JPWO2008029670A1 - 有機電界発光素子材料及び有機電界発光素子 - Google Patents

有機電界発光素子材料及び有機電界発光素子 Download PDF

Info

Publication number
JPWO2008029670A1
JPWO2008029670A1 JP2008533109A JP2008533109A JPWO2008029670A1 JP WO2008029670 A1 JPWO2008029670 A1 JP WO2008029670A1 JP 2008533109 A JP2008533109 A JP 2008533109A JP 2008533109 A JP2008533109 A JP 2008533109A JP WO2008029670 A1 JPWO2008029670 A1 JP WO2008029670A1
Authority
JP
Japan
Prior art keywords
organic
layer
transport layer
light emitting
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008533109A
Other languages
English (en)
Other versions
JP5009922B2 (ja
Inventor
宮崎 浩
浩 宮崎
篤彦 片山
篤彦 片山
真嗣 松尾
真嗣 松尾
勝秀 野口
勝秀 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2008533109A priority Critical patent/JP5009922B2/ja
Publication of JPWO2008029670A1 publication Critical patent/JPWO2008029670A1/ja
Application granted granted Critical
Publication of JP5009922B2 publication Critical patent/JP5009922B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

素子の発光効率を改善し、駆動安定性を充分に確保した燐光発光を利用した有機電界発光素子(有機EL素子)に関する。この有機EL素子は、基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極の間に電子輸送層を有する有機EL素子であって、発光層が、ホスト材料として置換基を有してもよい2-メチル-8-オキシキノリン(Me8HQ)のメチル基水素が重水素化された重水素化2-メチル-8-オキシキノリン(Me8HQ-D)のアルミニウムヘテロ錯体又はダイマー型錯体を含有し、かつゲスト材料として周期律表第7〜11族から選ばれる少なくとも一つの金属を含む有機金属錯体を含有する。

Description

本発明は有機電界発光素子(以下、有機EL素子という)及びそれに使用される有機電界発光素子材料(以下、有機EL素子材料又は有機EL材料という)に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
有機材料を用いた電界発光素子は、電極からの電荷注入効率向上を目的として電極の種類を最適化し、芳香族ジアミンからなる正孔輸送層と8−ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされた。そこで、自発光・高速応答性という特徴を持つ高性能フラットパネルディスプレイへの実用を目指す開発が進められてきた。
このような有機EL素子の効率を更に改善するため、上記の陽極/正孔輸送層/発光層/陰極の構成を基本とし、これに正孔注入層、電子注入層や電子輸送層を適宜設けることで、光効率が上昇することも知られており、こうした構成層の機能にあわせて、これまでに多くの有機材料の開発が進められてきた。
また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、三重項励起状態からの燐光発光を利用すれば、従来の蛍光(一重項)を用いた素子と比べて、3倍程度の効率向上が期待される。本発明に関連する先行文献を次に示す。
WO00/70655号公報 特開2001-284056号公報 特開5-198377号公報 特開2003-142264号公報 WO2002/47440号公報 WO01/041512号公報 特開2001-313178号公報 特開2002-305083号公報 特開平5-214332号公報 Appl. Phys. Lett., vol.77, pp904, (2000)
近年では、イリジウム錯体を発光層にゲスト材料としてドープすることで、同様な燐光発光による高効率化可能であることが報告されており、特許文献1、6等に多数開示されている。代表的には、緑色燐光発光材料のトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)が例示される。このイリジウム錯体については、その配位子の化学構造を変化させることで青色から赤色までの広い波長域での発光が可能であることも見出されている。
また、特許文献1、7には、有機EL素子の発光層に用いるホスト材料として4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が提案されている。しかしながら、緑色燐光発光材料のIr(ppy)3のホスト材料としてCBPを用いると、CBPは正孔を流し易く電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
上記の解決手段として、例えば特許文献2、8中に示されるように、発光層と電子輸送層の間に正孔阻止層を設ける手段がある。この正孔阻止層により正孔を発光層中に効率よく蓄積することによって、発光層中での電子との再結合確率を向上させ、発光の高効率化を達成することができる。一般的に用いられている正孔阻止材料として、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(以下、BCPという)及びp-フェニルフェノラート-ビス(2-メチル-8-キノリノラート-N1,O8)アルミニウム(以下、BAlqという)が挙げられる。これにより電子輸送層で電子とホールの再結合が起こることを防止できるが、BCPは室温でも結晶化し易く材料としての信頼性に欠けるため、素子寿命が極端に短い。また、BAlqは比較的良好な素子寿命結果が報告されているが、正孔阻止能力が十分でなく、Ir(ppy)3からの発光効率は低下する。加えて、層構成が1層増すことから素子構造が複雑になり、コストが増加するという問題がある。
一方、電子を流しやすく正孔を流しにくい特性をもつ上記BCPや3-フェニル-4-(1'-ナフチル)-5-フェニル-1,2,4-トリアゾール(以下、TAZという)を燐光有機EL素子のホスト材料として使用することも提案されているが、発光領域が正孔輸送層側に偏る。従って、正孔輸送層の材料によってはIr(ppy)3との相性問題により、Ir(ppy)3からの発光効率が低下するという問題がある。例えば、正孔輸送層として高性能、高信頼性、高寿命の点から最も良く使用されている4,4'-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(以下、α-NPDという)では、Ir(ppy)3からα-NPDにエネルギー遷移が起き、結果的に発光効率が低下する。
特許文献9では、BAlqを含むブルー放出性発光組成物が開示されている。これらからも分かるようにBAlq及びその類縁化合物は発光材料としても使用されるが、他の層の材料としても有用であることが知られている。
非特許文献1では、発光層のホスト材料にTAZなどを使用し、ゲスト材料にIr(ppy)3、電子輸送層にAlq3、正孔輸送層に4,4'-ビス(N,N'-(3-トルイル)アミノ)-3、3'-ジメチルビフェニル(以下、HMTPDという)を使用することで燐光発光素子において3層構造で高効率発光を得ることが可能であると報告している。しかし、HMTPDはガラス転移温度(以下、Tgという)が約50℃であるため、結晶化し易く材料としての信頼性に欠ける。したがって、素子寿命が極端に短く、商業的応用は難しい上、駆動電圧が高いという問題点もある。
ところで、特許文献3には、Q2-Al-O-Al-Q2で表される8-キノリノール配位子を有するダイマー型金属錯体を青色発光層に存在させること及びペリレン等の蛍光色素と併用することを開示し、特許文献4にはダイマー型金属錯体を燐光ホスト材料として使用することを開示しているが、重水素化された金属錯体ダイマーの有用性を教えるものではない。Q2-Al-O-Al-Q2で表される構造の金属錯体をダイマー型金属錯体という。ここで、Qは置換基を有してもよい8-キノリノール配位子である。
一方、2H(重水素又はDという)や13Cをはじめとした同位体原子は、これまで医療関連分野や化合物構造解析のためのトレーサーラベル材料としての利用が広く知られている。有機EL分野においては、特許文献5に炭素-重水素間の結合(C-D)が、炭素-水素間の結合(C-H)よりも短く、物理化学的に安定であることが開示されており、各種の重水素化化合物(化合物-Dという)が例示されている。
しかしながら、有機EL材料として有用な、BAlq等のヘテロ配位子型の金属錯体やダイマー型金属錯体について、キノリノール配位子中の2位メチル基の水素(ベンジル位水素)を重水素に置き換えることについてはその必要性又は有効性について教えるものはない。
有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率、長寿命、かつ簡略化された素子構成を可能とする実用上有用な有機EL素子及びそれに使用する材料を提供することを目的とする。
本発明者らは、鋭意検討した結果、有機EL素子用材料として、キノリノール配位子を有するヘテロ配位子型の金属錯体やダイマー型金属錯体において、2位メチル基のHをDとした化合物を用いることで、上記課題を解決することができることを見出し、本発明を完成するに至った。
すなわち、ヘテロ配位子型の金属錯体やダイマー型金属錯体においては、キノリノール配位子中の2位メチル基のベンジル位水素は反応性が高く不安定であるが、このメチル基の立体障害によりアルミニウム金属への配位数を制御しているため、構造上省略することはできない。また、フェニル基など他の反応性の低い置換基への変換は金属錯体の光学的性質などの物理化学特性を変化させてしまう。そこで、本発明者らは、物理化学的に安定である重水素を用いベンジル位水素をD化し選択的に保護することにより、材料特性を変化させることなく安定性を高めることを見出し、本発明を完成したものである。
本発明は、下記一般式(I)で表わされる有機金属錯体からなる有機電界発光素子材料である。
Figure 2008029670

