WO2008029670A1 - Matériau de dispositif électroluminescent organique et dispositif électroluminescent organique - Google Patents

Matériau de dispositif électroluminescent organique et dispositif électroluminescent organique Download PDF

Info

Publication number
WO2008029670A1
WO2008029670A1 PCT/JP2007/066639 JP2007066639W WO2008029670A1 WO 2008029670 A1 WO2008029670 A1 WO 2008029670A1 JP 2007066639 W JP2007066639 W JP 2007066639W WO 2008029670 A1 WO2008029670 A1 WO 2008029670A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
layer
transport layer
organic electroluminescent
Prior art date
Application number
PCT/JP2007/066639
Other languages
English (en)
French (fr)
Inventor
Hiroshi Miyazaki
Atsuhiko Katayama
Shinji Matsuo
Katsuhide Noguchi
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to EP07793079A priority Critical patent/EP2075310B1/en
Priority to US12/438,304 priority patent/US7968874B2/en
Priority to CN2007800308345A priority patent/CN101506328B/zh
Priority to JP2008533109A priority patent/JP5009922B2/ja
Priority to KR1020097002976A priority patent/KR101338343B1/ko
Publication of WO2008029670A1 publication Critical patent/WO2008029670A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • Organic electroluminescent element material and organic electroluminescent element are organic electroluminescent element materials and organic electroluminescent element
  • the present invention relates to an organic electroluminescent element (hereinafter referred to as an organic EL element) and an organic electroluminescent element material used therein (hereinafter referred to as an organic EL element material or an organic EL material).
  • the present invention relates to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • Electroluminescent devices using organic materials have been optimized for the purpose of improving the efficiency of charge injection from the electrodes, and include a hole transport layer composed of an aromatic diamine and an 8-hydroxyquinoline noreminium complex (hereinafter referred to as the “electrophoresis”).
  • a hole transport layer composed of an aromatic diamine and an 8-hydroxyquinoline noreminium complex hereinafter referred to as the “electrophoresis”.
  • Development of an element in which a light emitting layer composed of Alq3 and! /, U) is provided as a thin film between the electrodes has led to a significant improvement in luminous efficiency compared to conventional devices using single crystals such as anthracene. It was. Therefore, development aimed at practical application to high-performance flat panel displays with the characteristics of self-light emission and high-speed response has been advanced.
  • the structure of the above-mentioned anode / hole transport layer / light emitting layer / cathode is basically used, and this includes a hole injection layer, an electron injection layer, and an electron transport. It is also known that the light efficiency can be improved by appropriately providing layers, and so far, many organic materials have been developed in accordance with the functions of these constituent layers.
  • Patent Document l WO00 / 70655
  • Patent Document 2 JP 2001-284056 A
  • Patent Document 3 Japanese Patent Laid-Open No. 5-198377
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-142264 Patent Document 5: WO2002 / 47440
  • Patent Document 6 WO01 / 041512
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-313178
  • Patent Document 8 JP 2002-305083 A
  • Patent Document 9 Japanese Patent Laid-Open No. 5-214332
  • Non-patent literature l Appl. Phys. Lett., Vol.77, pp904, (2000)
  • Patent Documents 1 and 7 propose 4,4′-bis (9-carbazolyl) biphenyl (hereinafter referred to as CBP) as a host material used for the light emitting layer of the organic EL element.
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 which is a green phosphorescent light-emitting material
  • CBP is easy to flow holes, and it is difficult to flow electrons.
  • the luminous efficiency from Ir (ppy) 3 decreases.
  • TAZ 3-phenyl-4- (1'-naphthyl) -5-phenyl-1,2,4-triazole
  • 4,4'_bis (N- (l-naphthyl) -N-phenylamino) biphenyl is most often used as a hole transport layer in terms of high performance, high reliability, and long life.
  • energy transition occurs from Ir (ppy) 3 to a-NPD, resulting in a decrease in luminous efficiency.
  • Patent Document 9 discloses a blue-emitting luminescent composition containing BAlq. As can be seen from these forces, BAlq and its related compounds are known to be useful as light emitting materials and as materials for other layers.
  • Non-Patent Document 1 TAZ is used as the host material of the light emitting layer, Ir (ppy) 3 is used as the guest material, Alq3 is used as the electron transport layer, and 4,4'-bis (N, N '-(3-Tolyl) amino) -3, 3'-dimethylbiphenyl (hereinafter referred to as HMTPD) is reported to be able to obtain high-efficiency light emission with a three-layer structure in a phosphorescent light-emitting device. is doing.
  • HMTPD has a glass transition temperature (hereinafter referred to as Tg) of about 50 ° C, it is easily crystallized and lacks reliability as a material. Therefore, commercial applications with extremely short device lifetimes are difficult, and the drive voltage is high.
  • Patent Document 3 discloses that a dimer-type metal complex having an 8_quinolinol ligand represented by Q-A1-0-A1-Q is present in a blue light-emitting layer, and that perylene and the like are present.
  • Patent Document 4 discloses the use of dimer-type metal complexes as phosphorescent host materials! /, But teaches the usefulness of deuterated metal complex dimers It is not a thing.
  • a metal complex having a structure represented by Q-A1-0-A1-Q is called a dimer-type metal complex.
  • Q is an 8-quinolinol ligand which may have a substituent.
  • Patent Document 5 discloses that the bond between carbon and deuterium (CD) is shorter than the bond between carbon and hydrogen (CH) and is physicochemically stable.
  • Various deuterated compounds (compound-D and! /, U) are exemplified!
  • a heteroligand-type metal complex such as BAlq, which is useful as an organic EL material, is a dimer-type metal complex that contains hydrogen at the 2-position methyl group (benzenole-position hydrogen) in the quinolinol ligand. There is nothing to teach about the necessity or effectiveness of replacing deuterium.
  • An object of the present invention is to provide a practically useful organic EL device capable of realizing a highly efficient, long-life and simplified device configuration, and a material used therefor, in view of the above situation.
  • the benzylic hydrogen at the 2-position methyl group in the quinolinol ligand is highly reactive and unstable. Since the coordination number to the aluminum metal is controlled by the steric hindrance of the methyl group, it cannot be omitted because of its structure. Also, conversion to other less reactive substituents such as phenyl groups changes the physicochemical properties such as the optical properties of the metal complex. Therefore, the present inventors have found that the benzylic hydrogen is converted to D and selectively protected by using physicochemically stable deuterium, thereby improving the stability without changing the material properties. The invention has been completed.
  • the present invention is an organic electroluminescent element material comprising an organometallic complex represented by the following general formula (I).
  • R to R are each independently a hydrogen atom, deuterium atom, alkyl group, aralkyl.
  • Aromatic heterocyclic group Represents a monovalent substituent.
  • the hydrogen atom may be a deuterium atom.
  • D represents a deuterium atom.
  • L represents a monovalent group represented by the following formula (1), (2), (3) or (4);
  • Ar to ⁇ are each independently an aromatic hydrocarbon group which may have a substituent.
  • R to R and D have the same meaning as in general formula (I).
  • organometallic complexes represented by the following general formula ( ⁇ ) or (III).
  • R to R and D have the same meaning as in the general formula (I).
  • Ar is the same as equation (1).
  • the organic electroluminescent device of the present invention comprises a substrate, an organic layer including an anode, a hole transport layer, a light emitting layer and an electron transport layer, and a cathode, which are laminated in at least one organic layer.
  • the organic electroluminescent element material described above is included.
  • the organic electroluminescent element comprises an anode, a hole transport layer, an organic layer including a light emitting layer and an electron transport layer, and a cathode laminated on a substrate, and the positive electrode is disposed between the light emitting layer and the anode. It has a hole transport layer, an electron transport layer between the light emitting layer and the cathode, and the above-mentioned organic electroluminescent element material is contained in the light emitting layer. More advantageously, the organic electroluminescent element contains the organic electroluminescent element material described above as a host material in the light emitting layer, and the periodic table 7 to 11; An organometallic complex containing at least one metal is contained as a guest material.
