WO2008023702A1 - Martensitic stainless steel - Google Patents

Martensitic stainless steel Download PDF

Info

Publication number
WO2008023702A1
WO2008023702A1 PCT/JP2007/066194 JP2007066194W WO2008023702A1 WO 2008023702 A1 WO2008023702 A1 WO 2008023702A1 JP 2007066194 W JP2007066194 W JP 2007066194W WO 2008023702 A1 WO2008023702 A1 WO 2008023702A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
martensitic stainless
content
mpa
Prior art date
Application number
PCT/JP2007/066194
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Takabe
Tomoki Mori
Masakatsu Ueda
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39106787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008023702(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2008530919A priority Critical patent/JP5124857B2/en
Priority to BRPI0719904A priority patent/BRPI0719904B1/en
Priority to EP07792794.5A priority patent/EP2060644A4/en
Priority to MX2009001836A priority patent/MX2009001836A/en
Publication of WO2008023702A1 publication Critical patent/WO2008023702A1/en
Priority to NO20090712A priority patent/NO20090712L/en
Priority to US12/379,395 priority patent/US20090162239A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes

Definitions

  • the present invention relates to martensitic stainless steel, and more particularly to martensitic stainless steel used in a corrosive environment containing corrosive substances such as hydrogen sulfide, carbon dioxide, and chlorine ions.
  • oil wells In recent years, deepening of oil and gas fields has been progressing. Since these oil wells and gas wells (hereinafter collectively referred to as oil wells) are deep, high yield strength is required for steel materials used as oil well pipes in these wells. Recently, steel with a yield strength of l lOksi class (0.6% total elongation yield of 758 MPa to 862 MPa) has been used as an oil well pipe.
  • the oil well contains hydrogen sulfide, carbon dioxide, and chlorine ions. Therefore, steel materials for oil well pipes are required to have excellent SSC (Sulfide stress corrosion cracking) resistance and carbon dioxide gas corrosion resistance.
  • SSC Sulfide stress corrosion cracking
  • SUS420 martensitic stainless steel with carbon dioxide corrosion resistance is used for oil wells containing carbon dioxide.
  • SUS420 martensitic stainless steel is not suitable for oil wells containing hydrogen sulfide. This is because the SSC resistance to hydrogen sulfide is low.
  • Patent Document 1 discloses martensitic stainless steel for oil wells having high SSC resistance and carbon dioxide gas corrosion resistance in oil wells containing hydrogen sulfide, carbon dioxide gas, and the like. ing. In order to improve SSC resistance, it is effective to reduce the tensile strength. Therefore, in Patent Document 1 described above, high S / S resistance is obtained by reducing the bow I tension strength of martensitic stainless steel. Furthermore, by reducing the tensile strength, the variation in tensile strength after tempering is reduced.
  • the martensitic stainless steel for oil wells disclosed in Patent Document 1 is designed to have a low tensile strength. Therefore, when the yield strength of steel is llOksi class (758MPa ⁇ 832MPa), there is a problem that the value obtained by subtracting the yield strength from the tensile strength is less than 20.7MPa.
  • the steel material for oil country tubular goods is also required to have SSC resistance. If the hardness of the same steel material is large, the SSC resistance decreases. Therefore, it is necessary to suppress the hardness variation in the steel material for oil well pipes.
  • An object of the present invention is a martensite of llOksi class (yield strength is 758MPa to 862MPa) having a value obtained by subtracting yield strength from tensile strength of 20.7MPa or more and capable of suppressing variation in hardness. Is to provide stainless steel.
  • the present inventors calculated the yield strength (Yield Stress) from the ratio of Ti content to C content in steel (hereinafter also referred to as Ti / C) and tensile strength (hereinafter also referred to as TS). : We have newly found that there is a correlation with the value (hereinafter also referred to as TS-YS) minus (hereinafter also referred to as YS). Hereinafter, this knowledge will be described.
  • the present inventors in mass%, C: 0.010-0.030%, Mn: 0.30-0.60%, P: 0.0 40% or less, S: 0.0100% or less, Cr: 10.00-15.00%, Ni: 2.50 —8.00%, Mo: l.00—5.00%, Ti: 0.050—0.250%, V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, A1: 0.10% or less A plurality of martensitic stainless steels with the balance of Fe and impurities and Ti / C of 7-4-10.7 were manufactured.
  • FIG. 1 shows the survey results.
  • the horizontal axis in Fig. 1 is Ti / C, and the vertical axis is TS—YS (ksi).
  • TS—YS ksi
  • Ti / C and TS—YS showed a negative correlation. Specifically, TS-YS became larger as Ti / C became smaller. Based on this new finding, the present inventors have found that TS-YS ⁇ 20.7 MPa (3 ksi) can be satisfied by satisfying the equation (A).
  • the element symbol in a formula is content (mass%) of each element.
  • the present inventors have also newly found that if Ti / C is too small, the variation in hardness becomes large. In other words, it was found that by setting Ti / C within an appropriate range, the TS-YS force is 3 ⁇ 40.7 MPa or more, and the force S can be suppressed to suppress variation in hardness.
  • the martensitic stainless steel according to the present invention is, in mass%, C: 0.010—0.030%, Mn: 0.30—0.60%, P: 0.040% or less, S: 0.0100% or less, Cr: 10.00—15.0% , Ni: 2.50—8.00%, ⁇ : 1.00—5.00%, Ti: 0.050—0.250%, V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, A1: 0.10% or less One or more of them, and the balance consists of Fe and impurities.
  • the martensitic stainless steel of the present invention further satisfies the formula (1) and has a yield strength of 758 to 862 MPa. Yield strength here refers to 0.6% total elongation resistance based on ASTM standards.
  • the element symbol in a formula is content (mass%) of each element.
  • the martensitic stainless steel further includes Nb: 0.25 instead of a part of Fe.
  • Zr contain one or more of 0.25% or less.
  • FIG. 1 is a graph showing the relationship between Ti / C and the value obtained by subtracting the yield strength from the tensile strength.
  • FIG. 2 is a cross-sectional view of a steel pipe for explaining hardness measurement points.
  • the martensitic stainless steel according to the embodiment of the present invention has the following composition.
  • % related to elements means mass%.
  • C carbon
  • TS—YS ⁇ 20.7 MPa TS—YS ⁇ 20.7 MPa cannot be satisfied when the yield strength of steel is at least lOksi class (758 MPa to 862 MPa). Therefore, the C content shall be 0.0010-0.030%.
  • a preferable C content is 0.012 to 0.018%.
  • Manganese ( ⁇ ) improves hot workability. However, if ⁇ is contained excessively, the effect is saturated. Therefore, the ⁇ content is 0.30-0.60%.
  • Phosphorus ( ⁇ ) is an impurity. ⁇ reduces SSC resistance. Therefore, the soot content is not more than 0.040%.
  • S Sulfur
  • S is an impurity. S decreases hot workability. Therefore, the lower the S content, the better.
  • the S content is not more than 0.0100%.
  • Chromium (Cr) improves carbon dioxide corrosion resistance. However, excessive Cr content prevents the tempered structure from becoming a martensite phase. Therefore, the Cr content is set to 10.00-15.00%.
  • Nickel (Ni) is effective to make the structure after tempering mainly martensite. . If the Ni content is too low, many ferrite phases will precipitate in the tempered structure. On the other hand, if the Ni content is too large, the structure after tempering mainly becomes an austenite phase. Was once, Ni content (or 2. 50-8. To 00 0/0. Is preferably Rere Ni content (or 4. 00-7. 00%.
  • Molybdenum (Mo) improves the SSC resistance of high-strength steel in environments containing hydrogen sulfide. However, if Mo is contained excessively, the effect is saturated. Therefore, the Mo content should be 1.00-5.00%.
  • Titanium (Ti) improves toughness by suppressing the coarsening of the structure.
  • excessive Ti content prevents the structure after tempering from becoming a martensite phase, and as a result, toughness and corrosion resistance (SSC resistance and carbon dioxide corrosion resistance) decrease. Therefore, the Ti content is set to 0.05-0.250%.