ここで、R1〜R5は各々独立に、水素原子、重水素原子、又はアルキル基、アラルキル基、アルケニル基、シアノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基から選ばれる1価の置換基を示す。ここで、1価の置換基が水素原子を有する場合は、水素原子は重水素原子であってもよい。Dは重水素原子を示す。Lは下記式(1)、(2)、(3)又は(4)で表される1価の基を示す;
Figure 2008029670

ここで、Ar1〜Ar5は、は各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Zはシリコン又はゲルマニウムを示す。R1〜R5及びDは、一般式(I)と同じ意味を有する。
好ましい有機金属錯体としては、下記一般式(II)又は(III)で表わされる有機金属錯体が挙げられる。
Figure 2008029670

ここで、R1〜R5及びDは、一般式(I)と同じ意味を有する。また、Ar1は式(1)と同じ意味を有するが、好ましくは1〜3環の芳香族炭化水素基である。
本発明の有機電界発光素子は、基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されてなり、少なくとも1層の有機層中に上記の有機電界発光素子材料を含む。
有利には、有機電界発光素子は、基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極の間に電子輸送層を有し、発光層中に上記の有機電界発光素子材料を含む。更に有利には、有機電界発光素子は、発光層中に、上記の有機電界発光素子材料をホスト材料として含有し、周期律表7〜11族から選ばれる少なくとも一つの金属を含む有機金属錯体をゲスト材料として含有する。
有機電界発光素子は、陽極及び正孔輸送層間に正孔注入層が配されていること、又は陰極及び電子輸送層間に電子注入層が配されていることがよい。
本発明の有機電界発光素子材料(有機EL材料)は、上記一般式(I)で表される有機金属錯体である。かかる有機金属錯体において、DがHである有機金属錯体は、上記特許文献4、8、9等において知られている。したがって、上記一般式(I)におけるR1、L等の基の意味や、好ましい基はこれらの文献から理解される。
一般式(I)において、R1〜R5は各々独立に、水素原子、重水素原子又は1価の置換基を示す。1価の置換基は、アルキル基、アラルキル基、アルケニル基、シアノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基から選択される。ここで、1価の置換基が水素原子を有する場合、その水素原子はDであってもよい。好ましくは、1価の置換基がメチル基である場合、CD3である。
アルキル基としては、炭素数1〜6のアルキル基(以下、低級アルキル基という)が好ましく例示され、アラルキル基としては、ベンジル基、フェネチル基が好ましく例示され、アルケニル基としては、炭素数1〜6の低級アルケニル基が好ましく例示され、アルコキシ基のアルキル部としては、低級アルキルが好ましく例示される。
また、芳香族炭化水素基としては、フェニル基、ナフチル基、アセナフチル基、アントリル基等の芳香族炭化水素基が好ましく例示され、芳香族複素環基としては、ピリジル基、キノリル基、チエニル基、カルバゾル基、インドリル基、フリル基等の芳香族複素環基が好ましく例示される。これらが置換基を有する芳香族炭化水素基又は芳香族複素環基である場合は、置換基としては、低級アルキル基、低級アルコキシ基、フェノキシ基、ベンジルオキシ基、フェニル基、ナフチル基等が挙げられる。
Lは上記式(1)、(2)、(3)又は(4)で表される1価の基を示すが、Ar1〜Ar5は各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Zはシリコン又はゲルマニウムを表す。ここで、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基は、上記と同様な基が例示される。
一般式(I)で表わされる有機金属錯体の中でも、好ましい有機金属錯体は、R1〜R5が水素原子、低級アルキル基又は低級アルコキシ基である化合物から選ばれる。ここで、低級アルキル基又は低級アルコキシ基に含まれる水素原子はDであることができる。式(1)〜(3)において、好ましいAr1、Ar2、Ar3としては、1〜3環の芳香族炭化水素基が挙げられる。また、Lはフェノキシ、フェニルフェノキシ、ナフトキシ、フェニルナフトキシ、ナフチルフェノキシ等のアリロキシ基又は式(4)で表される1価の基である化合物から選ばれることが好ましい。式(4)で表される1価の基である化合物である場合は、一般式(II)で表わされる有機金属錯体となる。
この一般式(I)で表される有機金属錯体は、例えば、対応する金属塩と式(IV)で表される化合物と式(1a)、(2a)又は(3a)で表される化合物を2対1のモル比で錯体形成反応することにより合成される。一般式(II)で表される有機金属錯体は、対応する金属塩と式(IV)で表される化合物との間の錯体形成反応により合成される。なお、式(IV)において、R1〜R5は一般式(I)のR1〜R5と対応する。式(1a)、(2a)及び(3a)で表される化合物は、上記式(1)、(2)及び(3)で表される1価の基を与え、Ar1〜Ar5及びZは式(1)、(2)及び(3)中のAr1〜Ar5及びZに対応する。
一般式(II)で表される有機金属錯体の合成反応は、例えば、Y. Kushiらにより示される方法(J.Amer.Chem.Soc., vol.92, pp91, (1970))で行うことができる。なお、一般式(II)において、R1〜R5は一般式(I)のR1〜R5と対応する。金属塩としては、AlCl3、Al(Oi-Pr)3のような化合物が挙げられる。
Figure 2008029670