  • a hole injection layer may be disposed between the anode and the hole transport layer, or an electron injection layer may be disposed between the cathode and the electron transport layer.
  • the organic electroluminescent element material (organic EL material) of the present invention is an organic metal complex represented by the above general formula (I).
  • D is H is known in Patent Documents 4, 8, 9 and the like. Therefore, the meanings of groups such as R and L in the general formula (I) and preferred groups can be understood from these documents.
  • R to R are each independently a hydrogen atom, a deuterium atom or a monovalent substitution.
  • the monovalent substituent has an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an alkoxy group, a substituent! /, May! /, An aromatic hydrocarbon group or a substituent. ! /, Selected from any aromatic heterocyclic group.
  • the hydrogen atom may be D.
  • it is CD when the monovalent substituent is a methyl group.
  • the alkyl group is preferably an alkyl group having 1 to 6 carbon atoms (hereinafter referred to as a lower alkyl group), the aralkyl group is preferably exemplified by a benzyl group and a phenethyl group, and the alkenyl group is exemplified by carbon.
  • a lower alkenyl group having a number of 1 to 6 is preferably exemplified, and the alkyl part of the alkoxy group is preferably exemplified by lower alkyl.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, an acenaphthyl group or an anthryl group
  • the aromatic heterocyclic group is a pyridyl group or a quinolyl group.
  • Preferred examples include an aromatic heterocyclic group such as a group, a phenyl group, a carbazole group, an indolyl group, and a furyl group.
  • substituents include a lower alkyl group, a lower alkoxy group, a phenoxy group, a benzyloxy group, a phenyl group, a naphthyl group, and the like. It is done.
  • L is a force S representing a monovalent group represented by the above formula (1), (2), (3) or (4), and Ar to Ar are respectively
  • the hydrogen atom contained in the lower alkyl group or the lower alkoxy group may be D.
  • preferable Ar, Ar, and Ar are 1 to 3 ring aromatic hydrocarbons.
  • L is preferably selected from a compound that is an allyloxy group such as phenoxy, phenphenoxy, naphthoxy, phenylnaphthoxy, naphthylphenoxy, or a monovalent group represented by the formula (4).
  • the compound is a monovalent group represented by the formula (4), it becomes an organometallic complex represented by the general formula ( ⁇ ).
  • the organometallic complex represented by the general formula (I) is represented by, for example, a corresponding metal salt, a compound represented by the formula (IV), and a formula (la), (2a) or (3a).
  • the compound is synthesized by a complex formation reaction at a molar ratio of 2: 1.
  • the organometallic complex represented by the general formula (II) is synthesized by a complex formation reaction between the corresponding metal salt and the compound represented by the formula (IV).
  • R to R correspond to R to R in the general formula (I). Represented by the formulas (la), (2a) and (3a)
  • the synthesis reaction of the organometallic complex represented by the general formula ( ⁇ ) is, for example, a method shown by Y. Kushi et al. (J. Amer. Chem. Soc., Vol. 92, pp91, (1970)) Can be done.
  • R to R correspond to R to R in general formula (I).
  • metal salts eight 1, Al (
  • the compound represented by formula (IV) is prepared by preparing 2-methyl-8-oxyquinoline (referred to as Me8HQ), for example, in which the hydrogen of the methyl group is H, and setting the hydrogen of the methyl group to D. can get.
  • the compound in which the hydrogen of the methyl group of Me8HQ obtained in this way is D is called Me8HQ-D.
  • Known conditions can be adopted as the deuteration reaction method.
  • methyl group hydrogen can be selectively deuterated by reacting Me8HQ and deuterated water in the presence of a Pd / C catalyst at 150 to 200 ° C.
  • the organometallic complex represented by the general formula (I) of the present invention is mainly composed of a compound in which the methyl group at the 2-position is CD.
  • the organic EL device of the present invention contains the organic EL material of the present invention having an organometallic complex power represented by the general formula (I) in at least one organic layer.
  • the organic EL device has a structure in which an anode, a hole transport layer, an organic layer including a light emitting layer and an electron transport layer, and a cathode are laminated.
  • an organic layer including an anode, a hole transport layer, a light emitting layer and an electron transport layer and a cathode are laminated on the substrate, and the hole transport layer is provided between the light emitting layer and the anode.
  • It has a structure having an electron transport layer between the cathode and the cathode. More preferably, there is a structure in which a hole injection layer is disposed between the anode and the hole transport layer or a structure in which an electron injection layer is disposed between the cathode and the electron transport layer.
  • the organic EL material of the present invention is preferably contained in the light emitting layer as a light emitting material.
  • the organic EL material of the present invention is contained in the light emitting layer as a host material, and an organic metal complex containing at least one metal selected from Group 7 or 11 of the periodic table is contained in the light emitting layer as a guest material. It is to be. However, it can also be used as a material for other layers, for example, as a hole blocking material.
  • the light emitting layer contains the organic EL material of the present invention as a host material and a guest material
  • an organic EL element utilizing so-called phosphorescence is obtained.
  • the host material means a material that occupies 50% by weight or more of the material forming the layer
  • the guest material means a material that occupies less than 50% by weight of the material forming the layer.
  • the organic EL material of the present invention contained in the light-emitting layer is an excited triplet quasi of an energy state higher than the excited triplet level of the phosphorescent organic metal complex contained in the layer. It is basically necessary to have a position.
  • the host material needs to be a compound that gives a stable thin film shape or has a high T / g and can efficiently transport holes or electrons. Furthermore, it is required to be an electrochemically and chemically stable compound that does not easily generate impurities during production or use, and that can trap or quench the light emission. Therefore, it is also important that the light emitting region has a hole injection capability capable of maintaining a moderate distance from the interface of the hole transport layer.
  • the organic EL material of the present invention is excellent in satisfying these conditions.
  • the guest material is preferably an organometallic complex containing a metal of group 7 to 11 in the periodic table. More preferred is an organometallic complex containing a Group 8 metal. More preferably, it is an organometallic complex containing a metal selected from iridium, osmium, rhodium, noradium or platinum. Among them, a metal selected from iridium, rhodium and platinum is preferable.
  • An organometallic complex containing iridium most preferably an iridium containing organometallic complex.
  • the guest material generally includes a force S including compounds described in the above-mentioned patent documents, but is not limited thereto.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element.
  • FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic EL element used in the present invention.
  • the organic EL device of the present invention has a substrate, an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode as essential layers, but layers other than the essential layers, for example, a hole injection layer can be omitted.
  • layers other than the essential layers for example, a hole injection layer can be omitted.
  • other layers may be provided. Note that the absence of the hole blocking layer may provide advantages such as a simplified layer structure.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used. Glass plates and transparent synthetic resin plates such as polyester, polymetatalylate, polycarbonate, and polysulfone are particularly preferred.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of ensuring gas-noriality by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode plays a role of injecting holes into the hole transport layer.