  • the preferred Ti content is between 0.050 and 0.150%
  • N 0.07% or less
  • N Nitrogen
  • the N content is 0.07% or less.
  • the N content is 0.03% or less, more preferably the N content is 0.02% or less. More preferably, the N content is 0.01% or less.
  • V 0.25% or less
  • V Vanadium (V) fixes carbides in steel by forming carbides, raises the tempering temperature, and improves SSC resistance.
  • excessive addition of V has the effect of preventing the martensitic phase. Therefore, the V content is 0.25% or less.
  • a preferable lower limit of the V content is 0.01%.
  • the martensitic stainless steel according to the present embodiment further contains at least one of Si and A1.
  • Si 0.50% or less
  • Si silicon
  • Al aluminum
  • the balance of the martensitic stainless steel according to the present embodiment is made of Fe. Note that impurities other than the above-described impurities may be included due to various factors.
  • the Ti content and the C content in the chemical composition satisfy the formula (1).
  • the element symbol in a formula is content (mass%) of each element.
  • TS-YS increases as Ti / C decreases. If Ti / C exceeds 10 ⁇ 1, TS -YS ⁇ 20. 7MPa cannot be satisfied! / ,.
  • Hardness variation (HRC) specified in (2) is 2.5 or more.
  • Hmax and Hmin are measured by the following method.
  • the Rockwell hardness C scale hereinafter simply referred to as Rockwell hardness
  • HRC the Rockwell hardness C scale
  • the hardness variation is 2.5 or more, the SSC resistance tends to decrease. If Ti / C is 6.0 or more, the hardness variation is less than 2.5, and the strength S can be suppressed. The reason for this is not clear, but the following reason is presumed. If Ti / C is too small, the Ti content in the steel is low. Therefore, multiple VCs precipitate during tempering. The size of each deposited VC is non-uniform depending on the deposition location in the steel pipe. As a result, the hardness variation increases. On the other hand, if Ti / C is large, the Ti content in the steel is large. Therefore, TiC precipitates during tempering and VC precipitation is suppressed. As a result, the hardness variation is reduced. [0041] The martensitic stainless steel according to the present invention satisfies the formula (1), so that TS-YS is 20.7 MPa or more and the hardness variation is less than 2.5.
  • a preferable upper limit value of Ti / C is 9.6, and a more preferable upper limit value of Ti / C is 9.0.
  • the martensitic stainless steel according to the present embodiment further contains at least one of Nb and Zr instead of a part of Fe, if necessary.
  • Nb 0.25% or less
  • Niobium (Nb) and zirconium (Zr) are both selective elements. Together, these elements reduce the strength variation after tempering by forming carbides and fixing C in the steel. However, excessive inclusion of these elements prevents the structure after tempering from becoming mainly martensitic. Therefore, the Nb content and Zr content are 0.25% or less, respectively. The lower limit of the preferred Nb content and the lower limit of the Zr content are each 0.05%. Note that the above effect can be obtained to some extent even if it contains less than 0.005% Nb and Zr.
  • the martensitic stainless steel according to the present embodiment further contains Cu instead of a part of Fe, if necessary.
  • Copper (Cu) is a selective element.
  • Cu like Ni, is effective in making the structure after tempering mainly martensite.
  • Cu content should be 1.00% or less.
  • the preferred lower limit of Cu content is 0.05%. Note that the above effect can be obtained to some extent even if it contains less than 0.05% of Cu.
  • the martensitic stainless steel according to the present embodiment further contains at least one of Ca, Mg, La, and Ce instead of part of Fe, if necessary.
  • Calcium (Ca), magnesium (Mg), lanthanum (La) and cerium (Ce) are all selective elements. All of these elements improve hot workability. However, if these elements are contained excessively, coarse oxides are formed, and as a result, the corrosion resistance decreases. Therefore, the content of these elements should be 0.005% or less. The preferable lower limit of the content of these elements is 0.0002%. Even if Ca, Mg, La, Ce is contained in less than 0.0002%, the above effect can be obtained to some extent. Preferably, among these elements, Ca and / or La is contained.
  • the molten steel having the chemical composition described in 1 above is formed into a slab or billet by a continuous forging method or the like.
  • molten steel is made into an ingot by the ingot-making method. Slabs and ingots are hot-worked by ingot rolling, etc. to form billets.
  • the manufactured billet is heated in a heating furnace, and the steel piece or steel piece extracted from the heating furnace is drilled in the axial direction by a punching machine. After that, it is processed into a seamless steel pipe of a predetermined size by a mandrel mill and reducer. After processing, heat treatment (quenching and tempering) is performed. At this time, the quenching temperature and the tempering temperature are adjusted so that the 0.6% total elongation yield strength of the martensitic stainless steel after tempering falls within the range of 758 to 862 MPa (110 ksi class).
  • the above-described manufacturing method is a method for manufacturing a martensitic stainless steel seamless steel pipe! /
  • the force described in the above is a method for manufacturing a martensitic stainless steel welded steel pipe by a known manufacturing method. Also good.
  • Billets were manufactured by melting steel having the chemical composition shown in Table 1 for each test number in Table 1. Each billet produced was hot forged and hot rolled to produce a seamless steel pipe.
  • quenching and tempering were carried out so that the 0.6% total elongation yield strength of each manufactured seamless steel pipe was within the range of 758 MPa 862 MPa. Specifically, the quenching temperature was 910 ° C, and the tempering temperature was adjusted within the range of 560 ° C and 630 ° C.
  • each steel pipe After quenching and tempering, each steel pipe has a 0.6% total elongation resistance (YS) and tensile strength (TS) was measured.
  • YS total elongation resistance
  • TS tensile strength
  • Tensile tests were performed on the collected round bar specimens at room temperature, and 0.6% total elongation resistance YS (MPa) and tensile strength TS (MPa) based on ASTM standards were measured. After the measurement, TS-YS was determined for each test number.
  • each seamless steel pipe was cut at the center in the transverse direction.
  • the Rockwell hardness C scale (HRC) of the central thickness P1-P4 was measured every 90 ° in the circumferential direction.
  • HRC Rockwell hardness C scale
  • Table 1 shows the survey results.
  • Ti / C in the table is the ratio of the Ti content (mass%) to the C content (mass%) of each test number.
  • TS in the table indicates the tensile strength (MPa) of each test number, and “YS” indicates the 0.6% total elongation resistance (MPa) of each test number.
  • TS—YS in the table indicates the value (MPa) obtained by subtracting 0.6% total elongation resistance from tensile strength.
  • Hardness variation in the table indicates the hardness variation (HRC) obtained by equation (2). It should be noted that numerical values with an underlined bow in the table are outside the scope of the present invention.
  • the seamless steel pipes having test numbers 1 to 49 had a chemical composition within the scope of the present invention, and Ti / C satisfied the formula (1). Therefore, TS-YS of all seamless steel pipes was 20 ⁇ 7MPa or more. Furthermore, the hardness variation (HRC) of all seamless steel pipes was less than 2.5.
  • the seamless steel pipes having test numbers 70 to 73 all had a chemical composition within the scope of the present invention, but had a Ti / C of less than 6.0. Therefore, the hardness variation was 2.5 or more.
  • the martensitic stainless steel according to the present invention is widely applied to steel materials used in corrosive environments containing corrosive substances such as hydrogen sulfide, carbon dioxide, and chlorine ions. Specifically, it is suitable for steel materials used in oil and natural gas production facilities, carbon dioxide removal equipment, and geothermal power generation facilities. Especially suitable for oil well pipes used in oil wells and gas wells.

Abstract

A martensitic stainless steel which contains, in terms of mass%, 0.010-0.030% C, 0.30-0.60% Mn, up to 0.040% P, up to 0.0100% S, 10.00-15.00% Cr, 2.50-8.00% Ni, 1.00-5.00% Mo, 0.050-0.250% Ti, up to 0.25% V, and up to 0.07% N, and contains at least either of up to 0.50% Si and up to 0.10% Al, the remainder being iron and incidental impurities. The martensitic stainless steel satisfies the relationship (1) and has a yield strength of 758-862 MPa. Due to this constitution, this martensitic stainless steel has a strength of the 110-ksi class (yield strength of 758-862 MPa), and the value obtained by subtracting the yield strength from the tensile strength is 20.7 MPa or more. 6.0≤Ti/C≤10.1 (1)

Description

明 細 書  Specification
マルテンサイト系ステンレス鋼 技術分野  Martensitic stainless steel
[0001] 本発明は、マルテンサイト系ステンレス鋼に関し、さらに詳しくは、硫化水素や炭酸 ガス、塩素イオン等の腐食性物質を含む腐食環境で使用されるマルテンサイト系ス テンレス鋼に関する。  [0001] The present invention relates to martensitic stainless steel, and more particularly to martensitic stainless steel used in a corrosive environment containing corrosive substances such as hydrogen sulfide, carbon dioxide, and chlorine ions.
背景技術  Background art
[0002] 近年、油田やガス田の深井戸化が進んでいる。これらの油井及びガス井(以下、こ れらを総称して油井という)は深いため、これらの油井に油井管として使用される鋼材 には、高い降伏強度が要求される。最近では、 l lOksi級(0. 6%全伸び耐力が 758 MPa〜862MPa)の降伏強度を有する鋼材が油井管として用いられている。  [0002] In recent years, deepening of oil and gas fields has been progressing. Since these oil wells and gas wells (hereinafter collectively referred to as oil wells) are deep, high yield strength is required for steel materials used as oil well pipes in these wells. Recently, steel with a yield strength of l lOksi class (0.6% total elongation yield of 758 MPa to 862 MPa) has been used as an oil well pipe.
[0003] さらに、油井は、硫化水素や炭酸ガス、塩素イオンを含む。そのため、油井管用の 鋼材には、優れた耐 SSC (Sulfide stress corrosion cracking :硫化物応力腐食割れ) 性及び耐炭酸ガス腐食性が要求される。  [0003] Furthermore, the oil well contains hydrogen sulfide, carbon dioxide, and chlorine ions. Therefore, steel materials for oil well pipes are required to have excellent SSC (Sulfide stress corrosion cracking) resistance and carbon dioxide gas corrosion resistance.
[0004] 一般的に、油井には合金成分を多く含む鋼が使用される。たとえば、炭酸ガスを含 む油井には、耐炭酸ガス腐食性を有する SUS420マルテンサイト系ステンレス鋼が 使用される。し力もながら SUS420マルテンサイト系ステンレス鋼は、硫化水素を含 む油井には適さない。硫化水素に対する耐 SSC性が低いためである。  [0004] Generally, steel containing a lot of alloy components is used for oil wells. For example, SUS420 martensitic stainless steel with carbon dioxide corrosion resistance is used for oil wells containing carbon dioxide. However, SUS420 martensitic stainless steel is not suitable for oil wells containing hydrogen sulfide. This is because the SSC resistance to hydrogen sulfide is low.
[0005] そこで、耐炭酸ガス腐食性だけでなく耐 SSC性も有するマルテンサイト系ステンレス 鋼が開発されている。特開平 5— 287455号公報(以下、特許文献 1という)は、硫化 水素や炭酸ガス等を含む油井において高い耐 SSC性及び耐炭酸ガス腐食性を備 えた油井用マルテンサイト系ステンレス鋼を開示している。耐 SSC性を向上するため には引張強度の低減が有効である。そこで、上述の特許文献 1では、マルテンサイト 系ステンレス鋼の弓 I張強度を低減することにより、高!/、耐 S SC性が得られるとして!/、 る。さらに、引張強度を低減することにより、焼戻し後の引張強度のばらつきが低減さ れるとしている。  [0005] Therefore, martensitic stainless steels that have not only carbon dioxide corrosion resistance but also SSC resistance have been developed. Japanese Laid-Open Patent Publication No. 5-287455 (hereinafter referred to as Patent Document 1) discloses martensitic stainless steel for oil wells having high SSC resistance and carbon dioxide gas corrosion resistance in oil wells containing hydrogen sulfide, carbon dioxide gas, and the like. ing. In order to improve SSC resistance, it is effective to reduce the tensile strength. Therefore, in Patent Document 1 described above, high S / S resistance is obtained by reducing the bow I tension strength of martensitic stainless steel. Furthermore, by reducing the tensile strength, the variation in tensile strength after tempering is reduced.
[0006] ところで、最近、油井管用の鋼材では、上述の高強度、耐 SSC性及び耐炭酸ガス 腐食性といった特性に加え、外力により鋼材に塑性変形が生じても直ぐには破断し ない特性が求められている。より具体的には、引張強度から降伏強度(0.6%全伸び 耐カ)を差し引いた値が 20.7MPa( = 3ksi)以上となることが求められている。 [0006] By the way, recently, in steel materials for oil well pipes, the above-mentioned high strength, SSC resistance and carbon dioxide gas resistance have been proposed. In addition to properties such as corrosivity, there is a need for properties that do not break immediately even when plastic deformation occurs in steel due to external forces. More specifically, the value obtained by subtracting the yield strength (0.6% total elongation resistance) from the tensile strength is required to be 20.7 MPa (= 3 ksi) or more.
[0007] 特許文献 1に開示された油井用マルテンサイト系ステンレス鋼は、引張強度が低く なるように設計されている。そのため、鋼の降伏強度を llOksi級(758MPa〜832M Pa)とした場合、引張強度から降伏強度を差し引いた値が 20.7MPa未満になるとい う問題がある。 [0007] The martensitic stainless steel for oil wells disclosed in Patent Document 1 is designed to have a low tensile strength. Therefore, when the yield strength of steel is llOksi class (758MPa ~ 832MPa), there is a problem that the value obtained by subtracting the yield strength from the tensile strength is less than 20.7MPa.
[0008] さらに、油井管用の鋼材では、上述の通り耐 SSC性も要求される。同じ鋼材で硬度 のばらつきが大きい場合、耐 SSC性は低下する。そのため、油井管用の鋼材では、 鋼材内の硬度ばらつきを抑える必要がある。  [0008] Further, as described above, the steel material for oil country tubular goods is also required to have SSC resistance. If the hardness of the same steel material is large, the SSC resistance decreases. Therefore, it is necessary to suppress the hardness variation in the steel material for oil well pipes.
発明の開示  Disclosure of the invention
[0009] 本発明の目的は、引張強度から降伏強度を差し引いた値が 20.7MPa以上であり 、かつ、硬度のばらつきを抑えること力できる、 llOksi級(降伏強度が 758MPa〜86 2MPa)のマルテンサイト系ステンレス鋼を提供することである。  [0009] An object of the present invention is a martensite of llOksi class (yield strength is 758MPa to 862MPa) having a value obtained by subtracting yield strength from tensile strength of 20.7MPa or more and capable of suppressing variation in hardness. Is to provide stainless steel.
[0010] 本発明者らは、鋼中における Ti含有量の C含有量に対する比(以下、 Ti/Cともい う)と、引張強度(Tensile Stress:以下、 TSともいう)から降伏強度(Yield Stress:以下 、YSともいう)を差し引いた値 (以下、 TS—YSともいう)とが相関関係を有することを 新たに知見した。以下、この知見について説明する。  [0010] The present inventors calculated the yield strength (Yield Stress) from the ratio of Ti content to C content in steel (hereinafter also referred to as Ti / C) and tensile strength (hereinafter also referred to as TS). : We have newly found that there is a correlation with the value (hereinafter also referred to as TS-YS) minus (hereinafter also referred to as YS). Hereinafter, this knowledge will be described.
[0011] 本発明者らは、質量%で、 C:0.010—0.030%、 Mn:0.30—0.60%、 P:0.0 40%以下、 S:0.0100%以下、 Cr:10.00—15.00%、Ni:2.50—8.00%、 M o:l.00—5.00%、Ti:0.050—0.250%、 V:0.25%以下、 N:0.07%以下と、 Si:0.50%以下、 A1:0.10%以下のうちの 1種以上とを含有し、残部は Fe及び不 純物からなり、 Ti/Cが 7· 4-10.7となる複数のマルテンサイト系ステンレス鋼を製 造した。製造時、焼入れ焼戻しを実施し、焼戻し温度を調整して、各マルテンサイト 系ステンレス鋼の降伏強度を llOksi級(758MPa〜862MPa)とした。製造された 各マルテンサイト系ステンレス鋼に対して常温で引張試験を実施して、引張強度及 び降伏強度を求めた。なお、 ASTM規格に基づく 0.6%全伸び耐カを降伏強度と 疋我した。 [0012] 図 1に調査結果を示す。図 1の横軸は Ti/Cであり、縦軸は TS— YS (ksi)である。 図 1を参照して、 Ti/Cと TS—YSとは負の相関を示した。具体的には Ti/Cが小さ くなるにしたがい、 TS— YSは大きくなつた。この新たな知見に基づいて、本発明者ら は、式 (A)を満たすことにより、 TS—YS≥20.7MPa(3ksi)を満足できることを見出 した。 [0011] The present inventors, in mass%, C: 0.010-0.030%, Mn: 0.30-0.60%, P: 0.0 40% or less, S: 0.0100% or less, Cr: 10.00-15.00%, Ni: 2.50 —8.00%, Mo: l.00—5.00%, Ti: 0.050—0.250%, V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, A1: 0.10% or less A plurality of martensitic stainless steels with the balance of Fe and impurities and Ti / C of 7-4-10.7 were manufactured. Quenching and tempering were performed during production, and the tempering temperature was adjusted to set the yield strength of each martensitic stainless steel to the llOksi class (758 MPa to 862 MPa). Each manufactured martensitic stainless steel was subjected to a tensile test at room temperature to determine the tensile strength and yield strength. In addition, 0.6% total elongation resistance based on ASTM standards was considered as yield strength. [0012] Figure 1 shows the survey results. The horizontal axis in Fig. 1 is Ti / C, and the vertical axis is TS—YS (ksi). Referring to Fig. 1, Ti / C and TS—YS showed a negative correlation. Specifically, TS-YS became larger as Ti / C became smaller. Based on this new finding, the present inventors have found that TS-YS≥20.7 MPa (3 ksi) can be satisfied by satisfying the equation (A).
Ti/C≤ 10.1 (A)  Ti / C≤ 10.1 (A)
ここで、式中の元素記号は、各元素の含有量 (質量%)である。  Here, the element symbol in a formula is content (mass%) of each element.
[0013] さらに、本発明者らは、 Ti/Cが小さすぎれば、硬度のばらつきが大きくなることも 新たに知見した。つまり、 Ti/Cを適切な範囲とすることで、 TS—YS力 ¾0.7MPa 以上となり、かつ、硬度のばらつきも抑えること力 Sできることを見出した。 [0013] Furthermore, the present inventors have also newly found that if Ti / C is too small, the variation in hardness becomes large. In other words, it was found that by setting Ti / C within an appropriate range, the TS-YS force is ¾0.7 MPa or more, and the force S can be suppressed to suppress variation in hardness.
[0014] 以上の技術思想に基づいて、本発明者らは、以下の発明を完成した。 [0014] Based on the above technical idea, the present inventors have completed the following invention.
[0015] 本発明によるマルテンサイト系ステンレス鋼は、質量%で、 C:0.010—0.030%、 Mn:0.30—0.60%、P:0.040%以下、 S:0.0100%以下、 Cr:10.00—15.0 0%、Ni:2.50—8.00%、Μο:1.00—5.00%、Ti:0.050—0.250%、 V:0. 25%以下、 N:0.07%以下と、 Si:0.50%以下、 A1:0. 10%以下のうちの 1種以 上とを含有し、残部は Fe及び不純物からなる。本発明のマルテンサイト系ステンレス 鋼はさらに、式(1)を満たし、 758〜862MPaの降伏強度を有する。ここでいう降伏 強度とは ASTM規格に基づく 0.6%全伸び耐カである。 [0015] The martensitic stainless steel according to the present invention is, in mass%, C: 0.010—0.030%, Mn: 0.30—0.60%, P: 0.040% or less, S: 0.0100% or less, Cr: 10.00—15.0% , Ni: 2.50—8.00%, Μο: 1.00—5.00%, Ti: 0.050—0.250%, V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, A1: 0.10% or less One or more of them, and the balance consists of Fe and impurities. The martensitic stainless steel of the present invention further satisfies the formula (1) and has a yield strength of 758 to 862 MPa. Yield strength here refers to 0.6% total elongation resistance based on ASTM standards.
6.0≤Ti/C≤10.1 (1)  6.0≤Ti / C≤10.1 (1)
ここで、式中の元素記号は、各元素の含有量 (質量%)である。  Here, the element symbol in a formula is content (mass%) of each element.
[0016] 好ましくは、マルテンサイト系ステンレス鋼はさらに、 Feの一部に代えて、 Nb:0.25[0016] Preferably, the martensitic stainless steel further includes Nb: 0.25 instead of a part of Fe.
%以下、 Zr:0.25%以下のうちの 1種以上を含有する。 % Or less, Zr: contain one or more of 0.25% or less.
[0017] 好ましくは、マルテンサイト系ステンレス鋼はさらに、 Feの一部に代えて、 Cu: 1· 00[0017] Preferably, in the martensitic stainless steel, Cu: 1.00
%以下を含有する。 Contains% or less.
[0018] 好ましくは、マルテンサイト系ステンレス鋼はさらに、 Feの一部に代えて、 Ca:0.00 5%以下、 Mg:0.005%以下、 La:0.005%以下、 Ce:0.005%以下のうちの 1種 以上を含有する。  [0018] Preferably, in the martensitic stainless steel, in place of a part of Fe, Ca: 0.005% or less, Mg: 0.005% or less, La: 0.005% or less, Ce: 0.005% or less Contains more than seeds.
図面の簡単な説明 [0019] [図 1]引張強度から降伏強度を差し引いた値と、 Ti/Cとの関係を示す図である。 Brief Description of Drawings [0019] FIG. 1 is a graph showing the relationship between Ti / C and the value obtained by subtracting the yield strength from the tensile strength.
[図 2]硬度の測定箇所を説明するための、鋼管の横断面図である。  FIG. 2 is a cross-sectional view of a steel pipe for explaining hardness measurement points.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、図面を参照し、本発明の実施の形態を詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021] 1.化学組成 [0021] 1. Chemical composition
本発明の実施の形態によるマルテンサイト系ステンレス鋼は、以下の組成からなる 。以下、元素に関する%は質量%を意味する。  The martensitic stainless steel according to the embodiment of the present invention has the following composition. Hereinafter,% related to elements means mass%.
[0022] C : 0. 010—0. 030% [0022] C: 0. 010—0. 030%
炭素(C)を過剰に含有すれば、焼戻し後の硬度が高くなり過ぎ、硫化物応力腐食 割れ感受性が高くなる。また C含有量が少なすぎれば、鋼の降伏強度を l lOksi級(7 58MPa~862MPa)以上としたときに、 TS— YS≥ 20. 7MPaを満たすことができな い。したカつて、 C含有量は 0. 010-0. 030%とする。好ましい C含有量は、 0. 012 〜0· 018%である。  If carbon (C) is contained excessively, the hardness after tempering becomes too high, and the susceptibility to sulfide stress corrosion cracking becomes high. If the C content is too small, TS—YS ≥ 20.7 MPa cannot be satisfied when the yield strength of steel is at least lOksi class (758 MPa to 862 MPa). Therefore, the C content shall be 0.0010-0.030%. A preferable C content is 0.012 to 0.018%.
[0023] Mn : 0. 30—0. 60% [0023] Mn: 0.30—0.60%
マンガン(Μη)は熱間加工性を向上する。し力、しながら、 Μηを過剰に含有すれば 、その効果が飽和する。したがって、 Μη含有量は 0. 30-0. 60%とする。  Manganese (Μη) improves hot workability. However, if Μη is contained excessively, the effect is saturated. Therefore, the Μη content is 0.30-0.60%.
[0024] Ρ : 0. 040%以下 [0024] Ρ: 0. 040% or less
リン (Ρ)は不純物である。 Ρは耐 SSC性を低下する。したがって、 Ρ含有量は 0. 04 0%以下とする。  Phosphorus (Ρ) is an impurity. Ρ reduces SSC resistance. Therefore, the soot content is not more than 0.040%.
[0025] S : 0. 0100%以下 [0025] S: 0.0100% or less
硫黄(S)は不純物である。 Sは熱間加工性を低下する。そのため、 S含有量は少な いほどよい。 S含有量は 0. 0100%以下とする。  Sulfur (S) is an impurity. S decreases hot workability. Therefore, the lower the S content, the better. The S content is not more than 0.0100%.
[0026] Cr: 10. 00—15. 00% [0026] Cr: 10. 00—15. 00%
クロム(Cr)は耐炭酸ガス腐食性を向上する。し力、しながら、過剰な Cr含有は、焼戻 し後の組織をマルテンサイト相にするのを妨げる。したがって、 Cr含有量は 10. 00〜 15. 00%とする。  Chromium (Cr) improves carbon dioxide corrosion resistance. However, excessive Cr content prevents the tempered structure from becoming a martensite phase. Therefore, the Cr content is set to 10.00-15.00%.
[0027] Ni : 2. 50—8. 00% [0027] Ni: 2. 50—8.00%
ニッケル (Ni)は焼戻し後の組織を主としてマルテンサイト相にするのに有効である 。 Ni含有量が少なすぎれば、焼戻し後の組織に多くのフェライト相が析出する。一方 、 Ni含有量が多すぎれば、焼戻し後の組織が主としてオーステナイト相となる。した カつて、 Ni含有量 (ま 2. 50—8. 000/0にする。好ましレヽ Ni含有量 (ま 4. 00—7. 00% である。 Nickel (Ni) is effective to make the structure after tempering mainly martensite. . If the Ni content is too low, many ferrite phases will precipitate in the tempered structure. On the other hand, if the Ni content is too large, the structure after tempering mainly becomes an austenite phase. Was once, Ni content (or 2. 50-8. To 00 0/0. Is preferably Rere Ni content (or 4. 00-7. 00%.
[0028] Mo : l . 00—5. 00%  [0028] Mo: l. 00—5.00%
モリブデン (Mo)は硫化水素を含む環境での高強度鋼の耐 SSC性を向上する。し 力、しながら、 Moを過剰に含有すれば、その効果は飽和する。したがって、 Mo含有量 は 1. 00—5. 00%とする。  Molybdenum (Mo) improves the SSC resistance of high-strength steel in environments containing hydrogen sulfide. However, if Mo is contained excessively, the effect is saturated. Therefore, the Mo content should be 1.00-5.00%.
[0029] Ti : 0. 050—0. 250% [0029] Ti: 0. 050—0. 250%
チタン (Ti)は組織の粗大化を抑制することにより靭性を改善する。し力、しながら、過 剰な Tiの含有は、焼戻し後の組織を主としてマルテンサイト相にするのを妨げ、結果 として靭性ゃ耐食性(耐 SSC性及び耐炭酸ガス腐食性)を低下する。したがって、 Ti 含有量は 0. 050—0. 250%とする。好ましい Ti含有量は 0. 050—0. 150%である Titanium (Ti) improves toughness by suppressing the coarsening of the structure. However, excessive Ti content prevents the structure after tempering from becoming a martensite phase, and as a result, toughness and corrosion resistance (SSC resistance and carbon dioxide corrosion resistance) decrease. Therefore, the Ti content is set to 0.05-0.250%. The preferred Ti content is between 0.050 and 0.150%
Yes
[0030] N : 0. 07%以下  [0030] N: 0.07% or less
窒素(N)は不純物である。 Nを過剰に含有すれば、鋼中に窒化物系介在物が多く 析出され、その結果、耐食性が低下する。したがって、 N含有量は 0. 07%以下であ る。好ましくは、 N含有量は 0. 03%以下であり、より好ましくは、 N含有量は 0. 02% 以下である。さらに好ましくは、 N含有量は 0. 01 %以下である。  Nitrogen (N) is an impurity. If N is contained excessively, a large amount of nitride inclusions are precipitated in the steel, resulting in a decrease in corrosion resistance. Therefore, the N content is 0.07% or less. Preferably, the N content is 0.03% or less, more preferably the N content is 0.02% or less. More preferably, the N content is 0.01% or less.
[0031] V: 0. 25%以下 [0031] V: 0.25% or less
バナジウム (V)は炭化物を形成することにより鋼中の Cを固定し、焼き戻し温度を高 め、耐 SSC性を向上させる。しかしながら、 Vの過剰な添加はマルテンサイト相にする のを妨げる作用がある。したがって、 V含有量は 0. 25%以下である。好ましい V含有 量の下限は 0. 01 %である。  Vanadium (V) fixes carbides in steel by forming carbides, raises the tempering temperature, and improves SSC resistance. However, excessive addition of V has the effect of preventing the martensitic phase. Therefore, the V content is 0.25% or less. A preferable lower limit of the V content is 0.01%.
[0032] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、 Si及び A1のうちの少な くとも 1種以上を含有する。 [0032] The martensitic stainless steel according to the present embodiment further contains at least one of Si and A1.
[0033] Si : 0. 50%以下 [0033] Si: 0.50% or less
A1 : 0. 10%以下 ケィ素(Si)及びアルミニウム (Al)は共に脱酸剤として有効である。し力もながら、 Si を過剰に含有すれば靭性及び熱間加工性が低下する。また、 A1を過剰に含有すれ ば鋼中に多数の介在物が生成され、これにより耐食性が低下する。したがって、 Si含 有量は 0. 50%以下とし、 A1含有量は 0. 10%以下とする。好ましい Si含有量の下限 は 0. 10%であり、好ましい A1含有量の下限は、 0. 001 %である。なお、下限未満の Si及び/又は A1を含有しても上記効果はある程度得られる。 A1: 0.10% or less Both silicon (Si) and aluminum (Al) are effective as deoxidizers. However, if Si is contained excessively, toughness and hot workability are reduced. In addition, if A1 is contained excessively, many inclusions are formed in the steel, which lowers the corrosion resistance. Therefore, the Si content is 0.50% or less, and the A1 content is 0.10% or less. The lower limit of the preferred Si content is 0.10%, and the lower limit of the preferred A1 content is 0.001%. Even if Si and / or A1 below the lower limit is contained, the above effect can be obtained to some extent.
[0034] 本実施の形態によるマルテンサイト系ステンレス鋼の残部は Feで構成される。なお 、種々の要因により上述の不純物以外の他の不純物が含まれることもあり得る。  [0034] The balance of the martensitic stainless steel according to the present embodiment is made of Fe. Note that impurities other than the above-described impurities may be included due to various factors.
[0035] さらに、上記化学組成中の Ti含有量と、 C含有量とは、式(1)を満足する。  [0035] Further, the Ti content and the C content in the chemical composition satisfy the formula (1).
[0036] 6. 0≤Ti/C≤10. 1 (1)  [0036] 6. 0≤Ti / C≤10. 1 (1)
ここで、式中の元素記号は、各元素の含有量 (質量%)である。  Here, the element symbol in a formula is content (mass%) of each element.
[0037] 図 1に示すとおり、 Ti/Cが小さくなるほど、 TS— YSは増大する。 Ti/Cが 10· 1を 超えると、 TS -YS≥ 20. 7MPaを満たすことができな!/、。  [0037] As shown in FIG. 1, TS-YS increases as Ti / C decreases. If Ti / C exceeds 10 · 1, TS -YS≥ 20. 7MPa cannot be satisfied! / ,.
[0038] 一方、 Ti/Cが小さすぎると、硬度のばらつきが大きくなる。具体的には、以下の式  [0038] On the other hand, if Ti / C is too small, the variation in hardness increases. Specifically, the following formula
(2)で定められる硬度ばらつき(HRC)が 2· 5以上となる。  Hardness variation (HRC) specified in (2) is 2.5 or more.
[0039] 硬度ばらつき(HRC) =Hmax— Hmin (2)  [0039] Hardness variation (HRC) = Hmax— Hmin (2)
ここで、 Hmax及び Hminは以下の方法で測定する。図 2に示すような、鋼管中央 部に相当する横断面において、円周方向に 90° おきに、肉厚中央部 P1〜P4のロッ クウエル硬さ Cスケール(以下、単にロックウェル硬さという。単位は HRC)を測定する 。測定された 4つのロックウェル硬さのうち、最大値を Hmaxとし、最小値を Hminとす  Here, Hmax and Hmin are measured by the following method. In the cross-section corresponding to the center of the steel pipe as shown in Fig. 2, the Rockwell hardness C scale (hereinafter simply referred to as Rockwell hardness) of the thickness center P1 to P4 at intervals of 90 ° in the circumferential direction. The unit is HRC). Of the four measured Rockwell hardnesses, the maximum value is Hmax and the minimum value is Hmin.
[0040] 硬度ばらつきが 2. 5以上であれば、耐 SSC性が低下しやすい。 Ti/Cが 6. 0以上 であれば、硬度ばらつきは 2. 5未満となり、硬度ばらつきを抑えること力 Sできる。この 理由は定かではないが、以下の理由が推定される。 Ti/Cが小さすぎれば、鋼中の Ti含有量は少ない。そのため、焼戻し時に複数の VCが析出する。析出された各 VC のサイズは、鋼管内の析出場所によって不均一である。その結果、硬度ばらつきが 大きくなる。一方、 Ti/Cが大きければ、鋼中の Ti含有量は多い。そのため、焼戻し 時に TiCが析出し、 VCの析出が抑制される。その結果、硬度ばらつきが小さくなる。 [0041] 本発明によるマルテンサイト系ステンレス鋼は、式(1)を満たすため、 TS—YSが 2 0. 7MPa以上となり、かつ、硬度ばらつきが 2. 5未満となる。 [0040] If the hardness variation is 2.5 or more, the SSC resistance tends to decrease. If Ti / C is 6.0 or more, the hardness variation is less than 2.5, and the strength S can be suppressed. The reason for this is not clear, but the following reason is presumed. If Ti / C is too small, the Ti content in the steel is low. Therefore, multiple VCs precipitate during tempering. The size of each deposited VC is non-uniform depending on the deposition location in the steel pipe. As a result, the hardness variation increases. On the other hand, if Ti / C is large, the Ti content in the steel is large. Therefore, TiC precipitates during tempering and VC precipitation is suppressed. As a result, the hardness variation is reduced. [0041] The martensitic stainless steel according to the present invention satisfies the formula (1), so that TS-YS is 20.7 MPa or more and the hardness variation is less than 2.5.
好ましい Ti/Cの上限値は、 9. 6であり、さらに好ましい Ti/Cの上限値は、 9. 0で ある。  A preferable upper limit value of Ti / C is 9.6, and a more preferable upper limit value of Ti / C is 9.0.
[0042] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、必要に応じて、 Feの一 部に代えて Nb及び Zrの少なくとも 1種以上を含有する。  [0042] The martensitic stainless steel according to the present embodiment further contains at least one of Nb and Zr instead of a part of Fe, if necessary.
[0043] Nb : 0. 25%以下 [0043] Nb: 0.25% or less
Zr : 0. 25%以下  Zr: 0.25% or less
ニオブ(Nb)及びジルコニウム(Zr)は共に選択元素である。これらの元素は共に、 炭化物を形成して鋼中の Cを固定することにより、焼戻し後の強度のばらつきを低減 する。し力、しながら、これらの元素の過剰な含有は、焼戻し後の組織を主としてマルテ ンサイト相にするのを妨げる。したがって、 Nb含有量及び Zr含有量は、それぞれ 0· 25%以下である。好ましい Nb含有量の下限及び Zr含有量の下限は、それぞれ 0. 0 05%である。なお、 0. 005%未満の Nb及び Zrを含有しても、上記効果はある程度 得られる。  Niobium (Nb) and zirconium (Zr) are both selective elements. Together, these elements reduce the strength variation after tempering by forming carbides and fixing C in the steel. However, excessive inclusion of these elements prevents the structure after tempering from becoming mainly martensitic. Therefore, the Nb content and Zr content are 0.25% or less, respectively. The lower limit of the preferred Nb content and the lower limit of the Zr content are each 0.05%. Note that the above effect can be obtained to some extent even if it contains less than 0.005% Nb and Zr.
[0044] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、必要に応じて、 Feの一 部に代えて Cuを含有する。  [0044] The martensitic stainless steel according to the present embodiment further contains Cu instead of a part of Fe, if necessary.
[0045] Cu : l . 00%以下  [0045] Cu: l. 00% or less
銅(Cu)は選択元素である。 Cuは Niと同様に、焼戻し後の組織を主としてマルテン サイト相にするのに有効である。し力、しながら、 Cuを過剰に含有すれば、熱間加工性 が低下する。したがって、 Cu含有量は 1. 00%以下とする。好ましい Cu含有量の下 限は 0. 05%である。なお、 0. 05%未満の Cuを含有しても上記効果はある程度得ら れる。  Copper (Cu) is a selective element. Cu, like Ni, is effective in making the structure after tempering mainly martensite. However, if Cu is contained excessively, hot workability is reduced. Therefore, Cu content should be 1.00% or less. The preferred lower limit of Cu content is 0.05%. Note that the above effect can be obtained to some extent even if it contains less than 0.05% of Cu.
[0046] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、必要に応じて、 Feの一 部に代えて、 Ca、 Mg、 La、 Ceのうちの少なくとも 1種以上を含有する。  [0046] The martensitic stainless steel according to the present embodiment further contains at least one of Ca, Mg, La, and Ce instead of part of Fe, if necessary.
[0047] Ca : 0. 005%以下 [0047] Ca: 0.005% or less
Mg : 0. 005%以下  Mg: 0.005% or less
La : 0. 005%以下 Ce : 0. 005%以下 La: 0.005% or less Ce: 0.005% or less
カルシウム(Ca)、マグネシウム(Mg)、ランタン(La)及びセリウム(Ce)はいずれも 選択元素である。これらの元素はいずれも熱間加工性を改善する。しかしながら、こ れらの元素を過剰に含有すれば、粗大な酸化物が生成され、その結果、耐食性が低 下する。したがって、これらの元素の含有量はそれぞれ 0· 005%以下とする。これら の元素の含有量の好ましい下限は、それぞれ 0. 0002%である。なお、 0. 0002% 未満の Ca、 Mg、 La、 Ceを含有しても、上記効果はある程度得られる。好ましくは、こ れらの元素のうち、 Ca及び/又は Laを含有する。  Calcium (Ca), magnesium (Mg), lanthanum (La) and cerium (Ce) are all selective elements. All of these elements improve hot workability. However, if these elements are contained excessively, coarse oxides are formed, and as a result, the corrosion resistance decreases. Therefore, the content of these elements should be 0.005% or less. The preferable lower limit of the content of these elements is 0.0002%. Even if Ca, Mg, La, Ce is contained in less than 0.0002%, the above effect can be obtained to some extent. Preferably, among these elements, Ca and / or La is contained.
[0048] 2.製造方法  [0048] 2. Manufacturing method
本実施の形態によるマルテンサイト系ステンレス鋼の製造方法について説明する。 上述の 1.の化学組成を有する溶鋼を連続铸造法等によりスラブ又はビレットにする 。又は、溶鋼を造塊法によりインゴットにする。スラブ及びインゴットは分塊圧延等によ り熱間加工され、ビレットとする。  A method for manufacturing martensitic stainless steel according to the present embodiment will be described. The molten steel having the chemical composition described in 1 above is formed into a slab or billet by a continuous forging method or the like. Alternatively, molten steel is made into an ingot by the ingot-making method. Slabs and ingots are hot-worked by ingot rolling, etc. to form billets.
[0049] 製造したビレットを加熱炉で加熱し、加熱炉から抽出した铸片又は鋼片を穿孔機に より軸方向に穿孔する。その後、マンドレルミル及びレデューサ等により所定の寸法 の継目無鋼管に加工する。加工後、熱処理 (焼き入れ及び焼きもどし)を実施する。 このとき、焼戻し後のマルテンサイト系ステンレス鋼の 0. 6%全伸び耐力が 758〜86 2MPa (110ksi級)の範囲内となるように、焼入れ温度及び焼戻し温度を調整する。  [0049] The manufactured billet is heated in a heating furnace, and the steel piece or steel piece extracted from the heating furnace is drilled in the axial direction by a punching machine. After that, it is processed into a seamless steel pipe of a predetermined size by a mandrel mill and reducer. After processing, heat treatment (quenching and tempering) is performed. At this time, the quenching temperature and the tempering temperature are adjusted so that the 0.6% total elongation yield strength of the martensitic stainless steel after tempering falls within the range of 758 to 862 MPa (110 ksi class).
[0050] なお、上述の製造方法ではマルテンサイト系ステンレス鋼の継目無鋼管を製造する 方法につ!/、て記載した力 周知の製造方法によりマルテンサイト系ステンレス鋼の溶 接鋼管を製造してもよい。  [0050] It should be noted that the above-described manufacturing method is a method for manufacturing a martensitic stainless steel seamless steel pipe! / The force described in the above is a method for manufacturing a martensitic stainless steel welded steel pipe by a known manufacturing method. Also good.
実施例  Example
[0051] 種々の化学組成を有する継目無鋼管を製造し、製造された継目無鋼管の TS— Y [0051] Seamless steel pipes with various chemical compositions were manufactured, and TS-Y of the manufactured seamless steel pipes
S及び硬度ばらつきを調査した。 S and hardness variations were investigated.
[0052] [調査方法] [0052] [Investigation method]
表 1に示す化学組成を有する鋼を表 1中の試験番号ごとに溶製してビレットを製造 した。製造された各ビレットを熱間鍛造及び熱間圧延して、継目無鋼管を製造した。  Billets were manufactured by melting steel having the chemical composition shown in Table 1 for each test number in Table 1. Each billet produced was hot forged and hot rolled to produce a seamless steel pipe.
[表 1]
Figure imgf000011_0001
[table 1]
Figure imgf000011_0001
続いて、製造された各継目無鋼管の 0. 6%全伸び耐力が 758MPa 862MPaの 範囲内となるように、焼入れ及び焼戻しを実施した。具体的には、焼入れ温度を 910 °Cとし、焼戻し温度を 560°C 630°Cの範囲内で調整した。  Subsequently, quenching and tempering were carried out so that the 0.6% total elongation yield strength of each manufactured seamless steel pipe was within the range of 758 MPa 862 MPa. Specifically, the quenching temperature was 910 ° C, and the tempering temperature was adjusted within the range of 560 ° C and 630 ° C.
焼入れ焼戻しを実施後、各継目無鋼管の 0. 6%全伸び耐カ (YS)及び引張強度( TS)を測定した。各継目無鋼管の軸方向に沿って平行部長さ 25. 4mm、平行部断 面の直径 6. 35111111の丸棒試験片(八3丁^[ A370に準拠)を採取した。採取された 丸棒試験片に対して常温で引張試験を実施し、 ASTM規格に基づく 0. 6%全伸び 耐カ YS (MPa)及び引張強度 TS (MPa)を測定した。測定後、各試験番号ごとに T S— YSを求めた。 After quenching and tempering, each steel pipe has a 0.6% total elongation resistance (YS) and tensile strength ( TS) was measured. Along the axial direction of each seamless steel pipe, a parallel bar length of 25.4 mm and a parallel section cross section diameter of 6. 35111111 round bar specimens (according to A3 ^^ [A370]) were collected. Tensile tests were performed on the collected round bar specimens at room temperature, and 0.6% total elongation resistance YS (MPa) and tensile strength TS (MPa) based on ASTM standards were measured. After the measurement, TS-YS was determined for each test number.
[0054] さらに、各継目無鋼管の硬度ばらつきを求めた。具体的には、各継目無鋼管を中 央で横断方向に切断した。図 2に示すような、切断された継目無鋼管の横断面にお いて、円周方向に 90° おきに、肉厚中央部 P1〜P4のロックウェル硬さ Cスケール( HRC)を測定した。測定された 4つのロックウェル硬さのうち、最大値を Hmaxとし、最 小値を Hminとした。得られた Hmax及び Hminを用いて、式(2)より硬度ばらつき( HRC)を求めた。  [0054] Further, the hardness variation of each seamless steel pipe was determined. Specifically, each seamless steel pipe was cut at the center in the transverse direction. In the cross section of the cut seamless steel pipe as shown in Fig. 2, the Rockwell hardness C scale (HRC) of the central thickness P1-P4 was measured every 90 ° in the circumferential direction. Of the four measured Rockwell hardnesses, the maximum value was Hmax and the minimum value was Hmin. Using the obtained Hmax and Hmin, hardness variation (HRC) was determined from equation (2).
[0055] [調査結果]  [0055] [Survey results]
表 1に調査結果を示す。表中の「Ti/C」は、各試験番号の Ti含有量 (質量%)の C 含有量 (質量%)に対する比である。表中の「TS」は、各試験番号の引張強度(MPa )を示し、「YS」は、各試験番号の 0· 6%全伸び耐カ(MPa)を示す。表中の「TS— YS」は、引張強度から 0. 6%全伸び耐カを差し引いた値 (MPa)を示す。表中の「硬 度ばらつき」は、式(2)により求めた硬度ばらつき(HRC)を示す。なお、表中下線が 弓 Iかれた数値は本発明の範囲外であることを示す。  Table 1 shows the survey results. “Ti / C” in the table is the ratio of the Ti content (mass%) to the C content (mass%) of each test number. “TS” in the table indicates the tensile strength (MPa) of each test number, and “YS” indicates the 0.6% total elongation resistance (MPa) of each test number. “TS—YS” in the table indicates the value (MPa) obtained by subtracting 0.6% total elongation resistance from tensile strength. “Hardness variation” in the table indicates the hardness variation (HRC) obtained by equation (2). It should be noted that numerical values with an underlined bow in the table are outside the scope of the present invention.
[0056] 表 1を参照して、全ての試験番号の 0. 6%全伸び耐カ(YS)は、 758〜862MPa の範囲内であった。  [0056] Referring to Table 1, the 0.6% total elongation resistance (YS) of all the test numbers was in the range of 758 to 862 MPa.
[0057] 試験番号 1〜49の継目無鋼管は、その化学組成が本発明の範囲内であり、かつ、 Ti/Cが式(1)を満たした。そのため、いずれの継目無鋼管も、 TS— YSが 20· 7M Pa以上であった。さらに、いずれの継目無鋼管の硬度ばらつき(HRC)も 2. 5未満で あった。  [0057] The seamless steel pipes having test numbers 1 to 49 had a chemical composition within the scope of the present invention, and Ti / C satisfied the formula (1). Therefore, TS-YS of all seamless steel pipes was 20 · 7MPa or more. Furthermore, the hardness variation (HRC) of all seamless steel pipes was less than 2.5.
[0058] これに対し、試験番号 50及び 51の継目無鋼管は、その化学組成が本発明の範囲 内であるものの、 Ti/Cが式(1)を満たさず、 Ti/Cが 10· 1を超えた。そのため、 TS —YSが 20. 7MPa未満となった。  [0058] In contrast, the seamless steel pipes with test numbers 50 and 51 had a chemical composition within the scope of the present invention, but Ti / C did not satisfy formula (1), and Ti / C was 10 · 1. Exceeded. Therefore, TS —YS was less than 20.7 MPa.
[0059] 試験番号 52〜69の継目無鋼管は、いずれも C含有量が本発明の C含有量の下限 未満であった。そのため、 TS—YSが 20· 7MPa未満であった。 [0059] The seamless steel pipes of test numbers 52 to 69 all have a C content lower limit of the C content of the present invention. Was less than. Therefore, TS-YS was less than 20.7 MPa.
[0060] 試験番号 70〜73の継目無鋼管は、いずれも、化学組成が本発明の範囲内である ものの、 Ti/Cが 6. 0未満であった。そのため、硬度ばらつきは 2. 5以上であった。 [0060] The seamless steel pipes having test numbers 70 to 73 all had a chemical composition within the scope of the present invention, but had a Ti / C of less than 6.0. Therefore, the hardness variation was 2.5 or more.
[0061] また、表 1中の試験番号 1〜49及び 70〜73の継目無鋼管について、 SSC試験を 実施し、耐 SSC性を評価した。具体的には、各継目無鋼管から平行部の直径 6. 3m m、平行部の長さ 25. 4mmの引張試験片を作製した。作製した引張試験片を用い て NACE TM0177- 96 Method Aに基づいてプルーフリング試験を実施した 。このとき、 0. 03atmの H S (CO bal. )を飽和させた 20%NaCl水溶液に試験片を [0061] In addition, SSC tests were conducted on seamless steel pipes with test numbers 1 to 49 and 70 to 73 in Table 1 to evaluate SSC resistance. Specifically, tensile test pieces having a parallel part diameter of 6.3 mm and a parallel part length of 25.4 mm were produced from each seamless steel pipe. A proof ring test was performed based on NACE TM0177-96 Method A using the prepared tensile test piece. At this time, the test piece was placed in a 20% NaCl aqueous solution saturated with 0.03 atm of H 2 S (CO bal.).
2 2  twenty two
720時間浸漬した。 NaCl水溶液の pHは 4. 5とし、試験中、水溶液の温度を 25°Cに 維持した。試験後、 目視にて割れの有無を確認した。  Soaked for 720 hours. The pH of the aqueous NaCl solution was 4.5, and the temperature of the aqueous solution was maintained at 25 ° C during the test. After the test, the presence or absence of cracks was visually confirmed.
[0062] 試験の結果、試験番号 1〜49のいずれの引張試験片においても割れは発生しな かった。一方、試験番号 70〜 73の引張試験片には割れが確認された。 [0062] As a result of the test, no crack occurred in any of the tensile test pieces of test numbers 1 to 49. On the other hand, cracks were confirmed in the tensile test pieces of test numbers 70 to 73.
[0063] 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施す るための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることな ぐその趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施するこ とが可能である。 [0063] Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0064] 本発明によるマルテンサイト系ステンレス鋼は、硫化水素や炭酸ガス、塩素イオン 等の腐食性物質を含む腐食環境で使用される鋼材に広く適用される。具体的には、 石油や天然ガスの生産設備や、炭酸ガス除去装置、地熱発電設備に使用される鋼 材に適する。特に、油井、ガス井で使用される油井管に適する。 [0064] The martensitic stainless steel according to the present invention is widely applied to steel materials used in corrosive environments containing corrosive substances such as hydrogen sulfide, carbon dioxide, and chlorine ions. Specifically, it is suitable for steel materials used in oil and natural gas production facilities, carbon dioxide removal equipment, and geothermal power generation facilities. Especially suitable for oil well pipes used in oil wells and gas wells.

Claims

請求の範囲 The scope of the claims
[1] 質量0 /oで、 C:0.010—0.030%、 Mn:0.30—0.60%、 P:0.040%以下、 S: [1] At mass 0 / o, C: 0.010—0.030%, Mn: 0.30—0.60%, P: 0.040% or less, S:
0.0100%以下、 Cr:10.00—15.00%、Ni:2.50—8.00%、Mo:l.00—5.0 0%、Ti:0.050—0.250%、 V:0.25%以下、 N:0.07%以下と、 Si:0.50%以 下、 A1:0. 10%以下のうちの 1種以上とを含有し、残部は Fe及び不純物からなり、式 (1)を満たし、 758〜862MPaの降伏強度を有することを特徴とするマルテンサイト 系ステンレスま岡。  0.0100% or less, Cr: 10.00—15.00%, Ni: 2.50—8.00%, Mo: l.00—5.00%, Ti: 0.050—0.250%, V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less and A1: 0. 10% or less, the balance being Fe and impurities, satisfying formula (1), and having a yield strength of 758 to 862 MPa Martensitic stainless steel maoka.
6.0≤Ti/C≤10.1 (1)  6.0≤Ti / C≤10.1 (1)
ここで、式中の元素記号は、各元素の含有量 (質量%)である。  Here, the element symbol in a formula is content (mass%) of each element.
[2] 請求項 1に記載のマルテンサイト系ステンレス鋼であってさらに、 [2] The martensitic stainless steel according to claim 1, further comprising:
前記 Feの一部に代えて、 Nb:0.25%以下、 Zr:0.25%以下のうちの 1種以上を 含有することを特徴とするマルテンサイト系ステンレス鋼。  A martensitic stainless steel characterized by containing at least one of Nb: 0.25% or less and Zr: 0.25% or less in place of a part of Fe.
[3] 請求項 1に記載のマルテンサイト系ステンレス鋼であって、 [3] The martensitic stainless steel according to claim 1,
前記 Feの一部に代えて、 Cu:l.00%以下を含有することを特徴とするマルテンサ イト系ステンレスま岡。  A martensitic stainless steel maoka characterized by containing Cu: 100% or less in place of a part of the Fe.
[4] 請求項 2に記載のマルテンサイト系ステンレス鋼であって、 [4] The martensitic stainless steel according to claim 2,
前記 Feの一部に代えて、 Cu:l.00%以下を含有することを特徴とするマルテンサ イト系ステンレスま岡。  A martensitic stainless steel maoka characterized by containing Cu: 100% or less in place of a part of the Fe.
[5] 請求項 1〜請求項 4のいずれ力、 1項に記載のマルテンサイト系ステンレス鋼であつ て、  [5] The force according to any one of claims 1 to 4, and the martensitic stainless steel according to claim 1,
前記 Feの一部に代えて、 Ca:0.005%以下、 Mg:0.005%以下、 La:0.005% 以下、 Ce:0.005%以下のうちの 1種以上を含有することを特徴とするマルテンサイ ト系ステンレスま岡。  Martensite stainless steel characterized by containing at least one of Ca: 0.005% or less, Mg: 0.005% or less, La: 0.005% or less, Ce: 0.005% or less instead of part of Fe Maoka.
PCT/JP2007/066194 2006-08-22 2007-08-21 Martensitic stainless steel WO2008023702A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008530919A JP5124857B2 (en) 2006-08-22 2007-08-21 Martensitic stainless steel
BRPI0719904A BRPI0719904B1 (en) 2006-08-22 2007-08-21 martensitic stainless steel
EP07792794.5A EP2060644A4 (en) 2006-08-22 2007-08-21 Martensitic stainless steel
MX2009001836A MX2009001836A (en) 2006-08-22 2007-08-21 Martensitic stainless steel.
NO20090712A NO20090712L (en) 2006-08-22 2009-02-13 Martensitic stainless steel
US12/379,395 US20090162239A1 (en) 2006-08-22 2009-02-20 Martensitic stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006225261 2006-08-22
JP2006-225261 2006-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/379,395 Continuation US20090162239A1 (en) 2006-08-22 2009-02-20 Martensitic stainless steel

Publications (1)

Publication Number Publication Date
WO2008023702A1 true WO2008023702A1 (en) 2008-02-28

Family

ID=39106787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066194 WO2008023702A1 (en) 2006-08-22 2007-08-21 Martensitic stainless steel

Country Status (9)

Country Link
US (1) US20090162239A1 (en)
EP (1) EP2060644A4 (en)
JP (1) JP5124857B2 (en)
CN (1) CN101506400A (en)
BR (1) BRPI0719904B1 (en)
MX (1) MX2009001836A (en)
NO (1) NO20090712L (en)
RU (1) RU2416670C2 (en)
WO (1) WO2008023702A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079111A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe
WO2019065116A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019065114A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019065115A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019225281A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2019225280A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2020095559A1 (en) 2018-11-05 2020-05-14 Jfeスチール株式会社 Seamless martensite stainless steel tube for oil well pipes, and method for manufacturing same
WO2022202913A1 (en) 2021-03-24 2022-09-29 日本製鉄株式会社 Martensite stainless steel material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045178B2 (en) 2007-03-26 2012-10-10 住友金属工業株式会社 Method for manufacturing bend pipe for line pipe and bend pipe for line pipe
CN101956146A (en) * 2010-10-12 2011-01-26 西安建筑科技大学 High strength super-martensitic stainless steel for oil and gas pipelines and preparation method thereof
JP6049331B2 (en) * 2012-07-03 2016-12-21 株式会社東芝 Steam turbine rotor blade, steam turbine rotor blade manufacturing method, and steam turbine
BR102014005015A8 (en) 2014-02-28 2017-12-26 Villares Metals S/A martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel
EP3460087B1 (en) * 2016-05-20 2020-12-23 Nippon Steel Corporation Steel bar for downhole member and downhole member
CN108624809B (en) * 2017-03-24 2020-07-28 宝山钢铁股份有限公司 Ultrahigh-strength steel plate with excellent seawater corrosion resistance, fatigue resistance and environmental brittleness resistance and manufacturing method thereof
MX2019011443A (en) * 2017-03-28 2019-11-01 Nippon Steel Corp Martensitic stainless steel material.
CN113584407A (en) * 2020-04-30 2021-11-02 宝山钢铁股份有限公司 High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287455A (en) 1992-04-09 1993-11-02 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well
JPH10130785A (en) * 1996-10-24 1998-05-19 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well use, excellent in hot workability
JP2000192203A (en) * 1998-10-12 2000-07-11 Sumitomo Metal Ind Ltd Martensitic stainless steel for downhole member and its production
JP2003003243A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd High-strength martensitic stainless steel with excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking
JP2003129190A (en) * 2001-10-19 2003-05-08 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor
WO2004001082A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
WO2004057050A1 (en) * 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
JP2006144069A (en) * 2004-11-19 2006-06-08 Sumitomo Metal Ind Ltd Martensitic stainless steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730090B2 (en) * 1988-10-13 1998-03-25 住友金属工業株式会社 High yield ratio martensitic stainless steel
CA2481009C (en) * 2002-04-12 2011-07-26 Sumitomo Metal Industries, Ltd. Method for producing martinsitic stainless steel
JP4289109B2 (en) * 2003-09-30 2009-07-01 Jfeスチール株式会社 High strength stainless steel pipe for oil well with excellent corrosion resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287455A (en) 1992-04-09 1993-11-02 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well
JPH10130785A (en) * 1996-10-24 1998-05-19 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well use, excellent in hot workability
JP2000192203A (en) * 1998-10-12 2000-07-11 Sumitomo Metal Ind Ltd Martensitic stainless steel for downhole member and its production
JP2003003243A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd High-strength martensitic stainless steel with excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking
JP2003129190A (en) * 2001-10-19 2003-05-08 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor
WO2004001082A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
WO2004057050A1 (en) * 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
JP2006144069A (en) * 2004-11-19 2006-06-08 Sumitomo Metal Ind Ltd Martensitic stainless steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079111A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe
WO2019065116A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019065114A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019065115A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
US11401570B2 (en) 2017-09-29 2022-08-02 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
US11827949B2 (en) 2017-09-29 2023-11-28 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2019225281A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2019225280A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
US11773461B2 (en) 2018-05-25 2023-10-03 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2020095559A1 (en) 2018-11-05 2020-05-14 Jfeスチール株式会社 Seamless martensite stainless steel tube for oil well pipes, and method for manufacturing same
WO2022202913A1 (en) 2021-03-24 2022-09-29 日本製鉄株式会社 Martensite stainless steel material

Also Published As

Publication number Publication date
EP2060644A1 (en) 2009-05-20
BRPI0719904A2 (en) 2014-06-10
CN101506400A (en) 2009-08-12
NO20090712L (en) 2009-05-19
RU2416670C2 (en) 2011-04-20
BRPI0719904B1 (en) 2018-11-21
US20090162239A1 (en) 2009-06-25
MX2009001836A (en) 2009-04-30
JP5124857B2 (en) 2013-01-23
EP2060644A4 (en) 2016-02-17
JPWO2008023702A1 (en) 2010-01-14
RU2009110199A (en) 2010-09-27

Similar Documents

Publication Publication Date Title
JP5124857B2 (en) Martensitic stainless steel
DK2495341T3 (en) High strength steel and good hardness
US10287645B2 (en) Method for producing high-strength steel material excellent in sulfide stress cracking resistance
JP5211841B2 (en) Manufacturing method of duplex stainless steel pipe
AU2010250501B2 (en) Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
DK2495342T3 (en) Ultra-high strength steel and good hardness
JP4911266B2 (en) High strength oil well stainless steel and high strength oil well stainless steel pipe
KR100933114B1 (en) Ferritic Heat Resistant Steel
JP4911265B2 (en) Seamless steel pipe for line pipe and manufacturing method thereof
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
WO2017149571A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
EP3342894A1 (en) Stainless steel pipe and method for producing same
KR20130133030A (en) Duplex stainless steel sheet
US10280487B2 (en) High alloy for oil well
WO2016052271A1 (en) Steel material, and oil-well steel pipe for expansion
JP6672620B2 (en) Stainless steel for oil well and stainless steel tube for oil well
CN112391576A (en) Low-alloy heat-resistant steel and steel pipe
JP6524440B2 (en) Martensite steel
JP7417181B1 (en) steel material
JP7417180B1 (en) steel material
JP7135708B2 (en) steel
JP4629059B2 (en) High chromium steel with high toughness
JP2017075343A (en) Martensitic steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031149.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530919

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/001836

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007792794

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009110199

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0719904

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090225