Figure 2008029670
式(IV)で表される化合物は、例えばメチル基の水素がHである2-メチル-8-オキシキノリン(Me8HQという)を用意し、このメチル基の水素をDとすることにより得られる。このようにして得られるMe8HQのメチル基の水素がDとされた化合物をMe8HQ-Dという。重水素化反応方法としては公知の条件を採用できる。例えば、Me8HQと重水をPd/C触媒の存在下で、150〜200℃で反応させることによりメチル基の水素を選択的に重水素化することができる。なお、一般式(I)において、R1〜R5がHである場合や、Hを有するアルキル基等である場合は、反応条件によってはこれらのHの一部も重水素化されるが、差し支えない。しかし、2位のメチル基の水素の重水素化率は、40%以上、好ましくは90%以上、より好ましくは95%以上とすることがよい。したがって、本発明の一般式(I)で表される有機金属錯体は、2位のメチル基がCD3であるものを主とするものであればよく、少量のCD2H、CDH2又はCH3を含みうる。
以下に一般式(I)で表される有機金属錯体からなる本発明の有機EL材料を例示するが、下記の化合物に限定されるものではない。
Figure 2008029670
Figure 2008029670
Figure 2008029670
Figure 2008029670
Figure 2008029670
本発明の有機EL素子は、一般式(I)で表される有機金属錯体からなる本発明の有機EL材料を少なくとも1層の有機層中に含む。有機EL素子は、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されている構造を有する。好ましくは、基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極の間に電子輸送層を有する構造である。更に有利には、陽極及び正孔輸送層間に正孔注入層が配されている構造又は陰極及び電子輸送層間に電子注入層が配されている構造である。
本発明の有機EL材料は、発光材料として発光層に含まれることが好ましい。有利には、本発明の有機EL材料を発光層中にホスト材料として含有し、かつ周期律表7ないし11族から選ばれる少なくとも一つの金属を含む有機金属錯体をゲスト材料として発光層に含有することである。しかし、他の層の材料として使用することも可能であり、例えば正孔阻止材料として使用することも可能である。
発光層中に、本発明の有機EL材料をホスト材料として含有し、ゲスト材料を含有する場合は、いわゆる燐光を利用した有機EL素子となる。ここで、ホスト材料とは該層を形成する材料のうち50重量%以上を占めるものを意味し、ゲスト材料とは該層を形成する材料のうち50重量%未満を占めるものを意味する。本発明の有機EL素子において、発光層に含まれる本発明の有機EL材料は、該層に含まれる燐光性有機金属錯体の、励起三重項準位より高いエネルギー状態の励起三重項準位を有することが基本的に必要である。
ホスト材料としては、安定な薄膜形状を与え又は高いTgを有し、正孔又は電子を効率よく輸送することができる化合物であることが必要である。更に、電気化学的かつ化学的に安定であり、トラップとなったり発光を消光したりする不純物が製造時や使用時に発生しにくい化合物であることが要求されるとともに、燐光性有機錯体の発光が正孔輸送層の励起3重項準位に影響されにくくするため、発光領域が正孔輸送層界面よりも適度に距離を保てる正孔注入能力を有することも重要である。本発明の有機EL材料は、これらの条件を満たす点で優れる。
ゲスト材料としては、好ましくは周期律表で7〜11族の金属を含有する有機金属錯体である。より好ましくは8族の金属を含有する有機金属錯体である。更に好ましくは、イリジウム、オスミウム、ロジウム、パラジウム又は白金から選ばれる金属を含有する有機金属錯体である。中でも好ましくはイリジウム、ロジウム、白金から選ばれる金属を含有する有機金属錯体であり、最も好ましくはイリジウムを含有する有機金属錯体である。
ゲスト材料としては、一般的には上記特許文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。
以下に、ゲスト材料の具体例を示すが、これらに限定されるものではない。これらの化合物は、例えば、Inorg. Chem., vol.40、pp1704〜1711に記載の方法等により合成できる。
Figure 2008029670
Figure 2008029670
有機電界発光素子の一例を示した模式断面図。 Me8HQ-D1のIRスペクトル Me8HQとMe8HQ-D1のNMRスペクトル(δ7.0〜9.0) Me8HQとMe8HQ-D1のNMRスペクトル(δ2.0〜3.0) BAlq-D4のFD-MSスペクトル BAlq-D4のIRスペクトル AQD-D7のFD-MSスペクトル AQD-D7のIRスペクトル
符号の説明
1 基板、2 陽極、3 正孔注入層、4正孔輸送層、5発光層、
6 電子輸送層、7 陰極
以下、本発明の有機EL素子について、図面を参照しながら説明する。図1は本発明に用いられる一般的な有機EL素子の構造例を模式的に示す断面図である。本発明の有機EL素子では、基板、陽極、正孔輸送層、発光層、電子輸送層及び陰極を必須の層として有するが、必須の層以外の層、例えば、正孔注入層は省略可能であり、また必要により他の層を設けてもよい。なお、正孔阻止層を設けないことにより、層構造が簡素化される等の利点をもたらすことがある。
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
基板1上には陽極2が設けられるが、陽極は正孔輸送層への正孔注入の役割を果たすものである。この陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板1上に塗布することにより陽極2を形成することもできる。更に、導電性高分子の場合は電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる。陽極は異なる物質で積層して形成することも可能である。陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常、60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常、5〜1000nm、好ましくは10〜500nm程度である。不透明でよい場合、陽極2は基板1と同一でもよい。また、更には上記の陽極2の上に異なる導電材料を積層することも可能である。
陽極2の上には正孔輸送層4が設けられる。両者の間には、正孔注入層3を設けることもできる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、更に安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。また、発光層5に接するために発光層からの発光を消光したり、発光層との間でエキサイプレックスを形成して効率を低下させないことが求められる。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子には更に耐熱性が要求される。従って、Tgとして85℃以上の値を有する材料が望ましい。好ましい正孔輸送材料として、α-NPDのような公知のトリアリールアミンダイマーを使用することができる。
なお、必要によりその他の正孔輸送材料として公知の化合物をトリアリールアミンダイマーと併用することもできる。例えば、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン、4,4',4"-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物、トリフェニルアミンの四量体からなる芳香族アミン化合物、2,2',7,7'-テトラキス-(ジフェニルアミノ)-9,9'-スピロビフルオレン等のスピロ化合物等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて、各々、混合して用いてもよい。また、上記の化合物以外に、正孔輸送層の材料として、ポリビニルカルバゾール、ポリビニルトリフェニルアミン、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン等の高分子材料が挙げられる。
正孔輸送層を塗布法で形成する場合は、正孔輸送材料を1種以上と、必要により正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤とを添加し、溶解して塗布溶液を調製し、スピンコート法などの方法により陽極2上に塗布し、乾燥して正孔輸送層4を形成する。バインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔移動度を低下させるので、少ない方が望ましく、通常、50重量%以下が好ましい。
真空蒸着法で形成する場合は、正孔輸送材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、ルツボを加熱して、正孔輸送材料を蒸発させ、ルツボと向き合って置かれた、陽極が形成された基板上に正孔輸送層4を形成させる。正孔輸送層4の膜厚は、通常、5〜300nm、好ましくは10〜100nmである。この様に薄い膜を一様に形成するためには、一般に真空蒸着法がよく用いられる。
正孔輸送層4の上には発光層5が設けられる。発光層5は、前記一般式(I)で表される有機金属錯体又はその混合物と、前記のようなゲスト材料(例えば、Ir錯体)を含有し、電界を与えられた電極間において、陽極から注入されて正孔輸送層を移動する正孔と、陰極から注入されて電子輸送層6を移動する電子との再結合により励起されて、強い発光を示す。なお発光層5は、本発明の性能を損なわない範囲で、他のホスト材料(一般式(I)と同様の働きを行う)や蛍光色素など、他成分を含んでいてもよい。
ゲスト材料が発光層中に含有される量は、0.1〜30重量%の範囲にあることが好ましい。0.1重量%以下では素子の発光効率向上に寄与できず、30重量%を越えると有機金属錯体同士が2量体を形成する等の濃度消光が起き、発光効率の低下に至る。従来の蛍光(1重項)を用いた素子において、発光層に含有される蛍光性色素(ドーパント)の量より、若干多い方が好ましい傾向がある。ゲスト材料が発光層中に膜厚方向に対して部分的に含まれたり、不均一に分布してもよい。
発光層5の膜厚は、通常10〜200nm、好ましくは20〜100nmである。正孔輸送層4と同様の方法にて薄膜形成される。
素子の発光効率を更に向上させることを目的として、発光層5と陰極7の間に電子輸送層6が設けられる。電子輸送層6は、電界を与えられた電極間において陰極から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層6に用いられる電子輸送性化合物としては、陰極7からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
このような条件を満たす電子輸送材料としては、Alq3などの金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-又は5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン、キノキサリン化合物、フェナントロリン誘導体、2-t-ブチル-9,10-N,N'-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。電子輸送層6の膜厚は、通常、5〜200nm、好ましくは10〜100 nmである。電子輸送層6は、正孔輸送層4と同様にして塗布法あるいは真空蒸着法により発光層5上に積層することにより形成される。通常は、真空蒸着法が用いられる。
正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させる目的で、正孔輸送層4と陽極2との間に正孔注入層3を設けることも行われている。正孔注入層3を設けることで、初期の素子の駆動電圧が下がると同時に、素子を定電流で連続駆動した時の電圧上昇も抑制される効果がある。正孔注入層に用いられる材料に要求される条件としては、陽極との密着性がよく均一な薄膜が形成でき、熱的に安定であることが望まれる。すなわち、融点及びガラス転移温度が高く、融点としては 300℃以上、ガラス転移温度としては 100℃以上が要求される。更に、イオン化ポテンシャルが低く陽極からの正孔注入が容易なこと、正孔移動度が大きいことが望まれる。
この目的のために、これまでに銅フタロシアニン等のフタロシアニン化合物、ポリアニリン、ポリチオフェン等の有機化合物や、スパッタカーボン膜や、バナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物が報告されている。正孔注入層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には、更に、スパッタ法や電子ビーム蒸着法、プラズマCVD法が用いられる。以上の様にして形成される陽極バッファ層3の膜厚は、通常、3〜100nm、好ましくは 5〜50nmである。
陰極7は、発光層5に電子を注入する役割を果たす。陰極として用いられる材料は、前記陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行うには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
陰極7の膜厚は通常、陽極2と同様である。低仕事関数金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
更に、陰極と電子輸送層の間にLiF 、MgF2、Li2O等の極薄絶縁膜(0.1〜5nm)を、電子注入層として挿入することも素子の効率を向上させる有効な方法である。
なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、既述したように少なくとも一方が透明性の高い2枚の基板の間に本発明の有機EL素子を設けることも可能である。この場合も、必要により層を追加したり、省略したりすることが可能である。
本発明は、有機EL素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX−Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明の有機EL素子によれば、発光層に特定の骨格を有する化合物と、燐光性の金属錯体を含有させることにより、従来の一重項状態からの発光を用いた素子よりも発光効率が高くかつ駆動安定性においても大きく改善された素子が得られ、フルカラーあるいはマルチカラーのパネルへの応用において優れた性能を発揮できる。
次に、本発明を、合成例及び実施例によって更に詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
略号を次に示す。
Me8HQ:2-メチル-8-ヒドロキシキノリン
Me8HQ-D:重水素化Me8HQ
BAlq:p-フェニルフェノラート-ビス(2-メチル-8-キノリノラート-N1,O8)アルミニウム
BAlq-D:重水素化BAlq(化合物1)
AQD:アルミキノリノールダイマー(化合物20)
AQD-D:重水素化AQD(化合物21)
Figure 2008029670
合成例1
Me8HQ 8.0gと重水77gを10%パラジウム-炭素触媒0.1gとともに100mLオートクレーブに装填し、180℃で2時間加熱攪拌して反応を実施した。反応終了後、触媒をろ過した後、トルエンを加えて油水分離を行い、更に水層をトルエンにて抽出、得られた有機層を無水硫酸マグネシウムにて乾燥後、溶媒を除去して粗製物得た。この粗製物を減圧蒸留にて精製してMe8HQ-D 7.6g(収率92%)を得た。
合成例2
Me8HQ 16.0gと重水140gを10%パラジウム-炭素触媒0.016gとともに200mLオートクレーブに装入し、180℃で2時間加熱攪拌して反応を実施した。合成例1と同様に分離、精製を行い、Me8HQ-D 14.6g(収率88%)を得た。
合成例3
Me8HQ 16.0gと重水140gを10%パラジウム-炭素触媒0.016gとともに200mLオートクレーブに装入し、140℃で2時間加熱攪拌して反応を実施した。合成例1と同様に分離、精製を行い、Me8HQ-D 14.9g(収率90%)を得た。
合成例1、2及び3で得られたMe8HQ-Dを、それぞれMe8HQ-D1、Me8HQ-D2及びMe8HQ-D3という。Me8HQ-Dは式(IV)において、R1〜R5が水素(H又はD)である化合物である。Me8HQ-D1、Me8HQ-D2及びMe8HQ-D3は表1に示すように重水素化率が相違する。
ヘキサメチルベンゼンを標準物質としNMR積算値からMe8HQ-D1〜Me8HQ-D3中の各水素の重水化率を算出した。結果は表1の通り。なお、2-CH3は2位のメチル基を、3-Hは3位の水素を示す。
Figure 2008029670
合成したMe8HQ-Dの一例として合成例1で得られたMe8HQ-D1のIR及びNMRデータを図2〜4に示す。なお、図2はIRスぺクトルを示す。図3及び図4はNMRスぺクトル(図3:δ7.0〜9.0、図4:δ2.0〜3.0)を示し、上段は原料Me8HQのNMRスペクトルであり、下段はMe8HQ-D1のNMRスペクトルである。また、Me8HQ-D1サンプルには標準物質としてのヘキサメチルベンゼンを含む。
合成例4
100mL三口フラスコ中に合成例1で調製したMe8HQ-D1(1.1g)、アルミニウムトリイソプロポキシド(1.2g)、トルエン20mLを装入し攪拌する。この懸濁液に、トルエン12mLに溶解した4−ヒドロキシビフェニル(2.0g)をしたのち、2時間加熱還流する。冷却後、生じた沈殿を濾取、乾燥して粗製物(2.7g)を得た。得られた粗製物を昇華精製して、BAlq-D 2.2g(収率71%)を得た。
合成例5
合成例2で調製したMe8HQ-D2を使用したこと以外は合成例4と同様にしてBAlq-D 2.1g(収率68%)を得た。
合成例6
合成例3で調製したMe8HQ-D3を使用したこと以外は合成例4と同様にしてBAlq-D 2.1g(収率68%)を得た。
なお、合成例4、5及び6で得たBAlq-Dを、それぞれBAlq-D4、BAlq-D5及びBAlq-D6といい、これらは原料として使用するMe8HQ-Dの種類が異なるため、重水素化率が異なる。
合成したBAlq-Dの一例として、図5〜6にBAlq-D4のFD-MSスペクトル及びIRスペクトルを示す。図5はBAlq-D4のFD-MSスペクトルであり、図6はBAlq-D4のIRスペクトルである。
合成例7
50mL三口フラスコ中に合成例1で調製したMe8HQ-D1(2.0g)、アルミニウムトリイソプロポキシド(1.2g)、脱水エタノール28mLを装入し、1時間加熱還流した。この反応液に水0.1mLを加え反応を停止させ、冷却後、生じた沈殿を濾取、乾燥して粗製物を得た。得られた粗製物は昇華精製により精製してAQD-D 1.6g(収率37%)を得た。これの質量分析(FD-MS)を実施したところ、親ピークとして722(M+19)、723(M+20)が観測され、重水素化されていない化合物(AQD)の親ピーク702は観測されなかった。
合成例8
合成例2で調製したMe8HQ-D2を使用した以外は合成例7と同様にしてAQD-D 1.7g(収率39%)を得た。
合成例9
合成例3で調製したMe8HQ-D3を使用したこと以外は合成例7と同様にしてAQD-D 1.6g(収率37%)を得た。
なお、AQD-Dは化学式で例示した(化合物21)であり、合成例7、8及び9で得たAQD-Dを、それぞれAQD-D7、AQD-D8及びAQD-D9という。これらは原料として使用するMe8HQ-Dの種類が異なるため、重水素化率が異なる。
合成したAQD-Dの一例として、図7〜8にAQD-D7の質量分析及びIR分析結果を示す。図7はAQD-D7のFD-MSスペクトルであり、図8はAQD-D7のIRスペクトルである。
実施例1
正孔注入層に銅フタロシアニン(CuPC)を用い、正孔輸送層にα-NPD及び電子輸送層にAlq3を用いた。膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4 Paで積層させた。まず、ITO上に正孔注入層としてCuPCを3.0Å/秒で25nmの膜厚で成膜した。次いで、正孔注入層上に、正孔輸送層としてα-NPDを蒸着速度3.0Å/秒にて55nmの厚さに形成した。
次に、正孔輸送層上に、発光層としてホスト材料としての合成例4で得たBAlq-D4とIr(piq)3(化合物44)とを異なる蒸着源から共蒸着し、47.5nmの厚さに形成した。この時、Ir(piq)3の濃度は8.0 %であった。
次に、電子輸送層としてAlq3を蒸着速度3.0Å/秒にて30nmの厚さに形成した。更に、電子輸送層上に、電子注入層としフッ化リチウム(LiF)を蒸着速度0.1Å/秒にて1nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を蒸着速度10Å/秒にて200nmの厚さに形成し、有機EL素子を作成した。
実施例2
発光層のホスト材料として合成例5で得た化合物BAlq-D5を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例3
発光層のホスト材料として合成例6で得た化合物BAlq-D6を用いた以外は実施例1と同様にして有機EL素子を作成した。
比較例1
発光層のホスト材料として重水素化されていないBAlqを用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例1〜3及び比較例1で得られた有機EL素子各々の発光ピーク波長、最高発光効率、輝度半減寿命(初期輝度2,000cd/m2)を表2に示す。
Figure 2008029670
実施例4
正孔注入層に銅フタロシアニン(CuPC)を用い、正孔輸送層にα-NPD及び電子輸送層にAlq3を用いた。膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4 Paで積層させた。まず、ITO上に正孔注入層としてCuPCを3.0Å/秒で25nmの膜厚で成膜した。次いで、正孔注入層上に、正孔輸送層としてα-NPDを蒸着速度3.0Å/秒にて55nmの厚さに形成した。
次に、正孔輸送層上に、発光層としてホスと材料としての合成例7で得たAQD-D7とIr(piq)3(化合物44)とを異なる蒸着源から共蒸着し、47.5nmの厚さに形成した。この時、Ir(piq)3の濃度は8.0 %であった。
次に、電子輸送層としてAlq3を蒸着速度3.0Å/秒にて30nmの厚さに形成した。更に、電子輸送層上に、電子注入層としフッ化リチウム(LiF)を蒸着速度0.1Å/秒にて1nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を蒸着速度10Å/秒にて200nmの厚さに形成し、有機EL素子を作成した。
実施例5
発光層のホスト材料として重水素化率の異なる合成例8で得たAQD-D8用いた以外は実施例4と同様にして有機EL素子を作成した。
実施例6
発光層のホスト材料として重水素化率の異なる重水素化率の異なる合成例9で得たAQD-D9を用いた以外は実施例4と同様にして有機EL素子を作成した。
比較例2
発光層のホスト材料として重水素化されていないAQDを用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例4〜6及び比較例2で得られた有機EL素子各々の発光ピーク波長、最高発光効率、輝度半減寿命(初期輝度2,000cd/m2)を表3に示す。
Figure 2008029670
産業上の利用の可能性
本発明によれば、良好な発光特性を維持したまま長駆動寿命な有機EL素子を獲得することができる。従って、本発明の有機EL素子はフラットパネルディスプレイ(例えば、OAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。

Claims (6)

  1. 下記一般式(I)で表わされる有機金属錯体からなることを特徴とする有機電界発光素子材料。
    Figure 2008029670

    ここで、R1〜R5は各々独立に、水素原子、重水素原子、又はアルキル基、アラルキル基、アルケニル基、シアノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基から選ばれる1価の置換基を示し、1価の置換基が水素原子を有する場合は、水素原子は重水素原子であってもよく、Dは重水素原子を示し、Lは下記式(1)、(2)、(3)又は(4)で表される1価の基を示す;
    Figure 2008029670

    ここで、Ar1〜Ar5は、は各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Zはシリコン又はゲルマニウムを示し、R1〜R5及びDは、一般式(I)と同じである。
  2. 有機金属錯体が、下記一般式(II)で表わされる有機金属錯体である請求項1記載の有機電界発光素子材料。
    Figure 2008029670

    ここで、R1〜R5及びDは、一般式(I)と同じである。
  3. 基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されてなる有機電界発光素子であって、少なくとも1層の有機層中に請求項1に記載の有機電界発光素子材料を含むことを特徴とする有機電界発光素子。
  4. 基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極の間に電子輸送層を有する有機電界発光素子であって、発光層中に請求項1に記載の有機電界発光素子材料を含むことを特徴とする有機電界発光素子。
  5. 発光層中に、請求項1に記載の有機電界発光素子材料をホスト材料として含有し、周期律表7〜11族から選ばれる少なくとも一つの金属を含む有機金属錯体をゲスト材料として含有する請求項4に記載の有機電界発光素子。
  6. 陽極及び正孔輸送層間に正孔注入層が配され、陰極及び電子輸送層間に電子注入層が配されている請求項5に記載の有機電界発光素子。
JP2008533109A 2006-08-31 2007-08-28 有機電界発光素子材料及び有機電界発光素子 Expired - Fee Related JP5009922B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533109A JP5009922B2 (ja) 2006-08-31 2007-08-28 有機電界発光素子材料及び有機電界発光素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006235274 2006-08-31
JP2006235274 2006-08-31
PCT/JP2007/066639 WO2008029670A1 (fr) 2006-08-31 2007-08-28 Matériau de dispositif électroluminescent organique et dispositif électroluminescent organique
JP2008533109A JP5009922B2 (ja) 2006-08-31 2007-08-28 有機電界発光素子材料及び有機電界発光素子

Publications (2)

Publication Number Publication Date
JPWO2008029670A1 true JPWO2008029670A1 (ja) 2010-01-21
JP5009922B2 JP5009922B2 (ja) 2012-08-29

Family

ID=39157103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008533109A Expired - Fee Related JP5009922B2 (ja) 2006-08-31 2007-08-28 有機電界発光素子材料及び有機電界発光素子

Country Status (7)

Country Link
US (1) US7968874B2 (ja)
EP (1) EP2075310B1 (ja)
JP (1) JP5009922B2 (ja)
KR (1) KR101338343B1 (ja)
CN (1) CN101506328B (ja)
TW (1) TWI404789B (ja)
WO (1) WO2008029670A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484697B2 (ja) * 2008-09-02 2014-05-07 大陽日酸株式会社 有機エレクトロニクスルミネッセンス素子
TW201035281A (en) * 2008-12-22 2010-10-01 Du Pont Electronic devices having long lifetime
TWI638808B (zh) 2009-04-28 2018-10-21 美商環球展覽公司 具有甲基-d3取代之銥錯合物
WO2011037828A2 (en) * 2009-09-22 2011-03-31 University Of Utah Research Foundation Device comprising deuterated organic interlayer
CN102510889B (zh) * 2009-09-29 2015-11-25 E.I.内穆尔杜邦公司 用于发光应用的氘代化合物
US8282861B2 (en) * 2009-12-21 2012-10-09 Che-Hsiung Hsu Electrically conductive polymer compositions
JP5649029B2 (ja) * 2010-01-21 2015-01-07 国立大学法人 東京大学 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
CN116056479A (zh) 2011-02-16 2023-05-02 株式会社半导体能源研究所 发光元件
JP5986200B2 (ja) 2012-06-28 2016-09-06 パイオニア株式会社 有機エレクトロルミネッセンスパネル
CN104211724A (zh) * 2013-05-29 2014-12-17 北京化工大学 β-二酮亚胺基烷氧基氢化铝化合物和其合成方法及应用
CN104659280B (zh) * 2013-11-21 2017-04-05 固安鼎材科技有限公司 一种有机电致发光器件及其制备方法
CN106008338B (zh) * 2016-06-03 2019-02-12 广东工业大学 一种含有氢桥键的8-羟基喹啉类银配合物二聚晶体及其制备方法
US10897016B2 (en) 2016-11-14 2021-01-19 Universal Display Corporation Organic electroluminescent materials and devices
CN110330506A (zh) * 2019-04-29 2019-10-15 宁波卢米蓝新材料有限公司 一种稠合多环化合物及其制备方法和用途

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
US5141671A (en) 1991-08-01 1992-08-25 Eastman Kodak Company Mixed ligand 8-quinolinolato aluminum chelate luminophors
DE69305262T2 (de) * 1992-07-13 1997-04-30 Eastman Kodak Co Einen inneren Übergang aufweisende organisch elektrolumineszierende Vorrichtung mit einer neuen Zusammensetzung
US6500885B1 (en) * 1997-02-28 2002-12-31 Candescent Technologies Corporation Polycarbonate-containing liquid chemical formulation and methods for making and using polycarbonate film
AU1807201A (en) 1999-12-01 2001-06-12 Trustees Of Princeton University, The Complexes of form L2MX as phosphorescent dopants for organic leds
JP4037033B2 (ja) 2000-03-31 2008-01-23 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
US6579630B2 (en) * 2000-12-07 2003-06-17 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP4011325B2 (ja) 2001-10-31 2007-11-21 パイオニア株式会社 有機エレクトロルミネッセンス素子
US6905904B2 (en) * 2002-06-24 2005-06-14 Dow Corning Corporation Planar optical waveguide assembly and method of preparing same
TWI390006B (zh) 2003-08-07 2013-03-21 Nippon Steel Chemical Co Organic EL materials with aluminum clamps
JP2008545014A (ja) * 2005-02-10 2008-12-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 金属ヒドロキシキノリン錯体を含む光活性材料
EP1954669B1 (en) * 2005-12-01 2015-07-08 Auspex Pharmaceuticals, Inc. Substituted phenethylamines with serotoninergic and/or norepinephrinergic activity

Also Published As

Publication number Publication date
JP5009922B2 (ja) 2012-08-29
EP2075310B1 (en) 2012-03-14
EP2075310A1 (en) 2009-07-01
CN101506328B (zh) 2013-01-23
EP2075310A4 (en) 2010-11-03
WO2008029670A1 (fr) 2008-03-13
CN101506328A (zh) 2009-08-12
US7968874B2 (en) 2011-06-28
KR20090043516A (ko) 2009-05-06
US20100181553A1 (en) 2010-07-22
TWI404789B (zh) 2013-08-11
KR101338343B1 (ko) 2013-12-06
TW200821370A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
JP5009922B2 (ja) 有機電界発光素子材料及び有機電界発光素子
JP6426676B2 (ja) 新規有機発光材料
JP6025959B2 (ja) 有機発光ダイオードのための2−アザトリフェニレン物質
JP4519946B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP4545741B2 (ja) 有機電界発光素子
TWI429650B (zh) Organic electroluminescent elements
JP4550160B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP4593470B2 (ja) 有機電界発光素子
EP2080762B1 (en) Compound for organic electroluminescent device and organic electroluminescent device
EP1956022B1 (en) Compound for organic electroluminescent element and organic electroluminescent element
TWI471406B (zh) A phosphorescent element, and an organic electroluminescent device using the same
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
WO2009119163A1 (ja) 有機電界発光素子用化合物及びこれを用いた有機電界発光素子
KR20140072295A (ko) 중수소 치환된 유기금속 착물 및 이를 포함하는 유기 발광 소자
KR102036385B1 (ko) 디아릴아미노 치환된 금속 착물
JP5031575B2 (ja) 有機電界発光素子
JP2005170809A (ja) 化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JP4864708B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees