  • transparent electrode materials IT 2 O (a mixture of tin oxide and indium oxide), IZO (a mixture of zinc oxide and indium oxide), Zn 0, SnO, In 2 O and the like are known.
  • ITO electrodes can be used as transparent electrodes for liquid crystal displays and solar cells because they have a high light transmittance of 90% or more and a low sheet resistance of 10 ⁇ / mouth.
  • the IZO electrode has the advantages that a predetermined low resistance and resistance value can be obtained without heating the substrate during formation, and that the film surface is smoother than the ITO electrode.
  • an electrode such as aluminum or silver having a thickness of several to several tens of nm is provided on the organic layer, and the above-mentioned transparent electrode is further provided.
  • FIG. 2 is a schematic cross-sectional view showing another example of the structure of a contact type organic EL panel configured by a conventional sealing method.
  • reference numeral 109 denotes a light emitting portion where the first electrode 102 and the second electrode 106 overlap
  • 110 denotes a state in which the leading ends of the external extraction electrode 102a and the external extraction electrode 106a are exposed.
  • the light emitting part including the external extraction electrode 102a and a part of the external extraction electrode 106a An outer peripheral surface (portion indicated by hatching in the figure) is shown. The other symbols have the same meaning as in FIG.
  • FIG. 3 is a schematic view of an organic electoluminescence device in a state where a flexible sealing film having a gas noble layer provided on the entire surface is superimposed on the organic EL device member shown in FIG. It is.
  • FIG. 3 (a) is a schematic plan view of the organic electoluminescence device in which a flexible sealing film having a gas barrier layer is superimposed on the entire surface of the organic EL device member shown in FIG. Fig. 3 (b) is a schematic cross-sectional view along A-A 'in Fig. 3 (a).
  • FIG. 3 shows a state where a flexible sealing film 108 having a gas barrier layer 108a on the entire surface on which the adhesive 107 is disposed is overlaid on the organic EL element member.
  • the adhesive 107 disposed on the flexible sealing film 108 includes the light emitting portion 109 and the outer peripheral surface 110 in a state where the leading ends of the external extraction electrode 102a and the external extraction electrode 106a of the organic EL element member are exposed. It arrange
  • Reference numeral 107 a denotes an adhesive disposed on the flexible sealing film corresponding to the outer peripheral surface 110 of the light emitting unit 109.
  • the adhesive 107 a on the outer peripheral surface 110 is pressure-bonded via the flexible sealing film 108.
  • the organic electoluminescence device as described above.
  • the adhesive 107 and the gas barrier layer 108a or the adhesive layer is extremely thin when stored for a long time under high temperature and high humidity, cracking or peeling occurs between the film substrate 101 and the gas noble layer 108a. As a result, non-light emitting points called dark spots are generated.
  • FIG. 4 is a schematic view showing an example of comparison composed of an organic EL element member, a base material, and a flexible sealing film having a gas barrier layer.
  • FIG. 4 shows a first electrode, a hole transport layer (hole injection layer), an organic compound layer (light emitting layer), and a glass substrate 101 ′.
  • An organic EL layer group 110 composed of an electron injection layer, a second electrode, and the like is provided, and only a top surface thereof is sealed with a flexible sealing film 108 having a gas barrier layer 108a.
  • FIG. 4B shows a form in which the organic EL layer group 110 is sealed with a flexible sealing film 108 having a gas barrier layer 108a on the entire surface, as shown in FIG. ing.
  • FIGS. 4C and 4D show an organic EL layer group 110 provided on a flexible film substrate 101 having a gas barrier layer 108b on the entire surface. In this case, a configuration is shown in which the film is sealed with a flexible sealing film 108 having a gas barrier layer 108a on a part or the entire surface.
  • the gas prevention layer is provided only in the upper part of the organic EL layer group 110 in FIG. 4 (a), so that the gas prevention effect is not sufficient.
  • the gas barrier layer sufficient to cover the organic EL layer group 110 is provided.
  • the gas barrier layer Since the gas barrier layer is in contact with the outside at the edge of the substrate, the gas barrier layer deteriorates when stored for a long period of time under high temperature and high humidity by such a configuration, and the generation of cracks and the Peeling from the material and the flexible film occurs, and as a result, a desired gas barrier property cannot be obtained.
  • the gas barrier layer is not present in the area A having the gas barrier layer having a gas barrier property on the flexible film and around the gas barrier layer.
  • a flexible sealing film having region B is used and sealed with the substrate.
  • the close contact region E where the substrate and the flexible sealing film are in contact with each other includes a region having a gas barrier layer (inner peripheral region) and a region in which no gas barrier layer is present in the outer peripheral portion of the region (outer periphery). Region) at the same time.
  • the flexible sealing film according to the present invention includes a region A having a gas barrier layer having gas barrier properties on the flexible film, and a region B (where no gas barrier layer is present around the gas barrier layer). Specifically, it is composed of only a flexible film.
  • FIG. 5 is a schematic cross-sectional view showing an example of the configuration of the flexible sealing film applied to the present invention.
  • a flexible sealing film 108 according to the present invention has a region A in which a gas barrier layer 108a is provided inside the flexible film, and a region B that is a peripheral part of the gas barrier layer 108a. Is a configuration in which no gas noria layer is provided.
  • the gas barrier layer according to the present invention is a ceramic composed of an inorganic compound. It is preferable that the gas barrier layer is a single layer or a stack of layers with different properties (for example, carbon content, density, elastic modulus, etc.). It may be a body.
  • FIG. 6 is a schematic view showing an example of the present invention including an organic EL element member, a base material, and a flexible sealing film having a gas noble layer according to the present invention.
  • (a) in FIG. 6 is composed of a first electrode, a hole transport layer (hole injection layer), an organic compound layer (light emitting layer), an electron injection layer, a second electrode, and the like on a glass substrate lO.
  • the organic EL layer group 110 to be formed is provided, and the upper surface portion thereof is sealed with a flexible sealing film 108 composed of a region A and a region B having a gas barrier layer 108a as shown in FIG. Shows the form.
  • the gas barrier layer is present on the upper surface portion and both side surface portions of the organic EL layer group 110, and in the contact portion region E, the gas barrier layer is not present in all regions.
  • the substrate and the gas noble layer are in direct contact with each other or via an adhesive (not shown), and the outer peripheral region of the contact region E including the end of the base material is flexible with the base material. The film comes into contact with the adhesive film directly or via an adhesive (not shown).
  • the flexible film substrate has a vinylem substrate 101 force S and a gas noble layer 108b, and the flexible film substrate has a gas barrier layer force.
  • a ceramic layer composed of an inorganic compound is preferred.
  • FIGS. 6B and 6C show an organic EL layer group 110 provided on a flexible film substrate 101 having a gas barrier layer, and a gas barrier layer 108a as shown in FIG. The form sealed with the flexible sealing film 108 comprised from the area
  • the gas barrier layer is present on the upper surface portion and both side surface portions of the organic EL layer group 110, and in the adhesion portion region E, the gas barrier layer is not present in all regions. At least a part of the film including the edge is directly Alternatively, it is brought into contact with an adhesive (not shown).
  • the resin film constituting the flexible sealing film according to the present invention is not particularly limited, for example, a homopolymer such as ethylene, polypropylene, or butene or a copolymer or a copolymer.
  • PO Polyolefin resins
  • APO amorphous polyolefin resins
  • PET polyethylene terephthalate
  • PEEK Polyetheretherketone
  • PC polycarbonate
  • PVB polyvinyl butyrate
  • PAR polyarylate
  • EFE ethylene tetrafluoroethylene copolymer
  • PFA ethylene trifluoride chloride
  • FEP Tetrafluorinated styrene perfluorinated alkyl butyl ether copolymer
  • PVDF vinylidene fluoride
  • PVF vinylene fluoride
  • Fluorine resin such as coalescence (EPA) can be used.
  • a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, or a resin composition comprising a mercapto compound having an acrylate compound and a thiol group.
  • a photocurable resin such as a resin composition obtained by dissolving an oligomer, an epoxy acrylate, a urethane acrylate, a polyester acrylate, a polyether acrylate, etc. in a polyfunctional acrylate monomer, and a mixture thereof. is there.
  • a resin film obtained by laminating one or more of these resins by means of lamination, coating, or the like.
  • ZE NEX and ZEONOR manufactured by ZEON CORPORATION
  • ARTON manufactured by GIRL
  • amorphous cyclopolyolefin resin film Pureace of polycarbonate film (manufactured by Teijin Limited)
  • cellulose triacetate film Konica Minolta Tack KC4UX, KC8UX
  • Commercially available products such as (manufactured by Konica Minoltaput Co., Ltd.) can be preferably used.
  • the resin film is preferably transparent. Since the resin film is transparent and the gas barrier layer formed on the resin film is also transparent, a transparent gas-nore film can be obtained. It can also be applied as a substrate (abbreviated as an element).
  • the resin film according to the present invention can be produced by a conventionally known general method.
  • the unstretched base material is subjected to a known method such as -axial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching in the direction of base material flow (vertical axis).
  • a stretched substrate can be produced by stretching in a direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio is a force that can be appropriately selected according to the resin that is the raw material of the base material.
  • the resin film according to the present invention before forming the gas barrier film, the polymer film or the like, corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc.
  • the surface treatment may be performed.
  • the resin film is conveniently a long product wound up in a roll.
  • the thickness of the resin film differs depending on the intended use of the resulting gas barrier film, and cannot be specified unconditionally.However, when the gas barrier film is used for packaging, it is not particularly restricted and suitable as a packaging material. Therefore, it is preferable to be in the range of 3 to 400 111, especially 6 to 30 111.
  • the film thickness of the resin film used in the present invention is preferably 10 to 200 ⁇ m force S, more preferably 50 to 100 ⁇ m.
  • the composition and the like of the gas noble layer formed on the flexible sealing film according to the present invention is not particularly limited as long as it is a layer that blocks permeation of oxygen and water vapor.
  • the material constituting the gas barrier layer according to the present invention silicon oxide, aluminum oxide, silicon oxynitride, aluminum oxynitride, magnesium oxide, which are preferably inorganic oxides, Examples thereof include zinc oxide, indium oxide, and tin oxide.
  • the thickness of the gas barrier layer in the present invention is appropriately selected depending on the type and configuration of the material used, and is suitably selected, but is preferably in the range of 5 to 2000 nm. This is because when the thickness of the gas noble layer is smaller than the above range, a uniform film cannot be obtained, and it is difficult to obtain a barrier property against the gas. In addition, when the thickness of the gas barrier layer is larger than the above range, it is difficult to maintain flexibility in the gas nootropic film, and it is difficult to maintain the gas barrier film due to external factors such as bending and pulling after film formation. This is because cracks may occur.
  • the gas barrier layer according to the present invention uses the raw materials described later as a spray method, a spin coat method, a sputtering method, an ion assist method, a plasma CVD method described later, and a plasma CVD under atmospheric pressure or a pressure close to atmospheric pressure described later. It can be formed by applying a law or the like.
  • the film is formed by a plasma CVD method or the like.
  • the atmospheric pressure plasma CVD method does not require a decompression chamber and the like, and high-speed film formation can be achieved.
  • it is a film forming method. This is because by forming the gas barrier layer by the atmospheric pressure plasma CVD method, it is possible to relatively easily form a film having a uniform and smooth surface.
  • Plasma CVD method plasma CVD method under atmospheric pressure or pressure near atmospheric pressure
  • 1S Particularly preferably, it is formed using a plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure. The details of the layer formation conditions of the plasma CVD method will be described later.
  • the gas barrier layer obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is made up of raw materials (also referred to as raw materials) such as organometallic compounds, decomposition gas, decomposition temperature, and input power.
  • raw materials also referred to as raw materials
  • metal carbides, metal nitrides, metal oxides, metal sulfides, metal halides, and mixtures thereof metal oxynitrides, metal oxides, rogenides, metal nitride carbides, etc. are also created. This is preferable.
  • silicon An oxide is formed.
  • zinc compound is used as a raw material compound and carbon disulfide is used as cracking gas, zinc sulfide is generated. This is because highly active charged particles and active radicals are present in the plasma space at a high density, so that multistage chemical reactions are accelerated very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
  • a raw material of such an inorganic substance may be in a gas, liquid, or solid state at normal temperature and pressure as long as it contains a typical or transition metal element.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is vaporized by means such as heating, publishing, decompression or ultrasonic irradiation.
  • organic solvents such as methanol, ethanol, and n-hexane, and mixed solvents thereof may be used as a solvent that may be diluted with a solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • organometallic compounds include silicon compounds such as silane, tetramethoxysilane, tetraethoxysilane, tetra n propoxy silane, tetraisopropoxy silane, tetra n butoxy silane, tetra t butoxy silane, dimethylenoresi methoxy silane, Dimethinoresietic silane, etyltrimethoxysilane, phenyltriethoxysilane, (3, 3, 3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (Ethylamino) dimethylsilane, tinoleaminotrimethylenosilane, dimethinoreaminodimethylenosilane, hexamethinoresilazane, hexamethinoresil
  • titanium compound examples include titanium methoxide, titanium ethoxide, and titanium isopropyl.
  • Lucacetoacetate titanium di-n-butoxide (bis 2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer, and the like.
  • Zirconium compounds include zirconium n-propoxide, zirconium n butoxide, zirconium t-butoxide, zirconium tree n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetyl. Examples include acetonate, dinoleconium acetate, dinolecoum hexahexoleolone pentanedionate, and the like.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n butoxide, aluminum s butoxide, aluminum tert butoxide, aluminum acetyl cetateate, triethyl dialmine mini s-butoxide and the like. Can be mentioned.
  • Examples of the boron compound include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-jetyl ether complex, borane THF complex, borane dimethylsulfide complex, boron trifluoride jetyl ether complex. , Trietylborane, trimethoxyborane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylpolarazole, triethylpolarazole, triisopropylborazole, and the like.
  • tin compound examples include tetraethyltin, tetramethyltin, dibutyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, jetyljettin, triisopropylethoxytin, and jetyltin.
  • Tin halides include tin dichloride, tin tetrachloride, etc. Can be mentioned.
  • organometallic compounds include, for example, antimony ethoxide, arsenic triethoxide, norlium 2, 2, 6, 6 tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexafluoro.
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia Gas, Nitrous oxide gas, Nitrogen oxide gas, Nitrogen dioxide gas, Oxygen gas, Water vapor, Fluorine gas, Hydrogen fluoride, Trifnoreolo anocorone, Trifluorotoluene, Hydrogen sulfide, Sulfur dioxide, Carbon disulfide, Chlorine Gas etc. are mentioned.
  • metal carbides, metal nitrides, metal oxides, metal halides, and metal sulfides can be obtained by appropriately selecting a source gas containing a metal element and a decomposition gas.
  • a discharge gas that tends to be in a plasma state is mixed with these reactive gases, and the gas is sent to the plasma discharge generator.
  • discharge gases include nitrogen gas and / or group 18 atoms of the periodic table, specifically helium, neon, argon, krypton, Xenon, radon, etc. are used. Of these, nitrogen, helium, and argon are particularly preferably used.
  • the discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film.
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas to the reactive gas varies depending on the properties of the film to be obtained.
  • the water vapor permeability of the flexible sealing film according to the present invention is such that the water vapor permeability measured according to the JIS K7129 B method is 0 for use in an organic EL display that requires a high water vapor barrier property. 01 g / m and a 2 / day or less, and more preferably not more than 1 X 10- 3 g / m 2 / day, further, even slight poles, dark spot to grow is generated, the display of the de Isupurei because in some cases life is extremely short, the water vapor permeability, it is preferably less than 1 X 10- 5 g / m 2 / day! / ,.
  • a mask member having a plurality of predetermined openings is disposed on a flexible film, and a gas barrier film forming material is applied to provide a plurality of gas barrier properties.
  • a method of forming the gas noble layer in the discharge space formed between the counter electrodes under atmospheric pressure or a pressure in the vicinity thereof.
  • a gas containing a gas for forming a barrier film is supplied, a high-frequency voltage is applied to the discharge space from at least one electrode to excite the gas, and the mask member having a plurality of the flexible film and the opening is excited.
  • the atmospheric pressure plasma treatment is preferred in which the treatment is carried out by exposure to a gas.
  • the atmospheric pressure plasma method is, for example, a force described in JP-A-10-154598, JP-A-2003-49272, WO02 / 048428, or the like.
  • the method for forming a thin film described in the publication No. 1 is preferable for forming a dense ceramic layer having a high gas barrier property.
  • a gas-like base layer can be continuously formed by feeding a web-like base material from a roll-shaped original winding.
  • the atmospheric pressure plasma method according to the present invention is performed under atmospheric pressure or a pressure in the vicinity thereof.
  • 93 kPa to 104 kPa is preferable.
  • the discharge condition in the present invention is to apply the electric field by superimposing the first high-frequency electric field and the second high-frequency electric field, which is preferably applied to two or more electric fields having different frequencies in the discharge space.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, and the strength VI of the first high-frequency electric field VI and the strength of the second high-frequency electric field With V2
  • the output density of the second high frequency electric field is lW / cm 2 or more.
  • a high frequency refers to one having a frequency of at least 0.5 kHz.
  • the strength of the discharge starting electric field refers to the discharge in the discharge space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film formation method.
  • the discharge starting electric field strength is governed by the discharge starting electric field strength of the discharge gas in the same discharge space, which varies somewhat depending on the gas type supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes.
  • a first electrode having a frequency ⁇ 1 and an electric field strength VI is applied to the first electrode constituting the counter electrode.
  • An atmospheric pressure plasma discharge treatment apparatus is used in which a first power source for applying a high-frequency electric field is connected, and a second power source for applying a second high-frequency electric field having a frequency ⁇ 2 and an electric field strength V2 is connected to the second electrode.
  • the atmospheric pressure plasma discharge treatment apparatus includes gas supply means for supplying a discharge gas and a thin film forming gas between the counter electrodes. Furthermore, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
  • the first filter is connected to the first electrode, the first power source, or any of them
  • the second filter is connected to the second electrode, the second power source, or any of them.
  • the first filter facilitates the passage of the current of the first high-frequency electric field from the first power source to the first electrode, grounds the current of the second high-frequency electric field, and the first power source from the second power source It is difficult to pass the current of the second high-frequency electric field to.
  • the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, Use a power supply with a function that makes it difficult to pass the current of the first high-frequency electric field to the power supply.
  • the phrase “difficult to pass” preferably means that only 20% or less, more preferably 10% or less of the current can pass.
  • being easy to pass means preferably passing 80% or more, more preferably 90% or more of the current.
  • a capacitor of several tens of pF to several tens of thousands of pF or a coil of about several H can be used depending on the frequency of the second power supply.
  • the second filter can be used as a filter by using a coil of 10 H or higher according to the frequency of the first power supply and grounding it through these coils or capacitors.
  • the first power source of the atmospheric pressure plasma discharge treatment apparatus of the present invention has the ability to apply a higher electric field strength than the second power source!
  • the applied electric field strength and the discharge starting electric field strength referred to in the present invention were measured by the following methods. It means what was done.
  • a high-frequency voltage probe (P6015A) is installed at each electrode, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
  • an oscilloscope Tektronix, TDS3012B
  • the discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the electric field strength at which the discharge starts is defined as the discharge starting electric field strength IV.
  • the measuring instrument is the same as the applied electric field strength measurement.
  • High performance thin film formation can be performed.
  • the frequency of the first power supply is preferably 200 kHz or less.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the lower limit is preferably about 1kHz.
  • the frequency of the second power source is preferably 800 kHz or more.
  • the upper limit is about 200MHz! /.
  • the application of a high-frequency electric field from such two power sources is necessary for initiating discharge of a discharge gas having a high discharge starting electric field strength by the first high-frequency electric field, and the second high-frequency electric field. It is an important point of the present invention to form a dense and high-quality thin film by increasing the plasma density by high frequency and high power density. [0110] Further, by increasing the output density of the first high-frequency electric field, the output density of the second high-frequency electric field can be improved while maintaining the uniformity of discharge. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
  • the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges between the counter electrodes, puts the gas introduced between the counter electrodes into a plasma state, and leaves the gas between the counter electrodes or A thin film is formed on the base material by exposing the base material transferred between the electrodes to the plasma state gas.
  • the atmospheric plasma discharge treatment apparatus discharges between the counter electrodes similar to the above, excites the gas introduced between the counter electrodes, or puts it in a plasma state, and jets the gas outside the counter electrode. Jet system that forms a thin film on the substrate by blowing out excited or plasma state gas and exposing the substrate in the vicinity of the counter electrode (which may be stationary or transported) There is a device.
  • FIG. 7 is a schematic cross-sectional view showing an example in which a gas barrier layer is continuously formed on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
  • the jet type atmospheric pressure plasma discharge processing apparatus has a gas supply means and an electrode temperature adjusting means, which are not shown in FIG. It's a device!
  • the plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 is connected to the first power source 21 between the counter electrodes.
  • the first high-frequency electric field of frequency ⁇ 1, electric field strength VI, and current II is applied, and the second high-frequency electric wave from the second power source 22 from the second electrode 12, ⁇ 2, electric field strength V2, and the second high-frequency electric current 12 An electric field is applied.
  • the first power supply 21 applies a higher frequency electric field strength (VI> V2) than the second power supply 22, and the first frequency ⁇ 1 of the first power supply 21 is lower than the second frequency ⁇ 2 of the second power supply 22. Apply wavenumber.
  • a first filter 23 is installed between the first electrode 11 and the first power supply 21 to facilitate the passage of current from the first power supply 21 to the first electrode 11, and the second power supply. It is designed so that the current from the second power source 22 to the first power source 21 is less likely to pass through by grounding the current from the second power source 22.
  • a second filter 24 is installed between the second electrode 12 and the second power source 22, 2 Designed to facilitate the passage of current from the power source 22 to the second electrode, ground the current from the first power source 21 and make it difficult to pass current from the first power source 21 to the second power source .
  • a thin film forming gas G is introduced from a gas supply means (not shown) between the opposing electrodes of the first electrode 11 and the second electrode 12 (discharge space) 13 by a first power source 21 and a second power source 22.
  • the above-described high-frequency electric field is applied between the first electrode 11 and the second electrode 12 to generate a discharge, and the thin film forming gas G described above is in a plasma state while being jetted on the lower side of the counter electrode (lower side of the paper).
  • the treatment space created by the lower surface of the counter electrode and the flexible film F is filled with the gas G ° in the plasma state, not shown!
  • FIG. 7 shows the measuring instruments and measurement positions used to measure the applied electric field strength and the discharge starting electric field strength.
  • 25 and 26 are high-frequency voltage probes, and 27 and 28 are oscilloscopes.
  • the gas barrier layer having the gas barrier property according to the present invention as shown in FIG. 5 is provided.
  • a predetermined opening is formed in the state where the flexible film F is accompanied at the lower part of the counter electrode.
  • a mask member having a plurality of layers is disposed.
  • FIG. 8 is a schematic diagram showing an example of a mask member having a plurality of predetermined openings.
  • the mask member 38 is formed with an opening 42 for forming a region A having a gas barrier layer having a gas barrier property, and a region B where no gas barrier layer is present around the gas barrier layer. And a shielding portion 41 for preventing plasma processing.
  • a member that does not affect the plasma discharge treatment is preferably selected as appropriate.
  • FIG. 9 is a schematic diagram showing an example of a flexible sealing fine sheet in which a plurality of gas barrier layers are formed on a flexible film.
  • a flexible sealing film sheet 2 in which a plurality of layers is formed is prepared.
  • a plurality of jet-type atmospheric pressure plasma discharge treatment devices are arranged in parallel with the conveyance direction of the flexible film F, and simultaneously discharge gases of the same plasma state, thereby forming a plurality of thin films at the same position. Therefore, a desired film thickness can be formed in a short time. Also, multiple thin films with different layers can be formed by arranging multiple units parallel to the transport direction of the flexible film F, supplying different thin film forming gases to each device, and jetting different plasma states. You can also.
  • FIG. 10 is a schematic cross-sectional view showing another example of continuously forming a gas noble layer on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
  • the atmospheric pressure plasma discharge device 30 is disposed at a position where the first electrode 33 and the second electrode 34 face each other, and a high frequency power source 37 is connected to each of them.
  • a discharge space is formed between the first electrode 33 and the second electrode 34, and a flexible film F and a cylindrical shape accompanied by the discharge film are formed in the discharge space.
  • the gas barrier layer 39 is continuously formed on the flexible film F.
  • the flexible film F drawn out from the former winding part 31 is associated with a cylindrical mask member 38 as shown in Fig. 8 and is moved to the discharge space.
  • the gas noble layer 39 is continuously formed at a predetermined position.
  • the flexible film F on which the gas barrier layer 39 is formed and separated from the mask member 38 at the position of the support roll 32 is laminated on the take-up roll 40.
  • FIG. 11 is a schematic view showing an example of a bonding step between the flexible sealing film of the present invention and the organic electoluminescence device.
  • the flexible sealing film laminating step 500 is performed in the alignment detecting the alignment mark 3011 arranged in alignment with the position of the organic EL element unit 301il formed on the strip-shaped flexible film substrate 301i. Align the mark detector 505 and the organic EL element unit 301il.
  • a sealant coating part 502 for coating a laminating sealant, a supply part 503 for a roll-shaped flexible sealing member 503a, and a bonding part 504 for bonding a strip-shaped flexible sealing member 503b. Have! /,
  • the alignment mark detection unit 505 includes an alignment mark detection device 505a and a casing 505b in which the alignment mark detection device 505a is disposed.
  • the alignment mark detection device 500a is arranged in accordance with the position of the alignment mark 3011 previously disposed on the belt-like flexible support C301i.
  • the information detected by the alignment mark detection device 505a is input to a control unit (not shown) to control the sealant coating device 502a of the sealant coating unit 502.
  • the alignment mark detection device 505 is not particularly limited. For example, image recognition using a CCD camera can be used.
  • the sealant coating unit 5 02 is provided with a sealant coating device 502a and a sealant coating device 502a that apply a sealant to the organic-elect luminescence element in accordance with information from the alignment mark detection unit 505. And a housing 502b to be installed!
  • the number of the sealant coating apparatus 502a to be disposed is not particularly limited. However, the sealant coating apparatus 502a may be disposed in accordance with the number of organic electroluminescence elements disposed in the width direction of the strip-shaped flexible film substrate 301i. preferable. This figure shows a case where three sealant coating devices 502a are provided in accordance with the number of organic electoluminescence elements arranged in the width direction.
  • the housing 502b can be moved in the xy direction (arrow direction in the figure) by a driving device (not shown).
  • the laminating portion 504 has a roll 504b that comes into contact with the main body 504c and the strip-shaped flexible film substrate, a strip-shaped flexible ten-year-sealed rod material 503b, and a ronole 504a that contacts the hornworm.
  • a strip-shaped flexible film substrate having an organic-electto-luminescence element formed of 504b and Ronole 504a 3 Oli and a strip-shaped flexible sealing film 503b are pressed and sandwiched to form a strip-shaped flexible fine substrate. It has become like pasting.
  • the function of the curing treatment is adjusted according to the properties of the sealing agent used for the bonding part 504 (for example, the ultraviolet irradiation device is provided when the sealing agent is an ultraviolet curing type, and the roll is provided with a heating function when the sealing agent is a thermosetting type. ) Is preferred!
  • the width of the flexible sealing film 503b is preferably detectable by the alignment mark 3011 attached to the strip-shaped flexible film substrate 301i.
  • the supply system of the sealant to the sealant coating apparatus 502a is omitted.
  • the method for applying the sealant is not particularly limited, and examples thereof include methods used for usual adhesive application, such as a spray method, an extrusion nozzle method, and a screen printing method.
  • the viscosity of the sealant used is preferably 40 Pa • s to 400 Pa ⁇ s in consideration of application uniformity, spread prevention, etc.!
  • the liquid sealant includes photocuring and thermosetting sealants having a reactive bur group of acrylic acid-based oligomers and methacrylic acid-based oligomers, moisture-curing types such as 2-cyanacrylic acid esters, etc. And a sealing agent such as an epoxy-based heat and chemical curing type (two-component mixture), a cationic curing type ultraviolet curing epoxy resin sealing agent, and the like. It is preferable to add a filler to the liquid sealant as necessary. The amount of filler added is preferably 5 to 70% by volume in consideration of adhesive strength.
  • the size of the filler to be added is preferably 1 to 111 to 100 to 111 in consideration of the adhesive strength, the thickness of the sealant after bonding and bonding.
  • the type of filler to be added is not particularly limited, and examples thereof include soda glass, alkali-free glass or silica, metal oxides such as titanium dioxide, antimony oxide, titania, alumina, zirconia, and tungsten oxide.
  • the bonding unit 504 is a band-shaped flexible sealing film 503b fed from the roll-shaped band-shaped flexible sealing member 503a supplied to the supply unit 503, and a band-shaped acceptable coating coated with a sealing agent.
  • the flexible film substrate 301i the belt-shaped flexible sealing film 503b side pressure inlet 504a, the belt-shaped flexible film substrate 301i side pressure roll 504b, and these pressure rolls And a main body 504c.
  • bonding unit 504 bonding stability, bubbly prevention to lamination portion, considering a flat surface of the holding and the like of the flexible sealing member, vacuum conditions 10-1 X 10- 5 Pa It is preferable to carry out with.
  • a sealant layer may be provided in advance on the side of the flexible sealing film to be bonded to the organic EL element member, and examples thereof include a sheet-like sealant and a thermoplastic resin.
  • the organic-electric-luminescence element includes a substrate, a first pixel electrode provided on the substrate, It is composed of an organic electoluminescence layer composed of one or more layers including a light emitting layer, a second pixel electrode, a flexible sealing film, and the like.
  • Examples of the substrate according to the present invention include a single-wafer sheet-like substrate and a strip-like flexible substrate.
  • Examples of the sheet-like substrate include a transparent glass plate and a sheet-like transparent resin film.
  • resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP).
  • cellulose ester such as cell mouth sulphonate or derivatives thereof, polyvinylidene chloride, polyvinylinoleo alcohole, polyethylene vinylenoreo alcohole, syndiotactic polystyrene, polycarbonate, norbornene resin , Polymethylpentene, Polyetherketone, Polyimide, Polyethersulfone (PES), Polyphenylene sulfide, Polysulfones, Polyether Luimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Vapelle (trade name, manufactured by Mitsui Chemicals) Examples include cycloolefin resins. Examples of the belt-like flexible substrate include a transparent resin film, and the same resin film as that of the single-wafer sheet-like substrate can be used.
  • the substrate is preferably a flexible film substrate composed of a transparent resin film or the like, more preferably a flexible film substrate having a gas barrier layer, and further, a gas barrier layer.
  • the ceramic layer is preferably composed of an inorganic compound.
  • gas barrier layer examples include those similar to the gas barrier layer formed of the flexible sealing film described above.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • ITO indium tinoxide
  • ZnO ZnO
  • IDIXO In O ⁇ ⁇
  • the anode may form a thin film by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not so required!
  • a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is a force depending on the material. Usually 10 to 1000 nm, preferably 10 to 200 nm.
  • a hole injection layer (anode buffer layer) may be present.
  • the hole injection layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission. “Organic electoluminescence device and its forefront of industrialization (November 30, 1998) The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123–166). Examples of the material used for the anode buffer layer (hole injection layer) include materials described in JP-A No. 2000-160328.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylenerealkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, Examples thereof include hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N' — Tetraphenolinore 4, 4 '— Diaminophenol; N, N' Diphenylenole N, N ' Bis (3-methinolephenol) 1 [1, 1'-biphenenole] 4, A'-diamin (TPD); 2, 2-bis (4-di-triarylaminophenole) propane; 1, 1-bis (4-di-p-triaminophenenyl) cyclohexane; N, N, N ', N' —tetra-p-trinole 4, 4'-diaminobiphenyl; 1,1--bis (4-di-p-triol)
  • No. 5,061,569 For example, 4, 4'-bis [N- (1-naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4-308688 4, 4 ', A "—Tris [N— (3-methylphenyl) N phenylamino] triphenylamine (MTDATA) and the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as a hole injection material and a hole transport material.
  • a so-called p-type hole transport material as described in Letters 80 (2002), p. 139) can also be used.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm.
  • This hole transport layer is one or more of the above materials. It may be a layered structure. It is also possible to use a hole transport layer having a high P property doped with impurities. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. . It is preferable to use such a hole transport layer having a high ⁇ property because an organic electroluminescence element with lower power consumption can be produced.
  • the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer.
  • the order of stacking the light emitting layers is not particularly limited, and a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the total film thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 21 111 to 5 111, preferably 2 to 200 nm in consideration of the homogeneity of the film and the voltage required for light emission. Further, it is preferably in the range of 10 to 20 nm. A film thickness of 20 nm or less is preferable because it has the effect of improving the stability of the emission color with respect to the driving current as well as the voltage aspect.
  • the thickness of each light emitting layer is preferably selected in the range of 2 to 100 nm, and more preferably in the range of 2 to 20 nm. There are no particular restrictions on the relationship between the blue, green, and red light-emitting layer thicknesses, but among the three light-emitting layers, the blue light-emitting layer (the sum of multiple layers) is the thickest! / ,.
  • the light-emitting layer includes at least three layers having different emission spectra in the range of 430 to 480, 510 to 550, and 600 to 640, respectively. If there are three or more layers, there is no particular limitation. When there are more than four layers, there may be a plurality of layers having the same emission spectrum.
  • a layer having an emission maximum wavelength in the range of 430 to 480 nm is referred to as a blue light emitting layer
  • a layer in the range of 510 to 550 nm is referred to as a green light emitting layer
  • a layer in the range of 600 to 640 nm is referred to as a red light emitting layer.
  • a plurality of light emitting compounds may be mixed in each light emitting layer within the range in which the maximum wavelength is maintained.
  • a blue light emitting compound having a maximum wavelength of 430 to 480 nm and a green light emitting compound having the same wavelength of 10 to 550 nm may be mixed and used in the blue light emitting layer.
  • the organic light-emitting material used as the material of the light-emitting layer is (a) a charge injection function, that is, holes can be injected from the anode or hole injection layer when an electric field is applied, and from the cathode or electron injection layer.
  • a function capable of injecting electrons (b) a transport function, ie, a function of moving injected holes and electrons by the force of an electric field, and (c) a light emission function, ie, an electric power.
  • fluorescent brighteners such as benzothiazole, benzimidazole, and benzoxazole, and styrylbenzene compounds can be used.
  • Specific examples of the above-mentioned optical brightener include 2,5 bis (5,7 di-t-pentyl-2-benzoxazolyl) 1,3,4 thiodia zonole, 4,4 'bis (5 , 7— t-pentyl-2 benzoxazolyl) stilbene, 4, ′ bis [5,7 di (2 methyl-2 butyl) -2 benzoxazolyl] stinoleben, 2, 5 bis (5, 7 di-t-pentyl) 2 Benzoxazolyl) thiophene, 2, 5 Bis [5 ⁇ , a-dimethylbenzyl-2 Benzoxazolyl] thiophene, 2, 5 Bis [5, 7 Di (2 methyl-2-butyl) -2 Benzoxazolyl] —3, 4 -Diphenylthiophene
  • styrylbenzene compounds include 1,4 bis (2-methylstyryl) benzene, 1,4 bis (3-methylstyryl) benzene, 1,4 bis (4-methylenostyryl).
  • optical brightener and styrylbenzene compound for example, 12-lid perinone, 1,4-diphenolino 1,3-butadiene, 1,1,4,4- Tetraphenyl-1,3-butadiene, naphthalimide derivatives, perylene derivatives, oxadiazole derivatives , Aldazine derivatives, pyrazirine derivatives, cyclopentagen derivatives, pyrophloropyrrole derivatives, styrylamine derivatives, coumarin compounds, international publications WO90 / 1314 8 and Appl. Phys.
  • aromatic dimethylidin-based compounds include 1, 4 phenylene dimethylidene, 4, 4 'phenylene dibibidimethylidene, 1, 4 ⁇
  • aromatic dimethylidin-based compounds include 1, 4 phenylene dimethylidene, 4, 4 'phenylene dibibidimethylidene, 1, 4 ⁇
  • examples thereof include bis (2,2 di-tert-butylphenylbinole) biphenyl, 4, A′-bis (2,2 diphenylbinyl) biphenyl, and the like, and derivatives thereof.
  • Specific examples of the compound represented by the general formula (I) include bis (2 methyl-8 quinolinolato) (p-phenolphenolate) aluminum (111), bis (2 methyl-8 quinolinolato) (1 naphtholato) aluminum. (III) etc. are mentioned.
  • a compound in which the above-described organic light-emitting material is used as a host and the host is doped with a strong fluorescent dye from blue to green, for example, a coumarin group or a fluorescent dye similar to the host is also suitable as the organic light-emitting material.
  • a strong fluorescent dye from blue to green for example, a coumarin group or a fluorescent dye similar to the host
  • the organic light-emitting material it is possible to obtain blue to green light emission (the emission color varies depending on the type of dopant) with high efficiency.
  • the host that is the material of the compound include organic light-emitting materials having a distyrylarylene skeleton (particularly preferably, for example, 4,4′bis (2,2diphenylvinyl) biphenyl).
  • the dopant are diphenylaminovinylarylene (particularly preferably, for example, N, N diphenylaminobiphenylbenzene and 4, A'-bis [2- [4- (N, N di-p-tolyl), phen-yl, bur, biphenyl).
  • the light emitting layer preferably contains a known host compound and a known phosphorescent compound (also referred to as a phosphorescent compound) in order to increase the luminous efficiency of the light emitting layer!
  • the host compound is a compound contained in the light-emitting layer, the mass ratio of which is 20% or more, and the phosphorescence quantum yield power of phosphorescence emission at room temperature (25 ° C) 0. defined as less than 1 compound.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • a plurality of host compounds may be used in combination. Use multiple host compounds to transfer charges It can be adjusted, and the efficiency of the organic-electric-luminescence element can be improved.
  • by using a plurality of phosphorescent compounds it is possible to mix different light emission, thereby obtaining any light emission color.
  • White light emission is possible by adjusting the type of phosphorescent compound and the amount of doping, and it can also be applied to lighting and knocklights.
  • Known host compounds include, for example, Japanese Patent Application Laid-Open No. 2001-257076 No. I 2002-308855, No. 2001-313179, No. 2002-319491, No. 2001-357977.
  • Gazette 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789 2002-75645, 2002-33857 9, 2002-105445, 2002-343568, 2002-141 173, 2002-352957, 2002-203683 Gazette, 2002-3 63227 Gazette, 2002-231453 Gazette, 2003-3165 Gazette, 2002-2 34888 Gazette, 2003-27048 Gazette, 2002-255934 Gazette, 2002- 260861 Publication No. 2002-280183 Publication No. 2002-299060 Publication No. 2002-302516 Publication No. 2002-305083 Publication No. 2002-305084 Publication No. 2 And compounds described in JP 02-308837.
  • the host compound in each layer is the same compound, since it is easy to obtain a uniform film property over the entire organic layer, and further, the host
  • the ability of the phosphorescent energy of the compound to be 2.9 eV or more is more preferable because it is advantageous for efficiently suppressing energy transfer from the dopant and obtaining high brightness.
  • Phosphorescence emission energy refers to the peak energy of the 0-0 band of phosphorescence emission measured by measuring the photoluminescence of a deposited film of lOOnm on a substrate with a host compound.
  • the host compound has a phosphorescence emission energy of 2.9 eV or more and a Tg of 90 considering the deterioration of the organic electroluminescence device over time (decrease in brightness, deterioration of film properties) and market needs as a light source. It is preferable that the temperature is higher than ° C. That is, both brightness and durability In order to satisfy the above, it is preferable that the phosphorescence emission energy is 2.9 eV or more and the Tg is 90 ° C. or more. Tg is more preferably 100 ° C or higher.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed, and is a compound that emits phosphorescence at room temperature (25 ° C). A compound having a rate of 0.01 or more at 25 ° C. By using it together with the host compound described above, an organic electoluminescence device with higher luminous efficiency can be obtained.
  • the phosphorescent compound according to the present invention preferably has a phosphorescence quantum yield of 0.1 or more.
  • the above phosphorescence quantum yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopic II, 4th edition, Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum yield used in the present invention is only required to achieve the phosphorescence quantum yield in any solvent.
  • the light emission of a phosphorescent compound can be described in two types in principle.
  • One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is generated.
  • An energy transfer type in which light emission from the phosphorescent compound is obtained by transferring it to the phosphorescent compound, and the other is that the phosphorescent compound becomes a carrier trap, and recombination of the carriers on the phosphorescent compound occurs. It is a carrier trap type force S that allows light emission from the phosphorescent compound to occur. In either case, the excited state energy of the phosphorescent compound must be lower than the excited state energy of the host compound. It is.
  • the phosphorescent compound can be appropriately selected from known materials used for the light-emitting layer of the organic electoluminescence device.
  • the phosphorescent compound is preferably a complex compound containing a group 8 or group 10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), a rare earth complex. Of these, iridium compounds are most preferred.
  • the phosphorescent compound maximum wavelength of the phosphorescent compound is not particularly limited. In principle, by selecting a central metal, a ligand, a substituent of the ligand, and the like. The emission wavelength obtained can be changed.
  • the light-emitting layer is white by combining two or more light-emitting materials that emit blue, green, yellow, red, and the like.
  • a luminescent compound having a near emission wavelength is contained in the same layer. This increases the energy transition to the long wave luminescent compound and improves the luminous efficiency.
  • the same layer in the case of blue, green, and red, at least one of blue, green, and green and red is contained in the same layer.
  • it is composed of blue, green, yellow, and red
  • a luminescent color that contains a longer-wave luminescent compound is contained in the same layer.
  • it is yellow red, green one yellow.
  • the electron injection layer is made of a material having a function of transporting electrons and is included in the electron transport layer in a broad sense.
  • the electron injection layer is a layer that is provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission.
  • Organic electorium luminescence element and its industrialization front line June 30, 1998) The details are described in Volume 2, Chapter 2, “Electrode Materials” (pp. 123-166) of Volume 2 of TS Co., Ltd.).
  • the details of the electron injection layer (one cathode buffer layer) are described in JP-A-6 325871, JP-A-9 17574, JP-A-10-74586, and the like, and specifically, strontium, aluminum, etc.
  • the buffer layer should be a very thin film. S Desirably, depending on the material, the film thickness is preferably in the range of 0.1111 to 5 ⁇ 111.
  • an electron transport material also serving as a hole blocking material
  • any of the conventionally known compounds can be selected and used.
  • nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiobilanoxide derivatives, carpositimide, fluorenylidenemethane derivatives, anthraquinodimethane and Anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is replaced with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material.
  • quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-l-quinolinol) aluminum, tris (5,7-dive mouth) Mo 8 quinolinol ) Aluminum, Tris (2methyl-8quinolinol) aluminum, Tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) etc., and the central metals of these metal complexes are In, Mg, Cu, Metal complexes replacing Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having an end substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • Distyrubirazine derivatives can also be used as electron transport materials, and inorganic semiconductors such as n-type Si and n-type SiC can be used as electron transport materials as well as hole injection layers and hole transport layers. I can do it.
  • the thickness of the electron transport layer is not particularly limited, but is usually 51 111 to 5 About m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure that can be one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities can be used.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004). ) And the like. It is preferable to use such an electron transport layer having a high ⁇ property because a device with lower power consumption can be manufactured.
  • the second electrode a material having a small work function! /, (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a small work function! /, (4 eV or less) metal
  • an alloy a material having a small work function! /, (4 eV or less) metal
  • an alloy an electrically conductive compound
  • a mixture thereof is used as the second electrode.
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide. (Al 2 O 3) mixture, indium, lithium / aluminum mixture, rare earth metal, and the like.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture.
  • a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3) mixture, a lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less, and the preferred film thickness is usually 101 111 to 5 111, preferably 50 to 200 nm.
  • the first electrode (anode) or the second electrode (cathode) of the organic electoric luminescence element is transparent or translucent, it is convenient to improve the light emission luminance. .
  • the transparent conductive material described in the description of the first electrode is formed thereon, thereby forming a transparent or translucent first electrode.
  • Two electrodes (cathode) can be produced, and by applying this, an element in which both the first electrode (anode) and the second electrode (cathode) are transmissive can be produced.
  • the external extraction efficiency at room temperature of light emission of the organic electoluminescence device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic electoluminescence device / the number of electrons X 100 flowing through the organic electroluminescence device.
  • a hue improving filter such as a color filter or the like
  • a color conversion filter that converts the emission color from the organic electroluminescence device to multiple colors using a phosphor is also used. Also good.
  • the maximum light emission of the organic-electric-luminescence element is preferably 480 nm or less! /.
  • the organic electoluminescence device of the present invention preferably uses the following method in combination.
  • Organic-electric-luminescence elements emit light inside a layer that has a higher refractive index than air (refractive index is about 1.7 to 2.1), and about 15% to 20% of the light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or the transparent electrode or light emitting layer is transparent. This is because light is totally reflected between the substrate and the light, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side direction of the element.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435).
  • a method for improving efficiency by providing a substrate with a light condensing property Japanese Patent Laid-Open No. 63-314795.
  • a method of forming a reflective surface on the side surface of an element Japanese Patent Laid-Open No. 1 220394.
  • a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between a substrate and a light emitter Japanese Patent Laid-Open No. 62-172691.
  • Japanese Patent Laid-Open No. 2001-202827 A method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter. There is a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 1 283 751).
  • these methods can be used in combination with an organic electoluminescence device, but a flat layer having a lower refractive index than the substrate is provided between the substrate and the light emitter.
  • a method of forming a diffraction grating between any layers of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • by combining these means it is possible to obtain an element having higher luminance or durability.
  • the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. The thickness of the low refractive index medium should be at least twice the wavelength in the medium.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method is generated from the light-emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • the light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating into any layer or medium (in a transparent substrate or transparent electrode).
  • the light is diffracted and light is taken out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction, light traveling in a specific direction It is only diffracted and the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but in the vicinity of the organic light emitting layer where light is generated. desirable.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the diffraction grating is arranged in a square lattice shape, a triangular lattice shape, or a honeycomb lattice. It is preferable that the arrangement is repeated two-dimensionally.
  • the organic electoluminescence device of the present invention is processed so that a structure on a microlens array, for example, is provided on the light extraction side of the substrate in order to efficiently extract light generated in the light emitting layer.
  • the light in the specific direction can be increased by condensing light in a specific direction, for example, in the front direction with respect to the light emitting surface of the element.
  • a microlens array square pyramids are arranged two-dimensionally on the light extraction side of the substrate so that one side is 30 mm and the apex angle is 90 degrees.
  • One side is preferably 10 111 to 100 m. If it is smaller than this, the effect of diffraction is generated, and if the color is too large, the thickness becomes undesirably high.
  • the light condensing sheet for example, an LED backlight of a liquid crystal display device that is put into practical use can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3EM may be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, an octagonal stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ 111 may be formed on the substrate, or the vertex angle may be rounded and the pitch may be changed randomly. Other shapes may be used.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • Manufactured by: NA-45 is cut into a size of 55mm x 45mm, patterned so that the light emitting part is a 45mm x 34mm rectangle, and then a transparent substrate with this ITO transparent electrode
  • the sample was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to ultraviolet ozone cleaning for 5 minutes.
  • This transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, and a stainless steel rectangular perforated mask was attached.
  • the mask was attached so as to satisfy the conditions for covering ITO with an organic layer strength of 6 mm X 35 mm.
  • a-NPD, CBP, Ir-1, BCP, and Alq were loaded into five tantalum resistance heating boats, respectively.
  • Lithium fluoride was placed in a resistance heating boat made of tantalum and aluminum was placed in a resistance heating boat made of tungsten, and each was attached to the second vacuum chamber of the vacuum evaporation system.
  • the heating boat containing CBP and the heating boat containing Ir 1 are independently energized, so that the deposition rate of CBP as the luminescent host and Ir-1 as the luminescent dopant becomes 100: 7.
  • the light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
  • a heating boat containing BCP was energized and heated to provide a 10-nm-thick hole blocking layer electron transport layer at a deposition rate of 0.15 nm / sec. Furthermore, a heating boat containing Alq was energized and heated, and an electron transport layer electron injection layer having a film thickness of 40 nm was provided at a deposition rate of 0.15 nm / second.
  • the organic EL element unit 101 was transferred to a glove box (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) in a nitrogen atmosphere without being exposed to the air.
  • a glove box a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more
  • a polyethylene terephthalate film film made by Teijin's DuPont, hereinafter abbreviated as PET
  • PET polyethylene terephthalate film
  • An inorganic gas noble film with SiO force is formed on a flexible film and has an oxygen permeability of 0.01 ml / m 2 / day or less and a water vapor permeability of 0. Olg / m 2 / day or less.
  • a flexible sealing film was prepared.
  • the flexible sealing film having the gas barrier layer formed on the entire surface was cut into a size of 55 mm x 45 mm, and this was used as the flexible sealing film 1 ⁇ Applying adhesive>
  • the organic EL element unit surface formed on the glass so as to face the flexible sealing film having the bus barrier layer to which the adhesive has been applied is directed toward the flexible sealing film, and FIG. Alignment was performed so that the configuration described in (1) was achieved, and the ambient environment was reduced to lOPa.
  • a flexible sealing film having gas barrier properties was pressure bonded by a flat plate press at a pressure of 0.05 MPa.
  • the adhesive was irradiated from the cathode side under an irradiation energy condition of 6000 mj / cm 2 to harden the adhesive. Thereafter, the organic element taken out from the glove box and made in this manner was designated as an organic electoluminescence element 101.
  • a flexible sealing film 2 produced by the following method was used in place of the flexible sealing film 1, and sealed with the configuration shown in FIG.
  • the organic electroluminescent mouth luminescence element 102 was made in the same manner except that
  • a polyethylene terephthalate film film made by Teijin's DuPont, hereinafter abbreviated as PET
  • an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 7, and the configuration shown in FIG.
  • an inorganic gas barrier film made of SiO, etc. is continuously formed on a flexible film with an oxygen permeability of 0.01 ml. / m 2 / day or less, to produce a flexible sealing film of the following gas barrier vapor permeability 0. 01G / m 2 / day.
  • the above-prepared flexible sealing film having a gas barrier layer was cut so that the total area was 55 mm x 45 mm and the gas barrier layer area was 51 mm x 40 mm. Two.
  • the organic electroluminescent mouth luminescence element 101 instead of the flexible sealing film 1, a flexible sealing film 3 prepared by the following method was used and sealed with the configuration shown in FIG. In the same manner as described above, the organic electroluminescent mouth luminescence element 103 was manufactured.
  • a polyethylene terephthalate film film made by Teijin's DuPont, hereinafter abbreviated as PET
  • an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 7, and the configuration shown in FIG.
  • an inorganic gas barrier film of SiO force, etc. is continuously formed on a flexible film, and oxygen permeability is 0.01ml / m 2 / day or less, to produce a flexible sealing film of the following gas barrier vapor permeability 0. 01G / m 2 / day.
  • the flexible sealing film having the gas barrier layer formed on the entire surface was cut so that the total area was 55 mm x 45 mm and the gas barrier layer area was 46 mm x 35 mm.
  • the stop film was 3.
  • each organic-elect mouth luminescence device When each organic-elect mouth luminescence device is stored for 250 hours in an environment at 85 ° C and 5% relative humidity, it is dark when driven to a constant current of 10 mA / cm 2 for each organic-elect-mouth luminescence device.
  • the presence / absence of spot generation, reduction of light emission area, and change in light emission luminance were measured, and compared with each characteristic of each untreated organic electoluminescence device, high temperature storage stability was evaluated according to the following criteria.
  • the emission luminance was measured using CS-1000 manufactured by Konica Minolta Sensing.
  • the reduction ratio of the light emitting area including dark spots is 10% or more, or the luminance fluctuation at a constant current density is 10% or more.
  • each organic-elect mouth luminescence element After storing each organic-elect mouth luminescence element in an environment of 45 ° C and relative humidity 90% for 250 hours, the darkness when driving each organic-elect-mouth luminescence element with a constant current of 10 mA / cm— The presence / absence of sbots, reduction of light emission area, and change in light emission luminance were measured and compared with the characteristics of each untreated organic-electrical luminescence element, and high-humidity storage stability was evaluated according to the following criteria. The emission luminance was measured using CS-1000 manufactured by Konica Minolta Sensing.
  • the reduction ratio of the light emitting area including dark spots is 5% or more and less than 10% of the untreated product, and the luminance fluctuation at a constant current density is 5% or more and less than 10%.
  • the reduction ratio of the light emitting area including dark spots is 10% or more, or the luminance fluctuation at a constant current density is 10% or more.
  • Table 1 shows the results obtained as described above.
  • Example 2 As is clear from the results shown in Table 1, using a flexible sealing film having the configuration defined in the present invention, a region having a gas barrier layer in a close contact region and a region where no gas barrier layer is present.
  • the organic electoluminescence device of the present invention sealed so as to have at the same time does not break the sealed portion even when stored for a long time at high temperature or high humidity. It turns out that it has preservability. [0217]
  • Example 2 Example 2
  • an inorganic gas noble film having SiO force is formed on the entire surface of a polyethylene terephthalate film (film made by Teijin's DuPont, hereinafter abbreviated as PET) using the atmospheric pressure plasma discharge treatment apparatus shown in FIG.
  • PET polyethylene terephthalate film
  • This flexible film substrate 1 was cut into a size of 55 mm x 45 mm, and on top of this, an example
  • the organic EL element unit was formed by patterning so that the light-emitting portion had a rectangular shape of 45 mm x 34 mm.
  • An organic electoluminescence device 202 was produced in the same manner as in the production of the organic electroluminescence device 201 except that the flexible sealing film 2 was used instead of the flexible encapsulation film 1.
  • the organic electoluminescence device 202 For the production of the organic electoluminescence device 202, the organic electophoresis was produced in the same manner except that the flexible film substrate 2 produced by the following method was used instead of the flexible film substrate 1. A luminescence element 203 was manufactured.
  • a polyethylene terephthalate film (a film made by Teijin's DuPont, hereinafter abbreviated as PET) is used as the substrate, and an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG.
  • PET polyethylene terephthalate film
  • an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG.
  • an inorganic gas barrier film with SiO force is continuously formed on the substrate to allow oxygen permeation.
  • the flexible film substrate having the gas barrier layer produced above was cut so that the total area was 55 mm x 45 mm and the gas barrier layer area was 51 mm x 40 mm. did.
  • the flexible sealing film having the configuration defined in the present invention is used, and the region having the gas barrier layer in the close contact region and the gas barrier layer do not exist.
  • the organic electoluminescence device of the present invention sealed so as to have a region at the same time does not break the sealed portion even when stored for a long time at high temperature or high humidity. It can also be seen that it has a high humidity storage property.
  • the base sheet having a gas barrier layer having a plurality of organic-electrical-luminescence elements unit (organic-illuminating-luminescence element 301il shown in FIG. 11) described in FIG. 11) described in FIG. 11 the bonding process and cutting process shown in FIG.
  • a plurality of organic electroluminescent elements having the same structure as the organic electroluminescent element 102 described in Example 1 and the organic electroluminescent element described in Example 2 were formed and described in Example 1.

Abstract

The invention provides an organic electroluminescent (EL) device excellent in tight adhesion and long-term storage stability under high temperature and humidity atmosphere and a process for the production of a flexible sealing film to be used in the device which film bears a gas barrier layer and is excellent in the tight adhesion to a substrate. The organic EL device comprises a substrate, an organic EL member lying on the substrate, and a flexible sealing film provided on the EL member which film is composed of a flexible film and a gas barrier layer lying on the flexible film and is characterized in that the substrate is a glass one and that the flexible sealing film has the gas barrier layer on the organic EL member side and so adheres to the substrate as to cover the periphery of the organic EL member with the proviso that in the inner perimeter zone in the region adhering tightly to the substrate, the flexible sealing film is provided with a gas barrier layer and the bas barrier layer of the film adheres tightly to the substrate, while in the outer perimeter zone in the region adhering tightly to the substrate, the flexible sealing film is not provided with any gas barrier layer and the flexible film adheres directly to the substrate.

Description

明 細 書  Specification
可撓性封止フィルムの製造方法及びそれを用いた有機エレクト口ルミネッ センス素子  Method for producing flexible sealing film and organic-electric-luminescence device using the same
技術分野  Technical field
[0001] 本発明は、新たな貼合方式を提供するガスバリア層を有する可撓性封止フィルムの 製造方法及びそれを用いた密着性及び高温高湿環境下での長期保存性に優れた 有機エレクト口ルミネッセンス素子に関するものである。 背景技術  [0001] The present invention relates to a method for producing a flexible sealing film having a gas barrier layer that provides a new bonding method, and an organic material excellent in adhesion using the same and long-term storage in a high-temperature and high-humidity environment. The present invention relates to an electo-luminescence element. Background art
[0002] 発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレイ(EL D)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子(無機 EL素 子)や有機エレクト口ルミネッセンス素子が挙げられる。無機エレクト口ルミネッセンス 素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の 高電圧が必要である。  As a light-emitting electronic display device, there is an electoluminescence display (EL D). The components of ELD include inorganic electorium luminescence elements (inorganic EL elements) and organic electoric luminescence elements. Inorganic electoric luminescence elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
[0003] 有機エレクト口ルミネッセンス素子は、発光する有機発光材料を含有する発光層を 、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させ ることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出 (蛍光 ·燐光)を利用して発光する素子であり、数 V〜数十 V程度の電圧で発光が可 能であり、更に自己発光型であるために視野角に富み、視認性が高ぐ薄膜型の完 全固体素子であるために省スペース、携帯性等の観点から注目されている。  [0003] An organic electoluminescence device has a configuration in which a light-emitting layer containing an organic light-emitting material that emits light is sandwiched between a cathode and an anode, and recombines by injecting electrons and holes into the light-emitting layer. Is an element that emits light by using the emission of light (fluorescence / phosphorescence) when excitons are generated by excitons, and can emit light at a voltage of several to several tens of volts. Furthermore, since it is a self-luminous type, it has a wide viewing angle and is a thin-film type completely solid element with high visibility, so it has been attracting attention from the viewpoints of space saving and portability.
[0004] ところで、有機エレクト口ルミネッセンス素子に用いられる有機発光材料等の有機物 は水分や酸素等に弱ぐ高温あるいは高湿環境下で長期間にわたり保存した際に性 能が劣化し、又電極も、酸化により大気中では特性が急激に劣化すため、これらの 劣化を防止ため、一般的には金属缶や掘りガラス等で形成された封止キャップ缶を 素子基板に接着剤にて貼り合せ封止することで、上記の様な環境下での有機エレク トロルミネッセンス素子の劣化を防止する方法が提案されている。これは、密閉封止 空間を有し、封止空間内に不活性ガスを充填し、更に吸湿材を配置したものである。 この為、素子表面の陰極上は空間を有するために素子への外部応力による劣化は ない構成となっている。しかしながら、有機エレクト口ルミネッセンス素子自体は極め て薄い設計がなされているにもかかわらず、封止部材の厚みと吸湿材を配置するた めの空間の厚みを持つこととなり全体として厚みのある有機エレクト口ルミネッセンス 素子となっている。 [0004] By the way, organic substances such as organic light-emitting materials used in organic-electric-luminescence elements deteriorate in performance when stored for a long period of time in a high-temperature or high-humidity environment that is vulnerable to moisture, oxygen, etc. In order to prevent these deteriorations in the atmosphere due to oxidation, the properties are abruptly deteriorated. In general, sealing caps made of metal cans or digging glass are bonded and sealed to the element substrate with an adhesive. By stopping, there has been proposed a method for preventing the deterioration of the organic electroluminescence element under the above-mentioned environment. This has a hermetically sealed space, is filled with an inert gas, and a hygroscopic material is further disposed. For this reason, since there is a space on the cathode of the element surface, the deterioration due to external stress to the element is not It has no configuration. However, despite the fact that the organic-electric-luminescence element itself is designed to be extremely thin, it has the thickness of the sealing member and the space for placing the hygroscopic material. It is a mouth luminescence element.
[0005] 一方、薄型の有機エレクト口ルミネッセンス素子を形成させることが可能な方法の 1 つとして、素子面上に空間を設けず封止材を貼り合せる密着タイプの封止形態が提 案されている。  [0005] On the other hand, as one of the methods capable of forming a thin organic electroluminescent mouth luminescence element, a close-contact type sealing form in which a sealing material is bonded without providing a space on the element surface has been proposed. Yes.
[0006] 密着タイプの封止方法としては、例えば、フィルム基板上に金属酸化物薄膜を形成 して、ガスバリア性を付与したフィルム封止基材とする方法が知られている。  [0006] As a close-contact type sealing method, for example, a method is known in which a metal oxide thin film is formed on a film substrate to form a film sealing substrate to which gas barrier properties are imparted.
[0007] 従来より、液晶表示素子に使用されるガスバリア性フィルムとして、例えば、特公昭  Conventionally, as a gas barrier film used for a liquid crystal display element, for example, Shoko
53— 12953号公報では、プラスチックフィルム上に酸化珪素を蒸着したものや、特 開昭 58— 217344号公報では酸化アルミニウムを蒸着したものが開示されており、 いずれも水蒸気透過率で lg/m2/day程度の水蒸気バリア性を備えている。 Japanese Laid-Open Patent Publication No. 53-12953 discloses a film in which silicon oxide is deposited on a plastic film, and Japanese Laid-Open Patent Publication No. 58-217344, in which aluminum oxide is deposited, both of which have a water vapor transmission rate of lg / m 2. Has a water vapor barrier of about / day.
[0008] 近年では、更なるガスバリア性が要求される有機エレクト口ルミネッセンスディスプレ ィの大型化、高精細ディスプレイ等の開発により、フィルム基板へのガスノ リア性能に ついての要求は、水蒸気バリアで 10— 2g/m2/day程度まで上がってきている。これ ら高い水蒸気遮断性の要望に応える方法の 1つとして、緻密なセラミック層と、柔軟 性を有し、外部からの衝撃を緩和するポリマー層とを交互に繰り返し積層した構成の ガスバリア性フィルムが、米国特許第 6, 268, 695号明細書にて提案されている。ま た、ガスバリア性の金属膜を樹脂膜で挟み込む積層構造であるガスバリア性封止フィ ルムを用いた有機エレクト口ルミネッセンスディスプレイが開示されている(例えば、特 許文献 1参照。)。 [0008] In recent years, due to the increase in size of organic-electric-mouth luminescence displays that require further gas barrier properties and the development of high-definition displays, the demand for gas-nore performance on film substrates is 10% for water vapor barriers. It has risen to about 2 g / m 2 / day. One way to meet these demands for high water vapor barrier properties is to use a gas barrier film with a structure in which dense ceramic layers and flexible polymer layers that relieve impact from the outside are stacked alternately. And US Pat. No. 6,268,695. In addition, an organic electoluminescence display using a gas barrier sealing film having a laminated structure in which a gas barrier metal film is sandwiched between resin films is disclosed (for example, see Patent Document 1).
[0009] しかしながら、これらのガスバリア層を有する封止フィルムをフラットパネルディスプ レイである有機エレクト口ルミネッセンスディスプレイの封止部材として適用し、基板と 封止部材とを接着剤を用いて接着させた場合、基材と封止部材間の接着が充分で はない。本発明者が検討を進めた結果、高温高湿環境下で、長期間にわたり保存し た際、基材とガスバリア層を有する封止フィルムとの熱膨張による膨張、収縮を繰り返 すことで、各材料の熱膨張率の違いにより、基材と封止部材間の密着性が劣化し、 特に、基材と封止フィルム基材間にガスノ リア層が存在すると、特に、セラミックで構 成されているガスバリア層では、熱膨張率差により生じた残留応力の影響を受けやす くなり、その結果、ガスバリア層で亀裂等を起こしやすくなり、基材とガスバリア層、あ るいは封止フィルム基材とガスバリア層間で剥離を生じることが判明した。その結果、 ガスノ リア層が剥離した箇所より、酸素や水分を含んだ外気が有機エレクト口ルミネッ センス素子内部に侵入し、有機発光材料等から構成されている有機層へ重大なダメ ージを与える結果となって!/、る。 However, when a sealing film having these gas barrier layers is applied as a sealing member of an organic electoluminescence display which is a flat panel display, and the substrate and the sealing member are bonded using an adhesive Adhesion between the substrate and the sealing member is not sufficient. As a result of investigation by the present inventor, when stored for a long period of time in a high-temperature and high-humidity environment, the expansion and contraction due to thermal expansion between the base material and the sealing film having the gas barrier layer are repeated. Due to the difference in coefficient of thermal expansion of each material, the adhesion between the base material and the sealing member deteriorates, In particular, if a gas barrier layer exists between the substrate and the sealing film substrate, the gas barrier layer made of ceramic is particularly susceptible to the residual stress caused by the difference in thermal expansion coefficient. As a result, it was found that the gas barrier layer was easily cracked, and peeling occurred between the base material and the gas barrier layer, or between the sealing film base material and the gas barrier layer. As a result, the outside air containing oxygen and moisture enters the organic electroluminescence device from the location where the gas layer is peeled off, causing serious damage to the organic layer composed of organic light emitting materials. As a result!
[0010] この様な上記課題を改良する方法の 1つとして、封止フィルムの外周部に、更に剥 離防止膜を形成する方法が開示されている(例えば、特許文献 2参照。)。し力もなが ら、この方法では、ある程度の剥離防止効果は得られるものの、封止プロセスがより 複雑による作製工程数の増加と、経済面での負荷を招くと共に、基材側にもガスバリ ァ膜を有する場合、極めて適用しにくいという課題を抱えているのが、現状である。 特許文献 1 :特開 2003— 45652号公報 [0010] As one of the methods for improving the above-mentioned problems, a method of further forming a peeling prevention film on the outer peripheral portion of the sealing film is disclosed (for example, refer to Patent Document 2). However, although this method can provide a certain degree of delamination prevention effect, it increases the number of manufacturing steps due to the more complicated sealing process and causes an economic burden, and also causes a gas barrier on the substrate side. In the case of having a film, the current situation is that it is extremely difficult to apply. Patent Document 1: Japanese Patent Application Laid-Open No. 2003-45652
特許文献 2:特開 2004— 95503号公報  Patent Document 2: JP 2004-95503 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、上記課題に鑑みなされたものであり、その目的は、密着性及び高温高 湿環境下での長期保存性に優れた有機エレクト口ルミネッセンス素子とそれに用いる 基材との密着性に優れたガスバリア層を有する可撓性封止フィルムの製造方法を提 供することにある。 [0011] The present invention has been made in view of the above-mentioned problems, and the object thereof is adhesion between an organic electoluminescence device excellent in adhesion and long-term storage under a high-temperature and high-humidity environment, and a substrate used therefor. The object is to provide a method for producing a flexible sealing film having a gas barrier layer having excellent properties.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configurations.
[0013] 1.基板上に有機エレクト口ルミネッセンス素子部材を有する有機エレクト口ルミネッ センス素子において、該有機エレクト口ルミネッセンス素子部材の上に、可撓性フィル ム上にガスバリア層を有する可撓性封止フィルムが設けられており、該基板はガラス 基板であり、該可撓性封止フィルムは、少なくとも有機エレクト口ルミネッセンス側にガ スバリア層を有し、有機エレクト口ルミネッセンス素子部材の周囲を囲むように前記基 板と接着されており、基板との密着部領域の内周領域の可撓性封止フィルムはガス ノ リア層が設けられており、該可撓性封止フィルムのガスバリア層と基板が接着され ており、基板との密着部領域の外周領域の可撓性封止フィルムはガスノ リア層が設 けられておらず、可撓性フィルムと基板が接着されていることを特徴とする有機エレク トロルミネッセンス素子。 [0013] 1. In an organic electoluminescence device having an organic electroluminescence device member on a substrate, a flexible seal having a gas barrier layer on the flexible film on the organic electroluminescence device member. A stop film is provided, the substrate is a glass substrate, and the flexible sealing film has a gas barrier layer on at least the organic electroluminescence port luminescence side so as to surround the periphery of the organic electroluminescence device element. The flexible sealing film in the inner peripheral area of the close contact area with the substrate is a gas. The gas barrier layer of the flexible sealing film and the substrate are bonded to each other, and the gas sealing layer is provided on the flexible sealing film in the outer peripheral region of the close contact region with the substrate. An organic electroluminescent element characterized in that a flexible film and a substrate are bonded together.
[0014] 2.基板上に有機エレクト口ルミネッセンス素子部材を有する有機エレクト口ルミネッ センス素子において、該有機エレクト口ルミネッセンス素子部材の上に、可撓性フィル ム上にガスバリア層を有する可撓性封止フィルムが設けられており、該基板はガスバ リア層を有する可撓性フィルム基板であり、該可撓性封止フィルムと該基板は少なくと も有機エレクト口ルミネッセンス側にガスバリア層を有し、有機エレクト口ルミネッセンス 素子部材の周囲を囲むように接着されており、基板との密着部領域の内周領域の可 撓性封止フィルムはガスバリア層が設けられており、可撓性封止フィルムのガスバリア 層と基板が接着されており、可撓性封止フィルムと基板との密着部領域の外周領域 は可撓性封止フィルムと基板は共にガスバリア層が設けられておらず可撓性フィルム と可撓性フィルム基板とが接着されていることを特徴とする有機エレクト口ルミネッセン ス素子。  [0014] 2. In an organic electoluminescence device having an organic electoluminescence device on a substrate, a flexible seal having a gas barrier layer on the flexible film on the organic electroluminescence device. A stop film is provided, the substrate is a flexible film substrate having a gas barrier layer, and the flexible sealing film and the substrate have a gas barrier layer at least on the organic electroluminescence port luminescence side; Organic Electrum Luminescence Adhesive so as to surround the element member, and the flexible sealing film in the inner peripheral area of the contact area with the substrate is provided with a gas barrier layer. The gas barrier layer and the substrate are bonded together, and the outer peripheral area of the contact area between the flexible sealing film and the substrate is the gas barrier layer. Organic elect port Ruminessen scan element and the flexible film substrate and the flexible film not layer is provided is characterized in that it is bonded.
[0015] 3.前記ガスバリア層が、無機化合物から構成されるセラミック層であることを特徴と する前記 1または 2に記載の有機エレクト口ルミネッセンス素子。  [0015] 3. The organic electoluminescence device according to 1 or 2, wherein the gas barrier layer is a ceramic layer composed of an inorganic compound.
[0016] 4.前記 1乃至 3のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子で用い る可撓性封止フィルムの製造方法であって、可撓性フィルム上に、所定の開口部を 複数個有するマスク部材を配置し、ガスバリア膜形成材料を付与して、複数個のガス ノ リア性を備えたガスバリア層を形成することを特徴とする可撓性封止フィルムの製 造方法。  [0016] 4. A method for producing a flexible sealing film used in the organic electoluminescence device according to any one of 1 to 3, wherein a predetermined opening is formed on the flexible film. A method for producing a flexible sealing film, comprising: arranging a plurality of mask members, and applying a gas barrier film forming material to form a plurality of gas barrier layers having gas noriality.
[0017] 5.前記ガスバリア層を形成する方法が、大気圧もしくはその近傍の圧力下で、対 向電極の間で形成する放電空間に放電ガス及びガスバリア膜形成ガスを含有するガ スを供給し、少なくとも一方の電極から該放電空間に高周波電圧を印加して該ガスを 励起し、前記可撓性フィルム及び開口部を複数個有するマスク部材を該励起したガ スに晒すことにより処理を行う大気圧プラズマ処理であることを特徴とする前記 4に記 載の可撓性封止フィルムの製造方法。 発明の効果 [0017] 5. In the method for forming the gas barrier layer, a gas containing a discharge gas and a gas barrier film-forming gas is supplied to a discharge space formed between the counter electrodes under atmospheric pressure or a pressure in the vicinity thereof. The high-frequency voltage is applied to the discharge space from at least one of the electrodes to excite the gas, and the mask member having a plurality of flexible films and openings is exposed to the excited gas. 4. The method for producing a flexible sealing film as described in 4 above, which is atmospheric pressure plasma treatment. The invention's effect
[0018] 本発明により、基材との密着性に優れたガスバリア層を有する可撓性封止フィルム の製造方法及びそれを用いた密着性及び高温高湿環境下での長期保存性に優れ た有機エレクト口ルミネッセンス素子を提供することができた。  [0018] According to the present invention, a method for producing a flexible sealing film having a gas barrier layer having excellent adhesion to a substrate, adhesion using the same, and excellent long-term storage in a high-temperature and high-humidity environment are provided. An organic electoluminescence device could be provided.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]従来の封止方法により構成されている有機エレクト口ルミネッセンパネルの構成 の一例を示す概略断面図である。  [0019] FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an organic-electric-luminescence panel constructed by a conventional sealing method.
[図 2]従来の封止方法により構成されている密着型の有機エレクト口ルミネッセンパネ ル構成の、他の一例を示す概略断面図である。  FIG. 2 is a schematic cross-sectional view showing another example of a contact-type organic electricular luminescence panel configuration configured by a conventional sealing method.
[図 3]図 2に示される有機エレクト口ルミネッセンス素子の上に、全面にガスバリア層が 設けられている可撓性封止フィルムを重ね合わせた状態の有機エレクト口ルミネッセ ンス素子の概略図である。  FIG. 3 is a schematic view of an organic electoric luminescence element in a state in which a flexible sealing film having a gas barrier layer provided on the entire surface is superimposed on the organic electrifying luminescence element shown in FIG. .
[図 4]有機エレクト口ルミネッセンス素子、基材、及びガスバリア層を有する可撓性封 止フィルムとから構成される比較の一例を示す概略図である。  FIG. 4 is a schematic view showing an example of a comparison composed of an organic electoluminescence device, a base material, and a flexible sealing film having a gas barrier layer.
[図 5]本発明に適用される可撓性封止フィルムの構成の一例を示す概略断面図であ  FIG. 5 is a schematic cross-sectional view showing an example of the configuration of a flexible sealing film applied to the present invention.
[図 6]有機エレクト口ルミネッセンス素子、基材、及び本発明に係るガスバリア層を有 する可撓性封止フィルムとから構成される本発明の一例を示す概略図である。 FIG. 6 is a schematic view showing an example of the present invention composed of an organic electoluminescence device, a base material, and a flexible sealing film having a gas barrier layer according to the present invention.
[図 7]大気圧プラズマ放電処理装置とマスク部材とを用いて、連続して可撓性フィル ム上にガスバリア層を形成する一例を示す概略断面図である。  FIG. 7 is a schematic cross-sectional view showing an example in which a gas barrier layer is continuously formed on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
[図 8]所定の開口部を複数個有するマスク部材の一例を示す模式図である。  FIG. 8 is a schematic view showing an example of a mask member having a plurality of predetermined openings.
[図 9]可撓性フィルム上に、複数のガスノ リア層が形成された可撓性封止フィルムシ ートの一例を示す模式図である。  FIG. 9 is a schematic view showing an example of a flexible sealing film sheet in which a plurality of gas noble layers are formed on a flexible film.
[図 10]大気圧プラズマ放電処理装置とマスク部材とを用いて、連続して可撓性フィル ム上にガスバリア層を形成する他の一例を示す概略断面図である。  FIG. 10 is a schematic cross-sectional view showing another example of continuously forming a gas barrier layer on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
[図 11]本発明の可撓性封止フィルムと有機エレクト口ルミネッセンス素子との貼合ェ 程の一例を示す模式図である。  FIG. 11 is a schematic view showing an example of a bonding process between the flexible sealing film of the present invention and an organic electoluminescence device.
符号の説明 2 可撓性封止フィルムシート Explanation of symbols 2 Flexible sealing film sheet
10 プラズマ放電処理装置 10 Plasma discharge treatment equipment
11、 33 第 1電極  11, 33 1st electrode
12、 34 第 2電極  12, 34 Second electrode
21 第 1電源 21 First power supply
22 第 2電源  22 Second power supply
31 元巻部 31 Former volume
37 高周波電源 37 High frequency power supply
38 マスク部材 38 Mask material
39 ガスバリア層 39 Gas barrier layer
40 巻き取りロール 40 Winding roll
41 遮蔽部 41 Shield
42 開口部 42 opening
100 有機エレクト口ルミネッセンス素子部材 101 フイノレム基板  100 Organic-elect luminescence element member 101 Finolem substrate
101' ガラス基板 101 'glass substrate
102 第 1電極 102 1st electrode
103 正孔輸送層(正孔注入層)  103 Hole transport layer (hole injection layer)
104 有機化合物層 (発光層)  104 Organic compound layer (light emitting layer)
105 電子注入層  105 electron injection layer
106 第 2電極  106 Second electrode
107、 107a 接着剤  107, 107a Adhesive
108 封止部材、可撓性封止フィルム  108 Sealing member, flexible sealing film
108a, 108b ガスバリア層  108a, 108b Gas barrier layer
110 有機エレクト口ルミネッセン層群  110 Organic Elect Mouth Luminsen Group
500 可撓性封止フィルムの貼合工程  500 Bonding process of flexible sealing film
E 密着部領域  E Contact area
F 可撓性フィルム G 薄膜形成ガス F Flexible film G Thin film forming gas
G° プラズマ状態のガス  G ° Plasma state gas
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
[0022] 本発明者は、上記課題に鑑み鋭意検討を行った結果、ガラスの基板上に有機エレ タトロルミネッセンス素子部材を有する有機エレクト口ルミネッセンス素子においては、 有機エレクト口ルミネッセンス素子部材の上に、可撓性フィルム上にガスバリア層を有 する可撓性封止フィルムが設けられており、可撓性封止フィルムは、少なくとも有機ェ レクト口ルミネッセンス側にガスバリア層を有し、有機エレクト口ルミネッセンス素子部 材の周囲を囲むように基板と接着することで、有機エレクト口ルミネッセンス素子部材 への水分や酸素の浸入を防ぎ、さらに、可撓性封止フィルムと基板とが接着した領域 である密着部領域の内周領域については、可撓性封止フィルムはガスバリア層が設 けられており可撓性封止フィルムのガスバリア層と基板が接着されており、密着部領 域の外周領域については、可撓性封止フィルムにはガスバリア層が設けられておら ず、可撓性フィルムと基板とを直接接着させることにより可撓性封止フィルムと基板と の接着性を一段と向上させることで、密着性及び高温高湿環境下での長期保存性に 優れた有機エレクト口ルミネッセンス素子を実現できることを見出し、本発明に至った 次第である。 [0022] As a result of intensive studies in view of the above problems, the inventor of the present invention has an organic electroluminescent element having an organic electroluminescent element on a glass substrate. On the organic electroluminescent element, A flexible sealing film having a gas barrier layer is provided on the flexible film, and the flexible sealing film has a gas barrier layer at least on the organic-elect luminescence side, and is an organic-elect luminescence device By adhering to the substrate so as to surround the periphery of the component, it is possible to prevent moisture and oxygen from entering the organic-elect-mouth luminescence element member, and furthermore, the adhesion portion which is an area where the flexible sealing film and the substrate are bonded As for the inner peripheral region of the region, the flexible sealing film is provided with a gas barrier layer. As for the outer peripheral area of the adhesion area, the flexible sealing film is not provided with a gas barrier layer, and it is possible to directly bond the flexible film and the board. By further improving the adhesion between the flexible sealing film and the substrate, it was found that an organic electoluminescence device excellent in adhesion and long-term storage under high-temperature and high-humidity environments could be realized. It depends on you.
[0023] また、ガスノ リア層を有する可撓性フィルム基板の基板上に有機エレクト口ルミネッ センス素子部材を有する有機エレクト口ルミネッセンス素子においては、有機エレクト 口ルミネッセンス素子部材の上に、可撓性フィルム上にガスバリア層を有する可撓性 封止フィルムが設けられており、可撓性封止フィルムと基板は少なくとも有機エレクト 口ルミネッセンス側にガスバリア層を有し、有機エレクト口ルミネッセンス素子部材の周 囲を囲むように接着することで、有機エレクト口ルミネッセンス素子部材への水分や酸 素の浸入を防ぎ、さらに、可撓性封止フィルムと基板とが接着した領域である密着部 領域の内周領域については、可撓性封止フィルムはガスバリア層が設けられており、 可撓性封止フィルムのガスバリア層と基板が接着されており、密着部領域の外周領 域については、可撓性封止フィルムと基板は共にガスバリア層が設けられておらず可 橈性フィルムと可撓性フィルム基板とを直接接着させることにより可撓性封止フィルム と基板との接着性を一段と向上させることで、密着性及び高温高湿環境下での長期 保存性に優れた有機エレクト口ルミネッセンス素子を実現できることを見出し、本発明 に至った次第である。 [0023] Further, in the organic electoluminescence device having the organic electroluminescence device member on the substrate of the flexible film substrate having the gas noa layer, the flexible film is formed on the organic electroluminescence device member. A flexible sealing film having a gas barrier layer is provided on the substrate. The flexible sealing film and the substrate have a gas barrier layer on at least the organic electroluminescence port luminescence side, and surround the organic electroluminescence device member. By adhering so as to surround, it prevents the ingress of moisture and oxygen into the organic-elect mouth luminescence element member, and furthermore, the inner peripheral area of the close contact area, which is the area where the flexible sealing film and the substrate are bonded The flexible sealing film is provided with a gas barrier layer, and the flexible barrier film gas barrier layer and the substrate As for the outer peripheral area of the close contact area, neither the flexible sealing film nor the substrate is provided with a gas barrier layer. By directly adhering the coasting film and flexible film substrate, the adhesion between the flexible sealing film and the substrate is further improved, providing excellent adhesion and long-term storage in high-temperature and high-humidity environments. As a result, the present inventors have found that an organic-electric-luminescence device can be realized.
[0024] 以下、本発明の詳細について説明する。  [0024] Details of the present invention will be described below.
[0025] 《可撓性封止フィルム》  [0025] << Flexible sealing film >>
はじめに、本発明に係る可撓性封止フィルムを適用する有機エレクト口ルミネッセン ス素子の基本構成につ!/、て説明する。  First, the basic configuration of an organic electoluminescence element to which the flexible sealing film according to the present invention is applied will be described.
[0026] 図 1は、従来の封止方法により構成されている有機エレクト口ルミネッセンスパネル( 以下、有機 ELパネルともいう)の構成の一例を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an organic electoluminescence panel (hereinafter also referred to as an organic EL panel) configured by a conventional sealing method.
[0027] 図 1において、 100は有機エレクト口ルミネッセンス素子部材(以下、有機 EL素子部 材ともいう)を示す。有機 EL素子部材 100は、ガラス基板 101' 上に、第 1電極 102 と、正孔輸送層(正孔注入層) 103と、有機化合物層(発光層) 104と、電子注入層 1 05と、第 2電極 106と、接着剤 107と、接着剤 107との対向面にガスバリア層を有す る封止部材 108とをこの順番に有している。 102aは第 1電極 102の外部取り出し電 極を示し、 106aは第 2電極 106の外部取り出し電極を示す。本図に示される有機ェ レクト口ルミネッセンス素子 1は、第 1電極 102の外部取り出し電極 102aと、第 2電極 1 06の外部取り出し電極 106aの先端部分を除いて接着剤層 107を介して封止部材 1 08で密着封止した構造となっている。この様な構成の場合、基板としては、ガラス基 板が主に用いられる。  In FIG. 1, reference numeral 100 denotes an organic electoluminescence element member (hereinafter also referred to as an organic EL element member). The organic EL element member 100 includes a first electrode 102, a hole transport layer (hole injection layer) 103, an organic compound layer (light emitting layer) 104, an electron injection layer 105, The second electrode 106, the adhesive 107, and the sealing member 108 having a gas barrier layer on the surface facing the adhesive 107 are provided in this order. 102a represents an external extraction electrode of the first electrode 102, and 106a represents an external extraction electrode of the second electrode 106. The organic electroluminescence device 1 shown in the figure is sealed through an adhesive layer 107 except for the tip of the external extraction electrode 102a of the first electrode 102 and the external extraction electrode 106a of the second electrode 106. The structure is tightly sealed with member 108. In such a configuration, a glass substrate is mainly used as the substrate.
[0028] 図 1に示される有機エレクト口ルミネッセンス素子において、第 1電極 102と正孔輸 送層 103の間に正孔注入層(不図示)を設けてもよい。又、第 2電極 106と有機化合 物層(発光層) 104と電子注入層 105との間に電子輸送層(不図示)を設けてもよい。  In the organic electoluminescence device shown in FIG. 1, a hole injection layer (not shown) may be provided between the first electrode 102 and the hole transport layer 103. Further, an electron transport layer (not shown) may be provided between the second electrode 106, the organic compound layer (light emitting layer) 104, and the electron injection layer 105.
[0029] 本図に示す有機エレクト口ルミネッセンス素子の層構成は一例を示したものである 力 S、他の代表的な有機エレクト口ルミネッセンス素子の層構成としては次の構成が挙 げられる。  [0029] The layer configuration of the organic electroluminescence device shown in this figure is an example, and the following configuration can be given as the layer configuration of force S, and another typical organic electroluminescence device.
[0030] (1)基板/第 1電極(陽極) /発光層/電子輸送層/第 2電極(陰極) /封止部材  [0030] (1) Substrate / first electrode (anode) / light emitting layer / electron transport layer / second electrode (cathode) / sealing member
(2)基板/第 1電極(陽極) /正孔輸送層/発光層/正孔阻止層/電子輸送層/ 第 2電極(陰極) /封止部材 (2) Substrate / first electrode (anode) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / Second electrode (cathode) / sealing member
(3)基板/第 1電極(陽極) /正孔輸送層(正孔注入層)/発光層/正孔阻止層/ 電子輸送層/陰極バッファ一層(電子注入層)/第 2電極(陰極) /封止部材  (3) Substrate / first electrode (anode) / hole transport layer (hole injection layer) / light emitting layer / hole blocking layer / electron transport layer / one cathode buffer layer (electron injection layer) / second electrode (cathode) / Sealing material
(4)基板/第 1電極(陽極) /陽極バッファ一層(正孔注入層)/正孔輸送層/発 光層/正孔阻止層/電子輸送層/陰極バッファ一層(電子注入層)/第 2電極(陰 極)/封止部材  (4) substrate / first electrode (anode) / anode buffer layer (hole injection layer) / hole transport layer / emission layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / 2 electrodes (cathode) / sealing material
有機 EL素子部材の場合、第 1電極(陽極)もしくは第 2電極(陰極)のいずれ力、、あ るいは、双方を、透明もしくは半透明にして観察側とする。透明電極材料としては、 IT O (酸化スズと酸化インジウム混合物)、 IZO (酸化亜鉛と酸化インジウム混合物)、 Zn 0、 SnO、 In O等が知られている。中でも、 ITO電極は、 90%以上の高い光透過 率と、 10 Ω /口以下の低いシート抵抗値が可能で、液晶ディスプレイや太陽電池な どの透明電極としても用いられている。又、 IZO電極は、形成時に基板を加熱せずに 所定の低レ、抵抗値が得られ、 ITO電極よりも膜表面が平滑であると!/、う利点がある。 陽極に用いる場合は、そのまま。陰極に用いる場合には、有機層上に、数〜数十 nm のアルミ、銀などの電極を設け、さらに、前述の透明電極を設ける。  In the case of organic EL element members, either the first electrode (anode) or the second electrode (cathode), or both, shall be transparent or translucent to be the observation side. As transparent electrode materials, IT 2 O (a mixture of tin oxide and indium oxide), IZO (a mixture of zinc oxide and indium oxide), Zn 0, SnO, In 2 O and the like are known. In particular, ITO electrodes can be used as transparent electrodes for liquid crystal displays and solar cells because they have a high light transmittance of 90% or more and a low sheet resistance of 10 Ω / mouth. Also, the IZO electrode has the advantages that a predetermined low resistance and resistance value can be obtained without heating the substrate during formation, and that the film surface is smoother than the ITO electrode. If used for the anode, leave it as it is. When used as a cathode, an electrode such as aluminum or silver having a thickness of several to several tens of nm is provided on the organic layer, and the above-mentioned transparent electrode is further provided.
[0031] しかしな力 Sら、図 1に記載の方法で封止を行った場合、この有機エレクト口ルミネッセ ンス素子を高温高湿下で長期間にわたり保存した際、有機エレクト口ルミネッセンス 素子上面部のみで防湿を行っているため、防湿効果が十分でなぐまた、接着剤 10 7と封止部材 108間、あるいは第 1電極 102、第 2電極 106とガラス基板 101' 間で 亀裂の発生や剥離を起こし、その結果、ダークスポットと呼ばれる非発光点が発生し 、このダークスポットの成長が有機 ELパネルの寿命を短くしている原因の 1つとなつ ている。ダークスポットは一般的に駆動直後は肉眼では見えない程度の大きさで発 生し、これを核として、長期保存や連続駆動により成長していくことが知られている。  [0031] However, when sealing is performed by the method shown in Fig. 1 when the organic electroluminescent mouth luminescence element is stored for a long period of time under high temperature and high humidity, the organic electroluminescent mouth luminescence element upper surface portion Moisture-proofing is not sufficient, and the moisture-proof effect is not sufficient.In addition, cracks are generated or peeled between the adhesive 107 and the sealing member 108, or between the first electrode 102, the second electrode 106, and the glass substrate 101 '. As a result, a non-emission point called a dark spot is generated, and the growth of the dark spot is one of the causes of shortening the lifetime of the organic EL panel. It is known that dark spots are generally generated in such a size that they cannot be seen with the naked eye immediately after driving, and that they grow as a result of long-term storage or continuous driving.
[0032] 図 2は、従来の封止方法により構成されている密着型有機 ELパネル構成の他の一 例を示す概略断面図である。  FIG. 2 is a schematic cross-sectional view showing another example of the structure of a contact type organic EL panel configured by a conventional sealing method.
[0033] 図 2において、 109は第 1電極 102と第 2電極 106とが重なっている部分の発光部 を示し、 110は外部取り出し電極 102aと外部取り出し電極 106aの先端部が露出す る状態の外部取り出し電極 102aと外部取り出し電極 106aの一部を含めた発光部の 外周面(図中、斜線で示す部分)を示す。他の符号は図 1と同義である。 [0033] In FIG. 2, reference numeral 109 denotes a light emitting portion where the first electrode 102 and the second electrode 106 overlap, and 110 denotes a state in which the leading ends of the external extraction electrode 102a and the external extraction electrode 106a are exposed. The light emitting part including the external extraction electrode 102a and a part of the external extraction electrode 106a An outer peripheral surface (portion indicated by hatching in the figure) is shown. The other symbols have the same meaning as in FIG.
[0034] 図 3は、図 2に示される有機 EL素子部材の上に、全面にガスノ リア層が設けられて いる可撓性封止フィルムを重ね合わせた状態の有機エレクト口ルミネッセンス素子の 概略図である。図 3の(a)は図 2に示される有機 EL素子部材の上に全面にガスバリア 層を有する可撓性封止フィルムを重ね合わせた状態の有機エレクト口ルミネッセンス 素子の概略平面図である。図 3の(b)は図 3の(a)の A— A' に沿った概略断面図で ある。 [0034] FIG. 3 is a schematic view of an organic electoluminescence device in a state where a flexible sealing film having a gas noble layer provided on the entire surface is superimposed on the organic EL device member shown in FIG. It is. FIG. 3 (a) is a schematic plan view of the organic electoluminescence device in which a flexible sealing film having a gas barrier layer is superimposed on the entire surface of the organic EL device member shown in FIG. Fig. 3 (b) is a schematic cross-sectional view along A-A 'in Fig. 3 (a).
[0035] 図 3では、接着剤 107が配置された全面にガスバリア層 108aを有する可撓性封止 フィルム 108を用いて、有機 EL素子部材の上に重ね合わせた状態を示している。可 撓性封止フィルム 108に配置された接着剤 107は、有機 EL素子部材の外部取り出 し電極 102a及び外部取り出し電極 106aの先端部が露出する状態で発光部 109と 外周面 110とを含めガスバリア層 108aを有する可撓性封止フィルム 108が貼合され る様に配置されている。 107aは発光部 109の外周面 110に対応する位置にあたる 可撓性封止フィルムに配置された接着剤を示す。外周面 110上の接着剤 107aが可 撓性封止フィルム 108を介し圧着される。  FIG. 3 shows a state where a flexible sealing film 108 having a gas barrier layer 108a on the entire surface on which the adhesive 107 is disposed is overlaid on the organic EL element member. The adhesive 107 disposed on the flexible sealing film 108 includes the light emitting portion 109 and the outer peripheral surface 110 in a state where the leading ends of the external extraction electrode 102a and the external extraction electrode 106a of the organic EL element member are exposed. It arrange | positions so that the flexible sealing film 108 which has the gas barrier layer 108a may be bonded. Reference numeral 107 a denotes an adhesive disposed on the flexible sealing film corresponding to the outer peripheral surface 110 of the light emitting unit 109. The adhesive 107 a on the outer peripheral surface 110 is pressure-bonded via the flexible sealing film 108.
[0036] しかしな力 Sら、図 3に記載の様に、可撓性封止フィルムの端部まで、ガスバリア層 10 8aが形成されている場合、上述の様に、この有機エレクト口ルミネッセンス素子を高 温高湿下で長期間にわたり保存した際、接着剤 107とガスバリア層 108a、あるいは 接着剤層が極めて薄い場合には、フィルム基板 101とガスノ リア層 108a間で亀裂の 発生や剥離を生じ、その結果、ダークスポットと呼ばれる非発光点が発生する。  However, when the gas barrier layer 108a is formed up to the end of the flexible sealing film as shown in FIG. 3, as described above, the organic electoluminescence device as described above. When the adhesive 107 and the gas barrier layer 108a or the adhesive layer is extremely thin when stored for a long time under high temperature and high humidity, cracking or peeling occurs between the film substrate 101 and the gas noble layer 108a. As a result, non-light emitting points called dark spots are generated.
[0037] 図 4は、有機 EL素子部材、基材、及びガスバリア層を有する可撓性封止フィルムと から構成される比較の一例を示す概略図である。  FIG. 4 is a schematic view showing an example of comparison composed of an organic EL element member, a base material, and a flexible sealing film having a gas barrier layer.
[0038] 図 4の(a)は、前記図 1で示したように、ガラス基板 101' 上に、第 1電極、正孔輸送 層(正孔注入層)、有機化合物層(発光層)、電子注入層、第 2電極等から構成される 有機 EL層群 110を設け、その上面部のみに、ガスバリア層 108aを有する可撓性封 止フィルム 108で封止した形態を示している。  [0038] As shown in FIG. 1, (a) in FIG. 4 shows a first electrode, a hole transport layer (hole injection layer), an organic compound layer (light emitting layer), and a glass substrate 101 ′. An organic EL layer group 110 composed of an electron injection layer, a second electrode, and the like is provided, and only a top surface thereof is sealed with a flexible sealing film 108 having a gas barrier layer 108a.
[0039] また、図 4の(b)は、前記図 3に示すように、逆に全面にガスバリア層 108aを有する 可撓性封止フィルム 108で有機 EL層群 110を封止した形態を示している。 [0040] また、図 4の(c)、 (d)は、全面にガスバリア層 108bを有する可撓性のフィルム基板 101上に有機 EL層群 110を設け、その上に可撓性フィルムの一部あるいは全面に ガスバリア層 108aを有する可撓性封止フィルム 108で封止した形態を示している。 FIG. 4B shows a form in which the organic EL layer group 110 is sealed with a flexible sealing film 108 having a gas barrier layer 108a on the entire surface, as shown in FIG. ing. [0040] FIGS. 4C and 4D show an organic EL layer group 110 provided on a flexible film substrate 101 having a gas barrier layer 108b on the entire surface. In this case, a configuration is shown in which the film is sealed with a flexible sealing film 108 having a gas barrier layer 108a on a part or the entire surface.
[0041] これら図 4に示した封止方法においては、図 4の(a)では有機 EL層群 110の上部 のみにしかガスノ リア層が設けられていないため、ガス防止効果が十分ではない。  [0041] In the sealing method shown in FIG. 4, the gas prevention layer is provided only in the upper part of the organic EL layer group 110 in FIG. 4 (a), so that the gas prevention effect is not sufficient.
[0042] また、図 4の(b)〜(d)では、有機 EL層群 110を被覆するのに十分なガスバリア層 は設けられている力 いずれも密着部領域 Eにおいては、全てでガスバリア層が存在 し、基材端部では、ガスバリア層が外部と接しているため、この様な構成により高温高 湿下で長期間保存された際、ガスバリア層の劣化が進行し、クラックの発生や基材、 可撓性フィルムからの剥離等を生じ、その結果、所望のガスバリア性を得ることができ なくなる。  In (b) to (d) of FIG. 4, the gas barrier layer sufficient to cover the organic EL layer group 110 is provided. In any of the contact region E, the gas barrier layer Since the gas barrier layer is in contact with the outside at the edge of the substrate, the gas barrier layer deteriorates when stored for a long period of time under high temperature and high humidity by such a configuration, and the generation of cracks and the Peeling from the material and the flexible film occurs, and as a result, a desired gas barrier property cannot be obtained.
[0043] 上記課題に対して、本発明の有機エレクト口ルミネッセンス素子においては、可撓 性フィルム上にガスバリア性を備えたガスバリア層を有する領域 Aと、該ガスバリア層 の周辺にガスバリア層が存在しない領域 Bとを有する可撓性封止フィルムを用いて、 該基板とで封止する。この際、基板と該可撓性封止フィルムとが接している密着部領 域 Eは、ガスバリア層を有する領域(内周領域)と、該領域の外周部にガスバリア層が 存在しない領域 (外周領域)とを同時に有することを特徴とする。この密着部領域 Eの 外周領域の接着性を向上させることで、有機 EL素子部材に酸素や水分が浸入する のを防いでいる。  [0043] In response to the above problems, in the organic electoluminescence device of the present invention, the gas barrier layer is not present in the area A having the gas barrier layer having a gas barrier property on the flexible film and around the gas barrier layer. A flexible sealing film having region B is used and sealed with the substrate. At this time, the close contact region E where the substrate and the flexible sealing film are in contact with each other includes a region having a gas barrier layer (inner peripheral region) and a region in which no gas barrier layer is present in the outer peripheral portion of the region (outer periphery). Region) at the same time. By improving the adhesion of the outer peripheral area of the adhesion area E, oxygen and moisture are prevented from entering the organic EL element member.
[0044] 本発明に係る可撓性封止フィルムは、可撓性フィルム上にガスバリア性を備えたガ スバリア層を有する領域 Aと、該ガスバリア層の周辺にガスバリア層が存在しない領 域 B (具体的には、可撓性フィルムのみで構成)とを有する。  [0044] The flexible sealing film according to the present invention includes a region A having a gas barrier layer having gas barrier properties on the flexible film, and a region B (where no gas barrier layer is present around the gas barrier layer). Specifically, it is composed of only a flexible film.
[0045] 図 5は、本発明に適用される可撓性封止フィルムの構成の一例を示す概略断面図 である。  FIG. 5 is a schematic cross-sectional view showing an example of the configuration of the flexible sealing film applied to the present invention.
[0046] 図 5において、本発明に係る可撓性封止フィルム 108は、可撓性フィルムの内部に ガスバリア層 108aを設けた領域 Aを有し、ガスバリア層 108aの周辺部である領域 B にはガスノ リア層を設けない構成である。領域 Aに形成するガスバリア層の詳細につ いては、後述するが、本発明に係るガスバリア層は、無機化合物から構成されるセラ ミック層であることが好ましぐまた、ガスバリア層は単一そうで構成されていても、ある いは特性 (例えば、炭素含有率、密度、弾性率等)が異なる複数の層を重ねた積層 体であってもよい。 In FIG. 5, a flexible sealing film 108 according to the present invention has a region A in which a gas barrier layer 108a is provided inside the flexible film, and a region B that is a peripheral part of the gas barrier layer 108a. Is a configuration in which no gas noria layer is provided. Although details of the gas barrier layer formed in the region A will be described later, the gas barrier layer according to the present invention is a ceramic composed of an inorganic compound. It is preferable that the gas barrier layer is a single layer or a stack of layers with different properties (for example, carbon content, density, elastic modulus, etc.). It may be a body.
[0047] 図 6は、有機 EL素子部材、基材、及び本発明に係るガスノ リア層を有する可撓性 封止フィルムとから構成される本発明の一例を示す概略図である。  FIG. 6 is a schematic view showing an example of the present invention including an organic EL element member, a base material, and a flexible sealing film having a gas noble layer according to the present invention.
[0048] 図 6の(a)は、ガラス基板 lO 上に、第 1電極、正孔輸送層(正孔注入層)、有機 化合物層(発光層)、電子注入層、第 2電極等から構成される有機 EL層群 110を設 け、その上面部に、図 5に記載のようなガスバリア層 108aを有する領域 Aと領域 Bと 力、ら構成される可撓性封止フィルム 108で封止した形態を示している。  [0048] (a) in FIG. 6 is composed of a first electrode, a hole transport layer (hole injection layer), an organic compound layer (light emitting layer), an electron injection layer, a second electrode, and the like on a glass substrate lO. The organic EL layer group 110 to be formed is provided, and the upper surface portion thereof is sealed with a flexible sealing film 108 composed of a region A and a region B having a gas barrier layer 108a as shown in FIG. Shows the form.
[0049] この時、有機 EL層群 110の上面部及び両側面部には、少なくともガスバリア層が 存在し、かつ、密着部領域 Eにおいては、全ての領域にガスバリア層が存在すること はなぐ密着部領域 Eの内周領域は、基板とガスノ リア層とが直接あるいは接着剤( 不図示)を介して接触し、基材端部を含めた密着部領域 Eの外周領域は、基材と可 橈性フィルムとが直接あるいは接着剤(不図示)を介して接触して!/、る状態となる。  [0049] At this time, at least the gas barrier layer is present on the upper surface portion and both side surface portions of the organic EL layer group 110, and in the contact portion region E, the gas barrier layer is not present in all regions. In the inner peripheral region of region E, the substrate and the gas noble layer are in direct contact with each other or via an adhesive (not shown), and the outer peripheral region of the contact region E including the end of the base material is flexible with the base material. The film comes into contact with the adhesive film directly or via an adhesive (not shown).
[0050] この様に、ガスバリア層存在領域の周辺部に、ガスバリア層を有しない領域を設け ることで基板との接着性を向上させることにより、高温高湿環境下で長期間にわたり 保存した際でも、ガスバリア層の劣化に伴うガスノ リア性の劣化を引き起こすことが無 ぐ優れた密着性と高温高湿環境下での長期保存性を実現することができた。  [0050] In this way, by providing a region having no gas barrier layer at the periphery of the region where the gas barrier layer is present, by improving the adhesiveness with the substrate, when stored in a high temperature and high humidity environment for a long period of time. However, it was possible to realize excellent adhesion and long-term storage in a high-temperature and high-humidity environment that would not cause deterioration of the gas noriality associated with the deterioration of the gas barrier layer.
[0051] 本発明の有機エレクト口ルミネッセンス素子においては、フイノレム基板 101力 S、ガス ノ リア層 108bを有する可撓性フィルム基板であることが好ましぐまた可撓性フィルム 基板が有するガスバリア層力 無機化合物から構成されるセラミック層であることが好 ましい。  [0051] In the organic electroluminescent mouth luminescence device of the present invention, it is preferable that the flexible film substrate has a vinylem substrate 101 force S and a gas noble layer 108b, and the flexible film substrate has a gas barrier layer force. A ceramic layer composed of an inorganic compound is preferred.
[0052] 図 6の(b)、 (c)は、ガスバリア層を有する可撓性フィルム基板 101上に有機 EL層 群 110を設け、その上面部に、図 5に記載のようなガスバリア層 108aを有する領域 A と領域 Bとから構成される可撓性封止フィルム 108で封止した形態を示している。  [0052] FIGS. 6B and 6C show an organic EL layer group 110 provided on a flexible film substrate 101 having a gas barrier layer, and a gas barrier layer 108a as shown in FIG. The form sealed with the flexible sealing film 108 comprised from the area | region A and the area | region B which has this is shown.
[0053] この時、有機 EL層群 110の上面部及び両側面部には、少なくともガスバリア層が 存在し、かつ、密着部領域 Eにおいては、全ての領域にガスバリア層が存在すること はなぐ基材端部を含めた少なくとも一部は、フィルム基材と可撓性フィルムとが直接 あるいは接着剤(不図示)を介して接触して!/、る状態となる。 [0053] At this time, at least the gas barrier layer is present on the upper surface portion and both side surface portions of the organic EL layer group 110, and in the adhesion portion region E, the gas barrier layer is not present in all regions. At least a part of the film including the edge is directly Alternatively, it is brought into contact with an adhesive (not shown).
[0054] 次いで、本発明に係る可撓性封止フィルムの構成要素の詳細について説明する。  [0054] Next, details of components of the flexible sealing film according to the present invention will be described.
[0055] 本発明に係る可撓性封止フィルムを構成している樹脂フィルムとしては、特に制限 はなぐ例えば、エチレン、ポリプロピレン、ブテン等の単独重合体または共重合体ま たは共重合体等のポリオレフイン (PO)樹脂、環状ポリオレフイン等の非晶質ポリオレ フィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン 2, 6 ナフタレ ート(PEN)等のポリエステル系樹脂、ナイロン 6、ナイロン 12、共重合ナイロン等のポ リアミド系(PA)樹脂、ポリビュルアルコール(PVA)樹脂、エチレン—ビュルアルコー ル共重合体 (EVOH)等のポリビュルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエ 一テルイミド (PEI)樹脂、ポリサルホン (PS)樹脂、ポリエーテルサルホン (PES)樹脂 [0055] The resin film constituting the flexible sealing film according to the present invention is not particularly limited, for example, a homopolymer such as ethylene, polypropylene, or butene or a copolymer or a copolymer. Polyolefin resins (PO), amorphous polyolefin resins such as cyclic polyolefin (APO), polyester resins such as polyethylene terephthalate (PET), polyethylene 2,6 naphthalate (PEN), nylon 6, nylon 12, Polyamide-based (PA) resin such as polymerized nylon, Polybulal alcohol (PVA) resin, Polybulal alcohol-based resin such as ethylene-butyl alcohol copolymer (EVOH), Polyimide (PI) resin, Polyterimide (PEI) ) Resin, Polysulfone (PS) resin, Polyethersulfone (PES) resin
、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニ ルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン一四フッ化工チレン 共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化工チレン パーフルォ 口アルキルビュルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニ ノレ(PVF)、ノ ーフノレオ口エチレン一パーフロロプロピレン一パーフロロビニノレエーテ ル—共重合体 (EPA)等のフッ素系樹脂等を用いることができる。 , Polyetheretherketone (PEEK) resin, polycarbonate (PC) resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin, ethylene tetrafluoroethylene copolymer (ETFE), ethylene trifluoride chloride (PFA) ), Tetrafluorinated styrene perfluorinated alkyl butyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinylene fluoride (PVF), neoprenoethylene ethylene-perfluoropropylene-perfluorovinylolate-copolymer Fluorine resin such as coalescence (EPA) can be used.
[0056] また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアタリレ ート化合物によりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有す るメルカプト化合物よりなる樹脂組成物、エポキシアタリレート、ウレタンアタリレート、 ポリエステルアタリレート、ポリエーテルアタリレート等のオリゴマーを多官能アタリレー トモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂およびこれらの混合物等を 用いることも可能である。さらに、これらの樹脂の 1または 2種以上をラミネート、コーテ イング等の手段によって積層させたものを樹脂フィルムとして用いることも可能である [0056] In addition to the resins listed above, a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, or a resin composition comprising a mercapto compound having an acrylate compound and a thiol group. It is also possible to use a photocurable resin such as a resin composition obtained by dissolving an oligomer, an epoxy acrylate, a urethane acrylate, a polyester acrylate, a polyether acrylate, etc. in a polyfunctional acrylate monomer, and a mixture thereof. is there. Furthermore, it is also possible to use a resin film obtained by laminating one or more of these resins by means of lamination, coating, or the like.
Yes
[0057] これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼォ ネックスゃゼォノア(日本ゼオン (株)製)、非晶質シクロポリオレフイン樹脂フィルムの ARTON (ジエイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人 (株)製)、セルローストリアセテートフィルムのコニカミノルタタック KC4UX、 KC8UX (コニ力ミノルタォプト (株)製)などの市販品を好ましく使用することができる。 [0057] These materials may be used alone or in appropriate mixture. Among them, ZE NEX and ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by GIRL) of amorphous cyclopolyolefin resin film, Pureace of polycarbonate film (manufactured by Teijin Limited), cellulose triacetate film Konica Minolta Tack KC4UX, KC8UX Commercially available products such as (manufactured by Konica Minoltaput Co., Ltd.) can be preferably used.
[0058] また、樹脂フィルムは透明であることが好ましい。樹脂フィルムが透明であり、樹脂フ イルム上に形成するガスバリア層も透明であることにより、透明なガスノ リア性フィルム とすることが可能となるため、有機エレクト口ルミネッセンス素子(以下、有機エレクト口 ノレミネッセンス素子と略記する)の基板としても適用が可能となる。  [0058] The resin film is preferably transparent. Since the resin film is transparent and the gas barrier layer formed on the resin film is also transparent, a transparent gas-nore film can be obtained. It can also be applied as a substrate (abbreviated as an element).
[0059] 本発明に係る樹脂フィルムは、従来公知の一般的な方法により製造することが可能 である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイや Tダイにより押 し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造 すること力 Sできる。また、未延伸の基材をー軸延伸、テンター式逐次二軸延伸、テン ター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材 の流れ (縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより 延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に 合わせて適宜選択することできる力 縦軸方向および横軸方向にそれぞれ 2〜; 10倍 が好ましい。  [0059] The resin film according to the present invention can be produced by a conventionally known general method. For example, it is possible to produce an unstretched substrate that is substantially amorphous and not oriented by melting the resin as a material with an extruder, extruding it with an annular die or T-die and quenching it. . In addition, the unstretched base material is subjected to a known method such as -axial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching in the direction of base material flow (vertical axis). Alternatively, a stretched substrate can be produced by stretching in a direction perpendicular to the flow direction of the substrate (horizontal axis). In this case, the draw ratio is a force that can be appropriately selected according to the resin that is the raw material of the base material.
[0060] また、本発明に係る樹脂フィルムにおいては、前記ガスバリア膜、またポリマー膜等 を形成する前にコロナ処理、火炎処理、プラズマ処理、グロ一放電処理、粗面化処 理、薬品処理などの表面処理を行ってもよい。  [0060] Further, in the resin film according to the present invention, before forming the gas barrier film, the polymer film or the like, corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. The surface treatment may be performed.
[0061] 樹脂フィルムは、ロール状に巻き上げられた長尺品が便利である。樹脂フィルムの 厚さは、得られるガスバリア性フィルムの用途によって異なるので一概には規定でき ないが、ガスバリア性フィルムを包装用途とする場合には、特に制限を受けるもので はなぐ包装材料としての適性から、 3〜400 111、中でも 6〜30 111の範囲内とする ことが好ましい。  [0061] The resin film is conveniently a long product wound up in a roll. The thickness of the resin film differs depending on the intended use of the resulting gas barrier film, and cannot be specified unconditionally.However, when the gas barrier film is used for packaging, it is not particularly restricted and suitable as a packaging material. Therefore, it is preferable to be in the range of 3 to 400 111, especially 6 to 30 111.
[0062] また、本発明に用いられる樹脂フィルムは、フィルム形状のものの膜厚としては 10 — 200 μ m力 S好ましく、より好ましくは 50〜; 100 μ mである。  [0062] The film thickness of the resin film used in the present invention is preferably 10 to 200 μm force S, more preferably 50 to 100 μm.
[0063] 本発明に係る可撓性封止フィルムに形成するガスノ リア層とは、酸素及び水蒸気 の透過を阻止する層であれば、その組成等は特に限定されるものではない。本発明 に係るガスバリア層を構成する材料として、具体的には無機酸化物が好ましぐ酸化 珪素、酸化アルミニウム、酸化窒化珪素、酸化窒化アルミニウム、酸化マグネシウム、 酸化亜鉛、酸化インジウム、酸化スズ等を挙げることができる。 [0063] The composition and the like of the gas noble layer formed on the flexible sealing film according to the present invention is not particularly limited as long as it is a layer that blocks permeation of oxygen and water vapor. Specifically, as the material constituting the gas barrier layer according to the present invention, silicon oxide, aluminum oxide, silicon oxynitride, aluminum oxynitride, magnesium oxide, which are preferably inorganic oxides, Examples thereof include zinc oxide, indium oxide, and tin oxide.
[0064] また、本発明におけるガスバリア層の厚さは用いられる材料の種類、構成により最 適条件が異なり、適宜選択されるが、 5〜2000nmの範囲内であることが好ましい。 ガスノ リア層の厚さが上記の範囲より薄い場合には、均一な膜が得られず、ガスに対 するバリア性を得ることが困難であるからである。またガスバリア層の厚さが上記の範 囲より厚い場合には、ガスノ リア性フィルムにフレキシビリティを保持させることが困難 であり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリア性フィルムに亀 裂が生じる等のおそれがあるからである。  [0064] The thickness of the gas barrier layer in the present invention is appropriately selected depending on the type and configuration of the material used, and is suitably selected, but is preferably in the range of 5 to 2000 nm. This is because when the thickness of the gas noble layer is smaller than the above range, a uniform film cannot be obtained, and it is difficult to obtain a barrier property against the gas. In addition, when the thickness of the gas barrier layer is larger than the above range, it is difficult to maintain flexibility in the gas nootropic film, and it is difficult to maintain the gas barrier film due to external factors such as bending and pulling after film formation. This is because cracks may occur.
[0065] 本発明に係るガスバリア層は後述する原材料をスプレー法、スピンコート法、スパッ タリング法、イオンアシスト法、後述するプラズマ CVD法、後述する大気圧または大 気圧近傍の圧力下でのプラズマ CVD法等を適用して形成することができる。  [0065] The gas barrier layer according to the present invention uses the raw materials described later as a spray method, a spin coat method, a sputtering method, an ion assist method, a plasma CVD method described later, and a plasma CVD under atmospheric pressure or a pressure close to atmospheric pressure described later. It can be formed by applying a law or the like.
[0066] しかしながら、スプレー法やスピンコート法等の湿式法では、分子レベル(nmレべ ノレ)の平滑性を得ることが難しぐまた溶剤を使用するため、後述する基材が有機材 料であることから、使用可能な基材または溶剤が限定されるという欠点がある。そこで 、本発明においては、プラズマ CVD法等で形成されたものであることが好ましぐ特 に大気圧プラズマ CVD法は減圧チャンバ一等が不要で、高速製膜ができ生産性の 高レ、製膜方法である点から好ましレ、。上記ガスバリア層を大気圧プラズマ CVD法で 形成することにより、均一且つ表面の平滑性を有する膜を比較的容易に形成すること が可能となるからである。  [0066] However, in wet methods such as spraying and spin coating, it is difficult to obtain smoothness at the molecular level (nm level), and since a solvent is used, the substrate described later is an organic material. For this reason, there is a drawback that the base material or solvent that can be used is limited. Therefore, in the present invention, it is preferable that the film is formed by a plasma CVD method or the like. In particular, the atmospheric pressure plasma CVD method does not require a decompression chamber and the like, and high-speed film formation can be achieved. Preferable because it is a film forming method. This is because by forming the gas barrier layer by the atmospheric pressure plasma CVD method, it is possible to relatively easily form a film having a uniform and smooth surface.
[0067] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法である  [0067] Plasma CVD method, plasma CVD method under atmospheric pressure or pressure near atmospheric pressure
1S 特に好ましくは大気圧または大気圧近傍の圧力下でのプラズマ CVD法を用いて 形成される。なお、プラズマ CVD法の層形成条件の詳細については後述する。  1S Particularly preferably, it is formed using a plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure. The details of the layer formation conditions of the plasma CVD method will be described later.
[0068] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法により 得られるガスバリア層は、原材料 (原料ともいう)である有機金属化合物、分解ガス、 分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸化 物、金属硫化物、金属ハロゲン化物、またこれらの混合物(金属酸窒化物、金属酸化 ノ、ロゲン化物、金属窒化炭化物など)も作り分けることができるため好ましい。  [0068] The gas barrier layer obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, is made up of raw materials (also referred to as raw materials) such as organometallic compounds, decomposition gas, decomposition temperature, and input power. By selecting the conditions, metal carbides, metal nitrides, metal oxides, metal sulfides, metal halides, and mixtures thereof (metal oxynitrides, metal oxides, rogenides, metal nitride carbides, etc.) are also created. This is preferable.
[0069] 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素 酸化物が生成する。また亜鉛化合物を原料化合物として用い、分解ガスに二硫化炭 素を用いれば、硫化亜鉛が生成する。これはプラズマ空間内では非常に活性な荷電 粒子 ·活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反 応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な 化合物へと非常な短時間で変換されるためである。 [0069] For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon An oxide is formed. If zinc compound is used as a raw material compound and carbon disulfide is used as cracking gas, zinc sulfide is generated. This is because highly active charged particles and active radicals are present in the plasma space at a high density, so that multistage chemical reactions are accelerated very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
[0070] このような無機物の原料としては、典型または遷移金属元素を有していれば、常温 常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはその まま放電空間に導入できるが、液体、固体の場合は加熱、パブリング、減圧、超音波 照射等の手段により気化させて使用する。また溶媒によって希釈して使用してもよぐ 溶媒はメタノール、エタノール、 n へキサンなどの有機溶媒及びこれらの混合溶媒 が使用できる。なおこれらの希釈溶媒は、プラズマ放電処理中において分子状、原 子状に分解されるため、影響は殆ど無視することができる。  [0070] As a raw material of such an inorganic substance, it may be in a gas, liquid, or solid state at normal temperature and pressure as long as it contains a typical or transition metal element. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is vaporized by means such as heating, publishing, decompression or ultrasonic irradiation. In addition, organic solvents such as methanol, ethanol, and n-hexane, and mixed solvents thereof may be used as a solvent that may be diluted with a solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
[0071] このような有機金属化合物としては、珪素化合物としてシラン、テトラメトキシシラン、 テトラエトキシシラン、テトラ n プロポキシシラン、テトライソプロポキシシラン、テトラ n ブトキシシラン、テトラ t ブトキシシラン、ジメチノレジメトキシシラン、ジメチノレジエト シラン、ェチルトリメトキシシラン、フエニルトリエトキシシラン、 (3, 3, 3—トリフルォロ プロピル)トリメトキシシラン、へキサメチルジシロキサン、ビス(ジメチルァミノ)ジメチル シラン、ビス(ジメチルァミノ)メチルビニルシラン、ビス(ェチルァミノ)ジメチルシラン、 チノレアミノトリメチノレシラン、ジメチノレアミノジメチノレシラン、へキサメチノレジシラザン、 へキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、ォ クタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナ一トシ ラン、テトラメチルジシラザン、トリス(ジメチルァミノ)シラン、トリエトキシフルォロシラン チルシリル)アセチレン、 1 , 4ービストリメチノレシリノレー 1 , 3—ブタジイン、ジー tーブ トリメチルシラン、フエ二ルジメチルシラン、フエニルトリメチルシラン、プロノ ルギルトリ メチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、 1— (トリメチルシリル) リメチノレシラン、へキサメチノレジシラン、才クタメチノレシクロテトラシロキサン、テトラメチ ノレシクロテトラシロキサン、へキサメチノレシクロテトラシロキサン、 Mシリケート 51等が 挙げられる。 [0071] Examples of such organometallic compounds include silicon compounds such as silane, tetramethoxysilane, tetraethoxysilane, tetra n propoxy silane, tetraisopropoxy silane, tetra n butoxy silane, tetra t butoxy silane, dimethylenoresi methoxy silane, Dimethinoresietic silane, etyltrimethoxysilane, phenyltriethoxysilane, (3, 3, 3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (Ethylamino) dimethylsilane, tinoleaminotrimethylenosilane, dimethinoreaminodimethylenosilane, hexamethinoresilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, noname Rutrisilazane, Octamethylcyclotetrasilazane, Tetrakisdimethylaminosilane, Tetraisocyanate tosylan, Tetramethyldisilazane, Tris (dimethylamino) silane, Triethoxyfluorosilane, Tylsilyl) acetylene, 1,4-Bistrimethinoresilanol 1,3-Butadiyne, di-tube trimethylsilane, phenyldimethylsilane, phenyltrimethylsilane, pronorgyltri Examples include methylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) limethinoresilane, hexamethinoresisilane, talented kutamethinorecyclotetrasiloxane, tetramethinorecyclotetrasiloxane, hexamethinorecyclotetrasiloxane, M silicate 51, etc. It is done.
[0072] チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロ  [0072] Examples of the titanium compound include titanium methoxide, titanium ethoxide, and titanium isopropyl.
ルァセトアセテート)、チタンジ n—ブトキシド(ビス 2, 4 ペンタンジォネート)、 チタンァセチルァセトネート、ブチルチタネートダイマー等が挙げられる。 Lucacetoacetate), titanium di-n-butoxide (bis 2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer, and the like.
[0073] ジルコニウム化合物としては、ジルコニウム n—プロポキシド、ジルコニウム n ブトキ シド、ジルコニウム tーブトキシド、ジルコニウムトリー n—ブトキシドアセチルァセトネー ト、ジルコニウムジ—n—ブトキシドビスァセチルァセトネート、ジルコニウムァセチルァ セトネート、ジノレコニゥムアセテート、ジノレコユウムへキサフノレオ口ペンタンジォネート 等が挙げられる。 [0073] Zirconium compounds include zirconium n-propoxide, zirconium n butoxide, zirconium t-butoxide, zirconium tree n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetyl. Examples include acetonate, dinoleconium acetate, dinolecoum hexahexoleolone pentanedionate, and the like.
[0074] アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシ ド、アルミニウムイソプロポキシド、アルミニウム n ブトキシド、アルミニウム s ブトキ シド、アルミニウム tーブトキシド、アルミニウムァセチルァセトナート、トリェチルジアル ミニゥムトリー s—ブトキシド等が挙げられる。  [0074] Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n butoxide, aluminum s butoxide, aluminum tert butoxide, aluminum acetyl cetateate, triethyl dialmine mini s-butoxide and the like. Can be mentioned.
[0075] 硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボ ランージェチルエーテル錯体、ボラン THF錯体、ボラン ジメチルスルフイド錯体 、三フッ化硼素ジェチルエーテル錯体、トリェチルボラン、トリメトキシボラン、トリェトキ シボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルポラゾール、トリェチルポ ラゾール、トリイソプロピルボラゾール、等が挙げられる。  [0075] Examples of the boron compound include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-jetyl ether complex, borane THF complex, borane dimethylsulfide complex, boron trifluoride jetyl ether complex. , Trietylborane, trimethoxyborane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylpolarazole, triethylpolarazole, triisopropylborazole, and the like.
[0076] 錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジー n ブチル錫、テト ラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジェチルジェ トキシ錫、トリイソプロピルエトキシ錫、ジェチル錫、ジメチル錫、ジイソプロピル錫、ジ ブチル錫、ジェトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチ ラート、錫ジァセトァセトナート、ェチル錫ァセトァセトナート、エトキシ錫ァセトァセト ナート、ジメチル錫ジァセトァセトナート等、錫水素化合物等、ハロゲン化錫としては、 二塩化錫、四塩化錫等が挙げられる。 [0076] Examples of the tin compound include tetraethyltin, tetramethyltin, dibutyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, jetyljettin, triisopropylethoxytin, and jetyltin. , Dimethyltin, diisopropyltin, dibutyltin, jetoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibuty Rats, tin diacetate toner, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetatetonate, tin hydride compounds, etc. Tin halides include tin dichloride, tin tetrachloride, etc. Can be mentioned.
[0077] またその他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエト キシド、ノ リウム 2, 2, 6, 6 テトラメチルヘプタンジォネート、ベリリウムァセチルァセ トナート、ビスマスへキサフルォロペンタンジォネート、ジメチルカドミウム、カルシウム 2, 2, 6, 6 テトラメチルヘプタンジォネート、クロムトリフルォロペンタンジォネート、 コバルトァセチルァセトナート、銅へキサフルォロペンタンジォネート、マグネシウムへ キサフルォロペンタンジォネートージメチルエーテル錯体、ガリウムエトキシド、テトラ エトキシゲルマン、テトラメトキシゲルマン、ハフニウム t ブドキシド、ハフニウムェトキ シド、インジウムァセチルァセトナート、インジウム 2, 6 ジメチルァミノヘプタンジォ ネート、フエ口セン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジゥムァ セチルァセトナート、白金へキサフルォロペンタンジォネート、トリメチルシクロペンタ ジェニル白金、ロジウムジカルボニルァセチルァセトナート、ストロンチウム 2, 2, 6, 6 ーテトラメチルヘプタンジォネート、タンタルメトキシド、タンタルトリフルォロエトキシド 、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドォキシド、 マグネシウムへキサフルォロアセチルァセトナート、亜鉛ァセチルァセトナート、ジェ チル亜鉛などが挙げられる。  [0077] Other organometallic compounds include, for example, antimony ethoxide, arsenic triethoxide, norlium 2, 2, 6, 6 tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexafluoro. Lopentanedionate, dimethylcadmium, calcium 2, 2, 6, 6 tetramethylheptanedionate, chromium trifluoropentanedionate, cobalt acetylacetonate, copper hexafluoropentanedionate , Magnesium hexafluoropentanedionate-dimethyl ether complex, gallium ethoxide, tetraethoxygermane, tetramethoxygermane, hafnium-butoxide, hafnium ether, indium acetylacetate, indium 2,6 dimethylaminoheptane Zionate, Hue, N-isopropoxide, lead acetate, tetraethyllead, neodymium cetylacetate, platinum hexafluoropentanedionate, trimethylcyclopentagenylplatinum, rhodium dicarbonylacetylacetonate, strontium 2, 2, 6, 6-tetramethylheptanedionate, tantalum methoxide, tantalum trifluorooxide, tellurium ethoxide, tungsten ethoxide, vanadium triisopropoxide oxide, magnesium hexafluoroacetylacetonate, zinc acetylate Examples include setnerate and jet zinc.
[0078] また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスと しては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、 窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素 ガス、水蒸気、フッ素ガス、フッ化水素、トリフノレオロアノレコーノレ、トリフルォロトルエン 、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。  [0078] In addition, as a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia Gas, Nitrous oxide gas, Nitrogen oxide gas, Nitrogen dioxide gas, Oxygen gas, Water vapor, Fluorine gas, Hydrogen fluoride, Trifnoreolo anocorone, Trifluorotoluene, Hydrogen sulfide, Sulfur dioxide, Carbon disulfide, Chlorine Gas etc. are mentioned.
[0079] 金属元素を含む原料ガスと分解ガスを適宜選択することで、各種の金属炭化物、 金属窒化物、金属酸化物、金属ハロゲン化物、金属硫化物を得ることができる。  [0079] Various metal carbides, metal nitrides, metal oxides, metal halides, and metal sulfides can be obtained by appropriately selecting a source gas containing a metal element and a decomposition gas.
[0080] これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、 プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガス及び /または周期表の第 18属原子、具体的にはヘリウム、ネオン、アルゴン、クリプトン、 キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、アルゴンが好 ましく用いられる。 [0080] A discharge gas that tends to be in a plasma state is mixed with these reactive gases, and the gas is sent to the plasma discharge generator. Such discharge gases include nitrogen gas and / or group 18 atoms of the periodic table, specifically helium, neon, argon, krypton, Xenon, radon, etc. are used. Of these, nitrogen, helium, and argon are particularly preferably used.
[0081] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なるが、混合ガス全体に対し放電ガスの割合を 50 %以上 として反応性ガスを供給する。  [0081] The discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film. The ratio of the discharge gas to the reactive gas varies depending on the properties of the film to be obtained.
[0082] 本発明に係る可撓性封止フィルムの水蒸気透過度としては、高度の水蒸気バリア 性を必要とする有機 ELディスプレイに用いるため、 JIS K7129 B法に従って測定 した水蒸気透過率が、 0. 01 g/m2/day以下であり、より好ましくは 1 X 10— 3g/m2 /day以下であり、さらに、極わずかであっても、成長するダークスポットが発生し、デ イスプレイの表示寿命が極端に短くなる場合があるため、水蒸気透過度が、 1 X 10— 5 g/m2/day未満であることが好まし!/、。 [0082] The water vapor permeability of the flexible sealing film according to the present invention is such that the water vapor permeability measured according to the JIS K7129 B method is 0 for use in an organic EL display that requires a high water vapor barrier property. 01 g / m and a 2 / day or less, and more preferably not more than 1 X 10- 3 g / m 2 / day, further, even slight poles, dark spot to grow is generated, the display of the de Isupurei because in some cases life is extremely short, the water vapor permeability, it is preferably less than 1 X 10- 5 g / m 2 / day! / ,.
[0083] 次いで、本発明の可撓性封止フィルムの製造方法について説明する。  [0083] Next, a method for producing the flexible sealing film of the present invention will be described.
[0084] 本発明にお!/、ては、可撓性フィルム上に、所定の開口部を複数個有するマスク部 材を配置し、ガスバリア膜形成材料を付与して、複数個のガスバリア性を備えたガス ノ リア層を形成することを特徴とし、更には、ガスノ リア層を形成する方法が、大気圧 もしくはその近傍の圧力下で、対向電極の間で形成する放電空間に放電ガス及びガ スバリア膜形成ガスを含有するガスを供給し、少なくとも一方の電極から該放電空間 に高周波電圧を印加して該ガスを励起し、前記可撓性フィルム及び開口部を複数個 有するマスク部材を該励起したガスに晒すことにより処理を行う大気圧プラズマ処理 であることが好ましい。  [0084] In the present invention, a mask member having a plurality of predetermined openings is disposed on a flexible film, and a gas barrier film forming material is applied to provide a plurality of gas barrier properties. And a method of forming the gas noble layer in the discharge space formed between the counter electrodes under atmospheric pressure or a pressure in the vicinity thereof. A gas containing a gas for forming a barrier film is supplied, a high-frequency voltage is applied to the discharge space from at least one electrode to excite the gas, and the mask member having a plurality of the flexible film and the opening is excited. The atmospheric pressure plasma treatment is preferred in which the treatment is carried out by exposure to a gas.
[0085] はじめに、大気圧プラズマ処理について、その詳細を説明する。  First, the details of the atmospheric pressure plasma treatment will be described.
[0086] 大気圧プラズマ法は、例えば、特開平 10— 1 54598号公報ゃ特開 2003— 49272 号公報、国際公開第 02/048428号パンフレットなどに記載されている力 特に、特 開 2004— 68143号公報に記載されている薄膜形成方法力 緻密でガスバリア性が 高いセラミック層を形成するには好ましい。また、ロール状の元巻きからウェブ状の基 材を繰り出して、ガスノ リア層を連続的に形成することが出来る。  [0086] The atmospheric pressure plasma method is, for example, a force described in JP-A-10-154598, JP-A-2003-49272, WO02 / 048428, or the like. The method for forming a thin film described in the publication No. 1 is preferable for forming a dense ceramic layer having a high gas barrier property. Further, a gas-like base layer can be continuously formed by feeding a web-like base material from a roll-shaped original winding.
[0087] 本発明に係る上記の大気圧プラズマ法は、大気圧もしくはその近傍の圧力下で行 われるプラズマ CVD法であり、大気圧もしくはその近傍の圧力とは 20kPa〜; UOkP a程度であり、本発明に記載の良好な効果を得るためには、 93kPa〜104kPaが好 ましい。 [0087] The atmospheric pressure plasma method according to the present invention is performed under atmospheric pressure or a pressure in the vicinity thereof. In order to obtain a good effect described in the present invention, 93 kPa to 104 kPa is preferable.
[0088] 本発明における放電条件は、放電空間に異なる周波数の電界を 2つ以上印加する ものが好ましぐ第 1の高周波電界と第 2の高周波電界とを重畳し、電界を印加する。  [0088] The discharge condition in the present invention is to apply the electric field by superimposing the first high-frequency electric field and the second high-frequency electric field, which is preferably applied to two or more electric fields having different frequencies in the discharge space.
[0089] 前記第 1の高周波電界の周波数 ω 1より、前記第 2の高周波電界の周波数 ω 2が 高ぐ且つ、前記第 1の高周波電界の強さ VIと、前記第 2の高周波電界の強さ V2と[0089] The frequency ω 2 of the second high-frequency electric field is higher than the frequency ω 1 of the first high-frequency electric field, and the strength VI of the first high-frequency electric field VI and the strength of the second high-frequency electric field With V2
、放電開始電界の強さ IVとの関係が、 The relationship with the strength IV of the discharge start electric field is
V1≥IV>V2  V1≥IV> V2
または V1〉IV≥V2 を満たし、  Or V1> IV≥V2
前記第 2の高周波電界の出力密度が、 lW/cm2以上である。 The output density of the second high frequency electric field is lW / cm 2 or more.
[0090] 高周波とは、少なくとも 0. 5kHzの周波数を有するものを言う。 [0090] A high frequency refers to one having a frequency of at least 0.5 kHz.
[0091] 重畳する高周波電界が、ともにサイン波である場合、第 1の高周波電界の周波数 ω[0091] When the high-frequency electric field to be superimposed is a sine wave, the frequency ω of the first high-frequency electric field
1と該周波数 ω 1より高い第 2の高周波電界の周波数 ω 2とを重ね合わせた成分とな り、その波形は周波数 ω 1のサイン波上に、それより高い周波数 ω 2のサイン波が重 なった鋸歯状の波形となる。 1 and the frequency ω 2 of the second high-frequency electric field higher than the frequency ω 1 are superimposed, and the waveform is superimposed on the sine wave of the frequency ω 1 and the sine wave of the higher frequency ω 2 It becomes a sawtooth waveform.
[0092] 本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放 電空間(電極の構成など)および反応条件 (ガス条件など)にお!/、て放電を起こすこと の出来る最低電界強度のことを指す。放電開始電界強度は、放電空間に供給される ガス種や電極の誘電体種または電極間距離などによって多少変動する力 同じ放電 空間においては、放電ガスの放電開始電界強度に支配される。 [0092] In the present invention, the strength of the discharge starting electric field refers to the discharge in the discharge space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film formation method. The lowest electric field strength that can be used. The discharge starting electric field strength is governed by the discharge starting electric field strength of the discharge gas in the same discharge space, which varies somewhat depending on the gas type supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes.
[0093] 上記で述べたような高周波電界を放電空間に印加することによって、薄膜形成可 能な放電を起こし、高品位な薄膜形成に必要な高密度プラズマを発生することが出 来ると推定される。  [0093] By applying a high-frequency electric field as described above to the discharge space, it is estimated that a discharge capable of forming a thin film is generated, and a high-density plasma necessary for forming a high-quality thin film can be generated. The
[0094] ここで重要なのは、このような高周波電界が対向する電極間に印加され、すなわち 、同じ放電空間に印加されることである。特開平 11— 16696号公報のように、印加 電極を 2つ併置し、離間した異なる放電空間のそれぞれに、異なる高周波電界を印 加する方法は好ましくない。 [0095] 上記でサイン波等の連続波の重畳について説明した力 これに限られるものではな く、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわ ない。また、更に周波数の異なる第 3の電界を有していてもよい。 What is important here is that such a high-frequency electric field is applied between the opposing electrodes, that is, applied to the same discharge space. As disclosed in Japanese Patent Application Laid-Open No. 11-16696, a method in which two application electrodes are juxtaposed and different high-frequency electric fields are applied to the different discharge spaces is not preferable. [0095] The force described above for the superposition of continuous waves such as sine waves is not limited to this. Both pulse waves may be used, one may be a continuous wave and the other may be a pulse wave. . Further, it may have a third electric field having a different frequency.
[0096] 上記本発明の高周波電界を、同一放電空間に印加する具体的な方法としては、例 えば、対向電極を構成する第 1電極に周波数 ω 1であって電界強度 VIである第 1の 高周波電界を印加する第 1電源を接続し、第 2電極に周波数 ω 2であって電界強度 V2である第 2の高周波電界を印加する第 2電源を接続した大気圧プラズマ放電処理 装置を用いる。  [0096] As a specific method of applying the high-frequency electric field of the present invention to the same discharge space, for example, a first electrode having a frequency ω1 and an electric field strength VI is applied to the first electrode constituting the counter electrode. An atmospheric pressure plasma discharge treatment apparatus is used in which a first power source for applying a high-frequency electric field is connected, and a second power source for applying a second high-frequency electric field having a frequency ω2 and an electric field strength V2 is connected to the second electrode.
[0097] 上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと薄膜形成ガ スとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御 手段を有することが好ましい。  [0097] The atmospheric pressure plasma discharge treatment apparatus includes gas supply means for supplying a discharge gas and a thin film forming gas between the counter electrodes. Furthermore, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
[0098] また、第 1電極、第 1電源またはそれらの間の何れかには第 1フィルタを、また第 2電 極、第 2電源またはそれらの間の何れかには第 2フィルタを接続することが好ましぐ 第 1フィルタは第 1電源から第 1電極への第 1の高周波電界の電流を通過しやすくし 、第 2の高周波電界の電流をアースして、第 2電源から第 1電源への第 2の高周波電 界の電流を通過しにくくする。また、第 2フィルタはその逆で、第 2電源から第 2電極へ の第 2の高周波電界の電流を通過しやすくし、第 1の高周波電界の電流をアースして 、第 1電源から第 2電源への第 1の高周波電界の電流を通過しにくくする機能が備わ つているものを使用する。ここで、通過しにくいとは、好ましくは、電流の 20%以下、よ り好ましくは 10%以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電 流の 80%以上、より好ましくは 90%以上を通すことをいう。  [0098] Further, the first filter is connected to the first electrode, the first power source, or any of them, and the second filter is connected to the second electrode, the second power source, or any of them. The first filter facilitates the passage of the current of the first high-frequency electric field from the first power source to the first electrode, grounds the current of the second high-frequency electric field, and the first power source from the second power source It is difficult to pass the current of the second high-frequency electric field to. On the other hand, the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, Use a power supply with a function that makes it difficult to pass the current of the first high-frequency electric field to the power supply. Here, the phrase “difficult to pass” preferably means that only 20% or less, more preferably 10% or less of the current can pass. On the contrary, being easy to pass means preferably passing 80% or more, more preferably 90% or more of the current.
[0099] 例えば、第 1フィルタとしては、第 2電源の周波数に応じて数 10pF〜数万 pFのコン デンサ、もしくは数 H程度のコイルを用いることが出来る。第 2フィルタとしては、第 1電源の周波数に応じて 10 H以上のコイルを用い、これらのコイルまたはコンデン サを介してアース接地することでフィルタ一として使用出来る。  [0099] For example, as the first filter, a capacitor of several tens of pF to several tens of thousands of pF or a coil of about several H can be used depending on the frequency of the second power supply. The second filter can be used as a filter by using a coil of 10 H or higher according to the frequency of the first power supply and grounding it through these coils or capacitors.
[0100] 更に、本発明の大気圧プラズマ放電処理装置の第 1電源は、第 2電源より高い電 界強度を印加出来る能力を有して!/、ること力 S好ましレ、。  [0100] Furthermore, the first power source of the atmospheric pressure plasma discharge treatment apparatus of the present invention has the ability to apply a higher electric field strength than the second power source!
[0101] ここで、本発明でいう印加電界強度と放電開始電界強度は、下記の方法で測定さ れたものをいう。 [0101] Here, the applied electric field strength and the discharge starting electric field strength referred to in the present invention were measured by the following methods. It means what was done.
[0102] 印加電界強度 VI及び V2 (単位: kV/mm)の測定方法:  [0102] Measuring method of applied electric field strength VI and V2 (unit: kV / mm):
各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの 出力信号をオシロスコープ (Tektronix社製、 TDS3012B)に接続し、所定の時点 の電界強度を測定する。  A high-frequency voltage probe (P6015A) is installed at each electrode, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
[0103] 放電開始電界強度 IV (単位: kV/mm)の測定方法: [0103] Measuring method of electric field intensity IV (unit: kV / mm):
電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始 まる電界強度を放電開始電界強度 IVと定義する。測定器は上記印加電界強度測定 と同じである。  The discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the electric field strength at which the discharge starts is defined as the discharge starting electric field strength IV. The measuring instrument is the same as the applied electric field strength measurement.
[0104] なお、上記測定に使用する高周波電圧プローブとオシロスコープによる電界強度 の測定位置については、後述の図 7に示してある。  [0104] The measurement position of the electric field strength using the high-frequency voltage probe and oscilloscope used for the above measurement is shown in Fig. 7 described later.
[0105] 本発明で規定する放電条件をとることにより、たとえ窒素ガスのように放電開始電界 強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持出来[0105] By taking the discharge conditions specified in the present invention, even a discharge gas having a high discharge start electric field strength such as nitrogen gas can start discharge and maintain a high density and stable plasma state.
、高性能な薄膜形成を行うことが出来る。 High performance thin film formation can be performed.
[0106] 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度 IV(1/[0106] When the discharge gas is nitrogen gas by the above measurement, the discharge start electric field intensity IV (1 /
2Vp— p)は 3. 7kV/mm程度であり、従って、上記の関係において、第 1の印加電 界強度を、 Vl≥3. 7kV/mmとして印加することによって窒素ガスを励起し、プラズ マ状態にすることが出来る。 2Vp—p) is about 3.7 kV / mm. Therefore, in the above relationship, applying the first applied electric field strength as Vl≥3.7 kV / mm excites nitrogen gas to produce plasma. It can be in a state.
[0107] ここで、第 1電源の周波数としては、 200kHz以下が好ましく用いることが出来る。ま たこの電界波形としては、連続波でもパルス波でもよい。下限は 1kHz程度が望まし い。 [0107] Here, the frequency of the first power supply is preferably 200 kHz or less. The electric field waveform may be a continuous wave or a pulse wave. The lower limit is preferably about 1kHz.
[0108] 一方、第 2電源の周波数としては、 800kHz以上が好ましく用いられる。この第 2電 源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限 は 200MHz程度が望まし!/、。  On the other hand, the frequency of the second power source is preferably 800 kHz or more. The higher the frequency of the second power source, the higher the plasma density, and a dense and high-quality thin film can be obtained. The upper limit is about 200MHz! /.
[0109] このような 2つの電源から高周波電界を印加することは、第 1の高周波電界によって 高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第 2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして緻 密で良質な薄膜を形成することが本発明の重要な点である。 [0110] また、第 1の高周波電界の出力密度を高くすることで、放電の均一性を維持したま ま、第 2の高周波電界の出力密度を向上させることができる。これにより、更なる均一 高密度プラズマが生成でき、更なる製膜速度の向上と、膜質の向上が両立出来る。 [0109] The application of a high-frequency electric field from such two power sources is necessary for initiating discharge of a discharge gas having a high discharge starting electric field strength by the first high-frequency electric field, and the second high-frequency electric field. It is an important point of the present invention to form a dense and high-quality thin film by increasing the plasma density by high frequency and high power density. [0110] Further, by increasing the output density of the first high-frequency electric field, the output density of the second high-frequency electric field can be improved while maintaining the uniformity of discharge. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
[0111] 本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の 間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極 間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによ つて、該基材の上に薄膜を形成させるものである。また他の方式として、大気圧ブラ ズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入し たガスを励起しまたはプラズマ状態とし、該対向電極外にジェット状に励起またはプ ラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても移送さ れていてもよい)を晒すことによって該基材の上に薄膜を形成させるジェット方式の装 置がある。  [0111] As described above, the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges between the counter electrodes, puts the gas introduced between the counter electrodes into a plasma state, and leaves the gas between the counter electrodes or A thin film is formed on the base material by exposing the base material transferred between the electrodes to the plasma state gas. As another method, the atmospheric plasma discharge treatment apparatus discharges between the counter electrodes similar to the above, excites the gas introduced between the counter electrodes, or puts it in a plasma state, and jets the gas outside the counter electrode. Jet system that forms a thin film on the substrate by blowing out excited or plasma state gas and exposing the substrate in the vicinity of the counter electrode (which may be stationary or transported) There is a device.
[0112] 図 7は、大気圧プラズマ放電処理装置とマスク部材とを用いて、連続して可撓性フィ ルム上にガスバリア層を形成する一例を示す概略断面図である。  FIG. 7 is a schematic cross-sectional view showing an example in which a gas barrier layer is continuously formed on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
[0113] ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの 電源を有する電界印加手段の他に、図 7では図示してないが、ガス供給手段、電極 温度調節手段を有して!/、る装置である。  [0113] In addition to the plasma discharge processing apparatus and the electric field applying means having two power sources, the jet type atmospheric pressure plasma discharge processing apparatus has a gas supply means and an electrode temperature adjusting means, which are not shown in FIG. It's a device!
[0114] プラズマ放電処理装置 10は、第 1電極 11と第 2電極 12から構成されている対向電 極を有しており、該対向電極間に、第 1電極 11からは第 1電源 21からの周波数 ω 1、 電界強度 VI、電流 IIの第 1の高周波電界が印加され、また第 2電極 12からは第 2電 源 22からの周波数 ω 2、電界強度 V2、電流 12の第 2の高周波電界が印加されるよう になっている。第 1電源 21は第 2電源 22より高い高周波電界強度 (VI〉V2)を印加 し、また第 1電源 21の第 1の周波数 ω 1は第 2電源 22の第 2の周波数 ω 2より低い周 波数を印加する。  The plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 is connected to the first power source 21 between the counter electrodes. The first high-frequency electric field of frequency ω1, electric field strength VI, and current II is applied, and the second high-frequency electric wave from the second power source 22 from the second electrode 12, ω2, electric field strength V2, and the second high-frequency electric current 12 An electric field is applied. The first power supply 21 applies a higher frequency electric field strength (VI> V2) than the second power supply 22, and the first frequency ω1 of the first power supply 21 is lower than the second frequency ω2 of the second power supply 22. Apply wavenumber.
[0115] 第 1電極 11と第 1電源 21との間には、第 1フィルタ 23が設置されており、第 1電源 2 1から第 1電極 11への電流を通過しやすくし、第 2電源 22からの電流をアースして、 第 2電源 22から第 1電源 21への電流が通過しにくくなるように設計されている。  [0115] A first filter 23 is installed between the first electrode 11 and the first power supply 21 to facilitate the passage of current from the first power supply 21 to the first electrode 11, and the second power supply. It is designed so that the current from the second power source 22 to the first power source 21 is less likely to pass through by grounding the current from the second power source 22.
[0116] また、第 2電極 12と第 2電源 22との間には、第 2フィルター 24が設置されており、第 2電源 22から第 2電極への電流を通過しやすくし、第 1電源 21からの電流をアースし て、第 1電源 21から第 2電源への電流を通過しにくくするように設計されている。 [0116] Also, a second filter 24 is installed between the second electrode 12 and the second power source 22, 2 Designed to facilitate the passage of current from the power source 22 to the second electrode, ground the current from the first power source 21 and make it difficult to pass current from the first power source 21 to the second power source .
[0117] 第 1電極 11と第 2電極 12との対向電極間(放電空間) 13に、ガス供給手段(不図示 )から薄膜形成ガス Gを導入し、第 1電源 21と第 2電源 22により第 1電極 11と第 2電 極 12間に、前述した高周波電界を印加して放電を発生させ、前述した薄膜形成ガス Gをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて 、対向電極下面と可撓性フィルム Fとで作る処理空間をプラズマ状態のガス G° で満 たし、図示してな!/、可撓性フィルムの元巻き(アンワインダー)力、ら巻きほぐされて搬 送して来るか、あるいは前工程から搬送して来る可撓性フィルム Fの上に、処理位置 14付近でガスバリア層 39を形成させる。図 7には、印加電界強度と放電開始電界強 度の測定に使用する測定器と測定位置を示した。 25及び 26は高周波電圧プローブ であり、 27及び 28はオシロスコープである。  [0117] A thin film forming gas G is introduced from a gas supply means (not shown) between the opposing electrodes of the first electrode 11 and the second electrode 12 (discharge space) 13 by a first power source 21 and a second power source 22. The above-described high-frequency electric field is applied between the first electrode 11 and the second electrode 12 to generate a discharge, and the thin film forming gas G described above is in a plasma state while being jetted on the lower side of the counter electrode (lower side of the paper). The treatment space created by the lower surface of the counter electrode and the flexible film F is filled with the gas G ° in the plasma state, not shown! /, The flexible film unwinding force Then, the gas barrier layer 39 is formed in the vicinity of the processing position 14 on the flexible film F which is unrolled and transported or transported from the previous process. Figure 7 shows the measuring instruments and measurement positions used to measure the applied electric field strength and the discharge starting electric field strength. 25 and 26 are high-frequency voltage probes, and 27 and 28 are oscilloscopes.
[0118] 本発明においては、この様な方法で可撓性フィルム F上に、ガスノ リア層 39を形成 させる際、図 5に記載のような本発明に係るガスバリア性を備えたガスバリア層を有す る領域 Aと、該ガスバリア層の周辺にガスバリア層が存在しない領域 Bとを連続的に 形成させるため、対向電極の下部に、可撓性フィルム Fと同伴させた状態で、所定の 開口部を複数個有するマスク部材を配置する。  [0118] In the present invention, when the gas noble layer 39 is formed on the flexible film F by such a method, the gas barrier layer having the gas barrier property according to the present invention as shown in FIG. 5 is provided. In order to continuously form a region A and a region B in which no gas barrier layer is present around the gas barrier layer, a predetermined opening is formed in the state where the flexible film F is accompanied at the lower part of the counter electrode. A mask member having a plurality of layers is disposed.
[0119] 図 8は、所定の開口部を複数個有するマスク部材の一例を示す模式図である。  FIG. 8 is a schematic diagram showing an example of a mask member having a plurality of predetermined openings.
[0120] 図 8において、マスク部材 38には、ガスバリア性を備えたガスバリア層を有する領域 Aを形成するための開口部 42と、ガスバリア層の周辺にガスバリア層が存在しない領 域 Bを形成するためのプラズマ処理を防止するための遮蔽部 41とで形成されている 。マスク部材の材質としては、プラズマ放電処理に影響を与えない部材を適宜選択 することが好ましい。  In FIG. 8, the mask member 38 is formed with an opening 42 for forming a region A having a gas barrier layer having a gas barrier property, and a region B where no gas barrier layer is present around the gas barrier layer. And a shielding portion 41 for preventing plasma processing. As a material for the mask member, a member that does not affect the plasma discharge treatment is preferably selected as appropriate.
[0121] 図 9は、可撓性フィルム上に、複数のガスバリア層が形成された可撓性封止フィノレ ムシートの一例を示す模式図である。  [0121] FIG. 9 is a schematic diagram showing an example of a flexible sealing fine sheet in which a plurality of gas barrier layers are formed on a flexible film.
[0122] 上記のような構成に従って、図 9に示すような可撓性フィルム F上に、ガスバリア層を 有する領域 Aと、ガスバリア層の周辺にガスバリア層が存在しない領域 Bとから構成さ れるユニットを複数個形成した可撓性封止フィルムシート 2を作製するものである。 [0123] ジェット方式の大気圧プラズマ放電処理装置を、可撓性フィルム Fの搬送方向と平 行に複数台並べ、同時に同じプラズマ状態のガスを放電させることにより、同一位置 に複数層の薄膜を形成可能となり、短時間で所望の膜厚を形成可能となる。また可 橈性フィルム Fの搬送方向と平行に複数台並べ、各装置に異なる薄膜形成ガスを供 給して異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を 形成することも出来る。 [0122] In accordance with the above-described configuration, a unit including a region A having a gas barrier layer and a region B in which no gas barrier layer exists around the gas barrier layer on a flexible film F as shown in FIG. A flexible sealing film sheet 2 in which a plurality of layers is formed is prepared. [0123] A plurality of jet-type atmospheric pressure plasma discharge treatment devices are arranged in parallel with the conveyance direction of the flexible film F, and simultaneously discharge gases of the same plasma state, thereby forming a plurality of thin films at the same position. Therefore, a desired film thickness can be formed in a short time. Also, multiple thin films with different layers can be formed by arranging multiple units parallel to the transport direction of the flexible film F, supplying different thin film forming gases to each device, and jetting different plasma states. You can also.
[0124] 図 10は、大気圧プラズマ放電処理装置とマスク部材とを用いて、連続して可撓性フ イルム上にガスノ リア層を形成する他の一例を示す概略断面図である。  [0124] FIG. 10 is a schematic cross-sectional view showing another example of continuously forming a gas noble layer on a flexible film using an atmospheric pressure plasma discharge treatment apparatus and a mask member.
[0125] 図 10において、大気圧プラズマ放電装置 30は、第 1電極 33と第 2電極 34とが対向 した位置に配置され、それぞれ高周波電源 37が接続されて!/、る。  In FIG. 10, the atmospheric pressure plasma discharge device 30 is disposed at a position where the first electrode 33 and the second electrode 34 face each other, and a high frequency power source 37 is connected to each of them.
[0126] 図 10の構成では前述の図 7とは異なり、第 1電極 33と第 2電極 34間に放電空間を 形成し、この放電空間内に可撓性フィルム Fとそれに同伴させた円筒形のマスク部材 38とを日西して、可撓性フィルム Fにガスバリア層 39を連続して形成する。  In the configuration of FIG. 10, unlike FIG. 7 described above, a discharge space is formed between the first electrode 33 and the second electrode 34, and a flexible film F and a cylindrical shape accompanied by the discharge film are formed in the discharge space. The gas barrier layer 39 is continuously formed on the flexible film F.
[0127] 元巻部 31より繰り出された可撓性フィルム Fは、サポートロール 32を通過した後、円 筒状の図 8に記載のようなマスク部材 38と会合、同伴して放電空間に移動し、ここで ガスノ リア層 39が所定の位置に連続して形成される。ガスバリア層 39が形成された 後、サポートロール 32の位置で、マスク部材 38と離間し、ガスバリア層 39が形成され た可撓性フィルム Fは、巻き取りロール 40に積層される。  [0127] After passing through the support roll 32, the flexible film F drawn out from the former winding part 31 is associated with a cylindrical mask member 38 as shown in Fig. 8 and is moved to the discharge space. Here, the gas noble layer 39 is continuously formed at a predetermined position. After the gas barrier layer 39 is formed, the flexible film F on which the gas barrier layer 39 is formed and separated from the mask member 38 at the position of the support roll 32 is laminated on the take-up roll 40.
[0128] この様にして、図 9に示すようなガスバリア層を有する領域 Aと、ガスバリア層の周辺 にガスバリア層が存在しない領域 Bとを連続的に形成させた可撓性封止フィルムシ一 ト 2が得られる。  [0128] In this way, a flexible sealing film sheet in which a region A having a gas barrier layer as shown in Fig. 9 and a region B having no gas barrier layer around the gas barrier layer are continuously formed. 2 is obtained.
[0129] 次いで、本発明に係る可撓性封止フィルムシートを用いた有機エレクト口ルミネッセ ンス素子の封止方法につ!/、て説明する。  [0129] Next, a method for sealing an organic electoluminescence element using the flexible sealing film sheet according to the present invention will be described.
[0130] 図 11は、本発明の可撓性封止フィルムと有機エレクト口ルミネッセンス素子との貼合 工程の一例を示す模式図である。 FIG. 11 is a schematic view showing an example of a bonding step between the flexible sealing film of the present invention and the organic electoluminescence device.
[0131] 可撓性封止フィルムの貼合工程 500は、帯状の可撓性フィルム基板 301i上に形成 された有機 EL素子ユニット 301ilの位置に合わせ配置されたァライメントマーク 3011 を検出するァライメントマーク検出部 505と、有機 EL素子ユニット 301ilの位置に合 わせシール剤を塗設するシール剤塗設部 502と、ロール状の可撓性封止部材 503a の供給部 503と、帯状の可撓性封止部材 503bを貼合する貼合部 504とを有して!/、 [0131] The flexible sealing film laminating step 500 is performed in the alignment detecting the alignment mark 3011 arranged in alignment with the position of the organic EL element unit 301il formed on the strip-shaped flexible film substrate 301i. Align the mark detector 505 and the organic EL element unit 301il. A sealant coating part 502 for coating a laminating sealant, a supply part 503 for a roll-shaped flexible sealing member 503a, and a bonding part 504 for bonding a strip-shaped flexible sealing member 503b. Have! /,
[0132] ァライメントマーク検出部 505はァライメントマーク検出装置 505aとァライメントマ一 ク検出装置 505aを配設する筐体 505bとを有して!/、る。ァライメントマーク検出装置 5 05aは予め帯状可撓性支持体 C301i上に配設されたァライメントマーク 3011の位置 に合わせ配設されて!/、る。ァライメントマーク検出装置 505aにより検出された情報は 制御部(不図示)に入力され、シール剤塗設部 502のシール剤塗設装置 502aを制 御するようになっている。ァライメントマーク検出装置 505としては特に限定はなぐ例 えば、 CCDカメラによる画像認識等を使用することが可能である。シール剤塗設部 5 02はァライメントマーク検出部 505からの情報に従って、有機エレクト口ルミネッセン ス素子に対してシール剤を塗設するシール剤塗設装置 502aとシール剤塗設装置 5 02aを配設する筐体 502bとを有して!/、る。シール剤塗設装置 502aの配設する数は 特に限定はないが、帯状の可撓性フィルム基板 301iの幅方向に配設された有機ェ レクト口ルミネッセンス素子の数に合わせて配設することが好ましい。本図は、幅方向 に配設された有機エレクト口ルミネッセンス素子の数に合わせ 3台のシール剤塗設装 置 502aを配設した場合を示している。筐体 502bは駆動装置(不図示)により x— y方 向(図中の矢印方向)の移動が可能となってレ、る。 [0132] The alignment mark detection unit 505 includes an alignment mark detection device 505a and a casing 505b in which the alignment mark detection device 505a is disposed. The alignment mark detection device 500a is arranged in accordance with the position of the alignment mark 3011 previously disposed on the belt-like flexible support C301i. The information detected by the alignment mark detection device 505a is input to a control unit (not shown) to control the sealant coating device 502a of the sealant coating unit 502. The alignment mark detection device 505 is not particularly limited. For example, image recognition using a CCD camera can be used. The sealant coating unit 5 02 is provided with a sealant coating device 502a and a sealant coating device 502a that apply a sealant to the organic-elect luminescence element in accordance with information from the alignment mark detection unit 505. And a housing 502b to be installed! The number of the sealant coating apparatus 502a to be disposed is not particularly limited. However, the sealant coating apparatus 502a may be disposed in accordance with the number of organic electroluminescence elements disposed in the width direction of the strip-shaped flexible film substrate 301i. preferable. This figure shows a case where three sealant coating devices 502a are provided in accordance with the number of organic electoluminescence elements arranged in the width direction. The housing 502b can be moved in the xy direction (arrow direction in the figure) by a driving device (not shown).
[0133] 貼合部 504は本体 504cと帯状の可撓性フィルム基板と接触するロール 504bと帯 状可燒十生封止咅材 503bイ則と接角虫するローノレ 504aとを有し、ローノレ 504bとローノレ 5 04aとで有機エレクト口ルミネッセンス素子が形成された帯状の可撓性フィルム基板 3 Oliと帯状の可撓性封止フィルム 503bとを圧着挟持することで帯状の可撓性フィノレ ム基板を貼合する様になつている。尚、貼合部 504に使用するシール剤の性質に合 わせ硬化処理の機能(例えば、シール剤が紫外線硬化型の場合は紫外線照射装置 を、熱硬化型の場合はロールに加熱機能を持たせる)を持たせることが好まし!/、。  [0133] The laminating portion 504 has a roll 504b that comes into contact with the main body 504c and the strip-shaped flexible film substrate, a strip-shaped flexible ten-year-sealed rod material 503b, and a ronole 504a that contacts the hornworm. A strip-shaped flexible film substrate having an organic-electto-luminescence element formed of 504b and Ronole 504a 3 Oli and a strip-shaped flexible sealing film 503b are pressed and sandwiched to form a strip-shaped flexible fine substrate. It has become like pasting. It should be noted that the function of the curing treatment is adjusted according to the properties of the sealing agent used for the bonding part 504 (for example, the ultraviolet irradiation device is provided when the sealing agent is an ultraviolet curing type, and the roll is provided with a heating function when the sealing agent is a thermosetting type. ) Is preferred!
[0134] 可撓性封止フィルム 503bの幅は帯状の可撓性フィルム基板 301iに付けられたァ ライメントマーク 3011が検出可能であることが好ましい。尚、本図ではシール剤塗設 装置 502aへのシール剤の供給系は省略してある。 [0135] シール剤を塗設する方法は特に限定はなぐ例えば、スプレー方式、押出しノズル 方式、スクリーン印刷方式等、通常の接着剤の塗設に使用されている方法が挙げら れる。使用するシール剤の粘度は、塗布均一性、塗れ広がり防止等を考慮し、 40Pa • s〜400Pa · sであることが好まし!/、。 [0134] The width of the flexible sealing film 503b is preferably detectable by the alignment mark 3011 attached to the strip-shaped flexible film substrate 301i. In the drawing, the supply system of the sealant to the sealant coating apparatus 502a is omitted. [0135] The method for applying the sealant is not particularly limited, and examples thereof include methods used for usual adhesive application, such as a spray method, an extrusion nozzle method, and a screen printing method. The viscosity of the sealant used is preferably 40 Pa • s to 400 Pa · s in consideration of application uniformity, spread prevention, etc.!
[0136] 本発明において、液状シール剤としては、アクリル酸系オリゴマー、メタクリル酸系 オリゴマーの反応性ビュル基を有する光硬化及び熱硬化型シール剤、 2—シァノア クリル酸エステルなどの湿気硬化型等のシール剤、エポキシ系などの熱及び化学硬 化型(二液混合)等のシール剤、カチオン硬化タイプの紫外線硬化型エポキシ樹脂 シール剤等を挙げることが出来る。液状シール剤には必要に応じてフィラーを添加す ることが好ましい。フィラーの添加量としては、接着力を考慮し、 5〜70体積%が好ま しい。又、添加するフイラ一の大きさは、接着力、貼合圧着後のシール剤厚み等を考 慮し、 1〃111〜100〃111カ好ましぃ。添加するフイラ一の種類としては特に限定はなく 、例えばソーダガラス、無アルカリガラス或いはシリカ、二酸化チタン、酸化アンチモ ン、チタニア、アルミナ、ジルコユアや酸化タングステン等の金属酸化物等が挙げら れる。  [0136] In the present invention, the liquid sealant includes photocuring and thermosetting sealants having a reactive bur group of acrylic acid-based oligomers and methacrylic acid-based oligomers, moisture-curing types such as 2-cyanacrylic acid esters, etc. And a sealing agent such as an epoxy-based heat and chemical curing type (two-component mixture), a cationic curing type ultraviolet curing epoxy resin sealing agent, and the like. It is preferable to add a filler to the liquid sealant as necessary. The amount of filler added is preferably 5 to 70% by volume in consideration of adhesive strength. In addition, the size of the filler to be added is preferably 1 to 111 to 100 to 111 in consideration of the adhesive strength, the thickness of the sealant after bonding and bonding. The type of filler to be added is not particularly limited, and examples thereof include soda glass, alkali-free glass or silica, metal oxides such as titanium dioxide, antimony oxide, titania, alumina, zirconia, and tungsten oxide.
[0137] 貼合部 504は、供給部 503に供給されたロール状帯状可撓性封止部材 503aから 繰り出された帯状の可撓性封止フィルム 503bとシール剤が塗設された帯状の可撓 性フィルム基板 301iとを貼合するため、帯状の可撓性封止フィルム 503b側の圧着口 一ノレ 504aと、帯状の可撓性フィルム基板 301i側の圧着ロール 504bと、これらの圧 着ロールを収納する本体 504cとを有している。  [0137] The bonding unit 504 is a band-shaped flexible sealing film 503b fed from the roll-shaped band-shaped flexible sealing member 503a supplied to the supply unit 503, and a band-shaped acceptable coating coated with a sealing agent. In order to bond the flexible film substrate 301i, the belt-shaped flexible sealing film 503b side pressure inlet 504a, the belt-shaped flexible film substrate 301i side pressure roll 504b, and these pressure rolls And a main body 504c.
[0138] 貼合部 504は、貼合安定性、貼合部内への気泡混入防止、可撓性封止部材の平 面性保持等を考慮し、 10-1 X 10— 5Paの減圧条件で行うことが好ましい。 [0138] bonding unit 504, bonding stability, bubbly prevention to lamination portion, considering a flat surface of the holding and the like of the flexible sealing member, vacuum conditions 10-1 X 10- 5 Pa It is preferable to carry out with.
[0139] 可撓性封止フィルムの有機 EL素子部材と貼合する側に予めシーラント層(シール 剤)を設けることもでき、シート状のシール剤と、熱可塑性樹脂とが挙げられる。  [0139] A sealant layer (sealant) may be provided in advance on the side of the flexible sealing film to be bonded to the organic EL element member, and examples thereof include a sheet-like sealant and a thermoplastic resin.
[0140] この様にして貼り合わせが行われた後、所定のサイズに断裁する打ち抜き工程を経 て 1枚の有機 ELパネルが出来上がる。  [0140] After the bonding is performed in this manner, a single organic EL panel is completed through a punching process of cutting to a predetermined size.
[0141] 次いで、本発明の有機エレクト口ルミネッセンス素子の構成について説明する。  [0141] Next, the configuration of the organic electoluminescence device of the present invention will be described.
[0142] 有機エレクト口ルミネッセンス素子は、基板、該基板上に設けられた第 1画素電極、 発光層を含む 1層以上から構成される有機エレクト口ルミネッセンス層、第 2画素電極 、可撓性封止フィルム等から構成されている。 [0142] The organic-electric-luminescence element includes a substrate, a first pixel electrode provided on the substrate, It is composed of an organic electoluminescence layer composed of one or more layers including a light emitting layer, a second pixel electrode, a flexible sealing film, and the like.
[0143] 〔基板〕 [Substrate]
本発明に係る基板としては、枚葉シート状基板、帯状可撓性基板が挙げられる。枚 葉シート状基板としては、透明ガラス板、シート状透明樹脂フィルムが挙げられる。樹 脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタ レート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロー スジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロー スアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セル口 ースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン 、ポリビニノレアノレコーノレ、ポリエチレンビニノレアノレコーノレ、シンジォタクティックポリスチ レン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、 ポリイミド、ポリエーテルスルホン(PES)、ポリフエ二レンスルフイド、ポリスルホン類、 ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメ チルメタタリレート、アクリル或いはポリアリレート類、アートン(商品名 JSR社製)或い はァペル (商品名三井化学社製)とレ、つたシクロォレフイン系樹脂等が挙げられる。 帯状可撓性基板としては、透明樹脂フィルムが挙げられ、枚葉シート状基板と同じ樹 脂フィルムが使用可能である。  Examples of the substrate according to the present invention include a single-wafer sheet-like substrate and a strip-like flexible substrate. Examples of the sheet-like substrate include a transparent glass plate and a sheet-like transparent resin film. Examples of resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP). ), Cellulose acetate phthalate (TAC), cellulose ester such as cell mouth sulphonate or derivatives thereof, polyvinylidene chloride, polyvinylinoleo alcohole, polyethylene vinylenoreo alcohole, syndiotactic polystyrene, polycarbonate, norbornene resin , Polymethylpentene, Polyetherketone, Polyimide, Polyethersulfone (PES), Polyphenylene sulfide, Polysulfones, Polyether Luimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Vapelle (trade name, manufactured by Mitsui Chemicals) Examples include cycloolefin resins. Examples of the belt-like flexible substrate include a transparent resin film, and the same resin film as that of the single-wafer sheet-like substrate can be used.
[0144] 基板として透明樹脂フィルム等から構成される可撓性フィルム基板であることが好ま しぐ更には、ガスバリア層を有する可撓性フィルム基板であることが好ましぐ更には 、ガスパリア層が、無機化合物から構成されるセラミック層であることが好ましい。  [0144] The substrate is preferably a flexible film substrate composed of a transparent resin film or the like, more preferably a flexible film substrate having a gas barrier layer, and further, a gas barrier layer. The ceramic layer is preferably composed of an inorganic compound.
[0145] ガスバリア層としては、前述の可撓性封止フィルムで形成するガスバリア層と同様の ものを挙げること力 Sできる。  [0145] Examples of the gas barrier layer include those similar to the gas barrier layer formed of the flexible sealing film described above.
[0146] 〔第 1電極〕  [First electrode]
第 1電極としては、仕事関数の大きい (4eV以上)金属、合金、電気伝導性化合物 及びこれらの混合物を電極物質とするものが好ましく用いられる。この様な電極物質 の具体例としては Au等の金属、 Cul、インジウムチンォキシド(ITO)、 SnO、 ZnO等 の導電性透明材料が挙げられる。又、 IDIXO (In O ·ΖηΟ)等非晶質で透明導電膜 を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング 等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所望の形状のパターンを 形成してもよく、或いはパターン精度をあまり必要としな!/、場合は(100 a m以上程度 )、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターン を形成してもよい。この陽極より発光を取り出す場合には、透過率を 10%より大きくす ること力 S望ましく、又陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜 厚は材料にもよる力 通常 10〜; 1000nm、好ましくは 10〜200nmの範囲で選ばれ As the first electrode, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO. In addition, IDIXO (In O · ΖηΟ) and other amorphous transparent conductive films You may use the material which can produce. The anode may form a thin film by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not so required! / (About 100 am or more) A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. In the case of taking out light emission from this anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / mouth or less. Furthermore, the film thickness is a force depending on the material. Usually 10 to 1000 nm, preferably 10 to 200 nm.
[0147] 〔正孔注入層〕 [Hole injection layer]
第 1電極と発光層又は正孔輸送層の間、正孔注入層(陽極バッファ一層)を存在さ せてもよい。正孔注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層 間に設けられる層のことで、「有機エレクト口ルミネッセンス素子とその工業化最前線( 1998年 11月 30日ェヌ.ティ一.エス社発行)」の第 2編第 2章「電極材料」(123— 16 6頁)に詳細に記載されている。陽極バッファ一層(正孔注入層)に使用する材料の 一例としては、特開 2000— 160328号公報に記載されている材料が挙げられる。  Between the first electrode and the light emitting layer or the hole transport layer, a hole injection layer (anode buffer layer) may be present. The hole injection layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission. “Organic electoluminescence device and its forefront of industrialization (November 30, 1998) The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123–166). Examples of the material used for the anode buffer layer (hole injection layer) include materials described in JP-A No. 2000-160328.
[0148] 〔正孔輸送層〕  [Hole transport layer]
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味 で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数 層設けることが出来る。正孔輸送材料としては、正孔の注入又は輸送、電子の障壁 性の何れかを有するものであり、有機物、無機物の何れであってもよい。例えば、トリ ァゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリーノレアル カン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリ ールァミン誘導体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアント ラセン誘導体、フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン 誘導体、ァニリン系共重合体、又導電性高分子オリゴマー、特にチォフェンオリゴマ 一等が挙げられる。  The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers. The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylenerealkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, Examples thereof include hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
[0149] 正孔輸送材料としては上記のものを使用することが出来る力 ポルフィリン化合物、 芳香族第 3級ァミン化合物及びスチリルァミン化合物、特に芳香族第 3級ァミン化合 物を用いることが好ましレ、。芳香族第 3級ァミン化合物及びスチリルアミン化合物の代 表例としては、 N, N, N' , N' —テトラフエ二ノレ一 4, 4' —ジァミノフエ二ノレ; N, N ' ージフエニノレー N, N' ビス(3—メチノレフエ二ノレ)一〔1 , 1' ービフエ二ノレ〕 4, A' —ジァミン(TPD) ; 2, 2—ビス(4—ジ一 p トリルァミノフエ二ノレ)プロパン; 1 , 1 —ビス(4—ジ一 p トリルァミノフエ二ノレ)シクロへキサン; N, N, N' , N' —テトラ一 p トリノレー 4, 4' —ジアミノビフエニル; 1 , 1—ビス(4—ジ一 p トリルァミノフエニル )—4 フエニルシクロへキサン;ビス(4 ジメチルァミノ一 2 メチルフエ二ノレ)フエ二 ノレメタン;ビス(4—ジ一 p トリルァミノフエ二ノレ)フエニルメタン; N, N' —ジフエ二ノレ — N, N' —ジ(4—メトキシフエ二ル)一 4, 4' —ジアミノビフエ二ノレ; N, N, Ν' , N ' ーテトラフエニノレー 4, A' ージアミノジフエニルエーテル; 4 , A' ビス(ジフエ二 ルァミノ)クオードリフエニル; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルアミ ノ)ー 一〔4—(ジ一p—トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ二ノレ ァミノ一(2 ジフエ二ルビ二ノレ)ベンゼン; 3 メトキシ一 4' — N, N ジフエ二ルアミ ノスチルベンゼン; N—フエ二ルカルバゾール、更には米国特許第 5, 061 , 569号明 細書に記載されている 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' —ビス〔N— ( 1—ナフチル) N フエニルァミノ〕ビフエニル(NPD)、特開平 4— 30 8688号公報に記載されているトリフエニルァミンユニットが 3つスターバースト型に連 結された 4, 4' , A" —トリス〔N— (3—メチルフエ二ル)一 N フエニルァミノ〕トリフエ ニルァミン(MTDATA)等が挙げられる。 [0149] The ability to use the above-mentioned materials as the hole transport material Porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, especially aromatic tertiary amine compounds I prefer to use things. Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N' — Tetraphenolinore 4, 4 '— Diaminophenol; N, N' Diphenylenole N, N ' Bis (3-methinolephenol) 1 [1, 1'-biphenenole] 4, A'-diamin (TPD); 2, 2-bis (4-di-triarylaminophenole) propane; 1, 1-bis (4-di-p-triaminophenenyl) cyclohexane; N, N, N ', N' —tetra-p-trinole 4, 4'-diaminobiphenyl; 1,1--bis (4-di-p-triol) Minophenyl) -4 phenylcyclohexane; bis (4 dimethylamino-1-methylphenenyl) phenol methane; bis (4-di-triarylaminophenyl) phenylmethane; N, N '— diphenyleno — N, N' — Di (4-methoxyphenyl) -1,4'-diaminobiphenol; N, N, Ν ', N'-tetraphenylenole 4, A'-diaminodiphenyl ether; 4, A' bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) 4- (di-p-tolylamino)-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N diphenylaminoamino (2 diphenylbinole) benzene; 3 methoxy 4 '— N, N diphenylaminostilbenzene; N-phenylcarbazole, and two condensed aromatic rings described in US Pat. No. 5,061,569 For example, 4, 4'-bis [N- (1-naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4-308688 4, 4 ', A "—Tris [N— (3-methylphenyl) N phenylamino] triphenylamine (MTDATA) and the like.
[0150] 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした 高分子材料を用いることも出来る。又、 p型 Si、 p型 SiC等の無機化合物も正孔 注入材料、正孔輸送材料として使用することが出来る。  [0150] Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. Inorganic compounds such as p-type Si and p-type SiC can also be used as a hole injection material and a hole transport material.
[0151] 又、特開平 1 1— 251067号公報、 J. Huang et. al.著文献(Applied Physics  [0151] Also, Japanese Patent Laid-Open No. 11-251067, J. Huang et. Al. (Applied Physics)
Letters 80 (2002) , p. 139)に記載されているような所謂 p型正孔輸送材料を用 いることも出来る。本発明においては、より高効率の発光素子が得られることから、こ れらの材料を用いることが好ましレ、。  A so-called p-type hole transport material as described in Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
[0152] 正孔輸送層の膜厚については特に制限はないが、通常は 51 111〜5 111程度、好ま しくは 5〜200nmである。この正孔輸送層は上記材料の 1種又は 2種以上からなる一 層構造であってもよい。又、不純物をドープした P性の高い正孔輸送層を用いることも 出来る。その例としては、特開平 4— 297076号、特開 2000— 196140号、特開 20 01— 102175号、 J. Appl. Phys. , 95, 5773 (2004)等に記載されたもの力挙げ、 られる。この様な ρ性の高い正孔輸送層を用いることが、より低消費電力の有機エレク トロルミネッセンス素子を作製することが出来るため好ましい。 [0152] The thickness of the hole transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm. This hole transport layer is one or more of the above materials. It may be a layered structure. It is also possible to use a hole transport layer having a high P property doped with impurities. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. . It is preferable to use such a hole transport layer having a high ρ property because an organic electroluminescence element with lower power consumption can be produced.
[0153] 〔発光層〕  [Light emitting layer]
本発明において、発光層とは青色発光層、緑色発光層、赤色発光層を指す。発光 層を積層する場合の積層順としては、特に制限はなぐ又各発光層間に非発光性の 中間層を有していてもよい。  In the present invention, the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer. The order of stacking the light emitting layers is not particularly limited, and a non-light emitting intermediate layer may be provided between the light emitting layers.
[0154] 発光層の膜厚の総和は特に制限はないが、膜の均質性、発光に必要な電圧等を 考慮し、通常21 111〜5 111、好ましくは 2〜200nmの範囲で選ばれる。更に 10〜20 nmの範囲にあるのが好ましい。膜厚を 20nm以下にすると電圧面のみならず、駆動 電流に対する発光色の安定性が向上する効果があり好ましい。個々の発光層の膜 厚は、好ましくは 2〜100nmの範囲で選ばれ、 2〜20nmの範囲にあるのが更に好ま しい。青、緑、赤の各発光層膜厚の関係については、特に制限はないが、 3発光層 中、青発光層(複数層ある場合はその総和)が最も厚レ、ことが好まし!/、。  [0154] The total film thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 21 111 to 5 111, preferably 2 to 200 nm in consideration of the homogeneity of the film and the voltage required for light emission. Further, it is preferably in the range of 10 to 20 nm. A film thickness of 20 nm or less is preferable because it has the effect of improving the stability of the emission color with respect to the driving current as well as the voltage aspect. The thickness of each light emitting layer is preferably selected in the range of 2 to 100 nm, and more preferably in the range of 2 to 20 nm. There are no particular restrictions on the relationship between the blue, green, and red light-emitting layer thicknesses, but among the three light-emitting layers, the blue light-emitting layer (the sum of multiple layers) is the thickest! / ,.
[0155] 発光層は発光極大波長力 S各々 430〜480腹、 510〜550腹、 600〜640腹の 範囲にある発光スペクトルの異なる少なくとも 3層以上の層を含む。 3層以上であれば 、特に制限はない。 4層より多い場合には、同一の発光スペクトルを有する層が複数 層あってもよい。発光極大波長が 430〜480nmにある層を青発光層、 510〜550n mにある層を緑発光層、 600〜640nmの範囲にある層を赤発光層と言う。又、前記 の極大波長を維持する範囲において、各発光層には複数の発光性化合物を混合し てもよい。例えば、青発光層に、極大波長 430〜480nmの青発光性化合物と、同 5 10〜 550nmの緑発光性化合物を混合して用いてもよい。  [0155] The light-emitting layer includes at least three layers having different emission spectra in the range of 430 to 480, 510 to 550, and 600 to 640, respectively. If there are three or more layers, there is no particular limitation. When there are more than four layers, there may be a plurality of layers having the same emission spectrum. A layer having an emission maximum wavelength in the range of 430 to 480 nm is referred to as a blue light emitting layer, a layer in the range of 510 to 550 nm is referred to as a green light emitting layer, and a layer in the range of 600 to 640 nm is referred to as a red light emitting layer. In addition, a plurality of light emitting compounds may be mixed in each light emitting layer within the range in which the maximum wavelength is maintained. For example, a blue light emitting compound having a maximum wavelength of 430 to 480 nm and a green light emitting compound having the same wavelength of 10 to 550 nm may be mixed and used in the blue light emitting layer.
[0156] 発光層の材料として使用する有機発光材料は、(a)電荷の注入機能、すなわち、 電界印加時に陽極或いは正孔注入層から正孔を注入することが出来、陰極或いは 電子注入層から電子を注入することが出来る機能、(b)輸送機能、すなわち、注入さ れた正孔及び電子を電界の力で移動させる機能、及び (c)発光機能、すなわち、電 子と正孔の再結合の場を提供し、これらを発光に繋げる機能、の 3つの機能を併せも つものであれば特に限定はない。例えば、ベンゾチアゾール系、ベンゾイミダゾール 系、ベンゾォキサゾール系等の蛍光増白剤や、スチリルベンゼン系化合物を用いる ことが出来る。上記の蛍光増白剤の具体例としては、ベンゾォキサゾール系では、 2 , 5 ビス(5, 7 ジ t—ペンチルー 2 べンゾォキサゾリル) 1 , 3, 4 チアジア ゾーノレ、 4, 4' ビス(5, 7— t—ペンチルー 2 べンゾォキサゾリル)スチルベン、 4 , ' ビス [5, 7 ジー(2 メチルー 2 ブチル)ー2 ベンゾォキサゾォリル]スチ ノレベン、 2, 5 ビス(5, 7 ジ t—ペンチルー 2 べンゾォキサゾリル)チォフェン、 2, 5 ビス [5 α , aージメチルベンジルー 2 べンゾォキサゾリル]チォフェン、 2 , 5 ビス [5, 7 ジ一(2 メチルー 2 ブチル)ー2 べンゾォキサゾリル ]—3, 4 ージフエ二ルチオフェン、 2, 5 ビス(5 メチルー 2 べンゾォキサゾリル)チォフエ ン、 4, A' ビス(2 べンゾォキサゾリル)ビフエニル、 5 メチルー 2— [2— [4— (5 ーメチルー 2—べンゾォキサゾリル)フエニル]ビュル]ベンゾォキサゾーノレ、 2— [2— (4 クロ口フエニル)ビュル]ナフト [ 1 , 2— d]ォキサゾール等が挙げられる。ベンゾ チアゾール系では、 2, 2' 一(p フエ二レンジビニレン) ビスべンゾチアゾール等 が挙げられ、ベンゾイミダゾール系では、 2— [2— [4一(2 べンゾイミダゾリル)フエ 二ノレ]ビニノレ]ベンゾイミダゾール、 2—[2—(4 カルボキシフエ二ノレ)ビニノレ]ベンゾ イミダゾール等が挙げられる。更に、他の有用な化合物は、ケミストリー 'ォブ 'シンセ ティック 'ダイズ(1971 ) ,第 628〜637頁及び第 640頁に列挙されている。 [0156] The organic light-emitting material used as the material of the light-emitting layer is (a) a charge injection function, that is, holes can be injected from the anode or hole injection layer when an electric field is applied, and from the cathode or electron injection layer. A function capable of injecting electrons, (b) a transport function, ie, a function of moving injected holes and electrons by the force of an electric field, and (c) a light emission function, ie, an electric power. There is no particular limitation as long as it has a combination of the three functions of providing a field for recombination of electrons and holes and connecting them to light emission. For example, fluorescent brighteners such as benzothiazole, benzimidazole, and benzoxazole, and styrylbenzene compounds can be used. Specific examples of the above-mentioned optical brightener include 2,5 bis (5,7 di-t-pentyl-2-benzoxazolyl) 1,3,4 thiodia zonole, 4,4 'bis (5 , 7— t-pentyl-2 benzoxazolyl) stilbene, 4, ′ bis [5,7 di (2 methyl-2 butyl) -2 benzoxazolyl] stinoleben, 2, 5 bis (5, 7 di-t-pentyl) 2 Benzoxazolyl) thiophene, 2, 5 Bis [5 α, a-dimethylbenzyl-2 Benzoxazolyl] thiophene, 2, 5 Bis [5, 7 Di (2 methyl-2-butyl) -2 Benzoxazolyl] —3, 4 -Diphenylthiophene, 2,5 bis (5 methyl-2 benzoxazolyl) thiophene, 4, A 'bis (2 benzoxazolyl) biphenyl, 5 methyl-2- [2 -— [4 -— (5-methyl-2-benzoxazolyl) phenyl ] View ] Benzo O hexa zone Honoré, 2- [2- (4 black port phenyl) Bulle] naphtho [1, 2-d] Okisazoru the like. In the case of benzothiazole, 2, 2'-one (p-phenylene divinylene) bisbenzothiazole and the like are listed, and in benzimidazole-type, 2- [2-—4 ((2-benzimidazolyl) phen-ninoyl] vinylinore. ] Benzimidazole, 2- [2- (4 carboxypheninole) vininole] benzoimidazole, and the like. In addition, other useful compounds are listed in Chemistry 'Ob' Synthetic 'Soybean (1971), pages 628-637 and 640.
[0157] 又、上記のスチリルベンゼン系化合物の具体例としては、 1 , 4 ビス(2—メチルス チリル)ベンゼン、 1 , 4 ビス(3—メチルスチリル)ベンゼン、 1 , 4 ビス(4ーメチノレ スチリル)ベンゼン、ジスチリノレベンゼン、 1 , 4 ビス(2 ェチルスチリノレ)ベンゼン、 1 , 4 ビス(3 メチルスチリル)ベンゼン、 1 , 4 ビス(2 メチルスチリル) 2 メ チルベンゼン、 1 , 4 ビス(2 メチルスチリル) 2 ェチルベンゼン等が挙げられ [0157] Specific examples of the above-mentioned styrylbenzene compounds include 1,4 bis (2-methylstyryl) benzene, 1,4 bis (3-methylstyryl) benzene, 1,4 bis (4-methylenostyryl). Benzene, distylinolebenzene, 1,4 bis (2 ethylstyrylole) benzene, 1,4 bis (3 methylstyryl) benzene, 1,4 bis (2 methylstyryl) 2 methylbenzene, 1,4 bis (2 methylstyryl) 2 Ethylbenzene
[0158] 更に、上述した蛍光増白剤及びスチリルベンゼン系化合物以外にも、例えば、 12 —フタ口ペリノン、 1 , 4—ジフエ二ノレ一 1 , 3—ブタジエン、 1 , 1 , 4, 4—テトラフェニル - 1 , 3—ブタジエン、ナフタルイミド誘導体、ペリレン誘導体、ォキサジァゾール誘導 体、アルダジン誘導体、ピラジリン誘導体、シクロペンタジェン誘導体、ピロ口ピロ一 ノレ誘導体、スチリルァミン誘導体、クマリン系化合物、国際公開公報 WO90/1314 8や Appl. Phys. Lett. , vol 58 , 18 , P 1982 ( 1991 ) ίこ記載されてレヽるような高 分子化合物、芳香族ジメチリディン系化合物が挙げられる。芳香族ジメチリディン系 化合物の具体例としては、 1 , 4 フエ二レンジメチリディン、 4, 4' フエ二レンジメ ビフエ二レンジメチリディン、 1 , 4 ρ テレフエ二レンジメチリディン、 4, A' ビス(2 , 2 ジ一 t ブチルフエ二ルビ二ノレ)ビフエニル、 4, A' —ビス(2, 2 ジフエ二ルビ ニル)ビフヱニル等、及びこれらの誘導体が挙げられる。又、上記一般式 (I)で表され る化合物の具体例としては、ビス(2 メチルー 8 キノリノラート)(p—フエユルフェノ ラート)アルミニウム(111)、ビス(2 メチルー 8 キノリノラート)(1 ナフトラート)アル ミニゥム(III)等が挙げられる。 [0158] Further, in addition to the above-described optical brightener and styrylbenzene compound, for example, 12-lid perinone, 1,4-diphenolino 1,3-butadiene, 1,1,4,4- Tetraphenyl-1,3-butadiene, naphthalimide derivatives, perylene derivatives, oxadiazole derivatives , Aldazine derivatives, pyrazirine derivatives, cyclopentagen derivatives, pyrophloropyrrole derivatives, styrylamine derivatives, coumarin compounds, international publications WO90 / 1314 8 and Appl. Phys. Lett., Vol 58, 18, 1982 ( 1991), and high molecular compounds and aromatic dimethylidin compounds as described above. Specific examples of aromatic dimethylidin-based compounds include 1, 4 phenylene dimethylidene, 4, 4 'phenylene dibibidimethylidene, 1, 4 ρ Examples thereof include bis (2,2 di-tert-butylphenylbinole) biphenyl, 4, A′-bis (2,2 diphenylbinyl) biphenyl, and the like, and derivatives thereof. Specific examples of the compound represented by the general formula (I) include bis (2 methyl-8 quinolinolato) (p-phenolphenolate) aluminum (111), bis (2 methyl-8 quinolinolato) (1 naphtholato) aluminum. (III) etc. are mentioned.
[0159] その他、上述した有機発光材料をホストとし、当該ホストに青色から緑色までの強い 蛍光色素、例えばクマリン系或いは前記ホストと同様の蛍光色素をドープした化合物 も、有機発光材料として好適である。有機発光材料として前記の化合物を用いた場 合には、青色から緑色の発光 (発光色はドーパントの種類によって異なる)を高効率 で得ること力 S出来る。前記化合物の材料であるホストの具体例としては、ジスチリルァ リーレン骨格の有機発光材料 (特に好ましくは、例えば、 4 , 4' ビス(2, 2 ジフエ 二ルビニル)ビフヱニル)が挙げられ、前記化合物の材料であるドーパントの具体例と しては、ジフエニルアミノビ二ルァリレーン(特に好ましくは、例えば、 N, N ジフエ二 ノレアミノビフエニルベンゼンや 4 , A' —ビス [2— [4— (N, N ジ一 p トリル)フエ二 ノレ]ビュル]ビフエニル)が挙げられる。  [0159] In addition, a compound in which the above-described organic light-emitting material is used as a host and the host is doped with a strong fluorescent dye from blue to green, for example, a coumarin group or a fluorescent dye similar to the host, is also suitable as the organic light-emitting material. . When the above-mentioned compound is used as the organic light emitting material, it is possible to obtain blue to green light emission (the emission color varies depending on the type of dopant) with high efficiency. Specific examples of the host that is the material of the compound include organic light-emitting materials having a distyrylarylene skeleton (particularly preferably, for example, 4,4′bis (2,2diphenylvinyl) biphenyl). Specific examples of the dopant are diphenylaminovinylarylene (particularly preferably, for example, N, N diphenylaminobiphenylbenzene and 4, A'-bis [2- [4- (N, N di-p-tolyl), phen-yl, bur, biphenyl).
[0160] 発光層には、発光層の発光効率を高くするために公知のホスト化合物と公知のリン 光性化合物(リン光発光性化合物とも言う)を含有することが好まし!/、。  [0160] The light emitting layer preferably contains a known host compound and a known phosphorescent compound (also referred to as a phosphorescent compound) in order to increase the luminous efficiency of the light emitting layer!
[0161] ホスト化合物とは、発光層に含有される化合物の内で、その層中での質量比が 20 %以上であり、且つ室温(25°C)においてリン光発光のリン光量子収率力 0. 1未満 の化合物と定義される。好ましくはリン光量子収率が 0. 01未満である。ホスト化合物 を複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を 調整することが可能であり、有機エレクト口ルミネッセンス素子を高効率化することが 出来る。又、リン光性化合物を複数種用いることで、異なる発光を混ぜることが可能と なり、これにより任意の発光色を得ることが出来る。リン光性化合物の種類、ドープ量 を調整することで白色発光が可能であり、照明、ノ ックライトへの応用も出来る。 [0161] The host compound is a compound contained in the light-emitting layer, the mass ratio of which is 20% or more, and the phosphorescence quantum yield power of phosphorescence emission at room temperature (25 ° C) 0. defined as less than 1 compound. The phosphorescence quantum yield is preferably less than 0.01. A plurality of host compounds may be used in combination. Use multiple host compounds to transfer charges It can be adjusted, and the efficiency of the organic-electric-luminescence element can be improved. In addition, by using a plurality of phosphorescent compounds, it is possible to mix different light emission, thereby obtaining any light emission color. White light emission is possible by adjusting the type of phosphorescent compound and the amount of doping, and it can also be applied to lighting and knocklights.
[0162] これらのホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の 長波長化を防ぎ、尚且つ高 Tg (ガラス転移温度)である化合物が好ましい。公知のホ ス卜ィ匕合物としては、 列えば、、特開 2001— 257076号公幸 I同 2002— 308855号 公報、同 2001— 313179号公報、同 2002— 319491号公報、同 2001— 357977 号公報、同 2002— 334786号公報、同 2002— 8860号公報、同 2002— 334787 号公報、同 2002— 15871号公報、同 2002— 334788号公報、同 2002— 43056 号公報、同 2002— 334789号公報、同 2002— 75645号公報、同 2002— 33857 9号公報、同 2002— 105445号公報、同 2002— 343568号公報、同 2002— 141 173号公報、同 2002— 352957号公報、同 2002— 203683号公報、同 2002— 3 63227号公報、同 2002— 231453号公報、同 2003— 3165号公報、同 2002— 2 34888号公報、同 2003— 27048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002 — 302516号公報、同 2002— 305083号公報、同 2002— 305084号公報、同 20 02 - 308837号公報等に記載の化合物が挙げられる。  [0162] As these host compounds, compounds having a hole transporting ability and an electron transporting ability, which prevent the emission of longer wavelengths, and have a high Tg (glass transition temperature) are preferable. Known host compounds include, for example, Japanese Patent Application Laid-Open No. 2001-257076 No. I 2002-308855, No. 2001-313179, No. 2002-319491, No. 2001-357977. Gazette, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789 2002-75645, 2002-33857 9, 2002-105445, 2002-343568, 2002-141 173, 2002-352957, 2002-203683 Gazette, 2002-3 63227 Gazette, 2002-231453 Gazette, 2003-3165 Gazette, 2002-2 34888 Gazette, 2003-27048 Gazette, 2002-255934 Gazette, 2002- 260861 Publication No. 2002-280183 Publication No. 2002-299060 Publication No. 2002-302516 Publication No. 2002-305083 Publication No. 2002-305084 Publication No. 2 And compounds described in JP 02-308837.
[0163] 複数の発光層を有する場合、これら各層のホスト化合物の 50質量%以上が同一の 化合物であることが、有機層全体に渡って均質な膜性状を得やすいことから好ましく 、更にはホスト化合物のリン光発光エネルギーが 2. 9eV以上であること力 ドーパン トからのエネルギー移動を効率的に抑制し、高輝度を得る上で有利となることからより 好ましい。リン光発光エネルギーとは、ホスト化合物を基板上に lOOnmの蒸着膜のフ オトルミネッセンスを測定し、そのリン光発光の 0— 0バンドのピークエネルギーを言う  [0163] In the case of having a plurality of light-emitting layers, it is preferable that 50% by mass or more of the host compound in each layer is the same compound, since it is easy to obtain a uniform film property over the entire organic layer, and further, the host The ability of the phosphorescent energy of the compound to be 2.9 eV or more is more preferable because it is advantageous for efficiently suppressing energy transfer from the dopant and obtaining high brightness. Phosphorescence emission energy refers to the peak energy of the 0-0 band of phosphorescence emission measured by measuring the photoluminescence of a deposited film of lOOnm on a substrate with a host compound.
[0164] ホスト化合物は、有機エレクト口ルミネッセンス素子の経時での劣化 (輝度低下、膜 性状の劣化)、光源としての市場ニーズ等を考慮し、リン光発光エネルギーが 2. 9eV 以上且つ Tgが 90°C以上のものであることが好ましい。すなわち、輝度と耐久性の両 方を満足するためには、リン光発光エネルギーが 2. 9eV以上且つ Tgが 90°C以上の ものであることが好ましい。 Tgは、更に好ましくは 100°C以上である。 [0164] The host compound has a phosphorescence emission energy of 2.9 eV or more and a Tg of 90 considering the deterioration of the organic electroluminescence device over time (decrease in brightness, deterioration of film properties) and market needs as a light source. It is preferable that the temperature is higher than ° C. That is, both brightness and durability In order to satisfy the above, it is preferable that the phosphorescence emission energy is 2.9 eV or more and the Tg is 90 ° C. or more. Tg is more preferably 100 ° C or higher.
[0165] リン光性化合物(リン光発光性化合物)とは、励起三重項からの発光が観測される 化合物であり、室温(25°C)にてリン光発光する化合物であり、リン光量子収率が、 25 °Cにおいて 0. 01以上の化合物である。先に説明したホスト化合物と合わせ使用する ことで、より発光効率の高い有機エレクト口ルミネッセンス素子とすることが出来る。  [0165] A phosphorescent compound (phosphorescent compound) is a compound in which light emission from an excited triplet is observed, and is a compound that emits phosphorescence at room temperature (25 ° C). A compound having a rate of 0.01 or more at 25 ° C. By using it together with the host compound described above, an organic electoluminescence device with higher luminous efficiency can be obtained.
[0166] 本発明に係るリン光性化合物は、リン光量子収率は好ましくは 0. 1以上である。上 記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸善)に 記載の方法により測定出来る。溶液中でのリン光量子収率は種々の溶媒を用いて測 定出来るが、本発明に用いられるリン光性化合物は、任意の溶媒の何れかにおいて 上記リン光量子収率が達成されればよい。  [0166] The phosphorescent compound according to the present invention preferably has a phosphorescence quantum yield of 0.1 or more. The above phosphorescence quantum yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopic II, 4th edition, Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum yield used in the present invention is only required to achieve the phosphorescence quantum yield in any solvent.
[0167] リン光性化合物の発光は原理としては 2種挙げられ、 1つはキャリアが輸送されるホ スト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、この エネルギーをリン光性化合物に移動させることでリン光性化合物からの発光を得ると いうエネルギー移動型、もう 1つはリン光性化合物がキャリアトラップとなり、リン光性化 合物上出来ャリアの再結合が起こりリン光性化合物からの発光が得られるというキヤリ アトラップ型である力 S、何れの場合においてもリン光性化合物の励起状態のエネルギ 一は、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。  [0167] The light emission of a phosphorescent compound can be described in two types in principle. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is generated. An energy transfer type in which light emission from the phosphorescent compound is obtained by transferring it to the phosphorescent compound, and the other is that the phosphorescent compound becomes a carrier trap, and recombination of the carriers on the phosphorescent compound occurs. It is a carrier trap type force S that allows light emission from the phosphorescent compound to occur. In either case, the excited state energy of the phosphorescent compound must be lower than the excited state energy of the host compound. It is.
[0168] リン光性化合物は、有機エレクト口ルミネッセンス素子の発光層に使用される公知の ものの中から適宜選択して用いることが出来る。リン光性化合物としては、好ましくは 元素の周期表で 8族 10族の金属を含有する錯体系化合物であり、更に好ましくは イリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類 錯体であり、中でも最も好ましいのはイリジウム化合物である。  [0168] The phosphorescent compound can be appropriately selected from known materials used for the light-emitting layer of the organic electoluminescence device. The phosphorescent compound is preferably a complex compound containing a group 8 or group 10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), a rare earth complex. Of these, iridium compounds are most preferred.
[0169] 本発明においては、リン光性化合物のリン光発光極大波長としては特に制限される ものではなぐ原理的には中心金属、配位子、配位子の置換基等を選択することで 得られる発光波長を変化させることが出来る。  [0169] In the present invention, the phosphorescent compound maximum wavelength of the phosphorescent compound is not particularly limited. In principle, by selecting a central metal, a ligand, a substituent of the ligand, and the like. The emission wavelength obtained can be changed.
[0170] また、発光色として、白色発光を得る場合には、発光層に青色、緑色、黄色、赤色 等に発光する発光材料を 2色以上組み合わせて白色とすることが好ましレ、。 [0171] 本発明では、異なる発光色を発光するドーパントを同一層仲に複数種含有させるこ とが好ましい。好ましくは、選択された発光色のうち、発光波長が近い発光性化合物 が同一層に含有される。これによつて、長波の発光性化合物へのエネルギー遷移が 高まり、発光効率が向上する。 [0170] In addition, when white light emission is obtained as the emission color, it is preferable that the light-emitting layer is white by combining two or more light-emitting materials that emit blue, green, yellow, red, and the like. [0171] In the present invention, it is preferable to contain a plurality of dopants emitting different emission colors in the same layer. Preferably, among the selected luminescent colors, a luminescent compound having a near emission wavelength is contained in the same layer. This increases the energy transition to the long wave luminescent compound and improves the luminous efficiency.
[0172] 一例を示すと、青色 緑色 赤色から構成される場合、青色 緑色、又は緑色 赤色の少なくとも一方が同一層に含有される。青色 緑色一黄色 赤色から構成さ れる場合、青色 緑色、緑色一黄色、黄色 赤色の少なくとも一種が同一層に含有 され、より長波の発光性化合物を含有する発光色が同一層に含まれる場合が好まし く。具体的には、黄色 赤色、緑色一黄色である。更に発光色が異なる複数の発光 性化合物を含有する発光層が複数であることが好ましい。また、発光効率を高めるた め、 HOMOのエネルギー準位が高い発光性化合物を含む発光層は、発光層の中 で最も陰極側に積層することが好ましレ、。  [0172] As an example, in the case of blue, green, and red, at least one of blue, green, and green and red is contained in the same layer. When it is composed of blue, green, yellow, and red, it is preferable that at least one of blue, green, yellow, yellow, and red is contained in the same layer, and a luminescent color that contains a longer-wave luminescent compound is contained in the same layer. Much. Specifically, it is yellow red, green one yellow. Furthermore, it is preferable that there are a plurality of light-emitting layers containing a plurality of light-emitting compounds having different emission colors. In order to increase luminous efficiency, it is preferable to stack the light emitting layer containing a light emitting compound with a high HOMO energy level on the cathode side of the light emitting layer.
[0173] 尚、同一発光層内に含有させる発光色が異なる発光性化合物は 2種が好ましい。 3 種以上であると、蒸着条件のコントロールが困難になるからである。  [0173] Two kinds of luminescent compounds having different luminescent colors to be contained in the same luminescent layer are preferable. This is because it is difficult to control the deposition conditions when there are three or more types.
[0174] 本発明の有機エレクト口ルミネッセンス素子や本発明に係る化合物の発光する色は 、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108 頁の図 4. 16において、分光放射輝度計 CS— 1000 (コニカミノルタセンシング社製 )で測定した結果を CIE色度座標に当て嵌めた時の色で決定される。  [0174] The color emitted from the organic electoluminescence device of the present invention and the compound according to the present invention is shown in Fig. 4.16 on page 108 of "New Color Science Handbook" (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). The color measured when the result of measurement with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates is determined.
[0175] 本発明で言うところの白色素子とは、 2°C視野角正面輝度を上記方法により測定し た際に、 1000cd/m2での CIE1931 表色系における色度力 ¾ί = 0. 33 ± 0. 07、 Y=0. 33 ± 0. 07の領域内にあることを言う。 [0175] The white element referred to in the present invention refers to the chromaticity force in the CIE1931 color system at 1000 cd / m 2 when the front luminance at 2 ° C viewing angle is measured by the above method ¾ί = 0.33 It means that it is within the range of ± 0.07, Y = 0.33 ± 0.07.
[0176] 電子注入層とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送 層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有 機層間に設けられる層のことで、「有機エレクト口ルミネッセンス素子とその工業化最 前線(1998年 11月 30日ェヌ 'ティー ·エス社発行)」の第 2編第 2章「電極材料」 (12 3〜166頁)に詳細に記載されている。電子注入層(陰極バッファ一層)は、特開平 6 325871号公報、同 9 17574号公報、同 10— 74586号公報等にもその詳細が 記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッフ ァ一層、フッ化リチウムに代表されるアルカリ金属化合物バッファ一層、フッ化マグネ シゥムに代表されるアルカリ土類金属化合物バッファ一層、酸化アルミニウムに代表 される酸化物バッファ一層等が挙げられる。上記バッファ一層(注入層)はごく薄い膜 であること力 S望ましく、素材にもよるがその膜厚は 0. 11 111〜5〃111の範囲が好ましい[0176] The electron injection layer is made of a material having a function of transporting electrons and is included in the electron transport layer in a broad sense. The electron injection layer is a layer that is provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission. “Organic electorium luminescence element and its industrialization front line (November 30, 1998) The details are described in Volume 2, Chapter 2, “Electrode Materials” (pp. 123-166) of Volume 2 of TS Co., Ltd.). The details of the electron injection layer (one cathode buffer layer) are described in JP-A-6 325871, JP-A-9 17574, JP-A-10-74586, and the like, and specifically, strontium, aluminum, etc. Metal buff And an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide. The buffer layer (injection layer) should be a very thin film. S Desirably, depending on the material, the film thickness is preferably in the range of 0.1111 to 5〃111.
Yes
[0177] 〔電子輸送材料〕  [0177] [Electron Transport Material]
他に発光層側に隣接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料 を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していれ ばよぐその材料としては従来公知の化合物の中力 任意のものを選択して用いるこ とが出来、例えば、ニトロ置換フルオレン誘導体、ジフエ二ルキノン誘導体、チォビラ ンジォキシド誘導体、カルポジイミド、フレオレニリデンメタン誘導体、アントラキノジメ タン及びアントロン誘導体、ォキサジァゾール誘導体等が挙げられる。更に、上記ォ キサジァゾール誘導体において、ォキサジァゾール環の酸素原子を硫黄原子に置 換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有す るキノキサリン誘導体も、電子輸送材料として用いることが出来る。更にこれらの材料 を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用い ることも出来る。  In addition, as an electron transport material (also serving as a hole blocking material) used for the electron transport layer adjacent to the light emitting layer side, it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer. As the material, any of the conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiobilanoxide derivatives, carpositimide, fluorenylidenemethane derivatives, anthraquinodimethane and Anthrone derivatives, oxadiazole derivatives and the like can be mentioned. Further, in the above oxadiazole derivatives, thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is replaced with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
[0178] 又、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミユウ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モー 8 キノリノール)アルミニウム、トリス(2 メチルー 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Ga又は Pbに置き 替わった金属錯体も、電子輸送材料として用いることが出来る。その他、メタルフリー もしくはメタルフタロシアニン、又はそれらの末端がアルキル基ゃスルホン酸基等で 置換されているものも、電子輸送材料として好ましく用いることが出来る。又、ジスチリ ルビラジン誘導体も、電子輸送材料として用いることが出来るし、正孔注入層、正孔 輸送層と同様に、 n型 Si、 n型 SiC等の無機半導体も電子輸送材料として用いる こと力 S出来る。電子輸送層の膜厚については特に制限はないが、通常は 51 111〜5 m程度、好ましくは 5〜200nmである。電子輸送層は上記材料の 1種又は 2種以上 力もなる一層構造であってもよレ、。 [0178] Also, metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-l-quinolinol) aluminum, tris (5,7-dive mouth) Mo 8 quinolinol ) Aluminum, Tris (2methyl-8quinolinol) aluminum, Tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) etc., and the central metals of these metal complexes are In, Mg, Cu, Metal complexes replacing Ca, Sn, Ga or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having an end substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. Distyrubirazine derivatives can also be used as electron transport materials, and inorganic semiconductors such as n-type Si and n-type SiC can be used as electron transport materials as well as hole injection layers and hole transport layers. I can do it. The thickness of the electron transport layer is not particularly limited, but is usually 51 111 to 5 About m, preferably 5 to 200 nm. The electron transport layer may have a single layer structure that can be one or more of the above materials.
[0179] 又、不純物をドープした n性の高い電子輸送層を用いることも出来る。その例として は、特開平 4— 297076号公報、特開平 10— 270172号公報、特開 2000— 19614 0号公報、特開 2001— 102175号公報、 J. Appl. Phys. , 95, 5773 (2004)等に 記載されたものが挙げられる。この様な η性の高い電子輸送層を用いることがより低 消費電力の素子を作製することが出来るため好ましい。  [0179] Further, an electron transport layer having a high n property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004). ) And the like. It is preferable to use such an electron transport layer having a high η property because a device with lower power consumption can be manufactured.
[0180] 〔第 2電極〕  [0180] [Second electrode]
第 2電極としては、仕事関数の小さ!/、(4eV以下)金属(電子注入性金属と称する) 、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。 この様な電極物質の具体例としては、ナトリウム、ナトリウム—カリウム合金、マグネシ ゥム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/ アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミ二 ゥム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙 げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注 入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、 例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム /インジウム混合物、アルミニウム/酸化アルミニウム (Al O )混合物、リチウム/ァ ノレミニゥム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着や スパッタリング等の方法により薄膜を形成させることにより、作製することが出来る。又 、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常101 111〜5 111 、好ましくは 50〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有 機エレクト口ルミネッセンス素子の第 1電極(陽極)又は第 2電極(陰極)の何れか一方 力 透明又は半透明であれば発光輝度が向上し好都合である。  As the second electrode, a material having a small work function! /, (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide. (Al 2 O 3) mixture, indium, lithium / aluminum mixture, rare earth metal, and the like. Among these, from the viewpoint of electron injectability and durability against oxidation, etc., a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture. A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3) mixture, a lithium / aluminum mixture, aluminum and the like are suitable. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred Ω / mouth or less, and the preferred film thickness is usually 101 111 to 5 111, preferably 50 to 200 nm. In addition, in order to transmit the emitted light, if either the first electrode (anode) or the second electrode (cathode) of the organic electoric luminescence element is transparent or translucent, it is convenient to improve the light emission luminance. .
[0181] 又、第 2電極に上記金属を l〜20nmの膜厚で作製した後に、第 1電極の説明で挙 げた導電性透明材料をその上に作製することで、透明又は半透明の第 2電極(陰極) を作製することが出来、これを応用することで第 1電極(陽極)と第 2電極(陰極)の両 方が透過性を有する素子を作製することが出来る。 [0182] 〔その他〕 [0181] In addition, after the metal is formed on the second electrode with a film thickness of 1 to 20 nm, the transparent conductive material described in the description of the first electrode is formed thereon, thereby forming a transparent or translucent first electrode. Two electrodes (cathode) can be produced, and by applying this, an element in which both the first electrode (anode) and the second electrode (cathode) are transmissive can be produced. [0182] [Others]
本発明の有機エレクト口ルミネッセンス素子の発光の室温における外部取り出し効 率は 1 %以上であることが好ましぐより好ましくは 5%以上である。ここに、外部取り出 し量子効率(%) =有機エレクト口ルミネッセンス素子外部に発光した光子数/有機 エレクト口ルミネッセンス素子に流した電子数 X 100である。  The external extraction efficiency at room temperature of light emission of the organic electoluminescence device of the present invention is preferably 1% or more, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic electoluminescence device / the number of electrons X 100 flowing through the organic electroluminescence device.
[0183] 又、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機エレクト口ルミネ ッセンス素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併 用してもよい。色変換フィルターを用いる場合においては、有機エレクト口ルミネッセ ンス素子の発光のえ maxは 480nm以下が好まし!/、。  [0183] Even when a hue improving filter such as a color filter or the like is used in combination, a color conversion filter that converts the emission color from the organic electroluminescence device to multiple colors using a phosphor is also used. Also good. In the case of using a color conversion filter, the maximum light emission of the organic-electric-luminescence element is preferably 480 nm or less! /.
[0184] 本発明の有機エレクト口ルミネッセンス素子は、発光層で発生した光を効率よく取り 出すために以下に示す方法を併用することが好ましい。有機エレクト口ルミネッセンス 素子は、空気よりも屈折率の高い(屈折率が 1. 7〜2. 1程度)層の内部で発光し、発 光層で発生した光の内 15%から 20%程度の光しか取り出せないことが一般的に言 われている。これは、臨界角以上の角度 Θで界面(透明基板と空気との界面)に入射 する光は、全反射を生じて素子外部に取り出すことが出来ないことや、透明電極ない し発光層と透明基板との間で光が全反射を生じ、光が透明電極ないし発光層を導波 し、結果として、光が素子側面方向に逃げるためである。  [0184] In order to efficiently extract the light generated in the light emitting layer, the organic electoluminescence device of the present invention preferably uses the following method in combination. Organic-electric-luminescence elements emit light inside a layer that has a higher refractive index than air (refractive index is about 1.7 to 2.1), and about 15% to 20% of the light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle Θ greater than the critical angle causes total reflection and cannot be taken out of the device, or the transparent electrode or light emitting layer is transparent. This is because light is totally reflected between the substrate and the light, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side direction of the element.
[0185] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸 を形成し、透明基板と空気界面での全反射を防ぐ方法 (米国特許第 4, 774, 435)。 基板に集光性を持たせることにより効率を向上させる方法(特開昭 63— 314795号 公報)。素子の側面等に反射面を形成する方法(特開平 1 220394号公報)。基板 と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法 ( 特開昭 62— 172691号公報)。基板と発光体の間に基板よりも低屈折率を持つ平坦 層を導入する方法(特開 2001— 202827号公報)。基板、透明電極層や発光層の 何れかの層間 (含む、基板と外界間)に回折格子を形成する方法 (特開平 1 1 283 751号公報)等がある。  [0185] As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435). A method for improving efficiency by providing a substrate with a light condensing property (Japanese Patent Laid-Open No. 63-314795). A method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1 220394). A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between a substrate and a light emitter (Japanese Patent Laid-Open No. 62-172691). A method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter (Japanese Patent Laid-Open No. 2001-202827). There is a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 1 283 751).
[0186] 本発明にお!/、ては、これらの方法を有機エレクト口ルミネッセンス素子と組合せて用 いることが出来るが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入 する方法、或いは基板、透明電極層や発光層の何れかの層間(含む、基板と外界間 )に回折格子を形成する方法を好適に用いることが出来る。本発明においては、これ らの手段を組合せることにより、更に高輝度或いは耐久性に優れた素子を得ることが 出来る。 [0186] In the present invention, these methods can be used in combination with an organic electoluminescence device, but a flat layer having a lower refractive index than the substrate is provided between the substrate and the light emitter. Introduction Or a method of forming a diffraction grating between any layers of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used. In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
[0187] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成する と、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が 高くなる。低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシゥ ム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に 1. 5〜; 1. 7程度 であるので、低屈折率層は、屈折率がおよそ 1. 5以下であることが好ましい。又、更 に 1. 35以下であることが好ましい。低屈折率媒質の厚みは、媒質中の波長の 2倍以 上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバ ネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効 果が薄れるからである。全反射を起こす界面もしくは何れかの媒質中に回折格子を 導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、 回折格子が 1次の回折や、 2次の回折といった所謂ブラッグ回折により、光の向きを 屈折とは異なる特定の向きに変えることが出来る性質を利用して、発光層から発生し た光の内、層間での全反射等により外に出ることが出来ない光を、何れかの層間もし くは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ 、光を外に取り出そうとするものである。導入する回折格子は、二次元的な周期屈折 率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダ ムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な 1次 元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど 上がらない。し力もながら、屈折率分布を二次元的な分布にすることにより、あらゆる 方向に進む光が回折され、光の取り出し効率が上がる。  [0187] When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light emitted from the transparent electrode is extracted to the outside as the refractive index of the medium decreases. Increases efficiency. Examples of the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. The thickness of the low refractive index medium should be at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate. The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method is generated from the light-emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. The light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating into any layer or medium (in a transparent substrate or transparent electrode). The light is diffracted and light is taken out. It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction, light traveling in a specific direction It is only diffracted and the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
[0188] 回折格子を導入する位置としては前述の通り、何れかの層間もしくは、媒質中(透 明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が 望ましい。この時、回折格子の周期は、媒質中の光の波長の約 1/2〜3倍程度が好 ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス 状等、 2次元的に配列が繰り返されることが好ましい。 [0188] As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but in the vicinity of the organic light emitting layer where light is generated. desirable. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium. The diffraction grating is arranged in a square lattice shape, a triangular lattice shape, or a honeycomb lattice. It is preferable that the arrangement is repeated two-dimensionally.
[0189] 更に、本発明の有機エレクト口ルミネッセンス素子は、発光層で発生した光を効率よ く取り出すために、基板の光取り出し側に、例えばマイクロレンズアレイ上の構造を設 けるように加工したり、或いは、所謂集光シートと組合せることにより、特定方向、例え ば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めるこ とが出来る。マイクロレンズアレイの例としては、基板の光取り出し側に一辺が 30〃 m でその頂角が 90度となるような四角錐を 2次元に配列する。一辺は 10 111〜100 mが好ましい。これより小さくなると回折の効果が発生して色付ぐ大き過ぎると厚み が厚くなり好ましくない。 Furthermore, the organic electoluminescence device of the present invention is processed so that a structure on a microlens array, for example, is provided on the light extraction side of the substrate in order to efficiently extract light generated in the light emitting layer. Or, in combination with a so-called condensing sheet, the light in the specific direction can be increased by condensing light in a specific direction, for example, in the front direction with respect to the light emitting surface of the element. As an example of a microlens array, square pyramids are arranged two-dimensionally on the light extraction side of the substrate so that one side is 30 mm and the apex angle is 90 degrees. One side is preferably 10 111 to 100 m. If it is smaller than this, the effect of diffraction is generated, and if the color is too large, the thickness becomes undesirably high.
[0190] 集光シートとしては、例えば液晶表示装置の LEDバックライトで実用化されているも のを用いることが可能である。この様なシートとして例えば、住友スリーェム社製輝度 上昇フィルム(BEF)等を用いることが出来る。プリズムシートの形状としては、例えば 基板に頂角 90度、ピッチ 50 μ 111の八状のストライプが形成されたものであってもよい し、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状で あってもよい。又、発光素子からの光放射角を制御するために光拡散板'フィルムを、 集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム (ライトアップ)等を用 いることが出来る。  [0190] As the light condensing sheet, for example, an LED backlight of a liquid crystal display device that is put into practical use can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3EM may be used. As the shape of the prism sheet, for example, an octagonal stripe having a vertex angle of 90 degrees and a pitch of 50 μ111 may be formed on the substrate, or the vertex angle may be rounded and the pitch may be changed randomly. Other shapes may be used. Moreover, in order to control the light emission angle from a light emitting element, you may use a light diffusing plate 'film together with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
実施例  Example
[0191] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。なお、実施例において「部」あるいは「%」の表示を用いる力 特に 断りがない限り「質量部」あるいは「質量%」を表す。  [0191] Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. In the examples, “part” or “%” is used as a force to indicate “part by mass” or “% by mass” unless otherwise specified.
[0192] 実施例 1  [0192] Example 1
《有機エレクト口ルミネッセンス素子の作製》  << Preparation of organic-elect mouth luminescence element >>
〔有機エレクト口ルミネッセンス素子 101の作製〕  [Preparation of organic-elect mouth luminescence element 101]
(有機 EL素子ユニットの作製)  (Production of organic EL element unit)
陽極としてガラス上に ITO (In O: Sn)を 150nm成膜した基板(NHテクノグラス社  Substrate with 150 nm ITO (In O: Sn) film on glass as anode (NH Techno Glass)
2 3  twenty three
製: NA— 45)を、 55mm X 45mmの大きさに断裁し、発光部分が 45mm X 34mm の長方形になるようにパターユングを行った後、この ITO透明電極を設けた透明基板 を iso プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、紫外線オゾン 洗浄を 5分間行った。 Manufactured by: NA-45) is cut into a size of 55mm x 45mm, patterned so that the light emitting part is a 45mm x 34mm rectangle, and then a transparent substrate with this ITO transparent electrode The sample was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to ultraviolet ozone cleaning for 5 minutes.
[0193] この透明基板を、市販の真空蒸着装置の基板ホルダーに固定し、さらにステンレス 鋼製の長方形穴あきマスクを取り付けた。なお、マスクは有機層力 6mm X 35mm の面積で ITOを覆う条件となるように取り付けた。一方、 5つのタンタル製抵抗加熱ボ ートに、 a—NPD、 CBP、 Ir—1、 BCP、 Alqをそれぞれ装填し、真空蒸着装置(第 [0193] This transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, and a stainless steel rectangular perforated mask was attached. The mask was attached so as to satisfy the conditions for covering ITO with an organic layer strength of 6 mm X 35 mm. On the other hand, a-NPD, CBP, Ir-1, BCP, and Alq were loaded into five tantalum resistance heating boats, respectively.
1真空槽)に取付けた。 (1 vacuum chamber).
[0194] タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにァ ルミ二ゥムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。  [0194] Lithium fluoride was placed in a resistance heating boat made of tantalum and aluminum was placed in a resistance heating boat made of tungsten, and each was attached to the second vacuum chamber of the vacuum evaporation system.
[0195] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 a—NPDの入った加熱ボートに 通電して加熱し、蒸着速度 0. 15nm/秒で、透明支持基板に膜厚 25nmの厚さに なるように蒸着し、正孔注入層及び正孔輸送層を設けた。 [0195] First, after the vacuum of the first vacuum chamber to 4 X 10- 4 Pa, heated by energizing the heating boat containing a-NPD, a deposition rate 0. 15 nm / sec, a transparent support substrate Vapor deposition was performed to a thickness of 25 nm to provide a hole injection layer and a hole transport layer.
[0196] 次いで、 CBPの入った加熱ボートと Ir 1の入った加熱ボートをそれぞれ独立に通 電して発光ホストである CBPと発光ドーパントである Ir— 1の蒸着速度が 100: 7にな るように調節し、膜厚 30nmの厚さになるように蒸着して、発光層を設けた。  [0196] Next, the heating boat containing CBP and the heating boat containing Ir 1 are independently energized, so that the deposition rate of CBP as the luminescent host and Ir-1 as the luminescent dopant becomes 100: 7. The light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
[0197] 次いで、 BCPの入った加熱ボートに通電して加熱し、蒸着速度 0. 15nm/秒で厚 さ 10nmの正孔阻止層電子輸送層を設けた。更に、 Alqの入った加熱ボートを通電 して加熱し、蒸着速度 0. 15nm/秒で、膜厚 40nmの電子輸送層電子注入層を設 けた。  [0197] Next, a heating boat containing BCP was energized and heated to provide a 10-nm-thick hole blocking layer electron transport layer at a deposition rate of 0.15 nm / sec. Furthermore, a heating boat containing Alq was energized and heated, and an electron transport layer electron injection layer having a film thickness of 40 nm was provided at a deposition rate of 0.15 nm / second.
[0198] 次に、電子輸送層電子注入層まで製膜した素子を真空のまま第 2真空槽に移した 後、電子注入層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置 外部からリモートコントロールして設置した。第 2真空槽を 2 X 10— 4Paまで減圧した後 、フッ化リチウム入りのボートに通電して蒸着速度 0. 015nm/秒で膜厚 0. 5nmの 陰極バッファ一層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度 1. 5nm/秒で膜厚 150nmの陰極をつけて、有機 EL素子ユニット 101を得た。 [0198] Next, after the element formed up to the electron transport layer and the electron injection layer was transferred to the second vacuum chamber in a vacuum, a stainless steel rectangular perforated mask was placed on the electron injection layer. Equipment Remotely installed from outside. After decompression of the second vacuum chamber up to 2 X 10- 4 Pa, a cathode buffer one layer of thickness 0. 5 nm provided at a deposition rate of 0. 015nm / sec by supplying an electric current to the boat of lithium fluoride-containing, then filled with aluminum An organic EL element unit 101 was obtained by energizing the boat and attaching a cathode having a film thickness of 150 nm at a deposition rate of 1.5 nm / second.
[0199] 有機 EL素子ユニットの作製に用いた各化合物の構造を、以下に示す。  [0199] The structure of each compound used in the production of the organic EL element unit is shown below.
[0200] [化 1] a— HPD C P [0200] [Chemical 1] a— HPD CP
Figure imgf000045_0001
Figure imgf000045_0001
[0201] 更に、この有機 EL素子ユニット 101を、大気に接触させることなく窒素雰囲気下の グローブボックス(純度 99. 999%以上の高純度窒素ガスで置換したグローブボック ス)へ移した。 [0201] Furthermore, the organic EL element unit 101 was transferred to a glove box (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) in a nitrogen atmosphere without being exposed to the air.
[0202] (封止工程)  [0202] (Sealing process)
〈ガスバリア性の可撓性封止フィルム 1の作製〉  <Preparation of gas barrier flexible sealing film 1>
可撓性フィルムとして、ポリエチレンテレフタレートフィルム(帝人'デュポン社製フィ ルム、以下、 PETと略記する)の全面に、図 7に記載の構成からなる大気圧プラズマ 放電処理装置を用いて、連続して可撓性フィルム上に、 SiO力 なる無機物のガス ノ リア膜を形成し、酸素透過度 0. 01ml/m2/day以下、水蒸気透過度 0. Olg/m 2/day以下のガスバリア性の可撓性封止フィルムを作製した。 As a flexible film, a polyethylene terephthalate film (film made by Teijin's DuPont, hereinafter abbreviated as PET) is continuously applied using an atmospheric pressure plasma discharge treatment apparatus having the structure shown in FIG. An inorganic gas noble film with SiO force is formed on a flexible film and has an oxygen permeability of 0.01 ml / m 2 / day or less and a water vapor permeability of 0. Olg / m 2 / day or less. A flexible sealing film was prepared.
[0203] 上記作製した全面にガスバリア層を有する可撓性封止フィルムを 55mm X 45mm の大きさに断裁しこれを可撓性封止フィルム 1とした 〈接着剤の塗設〉 [0203] The flexible sealing film having the gas barrier layer formed on the entire surface was cut into a size of 55 mm x 45 mm, and this was used as the flexible sealing film 1 <Applying adhesive>
上記作製した可撓性封止フィルム 1につ!/、て、紫外線オゾン洗浄を 1分間行った後 、窒素雰囲気下のグローブボックスへ移動させた。  After the above-described flexible sealing film 1 was subjected to ultraviolet ozone cleaning for 1 minute, it was moved to a glove box under a nitrogen atmosphere.
[0204] 窒素雰囲気下で、全面にガスバリア層を有する可撓性封止フィルムの、ガスバリア 層の有機エレクト口ルミネッセンス素子の発光素子面及び電極取り出し部を除ぐ周 辺部も含めた領域に、スクリーン印刷機にて紫外線硬化性のエポキシ樹脂(ナガセケ ムテックス(株)製 UVレジン XNR5516)の接着剤を塗布した。 [0204] In a flexible sealing film having a gas barrier layer on the entire surface in a nitrogen atmosphere, the region including the peripheral portion excluding the light emitting element surface and the electrode extraction portion of the organic electroluminescence device of the gas barrier layer, An ultraviolet curable epoxy resin (UV resin XNR5516 manufactured by Nagase ChemteX Corporation) was applied using a screen printer.
[0205] 〈貼合工程〉  [0205] <Bonding process>
前記接着剤の塗布されたバスバリア層を有する可撓性封止フィルムに対向する様 にガラス上に形成された有機 EL素子ユニット面を可撓性封止フィルム側に向け、図 4の(b)に記載の構成となるように位置合わせを行い、周囲環境を lOPaまで減圧を 行った。減圧後、ガスバリア性の有する可撓性封止フィルムを平板プレスにより 0. 05 MPaの圧力で圧着貼り合せを行った。次いで、高圧水銀灯の紫外線ランプを用い、 6000mj/cm2の照射エネルギー条件で陰極側から接着剤へ照射し、接着剤を硬 化した。その後、グローブボックス内より取り出し、この様にして作製した有機素子を 有機エレクト口ルミネッセンス素子 101とした。 The organic EL element unit surface formed on the glass so as to face the flexible sealing film having the bus barrier layer to which the adhesive has been applied is directed toward the flexible sealing film, and FIG. Alignment was performed so that the configuration described in (1) was achieved, and the ambient environment was reduced to lOPa. After depressurization, a flexible sealing film having gas barrier properties was pressure bonded by a flat plate press at a pressure of 0.05 MPa. Next, using an ultraviolet lamp of a high pressure mercury lamp, the adhesive was irradiated from the cathode side under an irradiation energy condition of 6000 mj / cm 2 to harden the adhesive. Thereafter, the organic element taken out from the glove box and made in this manner was designated as an organic electoluminescence element 101.
[0206] 〔有機エレクト口ルミネッセンス素子 102の作製〕  [Fabrication of organic electoluminescence device 102]
上記有機エレクト口ルミネッセンス素子 101の作製において、可撓性封止フィルム 1 に代えて、下記の方法で作製した可撓性封止フィルム 2を用い、図 6の(a)に記載の 構成で封止を行った以外は同様にして、有機エレクト口ルミネッセンス素子 102を作 In the production of the organic electoluminescence device 101, a flexible sealing film 2 produced by the following method was used in place of the flexible sealing film 1, and sealed with the configuration shown in FIG. The organic electroluminescent mouth luminescence element 102 was made in the same manner except that
; ^^し/ ; ^^
[0207] 〈ガスバリア性の可撓性封止フィルム 2の作製〉  <Preparation of Gas Barrier Flexible Sealing Film 2>
可撓性フィルムとして、ポリエチレンテレフタレートフィルム(帝人'デュポン社製フィ ルム、以下、 PETと略記する)を用い、図 7に記載の構成からなる大気圧プラズマ放 電処理装置と、図 8に記載の様な構成で 51mm X 40mmの開口部を複数個有する マスク部材を用いて、連続して可撓性フィルム上に、 SiO力、らなる無機物のガスバリ ァ膜を形成し、酸素透過度 0. 01ml/m2/day以下、水蒸気透過度 0. 01g/m2/ day以下のガスバリア性の可撓性封止フィルムを作製した。 [0208] 上記作製したガスバリア層を有する可撓性封止フィルムを、全面積が 55mm X 45 mm、ガスバリア層面積が 51mm X 40mmの大きさとなるように断裁し、これを可撓性 封止フィルム 2とした。 As the flexible film, a polyethylene terephthalate film (film made by Teijin's DuPont, hereinafter abbreviated as PET), an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 7, and the configuration shown in FIG. By using a mask member with multiple openings of 51mm x 40mm in such a configuration, an inorganic gas barrier film made of SiO, etc. is continuously formed on a flexible film with an oxygen permeability of 0.01 ml. / m 2 / day or less, to produce a flexible sealing film of the following gas barrier vapor permeability 0. 01G / m 2 / day. [0208] The above-prepared flexible sealing film having a gas barrier layer was cut so that the total area was 55 mm x 45 mm and the gas barrier layer area was 51 mm x 40 mm. Two.
[0209] 〔有機エレクト口ルミネッセンス素子 103の作製〕  [Fabrication of organic electoluminescence device 103]
上記有機エレクト口ルミネッセンス素子 101の作製において、可撓性封止フィルム 1 に代えて、下記の方法で作製した可撓性封止フィルム 3を用い、図 4の(a)に記載の 構成で封止を行った以外は同様にして、有機エレクト口ルミネッセンス素子 103を作 In the production of the organic electroluminescent mouth luminescence element 101, instead of the flexible sealing film 1, a flexible sealing film 3 prepared by the following method was used and sealed with the configuration shown in FIG. In the same manner as described above, the organic electroluminescent mouth luminescence element 103 was manufactured.
; ^^し/ ; ^^
[0210] 〈ガスバリア性の可撓性封止フィルム 3の作製〉  [0210] <Production of gas barrier flexible sealing film 3>
可撓性フィルムとして、ポリエチレンテレフタレートフィルム(帝人'デュポン社製フィ ルム、以下、 PETと略記する)を用い、図 7に記載の構成からなる大気圧プラズマ放 電処理装置と、図 8に記載の様な構成で 46mm X 35mmの開口部を複数個有する マスク部材を用いて、連続して可撓性フィルム上に、 SiO力、らなる無機物のガスバリ ァ膜を形成し、酸素透過度 0. 01ml/m2/day以下、水蒸気透過度 0. 01g/m2/ day以下のガスバリア性の可撓性封止フィルムを作製した。 As the flexible film, a polyethylene terephthalate film (film made by Teijin's DuPont, hereinafter abbreviated as PET), an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. 7, and the configuration shown in FIG. By using a mask member with multiple openings of 46mm x 35mm in such a configuration, an inorganic gas barrier film of SiO force, etc. is continuously formed on a flexible film, and oxygen permeability is 0.01ml / m 2 / day or less, to produce a flexible sealing film of the following gas barrier vapor permeability 0. 01G / m 2 / day.
[0211] 上記作製した全面にガスバリア層を有する可撓性封止フィルムを、全面積が 55m m X 45mm、ガスバリア層面積が 46mm X 35mmの大きさとなるように断裁し、これを 可撓性封止フィルム 3とした。  [0211] The flexible sealing film having the gas barrier layer formed on the entire surface was cut so that the total area was 55 mm x 45 mm and the gas barrier layer area was 46 mm x 35 mm. The stop film was 3.
[0212] 《有機エレクト口ルミネッセンス素子の評価》  [0212] << Evaluation of Organic Electral Luminescence Element >>
〔高温保存性の評価〕  [Evaluation of high temperature storage stability]
各有機エレクト口ルミネッセンス素子を、 85°C、相対湿度 5%の環境下に 250時間 の保存を行った後、各有機エレクト口ルミネッセンス素子に 10mA/cm2の一定電流 で駆動させた時のダークスポット発生の有無、発光面積の縮小、発光輝度の変化の 測定を行い、未処理の各有機エレクト口ルミネッセンス素子の各特性と比較し、下記 の基準に従って高温保存性の評価を行った。なお、発光輝度は、コニカミノルタセン シング社製の CS— 1000を用いて測定した。 When each organic-elect mouth luminescence device is stored for 250 hours in an environment at 85 ° C and 5% relative humidity, it is dark when driven to a constant current of 10 mA / cm 2 for each organic-elect-mouth luminescence device. The presence / absence of spot generation, reduction of light emission area, and change in light emission luminance were measured, and compared with each characteristic of each untreated organic electoluminescence device, high temperature storage stability was evaluated according to the following criteria. The emission luminance was measured using CS-1000 manufactured by Konica Minolta Sensing.
[0213] A :未処理品に対し、ダークスポットを含む発光面積の縮小率が 5%未満で、かつ 電流密度一定時の輝度変動が 5%未満である B :未処理品に対し、ダークスポットを含む発光面積の縮小率が 5%以上、 10%未 満で、電流密度一定時の輝度変動が 5%以上、 10%未満である [0213] A: Compared to the untreated product, the reduction ratio of the light emitting area including dark spots is less than 5%, and the luminance fluctuation at a constant current density is less than 5%. B: The reduction ratio of the light emitting area including dark spots is 5% or more and less than 10% of the untreated product, and the luminance fluctuation at a constant current density is 5% or more and less than 10%.
C :未処理品に対し、ダークスポットを含む発光面積の縮小率が 10%以上、または 電流密度一定時の輝度変動が 10%以上である  C: Compared to the untreated product, the reduction ratio of the light emitting area including dark spots is 10% or more, or the luminance fluctuation at a constant current density is 10% or more.
〔高湿保存性の評価〕  [Evaluation of high-humidity storage stability]
各有機エレクト口ルミネッセンス素子を、 45°C、相対湿度 90%の環境下に 250時間 の保存を行った後、各有機エレクト口ルミネッセンス素子に 10mA/cm—の一定電流 で駆動させた時のダークスボット発生の有無、発光面積の縮小、発光輝度の変化の 測定を行い、未処理の各有機エレクト口ルミネッセンス素子の各特性と比較し、下記 の基準に従って高湿保存性の評価を行った。なお、発光輝度は、コニカミノルタセン シング社製の CS— 1000を用いて測定した。  After storing each organic-elect mouth luminescence element in an environment of 45 ° C and relative humidity 90% for 250 hours, the darkness when driving each organic-elect-mouth luminescence element with a constant current of 10 mA / cm— The presence / absence of sbots, reduction of light emission area, and change in light emission luminance were measured and compared with the characteristics of each untreated organic-electrical luminescence element, and high-humidity storage stability was evaluated according to the following criteria. The emission luminance was measured using CS-1000 manufactured by Konica Minolta Sensing.
[0214] A:未処理品に対し、ダークスボットを含む発光面積の縮小率が 5%未満で、かつ 電流密度一定時の輝度変動が 5%未満である [0214] A: Compared to the untreated product, the reduction ratio of the light emitting area including the dark sbot is less than 5%, and the luminance fluctuation at a constant current density is less than 5%.
B :未処理品に対し、ダークスポットを含む発光面積の縮小率が 5%以上、 10%未 満で、電流密度一定時の輝度変動が 5%以上、 10%未満である  B: The reduction ratio of the light emitting area including dark spots is 5% or more and less than 10% of the untreated product, and the luminance fluctuation at a constant current density is 5% or more and less than 10%.
C :未処理品に対し、ダークスポットを含む発光面積の縮小率が 10%以上、または 電流密度一定時の輝度変動が 10%以上である  C: Compared to the untreated product, the reduction ratio of the light emitting area including dark spots is 10% or more, or the luminance fluctuation at a constant current density is 10% or more.
以上により得られた結果を、表 1に示す。  Table 1 shows the results obtained as described above.
[0215] [表 1] [0215] [Table 1]
Figure imgf000048_0001
表 1に記載の結果より明らかなように、本発明で規定する構成からなる可撓性封止 フィルムを用いて、密着部領域でガスバリア層を有する領域と、ガスバリア層が存在し ない領域とを同時に有する様にして封止した本発明の有機エレクト口ルミネッセンス 素子は、高温下、あるいは高湿下で長期間保存を行っても、封止部の破損が無ぐ 優れた高温保存性及び高湿保存性を有していることが分かる。 [0217] 実施例 2
Figure imgf000048_0001
As is clear from the results shown in Table 1, using a flexible sealing film having the configuration defined in the present invention, a region having a gas barrier layer in a close contact region and a region where no gas barrier layer is present. The organic electoluminescence device of the present invention sealed so as to have at the same time does not break the sealed portion even when stored for a long time at high temperature or high humidity. It turns out that it has preservability. [0217] Example 2
《有機エレクト口ルミネッセンス素子の作製》  << Preparation of organic-elect mouth luminescence element >>
〔有機エレクト口ルミネッセンス素子 201の作製〕  [Preparation of organic-elect mouth luminescence element 201]
(有機 EL素子ユニットの作製)  (Production of organic EL element unit)
基板として、ポリエチレンテレフタレートフィルム(帝人'デュポン社製フィルム、以下 PETと略記する)の全面に、図 7に記載の大気圧プラズマ放電処理装置を用いて、 SiO力もなる無機物のガスノ リア膜を形成し、酸素透過度 0. 01ml/m2/day以下 、水蒸気透過度 0. 01g/m2/day以下のガスバリア性の可撓性フィルム基板 1を作As the substrate, an inorganic gas noble film having SiO force is formed on the entire surface of a polyethylene terephthalate film (film made by Teijin's DuPont, hereinafter abbreviated as PET) using the atmospheric pressure plasma discharge treatment apparatus shown in FIG. A gas barrier flexible film substrate 1 having an oxygen permeability of 0.01 ml / m 2 / day or less and a water vapor permeability of 0.01 g / m 2 / day or less is prepared.
; ^^し/ ; ^^
[0218] この可撓性フィルム基板 1を 55mm X 45mmの大きさに断裁し、その上に、実施例  [0218] This flexible film substrate 1 was cut into a size of 55 mm x 45 mm, and on top of this, an example
1の有機 EL素子ユニットの作製と同様にして、発光部分が 45mm X 34mmの長方 形になるようにパターユングを行って、有機 EL素子ユニットを形成した。  In the same manner as in the preparation of the organic EL element unit in 1, the organic EL element unit was formed by patterning so that the light-emitting portion had a rectangular shape of 45 mm x 34 mm.
[0219] 次いで、実施例 1の有機エレクト口ルミネッセンス素子 101の作製に用いた全面に ガスノ リア層を有する可撓性封止フィルム 1を用いて、図 4の(d)の構成となるように 封止を行って、有機エレクト口ルミネッセンス素子 201を作製した。  [0219] Next, using the flexible sealing film 1 having the gas-norrea layer on the entire surface used for the production of the organic electoluminescence device 101 of Example 1, the configuration of FIG. Sealing was performed to prepare an organic electoluminescence element 201.
[0220] 〔有機エレクト口ルミネッセンス素子 202の作製〕  [0220] [Preparation of organic electoluminescence element 202]
上記有機エレクト口ルミネッセンス素子 201の作製において、可撓性封止フィルム 1 に代えて、可撓性封止フィルム 2を用いた以外は同様にして、有機エレクト口ルミネッ センス素子 202を作製した。  An organic electoluminescence device 202 was produced in the same manner as in the production of the organic electroluminescence device 201 except that the flexible sealing film 2 was used instead of the flexible encapsulation film 1.
[0221] 〔有機エレクト口ルミネッセンス素子 203の作製〕  [Preparation of organic-elect mouth luminescence element 203]
上記有機エレクト口ルミネッセンス素子 202の作製にお!/、て、可撓性フィルム基板 1 に代えて、下記の方法で作製した可撓性フィルム基板 2を用いた以外は同様にして、 有機エレクト口ルミネッセンス素子 203を作製した。  For the production of the organic electoluminescence device 202, the organic electophoresis was produced in the same manner except that the flexible film substrate 2 produced by the following method was used instead of the flexible film substrate 1. A luminescence element 203 was manufactured.
[0222] (可撓性フィルム基板 2の作製)  [0222] (Production of flexible film substrate 2)
基板として、ポリエチレンテレフタレートフィルム(帝人'デュポン社製フィルム、以下 PETと略記する)を用い、図 7に記載の構成からなる大気圧プラズマ放電処理装置 と、図 8に記載の様な構成で 51mm X 40mmの開口部を複数個有するマスク部材を 用いて、連続して基板上に、 SiO力もなる無機物のガスバリア膜を形成し、酸素透過 度 0. 01ml/m2/day以下、水蒸気透過度 0. 01g/m2/day以下のガスバリア性 の可撓性封止フィルムを作製した。 A polyethylene terephthalate film (a film made by Teijin's DuPont, hereinafter abbreviated as PET) is used as the substrate, and an atmospheric pressure plasma discharge treatment apparatus having the configuration shown in FIG. Using a mask member with multiple 40mm openings, an inorganic gas barrier film with SiO force is continuously formed on the substrate to allow oxygen permeation. A flexible sealing film having a gas barrier property having a degree of 0.01 ml / m 2 / day or less and a water vapor permeability of 0.01 g / m 2 / day or less was produced.
[0223] 上記作製したガスバリア層を有する可撓性フィルム基板を、全面積が 55mm X 45 mm、ガスバリア層面積が 51mm X 40mmの大きさとなるように断裁し、これを可撓性 フィルム基板 2とした。 [0223] The flexible film substrate having the gas barrier layer produced above was cut so that the total area was 55 mm x 45 mm and the gas barrier layer area was 51 mm x 40 mm. did.
[0224] 《有機エレクト口ルミネッセンス素子の評価》 [0224] << Evaluation of Organic Electral Luminescence Element >>
以上により得られた各有機エレクト口ルミネッセンス素子について、実施例 1に記載 の方法と同様にして、高温保存性及び高湿保存性の評価を行い、得られた結果を表 For each organic electoluminescence device obtained as described above, the high-temperature storage stability and high-humidity storage stability were evaluated in the same manner as described in Example 1, and the obtained results were shown.
2に示す。 Shown in 2.
[0225] [表 2] [0225] [Table 2]
Figure imgf000050_0001
Figure imgf000050_0001
[0226] 表 2に記載の結果より明らかなように、本発明で規定する構成からなる可撓性封止 フィルムを用いて、密着部領域でガスバリア層を有する領域と、ガスバリア層が存在し ない領域とを同時に有する様にして封止した本発明の有機エレクト口ルミネッセンス 素子は、高温下、あるいは高湿下で長期間保存を行っても、封止部の破損が無ぐ 優れた高温保存性及び高湿保存性を有していることが分かる。 [0226] As is apparent from the results shown in Table 2, the flexible sealing film having the configuration defined in the present invention is used, and the region having the gas barrier layer in the close contact region and the gas barrier layer do not exist. The organic electoluminescence device of the present invention sealed so as to have a region at the same time does not break the sealed portion even when stored for a long time at high temperature or high humidity. It can also be seen that it has a high humidity storage property.
[0227] 実施例 3  [0227] Example 3
図 10に記載の大気圧プラズマ処理装置と、図 8に記載のマスク部材を用いて、 48 mm X 37mmの大きさのガスバリア層を複数個形成した可撓性封止フィルムシートと 、実施例 1に記載の有機エレクト口ルミネッセンス素子ユニット(図 11に記載の有機ェ レクト口ルミネッセンス素子 301il )を複数個有するガスバリア層を有する基材シートを 用いて、図 1 1に記載の貼合工程及び断裁工程を経て、実施例 1に記載の有機エレ タトロルミネッセンス素子 102及び実施例 2に記載の有機エレクト口ルミネッセンス素 子と同様の構成の有機エレクト口ルミネッセンス素子を複数個形成し、実施例 1に記 載の方法と同様にして、高温保存性及び高湿保存性の評価を行った結果、個体間 のバラツキが無ぐいずれも高温下、あるいは高湿下で長期間保存を行っても、封止 部の破損が無く、優れた高温保存性及び高湿保存性を有して!/ヽることを確認すること ができた。 A flexible sealing film sheet in which a plurality of gas barrier layers each having a size of 48 mm × 37 mm are formed using the atmospheric pressure plasma processing apparatus shown in FIG. 10 and the mask member shown in FIG. Using the base sheet having a gas barrier layer having a plurality of organic-electrical-luminescence elements unit (organic-illuminating-luminescence element 301il shown in FIG. 11) described in FIG. 11, the bonding process and cutting process shown in FIG. As a result, a plurality of organic electroluminescent elements having the same structure as the organic electroluminescent element 102 described in Example 1 and the organic electroluminescent element described in Example 2 were formed and described in Example 1. As a result of evaluating high temperature storage stability and high humidity storage stability in the same manner as in Even if it is stored for a long time under high temperature or high humidity, there is no damage to the sealed part, and it has excellent high-temperature storage and high-humidity storage! I was able to confirm.

Claims

請求の範囲 The scope of the claims
[1] 基板上に有機エレクト口ルミネッセンス素子部材を有する有機エレクト口ルミネッセン ス素子において、該有機エレクト口ルミネッセンス素子部材の上に、可撓性フィルム上 にガスバリア層を有する可撓性封止フィルムが設けられており、該基板はガラス基板 であり、該可撓性封止フィルムは、少なくとも有機エレクト口ルミネッセンス側にガスバ リア層を有し、有機エレクト口ルミネッセンス素子部材の周囲を囲むように前記基板と 接着されており、基板との密着部領域の内周領域の可撓性封止フィルムはガスバリ ァ層が設けられており、該可撓性封止フィルムのガスバリア層と基板が接着されてお り、基板との密着部領域の外周領域の可撓性封止フィルムはガスバリア層が設けら れておらず、可撓性フィルムと基板が接着されていることを特徴とする有機エレクト口 ルミネッセンス素子。  [1] In an organic electoluminescence device having an organic electroluminescence device member on a substrate, a flexible sealing film having a gas barrier layer on the flexible film is formed on the organic electroluminescence device member. And the substrate is a glass substrate, and the flexible sealing film has a gas barrier layer on at least the organic electroluminescence port luminescence side, and surrounds the periphery of the organic electroluminescence device element. The flexible sealing film in the inner peripheral region of the close contact area with the substrate is provided with a gas barrier layer, and the gas barrier layer of the flexible sealing film and the substrate are bonded. In other words, the flexible sealing film in the outer peripheral area of the contact area with the substrate is not provided with a gas barrier layer, and the flexible film and the substrate are bonded. Organic elect port luminescent element characterized Rukoto.
[2] 基板上に有機エレクト口ルミネッセンス素子部材を有する有機エレクト口ルミネッセン ス素子において、該有機エレクト口ルミネッセンス素子部材の上に、可撓性フィルム上 にガスバリア層を有する可撓性封止フィルムが設けられており、該基板はガスバリア 層を有する可撓性フィルム基板であり、該可撓性封止フィルムと該基板は少なくとも 有機エレクト口ルミネッセンス側にガスバリア層を有し、有機エレクト口ルミネッセンス 素子部材の周囲を囲むように接着されており、基板との密着部領域の内周領域の可 撓性封止フィルムはガスバリア層が設けられており、可撓性封止フィルムのガスバリア 層と基板が接着されており、可撓性封止フィルムと基板との密着部領域の外周領域 は可撓性封止フィルムと基板は共にガスバリア層が設けられておらず可撓性フィルム と可撓性フィルム基板とが接着されていることを特徴とする有機エレクト口ルミネッセン ス素子。  [2] In the organic electoluminescence device having the organic electroluminescence device member on the substrate, a flexible sealing film having a gas barrier layer on the flexible film is formed on the organic electroluminescence device member. And the substrate is a flexible film substrate having a gas barrier layer, and the flexible sealing film and the substrate have a gas barrier layer at least on the organic electroluminescence port luminescence side, and the organic electroluminescence device element member The flexible sealing film in the inner peripheral region of the contact area with the substrate is provided with a gas barrier layer, and the gas barrier layer of the flexible sealing film and the substrate are bonded. The outer peripheral area of the adhesion part area between the flexible sealing film and the substrate is the gas barrier layer for both the flexible sealing film and the substrate. Organic elect port Ruminessen scan element not provided flexible film and the flexible film substrate is characterized in that it is bonded.
[3] 前記ガスバリア層が、無機化合物から構成されるセラミック層であることを特徴とする 請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセンス素子。  [3] The organic electoluminescence device according to [1] or [2], wherein the gas barrier layer is a ceramic layer composed of an inorganic compound.
[4] 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子で用いる可撓性封止フィルムの製造方法であって、可撓性フィルム上に、所定 の開口部を複数個有するマスク部材を配置し、ガスバリア膜形成材料を付与して、複 数個のガスバリア性を備えたガスバリア層を形成することを特徴とする可撓性封止フ イルムの製造方法。 [4] A method for producing a flexible sealing film for use in the organic electoluminescence device according to any one of claims 1 to 3, wherein a predetermined amount is provided on the flexible film. A flexible sealing film characterized in that a mask member having a plurality of openings is disposed and a gas barrier film forming material is applied to form a gas barrier layer having a plurality of gas barrier properties. Irum manufacturing method.
前記ガスバリア層を形成する方法が、大気圧もしくはその近傍の圧力下で、対向電 極の間で形成する放電空間に放電ガス及びガスバリア膜形成ガスを含有するガスを 供給し、少なくとも一方の電極から該放電空間に高周波電圧を印加して該ガスを励 起し、前記可撓性フィルム及び開口部を複数個有するマスク部材を該励起したガス に晒すことにより処理を行う大気圧プラズマ処理であることを特徴とする請求の範囲 第 4項に記載の可撓性封止フィルムの製造方法。  In the method for forming the gas barrier layer, a gas containing a discharge gas and a gas barrier film-forming gas is supplied to a discharge space formed between the counter electrodes under atmospheric pressure or a pressure near the atmospheric pressure, and the gas barrier layer is formed from at least one electrode. It is an atmospheric pressure plasma treatment in which a high-frequency voltage is applied to the discharge space to excite the gas, and the mask member having a plurality of flexible films and openings is exposed to the excited gas. The manufacturing method of the flexible sealing film of Claim 4 characterized by these.
PCT/JP2007/066021 2006-09-15 2007-08-17 Process for production of flexible sealing film and organic electroluminescent devices made by using the film WO2008032526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534275A JPWO2008032526A1 (en) 2006-09-15 2007-08-17 Method for producing flexible sealing film and organic electroluminescence device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006250699 2006-09-15
JP2006-250699 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032526A1 true WO2008032526A1 (en) 2008-03-20

Family

ID=39183592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066021 WO2008032526A1 (en) 2006-09-15 2007-08-17 Process for production of flexible sealing film and organic electroluminescent devices made by using the film

Country Status (2)

Country Link
JP (1) JPWO2008032526A1 (en)
WO (1) WO2008032526A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038003A (en) * 2007-07-11 2009-02-19 Dainippon Printing Co Ltd Gas barrier sheet, sealing body and organic el display
JP2009283154A (en) * 2008-05-19 2009-12-03 Seiko Epson Corp Organic light emitting device, and electronic apparatus
WO2010005064A1 (en) * 2008-07-10 2010-01-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
FR2938375A1 (en) * 2009-03-16 2010-05-14 Commissariat Energie Atomique Flexible, transparent and self-supporting multi-layer film for e.g. organic LED device, has organic and inorganic layers whose thicknesses are chosen such that total thickness of film is greater than or equal to ten micrometers
WO2010090223A1 (en) * 2009-02-05 2010-08-12 株式会社日立プラントテクノロジー Substrate surface sealing device and organic el panel fabrication method
JP2012084306A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device
JP2012084305A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device
US8284369B2 (en) 2008-08-20 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Flexible light-emitting device, and method for fabricating the same
US8829792B2 (en) 2010-09-27 2014-09-09 Koninklijke Philips N.V. OLED with flexible cover layer
JP2016006789A (en) * 2013-08-30 2016-01-14 大日本印刷株式会社 Method for manufacturing top-emission organic electroluminescence display device, and cover material for forming top-emission organic electroluminescence display device
WO2016204024A1 (en) * 2015-06-19 2016-12-22 ソニーセミコンダクタソリューションズ株式会社 Display device
JPWO2014136969A1 (en) * 2013-03-08 2017-02-16 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2017535824A (en) * 2014-10-22 2017-11-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Array substrate and manufacturing method thereof, flexible display panel and display device
JP2017212127A (en) * 2016-05-26 2017-11-30 住友化学株式会社 Method of manufacturing organic device
CN110556285A (en) * 2018-05-30 2019-12-10 双叶电子工业株式会社 Method for manufacturing polymer substrate and method for manufacturing electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290137A (en) * 2000-04-04 2001-10-19 Matsushita Electric Ind Co Ltd Plastic substrate for liquid crystal display device
JP2004327402A (en) * 2003-04-28 2004-11-18 Kureha Chem Ind Co Ltd Moisture-proof electroluminescent element and its manufacturing method
JP2005227450A (en) * 2004-02-12 2005-08-25 Seiko Epson Corp Electro-optical device, manufacturing method therefor, and electronic equipment
JP2005319678A (en) * 2004-05-07 2005-11-17 Nippon Zeon Co Ltd Laminate, light emitting element and its use
JP2006221898A (en) * 2005-02-09 2006-08-24 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, manufacturing method of sealing film, display device, and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290137A (en) * 2000-04-04 2001-10-19 Matsushita Electric Ind Co Ltd Plastic substrate for liquid crystal display device
JP2004327402A (en) * 2003-04-28 2004-11-18 Kureha Chem Ind Co Ltd Moisture-proof electroluminescent element and its manufacturing method
JP2005227450A (en) * 2004-02-12 2005-08-25 Seiko Epson Corp Electro-optical device, manufacturing method therefor, and electronic equipment
JP2005319678A (en) * 2004-05-07 2005-11-17 Nippon Zeon Co Ltd Laminate, light emitting element and its use
JP2006221898A (en) * 2005-02-09 2006-08-24 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, manufacturing method of sealing film, display device, and lighting device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038003A (en) * 2007-07-11 2009-02-19 Dainippon Printing Co Ltd Gas barrier sheet, sealing body and organic el display
JP2009283154A (en) * 2008-05-19 2009-12-03 Seiko Epson Corp Organic light emitting device, and electronic apparatus
US8264144B2 (en) 2008-07-10 2012-09-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device utilizing fibrous barrier layers impregnated with organic resin
TWI500355B (en) * 2008-07-10 2015-09-11 Semiconductor Energy Lab Light emitting device and electronic device
US10205062B2 (en) 2008-07-10 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device that is highly reliable, thin and is not damaged by external local pressure and electronic device
TWI663892B (en) * 2008-07-10 2019-06-21 日商半導體能源研究所股份有限公司 Light emitting device and electronic device
US10079330B2 (en) 2008-07-10 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device having an embedded pixel electrode
KR20110038032A (en) * 2008-07-10 2011-04-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device and electronic device
WO2010005064A1 (en) * 2008-07-10 2010-01-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US11908976B2 (en) 2008-07-10 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
TWI565354B (en) * 2008-07-10 2017-01-01 半導體能源研究所股份有限公司 Light emitting device and electronic device
US11101407B2 (en) 2008-07-10 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device sealed in a fibrous body to improve manufacturability and electronic device including the light emitting device
JP2021073678A (en) * 2008-07-10 2021-05-13 株式会社半導体エネルギー研究所 Light-emitting device
US8860306B2 (en) 2008-07-10 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Display device having a fibrous encapsulating structure
US20150060890A1 (en) * 2008-07-10 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Light Emitting Device and Electronic Device
JP2010040522A (en) * 2008-07-10 2010-02-18 Semiconductor Energy Lab Co Ltd Light-emitting device, electronic equipment, and lighting device
US11557697B2 (en) 2008-07-10 2023-01-17 Semiconductor Energy Laboratory Co., Ltd. Flexible light emitting device comprising a polyimide resin
JP2016012576A (en) * 2008-07-10 2016-01-21 株式会社半導体エネルギー研究所 Module
KR101588576B1 (en) * 2008-07-10 2016-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device and electronic device
US8284369B2 (en) 2008-08-20 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Flexible light-emitting device, and method for fabricating the same
JP2010182530A (en) * 2009-02-05 2010-08-19 Hitachi Plant Technologies Ltd Sealing device of substrate surface and manufacturing method of organic el panel
WO2010090223A1 (en) * 2009-02-05 2010-08-12 株式会社日立プラントテクノロジー Substrate surface sealing device and organic el panel fabrication method
FR2938375A1 (en) * 2009-03-16 2010-05-14 Commissariat Energie Atomique Flexible, transparent and self-supporting multi-layer film for e.g. organic LED device, has organic and inorganic layers whose thicknesses are chosen such that total thickness of film is greater than or equal to ten micrometers
US8829792B2 (en) 2010-09-27 2014-09-09 Koninklijke Philips N.V. OLED with flexible cover layer
JP2012084306A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device
JP2012084305A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device
JPWO2014136969A1 (en) * 2013-03-08 2017-02-16 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2016006789A (en) * 2013-08-30 2016-01-14 大日本印刷株式会社 Method for manufacturing top-emission organic electroluminescence display device, and cover material for forming top-emission organic electroluminescence display device
JP2017535824A (en) * 2014-10-22 2017-11-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Array substrate and manufacturing method thereof, flexible display panel and display device
WO2016204024A1 (en) * 2015-06-19 2016-12-22 ソニーセミコンダクタソリューションズ株式会社 Display device
US11247439B2 (en) 2015-06-19 2022-02-15 Sony Semiconductor Solutions Corporation Display unit
JP2017212127A (en) * 2016-05-26 2017-11-30 住友化学株式会社 Method of manufacturing organic device
CN110556285A (en) * 2018-05-30 2019-12-10 双叶电子工业株式会社 Method for manufacturing polymer substrate and method for manufacturing electronic device

Also Published As

Publication number Publication date
JPWO2008032526A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2008032526A1 (en) Process for production of flexible sealing film and organic electroluminescent devices made by using the film
US8574661B2 (en) Process for producing organic electroluminescent element and organic electroluminescent display device
JP4946860B2 (en) GAS BARRIER FILM, PROCESS FOR PRODUCING THE SAME, AND RESIN BASE FOR ORGANIC EL DEVICE USING THE GAS BARRIER FILM
US8405301B2 (en) Organic electroluminescence element, display device and lighting device
JP5170067B2 (en) Organic EL panel and method for manufacturing organic EL panel
JP2007200692A (en) Organic electro-luminescence panel and method of manufacturing the same
JP2007277631A (en) Method for producing gas-barrier thin film laminate, gas-barrier thin film laminate, gas-barrier resin base and organic electroluminescent device
WO2007004627A1 (en) Patterning apparatus, organic electroluminescence element, method for manufacturing such organic electroluminescence element, and organic electroluminescence display device
JP2007038529A (en) Gas barrier thin film laminate, gas barrier resin base material and organic electroluminescence device
JP2006297694A (en) Gas barrier film, resin base material for organic electroluminescence, organic electroluminescence device using resin base material and method of manufacturing gas barrier film
WO2011070841A1 (en) Method of manufacturing organic electroluminescence element
JP6020339B2 (en) Plasma CVD film forming mask and plasma CVD film forming method
JP2006294484A (en) Organic electroluminescent element, its manufacturing method and organic electroluminescent display device
JP5447244B2 (en) Method for manufacturing organic electroluminescence panel
JP2007073405A (en) Organic electroluminescent element and display device using it
JP4802576B2 (en) Gas barrier resin base material, gas barrier resin base material with transparent conductive film, and organic electroluminescence element
JP2008226471A (en) Manufacturing method of organic electroluminescent panel and organic electroluminescent panel
JP2007083644A (en) Gas-barrier film, resin base material for organic electroluminescence, and organic electroluminescent device using the resin base material
JP2009163889A (en) Method for manufacturing functional thin film, and organic electroluminescent luminaire
JP2007200591A (en) Organic electro-luminescence panel and method of manufacturing the same
JP5092756B2 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent lighting device, and organic electroluminescent panel manufacturing device
JPWO2009025186A1 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent panel
JP2007073465A (en) Organic electroluminescent element, display device using it, and lighting system
JP2007109422A (en) Organic electroluminescent element
JP2006221898A (en) Organic electroluminescent element, its manufacturing method, manufacturing method of sealing film, display device, and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534275

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792638

Country of ref document: EP

Kind code of ref document: A1