  • This anode is usually a metal such as aluminum, gold, silver, nickel, palladium, white gold, metal oxide such as indium and / or tin oxide, metal halide such as copper iodide, carbon black, or It is composed of conductive polymers such as poly (3-methylthiophene), polypyrrole, and polyaniline.
  • the anode is often formed by a sputtering method, a vacuum deposition method, or the like.
  • anode 2 can also be formed by coating on top.
  • a conductive polymer a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1.
  • the anode can be formed by stacking different materials.
  • the thickness of the anode varies depending on the required transparency. Visible if transparency is required In this case, the light transmittance is usually 60% or more, preferably 80% or more. The thickness is usually about 5 to 1000 nm, preferably about 10 to 500 nm. If it can be opaque, the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
  • a hole transport layer 4 is provided on the anode 2.
  • a hole injection layer 3 can be provided between them.
  • the material of the hole transport layer it is necessary that the material has a high hole injection efficiency from the anode and can efficiently transport the injected holes. To that end, it has high transparency with respect to visible light with a small ionization potential, high hole mobility, and excellent stability, and trapping impurities are unlikely to be generated during manufacturing or use. Is required.
  • the device is required to have further heat resistance. Therefore, a material having a Tg value of 85 ° C or higher is desirable.
  • a known triarylamine dimer such as ⁇ -NPD can be used.
  • hole transport materials can be used in combination with the triarylamine monomer.
  • aromatic diamines containing two or more tertiary amines and two or more fused aromatic rings substituted with nitrogen atoms 4,4 ', 4 "-tris (1-naphthylphenylamino) triphenylamine, etc.
  • Aromatic amine compounds having a starburst structure aromatic amine compounds composed of tetraphenylamine tetramers, 2,2 ', 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene, etc. Spiro compounds, etc.
  • Polymer materials such as polyarylene ether sulfone containing polybutcarbazole, polybutenylphenylamine and tetraphenylbenzidine.
  • the hole transport layer is formed by a coating method
  • one or more hole transport materials and, if necessary, additives such as a binder resin and a coating property improving agent that do not trap holes are added, Dissolve to prepare a coating solution, apply on anode 2 by spin coating or other methods, and dry.
  • the hole transport layer 4 is formed by drying.
  • the nickel resin include polycarbonate, polyarylate, and polyester.
  • a light emitting layer 5 is provided on the hole transport layer 4.
  • the light-emitting layer 5 contains an organometallic complex represented by the above general formula (I) or a mixture thereof and a guest material (for example, an Ir complex) as described above. Excited by recombination of holes that are injected from the hole and moved through the hole transport layer and electrons that are injected from the cathode and moved through the electron transport layer 6, it emits strong light.
  • the light emitting layer 5 may contain other components such as other host materials (which perform the same function as the general formula (I)) and fluorescent dyes, as long as the performance of the present invention is not impaired.
  • the amount of the guest material contained in the light emitting layer is preferably in the range of 0.1 to 30 wt%. If it is less than 0.1% by weight, it cannot contribute to the improvement of the light emission efficiency of the device. If it exceeds 30% by weight, concentration quenching such as formation of dimers between organic metal complexes occurs, resulting in a decrease in light emission efficiency. In devices using conventional fluorescence (singlet), there is a tendency that a slightly larger amount than the amount of fluorescent dye (dopant) contained in the light emitting layer is preferable.
  • the guest material may be partially included in the light emitting layer with respect to the film thickness direction or may be unevenly distributed.
  • the thickness of the light emitting layer 5 is usually 10 to 200 nm, preferably 20 to 100 nm.
  • a thin film is formed in the same manner as hole transport layer 4.
  • an electron transport layer 6 is provided between the light emitting layer 5 and the cathode 7.
  • the electron transport layer 6 is formed of a compound capable of efficiently transporting electrons injected from the cathode between electrodes to which an electric field is applied in the direction of the light emitting layer 5.
  • Electron transport compounds used for the electron transport layer 6 include electron injection from the cathode 7. It is necessary to be a compound that has high efficiency and high electron mobility and can efficiently transport injected electrons.
  • Examples of the electron transport material that satisfies such conditions include metal complexes such as Alq3, metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3- or 5 -Hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, tris-benzimidazolylbenzene, quinoxaline compound, phenanthorin derivative, 2-t-butyl-9,10- ⁇ , ⁇ '-disia Examples include noanthraquinone dimine, ⁇ -type hydrogenated amorphous silicon carbide, ⁇ -type zinc sulfide, and ⁇ -type zinc selenide.
  • metal complexes such as Alq3, metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3- or 5
  • the film thickness of the electron transport layer 6 is usually 5 to 200 nm, preferably 10 to 100 nm.
  • the electron transport layer 6 is formed by laminating on the light emitting layer 5 by a coating method or a vacuum deposition method in the same manner as the hole transport layer 4. Usually, a vacuum deposition method is used.
  • a hole injection layer 3 is provided between the hole transport layer 4 and the anode 2 for the purpose of further improving the efficiency of hole injection and improving the adhesion of the whole organic layer to the anode. Things are also done.
  • the driving voltage of the initial element is lowered, and at the same time, an increase in voltage when the element is continuously driven with a constant current is suppressed.
  • the material used for the hole injection layer it is desirable that a uniform thin film with good adhesion to the anode can be formed and is thermally stable. In other words, the melting point where the melting point and glass transition temperature are high is required to be 300 ° C or higher, and the glass transition temperature is required to be 100 ° C or higher. Furthermore, it is desired that the ionization potential is low, hole injection from the anode is easy, and hole mobility is high.
  • phthalocyanine compounds such as copper phthalocyanine, organic compounds such as polyaniline and polythiophene, sputtered carbon films, metal oxides such as vanadium oxide, ruthenium oxide, molybdenum oxide, etc. Things have been reported.
  • a hole injection layer a thin film can be formed in the same manner as the hole transport layer.
  • sputtering, electron beam evaporation, and plasma CVD are further used.
  • the film thickness of the anode buffer layer 3 formed as described above is usually 3 to 100 nm, preferably 5 to 50 nm.
  • the cathode 7 plays a role of injecting electrons into the light emitting layer 5.
  • the material used as the cathode is The force S that can be used for the anode 2 can be used.
  • tin, magnesium, indium, calcium, aluminum, silver, etc. which are preferred for metals with low work function, are suitable.
  • New metals or their alloys are used. Specific examples include low work function alloy electrodes such as magnesium silver alloy, magnesium indium alloy, and aluminum lithium alloy.
  • the film thickness of the cathode 7 is usually the same as that of the anode 2.
  • a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • an ultra-thin insulating film such as LiF, MgF, Li 0 or the like as an electron injection layer between the cathode and the electron transport layer is also an effective method for improving the efficiency of the device. It is.
  • a cathode 7, an electron transport layer 6, a light-emitting layer 5, a hole transport layer 4, and an anode 2 can be laminated on the substrate 1 in this order.
  • the organic EL element of the present invention between two substrates, at least one of which is highly transparent. Also in this case, layers can be added or omitted as necessary.
  • the present invention can be applied to any of a single element, an element having a structure in which an organic EL element is arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. it can.
  • the organic EL device of the present invention by including a compound having a specific skeleton in the light emitting layer and a phosphorescent metal complex, the light emitting efficiency is higher than that of a conventional device using light emission from a singlet state.
  • a device with greatly improved drive stability can be obtained, and full color! / Can be applied to multi-color panels! / And can exhibit excellent performance.
  • Me8HQ-D Deuteration
  • Me8HQ BAlq p-Fuelphenolate-bis (2_methyl _8-quinolinolate-Nl, 08) anol
  • BAlq-D Deuterated BAlq (Compound 1)
  • Me8HQ (16.0 g) and heavy water (140 g) were charged in a 200 mL autoclave together with 10% palladium-carbon catalyst (0.016 g), and the reaction was carried out by heating and stirring at 180 ° C for 2 hours. Separation and purification were performed in the same manner as in Synthesis Example 1 to obtain 14.6 g of Me8HQ-D (yield 88%).
  • Me8HQ (16.0 g) and heavy water (140 g) were charged into a 200 mL autoclave together with 10% palladium-carbon catalyst (0.016 g), and the reaction was carried out by heating and stirring at 140 ° C for 2 hours. Separation and purification were conducted in the same manner as in Synthesis Example 1 to obtain 14.9 g of Me8HQ-D (yield 90%).
  • Me8HQ-D obtained in Synthesis Examples 1, 2, and 3 are referred to as Me8HQ_Dl, Me8HQ_D2, and Me8HQ-D3, respectively.
  • Me8HQ_D is the formula (IV) where R to R are hydrogen (H or D)
  • Me8HQ-Dl, Me8HQ_D2 and Me8HQ_D3 have different deuteration rates as shown in Table 1.
  • Me8HQ_Dl (l. lg) prepared in Synthesis Example 1, aluminum triisopropoxide (1.2 g), and 20 mL of toluene in an lOOmL three-necked flask and stir.
  • 4-Hydroxybiphenyl (2.0 g) dissolved in 12 mL of toluene is added to this suspension and then heated to reflux for 2 hours. After cooling, the resulting precipitate was collected by filtration and dried to obtain a crude product (2.7 g). The resulting crude was purified by sublimation to give BAlq-D 2. 2 g (71% yield).
  • BAlq-D 2.lg (yield 68%) was obtained in the same manner as in Synthesis Example 4 except that Me8HQ-D3 prepared in Synthesis Example 3 was used.
  • BAlq-D obtained in Synthesis Examples 4, 5, and 6 were replaced with BAlq-D4, BAlq_D5, and BAlq- It is called D6, and these have different deuteration rates because of the different types of Me8HQ-D used as raw materials.
  • Figs. 5 to 6 show the FD-MS spectrum and IR spectrum of BAlq_D4.
  • Figure 5 shows the BAlq_D4 FD-MS spectrum
  • Figure 6 shows the BAlq_D4 IR spectrum.
  • AQD-D is (compound 21) exemplified by the chemical formula, and A obtained in Synthesis Examples 7, 8, and 9
  • QD-D is called AQD-D7, AQD-D8 and AQD-D9, respectively. Since the types of Me8HQ-D used as raw materials are different, the deuteration rate is different.
  • FIGS. 7 to 8 show the results of mass spectrometry and IR analysis of AQD-D7.
  • Figure 7 shows the AQD-D7 FD-MS spectrum
  • Figure 8 shows the AQD-D7 IR spectrum.
  • Copper phthalocyanine (CuPC) was used for the hole injection layer, a-NPD for the hole transport layer, and Alq3 for the electron transport layer.
  • a glass substrate on which an anode made of ITO with a thickness of lOnm is formed Each thin film by vacuum deposition, were laminated in vacuum 5.0 X 10- 4 Pa.
  • CuPC was deposited on ITO as a hole injection layer at a thickness of 25 mm at 3.0 A / sec.
  • a-NPD was formed as a hole transport layer on the hole injection layer to a thickness of 55 mm at a deposition rate of 3.0 mm / sec.
  • BAlq_D4 and Ir (piq) 3 (compound 44) obtained in Synthesis Example 4 as a host material as a light-emitting layer were co-deposited on the hole transport layer from different deposition sources to a thickness of 47.5 mm. Formed. At this time, the concentration of Ir (piq) 3 was 8.0%.
  • Alq3 was formed as an electron transport layer to a thickness of 30 mm at a deposition rate of 3.0 A / second.
  • lithium fluoride (LiF) was formed as an electron injection layer on the electron transport layer to a thickness of 1 nm at a deposition rate of 0.1 A / second.
  • aluminum (A1) was formed as an electrode to a thickness of 200 nm at a deposition rate of 10 A / second to produce an organic EL device.
  • An organic EL device was produced in the same manner as in Example 1 except that the compound BAlq_D5 obtained in Synthesis Example 5 was used as the host material for the light emitting layer.
  • An organic EL device was produced in the same manner as in Example 1 except that the compound BAlq_D6 obtained in Synthesis Example 6 was used as the host material for the light emitting layer.
  • An organic EL device was prepared in the same manner as in Example 1 except that deuterated! /, Na! / And BAlq were used as the host material of the light emitting layer.
  • Table 2 shows the emission peak wavelength, maximum emission efficiency, and luminance half life (initial luminance of 2,000 cd / m 2 ) of each of the organic EL devices obtained in Examples;! To 3 and Comparative Example 1.
  • Copper phthalocyanine (CuPC) was used for the hole injection layer, a-NPD for the hole transport layer, and Alq3 for the electron transport layer.
  • the thickness l LOnm glass substrate with the anode formed consisting of ITO, and the respective thin films by vacuum vapor deposition, are stacked in a vacuum 5.0 X 10- 4 Pa.
  • CuPC was deposited on ITO as a hole injection layer at a thickness of 25 mm at 3.0 A / sec.
  • a-NPD was formed as a hole transport layer on the hole injection layer to a thickness of 55 mm at a deposition rate of 3.0 mm / sec.
  • Alq3 was formed as an electron transport layer to a thickness of 30 mm at a deposition rate of 3.0 A / second.
  • lithium fluoride (LiF) was formed as an electron injection layer on the electron transport layer to a thickness of 1 nm at a deposition rate of 0.1 A / second.
  • aluminum (A1) was formed as an electrode to a thickness of 200 nm at a deposition rate of 10 A / second to produce an organic EL device.
  • An organic EL device was produced in the same manner as in Example 4 except that AQD-D8 obtained in Synthesis Example 8 having a different deuteration rate was used as the host material for the light emitting layer.
  • An organic EL device was produced in the same manner as in Example 4 except that AQD-D9 obtained in Synthesis Example 9 having a different deuteration rate and having a different deuteration rate was used as the host material for the light-emitting layer.
  • Example 2 Same as Example 1 except that non-deuterated AQD was used as the host material for the light emitting layer. In this way, an organic EL device was produced.
  • Table 3 shows the emission peak wavelength, maximum emission efficiency, and luminance half-life (initial luminance 2,000 cd / m 2 ) of each of the organic EL devices obtained in Examples 4 to 6 and Comparative Example 2.
  • the organic EL element of the present invention is a light source (for example, a light source of a copying machine) having characteristics as a flat panel display (for example, for OA computers and wall-mounted televisions), an in-vehicle display element, a mobile phone display and a surface light emitter. It can be applied to backlight sources for liquid crystal displays and instrumentation), display panels, and beacon lights, and its technical value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明 細 書
有機電界発光素子材料及び有機電界発光素子
技術分野
[0001] 本発明は有機電界発光素子(以下、有機 EL素子という)及びそれに使用される有 機電界発光素子材料 (以下、有機 EL素子材料又は有機 EL材料という)に関するもの であり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デ バイスに関するものである。
背景技術
[0002] 有機材料を用いた電界発光素子は、電極からの電荷注入効率向上を目的として電 極の種類を最適化し、芳香族ジァミンからなる正孔輸送層と 8—ヒドロキシキノリンァ ノレミニゥム錯体(以下、 Alq3と!/、う)からなる発光層とを電極間に薄膜として設けた素 子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光 効率の改善がなされた。そこで、自発光 ·高速応答性という特徴を持つ高性能フラット パネルディスプレイへの実用を目指す開発が進められてきた。
[0003] このような有機 EL素子の効率を更に改善するため、上記の陽極/正孔輸送層/発 光層/陰極の構成を基本とし、これに正孔注入層、電子注入層や電子輸送層を適 宜設けることで、光効率が上昇することも知られており、こうした構成層の機能にあわ せて、これまでに多くの有機材料の開発が進められてきた。
[0004] また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討さ れている。上記の芳香族ジァミンからなる正孔輸送層と Alq3からなる発光層とを設け た素子をはじめとした多くの素子が蛍光発光を利用したものであった力 S、三重項励起 状態からの燐光発光を利用すれば、従来の蛍光(一重項)を用いた素子と比べて、 3 倍程度の効率向上が期待される。本発明に関連する先行文献を次に示す。
[0005] 特許文献 l : WO00/70655号公報
特許文献 2:特開 2001-284056号公報
特許文献 3:特開 5-198377号公報
特許文献 4:特開 2003-142264号公報 特許文献 5 : WO2002/47440号公報
特許文献 6 :WO01/041512号公報
特許文献 7:特開 2001-313178号公報
特許文献 8:特開 2002-305083号公報
特許文献 9:特開平 5-214332号公報
非特許文献 l :Appl. Phys. Lett., vol.77, pp904, (2000)
[0006] 近年では、イリジウム錯体を発光層にゲスト材料としてドープすることで、同様な燐 光発光による高効率化可能であることが報告されており、特許文献 1、 6等に多数開 示されている。代表的には、緑色燐光発光材料のトリス (2-フエ二ルビリジン)イリジウム 錯体(以下、 Ir(ppy)3という)が例示される。このイリジウム錯体については、その配位 子の化学構造を変化させることで青色から赤色までの広い波長域での発光が可能で あることも見出されている。
[0007] また、特許文献 1、 7には、有機 EL素子の発光層に用いるホスト材料として 4,4'-ビ ス (9-カルバゾリル)ビフエニル(以下、 CBPという)が提案されている。しかしながら、緑 色燐光発光材料の Ir(ppy)3のホスト材料として CBPを用いると、 CBPは正孔を流し易く 電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送側に流 出し、結果として Ir(ppy)3からの発光効率が低下する。
[0008] 上記の解決手段として、例えば特許文献 2、 8中に示されるように、発光層と電子輸 送層の間に正孔阻止層を設ける手段がある。この正孔阻止層により正孔を発光層中 に効率よく蓄積することによって、発光層中での電子との再結合確率を向上させ、発 光の高効率化を達成することができる。一般的に用いられている正孔阻止材料として 、 2,9-ジメチル -4,7-ジフエニル -1,10-フエナント口リン(以下、 BCPという)及び p-フエ ユルフェノラート-ビス (2-メチル -8-キノリノラート- N1, 08)アルミニウム(以下、 BAlqと!/ヽ う)が挙げられる。これにより電子輸送層で電子とホールの再結合が起こることを防止 できる力 BCPは室温でも結晶化し易く材料としての信頼性に欠けるため、素子寿命 が極端に短い。また、 BAlqは比較的良好な素子寿命結果が報告されているが、正孔 阻止能力が十分でなぐ Ir(ppy)3からの発光効率は低下する。加えて、層構成が 1層 増すことから素子構造が複雑になり、コストが増加するという問題がある。 [0009] 一方、電子を流しやすく正孔を流しにくい特性をもつ上記 BCPや 3-フエニル -4-(1'- ナフチル) -5-フエニル -1,2,4-トリァゾール(以下、 TAZという)を燐光有機 EL素子のホ スト材料として使用することも提案されているが、発光領域が正孔輸送層側に偏る。 従って、正孔輸送層の材料によっては Ir(ppy)3との相性問題により、 Ir(ppy)3からの発 光効率が低下するという問題がある。例えば、正孔輸送層として高性能、高信頼性、 高寿命の点から最も良く使用されている 4,4'_ビス (N-(l-ナフチル) -N-フエニルァミノ) ビフエ二ノレ(以下、 a - NPDという)では、 Ir(ppy)3から a - NPDにエネルギー遷移が起 き、結果的に発光効率が低下する。
[0010] 特許文献 9では、 BAlqを含むブルー放出性発光組成物が開示されている。これら 力、らも分かるように BAlq及びその類縁化合物は発光材料としても使用される力 他の 層の材料としても有用であることが知られている。
[0011] 非特許文献 1では、発光層のホスト材料に TAZなどを使用し、ゲスト材料に Ir(ppy)3 、電子輸送層に Alq3、正孔輸送層に 4,4'-ビス (N,N'-(3-トルィル)ァミノ) -3、 3'-ジメチ ルビフエニル (以下、 HMTPDという)を使用することで燐光発光素子において 3層構 造で高効率発光を得ることが可能であると報告している。しかし、 HMTPDはガラス転 移温度(以下、 Tgという)が約 50°Cであるため、結晶化し易く材料としての信頼性に欠 ける。したがって、素子寿命が極端に短ぐ商業的応用は難しい上、駆動電圧が高い という問題点もある。
[0012] ところで、特許文献 3には、 Q -A1-0-A1-Qで表される 8_キノリノール配位子を有す るダイマー型金属錯体を青色発光層に存在させること及びペリレン等の蛍光色素と 併用することを開示し、特許文献 4にはダイマー型金属錯体を燐光ホスト材料として 使用することを開示して!/、るが、重水素化された金属錯体ダイマーの有用性を教える ものではない。 Q -A1-0-A1-Qで表される構造の金属錯体をダイマー型金属錯体と いう。ここで、 Qは置換基を有してもよい 8-キノリノール配位子である。
[0013] 一方、 2H (重水素又は Dという)や13 Cをはじめとした同位体原子は、これまで医療関 連分野や化合物構造解析のためのトレーサーラベル材料としての利用が広く知られ ている。有機 EL分野においては、特許文献 5に炭素-重水素間の結合(C-D)が、炭 素-水素間の結合(C-H)よりも短ぐ物理化学的に安定であることが開示されており、 各種の重水素化化合物(化合物- Dと!/、う)が例示されて!/、る。
[0014] しかしながら、有機 EL材料として有用な、 BAlq等のへテロ配位子型の金属錯体ゃ ダイマー型金属錯体について、キノリノール配位子中の 2位メチル基の水素(ベンジ ノレ位水素)を重水素に置き換えることについてはその必要性又は有効性について教 えるものはない。
発明の開示
発明が解決しょうとする課題
[0015] 有機 EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子 の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本 発明は、上記現状に鑑み、高効率、長寿命、かつ簡略化された素子構成を可能とす る実用上有用な有機 EL素子及びそれに使用する材料を提供することを目的とする。 課題を解決するための手段
[0016] 本発明者らは、鋭意検討した結果、有機 EL素子用材料として、キノリノール配位子 を有するヘテロ配位子型の金属錯体ゃダイマー型金属錯体にお!/、て、 2位メチル基 の Hを Dとした化合物を用いることで、上記課題を解決することができることを見出し、 本発明を完成するに至った。
[0017] すなわち、ヘテロ配位子型の金属錯体ゃダイマー型金属錯体においては、キノリノ 一ル配位子中の 2位メチル基のベンジル位水素は反応性が高く不安定である力 S、こ のメチル基の立体障害によりアルミニウム金属への配位数を制御しているため、構造 上省略することはできない。また、フエニル基など他の反応性の低い置換基への変換 は金属錯体の光学的性質などの物理化学特性を変化させてしまう。そこで、本発明 者らは、物理化学的に安定である重水素を用いベンジル位水素を D化し選択的に保 護することにより、材料特性を変化させることなく安定性を高めることを見出し、本発 明を完成したものである。
[0018] 本発明は、下記一般式 (I)で表わされる有機金属錯体からなる有機電界発光素子 材料である。
Figure imgf000006_0001
ここで、 R〜Rは各々独立に、水素原子、重水素原子、又はアルキル基、ァラルキ
1 5
ル基、アルケニル基、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭 化水素基又は置換基を有して!/、てもよ!/、芳香族複素環基から選ばれる 1価の置換基 を示す。ここで、 1価の置換基が水素原子を有する場合は、水素原子は重水素原子 であってもよい。 Dは重水素原子を示す。 Lは下記式(1)、(2)、(3)又は(4)で表さ れる 1価の基を示す;
— 0—— Ar-, ( , 、
0
II
—— 0— C一 Ar2 ( 2 )
Figure imgf000006_0002
ここで、 Ar〜ΑΓは、は各々独立に、置換基を有していてもよい芳香族炭化水素基
1 5
又は置換基を有してレ、てもよ!/、芳香族複素環基を表し、 Ζはシリコン又はゲルマニウ ムを示す。 R〜R及び Dは、一般式 (I)と同じ意味を有する。
1 5
好まし!/、有機金属錯体としては、下記一般式 (Π)又は (III)で表わされる有機金属 錯体が挙げられる。
Figure imgf000007_0001
Figure imgf000007_0002
ここで、 R〜R及び Dは、一般式 (I)と同じ意味を有する。また、 Arは式(1)と同じ意
1 5 1
味を有するが、好ましくは 1〜3環の芳香族炭化水素基である。
[0021] 本発明の有機電界発光素子は、基板上に、陽極、正孔輸送層、発光層及び電子 輸送層を含む有機層並びに陰極が積層されてなり、少なくとも 1層の有機層中に上 記の有機電界発光素子材料を含む。
[0022] 有利には、有機電界発光素子は、基板上に、陽極、正孔輸送層、発光層及び電子 輸送層を含む有機層並びに陰極が積層されてなり、発光層と陽極の間に正孔輸送 層を有し、発光層と陰極の間に電子輸送層を有し、発光層中に上記の有機電界発 光素子材料を含む。更に有利には、有機電界発光素子は、発光層中に、上記の有 機電界発光素子材料をホスト材料として含有し、周期律表 7〜; 11族力 選ばれる少 なくとも一つの金属を含む有機金属錯体をゲスト材料として含有する。
[0023] 有機電界発光素子は、陽極及び正孔輸送層間に正孔注入層が配されていること、 又は陰極及び電子輸送層間に電子注入層が配されていることがよい。
[0024] 本発明の有機電界発光素子材料 (有機 EL材料)は、上記一般式 (I)で表される有 機金属錯体である。力、かる有機金属錯体において、 Dが Hである有機金属錯体は、 上記特許文献 4、 8、 9等において知られている。したがって、上記一般式 (I)におけ る R、 L等の基の意味や、好ましい基はこれらの文献から理解される。
1
[0025] 一般式 (I)において、 R〜Rは各々独立に、水素原子、重水素原子又は 1価の置換
1 5
基を示す。 1価の置換基は、アルキル基、ァラルキル基、アルケニル基、シァノ基、ァ ルコキシ基、置換基を有して!/、てもよ!/、芳香族炭化水素基又は置換基を有して!/、て もよい芳香族複素環基から選択される。ここで、 1価の置換基が水素原子を有する場 合、その水素原子は Dであってもよい。好ましくは、 1価の置換基がメチル基である場 合、 CDである。
3
[0026] アルキル基としては、炭素数 1〜6のアルキル基(以下、低級アルキル基という)が 好ましく例示され、ァラルキル基としては、ベンジル基、フエネチル基が好ましく例示 され、アルケニル基としては、炭素数 1〜6の低級アルケニル基が好ましく例示され、 アルコキシ基のアルキル部としては、低級アルキルが好ましく例示される。
[0027] また、芳香族炭化水素基としては、フエニル基、ナフチル基、ァセナフチル基、アン トリル基等の芳香族炭化水素基が好ましく例示され、芳香族複素環基としては、ピリ ジル基、キノリル基、チェニル基、カルバゾル基、インドリル基、フリル基等の芳香族 複素環基が好ましく例示される。これらが置換基を有する芳香族炭化水素基又は芳 香族複素環基である場合は、置換基としては、低級アルキル基、低級アルコキシ基、 フエノキシ基、ベンジルォキシ基、フエニル基、ナフチル基等が挙げられる。
[0028] Lは上記式(1)、(2)、(3)又は(4)で表される 1価の基を示す力 S、 Ar〜Arは各々
1 5 独立に、置換基を有して!/、てもよ!/、芳香族炭化水素基又は置換基を有して!/、てもよ い芳香族複素環基を表し、 Ζはシリコン又はゲルマニウムを表す。ここで、置換基を有 して!/、てもよ!/、芳香族炭化水素基又は置換基を有して!/、てもよ!/、芳香族複素環基は 、上記と同様な基が例示される。 [0029] 一般式 (I)で表わされる有機金属錯体の中でも、好ましい有機金属錯体は、 R〜R
1 が水素原子、低級アルキル基又は低級アルコキシ基である化合物から選ばれる。こ
5
こで、低級アルキル基又は低級アルコキシ基に含まれる水素原子は Dであることがで きる。式(1)〜(3)において、好ましい Ar、 Ar、 Arとしては、 1〜3環の芳香族炭化水
1 2 3
素基が挙げられる。また、 Lはフエノキシ、フエユルフェノキシ、ナフトキシ、フエ二ルナ フトキシ、ナフチルフエノキシ等のァリロキシ基又は式(4)で表される 1価の基である化 合物から選ばれることが好ましい。式 (4)で表される 1価の基である化合物である場合 は、一般式 (Π)で表わされる有機金属錯体となる。
[0030] この一般式 (I)で表される有機金属錯体は、例えば、対応する金属塩と式 (IV)で表 される化合物と式 (la)、(2a)又は (3a)で表される化合物を 2対 1のモル比で錯体形成反 応することにより合成される。一般式 (II)で表される有機金属錯体は、対応する金属 塩と式 (IV)で表される化合物との間の錯体形成反応により合成される。なお、式 (IV) において、 R〜Rは一般式(I)の R〜Rと対応する。式 (la)、(2a)及び (3a)で表される
1 5 1 5
化合物は、上記式(1)、(2)及び(3)で表される 1価の基を与え、 Ar〜Ar及び Zは式
1 5
(1)、(2)及び(3)中の Ar〜Ar及び Ζに対応する。
1 5
[0031] 一般式 (Π)で表される有機金属錯体の合成反応は、例えば、 Y. Kushiらにより示さ れる方法(J.Amer.Chem.Soc., vol.92, pp91, (1970) )で行うことができる。なお、一般 式 (Π)において、 R〜Rは一般式(I)の R〜Rと対応する。金属塩としては、八 1、 Al(
1 5 1 5 3
Oi-Pr)のような化合物が挙げられる。
[0032]
Figure imgf000009_0001
o
HO—— C—— Ar, HO—— Z—— A
HO—— Ar 1
Ar5
( la) ( 2a ) ( 3a)
[0033] 式(IV)で表される化合物は、例えばメチル基の水素が Hである 2-メチル -8-ォキシ キノリン (Me8HQという)を用意し、このメチル基の水素を Dとすることにより得られる。 このようにして得られる Me8HQのメチル基の水素が Dとされた化合物を Me8HQ-Dと いう。重水素化反応方法としては公知の条件を採用できる。例えば、 Me8HQと重水を Pd/C触媒の存在下で、 150〜200°Cで反応させることによりメチル基の水素を選択的 に重水素化することができる。なお、一般式 (I)において、 R〜R力 ¾である場合や、 H
1 5
を有するアルキル基等である場合は、反応条件によってはこれらの Hの一部も重水 素化される力 差し支えない。しかし、 2位のメチル基の水素の重水素化率は、 40% 以上、好ましくは 90%以上、より好ましくは 95%以上とすることがよい。したがって、本 発明の一般式 (I)で表される有機金属錯体は、 2位のメチル基が CDであるものを主と
3
するものであればよぐ少量の CD H、 CDH又は CHを含みうる。
[0034] 以下に一般式 (I)で表される有機金属錯体からなる本発明の有機 EL材料を例示す る力 下記の化合物に限定されるものではない。
化合物 1 )
(化合物 2) 化合物 3)
Figure imgf000011_0001
(化合物 4)
Figure imgf000011_0002
(化合物 5) (化合物 6)
Figure imgf000012_0001
(化合物 7) 合物 8)
Figure imgf000012_0002
(化合物 9) 合物 10)
Figure imgf000012_0003
(化合物 11)
Figure imgf000013_0001
(化合物 21 )
(化合物 22)
Figure imgf000014_0001
(化合物 23)
Figure imgf000014_0002
Figure imgf000015_0001
Figure imgf000015_0002
(化合物 9 )
Figure imgf000015_0003
本発明の有機 EL素子は、一般式 (I)で表される有機金属錯体力 なる本発明の有 機 EL材料を少なくとも 1層の有機層中に含む。有機 EL素子は、陽極、正孔輸送層、 発光層及び電子輸送層を含む有機層並びに陰極が積層されている構造を有する。 好ましくは、基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並 びに陰極が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極 の間に電子輸送層を有する構造である。更に有利には、陽極及び正孔輸送層間に 正孔注入層が配されている構造又は陰極及び電子輸送層間に電子注入層が配され ている構造である。
[0041] 本発明の有機 EL材料は、発光材料として発光層に含まれることが好ましい。有利に は、本発明の有機 EL材料を発光層中にホスト材料として含有し、かつ周期律表 7な いし 11族から選ばれる少なくとも一つの金属を含む有機金属錯体をゲスト材料として 発光層に含有することである。しかし、他の層の材料として使用することも可能であり 、例えば正孔阻止材料として使用することも可能である。
[0042] 発光層中に、本発明の有機 EL材料をホスト材料として含有し、ゲスト材料を含有す る場合は、いわゆる燐光を利用した有機 EL素子となる。ここで、ホスト材料とは該層を 形成する材料のうち 50重量%以上を占めるものを意味し、ゲスト材料とは該層を形 成する材料のうち 50重量%未満を占めるものを意味する。本発明の有機 EL素子に おいて、発光層に含まれる本発明の有機 EL材料は、該層に含まれる燐光性有機金 属錯体の、励起三重項準位より高いエネルギー状態の励起三重項準位を有すること が基本的に必要である。
[0043] ホスト材料としては、安定な薄膜形状を与え又は高!/、Tgを有し、正孔又は電子を効 率よく輸送することができる化合物であることが必要である。更に、電気化学的かつ 化学的に安定であり、トラップとなったり発光を消光したりする不純物が製造時や使 用時に発生しにくい化合物であることが要求されるとともに、燐光性有機錯体の発光 が正孔輸送層の励起 3重項準位に影響されにくくするため、発光領域が正孔輸送層 界面よりも適度に距離を保てる正孔注入能力を有することも重要である。本発明の有 機 EL材料は、これらの条件を満たす点で優れる。
[0044] ゲスト材料としては、好ましくは周期律表で 7〜 11族の金属を含有する有機金属錯 体である。より好ましくは 8族の金属を含有する有機金属錯体である。更に好ましくは 、イリジウム、オスミウム、ロジウム、ノ ラジウム又は白金から選ばれる金属を含有する 有機金属錯体である。中でも好ましくはイリジウム、ロジウム、白金から選ばれる金属 を含有する有機金属錯体であり、最も好ましくはイリジウムを含有する有機金属錯体 である。
[0045] ゲスト材料としては、一般的には上記特許文献に記載されている化合物等が挙げ られる力 S、これらに限定されるものではない。
[0046] 以下に、ゲスト材料の具体例を示すが、これらに限定されるものではない。これらの 化合物は、例えば、 Inorg. Chem., vol.40, ppl704〜1711に記載の方法等により合成 できる。
合物 41)
(化合物 42)
Figure imgf000018_0001
(化合物 43)
Figure imgf000018_0002
(化合物 44)
Figure imgf000019_0001
図面の簡単な説明
[0049] [図 1]有機電界発光素子の一例を示した模式断面図。
[図 2]Me8HQ- D1の IRスぺクトノレ
[図 3]Me8HQと Me8HQ— D1の NMRスぺクトノレ( δ 7·0〜9·0)
[図 4]Me8HQと Me8HQ— Dlの NMRスぺクトノレ( δ 2·0〜3·0)
[図 5]BAlq- D4の FD-MSスぺクトノレ
[図 6]BAkj-D4の IRスぺクトノレ
[図 7]AQD- D7の FD- MSスぺクトノレ
[図 8]AQD_D7の IRスぺクトノレ
符号の説明
[0050] 1 基板、 2 陽極、 3 正孔注入層、 4正孔輸送層、 5発光層、 6 電子輸送層、 7 陰極
発明を実施するための最良の形態
[0051] 以下、本発明の有機 EL素子について、図面を参照しながら説明する。図 1は本発 明に用いられる一般的な有機 EL素子の構造例を模式的に示す断面図である。本発 明の有機 EL素子では、基板、陽極、正孔輸送層、発光層、電子輸送層及び陰極を 必須の層として有するが、必須の層以外の層、例えば、正孔注入層は省略可能であ り、また必要により他の層を設けてもよい。なお、正孔阻止層を設けないことにより、層 構造が簡素化される等の利点をもたらすことがある。
[0052] 基板 1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板 や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエス テル、ポリメタタリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板 が好ましレ、。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある 。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子 が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に 緻密なシリコン酸化膜等を設けてガスノ リア性を確保する方法も好ましい方法の一つ である。
[0053] 基板 1上には陽極 2が設けられる力 陽極は正孔輸送層への正孔注入の役割を果 たすものである。この陽極は、通常、アルミニウム、金、銀、ニッケル、バラジウム、白 金等の金属、インジウム及び/又はスズの酸化物などの金属酸化物、ヨウ化銅など のハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロ ール、ポリア二リン等の導電性高分子などにより構成される。陽極の形成は通常、ス ノ クタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒 子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性 高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板 1上に塗 布することにより陽極 2を形成することもできる。更に、導電性高分子の場合は電解重 合により直接基板 1上に薄膜を形成したり、基板 1上に導電性高分子を塗布して陽極 2を形成することもできる。陽極は異なる物質で積層して形成することも可能である。 陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視 光の透過率を、通常、 60%以上、好ましくは 80%以上とすることが望ましぐこの場合 、厚みは、通常、 5〜1000nm、好ましくは 10〜500nm程度である。不透明でよい場合 、陽極 2は基板 1と同一でもよい。また、更には上記の陽極 2の上に異なる導電材料 を積層することも可能である。
[0054] 陽極 2の上には正孔輸送層 4が設けられる。両者の間には、正孔注入層 3を設ける こともできる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効 率が高ぐかつ、注入された正孔を効率よく輸送することができる材料であることが必 要である。そのためには、イオン化ポテンシャルが小さぐ可視光の光に対して透明 性が高ぐしかも正孔移動度が大きぐ更に安定性に優れ、トラップとなる不純物が製 造時や使用時に発生しにくいことが要求される。また、発光層 5に接するために発光 層からの発光を消光したり、発光層との間でェキサイプレックスを形成して効率を低 下させないことが求められる。上記の一般的要求以外に、車載表示用の応用を考え た場合、素子には更に耐熱性が要求される。従って、 Tgとして 85°C以上の値を有す る材料が望ましい。好ましい正孔輸送材料として、 α -NPDのような公知のトリアリール ァミンダイマーを使用することができる。
[0055] なお、必要によりその他の正孔輸送材料として公知の化合物をトリアリールアミンダ イマ一と併用することもできる。例えば、 2個以上の 3級ァミンを含み 2個以上の縮合 芳香族環が窒素原子に置換した芳香族ジァミン、 4,4',4"-トリス (1-ナフチルフエニル ァミノ)トリフエニルァミン等のスターバースト構造を有する芳香族ァミン化合物、トリフ ェニルァミンの四量体からなる芳香族ァミン化合物、 2,2',7,7'-テトラキス- (ジフエニル ァミノ) -9,9'-スピロビフルオレン等のスピロ化合物等が挙げられる。これらの化合物は 、単独で用いてもよいし、必要に応じて、各々、混合して用いてもよい。また、上記の 化合物以外に、正孔輸送層の材料として、ポリビュルカルバゾール、ポリビュルトリフ ェニルァミン、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン等 の高分子材料が挙げられる。
[0056] 正孔輸送層を塗布法で形成する場合は、正孔輸送材料を 1種以上と、必要により 正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤とを添加し、 溶解して塗布溶液を調製し、スピンコート法などの方法により陽極 2上に塗布し、乾 燥して正孔輸送層 4を形成する。ノ^ンダ一樹脂としては、ポリカーボネート、ポリアリ レート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔移動度 を低下させるので、少ない方が望ましぐ通常、 50重量%以下が好ましい。
[0057] 真空蒸着法で形成する場合は、正孔輸送材料を真空容器内に設置されたルツボ に入れ、真空容器内を適当な真空ポンプで 10— 4Pa程度にまで排気した後、ルツボを 加熱して、正孔輸送材料を蒸発させ、ルツボと向き合って置かれた、陽極が形成され た基板上に正孔輸送層 4を形成させる。正孔輸送層 4の膜厚は、通常、 5〜300nm、 好ましくは 10〜100nmである。この様に薄い膜を一様に形成するためには、一般に真 空蒸着法がよく用いられる。
[0058] 正孔輸送層 4の上には発光層 5が設けられる。発光層 5は、前記一般式 (I)で表さ れる有機金属錯体又はその混合物と、前記のようなゲスト材料 (例えば、 Ir錯体)を含 有し、電界を与えられた電極間において、陽極から注入されて正孔輸送層を移動す る正孔と、陰極から注入されて電子輸送層 6を移動する電子との再結合により励起さ れて、強い発光を示す。なお発光層 5は、本発明の性能を損なわない範囲で、他の ホスト材料 (一般式 (I)と同様の働きを行う)や蛍光色素など、他成分を含んでいても よい。
[0059] ゲスト材料が発光層中に含有される量は、 0.1〜30重量%の範囲にあることが好まし い。 0.1重量%以下では素子の発光効率向上に寄与できず、 30重量%を越えると有 機金属錯体同士が 2量体を形成する等の濃度消光が起き、発光効率の低下に至る。 従来の蛍光(1重項)を用いた素子にお!/、て、発光層に含有される蛍光性色素(ドー パント)の量より、若干多い方が好ましい傾向がある。ゲスト材料が発光層中に膜厚方 向に対して部分的に含まれたり、不均一に分布してもよい。
[0060] 発光層 5の膜厚は、通常 10〜200nm、好ましくは 20〜100nmである。正孔輸送層 4と 同様の方法にて薄膜形成される。
[0061] 素子の発光効率を更に向上させることを目的として、発光層 5と陰極 7の間に電子 輸送層 6が設けられる。電子輸送層 6は、電界を与えられた電極間において陰極から 注入された電子を効率よく発光層 5の方向に輸送することができる化合物より形成さ れる。電子輸送層 6に用いられる電子輸送性化合物としては、陰極 7からの電子注入 効率が高ぐかつ、高い電子移動度を有し注入された電子を効率よく輸送することが できる化合物であることが必要である。
[0062] このような条件を満たす電子輸送材料としては、 Alq3などの金属錯体、 10-ヒドロキ シベンゾ [h]キノリンの金属錯体、ォキサジァゾール誘導体、ジスチリルビフエニル誘 導体、シロール誘導体、 3-又は 5-ヒドロキシフラボン金属錯体、ベンズォキサゾール 金属錯体、ベンゾチアゾール金属錯体、トリスべンズイミダゾリルベンゼン、キノキサリ ン化合物、フエナント口リン誘導体、 2-t-ブチル -9,10-Ν,Ν'-ジシァノアントラキノンジ ィミン、 η型水素化非晶質炭化シリコン、 η型硫化亜鉛、 η型セレン化亜鉛などが挙げ られる。電子輸送層 6の膜厚は、通常、 5〜200nm、好ましくは 10〜100 nmである。電 子輸送層 6は、正孔輸送層 4と同様にして塗布法あるいは真空蒸着法により発光層 5 上に積層することにより形成される。通常は、真空蒸着法が用いられる。
[0063] 正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させ る目的で、正孔輸送層 4と陽極 2との間に正孔注入層 3を設けることも行われている。 正孔注入層 3を設けることで、初期の素子の駆動電圧が下がると同時に、素子を定 電流で連続駆動した時の電圧上昇も抑制される効果がある。正孔注入層に用いられ る材料に要求される条件としては、陽極との密着性がよく均一な薄膜が形成でき、熱 的に安定であることが望まれる。すなわち、融点及びガラス転移温度が高ぐ融点とし ては 300°C以上、ガラス転移温度としては 100°C以上が要求される。更に、イオン化 ポテンシャルが低く陽極からの正孔注入が容易なこと、正孔移動度が大きいことが望 よれ 。
[0064] この目的のために、これまでに銅フタロシアニン等のフタロシアニン化合物、ポリア 二リン、ポリチォフェン等の有機化合物や、スパッタカーボン膜や、バナジウム酸化物 、ルテニウム酸化物、モリブデン酸化物等の金属酸化物が報告されている。正孔注 入層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には 、更に、スパッタ法ゃ電子ビーム蒸着法、プラズマ CVD法が用いられる。以上の様に して形成される陽極バッファ層 3の膜厚は、通常、 3〜100nm、好ましくは 5〜50nmで ある。
[0065] 陰極 7は、発光層 5に電子を注入する役割を果たす。陰極として用いられる材料は、 前記陽極 2に使用される材料を用いることが可能である力 S、効率よく電子注入を行う には、仕事関数の低い金属が好ましぐスズ、マグネシウム、インジウム、カルシウム、 アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、 マグネシウム 銀合金、マグネシウム インジウム合金、アルミニウム リチウム合金 等の低仕事関数合金電極が挙げられる。
[0066] 陰極 7の膜厚は通常、陽極 2と同様である。低仕事関数金属からなる陰極を保護す る目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すること は素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、 金、白金等の金属が使われる。
[0067] 更に、陰極と電子輸送層の間に LiF、 MgF、 Li 0等の極薄絶縁膜(0.1〜5nm)を、 電子注入層として揷入することも素子の効率を向上させる有効な方法である。
[0068] なお、図 1とは逆の構造、すなわち、基板 1上に陰極 7、電子輸送層 6、発光層 5、 正孔輸送層 4、陽極 2の順に積層することも可能であり、既述したように少なくとも一 方が透明性の高い 2枚の基板の間に本発明の有機 EL素子を設けることも可能であ る。この場合も、必要により層を追加したり、省略したりすることが可能である。
[0069] 本発明は、有機 EL素子が、単一の素子、アレイ状に配置された構造からなる素子、 陽極と陰極が X— Yマトリックス状に配置された構造のいずれにおいても適用すること ができる。本発明の有機 EL素子によれば、発光層に特定の骨格を有する化合物と、 燐光性の金属錯体を含有させることにより、従来の一重項状態からの発光を用いた 素子よりも発光効率が高くかつ駆動安定性においても大きく改善された素子が得ら れ、フルカラーある!/、はマルチカラーのパネルへの応用にお!/、て優れた性能を発揮 できる。
実施例
[0070] 次に、本発明を、合成例及び実施例によって更に詳しく説明する力 本発明はその 要旨を超えない限り、以下の実施例の記載に限定されるものではなレ、。
[0071] 略号を次に示す。
Me8HQ: 2-メチル -8-ヒドロキシキノリン
Me8HQ-D:重水素化 Me8HQ BAlq : p-フエユルフェノラート-ビス (2_メチル _8-キノリノラート- Nl,08)ァノレ
BAlq-D:重水素化 BAlq (化合物 1)
AQD:アルミキノリノールダイマー(化合物 20)
AQD-D:重水素化 AQD (化合物 21)
Figure imgf000025_0001
(化合物 20)
[0073] 合成例 1
Me8HQ 8.0gと重水 77gを 10%パラジウム-炭素触媒 O. lgとともに lOOmLオートタレ ーブに装填し、 180°Cで 2時間加熱攪拌して反応を実施した。反応終了後、触媒をろ 過した後、トルエンを加えて油水分離を行い、更に水層をトルエンにて抽出、得られ た有機層を無水硫酸マグネシウムにて乾燥後、溶媒を除去して粗製物得た。この粗 製物を減圧蒸留にて精製して Me8HQ-D 7.6g (収率 92%)を得た。
[0074] 合成例 2
Me8HQ 16.0gと重水 140gを 10%パラジウム-炭素触媒 0.016gとともに 200mLオート クレープに装入し、 180°Cで 2時間加熱攪拌して反応を実施した。合成例 1と同様に 分離、精製を行い、 Me8HQ-D 14.6g (収率 88%)を得た。
[0075] 合成例 3
Me8HQ 16.0gと重水 140gを 10%パラジウム-炭素触媒 0.016gとともに 200mLオート クレープに装入し、 140°Cで 2時間加熱攪拌して反応を実施した。合成例 1と同様に 分離、精製を行い、 Me8HQ-D 14.9g (収率 90%)を得た。
[0076] 合成例 1、 2及び 3で得られた Me8HQ-Dを、それぞれ Me8HQ_Dl、 Me8HQ_D2及 び Me8HQ-D3という。 Me8HQ_Dは式(IV)において、 R〜Rが水素(H又は D)である
1 5
化合物である。 Me8HQ-Dl、 Me8HQ_D2及び Me8HQ_D3は表 1に示すように重水素 化率が相違する。
[0077] へキサメチルベンゼンを標準物質とし NMR積算値から Me8HQ-Dl〜Me8HQ-D3中 の各水素の重水化率を算出した。結果は表 1の通り。なお、 2- CHは 2位のメチル基 を、 3-Hは 3位の水素を示す。
[0078] [表 1]
Figure imgf000026_0001
* : 3位と 5位の平均値
[0079] 合成した Me8HQ-Dの一例として合成例 1で得られた Me8HQ- D1の IR及び NMRデ 一タを図 2〜4に示す。なお、図 2は IRスペクトルを示す。図 3及び図 4は NMRスぺタト ル(図 3 : δ 7.0—9.0,図 4 : δ 2·0〜3.0)を示し、上段は原料 Me8HQの NMRスペクトル であり、下段は Me8HQ-Dlの NMRスペクトルである。また、 Me8HQ- D1サンプルには 標準物質としてのへキサメチルベンゼンを含む。
[0080] 合成例 4
lOOmL三口フラスコ中に合成例 1で調製した Me8HQ_Dl (l. lg)、アルミニウムトリイ ソプロボキシド(1.2g)、トルエン 20mLを装入し攪拌する。この懸濁液に、トルエン 12m Lに溶解した 4ーヒドロキシビフエニル(2.0g)をしたのち、 2時間加熱還流する。冷却後 、生じた沈殿を濾取、乾燥して粗製物(2.7g)を得た。得られた粗製物を昇華精製し て、 BAlq-D 2.2g (収率 71%)を得た。
[0081] 合成例 5
合成例 2で調製した Me8HQ-D2を使用したこと以外は合成例 4と同様にして BAlq- D 2. lg (収率 68%)を得た。
[0082] 合成例 6
合成例 3で調製した Me8HQ-D3を使用したこと以外は合成例 4と同様にして BAlq- D 2. lg (収率 68%)を得た。
[0083] なお、合成例 4、 5及び 6で得た BAlq-Dを、それぞれ BAlq-D4、 BAlq_D5及び BAlq- D6といい、これらは原料として使用する Me8HQ-Dの種類が異なるため、重水素化率 が異なる。
[0084] 合成した BAlq-Dの一例として、図 5〜6に BAlq_D4の FD-MSスペクトル及び IRスぺ クトノレを示す。図 5は BAlq_D4の FD-MSスぺクトノレであり、図 6は BAlq_D4の IRスぺタト ルである。
[0085] 合成例 7
50mL三口フラスコ中に合成例 1で調製した Me8HQ-Dl (2.0g)、アルミニウムトリイソ プロボキシド(1.2g)、脱水エタノール 28mLを装入し、 1時間加熱還流した。この反応 液に水 O. lmLを加え反応を停止させ、冷却後、生じた沈殿を濾取、乾燥して粗製物 を得た。得られた粗製物は昇華精製により精製して AQD-D 1.6g (収率 37%)を得た 。これの質量分析(FD-MS)を実施したところ、親ピークとして 722 (M+ 19)、 723 (M + 20)が観測され、重水素化されて!/、な!/、化合物 (AQD)の親ピーク 702は観測されな かった。
[0086] 合成例 8
合成例 2で調製した Me8HQ-D2を使用した以外は合成例 7と同様にして AQD-D 1 • 7g (収率 39%)を得た。
[0087] 合成例 9
合成例 3で調製した Me8HQ-D3を使用したこと以外は合成例 7と同様にして AQD-
D 1.6g (収率 37%)を得た。
[0088] なお、 AQD-Dは化学式で例示した(化合物 21)であり、合成例 7、 8及び 9で得た A
QD-Dを、それぞれ AQD-D7、 AQD-D8及び AQD-D9という。これらは原料として使用 する Me8HQ-Dの種類が異なるため、重水素化率が異なる。
[0089] 合成した AQD-Dの一例として、図 7〜8に AQD-D7の質量分析及び IR分析結果を 示す。図 7は AQD-D7の FD-MSスぺクトノレであり、図 8は AQD-D7の IRスぺクトノレであ
[0090] 実施例 1
正孔注入層に銅フタロシアニン (CuPC)を用い、正孔輸送層に a -NPD及び電子輸 送層に Alq3を用いた。膜厚 l lOnmの ITOからなる陽極が形成されたガラス基板上に、 各薄膜を真空蒸着法にて、真空度 5.0 X 10— 4 Paで積層させた。まず、 ITO上に正孔注 入層として CuPCを 3.0 A/秒で 25匪の膜厚で成膜した。次いで、正孔注入層上に、 正孔輸送層として a -NPDを蒸着速度 3.0Α/秒にて 55匪の厚さに形成した。
次に、正孔輸送層上に、発光層としてホスト材料としての合成例 4で得た BAlq_D4と Ir(piq)3 (化合物 44)とを異なる蒸着源から共蒸着し、 47.5匪の厚さに形成した。この 時、 Ir(piq)3の濃度は 8.0 %であった。
次に、電子輸送層として Alq3を蒸着速度 3.0A/秒にて 30匪の厚さに形成した。更 に、電子輸送層上に、電子注入層としフッ化リチウム(LiF)を蒸着速度 0.1 A/秒にて lnmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム (A1)を蒸 着速度 10A/秒にて 200nmの厚さに形成し、有機 EL素子を作成した。
[0091] 実施例 2
発光層のホスト材料として合成例 5で得た化合物 BAlq_D5を用いた以外は実施例 1 と同様にして有機 EL素子を作成した。
[0092] 実施例 3
発光層のホスト材料として合成例 6で得た化合物 BAlq_D6を用いた以外は実施例 1 と同様にして有機 EL素子を作成した。
[0093] 比較例 1
発光層のホスト材料として重水素化されて!/、な!/、BAlqを用レ、た以外は実施例 1と同 様にして有機 EL素子を作成した。
[0094] 実施例;!〜 3及び比較例 1で得られた有機 EL素子各々の発光ピーク波長、最高発 光効率、輝度半減寿命(初期輝度 2,000cd/m2)を表 2に示す。
[0095] [表 2] 発光ピーク波長 最高発光効率 輝度半減時間
(腿) ( cd/A) ( hr)
実施例 1 620 9. 2 2000 実施例 2 620 9. 2 2000 実施例 3 620 9. 0 1800 比較例 1 620 8. 8 1500
[0096] 実施例 4
正孔注入層に銅フタロシアニン (CuPC)を用い、正孔輸送層に a -NPD及び電子輸 送層に Alq3を用いた。膜厚 l lOnmの ITOからなる陽極が形成されたガラス基板上に、 各薄膜を真空蒸着法にて、真空度 5.0 X 10— 4 Paで積層させた。まず、 ITO上に正孔注 入層として CuPCを 3.0 A/秒で 25匪の膜厚で成膜した。次いで、正孔注入層上に、 正孔輸送層として a -NPDを蒸着速度 3.0Α/秒にて 55匪の厚さに形成した。
次に、正孔輸送層上に、発光層としてホスと材料としての合成例 7で得た AQD-D7 と Ir(piq)3 (化合物 44)とを異なる蒸着源から共蒸着し、 47.5匪の厚さに形成した。こ の時、 Ir(piq)3の濃度は 8.0 %であった。
次に、電子輸送層として Alq3を蒸着速度 3.0A/秒にて 30匪の厚さに形成した。更 に、電子輸送層上に、電子注入層としフッ化リチウム(LiF)を蒸着速度 0.1 A/秒にて lnmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム (A1)を蒸 着速度 10A/秒にて 200nmの厚さに形成し、有機 EL素子を作成した。
[0097] 実施例 5
発光層のホスト材料として重水素化率の異なる合成例 8で得た AQD-D8用いた以 外は実施例 4と同様にして有機 EL素子を作成した。
[0098] 実施例 6
発光層のホスト材料として重水素化率の異なる重水素化率の異なる合成例 9で得 た AQD-D9を用いた以外は実施例 4と同様にして有機 EL素子を作成した。
[0099] 比較例 2
発光層のホスト材料として重水素化されていない AQDを用いた以外は実施例 1と同 様にして有機 EL素子を作成した。
[0100] 実施例 4〜6及び比較例 2で得られた有機 EL素子各々の発光ピーク波長、最高発 光効率、輝度半減寿命(初期輝度 2,000cd/m2)を表 3に示す。
[0101] [表 3]
Figure imgf000030_0001
産業上の利用の可能性
[0102] 本発明によれば、良好な発光特性を維持したまま長駆動寿命な有機 EL素子を獲 得すること力 Sできる。従って、本発明の有機 EL素子はフラットパネルディスプレイ (例 えば、 OAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光 体としての特徴を生力もた光源 (例えば、複写機の光源、液晶ディスプレイや計器類 のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大き いものである。

Claims

請求の範囲
下記一般式 (I)で表わされる有機金属錯体からなることを特徴とする有機電界発光 素子材料。
Figure imgf000031_0001
ここで、 R〜Rは各々独立に、水素原子、重水素原子、又はアルキル基、ァラルキ
1 5
ル基、アルケニル基、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭 化水素基又は置換基を有して!/、てもよ!/、芳香族複素環基から選ばれる 1価の置換基 を示し、 1価の置換基が水素原子を有する場合は、水素原子は重水素原子であって もよぐ Dは重水素原子を示し、 Lは下記式(1)、(2)、(3)又は(4)で表される 1価の 基を示す;
0 Ar-,
( 2 )
A
2
Figure imgf000032_0001
ここで、 Ar〜Arは、は各々独立に、置換基を有していてもよい芳香族炭化水素基
1 5
又は置換基を有してレ、てもよ!/、芳香族複素環基を表し、 Zはシリコン又はゲルマニウ ムを示し、 R〜R及び Dは、一般式 (I)と同じである。
1 5
[2] 有機金属錯体が、下記一般式 (Π)で表わされる有機金属錯体である請求項 1記載 の有機電界発光素子材料。
Figure imgf000032_0002
:で、 R〜R及び Dは、一般式 (I)と同じである。
[3] 基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極 が積層されてなる有機電界発光素子であって、少なくとも 1層の有機層中に請求項 1 に記載の有機電界発光素子材料を含むことを特徴とする有機電界発光素子。
[4] 基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極 が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極の間に電 子輸送層を有する有機電界発光素子であって、発光層中に請求項 1に記載の有機 電界発光素子材料を含むことを特徴とする有機電界発光素子。
[5] 発光層中に、請求項 1に記載の有機電界発光素子材料をホスト材料として含有し、 周期律表 7〜; 11族力 選ばれる少なくとも一つの金属を含む有機金属錯体をゲスト 材料として含有する請求項 4に記載の有機電界発光素子。
[6] 陽極及び正孔輸送層間に正孔注入層が配され、陰極及び電子輸送層間に電子注 入層が配されている請求項 5に記載の有機電界発光素子。
PCT/JP2007/066639 2006-08-31 2007-08-28 Matériau de dispositif électroluminescent organique et dispositif électroluminescent organique WO2008029670A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07793079A EP2075310B1 (en) 2006-08-31 2007-08-28 Organic electroluminescent device material and organic electroluminescent device
US12/438,304 US7968874B2 (en) 2006-08-31 2007-08-28 Organic electroluminescent device material and organic electroluminescent device
CN2007800308345A CN101506328B (zh) 2006-08-31 2007-08-28 有机场致发光元件材料及有机场致发光元件
JP2008533109A JP5009922B2 (ja) 2006-08-31 2007-08-28 有機電界発光素子材料及び有機電界発光素子
KR1020097002976A KR101338343B1 (ko) 2006-08-31 2007-08-28 유기 전계발광 소자 재료 및 유기 전계발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-235274 2006-08-31
JP2006235274 2006-08-31

Publications (1)

Publication Number Publication Date
WO2008029670A1 true WO2008029670A1 (fr) 2008-03-13

Family

ID=39157103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066639 WO2008029670A1 (fr) 2006-08-31 2007-08-28 Matériau de dispositif électroluminescent organique et dispositif électroluminescent organique

Country Status (7)

Country Link
US (1) US7968874B2 (ja)
EP (1) EP2075310B1 (ja)
JP (1) JP5009922B2 (ja)
KR (1) KR101338343B1 (ja)
CN (1) CN101506328B (ja)
TW (1) TWI404789B (ja)
WO (1) WO2008029670A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026747A1 (ja) * 2008-09-02 2010-03-11 大陽日酸株式会社 発光材料用ドーパント材
JP2011148725A (ja) * 2010-01-21 2011-08-04 Univ Of Tokyo 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
EP2379671A2 (en) * 2008-12-22 2011-10-26 E. I. du Pont de Nemours and Company Electronic devices having long lifetime
JP2013515157A (ja) * 2009-12-21 2013-05-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
US8557400B2 (en) 2009-04-28 2013-10-15 Universal Display Corporation Iridium complex with methyl-D3 substitution
JP2015147776A (ja) * 2009-09-29 2015-08-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 有機電子デバイス用の重水素化合物および、それらの重水素化合物を有する有機電子デバイス。
US9444071B2 (en) 2012-06-28 2016-09-13 Pioneer Corporation Organic electroluminescent panel
JP2020183372A (ja) * 2019-04-29 2020-11-12 寧波盧米藍新材料有限公司 縮合多環化合物及びその製造方法と用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037828A2 (en) * 2009-09-22 2011-03-31 University Of Utah Research Foundation Device comprising deuterated organic interlayer
CN116056479A (zh) 2011-02-16 2023-05-02 株式会社半导体能源研究所 发光元件
CN104211724A (zh) * 2013-05-29 2014-12-17 北京化工大学 β-二酮亚胺基烷氧基氢化铝化合物和其合成方法及应用
CN104659280B (zh) * 2013-11-21 2017-04-05 固安鼎材科技有限公司 一种有机电致发光器件及其制备方法
CN106008338B (zh) * 2016-06-03 2019-02-12 广东工业大学 一种含有氢桥键的8-羟基喹啉类银配合物二聚晶体及其制备方法
US10897016B2 (en) 2016-11-14 2021-01-19 Universal Display Corporation Organic electroluminescent materials and devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198377A (ja) 1991-08-01 1993-08-06 Eastman Kodak Co 内部接合形有機エレクトロルミネセント素子
JPH05214332A (ja) 1991-08-01 1993-08-24 Eastman Kodak Co 混合配位子アルミニウムキレート発色体
JPH06172751A (ja) * 1992-07-13 1994-06-21 Eastman Kodak Co 発光組成物及び内部接合型有機電界発光素子
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2001284056A (ja) 2000-03-31 2001-10-12 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
WO2002047440A1 (en) 2000-12-07 2002-06-13 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003142264A (ja) 2001-10-31 2003-05-16 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
WO2005014551A1 (ja) * 2003-08-07 2005-02-17 Nippon Steel Chemical Co., Ltd. 有機el材料用のアルミニウムキレート錯体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500885B1 (en) * 1997-02-28 2002-12-31 Candescent Technologies Corporation Polycarbonate-containing liquid chemical formulation and methods for making and using polycarbonate film
US6905904B2 (en) * 2002-06-24 2005-06-14 Dow Corning Corporation Planar optical waveguide assembly and method of preparing same
JP2008545014A (ja) * 2005-02-10 2008-12-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 金属ヒドロキシキノリン錯体を含む光活性材料
EP1954669B1 (en) * 2005-12-01 2015-07-08 Auspex Pharmaceuticals, Inc. Substituted phenethylamines with serotoninergic and/or norepinephrinergic activity

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198377A (ja) 1991-08-01 1993-08-06 Eastman Kodak Co 内部接合形有機エレクトロルミネセント素子
JPH05214332A (ja) 1991-08-01 1993-08-24 Eastman Kodak Co 混合配位子アルミニウムキレート発色体
JPH06172751A (ja) * 1992-07-13 1994-06-21 Eastman Kodak Co 発光組成物及び内部接合型有機電界発光素子
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2001284056A (ja) 2000-03-31 2001-10-12 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
WO2002047440A1 (en) 2000-12-07 2002-06-13 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP2004515506A (ja) * 2000-12-07 2004-05-27 キヤノン株式会社 光電子デバイス用のジュウテリウム化された有機半導体化合物
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003142264A (ja) 2001-10-31 2003-05-16 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
WO2005014551A1 (ja) * 2003-08-07 2005-02-17 Nippon Steel Chemical Co., Ltd. 有機el材料用のアルミニウムキレート錯体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 77, 2000, pages 904
INORG. CHEM., vol. 40, pages 1704 - 1711
See also references of EP2075310A4
Y. KUSHI, J. AMER. CHEM. SOC, vol. 92, 1970, pages 91

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059265A (ja) * 2008-09-02 2010-03-18 Taiyo Nippon Sanso Corp 発光材料用ドーパント材
WO2010026747A1 (ja) * 2008-09-02 2010-03-11 大陽日酸株式会社 発光材料用ドーパント材
EP2379671A4 (en) * 2008-12-22 2012-11-28 Du Pont ELECTRONIC DEVICES WITH HIGH LIFE
EP2379671A2 (en) * 2008-12-22 2011-10-26 E. I. du Pont de Nemours and Company Electronic devices having long lifetime
JP2012513688A (ja) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 長寿命の電子デバイス
JP2020017760A (ja) * 2009-04-28 2020-01-30 ユニバーサル ディスプレイ コーポレイション メチル−d3置換されたイリジウム錯体
JP2021138759A (ja) * 2009-04-28 2021-09-16 ユニバーサル ディスプレイ コーポレイション メチル−d3置換されたイリジウム錯体
US8557400B2 (en) 2009-04-28 2013-10-15 Universal Display Corporation Iridium complex with methyl-D3 substitution
JP2023001242A (ja) * 2009-04-28 2023-01-04 ユニバーサル ディスプレイ コーポレイション メチル-d3置換されたイリジウム錯体
EP3269791A1 (en) 2009-04-28 2018-01-17 Universal Display Corporation Iridium complex with methyl-d3 substitution
EP3584300A1 (en) 2009-04-28 2019-12-25 Universal Display Corporation Iridium complex with methyl-d3 substitution
JP2015147776A (ja) * 2009-09-29 2015-08-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 有機電子デバイス用の重水素化合物および、それらの重水素化合物を有する有機電子デバイス。
JP2013515157A (ja) * 2009-12-21 2013-05-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
JP2011148725A (ja) * 2010-01-21 2011-08-04 Univ Of Tokyo 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
US9444071B2 (en) 2012-06-28 2016-09-13 Pioneer Corporation Organic electroluminescent panel
JP2020183372A (ja) * 2019-04-29 2020-11-12 寧波盧米藍新材料有限公司 縮合多環化合物及びその製造方法と用途
US11626562B2 (en) 2019-04-29 2023-04-11 Ningbo Lumilan Advanced Materials Co., Ltd. Fused polycyclic compound, and preparation method and use thereof
US11706982B2 (en) 2019-04-29 2023-07-18 Ningbo Lumilan Advanced Materials Co., Ltd. Fused polycyclic compound, and preparation method and use thereof
JP7321530B2 (ja) 2019-04-29 2023-08-07 寧波盧米藍新材料有限公司 縮合多環化合物及びその製造方法と用途

Also Published As

Publication number Publication date
JP5009922B2 (ja) 2012-08-29
EP2075310B1 (en) 2012-03-14
EP2075310A1 (en) 2009-07-01
CN101506328B (zh) 2013-01-23
EP2075310A4 (en) 2010-11-03
JPWO2008029670A1 (ja) 2010-01-21
CN101506328A (zh) 2009-08-12
US7968874B2 (en) 2011-06-28
KR20090043516A (ko) 2009-05-06
US20100181553A1 (en) 2010-07-22
TWI404789B (zh) 2013-08-11
KR101338343B1 (ko) 2013-12-06
TW200821370A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
JP5009922B2 (ja) 有機電界発光素子材料及び有機電界発光素子
JP6426676B2 (ja) 新規有機発光材料
JP4519946B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP4550160B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP4545741B2 (ja) 有機電界発光素子
JP5209701B2 (ja) 有機電界発光素子
EP1956022B1 (en) Compound for organic electroluminescent element and organic electroluminescent element
CN107325089B (zh) 用于有机发光二极管的2-氮杂三亚苯材料
TWI429650B (zh) Organic electroluminescent elements
EP2080762B1 (en) Compound for organic electroluminescent device and organic electroluminescent device
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
CN106674266B (zh) 三亚苯硅烷主体
JP5399418B2 (ja) 有機電界発光素子
KR20130018551A (ko) 인광 oled용 호스트 물질
WO2009119163A1 (ja) 有機電界発光素子用化合物及びこれを用いた有機電界発光素子
KR102036385B1 (ko) 디아릴아미노 치환된 금속 착물
JP5031575B2 (ja) 有機電界発光素子
JP4864708B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030834.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097002976

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007793079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008533109

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12438304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU