WO2022202913A1 - Martensite stainless steel material - Google Patents

Martensite stainless steel material Download PDF

Info

Publication number
WO2022202913A1
WO2022202913A1 PCT/JP2022/013603 JP2022013603W WO2022202913A1 WO 2022202913 A1 WO2022202913 A1 WO 2022202913A1 JP 2022013603 W JP2022013603 W JP 2022013603W WO 2022202913 A1 WO2022202913 A1 WO 2022202913A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
steel material
steel
less
yield strength
Prior art date
Application number
PCT/JP2022/013603
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 神吉
秀樹 高部
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112023014937A priority Critical patent/BR112023014937A2/en
Priority to CN202280023223.2A priority patent/CN117043378A/en
Priority to JP2022539422A priority patent/JP7151945B1/en
Priority to EP22775695.4A priority patent/EP4286542A1/en
Publication of WO2022202913A1 publication Critical patent/WO2022202913A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present disclosure relates to steel materials, and more particularly to martensitic stainless steel materials.
  • Oil wells and gas wells have an environment containing a large amount of corrosive substances.
  • Corrosive substances are, for example, corrosive gases such as hydrogen sulfide (H 2 S) gas and carbonic acid (CO 2 ) gas.
  • Chromium (Cr) is known to be effective in improving the carbon dioxide gas corrosion resistance of steel. Therefore, in an oil well environment containing a large amount of carbon dioxide, depending on the partial pressure and temperature of carbon dioxide, API L80 13Cr steel (normal 13Cr steel), super 13Cr steel with reduced C content, etc.
  • a martensitic stainless steel material containing about 13% by mass of Cr is used.
  • an environment containing hydrogen sulfide and carbon dioxide is referred to as a "sour environment”.
  • Steel materials for oil wells used in sour environments are required to have sulfide stress cracking resistance (Sulfide Stress Cracking resistance: hereinafter referred to as SSC resistance).
  • SSC resistance sulfide Stress Cracking resistance
  • Patent Document 1 JP 2000-192196 (Patent Document 1), JP 2012-136742 (Patent Document 2), and International Publication No. 2008/023702 (Patent Document 3), high strength and excellent SSC resistance
  • Patent Document 2 JP 2000-192196 (Patent Document 1), JP 2012-136742 (Patent Document 2), and International Publication No. 2008/023702 (Patent Document 3)
  • Patent Document 3 High strength and excellent SSC resistance
  • Patent Document 1 is a martensitic stainless steel for oil wells, and in terms of weight %, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 0.05 to 2%, P: 0.025% or less, S: 0.01% or less, Cr: 9-14%, Mo: 3.1-7%, Ni: 1-8%, Co: 0.5-7%, sol.
  • Mo is contained, the Ms point is lowered.
  • Patent Document 1 describes that this steel material can improve SSC resistance while maintaining a strength of 80 ksi or more (552 MPa or more).
  • the steel material of Patent Document 2 is a martensitic stainless steel seamless steel pipe, and in mass %, C: 0.01% or less, Si: 0.5% or less, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-15.5%, Ni: 5.5-7.0%, Mo: 2.0-3.5%, Cu: 0 .3 to 3.5%, V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, and the balance consists of Fe and unavoidable impurities.
  • This steel material has a yield strength of 655 to 862 MPa and a yield ratio of 0.90 or more.
  • Patent Document 2 describes that , excellent SSC resistance can be obtained.
  • the steel material of Patent Document 3 is a martensitic stainless steel, and in mass %, C: 0.010 to 0.030%, Mn: 0.30 to 0.60%, P: 0.040% or less, S : 0.0100% or less, Cr: 10.00-15.00%, Ni: 2.50-8.00%, Mo: 1.00-5.00%, Ti: 0.050-0.250% , V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, Al: 0.10% or less, and the balance is Fe and impurities and satisfies the formula (6.0 ⁇ Ti/C ⁇ 10.1).
  • the yield strength is 758-862 MPa.
  • Patent Document 3 describes that this steel material has a yield strength of 758 to 862 MPa by adjusting Ti/C to an appropriate range to suppress variations in hardness.
  • Patent Documents 1 to 3 above propose techniques for increasing the yield strength of steel materials and improving SSC resistance.
  • a martensitic stainless steel material having excellent SSC resistance while increasing the yield strength may be obtained by techniques other than the techniques proposed in Patent Documents 1 to 3 above.
  • Patent Documents 1 to 3 do not discuss the SSC resistance of steel materials in a sour environment with a pH of 3.0.
  • An object of the present disclosure is to provide a martensitic stainless steel material that can achieve both high yield strength and excellent SSC resistance in a sour environment of pH 3.0.
  • the martensitic stainless steel material according to the present disclosure is in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.01 to 3.50%, Cr: 10.00 to 14.00%, Ni: 4.50-7.50%, Mo: 1.00 to 4.00%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Al: 0.001 to 0.100%, Co: 0.010 to 0.500%, Ca: 0.0005 to 0.0050%, Sn: 0.0005 to 0.0500%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and Balance: Fe and impurities, Yield strength is 758 MPa or more, Within the ranges of the element content and the yield strength of the mar
  • the martensitic stainless steel material according to the present disclosure can achieve both high yield strength and excellent SSC resistance in a sour environment of pH 3.0.
  • the present inventors studied a martensitic stainless steel material that can achieve both high yield strength and excellent SSC resistance in a sour environment of pH 3.0 from the viewpoint of chemical composition.
  • the present inventors found that, in mass %, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050 % or less, Cu: 0.01 to 3.50%, Cr: 10.00 to 14.00%, Ni: 4.50 to 7.50%, Mo: 1.00 to 4.00%, Ti: 0 .050-0.300%, V: 0.01-1.00%, Al: 0.001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050 %, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 0.50%, and Nb: 0 to 0.500%.
  • the present inventors conducted a detailed study of means for enhancing the SSC resistance while maintaining the yield strength of 758 MPa or more for the martensitic stainless steel material containing the above elemental contents.
  • tin (Sn), arsenic (As), and antimony (Sb) which have not received much attention so far, may improve the SSC resistance of the martensitic stainless steel material containing the above element contents.
  • Sn in particular significantly increases the SSC resistance
  • As and Sb Sn increases the SSC resistance. It may help the effect.
  • the inventors conducted a detailed study on the Sn, As, and Sb contents that can sufficiently improve the SSC resistance of martensitic stainless steel materials.
  • the martensitic stainless steel material according to the present embodiment contains 0.0005 to 0.0500% Sn, 0 to 0.0100% As, and 0 to 0 Sb in addition to the above element contents. It has been clarified that the SSC resistance of the steel material is enhanced by containing .0100%. That is, in terms of % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.005% or less.
  • the martensitic stainless steel material has the chemical composition described above, if it has a yield strength of 758 MPa or more, it may not be possible to stably increase the SSC resistance in a sour environment of pH 3.0.
  • the inventors have found out. Therefore, the inventors of the present invention conducted detailed studies on means for improving the SSC resistance in a sour environment of pH 3.0 while maintaining the yield strength of 758 MPa or more for the martensitic stainless steel material having the chemical composition described above. As a result, the present inventors obtained the following findings.
  • F1 (Sn+As+Sb)/ ⁇ (Cu+Ni)/YS ⁇ .
  • As and Sb assist the effect that Sn enhances the SSC resistance of steel.
  • the SSC resistance of the steel is remarkably enhanced by setting the ratio of the Sn, As and Sb contents to the Cu and Ni contents within a certain range.
  • the higher the yield strength of the steel material the more easily the SSC resistance of the steel material decreases. Therefore, the denominator of F1 is the ratio of the Cu and Ni contents to the yield strength.
  • the ratio of Sn, As and Sb contents to Cu and Ni contents adjusted according to yield strength is defined as F1.
  • F1 is an index for enhancing the SSC resistance in a sour environment of pH 3.0 due to the synergistic effect of Sn, As and Sb, and Cu and Ni, which are adjusted according to the yield strength.
  • the relationship between F1 and SSC resistance in a sour environment of pH 3.0 will be specifically described with reference to the drawings.
  • FIG. 1 is a diagram showing the relationship between F1 and SSC resistance in this example.
  • FIG. 1 shows F1 and the number of pitting corrosion occurrences (numbers), which is an index of SSC resistance, for examples having the above-described chemical composition and a yield strength of 758 MPa or more among the examples described later. Created using The number of pitting corrosion occurrences was obtained by an SSC resistance evaluation test assuming a sour environment of pH 3.0, which will be described later.
  • the SSC resistance of the steel material in a sour environment of pH 3.0 is increased.
  • the mechanism has not been elucidated.
  • the martensitic stainless steel material having the chemical composition described above and having a yield strength of 758 MPa or more has a pH of 3.0.
  • the enhanced SSC resistance in a zero sour environment is demonstrated by the examples.
  • the martensitic stainless steel material according to the present embodiment has the chemical composition described above, the yield strength is 758 MPa or more, and the element content and the element content within the range of the yield strength are and the yield strength satisfy the formula (1).
  • the martensitic stainless steel material according to this embodiment can achieve both a high yield strength of 758 MPa or more and excellent SSC resistance in a sour environment of pH 3.0.
  • the gist of the martensitic stainless steel material according to the present embodiment completed based on the above knowledge is as follows.
  • a martensitic stainless steel material in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.01 to 3.50%, Cr: 10.00 to 14.00%, Ni: 4.50-7.50%, Mo: 1.00 to 4.00%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Al: 0.001 to 0.100%, Co: 0.010 to 0.500%, Ca: 0.0005 to 0.0050%, Sn: 0.0005 to 0.0500%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and Balance: Fe and impurities, Yield strength is 758 MPa or more, Within the range of the element content and the yield strength of the martensitic
  • the shape of the martensitic stainless steel material according to this embodiment is not particularly limited.
  • the martensitic stainless steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate.
  • the round steel means a bar having a circular cross section perpendicular to the axial direction.
  • the steel pipe may be a seamless steel pipe or a welded steel pipe.
  • martensitic stainless steel material according to this embodiment will be described in detail below. "%" for elements means % by weight unless otherwise specified. Further, in the following description, the martensitic stainless steel material is also simply referred to as "steel material”.
  • the martensitic stainless steel material according to this embodiment contains the following elements.
  • C 0.030% or less Carbon (C) is inevitably contained. That is, the lower limit of the C content is over 0%. C enhances the hardenability of the steel material and enhances the strength of the steel material. On the other hand, if the C content is too high, the strength of the steel material will be too high even if the contents of other elements are within the ranges of the present embodiment. As a result, the SSC resistance of the steel is lowered. Therefore, the C content is 0.030% or less.
  • the preferred upper limit of the C content is 0.028%, more preferably 0.025%, still more preferably 0.020%, still more preferably 0.018%.
  • the C content is preferably as low as possible. However, drastic reduction of C content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the C content is preferably 0.001%, more preferably 0.003%, and still more preferably 0.005%.
  • Si Silicon (Si) is inevitably contained. That is, the lower limit of the Si content is over 0%. Si deoxidizes steel. On the other hand, if the Si content is too high, the hot workability of the steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 1.00% or less.
  • the preferred lower limit of the Si content for effectively obtaining the above effects is 0.01%, more preferably 0.05%, still more preferably 0.10%, and still more preferably 0.15%. be.
  • a preferred upper limit of the Si content is 0.80%, more preferably 0.60%, still more preferably 0.50%, still more preferably 0.45%.
  • Mn 1.00% or less Manganese (Mn) is inevitably contained. That is, the lower limit of the Mn content is over 0%. Mn enhances the hardenability of the steel material and enhances the strength of the steel material. On the other hand, if the Mn content is too high, Mn may segregate at grain boundaries together with impurity elements such as P and S even if the content of other elements is within the range of the present embodiment. In this case, the SSC resistance of the steel is lowered. Therefore, the Mn content is 1.00% or less.
  • the preferred lower limit of the Mn content for effectively obtaining the above effect is 0.01%, more preferably 0.05%, still more preferably 0.10%, still more preferably 0.15%. be.
  • a preferable upper limit of the Mn content is 0.80%, more preferably 0.70%, still more preferably 0.60%, still more preferably 0.50%.
  • Phosphorus (P) is an unavoidable impurity. That is, the lower limit of the P content is over 0%. P segregates at grain boundaries to facilitate the generation of SSC. Therefore, if the P content is too high, the SSC resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the P content is 0.030% or less. A preferable upper limit of the P content is 0.025%, more preferably 0.020%, and still more preferably 0.018%. The lower the P content is, the better. However, drastic reduction of P content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the P content is preferably 0.001%, more preferably 0.002%, and still more preferably 0.003%.
  • S 0.0050% or less Sulfur (S) is an unavoidable impurity. That is, the lower limit of the S content is over 0%. S, like P, segregates at grain boundaries and facilitates the generation of SSC. Therefore, if the S content is too high, the SSC resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the S content is 0.0050% or less.
  • the upper limit of the S content is preferably 0.0040%, more preferably 0.0030%, still more preferably 0.0025%, still more preferably 0.0020%. It is preferable that the S content is as low as possible. However, drastic reduction of the S content increases manufacturing costs. Therefore, considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%.
  • Cu 0.01-3.50% Copper (Cu) is an austenite-forming element and makes the microstructure after quenching martensite. Cu further enhances the SSC resistance of steel materials in a sour environment of pH 3.0 due to a synergistic effect with Sn, As and Sb. If the Cu content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cu content is too high, even if the contents of the other elements are within the range of the present embodiment, the above effects will be saturated, and the hot workability of the steel material will be significantly reduced. In this case, the manufacturing costs are further increased. Therefore, the Cu content is 0.01-3.50%. A preferable lower limit of the Cu content is 0.02%, more preferably 0.03%, and still more preferably 0.05%. A preferable upper limit of the Cu content is 3.30%, more preferably 3.10%, and still more preferably 2.90%.
  • Chromium (Cr) forms a passivation film on the surface of the steel material and enhances the SSC resistance of the steel material. If the Cr content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content is too high, even if the content of other elements is within the range of the present embodiment, ferrite is included in the structure, making it difficult to ensure sufficient strength in some cases. If the Cr content is too high, intermetallic compounds and Cr carbonitrides are likely to form in the steel even if the content of other elements is within the range of the present embodiment. As a result, the SSC resistance of the steel is lowered.
  • the Cr content is 10.00-14.00%.
  • a preferable lower limit of the Cr content is 10.30%, more preferably 10.50%, and still more preferably 11.00%.
  • the preferred upper limit of the Cr content is 13.80%, more preferably 13.60%, still more preferably 13.50%, still more preferably 13.45%, still more preferably 13.40 %, more preferably 13.35%.
  • Nickel (Ni) is an austenite-forming element, and the microstructure after quenching becomes martensite. Ni also forms sulfides on the passive film in sour environments. Ni sulfide suppresses contact of chloride ions (Cl - ) and hydrogen sulfide ions (HS - ) with the passive film, and suppresses destruction of the passive film by chloride ions and hydrogen sulfide ions. do. As a result, the SSC resistance of the steel is enhanced. Ni further enhances the SSC resistance of steel materials in a sour environment of pH 3.0 due to a synergistic effect with Sn, As and Sb.
  • the Ni content is 4.50-7.50%.
  • a preferable lower limit of the Ni content is 4.80%, more preferably 5.00%, and still more preferably 5.50%.
  • a preferable upper limit of the Ni content is 7.30%, more preferably 7.00%, and still more preferably 6.50%.
  • Mo 1.00-4.00%
  • Molybdenum (Mo) forms sulfides on passive films in sour environments. Mo sulfide prevents chloride ions (Cl - ) and hydrogen sulfide ions (HS - ) from coming into contact with the passive film, and prevents the passive film from being destroyed by chloride ions and hydrogen sulfide ions. do. As a result, the SSC resistance of the steel is enhanced. Mo also forms a solid solution in the steel material to increase the strength of the steel material. If the Mo content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
  • the Mo content is 1.00-4.00%.
  • a preferable lower limit of the Mo content is 1.30%, more preferably 1.50%, and still more preferably 1.80%.
  • a preferable upper limit of the Mo content is 3.80%, more preferably 3.60%, and still more preferably 3.40%.
  • Ti 0.050-0.300% Titanium (Ti) combines with C and/or N to form carbides or nitrides. In this case, the pinning effect suppresses grain coarsening and increases the yield strength of the steel material. If the Ti content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ti content is too high, the strength of the steel material becomes too high and the SSC resistance of the steel material decreases even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Ti content is 0.050-0.300%. A preferable lower limit of the Ti content is 0.060%, more preferably 0.080%. A preferable upper limit of the Ti content is 0.250%, more preferably 0.200%, and still more preferably 0.180%.
  • V 0.01-1.00% Vanadium (V) enhances the hardenability of the steel material and enhances the yield strength of the steel material. If the V content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content is too high, the strength of the steel material becomes too high and the SSC resistance of the steel material decreases even if the contents of other elements are within the ranges of the present embodiment. Therefore, the V content is 0.01-1.00%. A preferable lower limit of the V content is 0.02%, more preferably 0.03%. A preferable upper limit of the V content is 0.80%, more preferably 0.60%, and still more preferably 0.50%.
  • Al 0.001-0.100%
  • Aluminum (Al) deoxidizes steel. If the Al content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Al content is too high, even if the contents of the other elements are within the ranges of the present embodiment, coarse oxides are formed and the SSC resistance of the steel is lowered. Therefore, the Al content is 0.001-0.100%.
  • a preferable lower limit of the Al content is 0.005%, more preferably 0.010%, and still more preferably 0.015%.
  • a preferable upper limit of the Al content is 0.080%, more preferably 0.060%, still more preferably 0.055%, still more preferably 0.050%.
  • the Al content referred to in this specification is sol. It means the content of Al (acid-soluble Al).
  • Co 0.010-0.500%
  • Co sulfide prevents chloride ions (Cl - ) and hydrogen sulfide ions (HS - ) from coming into contact with the passive film, and prevents the passive film from being destroyed by chloride ions and hydrogen sulfide ions. do.
  • the SSC resistance of the steel is enhanced.
  • Co further enhances the hardenability of the steel material and ensures stable high strength of the steel material, especially during industrial production. Specifically, Co suppresses the formation of retained austenite and suppresses variations in the strength of the steel material.
  • the Co content is 0.010-0.500%.
  • the lower limit of the Co content is preferably 0.015%, more preferably 0.020%, still more preferably 0.030%, still more preferably 0.050%, still more preferably 0.100 %.
  • a preferable upper limit of the Co content is 0.450%, more preferably 0.400%, and still more preferably 0.350%.
  • Ca 0.0005-0.0050%
  • Calcium (Ca) fixes S in the steel material as a sulfide to render it harmless and enhances the hot workability of the steel material. If the Ca content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content is too high, even if the contents of other elements are within the range of the present embodiment, coarse inclusions are formed in the steel material and the SSC resistance of the steel material is lowered. Therefore, the Ca content is 0.0005-0.0050%.
  • the lower limit of the Ca content is preferably 0.0006%, more preferably 0.0008%, still more preferably 0.0010%.
  • a preferable upper limit of the Ca content is 0.0045%, more preferably 0.0040%, and still more preferably 0.0035%.
  • Tin (Sn) enhances the SSC resistance of steel in a sour environment of pH 3.0. If the Sn content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Sn content is too high, even if the contents of other elements are within the ranges of the present embodiment, Sn will segregate at the grain boundaries, and the SSC resistance of the steel material will rather deteriorate. Therefore, the Sn content is 0.0005-0.0500%.
  • the preferred lower limit of the Sn content is 0.0008%, more preferably 0.0010%, still more preferably 0.0015%.
  • the preferred upper limit of the Sn content is 0.0400%, more preferably 0.0300%, still more preferably 0.0200%, still more preferably 0.0100%, still more preferably 0.0080 %.
  • N 0.0010-0.0500%
  • Nitrogen (N) combines with Ti to form fine Ti nitrides. Fine TiN suppresses coarsening of crystal grains due to the pinning effect. As a result, the yield strength of the steel is increased. If the N content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the N content is too high, even if the content of the other elements is within the range of the present embodiment, coarse nitrides are formed and the SSC resistance of the steel material is lowered. Therefore, the N content is 0.0010-0.0500%.
  • the lower limit of the N content is preferably 0.0015%, more preferably 0.0020%, still more preferably 0.0030%, still more preferably 0.0040%.
  • a preferred upper limit of the N content is 0.0450%, more preferably 0.0400%, still more preferably 0.0350%, still more preferably 0.0300%.
  • Oxygen (O) is an unavoidable impurity. That is, the lower limit of the O content is over 0%. O forms oxides and lowers the SSC resistance of the steel material. Therefore, if the O content is too high, the SSC resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.050% or less.
  • a preferable upper limit of the O content is 0.040%, more preferably 0.030%, and still more preferably 0.020%. It is preferable that the O content is as low as possible. However, drastic reduction of O content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the O content is preferably 0.0005%, more preferably 0.001%, and still more preferably 0.002%.
  • the balance of the martensitic stainless steel material according to this embodiment consists of Fe and impurities.
  • the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially producing steel materials, and are not intentionally included. It means that it is permissible within a range that does not adversely affect the martensitic stainless steel material due to
  • the martensitic stainless steel material according to this embodiment may further contain W instead of part of Fe.
  • W 0-0.50% Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When included, W stabilizes the passive film in a sour environment and inhibits destruction of the passive film by chloride ions and hydrogen sulfide ions. As a result, the SSC resistance of the steel is enhanced. If even a small amount of W is contained, the above effect can be obtained to some extent. On the other hand, if the W content is too high, W will combine with C to form coarse carbides. In this case, even if the content of other elements is within the range of the present embodiment, the SSC resistance of the steel material is lowered. Therefore, the W content is 0-0.50%. A preferable lower limit of the W content is 0.01%, more preferably 0.03%, and still more preferably 0.05%. A preferable upper limit of the W content is 0.45%, more preferably 0.40%, and still more preferably 0.35%.
  • W remarkably increases the SSC resistance when the Cu content is high.
  • the W content is preferably 0.10% or more.
  • the lower limit of the W content is more preferably 0.12%, more preferably 0.15%.
  • the martensitic stainless steel material according to this embodiment may further contain Nb instead of part of Fe.
  • Nb 0-0.500%
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When included, Nb combines with C and/or N to form Nb carbides, Nb carbonitrides. In this case, the pinning effect suppresses grain coarsening and increases the yield strength of the steel material. If even a small amount of Nb is contained, the above effect can be obtained to some extent. On the other hand, if the Nb content is too high, Nb carbides and/or Nb carbonitrides are excessively produced even if the other element contents are within the range of the present embodiment. As a result, the SSC resistance of the steel is lowered. Therefore, the Nb content is 0-0.500%. A preferable lower limit of the Nb content is 0.001%, more preferably 0.002%, and still more preferably 0.003%. A preferable upper limit of the Nb content is 0.450%, more preferably 0.400%, and still more preferably 0.350%.
  • the martensitic stainless steel material according to the present embodiment may further contain one or more elements selected from the group consisting of As and Sb instead of part of Fe. All of these elements assist the effect of Sn that enhances the SSC resistance of the steel material.
  • Arsenic (As) is an optional element and may not be contained. That is, the As content may be 0%. When contained, As assists the effect that Sn enhances the SSC resistance of the steel material. If even a small amount of As is contained, the above effect can be obtained to some extent. On the other hand, if the As content is too high, even if the content of other elements is within the range of the present embodiment, As will segregate at the grain boundaries and the SSC resistance of the steel material will decrease. Therefore, the As content is 0-0.0100%. A preferable lower limit of the As content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%. A preferable upper limit of the As content is 0.0090%, more preferably 0.0080%.
  • Sb 0-0.0100%
  • Antimony (Sb) is an optional element and may not be contained. That is, the Sb content may be 0%. When contained, Sb assists the effect of Sn to improve the SSC resistance of the steel material. If even a small amount of Sb is contained, the above effect can be obtained to some extent. On the other hand, if the Sb content is too high, even if the contents of other elements are within the ranges of the present embodiment, Sb will segregate at the grain boundaries and the SSC resistance of the steel material will decrease. Therefore, the Sb content is 0-0.0100%. A preferable lower limit of the Sb content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%. A preferable upper limit of the Sb content is 0.0090%, more preferably 0.0080%.
  • the yield strength of the martensitic stainless steel material according to this embodiment is 758 MPa (110 ksi) or more, more preferably 862 MPa (125 ksi) or more.
  • the upper limit of the yield strength is not particularly limited, the upper limit of the yield strength of the steel material of this embodiment is, for example, 1034 MPa (150 ksi).
  • a more preferable upper limit of the yield strength of the steel material is 1000 MPa (145 ksi).
  • Yield strength as used herein means 0.2% offset yield strength (MPa) obtained by a tensile test at room temperature (24 ⁇ 3° C.) according to ASTM E8/E8M (2013).
  • the yield strength is obtained by the following method.
  • a tensile test piece is produced from the martensitic stainless steel material according to this embodiment.
  • the steel material is a steel pipe
  • a tensile test piece is prepared from the thickness center position.
  • the steel material is a round bar
  • a tensile test piece is produced from the R/2 position.
  • the R/2 position of the round bar means the central position of the radius R in the cross section perpendicular to the axial direction of the round bar.
  • the steel material is a steel plate
  • a tensile test piece is prepared from the center position of the plate thickness.
  • the size of the tensile test piece is not particularly limited.
  • the tensile test piece is, for example, a round bar tensile test piece having a parallel portion diameter of 8.9 mm and a gauge length of 35.6 mm.
  • the longitudinal direction of the parallel portion of the tensile test piece shall be parallel to the rolling direction and/or axial direction of the steel material.
  • the yield strength of the martensitic stainless steel material according to this embodiment is 758 MPa or more, preferably 862 MPa or more.
  • the martensitic stainless steel material in mass%, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.01-1.00%, Cr: 10.00-14 .00%, Ni: 4.50-6.50%, Mo: 1.00-3.00%, Ti: 0.050-0.300%, V: 0.01-1.00%, Al: 0.001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050%, Sn: 0.0005-0.0500%, N: 0.0010-0.
  • the martensitic stainless steel material contains, in mass %, C: 0.030% or less, Si : 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.01-1.00%, Cr: 10.00-14.
  • Ni 5.00-7.50%, Mo: 2.00-4.00%, Ti: 0.050-0.300%, V: 0.01-1.00%, Al: 0 .001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050%, Sn: 0.0005-0.0500%, N: 0.0010-0.0500 %, O: 0.050% or less, W: 0 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and the remainder It is preferably composed of Fe and impurities.
  • the martensitic stainless steel material in terms of mass %, contains C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.50 to 3.50%, Cr: 10.00 to 14.00 %, Ni: 5.00-7.50%, Mo: 2.00-4.00%, Ti: 0.050-0.300%, V: 0.01-1.00%, Al: 0.00% 001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050%, Sn: 0.0005-0.0500%, N: 0.0010-0.0500% , O: 0.050% or less, W: 0.10 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and the balance is preferably composed of Fe and impur
  • the element content and the yield strength satisfy formula (1) within the range of the above-described element content and yield strength of 758 MPa or more.
  • the martensitic steel material according to this embodiment has excellent SSC resistance in a sour environment of pH 3.0 on condition that other configurations of this embodiment are satisfied. 0.15 ⁇ (Sn+As+Sb)/ ⁇ (Cu+Ni)/YS ⁇ 1.00 (1)
  • the element symbol in the formula (1) is substituted with the content of the corresponding element in mass %, and YS is substituted with the yield strength in MPa. When the corresponding element is not contained, "0" is substituted for the element symbol.
  • the martensitic stainless steel material according to the present embodiment has an F1 of 0.15 to 1.00 while satisfying the above-described element content and yield strength of 758 MPa or more.
  • a preferred lower limit for F1 is 0.16, more preferably 0.18.
  • a preferred upper limit for F1 is 0.95, more preferably 0.90.
  • the microstructure of the martensitic stainless steel material according to this embodiment is mainly composed of martensite.
  • “mainly composed of martensite” means that the microstructure is 0 to 5.0% by volume of retained austenite, 0 to 5.0% of ferrite, and the balance consists of martensite. means that As used herein, "consisting of retained austenite, ferrite and tempered martensite” means that phases other than retained austenite, ferrite and tempered martensite are negligibly small.
  • the volume fraction of precipitates and inclusions is negligibly small compared to the volume fractions of retained austenite, ferrite, and tempered martensite. That is, the microstructure of the martensitic stainless steel pipe according to the present embodiment may contain minute amounts of precipitates, inclusions, and the like in addition to retained austenite, ferrite, and tempered martensite.
  • martensite includes not only fresh martensite but also tempered martensite.
  • the lower limit of the volume fraction of martensite in the microstructure of the martensitic stainless steel material according to this embodiment is 90.0%, more preferably 95.0%. More preferably, the microstructure of the steel material is martensite single phase.
  • the volume fraction of retained austenite is 0 to 5.0%.
  • the upper limit of the volume fraction of retained austenite is preferably 4.0%, more preferably 3.0%.
  • the volume fraction of retained austenite may be 0%.
  • the volume fraction of retained austenite is more than 0 to 5.0%, more preferably more than 0 to 4.0%, more preferably more than 0 to 3.0%. is.
  • the volume fraction of ferrite is 0 to 5.0%.
  • a preferable upper limit of the volume fraction of ferrite is 3.0%, more preferably 2.0%, and still more preferably 1.0%.
  • the volume fraction of ferrite may be 0%.
  • the volume fraction of ferrite is more than 0 to 5.0%, more preferably more than 0 to 3.0%, still more preferably more than 0 to 2.0%. , more preferably greater than 0 to 1.0%.
  • the volume fraction (%) of martensite in the microstructure of the steel material is the volume fraction (%) of retained austenite determined by the method shown below and the volume fraction (%) of ferrite determined by the method shown below. %) is subtracted from 100%.
  • the volume fraction of retained austenite in the microstructure of the steel material is obtained by X-ray diffraction method. Specifically, a test piece for measuring the volume ratio of retained austenite is produced from the steel material according to the present embodiment. If the steel material is a steel pipe, take a test piece from the center of the wall thickness. When the steel material is a round bar, a test piece is taken from the R/2 position. When the steel material is a steel plate, a test piece is taken from the center position of the plate thickness. The size of the test piece is not particularly limited. The specimen is for example 15 mm x 15 mm x 2 mm thick.
  • the thickness direction of the test piece is the pipe radial direction.
  • the thickness direction of the test piece is the radial direction.
  • the thickness direction of the test piece is the plate thickness direction.
  • the target of the X-ray diffractometer is Co (CoK ⁇ rays) and the output is 30 kV-100 mA.
  • the measurement angle (2 ⁇ ) is set to 45 to 105°.
  • V ⁇ 100/ ⁇ 1+(I ⁇ R ⁇ )/(I ⁇ R ⁇ ) ⁇ (I) where I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is the crystallographically calculated value of the ⁇ phase.
  • I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is the crystallographically calculated value of the ⁇ phase.
  • the values of R ⁇ and R ⁇ on each surface the values incorporated in the residual ⁇ quantitative analysis system attached to RINT-TTR (trade name) manufactured by Rigaku Co., Ltd. can be used.
  • RINT-TTR trade name manufactured by Rigaku Co., Ltd.
  • the volume fraction of ferrite in the microstructure of the steel material is determined by the point counting method. Specifically, a test piece for measuring the volume ratio of ferrite is produced from the steel material according to the present embodiment. If the steel material is a steel pipe, take a test piece from the center of the wall thickness. When the steel material is a round bar, a test piece is taken from the R/2 position. When the steel material is a steel plate, a test piece is taken from the center position of the plate thickness.
  • the test piece is not particularly limited as long as it has a surface parallel to the rolling direction as an observation surface. For example, when the steel material is a steel pipe, the observation surface of the test piece is parallel to the pipe axis direction.
  • Electrolytic etching is performed using an electrolytic solution of 30% sodium hydroxide aqueous solution, a current density of 1 A/cm 2 and an electrolysis time of 1 minute.
  • the electrolytically etched observation surface is observed in 30 fields of view using an optical microscope.
  • the observation field of view is a rectangle of 250 ⁇ m ⁇ 250 ⁇ m. Note that the observation magnification is 400 times.
  • ferrite and other phases can be distinguished from the contrast by those skilled in the art. Therefore, ferrite in each observation field is specified based on the contrast.
  • the area ratio of the specified ferrite is determined by the point counting method based on ASTM E562 (2019).
  • 20 vertical lines are drawn at equal intervals from the top end to the bottom end of the observation field of view. That is, the observation field of view is divided into 21 areas in the left-right direction by the 20 vertical lines.
  • 20 horizontal lines are drawn at regular intervals from the left end to the right end of the observation field of view. That is, the observation field of view is vertically divided into 21 areas by the 20 horizontal lines.
  • the intersections of vertical lines and horizontal lines are called lattice points. That is, 400 lattice points are arranged at equal intervals in the observation field.
  • ASTM E562 2019, the grid points overlapping ferrite are counted in the observation field.
  • the ferrite area ratio obtained by the above method is defined as the ferrite volume ratio (%).
  • the obtained numerical value is rounded off to the second decimal place.
  • volume fraction of martensite in the microstructure of the steel material is calculated by the following formula.
  • Volume fraction of martensite (%) 100.0 - ⁇ volume fraction of retained austenite (%) + volume fraction of ferrite (%) ⁇
  • the martensitic stainless steel material according to this embodiment has excellent SSC resistance in a sour environment of pH 3.0 even though it has a high yield strength of 758 MPa or more.
  • the SSC resistance of the martensitic stainless steel material according to this embodiment can be evaluated by an SSC resistance evaluation test at room temperature. The SSC resistance evaluation test is conducted according to NACE TM0177-2016 Method A.
  • a round bar test piece is produced from the steel material according to this embodiment.
  • the steel material is a steel pipe
  • a round bar test piece is produced from the thickness center position.
  • a round bar test piece is produced from the R/2 section.
  • the steel material is a steel plate
  • a round bar test piece is produced from the center position of the plate thickness.
  • the size of the round bar test piece is not particularly limited.
  • the round bar test piece for example, has a parallel portion diameter of 6.35 mm and a parallel portion length of 25.4 mm.
  • the axial direction of the round bar test piece is parallel to the rolling direction and/or axial direction of the steel material.
  • the test solution is a 0.17 mass % sodium chloride aqueous solution with a pH of 3.0.
  • a test solution is prepared by adding acetic acid to an aqueous solution containing 0.17 mass % sodium chloride and 0.41 g/L sodium acetate to adjust the pH to 3.0.
  • a stress equivalent to 90% of the actual yield stress is applied to the round bar test piece prepared as described above.
  • the test solution at 24° C. is poured into the test container so that the stress-loaded round bar test piece is immersed to form a test bath. After degassing the test bath, 0.03 bar H 2 S gas and 0.97 bar CO 2 gas are blown into the test bath to saturate the test bath with H 2 S gas. A test bath saturated with H 2 S gas is held at 24° C.
  • the shape of the martensitic stainless steel material according to this embodiment is not particularly limited.
  • the martensitic stainless steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate.
  • the steel pipe may be a seamless steel pipe or a welded steel pipe.
  • Steel pipes are, for example, steel pipes for oil country tubular goods.
  • a steel pipe for oil country tubular goods means a steel pipe for oil country tubular goods.
  • Oil country tubular goods are, for example, casings, tubings, drill pipes, etc. used for drilling oil wells or gas wells, extracting crude oil or natural gas, and the like.
  • the steel material of the present embodiment is a seamless steel pipe for oil country tubular goods.
  • the martensitic stainless steel material according to the present embodiment has a content of each element within the range of the present embodiment, a yield strength of 758 MPa or more, and the content of the above elements, , F1 satisfies 0.15 to 1.00 within the range of yield strength of 758 MPa or more.
  • the steel material according to this embodiment achieves both high yield strength and excellent SSC resistance in a sour environment of pH 3.0.
  • An example of the method of manufacturing a martensitic stainless steel according to this embodiment includes a step of preparing an intermediate steel (preparation step) and a step of quenching and tempering the intermediate steel (heat treatment step). Each step will be described in detail below.
  • an intermediate steel material having the chemical composition described above is prepared.
  • the method for producing the intermediate steel material is not particularly limited.
  • the intermediate steel material referred to here is a plate-shaped steel material when the final product is a steel plate or a welded steel pipe, and is a blank pipe when the final product is a seamless steel pipe.
  • the preparation process may include a process of preparing the material (material preparation process) and a process of hot working the material to manufacture the intermediate steel material (hot working process).
  • material preparation process a process of preparing the material
  • hot working process a process of hot working the material to manufacture the intermediate steel material
  • the material preparation step the material is manufactured using molten steel having the chemical composition described above.
  • the method of manufacturing the raw material is not particularly limited, and a known method may be used. Specifically, a slab (slab, bloom, or billet) may be produced by continuous casting using molten steel. You may manufacture an ingot by an ingot casting method using molten steel. If desired, the slab, bloom or ingot may be bloomed to produce a billet.
  • a raw material (slab, bloom, or billet) is manufactured by the above steps.
  • the prepared material is hot worked to produce an intermediate steel material. If the steel material is a seamless steel pipe, the intermediate steel material corresponds to the base pipe.
  • the billet is heated in a heating furnace.
  • the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
  • a billet extracted from a heating furnace is subjected to hot working to produce a blank pipe (seamless steel pipe).
  • the method of hot working is not particularly limited, and a known method may be used.
  • the Mannesmann method may be carried out as hot working to produce a mother tube.
  • the round billet is pierced and rolled by a piercing machine.
  • the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0.
  • the pierced-rolled round billet is further hot-rolled by a mandrel mill, a reducer, a sizing mill, or the like to form a mother tube.
  • the cumulative area reduction rate in the hot working process is, for example, 20 to 70%.
  • a blank tube may be manufactured from a billet by implementing other hot working methods.
  • the steel material is a short thick steel pipe such as a coupling
  • the blank pipe may be manufactured by forging such as the Ehrhardt method.
  • a blank pipe is manufactured by the above steps.
  • the wall thickness of the blank tube is not particularly limited, it is, for example, 9 to 60 mm.
  • the material is first heated in a heating furnace.
  • the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
  • the raw material extracted from the heating furnace is subjected to hot working to produce an intermediate steel material having a circular cross section perpendicular to the axial direction.
  • Hot working is, for example, blooming by a blooming mill or hot rolling by a continuous rolling mill.
  • a horizontal stand having a pair of grooved rolls arranged vertically and a vertical stand having a pair of grooved rolls arranged horizontally are arranged alternately.
  • the material is first heated in a heating furnace.
  • the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
  • the raw material extracted from the heating furnace is subjected to hot rolling using a blooming mill and a continuous rolling mill to produce an intermediate steel material in the form of a steel plate.
  • the blank tube manufactured by hot working may be air-cooled (As-Rolled).
  • a mother tube manufactured by hot working may be quenched directly after hot working without cooling to room temperature, or may be quenched after supplementary heating (reheating) after hot working. good.
  • SR stress relief annealing
  • intermediate steel materials are prepared in the preparation process.
  • the intermediate steel material may be manufactured by the above-mentioned preferable process, or the intermediate steel material manufactured by a third party, or by a factory other than the factory where the quenching process and the tempering process described below are performed, or at another place of business. You may prepare an intermediate steel material manufactured by The heat treatment process will be described in detail below.
  • the heat treatment process includes a quenching process and a tempering process.
  • the intermediate steel material produced in the hot working process is quenched (quenching process). Quenching is performed by a well-known method. Specifically, the intermediate steel material after the hot working process is charged into a heat treatment furnace and held at the quenching temperature. The quenching temperature is above the AC3 transformation point, eg, 900-1000° C . After holding the intermediate steel material at the quenching temperature, it is rapidly cooled (quenched). Although the holding time at the quenching temperature is not particularly limited, it is, for example, 10 to 60 minutes. The quenching method is, for example, water cooling. The quenching method is not particularly limited.
  • the blank pipe When the intermediate steel material is a blank pipe, for example, the blank pipe may be rapidly cooled by being immersed in a water tank or an oil bath, or by shower cooling or mist cooling, cooling water may be poured onto the outer surface and/or the inner surface of the blank pipe. , or the like, to rapidly cool the tube.
  • quenching may be performed immediately after hot working without cooling the intermediate steel material to room temperature, or the temperature of the mother tube after hot working may be Quenching may be performed after the steel is charged into a reheating furnace and held at the quenching temperature before the temperature drops.
  • the intermediate steel material is further subjected to a tempering process.
  • the tempering process adjusts the yield strength of the steel material.
  • the tempering temperature is 540-620.degree.
  • the holding time at the tempering temperature is not particularly limited, it is, for example, 10 to 180 minutes. It is well known to those skilled in the art that the yield strength of steel materials can be adjusted by appropriately adjusting the tempering temperature according to the chemical composition. Therefore, the tempering conditions are adjusted so that the yield strength of the steel material is 758 MPa or more.
  • the martensitic stainless steel material according to this embodiment can be manufactured by the above steps.
  • the martensitic stainless steel material according to the present embodiment is not limited to the manufacturing method described above.
  • the content of each element in the chemical composition is within the range of the present embodiment, and the volume % is 0 to 5.0% retained austenite, 0 to 5.0% ferrite, and the balance is If a martensitic stainless steel material having a tempered martensite microstructure, a yield strength of 758 MPa or more, and an F1 of 0.15 to 1.00 can be produced, the production method of the present embodiment can be applied as described above. is not limited to the manufacturing method of Hereinafter, the martensitic stainless steel material according to the present embodiment will be described more specifically by way of examples.
  • a molten steel having the chemical composition shown in Table 1 was produced.
  • "-" in Table 1 means that the content of the corresponding element was at the impurity level.
  • the W content of Test No. 1 was rounded to the third decimal place, meaning that it was 0%.
  • the Nb content of Test No. 1 was 0%, rounded to the fourth decimal place.
  • the As content and Sb content of Test No. 1 were rounded off to the fifth decimal place, meaning that they were 0%.
  • the above molten steel was melted in a 180 kg vacuum furnace, and an ingot was produced by an ingot casting method.
  • the ingot was heated at 1250° C. for 3 hours.
  • a block was manufactured by hot forging the ingot after heating. After hot forging, the block was heated at 1230° C. for 3 hours, and then hot rolled.
  • a steel material (steel plate) having a thickness of 13 mm was produced.
  • Quenching was performed on the steel material of each test number. Specifically, the steel sheets of each test number were heated to the quenching temperature (°C) shown in Table 2. The steel sheets of each test number were held at the quenching temperature for 15 minutes and then water-cooled. The steel material of each test number after quenching was tempered at the tempering temperature (° C.) shown in Table 2 for 30 minutes.
  • a steel plate with each test number was manufactured through the above manufacturing process.
  • the volume fraction (%) of ferrite was obtained by the above-mentioned point counting method. Specifically, a test piece was produced from the thickness center position of the steel plate of each test number. The observation surface of the test piece was parallel to the rolling direction. In this example, the area ratio of ferrite determined by the method based on ASTM E562 (2019) was used as the volume ratio (%) of ferrite. The volume fraction of ferrite in the obtained steel sheets of each test number is shown in "Ferrite (%)" in Table 2.
  • volume fraction (%) of martensite was determined by the following formula using the volume fraction (%) of retained austenite and the volume fraction (%) of ferrite.
  • Volume fraction of martensite (%) 100 - ⁇ volume fraction of retained austenite (%) + volume fraction of ferrite (%) ⁇
  • the obtained volume fraction (%) of martensite for each test number is shown in Table 2 in the “Martensite (%)” column.
  • the obtained yield strength of each test number is shown in Table 2, "YS (MPa)” column. Furthermore, F1 was obtained for the steel sheet of each test number using the chemical composition, yield strength, and formula (1). The obtained F1 value for each test number is shown in Table 2, column “F1”.
  • SSC resistance evaluation test An SSC resistance evaluation test was performed on the steel sheets of each test number. Specifically, a round bar test piece having a diameter of 6.35 mm and a parallel portion length of 25.4 mm was prepared from the plate thickness center position of the steel plate of each test number. An SSC resistance evaluation test based on NACE TM0177-2016 Method A was performed on three of the prepared round bar test pieces. The axial direction of the round bar test piece was parallel to the rolling direction.
  • the test solution was a 0.17 mass % sodium chloride aqueous solution with a pH of 3.0.
  • a test solution was prepared by adding acetic acid to an aqueous solution containing 0.17 mass % sodium chloride and 0.41 g/L sodium acetate to adjust the pH to 3.0.
  • a stress equivalent to 90% of the actual yield stress was applied to the round bar test piece of each test number.
  • the test solution at 24° C. was poured into the test container so that the stress-loaded round-bar test piece was immersed therein to form a test bath. After degassing the test bath, 0.03 bar H 2 S gas and 0.97 bar CO 2 gas were blown into the test bath to saturate the test bath with H 2 S gas.
  • a test bath saturated with H 2 S gas was held at 24° C. for 720 hours.
  • the steel sheets of test numbers 1 to 22 have appropriate chemical compositions, 0 to 5.0% by volume of retained austenite, 0 to 5.0% by volume of ferrite, and the balance had a microstructure consisting of martensite. These steel sheets also had a high yield strength of 758 MPa or more. These steel sheets further satisfied F1 of 0.15 to 1.00. As a result, none of these steel sheets had pitting corrosion in a sour environment of pH 3.0, and had excellent SSC resistance.
  • the steel sheets with test numbers 23 to 26 had too low F1.
  • these steel sheets had at least one pitting corrosion in a sour environment of pH 3.0 and did not have excellent SSC resistance.
  • the steel sheets with test numbers 27 to 30 had too high F1. As a result, three of these steel sheets suffered from pitting corrosion in a sour environment of pH 3.0, and did not have excellent SSC resistance.
  • the steel plate of test number 31 did not contain Sn. As a result, one of the steel sheets suffered from pitting corrosion in a sour environment of pH 3.0, and did not have excellent SSC resistance.
  • the steel sheets of test numbers 32 to 34 did not contain Sn. These steel plates also had too low F1. As a result, these steel sheets had at least one pitting corrosion in a sour environment of pH 3.0 and did not have excellent SSC resistance.
  • the steel plate of test number 35 did not contain Sn. This steel plate also had a too high F1. As a result, this steel sheet had pitting corrosion in three in a sour environment of pH 3.0, and did not have excellent SSC resistance.
  • the Co content of the steel sheet of test number 36 was too low. As a result, one of the steel sheets suffered from pitting corrosion in a sour environment of pH 3.0, and did not have excellent SSC resistance.

Abstract

Provided is a martensite stainless steel material which exhibits both high yield strength and excellent SSC resistance. This martensite stainless steel material comprises, in terms of mass%, C: 0.030% or less; Si: 1.00% or less; Mn: 1.00% or less; P: 0.030% or less; S: 0.0050% or less; Cu: 0.01-3.50%; Cr: 10:00-14.00%; Ni: 4.50-7.50%; Mo: 1.00-4.00%; Ti: 0.050-0.300%; V: 0.01-1.00%; Al: 0.001-0.100%; Co: 0.010-0.500%; Ca: 0.0005-0.0050%; Sn: 0.0005-0.0500%, N: 0.0010-0.0500%; O: 0.050% or less; and remainder: Fe and impurities. The martensite stainless steel material has a yield strength of 758 MPa or more. The amounts of the elements contained and the yield strength within these ranges satisfy formula (1) set forth in the description.

Description

マルテンサイト系ステンレス鋼材Martensitic stainless steel material
 本開示は鋼材に関し、さらに詳しくは、マルテンサイト系ステンレス鋼材に関する。 The present disclosure relates to steel materials, and more particularly to martensitic stainless steel materials.
 油井やガス井(以下、油井及びガス井を総称して「油井」という)の中には、腐食性物質を多く含有する環境がある。腐食性物質はたとえば、硫化水素(HS)ガス及び炭酸(CO)ガス等の腐食性ガスである。鋼材の耐炭酸ガス腐食性の向上にはクロム(Cr)が有効であることが知られている。そのため、炭酸ガスを多く含む環境の油井では、炭酸ガスの分圧や温度に応じて、API L80 13Cr鋼材(通常の13Cr鋼材)や、C含有量を低減したスーパー13Cr鋼材等に代表される、13質量%程度のCrを含有するマルテンサイト系ステンレス鋼材が使用される。 Oil wells and gas wells (hereinafter collectively referred to as “oil wells”) have an environment containing a large amount of corrosive substances. Corrosive substances are, for example, corrosive gases such as hydrogen sulfide (H 2 S) gas and carbonic acid (CO 2 ) gas. Chromium (Cr) is known to be effective in improving the carbon dioxide gas corrosion resistance of steel. Therefore, in an oil well environment containing a large amount of carbon dioxide, depending on the partial pressure and temperature of carbon dioxide, API L80 13Cr steel (normal 13Cr steel), super 13Cr steel with reduced C content, etc. A martensitic stainless steel material containing about 13% by mass of Cr is used.
 近年、油井の深井戸化により、油井用鋼材の高強度化が要求されている。具体的には、80ksi級(降伏強度が80~95ksi未満、つまり、552~655MPa未満)や、95ksi級(降伏強度が95~110ksi未満、つまり、655~758MPa未満)の油井用鋼材が広く利用されてきている。最近ではさらに、110ksi以上(降伏強度が758MPa以上)の油井用鋼材が求められ始めている。 In recent years, due to the deepening of oil wells, there is a demand for higher strength steel materials for oil wells. Specifically, 80 ksi class (yield strength less than 80 to 95 ksi, that is, less than 552 to 655 MPa) and 95 ksi class (yield strength less than 95 to 110 ksi, that is, less than 655 to 758 MPa) oil well steel materials are widely used. It's been done. Recently, there is a growing demand for oil well steel materials with a yield strength of 110 ksi or more (yield strength of 758 MPa or more).
 ここで、本明細書において、硫化水素及び炭酸ガスを含有する環境を「サワー環境」という。サワー環境で使用される油井用鋼材は、耐硫化物応力割れ性(耐Sulfide Stress Cracking性:以下、耐SSC性という)が要求される。つまり、近年、高強度と優れた耐SSC性とを両立する油井用鋼材が求められてきている。 Here, in this specification, an environment containing hydrogen sulfide and carbon dioxide is referred to as a "sour environment". Steel materials for oil wells used in sour environments are required to have sulfide stress cracking resistance (Sulfide Stress Cracking resistance: hereinafter referred to as SSC resistance). In other words, in recent years, there has been a demand for oil well steel materials that have both high strength and excellent SSC resistance.
 特開2000-192196号公報(特許文献1)、特開2012-136742号公報(特許文献2)、及び、国際公開第2008/023702号(特許文献3)は、高強度と優れた耐SSC性とを有する鋼材を提案する。 JP 2000-192196 (Patent Document 1), JP 2012-136742 (Patent Document 2), and International Publication No. 2008/023702 (Patent Document 3), high strength and excellent SSC resistance We propose a steel material with
 特許文献1の鋼材は、油井用マルテンサイト系ステンレス鋼であり、重量%で、C:0.001~0.05%、Si:0.05~1%、Mn:0.05~2%、P:0.025%以下、S:0.01%以下、Cr:9~14%、Mo:3.1~7%、Ni:1~8%、Co:0.5~7%、sol.Al:0.001~0.1%、N:0.05%以下、O(酸素):0.01%以下、Cu:0~5%、W:0~5%を含有し、残部がFe及び不可避不純物からなる。Moを含有した場合、Ms点が低下する。そこで、この鋼材は、Moと共にCoを含有することで、Ms点の低下を抑えてミクロ組織をマルテンサイト単相組織とする。その結果、この鋼材は、80ksi以上(552MPa以上)の強度を維持しつつ、耐SSC性を高めることができる、と特許文献1には記載されている。 The steel material of Patent Document 1 is a martensitic stainless steel for oil wells, and in terms of weight %, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 0.05 to 2%, P: 0.025% or less, S: 0.01% or less, Cr: 9-14%, Mo: 3.1-7%, Ni: 1-8%, Co: 0.5-7%, sol. Al: 0.001 to 0.1%, N: 0.05% or less, O (oxygen): 0.01% or less, Cu: 0 to 5%, W: 0 to 5%, and the balance is Fe and inevitable impurities. When Mo is contained, the Ms point is lowered. Therefore, by containing Co together with Mo, this steel material suppresses a decrease in the Ms point and makes the microstructure a martensitic single-phase structure. As a result, Patent Document 1 describes that this steel material can improve SSC resistance while maintaining a strength of 80 ksi or more (552 MPa or more).
 特許文献2の鋼材は、マルテンサイト系ステンレス継目無鋼管であり、質量%で、C:0.01%以下、Si:0.5%以下、Mn:0.1~2.0%、P:0.03%以下、S:0.005%以下、Cr:14.0~15.5%、Ni:5.5~7.0%、Mo:2.0~3.5%、Cu:0.3~3.5%、V:0.20%以下、Al:0.05%以下、N:0.06%以下を含み、残部Fe及び不可避的不純物からなる。この鋼材は、降伏強さ:655~862MPaの強度と降伏比:0.90以上とを有する。C含有量を0.01%以下とし、Cr、Ni及びMoを適正範囲に調整し、さらに、適性量のCu及びV又は適性量のWを含有させることにより、655MPa以上の強度を有しつつ、優れた耐SSC性が得られる、と特許文献2には記載されている。 The steel material of Patent Document 2 is a martensitic stainless steel seamless steel pipe, and in mass %, C: 0.01% or less, Si: 0.5% or less, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-15.5%, Ni: 5.5-7.0%, Mo: 2.0-3.5%, Cu: 0 .3 to 3.5%, V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, and the balance consists of Fe and unavoidable impurities. This steel material has a yield strength of 655 to 862 MPa and a yield ratio of 0.90 or more. By setting the C content to 0.01% or less, adjusting Cr, Ni and Mo to appropriate ranges, and further containing appropriate amounts of Cu and V or appropriate amounts of W, it is possible to achieve a strength of 655 MPa or more. Patent Document 2 describes that , excellent SSC resistance can be obtained.
 特許文献3の鋼材は、マルテンサイト系ステンレス鋼であり、質量%で、C:0.010~0.030%、Mn:0.30~0.60%、P:0.040%以下、S:0.0100%以下、Cr:10.00~15.00%、Ni:2.50~8.00%、Mo:1.00~5.00%、Ti:0.050~0.250%、V:0.25%以下、N:0.07%以下と、Si:0.50%以下、Al:0.10%以下のうちの1種以上とを含有し、残部はFe及び不純物からなり、式(6.0≦Ti/C≦10.1)を満たす。降伏強度は758~862MPaである。鋼中のTi含有量のC含有量に対する比(Ti/C)と、引張強度から降伏強度を差し引いた値とが相関関係を有する。また、鋼材内の硬度ばらつきが大きい場合、鋼材の耐SSC性が低下する。そこで、この鋼材は、Ti/Cを適正範囲に調整することで、硬度ばらつきを抑え、降伏強度を758~862MPaにする、と特許文献3には記載されている。 The steel material of Patent Document 3 is a martensitic stainless steel, and in mass %, C: 0.010 to 0.030%, Mn: 0.30 to 0.60%, P: 0.040% or less, S : 0.0100% or less, Cr: 10.00-15.00%, Ni: 2.50-8.00%, Mo: 1.00-5.00%, Ti: 0.050-0.250% , V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, Al: 0.10% or less, and the balance is Fe and impurities and satisfies the formula (6.0≤Ti/C≤10.1). The yield strength is 758-862 MPa. There is a correlation between the ratio (Ti/C) of the Ti content to the C content in steel and the value obtained by subtracting the yield strength from the tensile strength. Moreover, when the hardness variation in the steel material is large, the SSC resistance of the steel material is lowered. Therefore, Patent Document 3 describes that this steel material has a yield strength of 758 to 862 MPa by adjusting Ti/C to an appropriate range to suppress variations in hardness.
特開2000-192196号公報Japanese Patent Application Laid-Open No. 2000-192196 特開2012-136742号公報JP 2012-136742 A 国際公開第2008/023702号WO2008/023702
 上記特許文献1~3は、鋼材の降伏強度を高め、耐SSC性を高める技術を提案する。しかしながら、上記特許文献1~3に提案される技術以外の他の技術によって、降伏強度を高めつつ、優れた耐SSC性を有するマルテンサイト系ステンレス鋼材が得られてもよい。 Patent Documents 1 to 3 above propose techniques for increasing the yield strength of steel materials and improving SSC resistance. However, a martensitic stainless steel material having excellent SSC resistance while increasing the yield strength may be obtained by techniques other than the techniques proposed in Patent Documents 1 to 3 above.
 さらに近年、従来よりも水素イオン濃度が高い油井についても、開発が活発になってきている。通常、水素イオン濃度が高い(つまり、pHが低い)環境では、SSCが発生しやすい。そのため、従来よりも水素イオン濃度が高い、pHが3.0のサワー環境であっても、優れた耐SSC性を有するマルテンサイト系ステンレス鋼材が求められてきている。しかしながら、上記特許文献1~3では、pHが3.0のサワー環境における鋼材の耐SSC性について、検討されていない。 Furthermore, in recent years, there has been active development of oil wells with higher hydrogen ion concentrations than before. Generally, SSC tends to occur in an environment with a high hydrogen ion concentration (that is, a low pH). Therefore, a martensitic stainless steel material having excellent SSC resistance even in a sour environment with a pH of 3.0, which has a higher hydrogen ion concentration than before, has been desired. However, Patent Documents 1 to 3 do not discuss the SSC resistance of steel materials in a sour environment with a pH of 3.0.
 本開示の目的は、高い降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立できる、マルテンサイト系ステンレス鋼材を提供することである。 An object of the present disclosure is to provide a martensitic stainless steel material that can achieve both high yield strength and excellent SSC resistance in a sour environment of pH 3.0.
 本開示によるマルテンサイト系ステンレス鋼材は、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cu:0.01~3.50%、
 Cr:10.00~14.00%、
 Ni:4.50~7.50%、
 Mo:1.00~4.00%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Al:0.001~0.100%、
 Co:0.010~0.500%、
 Ca:0.0005~0.0050%、
 Sn:0.0005~0.0500%、
 N:0.0010~0.0500%、
 O:0.050%以下、
 W:0~0.50%、
 Nb:0~0.500%、
 As:0~0.0100%、
 Sb:0~0.0100%、及び、
 残部:Fe及び不純物からなり、
 降伏強度が、758MPa以上であり、
 前記マルテンサイト系ステンレス鋼材の元素の含有量、及び、前記降伏強度の範囲内において、前記元素の含有量と、前記降伏強度とが、式(1)を満たす。
 0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入され、YSには降伏強度がMPaで代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
The martensitic stainless steel material according to the present disclosure is
in % by mass,
C: 0.030% or less,
Si: 1.00% or less,
Mn: 1.00% or less,
P: 0.030% or less,
S: 0.0050% or less,
Cu: 0.01 to 3.50%,
Cr: 10.00 to 14.00%,
Ni: 4.50-7.50%,
Mo: 1.00 to 4.00%,
Ti: 0.050 to 0.300%,
V: 0.01 to 1.00%,
Al: 0.001 to 0.100%,
Co: 0.010 to 0.500%,
Ca: 0.0005 to 0.0050%,
Sn: 0.0005 to 0.0500%,
N: 0.0010 to 0.0500%,
O: 0.050% or less,
W: 0 to 0.50%,
Nb: 0 to 0.500%,
As: 0 to 0.0100%,
Sb: 0 to 0.0100%, and
Balance: Fe and impurities,
Yield strength is 758 MPa or more,
Within the ranges of the element content and the yield strength of the martensitic stainless steel material, the element content and the yield strength satisfy formula (1).
0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
Here, the element symbol in the formula (1) is substituted with the content of the corresponding element in mass %, and YS is substituted with the yield strength in MPa. When the corresponding element is not contained, "0" is substituted for the element symbol.
 本開示によるマルテンサイト系ステンレス鋼材は、高い降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立できる。 The martensitic stainless steel material according to the present disclosure can achieve both high yield strength and excellent SSC resistance in a sour environment of pH 3.0.
図1は、本実施例におけるF1(=(Sn+As+Sb)/{(Cu+Ni)/YS})と、耐SSC性の指標である孔食発生本数(本)との関係を示す図である。FIG. 1 is a diagram showing the relationship between F1 (=(Sn+As+Sb)/{(Cu+Ni)/YS}) in this example and the number of pitting corrosion occurrences (lines), which is an index of SSC resistance.
 まず本発明者らは、高い降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立できるマルテンサイト系ステンレス鋼材について、化学組成の観点から検討した。その結果、本発明者らは、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cu:0.01~3.50%、Cr:10.00~14.00%、Ni:4.50~7.50%、Mo:1.00~4.00%、Ti:0.050~0.300%、V:0.01~1.00%、Al:0.001~0.100%、Co:0.010~0.500%、Ca:0.0005~0.0050%、N:0.0010~0.0500%、O:0.050%以下、W:0~0.50%、及び、Nb:0~0.500%を含有するマルテンサイト系ステンレス鋼材であれば、758MPa(110ksi)以上の降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立できる可能性があると考えた。 First, the present inventors studied a martensitic stainless steel material that can achieve both high yield strength and excellent SSC resistance in a sour environment of pH 3.0 from the viewpoint of chemical composition. As a result, the present inventors found that, in mass %, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050 % or less, Cu: 0.01 to 3.50%, Cr: 10.00 to 14.00%, Ni: 4.50 to 7.50%, Mo: 1.00 to 4.00%, Ti: 0 .050-0.300%, V: 0.01-1.00%, Al: 0.001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050 %, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 0.50%, and Nb: 0 to 0.500%. For example, it was considered possible to achieve both a yield strength of 758 MPa (110 ksi) or more and excellent SSC resistance in a sour environment of pH 3.0.
 次に本発明者らは、上述の元素含有量を含有するマルテンサイト系ステンレス鋼材について、758MPa以上の降伏強度を維持したまま、耐SSC性を高める手段を詳細に検討した。その結果、上述の元素含有量を含有するマルテンサイト系ステンレス鋼材では、これまで着目されてこなかったスズ(Sn)、ヒ素(As)及びアンチモン(Sb)が、耐SSC性を高める可能性があることを、本発明者らは見出した。本発明者らのさらなる詳細な検討の結果、上述の元素含有量を含有するマルテンサイト系ステンレス鋼材では、特にSnが耐SSC性を顕著に高め、As及びSbは、Snが耐SSC性を高める効果を補助する可能性がある。 Next, the present inventors conducted a detailed study of means for enhancing the SSC resistance while maintaining the yield strength of 758 MPa or more for the martensitic stainless steel material containing the above elemental contents. As a result, tin (Sn), arsenic (As), and antimony (Sb), which have not received much attention so far, may improve the SSC resistance of the martensitic stainless steel material containing the above element contents. The inventors have found that. As a result of further detailed studies by the present inventors, in the martensitic stainless steel material containing the above-mentioned element contents, Sn in particular significantly increases the SSC resistance, and in As and Sb, Sn increases the SSC resistance. It may help the effect.
 そこで本発明者らは、マルテンサイト系ステンレス鋼材の耐SSC性を十分に高められるSn、As及びSb含有量について、詳細に検討した。その結果、本実施形態によるマルテンサイト系ステンレス鋼材は、上述の元素含有量に加えて、Snを0.0005~0.0500%、Asを0~0.0100%、及び、Sbを0~0.0100%含有することで、鋼材の耐SSC性が高められることが明らかになった。つまり、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cu:0.01~3.50%、Cr:10.00~14.00%、Ni:4.50~7.50%、Mo:1.00~4.00%、Ti:0.050~0.300%、V:0.01~1.00%、Al:0.001~0.100%、Co:0.010~0.500%、Ca:0.0005~0.0050%、Sn:0.0005~0.0500%、N:0.0010~0.0500%、O:0.050%以下、W:0~0.50%、Nb:0~0.500%、As:0~0.0100%、Sb:0~0.0100%、及び、残部がFe及び不純物からなるマルテンサイト系ステンレス鋼材であれば、758MPa以上の降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立できる可能性がある。 Therefore, the inventors conducted a detailed study on the Sn, As, and Sb contents that can sufficiently improve the SSC resistance of martensitic stainless steel materials. As a result, the martensitic stainless steel material according to the present embodiment contains 0.0005 to 0.0500% Sn, 0 to 0.0100% As, and 0 to 0 Sb in addition to the above element contents. It has been clarified that the SSC resistance of the steel material is enhanced by containing .0100%. That is, in terms of % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.005% or less. 01-3.50%, Cr: 10.00-14.00%, Ni: 4.50-7.50%, Mo: 1.00-4.00%, Ti: 0.050-0.300% , V: 0.01 to 1.00%, Al: 0.001 to 0.100%, Co: 0.010 to 0.500%, Ca: 0.0005 to 0.0050%, Sn: 0.0005 ~0.0500%, N: 0.0010-0.0500%, O: 0.050% or less, W: 0-0.50%, Nb: 0-0.500%, As: 0-0.0100 %, Sb: 0 to 0.0100%, and the balance is Fe and impurities. may be compatible.
 一方、上述の化学組成を有するマルテンサイト系ステンレス鋼材であっても、758MPa以上の降伏強度を有する場合、pH3.0のサワー環境では、耐SSC性を安定して高められない場合があることを本発明者らは知見した。そこで本発明者らは、上述の化学組成を有するマルテンサイト系ステンレス鋼材について、758MPa以上の降伏強度を維持したまま、pH3.0のサワー環境における耐SSC性を高める手段を詳細に検討した。その結果、本発明者らは次の知見を得た。 On the other hand, even if the martensitic stainless steel material has the chemical composition described above, if it has a yield strength of 758 MPa or more, it may not be possible to stably increase the SSC resistance in a sour environment of pH 3.0. The inventors have found out. Therefore, the inventors of the present invention conducted detailed studies on means for improving the SSC resistance in a sour environment of pH 3.0 while maintaining the yield strength of 758 MPa or more for the martensitic stainless steel material having the chemical composition described above. As a result, the present inventors obtained the following findings.
 本発明者らの詳細な検討の結果、上述の化学組成を有し、かつ、降伏強度が758MPa以上のマルテンサイト系ステンレス鋼材では、元素の含有量と降伏強度とが式(1)を満たせば、pH3.0のサワー環境における、鋼材の耐SSC性を顕著に高められることが明らかになった。
 0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入され、YSには降伏強度がMPaで代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
As a result of detailed studies by the present inventors, it was found that in a martensitic stainless steel material having the chemical composition described above and a yield strength of 758 MPa or more, if the element content and the yield strength satisfy the formula (1), , pH 3.0 sour environment, the SSC resistance of the steel can be significantly improved.
0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
Here, the element symbol in the formula (1) is substituted with the content of the corresponding element in mass %, and YS is substituted with the yield strength in MPa. When the corresponding element is not contained, "0" is substituted for the element symbol.
 F1=(Sn+As+Sb)/{(Cu+Ni)/YS}と定義する。上述のとおり、As及びSbは、Snが鋼材の耐SSC性を高める効果を補助する。さらに、Sn、As及びSb含有量のCu及びNi含有量に対する比を、ある程度の範囲内にすることで、鋼材の耐SSC性が顕著に高まる。一方、鋼材の降伏強度が高いほど、鋼材の耐SSC性は低下しやすい。そこで、F1の分母をCu及びNi含有量の降伏強度に対する比とする。このように、降伏強度に応じて調整された、Sn、As及びSb含有量のCu及びNi含有量に対する比をF1と定義する。すなわち、F1は、降伏強度に応じて調整された、Sn、As及びSbと、Cu及びNiとの相乗効果により、pH3.0のサワー環境における耐SSC性を高める指標である。F1と、pH3.0のサワー環境における耐SSC性との関係について、図面を用いて具体的に説明する。 Define as F1=(Sn+As+Sb)/{(Cu+Ni)/YS}. As described above, As and Sb assist the effect that Sn enhances the SSC resistance of steel. Furthermore, the SSC resistance of the steel is remarkably enhanced by setting the ratio of the Sn, As and Sb contents to the Cu and Ni contents within a certain range. On the other hand, the higher the yield strength of the steel material, the more easily the SSC resistance of the steel material decreases. Therefore, the denominator of F1 is the ratio of the Cu and Ni contents to the yield strength. Thus, the ratio of Sn, As and Sb contents to Cu and Ni contents adjusted according to yield strength is defined as F1. That is, F1 is an index for enhancing the SSC resistance in a sour environment of pH 3.0 due to the synergistic effect of Sn, As and Sb, and Cu and Ni, which are adjusted according to the yield strength. The relationship between F1 and SSC resistance in a sour environment of pH 3.0 will be specifically described with reference to the drawings.
 図1は、本実施例におけるF1と、耐SSC性との関係を示す図である。図1は、後述する実施例のうち、上述の化学組成を有し、かつ、降伏強度が758MPa以上の実施例について、F1と、耐SSC性の指標である孔食発生本数(本)とを用いて作成した。なお、孔食発生本数は、後述するpH3.0のサワー環境を想定した耐SSC性評価試験によって得られた。 FIG. 1 is a diagram showing the relationship between F1 and SSC resistance in this example. FIG. 1 shows F1 and the number of pitting corrosion occurrences (numbers), which is an index of SSC resistance, for examples having the above-described chemical composition and a yield strength of 758 MPa or more among the examples described later. Created using The number of pitting corrosion occurrences was obtained by an SSC resistance evaluation test assuming a sour environment of pH 3.0, which will be described later.
 図1を参照して、F1が低すぎる場合、孔食が1本以上発生した。同様に、F1が高すぎる場合も、孔食が1本以上発生した。一方、F1が0.15~1.00であれば、孔食が1本も発生しなかった。つまり、図1を参照して、上述の化学組成を有し、かつ、降伏強度が758MPa以上の鋼材では、F1が0.15~1.00の範囲内であれば、pH3.0のサワー環境において、優れた耐SSC性が得られる。 With reference to Fig. 1, when F1 was too low, one or more pitting corrosion occurred. Similarly, when F1 was too high, one or more pitting corrosion occurred. On the other hand, when F1 was 0.15 to 1.00, no pitting corrosion occurred. That is, referring to FIG. 1, in a steel material having the above-described chemical composition and a yield strength of 758 MPa or more, if F1 is within the range of 0.15 to 1.00, a sour environment of pH 3.0 In, excellent SSC resistance is obtained.
 なお、上述の化学組成を有し、降伏強度が758MPa以上の鋼材について、F1を0.15~1.00に調整することにより、pH3.0のサワー環境における鋼材の耐SSC性が高まる詳細なメカニズムは、明らかになっていない。しかしながら、図1にも示されるとおり、F1を0.15~1.00に調整することにより、上述の化学組成を有し、かつ、降伏強度が758MPa以上のマルテンサイト系ステンレス鋼材の、pH3.0のサワー環境における耐SSC性が高まることは、実施例によって証明されている。 For the steel material having the chemical composition described above and a yield strength of 758 MPa or more, by adjusting F1 to 0.15 to 1.00, the SSC resistance of the steel material in a sour environment of pH 3.0 is increased. The mechanism has not been elucidated. However, as shown in FIG. 1, by adjusting F1 to 0.15 to 1.00, the martensitic stainless steel material having the chemical composition described above and having a yield strength of 758 MPa or more has a pH of 3.0. The enhanced SSC resistance in a zero sour environment is demonstrated by the examples.
 以上より、本実施形態によるマルテンサイト系ステンレス鋼材は、上述の化学組成を有し、降伏強度が758MPa以上であり、さらに、元素の含有量、及び、降伏強度の範囲内において、元素の含有量と、降伏強度とが、式(1)を満たす。その結果、本実施形態によるマルテンサイト系ステンレス鋼材は、758MPa以上の高い降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立することができる。 As described above, the martensitic stainless steel material according to the present embodiment has the chemical composition described above, the yield strength is 758 MPa or more, and the element content and the element content within the range of the yield strength are and the yield strength satisfy the formula (1). As a result, the martensitic stainless steel material according to this embodiment can achieve both a high yield strength of 758 MPa or more and excellent SSC resistance in a sour environment of pH 3.0.
 以上の知見に基づいて完成した本実施形態によるマルテンサイト系ステンレス鋼材の要旨は、次のとおりである。 The gist of the martensitic stainless steel material according to the present embodiment completed based on the above knowledge is as follows.
 [1]
 マルテンサイト系ステンレス鋼材であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cu:0.01~3.50%、
 Cr:10.00~14.00%、
 Ni:4.50~7.50%、
 Mo:1.00~4.00%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Al:0.001~0.100%、
 Co:0.010~0.500%、
 Ca:0.0005~0.0050%、
 Sn:0.0005~0.0500%、
 N:0.0010~0.0500%、
 O:0.050%以下、
 W:0~0.50%、
 Nb:0~0.500%、
 As:0~0.0100%、
 Sb:0~0.0100%、及び、
 残部:Fe及び不純物からなり、
 降伏強度が、758MPa以上であり、
 前記マルテンサイト系ステンレス鋼材の元素の含有量、及び、前記降伏強度の範囲内において、前記元素の含有量と、前記降伏強度とが、式(1)を満たす、
 マルテンサイト系ステンレス鋼材。
 0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入され、YSには降伏強度がMPaで代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
[1]
A martensitic stainless steel material,
in % by mass,
C: 0.030% or less,
Si: 1.00% or less,
Mn: 1.00% or less,
P: 0.030% or less,
S: 0.0050% or less,
Cu: 0.01 to 3.50%,
Cr: 10.00 to 14.00%,
Ni: 4.50-7.50%,
Mo: 1.00 to 4.00%,
Ti: 0.050 to 0.300%,
V: 0.01 to 1.00%,
Al: 0.001 to 0.100%,
Co: 0.010 to 0.500%,
Ca: 0.0005 to 0.0050%,
Sn: 0.0005 to 0.0500%,
N: 0.0010 to 0.0500%,
O: 0.050% or less,
W: 0 to 0.50%,
Nb: 0 to 0.500%,
As: 0 to 0.0100%,
Sb: 0 to 0.0100%, and
Balance: Fe and impurities,
Yield strength is 758 MPa or more,
Within the range of the element content and the yield strength of the martensitic stainless steel material, the element content and the yield strength satisfy the formula (1),
Martensitic stainless steel material.
0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
Here, the element symbol in the formula (1) is substituted with the content of the corresponding element in mass %, and YS is substituted with the yield strength in MPa. When the corresponding element is not contained, "0" is substituted for the element symbol.
 [2]
 [1]に記載のマルテンサイト系ステンレス鋼材であって、
 W:0.01~0.50%、
 Nb:0.001~0.500%、
 As:0.0001~0.0100%、及び、
 Sb:0.0001~0.0100%からなる群から選択される1元素以上を含有する、
 マルテンサイト系ステンレス鋼材。
[2]
The martensitic stainless steel material according to [1],
W: 0.01 to 0.50%,
Nb: 0.001 to 0.500%,
As: 0.0001 to 0.0100%, and
Sb: containing one or more elements selected from the group consisting of 0.0001 to 0.0100%,
Martensitic stainless steel material.
 本実施形態によるマルテンサイト系ステンレス鋼材の形状は特に限定されない。本実施形態によるマルテンサイト系ステンレス鋼材は、鋼管であってもよく、丸鋼(中実材)であってもよく、鋼板であってもよい。なお、丸鋼とは、軸方向に垂直な断面が円形状の棒鋼を意味する。また、鋼管は継目無鋼管であってもよく、溶接鋼管であってもよい。 The shape of the martensitic stainless steel material according to this embodiment is not particularly limited. The martensitic stainless steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate. The round steel means a bar having a circular cross section perpendicular to the axial direction. Also, the steel pipe may be a seamless steel pipe or a welded steel pipe.
 以下、本実施形態によるマルテンサイト系ステンレス鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。また、以下の説明では、マルテンサイト系ステンレス鋼材を、単に「鋼材」ともいう。 The martensitic stainless steel material according to this embodiment will be described in detail below. "%" for elements means % by weight unless otherwise specified. Further, in the following description, the martensitic stainless steel material is also simply referred to as "steel material".
 [化学組成]
 本実施形態によるマルテンサイト系ステンレス鋼材は、次の元素を含有する。
[Chemical composition]
The martensitic stainless steel material according to this embodiment contains the following elements.
 C:0.030%以下
 炭素(C)は不可避に含有される。つまり、C含有量の下限は0%超である。Cは、鋼材の焼入れ性を高めて鋼材の強度を高める。一方、C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎる。その結果、鋼材の耐SSC性が低下する。したがって、C含有量は0.030%以下である。C含有量の好ましい上限は0.028%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.018%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極端な低減は、製造コストを高める。したがって、工業生産を考慮すれば、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。
C: 0.030% or less Carbon (C) is inevitably contained. That is, the lower limit of the C content is over 0%. C enhances the hardenability of the steel material and enhances the strength of the steel material. On the other hand, if the C content is too high, the strength of the steel material will be too high even if the contents of other elements are within the ranges of the present embodiment. As a result, the SSC resistance of the steel is lowered. Therefore, the C content is 0.030% or less. The preferred upper limit of the C content is 0.028%, more preferably 0.025%, still more preferably 0.020%, still more preferably 0.018%. The C content is preferably as low as possible. However, drastic reduction of C content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the C content is preferably 0.001%, more preferably 0.003%, and still more preferably 0.005%.
 Si:1.00%以下
 ケイ素(Si)は不可避に含有される。つまり、Si含有量の下限は0%超である。Siは、鋼を脱酸する。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Si含有量は1.00%以下である。上記効果を有効に得るためのSi含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。Si含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%である。
Si: 1.00% or less Silicon (Si) is inevitably contained. That is, the lower limit of the Si content is over 0%. Si deoxidizes steel. On the other hand, if the Si content is too high, the hot workability of the steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 1.00% or less. The preferred lower limit of the Si content for effectively obtaining the above effects is 0.01%, more preferably 0.05%, still more preferably 0.10%, and still more preferably 0.15%. be. A preferred upper limit of the Si content is 0.80%, more preferably 0.60%, still more preferably 0.50%, still more preferably 0.45%.
 Mn:1.00%以下
 マンガン(Mn)は不可避に含有される。つまり、Mn含有量の下限は0%超である。Mnは、鋼材の焼入れ性を高めて、鋼材の強度を高める。一方、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、MnがP及びS等の不純物元素と共に粒界に偏析する場合がある。この場合、鋼材の耐SSC性が低下する。したがって、Mn含有量は1.00%以下である。上記効果を有効に得るためのMn含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。Mn含有量の好ましい上限は0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
Mn: 1.00% or less Manganese (Mn) is inevitably contained. That is, the lower limit of the Mn content is over 0%. Mn enhances the hardenability of the steel material and enhances the strength of the steel material. On the other hand, if the Mn content is too high, Mn may segregate at grain boundaries together with impurity elements such as P and S even if the content of other elements is within the range of the present embodiment. In this case, the SSC resistance of the steel is lowered. Therefore, the Mn content is 1.00% or less. The preferred lower limit of the Mn content for effectively obtaining the above effect is 0.01%, more preferably 0.05%, still more preferably 0.10%, still more preferably 0.15%. be. A preferable upper limit of the Mn content is 0.80%, more preferably 0.70%, still more preferably 0.60%, still more preferably 0.50%.
 P:0.030%以下
 燐(P)は、不可避に含有される不純物である。つまり、P含有量の下限は0%超である。Pは、結晶粒界に偏析して、SSCを発生しやすくする。そのため、P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が顕著に低下する。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.018%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の極端な低減は、製造コストを高める。したがって、工業生産を考慮すれば、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
P: 0.030% or less Phosphorus (P) is an unavoidable impurity. That is, the lower limit of the P content is over 0%. P segregates at grain boundaries to facilitate the generation of SSC. Therefore, if the P content is too high, the SSC resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the P content is 0.030% or less. A preferable upper limit of the P content is 0.025%, more preferably 0.020%, and still more preferably 0.018%. The lower the P content is, the better. However, drastic reduction of P content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the P content is preferably 0.001%, more preferably 0.002%, and still more preferably 0.003%.
 S:0.0050%以下
 硫黄(S)は、不可避に含有される不純物である。つまり、S含有量の下限は0%超である。Sは、Pと同様に結晶粒界に偏析し、SSCを発生しやすくする。そのため、S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が顕著に低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の極端な低減は、製造コストを高める。したがって、工業生産を考慮すれば、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
S: 0.0050% or less Sulfur (S) is an unavoidable impurity. That is, the lower limit of the S content is over 0%. S, like P, segregates at grain boundaries and facilitates the generation of SSC. Therefore, if the S content is too high, the SSC resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the S content is 0.0050% or less. The upper limit of the S content is preferably 0.0040%, more preferably 0.0030%, still more preferably 0.0025%, still more preferably 0.0020%. It is preferable that the S content is as low as possible. However, drastic reduction of the S content increases manufacturing costs. Therefore, considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%.
 Cu:0.01~3.50%
 銅(Cu)は、オーステナイト形成元素であり、焼入れ後のミクロ組織をマルテンサイトにする。Cuはさらに、Sn、As及びSbとの相乗効果により、pH3.0のサワー環境における鋼材の耐SSC性を高める。Cu含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が飽和し、さらに鋼材の熱間加工性が著しく低下する。この場合さらに、製造コストが高まる。したがって、Cu含有量は0.01~3.50%である。Cu含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Cu含有量の好ましい上限は3.30%であり、さらに好ましくは3.10%であり、さらに好ましくは2.90%である。
Cu: 0.01-3.50%
Copper (Cu) is an austenite-forming element and makes the microstructure after quenching martensite. Cu further enhances the SSC resistance of steel materials in a sour environment of pH 3.0 due to a synergistic effect with Sn, As and Sb. If the Cu content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cu content is too high, even if the contents of the other elements are within the range of the present embodiment, the above effects will be saturated, and the hot workability of the steel material will be significantly reduced. In this case, the manufacturing costs are further increased. Therefore, the Cu content is 0.01-3.50%. A preferable lower limit of the Cu content is 0.02%, more preferably 0.03%, and still more preferably 0.05%. A preferable upper limit of the Cu content is 3.30%, more preferably 3.10%, and still more preferably 2.90%.
 Cr:10.00~14.00%
 クロム(Cr)は、鋼材の表面に不働態皮膜を形成して、鋼材の耐SSC性を高める。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、フェライトが組織中に含まれ、十分な強度が確保し難くなる場合がある。Cr含有量が高すぎればさらに、他の元素含有量が本実施形態の範囲内であっても、鋼材中に金属間化合物やCr炭窒化物が生成しやすくなる。その結果、鋼材の耐SSC性が低下する。したがって、Cr含有量は10.00~14.00%である。Cr含有量の好ましい下限は10.30%であり、さらに好ましくは10.50%であり、さらに好ましくは11.00%である。Cr含有量の好ましい上限は13.80%であり、さらに好ましくは13.60%であり、さらに好ましくは13.50%であり、さらに好ましくは13.45%であり、さらに好ましくは13.40%であり、さらに好ましくは13.35%である。
Cr: 10.00-14.00%
Chromium (Cr) forms a passivation film on the surface of the steel material and enhances the SSC resistance of the steel material. If the Cr content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content is too high, even if the content of other elements is within the range of the present embodiment, ferrite is included in the structure, making it difficult to ensure sufficient strength in some cases. If the Cr content is too high, intermetallic compounds and Cr carbonitrides are likely to form in the steel even if the content of other elements is within the range of the present embodiment. As a result, the SSC resistance of the steel is lowered. Therefore, the Cr content is 10.00-14.00%. A preferable lower limit of the Cr content is 10.30%, more preferably 10.50%, and still more preferably 11.00%. The preferred upper limit of the Cr content is 13.80%, more preferably 13.60%, still more preferably 13.50%, still more preferably 13.45%, still more preferably 13.40 %, more preferably 13.35%.
 Ni:4.50~7.50%
 ニッケル(Ni)はオーステナイト形成元素であり、焼入れ後のミクロ組織をマルテンサイトにする。Niはさらに、サワー環境において不働態皮膜上に硫化物を形成する。Ni硫化物は、塩化物イオン(Cl)や硫化水素イオン(HS)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。その結果、鋼材の耐SSC性が高まる。Niはさらに、Sn、As及びSbとの相乗効果により、pH3.0のサワー環境における鋼材の耐SSC性を高める。Ni含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の水素拡散係数が低下する場合がある。この場合、鋼材の耐SSC性が低下する。したがって、Ni含有量は4.50~7.50%である。Ni含有量の好ましい下限は4.80%であり、さらに好ましくは5.00%であり、さらに好ましくは5.50%である。Ni含有量の好ましい上限は7.30%であり、さらに好ましくは7.00%であり、さらに好ましくは6.50%である。
Ni: 4.50-7.50%
Nickel (Ni) is an austenite-forming element, and the microstructure after quenching becomes martensite. Ni also forms sulfides on the passive film in sour environments. Ni sulfide suppresses contact of chloride ions (Cl - ) and hydrogen sulfide ions (HS - ) with the passive film, and suppresses destruction of the passive film by chloride ions and hydrogen sulfide ions. do. As a result, the SSC resistance of the steel is enhanced. Ni further enhances the SSC resistance of steel materials in a sour environment of pH 3.0 due to a synergistic effect with Sn, As and Sb. If the Ni content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content is too high, the hydrogen diffusion coefficient in the steel may decrease even if the content of other elements is within the range of the present embodiment. In this case, the SSC resistance of the steel is lowered. Therefore, the Ni content is 4.50-7.50%. A preferable lower limit of the Ni content is 4.80%, more preferably 5.00%, and still more preferably 5.50%. A preferable upper limit of the Ni content is 7.30%, more preferably 7.00%, and still more preferably 6.50%.
 Mo:1.00~4.00%
 モリブデン(Mo)は、サワー環境において不働態皮膜上に硫化物を形成する。Mo硫化物は、塩化物イオン(Cl)や硫化水素イオン(HS)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。その結果、鋼材の耐SSC性が高まる。Moはさらに、鋼材中に固溶して鋼材の強度を高める。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、オーステナイトが安定化しにくくなる。その結果、焼戻し後のミクロ組織中にフェライトが多く含まれる場合がある。Mo含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Laves相などの金属間化合物を多量に生成し、鋼材の降伏強度が高くなりすぎる場合がある。したがって、Mo含有量は1.00~4.00%である。Mo含有量の好ましい下限は1.30%であり、さらに好ましくは1.50%であり、さらに好ましくは1.80%である。Mo含有量の好ましい上限は3.80%であり、さらに好ましくは3.60%であり、さらに好ましくは3.40%である。
Mo: 1.00-4.00%
Molybdenum (Mo) forms sulfides on passive films in sour environments. Mo sulfide prevents chloride ions (Cl - ) and hydrogen sulfide ions (HS - ) from coming into contact with the passive film, and prevents the passive film from being destroyed by chloride ions and hydrogen sulfide ions. do. As a result, the SSC resistance of the steel is enhanced. Mo also forms a solid solution in the steel material to increase the strength of the steel material. If the Mo content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content is too high, it becomes difficult to stabilize austenite even if the content of other elements is within the range of the present embodiment. As a result, a large amount of ferrite may be contained in the microstructure after tempering. If the Mo content is too high, a large amount of intermetallic compounds such as Laves phases may be generated even if the content of other elements is within the range of the present embodiment, and the yield strength of the steel material may become too high. Therefore, the Mo content is 1.00-4.00%. A preferable lower limit of the Mo content is 1.30%, more preferably 1.50%, and still more preferably 1.80%. A preferable upper limit of the Mo content is 3.80%, more preferably 3.60%, and still more preferably 3.40%.
 Ti:0.050~0.300%
 チタン(Ti)は、C及び/又はNと結合して炭化物又は窒化物を形成する。この場合、ピンニング効果により結晶粒の粗大化が抑制され、鋼材の降伏強度が高まる。Ti含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の耐SSC性が低下する。したがって、Ti含有量は0.050~0.300%である。Ti含有量の好ましい下限は0.060%であり、さらに好ましくは0.080%である。Ti含有量の好ましい上限は0.250%であり、さらに好ましくは0.200%であり、さらに好ましくは0.180%である。
Ti: 0.050-0.300%
Titanium (Ti) combines with C and/or N to form carbides or nitrides. In this case, the pinning effect suppresses grain coarsening and increases the yield strength of the steel material. If the Ti content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ti content is too high, the strength of the steel material becomes too high and the SSC resistance of the steel material decreases even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Ti content is 0.050-0.300%. A preferable lower limit of the Ti content is 0.060%, more preferably 0.080%. A preferable upper limit of the Ti content is 0.250%, more preferably 0.200%, and still more preferably 0.180%.
 V:0.01~1.00%
 バナジウム(V)は、鋼材の焼入れ性を高め、鋼材の降伏強度を高める。V含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の耐SSC性が低下する。したがって、V含有量は0.01~1.00%である。V含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%である。V含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
V: 0.01-1.00%
Vanadium (V) enhances the hardenability of the steel material and enhances the yield strength of the steel material. If the V content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content is too high, the strength of the steel material becomes too high and the SSC resistance of the steel material decreases even if the contents of other elements are within the ranges of the present embodiment. Therefore, the V content is 0.01-1.00%. A preferable lower limit of the V content is 0.02%, more preferably 0.03%. A preferable upper limit of the V content is 0.80%, more preferably 0.60%, and still more preferably 0.50%.
 Al:0.001~0.100%
 アルミニウム(Al)は、鋼を脱酸する。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成して、鋼材の耐SSC性が低下する。したがって、Al含有量は0.001~0.100%である。Al含有量の好ましい下限は0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.015%である。Al含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.055%であり、さらに好ましくは0.050%である。本明細書でいうAl含有量は、sol.Al(酸可溶Al)の含有量を意味する。
Al: 0.001-0.100%
Aluminum (Al) deoxidizes steel. If the Al content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Al content is too high, even if the contents of the other elements are within the ranges of the present embodiment, coarse oxides are formed and the SSC resistance of the steel is lowered. Therefore, the Al content is 0.001-0.100%. A preferable lower limit of the Al content is 0.005%, more preferably 0.010%, and still more preferably 0.015%. A preferable upper limit of the Al content is 0.080%, more preferably 0.060%, still more preferably 0.055%, still more preferably 0.050%. The Al content referred to in this specification is sol. It means the content of Al (acid-soluble Al).
 Co:0.010~0.500%
 コバルト(Co)は、サワー環境において不働態皮膜上に硫化物を形成する。Co硫化物は、塩化物イオン(Cl)や硫化水素イオン(HS)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。その結果、鋼材の耐SSC性が高まる。Coはさらに、鋼材の焼入性を高め、特に工業生産時において、鋼材の安定した高強度を確保する。具体的には、Coは残留オーステナイトの生成を抑制し、鋼材の強度のばらつきを抑制する。Co含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Co含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下する。したがって、Co含有量は0.010~0.500%である。Co含有量の好ましい下限は0.015%であり、さらに好ましくは0.020%であり、さらに好ましくは0.030%であり、さらに好ましくは0.050%であり、さらに好ましくは0.100%である。Co含有量の好ましい上限は0.450%であり、さらに好ましくは0.400%であり、さらに好ましくは0.350%である。
Co: 0.010-0.500%
Cobalt (Co) forms sulfides on passivation films in sour environments. Co sulfide prevents chloride ions (Cl - ) and hydrogen sulfide ions (HS - ) from coming into contact with the passive film, and prevents the passive film from being destroyed by chloride ions and hydrogen sulfide ions. do. As a result, the SSC resistance of the steel is enhanced. Co further enhances the hardenability of the steel material and ensures stable high strength of the steel material, especially during industrial production. Specifically, Co suppresses the formation of retained austenite and suppresses variations in the strength of the steel material. If the Co content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Co content is too high, the toughness of the steel material will decrease even if the content of other elements is within the range of the present embodiment. Therefore, the Co content is 0.010-0.500%. The lower limit of the Co content is preferably 0.015%, more preferably 0.020%, still more preferably 0.030%, still more preferably 0.050%, still more preferably 0.100 %. A preferable upper limit of the Co content is 0.450%, more preferably 0.400%, and still more preferably 0.350%.
 Ca:0.0005~0.0050%
 カルシウム(Ca)は、鋼材中のSを硫化物として固定することで無害化し、鋼材の熱間加工性を高める。Ca含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大な介在物が生成して、鋼材の耐SSC性が低下する。したがって、Ca含有量は0.0005~0.0050%である。Ca含有量の好ましい下限は0.0006%であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%である。
Ca: 0.0005-0.0050%
Calcium (Ca) fixes S in the steel material as a sulfide to render it harmless and enhances the hot workability of the steel material. If the Ca content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content is too high, even if the contents of other elements are within the range of the present embodiment, coarse inclusions are formed in the steel material and the SSC resistance of the steel material is lowered. Therefore, the Ca content is 0.0005-0.0050%. The lower limit of the Ca content is preferably 0.0006%, more preferably 0.0008%, still more preferably 0.0010%. A preferable upper limit of the Ca content is 0.0045%, more preferably 0.0040%, and still more preferably 0.0035%.
 Sn:0.0005~0.0500%
 スズ(Sn)は、pH3.0のサワー環境における鋼材の耐SSC性を高める。Sn含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Sn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Snが粒界に偏析して、かえって鋼材の耐SSC性が低下する。したがって、Sn含有量は0.0005~0.0500%である。Sn含有量の好ましい下限は0.0008%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%である。Sn含有量の好ましい上限は0.0400%であり、さらに好ましくは0.0300%であり、さらに好ましくは0.0200%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0080%である。
Sn: 0.0005-0.0500%
Tin (Sn) enhances the SSC resistance of steel in a sour environment of pH 3.0. If the Sn content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Sn content is too high, even if the contents of other elements are within the ranges of the present embodiment, Sn will segregate at the grain boundaries, and the SSC resistance of the steel material will rather deteriorate. Therefore, the Sn content is 0.0005-0.0500%. The preferred lower limit of the Sn content is 0.0008%, more preferably 0.0010%, still more preferably 0.0015%. The preferred upper limit of the Sn content is 0.0400%, more preferably 0.0300%, still more preferably 0.0200%, still more preferably 0.0100%, still more preferably 0.0080 %.
 N:0.0010~0.0500%
 窒素(N)は、Tiと結合して微細なTi窒化物を形成する。微細なTiNはピンニング効果により結晶粒の粗大化を抑制する。その結果、鋼材の降伏強度が高まる。N含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が生成して、鋼材の耐SSC性が低下する。したがって、N含有量は0.0010~0.0500%である。N含有量の好ましい下限は0.0015%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0040%である。N含有量の好ましい上限は0.0450%であり、さらに好ましくは0.0400%であり、さらに好ましくは0.0350%であり、さらに好ましくは0.0300%である。
N: 0.0010-0.0500%
Nitrogen (N) combines with Ti to form fine Ti nitrides. Fine TiN suppresses coarsening of crystal grains due to the pinning effect. As a result, the yield strength of the steel is increased. If the N content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the N content is too high, even if the content of the other elements is within the range of the present embodiment, coarse nitrides are formed and the SSC resistance of the steel material is lowered. Therefore, the N content is 0.0010-0.0500%. The lower limit of the N content is preferably 0.0015%, more preferably 0.0020%, still more preferably 0.0030%, still more preferably 0.0040%. A preferred upper limit of the N content is 0.0450%, more preferably 0.0400%, still more preferably 0.0350%, still more preferably 0.0300%.
 O:0.050%以下
 酸素(O)は、不可避に含有される不純物である。つまり、O含有量の下限は0%超である。Oは、酸化物を形成して、鋼材の耐SSC性を低下させる。そのため、O含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が顕著に低下する。したがって、O含有量は0.050%以下である。O含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量の極端な低減は、製造コストを高める。したがって、工業生産を考慮すれば、O含有量の好ましい下限は0.0005%であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
O: 0.050% or less Oxygen (O) is an unavoidable impurity. That is, the lower limit of the O content is over 0%. O forms oxides and lowers the SSC resistance of the steel material. Therefore, if the O content is too high, the SSC resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.050% or less. A preferable upper limit of the O content is 0.040%, more preferably 0.030%, and still more preferably 0.020%. It is preferable that the O content is as low as possible. However, drastic reduction of O content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the O content is preferably 0.0005%, more preferably 0.001%, and still more preferably 0.002%.
 本実施形態によるマルテンサイト系ステンレス鋼材の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、意図的に含有させるものではなく、本実施形態によるマルテンサイト系ステンレス鋼材に悪影響を与えない範囲で許容されるものを意味する。 The balance of the martensitic stainless steel material according to this embodiment consists of Fe and impurities. Here, the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially producing steel materials, and are not intentionally included. It means that it is permissible within a range that does not adversely affect the martensitic stainless steel material due to
 [任意元素]
 本実施形態によるマルテンサイト系ステンレス鋼材はさらに、Feの一部に代えて、Wを含有してもよい。
[Arbitrary element]
The martensitic stainless steel material according to this embodiment may further contain W instead of part of Fe.
 W:0~0.50%
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wはサワー環境において不働態皮膜を安定化して、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。その結果、鋼材の耐SSC性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。一方、W含有量が高すぎれば、WはCと結合して、粗大な炭化物を形成する。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が低下する。したがって、W含有量は0~0.50%である。W含有量の好ましい下限は0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。W含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
W: 0-0.50%
Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When included, W stabilizes the passive film in a sour environment and inhibits destruction of the passive film by chloride ions and hydrogen sulfide ions. As a result, the SSC resistance of the steel is enhanced. If even a small amount of W is contained, the above effect can be obtained to some extent. On the other hand, if the W content is too high, W will combine with C to form coarse carbides. In this case, even if the content of other elements is within the range of the present embodiment, the SSC resistance of the steel material is lowered. Therefore, the W content is 0-0.50%. A preferable lower limit of the W content is 0.01%, more preferably 0.03%, and still more preferably 0.05%. A preferable upper limit of the W content is 0.45%, more preferably 0.40%, and still more preferably 0.35%.
 さらに、WはCu含有量が高い場合の耐SSC性を顕著に高める。具体的に、Cu含有量が0.50%以上の場合、W含有量を0.10%以上とするのが好ましい。Cu含有量が0.50%以上の場合における、W含有量のさらに好ましい下限は0.12%であり、さらに好ましくは0.15%である。 Furthermore, W remarkably increases the SSC resistance when the Cu content is high. Specifically, when the Cu content is 0.50% or more, the W content is preferably 0.10% or more. When the Cu content is 0.50% or more, the lower limit of the W content is more preferably 0.12%, more preferably 0.15%.
 本実施形態によるマルテンサイト系ステンレス鋼材はさらに、Feの一部に代えて、Nbを含有してもよい。 The martensitic stainless steel material according to this embodiment may further contain Nb instead of part of Fe.
 Nb:0~0.500%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはC及び/又はNと結合してNb炭化物、Nb炭窒化物を形成する。この場合、ピンニング効果により結晶粒の粗大化が抑制され、鋼材の降伏強度が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。一方、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Nb炭化物及び/又はNb炭窒化物が過剰に生成する。その結果、鋼材の耐SSC性が低下する。したがって、Nb含有量は0~0.500%である。Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。Nb含有量の好ましい上限は0.450%であり、さらに好ましくは0.400%であり、さらに好ましくは0.350%である。
Nb: 0-0.500%
Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When included, Nb combines with C and/or N to form Nb carbides, Nb carbonitrides. In this case, the pinning effect suppresses grain coarsening and increases the yield strength of the steel material. If even a small amount of Nb is contained, the above effect can be obtained to some extent. On the other hand, if the Nb content is too high, Nb carbides and/or Nb carbonitrides are excessively produced even if the other element contents are within the range of the present embodiment. As a result, the SSC resistance of the steel is lowered. Therefore, the Nb content is 0-0.500%. A preferable lower limit of the Nb content is 0.001%, more preferably 0.002%, and still more preferably 0.003%. A preferable upper limit of the Nb content is 0.450%, more preferably 0.400%, and still more preferably 0.350%.
 本実施形態によるマルテンサイト系ステンレス鋼材さらに、Feの一部に代えて、As、及び、Sbからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、Snが鋼材の耐SSC性を高める効果を補助する。 The martensitic stainless steel material according to the present embodiment may further contain one or more elements selected from the group consisting of As and Sb instead of part of Fe. All of these elements assist the effect of Sn that enhances the SSC resistance of the steel material.
 As:0~0.0100%
 ヒ素(As)は任意元素であり、含有されなくてもよい。つまり、As含有量は0%であってもよい。含有される場合、Asは、Snが鋼材の耐SSC性を高める効果を補助する。Asが少しでも含有されれば、上記効果がある程度得られる。一方、As含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Asが粒界に偏析して、鋼材の耐SSC性が低下する。したがって、As含有量は0~0.0100%である。As含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。As含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%である。
As: 0-0.0100%
Arsenic (As) is an optional element and may not be contained. That is, the As content may be 0%. When contained, As assists the effect that Sn enhances the SSC resistance of the steel material. If even a small amount of As is contained, the above effect can be obtained to some extent. On the other hand, if the As content is too high, even if the content of other elements is within the range of the present embodiment, As will segregate at the grain boundaries and the SSC resistance of the steel material will decrease. Therefore, the As content is 0-0.0100%. A preferable lower limit of the As content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%. A preferable upper limit of the As content is 0.0090%, more preferably 0.0080%.
 Sb:0~0.0100%
 アンチモン(Sb)は任意元素であり、含有されなくてもよい。つまり、Sb含有量は0%であってもよい。含有される場合、Sbは、Snが鋼材の耐SSC性を高める効果を補助する。Sbが少しでも含有されれば、上記効果がある程度得られる。一方、Sb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Sbが粒界に偏析して、鋼材の耐SSC性が低下する。したがって、Sb含有量は0~0.0100%である。Sb含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。Sb含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%である。
Sb: 0-0.0100%
Antimony (Sb) is an optional element and may not be contained. That is, the Sb content may be 0%. When contained, Sb assists the effect of Sn to improve the SSC resistance of the steel material. If even a small amount of Sb is contained, the above effect can be obtained to some extent. On the other hand, if the Sb content is too high, even if the contents of other elements are within the ranges of the present embodiment, Sb will segregate at the grain boundaries and the SSC resistance of the steel material will decrease. Therefore, the Sb content is 0-0.0100%. A preferable lower limit of the Sb content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%. A preferable upper limit of the Sb content is 0.0090%, more preferably 0.0080%.
 [降伏強度]
 本実施形態によるマルテンサイト系ステンレス鋼材の降伏強度は、758MPa(110ksi)以上であり、さらに好ましくは862MPa(125ksi)以上である。降伏強度の上限は特に限定されないが、本実施形態の鋼材の降伏強度の上限は、たとえば、1034MPa(150ksi)である。鋼材のさらに好ましい降伏強度の上限は1000MPa(145ksi)である。本明細書において、降伏強度は、ASTM E8/E8M(2013)に準拠した常温(24±3℃)での引張試験により得られた、0.2%オフセット耐力(MPa)を意味する。
[Yield strength]
The yield strength of the martensitic stainless steel material according to this embodiment is 758 MPa (110 ksi) or more, more preferably 862 MPa (125 ksi) or more. Although the upper limit of the yield strength is not particularly limited, the upper limit of the yield strength of the steel material of this embodiment is, for example, 1034 MPa (150 ksi). A more preferable upper limit of the yield strength of the steel material is 1000 MPa (145 ksi). Yield strength as used herein means 0.2% offset yield strength (MPa) obtained by a tensile test at room temperature (24±3° C.) according to ASTM E8/E8M (2013).
 具体的に、本実施形態では、降伏強度を次の方法で求める。まず、本実施形態によるマルテンサイト系ステンレス鋼材から、引張試験片を作製する。鋼材が鋼管の場合、肉厚中央位置から引張試験片を作製する。鋼材が丸鋼の場合、R/2位置から引張試験片を作製する。なお、本明細書において、丸鋼のR/2位置とは、丸鋼の軸方向に垂直な断面において、半径Rの中央位置を意味する。鋼材が鋼板の場合、板厚中央位置から引張試験片を作製する。引張試験片のサイズは特に限定されない。引張試験片はたとえば、平行部径が8.9mm、標点距離が35.6mmの丸棒引張試験片とする。引張試験片の平行部の長手方向は鋼材の圧延方向及び/又は軸方向と平行とする。作製した引張試験片を用いて、ASTM E8/E8M(2013)に準拠して、常温(24±3℃)で引張試験を行い、0.2%オフセット耐力(MPa)を求める。求めた0.2%オフセット耐力を降伏強度(MPa)と定義する。 Specifically, in this embodiment, the yield strength is obtained by the following method. First, a tensile test piece is produced from the martensitic stainless steel material according to this embodiment. When the steel material is a steel pipe, a tensile test piece is prepared from the thickness center position. When the steel material is a round bar, a tensile test piece is produced from the R/2 position. In this specification, the R/2 position of the round bar means the central position of the radius R in the cross section perpendicular to the axial direction of the round bar. When the steel material is a steel plate, a tensile test piece is prepared from the center position of the plate thickness. The size of the tensile test piece is not particularly limited. The tensile test piece is, for example, a round bar tensile test piece having a parallel portion diameter of 8.9 mm and a gauge length of 35.6 mm. The longitudinal direction of the parallel portion of the tensile test piece shall be parallel to the rolling direction and/or axial direction of the steel material. Using the prepared tensile test piece, a tensile test is performed at room temperature (24±3° C.) in accordance with ASTM E8/E8M (2013) to determine the 0.2% offset yield strength (MPa). The obtained 0.2% offset yield strength is defined as yield strength (MPa).
 上述のとおり、本実施形態によるマルテンサイト系ステンレス鋼材の降伏強度は、758MPa以上であり、好ましくは862MPa以上である。本実施形態では、Cu含有量が1.00%以下であり、758~862MPa未満の降伏強度を得ようとする場合、マルテンサイト系ステンレス鋼材は、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cu:0.01~1.00%、Cr:10.00~14.00%、Ni:4.50~6.50%、Mo:1.00~3.00%、Ti:0.050~0.300%、V:0.01~1.00%、Al:0.001~0.100%、Co:0.010~0.500%、Ca:0.0005~0.0050%、Sn:0.0005~0.0500%、N:0.0010~0.0500%、O:0.050%以下、W:0~0.50%、Nb:0~0.500%、As:0~0.0100%、Sb:0~0.0100%、及び、残部がFe及び不純物からなることが好ましい。 As described above, the yield strength of the martensitic stainless steel material according to this embodiment is 758 MPa or more, preferably 862 MPa or more. In this embodiment, when the Cu content is 1.00% or less and a yield strength of less than 758 to 862 MPa is to be obtained, the martensitic stainless steel material, in mass%, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.01-1.00%, Cr: 10.00-14 .00%, Ni: 4.50-6.50%, Mo: 1.00-3.00%, Ti: 0.050-0.300%, V: 0.01-1.00%, Al: 0.001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050%, Sn: 0.0005-0.0500%, N: 0.0010-0. 0500%, O: 0.050% or less, W: 0 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and the balance is preferably composed of Fe and impurities.
 本実施形態ではさらに、Cu含有量が1.00%以下であり、862MPa以上の降伏強度を得ようとする場合、マルテンサイト系ステンレス鋼材は、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cu:0.01~1.00%、Cr:10.00~14.00%、Ni:5.00~7.50%、Mo:2.00~4.00%、Ti:0.050~0.300%、V:0.01~1.00%、Al:0.001~0.100%、Co:0.010~0.500%、Ca:0.0005~0.0050%、Sn:0.0005~0.0500%、N:0.0010~0.0500%、O:0.050%以下、W:0~0.50%、Nb:0~0.500%、As:0~0.0100%、Sb:0~0.0100%、及び、残部がFe及び不純物からなることが好ましい。 Further, in the present embodiment, when the Cu content is 1.00% or less and a yield strength of 862 MPa or more is to be obtained, the martensitic stainless steel material contains, in mass %, C: 0.030% or less, Si : 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.01-1.00%, Cr: 10.00-14. 00%, Ni: 5.00-7.50%, Mo: 2.00-4.00%, Ti: 0.050-0.300%, V: 0.01-1.00%, Al: 0 .001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050%, Sn: 0.0005-0.0500%, N: 0.0010-0.0500 %, O: 0.050% or less, W: 0 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and the remainder It is preferably composed of Fe and impurities.
 本実施形態では、Cu含有量が0.50%以上であり、862MPa以上の降伏強度を得ようとする場合、マルテンサイト系ステンレス鋼材は、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cu:0.50~3.50%、Cr:10.00~14.00%、Ni:5.00~7.50%、Mo:2.00~4.00%、Ti:0.050~0.300%、V:0.01~1.00%、Al:0.001~0.100%、Co:0.010~0.500%、Ca:0.0005~0.0050%、Sn:0.0005~0.0500%、N:0.0010~0.0500%、O:0.050%以下、W:0.10~0.50%、Nb:0~0.500%、As:0~0.0100%、Sb:0~0.0100%、及び、残部がFe及び不純物からなることが好ましい。 In the present embodiment, when the Cu content is 0.50% or more and a yield strength of 862 MPa or more is to be obtained, the martensitic stainless steel material, in terms of mass %, contains C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cu: 0.50 to 3.50%, Cr: 10.00 to 14.00 %, Ni: 5.00-7.50%, Mo: 2.00-4.00%, Ti: 0.050-0.300%, V: 0.01-1.00%, Al: 0.00% 001-0.100%, Co: 0.010-0.500%, Ca: 0.0005-0.0050%, Sn: 0.0005-0.0500%, N: 0.0010-0.0500% , O: 0.050% or less, W: 0.10 to 0.50%, Nb: 0 to 0.500%, As: 0 to 0.0100%, Sb: 0 to 0.0100%, and the balance is preferably composed of Fe and impurities.
 [式(1)について]
 本実施形態によるマルテンサイト系ステンレス鋼材は、上述の元素の含有量、及び、758MPa以上の降伏強度の範囲内において、元素の含有量と、降伏強度とが、式(1)を満たす。その結果、本実施形態によるマルテンサイト鋼材は、本実施形態の他の構成を満たすことを条件に、pH3.0のサワー環境における優れた耐SSC性を有する。
 0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入され、YSには降伏強度がMPaで代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
[Regarding formula (1)]
In the martensitic stainless steel material according to the present embodiment, the element content and the yield strength satisfy formula (1) within the range of the above-described element content and yield strength of 758 MPa or more. As a result, the martensitic steel material according to this embodiment has excellent SSC resistance in a sour environment of pH 3.0 on condition that other configurations of this embodiment are satisfied.
0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
Here, the element symbol in the formula (1) is substituted with the content of the corresponding element in mass %, and YS is substituted with the yield strength in MPa. When the corresponding element is not contained, "0" is substituted for the element symbol.
 F1(=(Sn+As+Sb)/{(Cu+Ni)/YS})は、降伏強度に応じて調整された、Sn、As及びSbと、Cu及びNiとの相乗効果により、pH3.0のサワー環境における耐SSC性を高める指標である。F1が低すぎる場合、pH3.0のサワー環境において、鋼材は優れた耐SSC性を示さない。同様に、F1が高すぎる場合、pH3.0のサワー環境において、鋼材は優れた耐SSC性を示さない。一方、F1が0.15~1.00であれば、pH3.0のサワー環境において、鋼材は優れた耐SSC性を示す。 F1 (=(Sn+As+Sb)/{(Cu+Ni)/YS}) is the synergistic effect of Sn, As and Sb and Cu and Ni, which are adjusted according to the yield strength, to withstand a sour environment at pH 3.0. It is an index for enhancing the SSC property. If F1 is too low, the steel does not exhibit excellent SSC resistance in pH 3.0 sour environments. Similarly, if F1 is too high, the steel will not exhibit good SSC resistance in pH 3.0 sour environments. On the other hand, when F1 is 0.15 to 1.00, the steel exhibits excellent SSC resistance in a sour environment of pH 3.0.
 したがって、本実施形態によるマルテンサイト系ステンレス鋼材は、上述の元素の含有量、及び、758MPa以上の降伏強度を満たした上で、F1を0.15~1.00とする。F1の好ましい下限は0.16であり、さらに好ましくは0.18である。F1の好ましい上限は0.95であり、さらに好ましくは0.90である。 Therefore, the martensitic stainless steel material according to the present embodiment has an F1 of 0.15 to 1.00 while satisfying the above-described element content and yield strength of 758 MPa or more. A preferred lower limit for F1 is 0.16, more preferably 0.18. A preferred upper limit for F1 is 0.95, more preferably 0.90.
 [鋼材のミクロ組織]
 本実施形態によるマルテンサイト系ステンレス鋼材のミクロ組織は、マルテンサイトを主体とする。本明細書において「マルテンサイトを主体とする」とは、ミクロ組織が、体積率で、0~5.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部がマルテンサイトからなることを意味する。本明細書において、「残留オーステナイト、フェライト、及び、焼戻しマルテンサイトからなる」とは、残留オーステナイト、フェライト、及び、焼戻しマルテンサイト以外の相が無視できるほど少ないことを意味する。たとえば、本実施形態によるマルテンサイト系ステンレス鋼材の化学組成においては、析出物や介在物の体積率は、残留オーステナイト、フェライト、及び、焼戻しマルテンサイトの体積率と比較して、無視できるほど小さい。すなわち、本実施形態によるマルテンサイト系ステンレス鋼管のミクロ組織には、残留オーステナイト、フェライト、及び、焼戻しマルテンサイト以外に、析出物や介在物等を微小量含んでもよい。
[Microstructure of steel]
The microstructure of the martensitic stainless steel material according to this embodiment is mainly composed of martensite. In this specification, "mainly composed of martensite" means that the microstructure is 0 to 5.0% by volume of retained austenite, 0 to 5.0% of ferrite, and the balance consists of martensite. means that As used herein, "consisting of retained austenite, ferrite and tempered martensite" means that phases other than retained austenite, ferrite and tempered martensite are negligibly small. For example, in the chemical composition of the martensitic stainless steel material according to this embodiment, the volume fraction of precipitates and inclusions is negligibly small compared to the volume fractions of retained austenite, ferrite, and tempered martensite. That is, the microstructure of the martensitic stainless steel pipe according to the present embodiment may contain minute amounts of precipitates, inclusions, and the like in addition to retained austenite, ferrite, and tempered martensite.
 本明細書において、マルテンサイトとは、フレッシュマルテンサイトだけでなく、焼戻しマルテンサイトも含む。本実施形態によるマルテンサイト系ステンレス鋼材のミクロ組織中のマルテンサイトの体積率の下限は90.0%であり、さらに好ましくは95.0%である。さらに好ましくは、鋼材のミクロ組織は、マルテンサイト単相である。 In this specification, martensite includes not only fresh martensite but also tempered martensite. The lower limit of the volume fraction of martensite in the microstructure of the martensitic stainless steel material according to this embodiment is 90.0%, more preferably 95.0%. More preferably, the microstructure of the steel material is martensite single phase.
 ミクロ組織において、少量の残留オーステナイトは、著しい強度の低下を招かず、かつ、鋼材の靭性を顕著に高める。しかしながら、残留オーステナイトの体積率が高すぎれば、鋼材の強度が顕著に低下する。したがって、本実施形態の鋼材のミクロ組織において、残留オーステナイトの体積率は0~5.0%である。強度確保の観点から、残留オーステナイトの体積率の好ましい上限は4.0%であり、さらに好ましくは3.0%である。残留オーステナイトの体積率は0%であってもよい。一方、少しでも残留オーステナイトを含有する場合、残留オーステナイトの体積率は0超~5.0%であり、さらに好ましくは0超~4.0%であり、さらに好ましくは0超~3.0%である。 In the microstructure, a small amount of retained austenite does not cause a significant decrease in strength and significantly increases the toughness of the steel material. However, if the volume fraction of retained austenite is too high, the strength of the steel significantly decreases. Therefore, in the microstructure of the steel material of this embodiment, the volume fraction of retained austenite is 0 to 5.0%. From the viewpoint of securing strength, the upper limit of the volume fraction of retained austenite is preferably 4.0%, more preferably 3.0%. The volume fraction of retained austenite may be 0%. On the other hand, when even a little retained austenite is contained, the volume fraction of retained austenite is more than 0 to 5.0%, more preferably more than 0 to 4.0%, more preferably more than 0 to 3.0%. is.
 ミクロ組織において、少量のフェライトが含まれる場合がある。しかしながら、フェライトの体積率が高すぎれば、鋼材の靭性が顕著に低下する。したがって、本実施形態の鋼材のミクロ組織において、フェライトの体積率は0~5.0%である。フェライトの体積率の好ましい上限は3.0%であり、さらに好ましくは2.0%であり、さらに好ましくは1.0%である。フェライトの体積率は0%であってもよい。一方、少しでもフェライトを含有する場合、フェライトの体積率は0超~5.0%であり、さらに好ましくは0超~3.0%であり、さらに好ましくは0超~2.0%であり、さらに好ましくは0超~1.0%である。 A small amount of ferrite may be included in the microstructure. However, if the volume fraction of ferrite is too high, the toughness of the steel significantly decreases. Therefore, in the microstructure of the steel material of this embodiment, the volume fraction of ferrite is 0 to 5.0%. A preferable upper limit of the volume fraction of ferrite is 3.0%, more preferably 2.0%, and still more preferably 1.0%. The volume fraction of ferrite may be 0%. On the other hand, when even a small amount of ferrite is contained, the volume fraction of ferrite is more than 0 to 5.0%, more preferably more than 0 to 3.0%, still more preferably more than 0 to 2.0%. , more preferably greater than 0 to 1.0%.
 [マルテンサイトの体積率の測定方法]
 本実施形態では、鋼材のミクロ組織中のマルテンサイトの体積率(%)は、以下に示す方法で求めた残留オーステナイトの体積率(%)と、以下に示す方法で求めたフェライトの体積率(%)とを、100%から差し引いて求める。
[Method for measuring volume fraction of martensite]
In this embodiment, the volume fraction (%) of martensite in the microstructure of the steel material is the volume fraction (%) of retained austenite determined by the method shown below and the volume fraction (%) of ferrite determined by the method shown below. %) is subtracted from 100%.
 [残留オーステナイトの体積率の測定方法]
 鋼材のミクロ組織中の残留オーステナイトの体積率を、X線回折法により求める。具体的には、本実施形態による鋼材から、残留オーステナイトの体積率測定用の試験片を作製する。鋼材が鋼管の場合、肉厚中央位置から試験片を採取する。鋼材が丸鋼の場合、R/2位置から試験片を採取する。鋼材が鋼板の場合、板厚中央位置から試験片を採取する。試験片の大きさは特に限定されない。試験片はたとえば、15mm×15mm×厚さ2mmである。鋼材が鋼管の場合、試験片の厚さ方向は、管径方向である。鋼材が丸鋼の場合、試験片の厚さ方向は、径方向である。鋼材が鋼板の場合、試験片の厚さ方向は、板厚方向である。作製した試験片を用いて、α相(マルテンサイト)の(110)面、α相の(200)面、α相の(211)面、γ相(残留オーステナイト)の(111)面、γ相の(200)面、及び、γ相の(220)面の各々のX線回折強度を測定し、各面の積分強度を算出する。
[Method for measuring volume fraction of retained austenite]
The volume fraction of retained austenite in the microstructure of the steel material is obtained by X-ray diffraction method. Specifically, a test piece for measuring the volume ratio of retained austenite is produced from the steel material according to the present embodiment. If the steel material is a steel pipe, take a test piece from the center of the wall thickness. When the steel material is a round bar, a test piece is taken from the R/2 position. When the steel material is a steel plate, a test piece is taken from the center position of the plate thickness. The size of the test piece is not particularly limited. The specimen is for example 15 mm x 15 mm x 2 mm thick. When the steel material is a steel pipe, the thickness direction of the test piece is the pipe radial direction. When the steel material is round steel, the thickness direction of the test piece is the radial direction. When the steel material is a steel plate, the thickness direction of the test piece is the plate thickness direction. Using the prepared test piece, the (110) plane of the α phase (martensite), the (200) plane of the α phase, the (211) plane of the α phase, the (111) plane of the γ phase (retained austenite), the γ phase The X-ray diffraction intensity of each of the (200) plane of the γ phase and the (220) plane of the γ phase is measured, and the integrated intensity of each plane is calculated.
 X線回折強度の測定において、X線回折装置のターゲットをCoとし(CoKα線)、出力を30kV-100mAとする。測定角度(2θ)を45~105°とする。算出後、α相の各面と、γ相の各面との組合せ(3×3=9組)ごとに式(I)を用いて残留オーステナイトの体積率Vγ(%)を算出する。そして、9組の残留オーステナイトの体積率Vγの平均値を、残留オーステナイトの体積率(%)と定義する。
 Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (I)
 ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。各面でのRα及びRγの値は、株式会社リガク製、商品名RINT-TTRに付属の残留γ定量解析システムに組み込まれた値を使用することができる。なお、残留オーステナイトの体積率は、得られた数値の小数第二位を四捨五入する。
In the measurement of X-ray diffraction intensity, the target of the X-ray diffractometer is Co (CoKα rays) and the output is 30 kV-100 mA. The measurement angle (2θ) is set to 45 to 105°. After the calculation, the volume fraction Vγ (%) of retained austenite is calculated using the formula (I) for each combination (3×3=9 sets) of each α-phase plane and each γ-phase plane. Then, the average value of the volume fraction Vγ of retained austenite in the nine sets is defined as the volume fraction (%) of retained austenite.
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (I)
where Iα is the integrated intensity of the α phase. Rα is the crystallographically calculated value of the α phase. Iγ is the integrated intensity of the γ phase. Rγ is the crystallographically calculated value of the γ phase. As the values of Rα and Rγ on each surface, the values incorporated in the residual γ quantitative analysis system attached to RINT-TTR (trade name) manufactured by Rigaku Co., Ltd. can be used. For the volume fraction of retained austenite, the obtained numerical value is rounded off to the second decimal place.
 [フェライトの体積率の測定方法]
 鋼材のミクロ組織中のフェライトの体積率を、点算法により求める。具体的には、本実施形態による鋼材から、フェライトの体積率測定用の試験片を作製する。鋼材が鋼管の場合、肉厚中央位置から試験片を採取する。鋼材が丸鋼の場合、R/2位置から試験片を採取する。鋼材が鋼板の場合、板厚中央位置から試験片を採取する。試験片は、圧延方向に平行な面を観察面として有していればよく、特に限定されない。たとえば、鋼材が鋼管の場合、試験片の観察面は管軸方向に平行である。観察面を機械研磨した後、観察面を電解エッチングして組織現出を行う。電解エッチングは、電解液:30%水酸化ナトリウム水溶液、電流密度:1A/cm、電解時間:1分間として実施する。
[Method for measuring volume fraction of ferrite]
The volume fraction of ferrite in the microstructure of the steel material is determined by the point counting method. Specifically, a test piece for measuring the volume ratio of ferrite is produced from the steel material according to the present embodiment. If the steel material is a steel pipe, take a test piece from the center of the wall thickness. When the steel material is a round bar, a test piece is taken from the R/2 position. When the steel material is a steel plate, a test piece is taken from the center position of the plate thickness. The test piece is not particularly limited as long as it has a surface parallel to the rolling direction as an observation surface. For example, when the steel material is a steel pipe, the observation surface of the test piece is parallel to the pipe axis direction. After the observation surface is mechanically polished, the observation surface is electrolytically etched to expose the structure. Electrolytic etching is performed using an electrolytic solution of 30% sodium hydroxide aqueous solution, a current density of 1 A/cm 2 and an electrolysis time of 1 minute.
 電解エッチングされた観察面を、光学顕微鏡を用いて30視野観察する。観察視野は、250μm×250μmの長方形とする。なお、観察倍率は400倍である。各観察視野において、フェライトと、その他の相(残留オーステナイトや焼戻しマルテンサイト)とは、当業者であればコントラストから区別することができる。そのため、各観察視野におけるフェライトを、コントラストに基づいて特定する。特定されたフェライトの面積率を、ASTM E562(2019)に準拠した点算法によって求める。 The electrolytically etched observation surface is observed in 30 fields of view using an optical microscope. The observation field of view is a rectangle of 250 μm×250 μm. Note that the observation magnification is 400 times. In each observation field, ferrite and other phases (retained austenite and tempered martensite) can be distinguished from the contrast by those skilled in the art. Therefore, ferrite in each observation field is specified based on the contrast. The area ratio of the specified ferrite is determined by the point counting method based on ASTM E562 (2019).
 具体的には、観察視野について、観察視野の上端から下端までの縦線を、等間隔に20本引く。すなわち、20本の縦線により、観察視野は左右方向に21個の領域に分割される。観察視野についてさらに、観察視野の左端から右端までの横線を、等間隔に20本引く。すなわち、20本の横線により、観察視野は上下方向に21個の領域に分割される。このとき、縦線と横線との交点を格子点という。すなわち、観察視野には400個の格子点が、等間隔に配置される。ASTM E562(2019)に準拠して、観察視野において、フェライトと重なる格子点を計数する。30視野にて得られたフェライトと重なる格子点の数を、格子点の総数(400×30=12000)で除し、フェライト面積率と定義する。本実施形態では、以上の方法で求めたフェライトの面積率を、フェライトの体積率(%)とする。なお、フェライトの体積率は、得られた数値の小数第二位を四捨五入する。 Specifically, 20 vertical lines are drawn at equal intervals from the top end to the bottom end of the observation field of view. That is, the observation field of view is divided into 21 areas in the left-right direction by the 20 vertical lines. Further, 20 horizontal lines are drawn at regular intervals from the left end to the right end of the observation field of view. That is, the observation field of view is vertically divided into 21 areas by the 20 horizontal lines. At this time, the intersections of vertical lines and horizontal lines are called lattice points. That is, 400 lattice points are arranged at equal intervals in the observation field. In accordance with ASTM E562 (2019), the grid points overlapping ferrite are counted in the observation field. The number of lattice points overlapping ferrite obtained in 30 fields of view is divided by the total number of lattice points (400×30=12000) to define the ferrite area ratio. In the present embodiment, the ferrite area ratio obtained by the above method is defined as the ferrite volume ratio (%). For the volume fraction of ferrite, the obtained numerical value is rounded off to the second decimal place.
 上述のX線回折法で得られた残留オーステナイトの体積率(%)と、上述の点算法で得られたフェライトの体積率(%)とを用いて、鋼材のミクロ組織のマルテンサイトの体積率(%)を次の式により求める。
 マルテンサイトの体積率(%)=100.0-{残留オーステナイトの体積率(%)+フェライトの体積率(%)}
Using the volume fraction (%) of retained austenite obtained by the above-described X-ray diffraction method and the volume fraction (%) of ferrite obtained by the above-described point counting method, the volume fraction of martensite in the microstructure of the steel material (%) is calculated by the following formula.
Volume fraction of martensite (%) = 100.0 - {volume fraction of retained austenite (%) + volume fraction of ferrite (%)}
 [鋼材の耐SSC性]
 本実施形態によるマルテンサイト系ステンレス鋼材は、758MPa以上の高い降伏強度を有していても、pH3.0のサワー環境における優れた耐SSC性を有する。本実施形態によるマルテンサイト系ステンレス鋼材の耐SSC性は、常温での耐SSC性評価試験により評価できる。耐SSC性評価試験は、NACE TM0177-2016 Method Aに準拠した方法で実施する。
[SSC resistance of steel]
The martensitic stainless steel material according to this embodiment has excellent SSC resistance in a sour environment of pH 3.0 even though it has a high yield strength of 758 MPa or more. The SSC resistance of the martensitic stainless steel material according to this embodiment can be evaluated by an SSC resistance evaluation test at room temperature. The SSC resistance evaluation test is conducted according to NACE TM0177-2016 Method A.
 具体的には、本実施形態による鋼材から、丸棒試験片を作製する。鋼材が鋼管の場合、肉厚中央位置から丸棒試験片を作製する。鋼材が丸鋼の場合、R/2部から丸棒試験片を作製する。鋼材が鋼板の場合、板厚中央位置から丸棒試験片を作製する。丸棒試験片の大きさは特に限定されない。丸棒試験片は、たとえば、平行部の直径が6.35mmであり、平行部の長さが25.4mmである。なお、丸棒試験片の軸方向は、鋼材の圧延方向及び/又は軸方向と平行とする。 Specifically, a round bar test piece is produced from the steel material according to this embodiment. When the steel material is a steel pipe, a round bar test piece is produced from the thickness center position. When the steel material is round steel, a round bar test piece is produced from the R/2 section. When the steel material is a steel plate, a round bar test piece is produced from the center position of the plate thickness. The size of the round bar test piece is not particularly limited. The round bar test piece, for example, has a parallel portion diameter of 6.35 mm and a parallel portion length of 25.4 mm. The axial direction of the round bar test piece is parallel to the rolling direction and/or axial direction of the steel material.
 試験溶液は、pHが3.0の0.17質量%塩化ナトリウム水溶液とする。試験溶液は、0.17質量%の塩化ナトリウムと、0.41g/Lの酢酸ナトリウムとを含有する水溶液に酢酸を添加して、pHを3.0に調整する。上述のとおりに作製した丸棒試験片に対して、実降伏応力の90%に相当する応力を負荷する。試験容器に24℃の試験溶液を、応力を負荷された丸棒試験片が浸漬するように注入し、試験浴とする。試験浴を脱気した後、0.03barのHSガス及び0.97barのCOガスを試験浴に吹き込み、試験浴にHSガスを飽和させる。HSガスが飽和した試験浴を、24℃で720時間保持する。720時間保持後の試験片に対して、拡大率が10倍のルーペで試験片の平行部の表面を観察して、孔食の有無を確認する。本実施形態によるマルテンサイト系ステンレス鋼材は、上述の方法で実施した耐SSC性評価試験においても、720時間経過後に、孔食が確認されない。 The test solution is a 0.17 mass % sodium chloride aqueous solution with a pH of 3.0. A test solution is prepared by adding acetic acid to an aqueous solution containing 0.17 mass % sodium chloride and 0.41 g/L sodium acetate to adjust the pH to 3.0. A stress equivalent to 90% of the actual yield stress is applied to the round bar test piece prepared as described above. The test solution at 24° C. is poured into the test container so that the stress-loaded round bar test piece is immersed to form a test bath. After degassing the test bath, 0.03 bar H 2 S gas and 0.97 bar CO 2 gas are blown into the test bath to saturate the test bath with H 2 S gas. A test bath saturated with H 2 S gas is held at 24° C. for 720 hours. After holding for 720 hours, the surface of the parallel portion of the test piece is observed with a magnifying glass having a magnification of 10 times to confirm the presence or absence of pitting corrosion. In the martensitic stainless steel material according to the present embodiment, pitting corrosion is not confirmed after 720 hours even in the SSC resistance evaluation test conducted by the method described above.
 [鋼材の形状及び用途]
 上述のとおり、本実施形態によるマルテンサイト系ステンレス鋼材の形状は特に限定されない。具体的に、本実施形態によるマルテンサイト系ステンレス鋼材は、鋼管であってもよく、丸鋼(中実材)であってもよく、鋼板であってもよい。鋼管は継目無鋼管であってもよく、溶接鋼管であってもよい。鋼管はたとえば、油井管用鋼管である。油井管用鋼管は、油井管用途の鋼管を意味する。油井管はたとえば、油井又はガス井の掘削、原油又は天然ガスの採取等に用いられるケーシング、チュービング、ドリルパイプ等である。好ましくは、本実施形態の鋼材は、油井管用継目無鋼管である。
[Shapes and uses of steel]
As described above, the shape of the martensitic stainless steel material according to this embodiment is not particularly limited. Specifically, the martensitic stainless steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate. The steel pipe may be a seamless steel pipe or a welded steel pipe. Steel pipes are, for example, steel pipes for oil country tubular goods. A steel pipe for oil country tubular goods means a steel pipe for oil country tubular goods. Oil country tubular goods are, for example, casings, tubings, drill pipes, etc. used for drilling oil wells or gas wells, extracting crude oil or natural gas, and the like. Preferably, the steel material of the present embodiment is a seamless steel pipe for oil country tubular goods.
 以上の説明のとおり、本実施形態によるマルテンサイト系ステンレス鋼材は、各元素の含有量が本実施形態の範囲内であり、降伏強度が758MPa以上であり、かつ、上述の元素の含有量、及び、758MPa以上の降伏強度の範囲内において、F1が0.15~1.00を満たす。その結果、本実施形態による鋼材は、高い降伏強度と、pH3.0のサワー環境における優れた耐SSC性とを両立する。 As described above, the martensitic stainless steel material according to the present embodiment has a content of each element within the range of the present embodiment, a yield strength of 758 MPa or more, and the content of the above elements, , F1 satisfies 0.15 to 1.00 within the range of yield strength of 758 MPa or more. As a result, the steel material according to this embodiment achieves both high yield strength and excellent SSC resistance in a sour environment of pH 3.0.
 [製造方法]
 本実施形態によるマルテンサイト系ステンレス鋼材の製造方法の一例を説明する。なお、以下に説明する製造方法は一例であって、本実施形態によるマルテンサイト系ステンレス鋼材の製造方法は、以下の説明に限定されない。つまり、上述の構成を有する本実施形態によるマルテンサイト系ステンレス鋼材が製造できれば、以下に説明する製造方法に限定されない。ただし、以下に説明する製造方法は、本実施形態によるマルテンサイト系ステンレス鋼材を製造する好適な製造方法である。
[Production method]
An example of a method for producing a martensitic stainless steel material according to this embodiment will be described. The manufacturing method described below is merely an example, and the method for manufacturing a martensitic stainless steel material according to the present embodiment is not limited to the following description. That is, as long as the martensitic stainless steel material according to the present embodiment having the above-described structure can be manufactured, the manufacturing method is not limited to the method described below. However, the manufacturing method described below is a suitable manufacturing method for manufacturing the martensitic stainless steel material according to the present embodiment.
 本実施形態によるマルテンサイト系ステンレス鋼材の製造方法の一例は、中間鋼材を準備する工程(準備工程)と、中間鋼材に対して焼入れ及び焼戻しを実施する工程(熱処理工程)とを含む。以下、各工程について詳述する。 An example of the method of manufacturing a martensitic stainless steel according to this embodiment includes a step of preparing an intermediate steel (preparation step) and a step of quenching and tempering the intermediate steel (heat treatment step). Each step will be described in detail below.
 [準備工程]
 準備工程では、上述の化学組成を有する中間鋼材を準備する。中間鋼材が上記化学組成を有していれば、中間鋼材の製造方法は特に限定されない。ここでいう中間鋼材は、最終製品が鋼板又は溶接鋼管の場合は、板状の鋼材であり、最終製品が継目無鋼管の場合は素管である。
[Preparation process]
In the preparation step, an intermediate steel material having the chemical composition described above is prepared. As long as the intermediate steel material has the above chemical composition, the method for producing the intermediate steel material is not particularly limited. The intermediate steel material referred to here is a plate-shaped steel material when the final product is a steel plate or a welded steel pipe, and is a blank pipe when the final product is a seamless steel pipe.
 準備工程は、素材を準備する工程(素材準備工程)と、素材を熱間加工して中間鋼材を製造する工程(熱間加工工程)とを含んでもよい。以下、素材準備工程と、熱間加工工程を含む場合について、詳述する。 The preparation process may include a process of preparing the material (material preparation process) and a process of hot working the material to manufacture the intermediate steel material (hot working process). Hereinafter, the case where the material preparation process and the hot working process are included will be described in detail.
 [素材準備工程]
 素材準備工程では、上述の化学組成を有する溶鋼を用いて素材を製造する。素材の製造方法は特に限定されず、周知の方法でよい。具体的には、溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造してもよい。溶鋼を用いて造塊法によりインゴットを製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
[Material preparation process]
In the material preparation step, the material is manufactured using molten steel having the chemical composition described above. The method of manufacturing the raw material is not particularly limited, and a known method may be used. Specifically, a slab (slab, bloom, or billet) may be produced by continuous casting using molten steel. You may manufacture an ingot by an ingot casting method using molten steel. If desired, the slab, bloom or ingot may be bloomed to produce a billet. A raw material (slab, bloom, or billet) is manufactured by the above steps.
 [熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工して中間鋼材を製造する。鋼材が継目無鋼管の場合、中間鋼材は素管に相当する。始めに、ビレットを加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出されたビレットに対して熱間加工を実施して、素管(継目無鋼管)を製造する。熱間加工の方法は、特に限定されず、周知の方法でよい。
[Hot working process]
In the hot working process, the prepared material is hot worked to produce an intermediate steel material. If the steel material is a seamless steel pipe, the intermediate steel material corresponds to the base pipe. First, the billet is heated in a heating furnace. Although the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree. A billet extracted from a heating furnace is subjected to hot working to produce a blank pipe (seamless steel pipe). The method of hot working is not particularly limited, and a known method may be used.
 たとえば、熱間加工としてマンネスマン法を実施して、素管を製造してもよい。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、たとえば、1.0~4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサー、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率はたとえば、20~70%である。 For example, the Mannesmann method may be carried out as hot working to produce a mother tube. In this case, the round billet is pierced and rolled by a piercing machine. In the case of piercing-rolling, the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0. The pierced-rolled round billet is further hot-rolled by a mandrel mill, a reducer, a sizing mill, or the like to form a mother tube. The cumulative area reduction rate in the hot working process is, for example, 20 to 70%.
 他の熱間加工方法を実施して、ビレットから素管を製造してもよい。たとえば、鋼材がカップリングのように短尺の厚肉鋼管の場合、エルハルト法等の鍛造により素管を製造してもよい。以上の工程により素管が製造される。素管の肉厚は特に限定されないが、たとえば、9~60mmである。 A blank tube may be manufactured from a billet by implementing other hot working methods. For example, when the steel material is a short thick steel pipe such as a coupling, the blank pipe may be manufactured by forging such as the Ehrhardt method. A blank pipe is manufactured by the above steps. Although the wall thickness of the blank tube is not particularly limited, it is, for example, 9 to 60 mm.
 鋼材が丸鋼の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して熱間加工を実施して、軸方向に垂直な断面が円形の中間鋼材を製造する。熱間加工はたとえば、分塊圧延機による分塊圧延、又は、連続圧延機による熱間圧延である。連続圧延機は、上下方向に並んで配置された一対の孔型ロールを有する水平スタンドと、水平方向に並んで配置された一対の孔型ロールを有する垂直スタンドとが交互に配列されている。 When the steel material is round steel, the material is first heated in a heating furnace. Although the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree. The raw material extracted from the heating furnace is subjected to hot working to produce an intermediate steel material having a circular cross section perpendicular to the axial direction. Hot working is, for example, blooming by a blooming mill or hot rolling by a continuous rolling mill. In the continuous rolling mill, a horizontal stand having a pair of grooved rolls arranged vertically and a vertical stand having a pair of grooved rolls arranged horizontally are arranged alternately.
 鋼材が鋼板の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して、分塊圧延機、及び、連続圧延機を用いて熱間圧延を実施して、鋼板形状の中間鋼材を製造する。 When the steel material is a steel plate, the material is first heated in a heating furnace. Although the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree. The raw material extracted from the heating furnace is subjected to hot rolling using a blooming mill and a continuous rolling mill to produce an intermediate steel material in the form of a steel plate.
 熱間加工により製造された素管は空冷されてもよい(As-Rolled)。熱間加工により製造された素管は、常温まで冷却せずに、熱間加工後に直接焼入れを実施してもよく、熱間加工後に補熱(再加熱)した後、焼入れを実施してもよい。 The blank tube manufactured by hot working may be air-cooled (As-Rolled). A mother tube manufactured by hot working may be quenched directly after hot working without cooling to room temperature, or may be quenched after supplementary heating (reheating) after hot working. good.
 熱間加工後に直接焼入れ、又は、補熱した後焼入れを実施する場合、焼入れ途中に冷却の停止、又は、緩冷却を実施してもよい。この場合、素管に焼割れが発生するのを抑制できる。熱間加工後に直接焼入れ、又は、補熱した後焼入れを実施する場合さらに、焼入れ後であって次工程の熱処理前に、応力除去焼鈍(SR)を実施してもよい。この場合、素管の残留応力が除去される。 When quenching is performed directly after hot working, or when quenching is performed after supplementary heat, cooling may be stopped or slow cooling may be performed during quenching. In this case, it is possible to suppress the occurrence of quench cracks in the mother pipe. When quenching is performed directly after hot working or quenching is performed after reheating, stress relief annealing (SR) may be performed after quenching and before heat treatment in the next step. In this case, the residual stress of the blank pipe is removed.
 以上のとおり、準備工程では中間鋼材を準備する。中間鋼材は、上述の好ましい工程により製造されてもよく、第三者により製造された中間鋼材、又は、後述の焼入れ工程及び焼戻し工程が実施される工場以外の他の工場、他の事業所にて製造された中間鋼材を準備してもよい。以下、熱処理工程について詳述する。 As described above, intermediate steel materials are prepared in the preparation process. The intermediate steel material may be manufactured by the above-mentioned preferable process, or the intermediate steel material manufactured by a third party, or by a factory other than the factory where the quenching process and the tempering process described below are performed, or at another place of business. You may prepare an intermediate steel material manufactured by The heat treatment process will be described in detail below.
 [熱処理工程]
 熱処理工程は、焼入れ工程及び焼戻し工程を含む。
[Heat treatment process]
The heat treatment process includes a quenching process and a tempering process.
 [焼入れ工程]
 熱処理工程では、初めに、熱間加工工程で製造された中間鋼材に対して、焼入れを実施する(焼入れ工程)。焼入れは周知の方法で実施する。具体的には、熱間加工工程後の中間鋼材を熱処理炉に装入し、焼入れ温度で保持する。焼入れ温度はAC3変態点以上であり、たとえば、900~1000℃である。中間鋼材を焼入れ温度で保持した後、急冷(焼入れ)する。焼入れ温度での保持時間は特に限定されないが、たとえば、10~60分である。焼入れ方法はたとえば、水冷である。焼入れ方法は特に制限されない。中間鋼材が素管の場合、たとえば、水槽又は油槽に浸漬して素管を急冷してもよいし、シャワー冷却又はミスト冷却により、素管の外面及び/又は内面に対して冷却水を注いだり、噴射したりして、素管を急冷してもよい。
[Quenching process]
In the heat treatment process, first, the intermediate steel material produced in the hot working process is quenched (quenching process). Quenching is performed by a well-known method. Specifically, the intermediate steel material after the hot working process is charged into a heat treatment furnace and held at the quenching temperature. The quenching temperature is above the AC3 transformation point, eg, 900-1000° C . After holding the intermediate steel material at the quenching temperature, it is rapidly cooled (quenched). Although the holding time at the quenching temperature is not particularly limited, it is, for example, 10 to 60 minutes. The quenching method is, for example, water cooling. The quenching method is not particularly limited. When the intermediate steel material is a blank pipe, for example, the blank pipe may be rapidly cooled by being immersed in a water tank or an oil bath, or by shower cooling or mist cooling, cooling water may be poured onto the outer surface and/or the inner surface of the blank pipe. , or the like, to rapidly cool the tube.
 なお、上述のとおり、熱間加工工程後、中間鋼材を常温まで冷却することなく、熱間加工直後に焼入れ(直接焼入れ)を実施してもよいし、熱間加工後の素管の温度が低下する前に補熱炉に装入して焼入れ温度に保持した後、焼入れを実施してもよい。 As described above, after the hot working step, quenching (direct quenching) may be performed immediately after hot working without cooling the intermediate steel material to room temperature, or the temperature of the mother tube after hot working may be Quenching may be performed after the steel is charged into a reheating furnace and held at the quenching temperature before the temperature drops.
 [焼戻し工程]
 焼入れ後の中間鋼材に対してさらに、焼戻し工程を実施する。焼戻し工程では、鋼材の降伏強度を調整する。本実施形態では、焼戻し温度を540~620℃とする。焼戻し温度での保持時間は特に限定されないが、たとえば、10~180分である。化学組成に応じて焼戻し温度を適宜調整することにより、鋼材の降伏強度を調整することができることは当業者に周知である。そこで、鋼材の降伏強度が758MPa以上となるように焼戻し条件を調整する。
[Tempering process]
After quenching, the intermediate steel material is further subjected to a tempering process. The tempering process adjusts the yield strength of the steel material. In this embodiment, the tempering temperature is 540-620.degree. Although the holding time at the tempering temperature is not particularly limited, it is, for example, 10 to 180 minutes. It is well known to those skilled in the art that the yield strength of steel materials can be adjusted by appropriately adjusting the tempering temperature according to the chemical composition. Therefore, the tempering conditions are adjusted so that the yield strength of the steel material is 758 MPa or more.
 以上の工程により、本実施形態によるマルテンサイト系ステンレス鋼材を製造することができる。なお、上述のとおり、本実施形態によるマルテンサイト系ステンレス鋼材は、上述の製造方法に限定されない。具体的には、化学組成中の各元素含有量が本実施形態の範囲内であり、体積%で、0~5.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなるミクロ組織を有し、758MPa以上の降伏強度を有し、さらに、F1が0.15~1.00であるマルテンサイト系ステンレス鋼材を製造できれば、本実施形態の製造方法は上述の製造方法に限定されない。以下、実施例によって本実施形態によるマルテンサイト系ステンレス鋼材を、さらに具体的に説明する。 The martensitic stainless steel material according to this embodiment can be manufactured by the above steps. As described above, the martensitic stainless steel material according to the present embodiment is not limited to the manufacturing method described above. Specifically, the content of each element in the chemical composition is within the range of the present embodiment, and the volume % is 0 to 5.0% retained austenite, 0 to 5.0% ferrite, and the balance is If a martensitic stainless steel material having a tempered martensite microstructure, a yield strength of 758 MPa or more, and an F1 of 0.15 to 1.00 can be produced, the production method of the present embodiment can be applied as described above. is not limited to the manufacturing method of Hereinafter, the martensitic stainless steel material according to the present embodiment will be described more specifically by way of examples.
 表1に示す化学組成を有する溶鋼を製造した。なお、表1中の「-」は、該当する元素の含有量が不純物レベルであったことを意味する。たとえば、試験番号1のW含有量は、小数第三位で四捨五入して、0%であったことを意味する。試験番号1のNb含有量は、小数第四位で四捨五入して、0%であったことを意味する。試験番号1のAs含有量、及び、Sb含有量は、小数第五位で四捨五入して、0%であったことを意味する。 A molten steel having the chemical composition shown in Table 1 was produced. "-" in Table 1 means that the content of the corresponding element was at the impurity level. For example, the W content of Test No. 1 was rounded to the third decimal place, meaning that it was 0%. It means that the Nb content of Test No. 1 was 0%, rounded to the fourth decimal place. The As content and Sb content of Test No. 1 were rounded off to the fifth decimal place, meaning that they were 0%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記溶鋼を180kg真空炉で溶製し、造塊法によりインゴットを製造した。インゴットを1250℃で3時間加熱した。加熱後のインゴットに対して熱間鍛造を実施してブロックを製造した。熱間鍛造後のブロックを1230℃で3時間加熱した後、熱間圧延を実施した。このようにして、13mmの厚さを有する鋼材(鋼板)を製造した。  The above molten steel was melted in a 180 kg vacuum furnace, and an ingot was produced by an ingot casting method. The ingot was heated at 1250° C. for 3 hours. A block was manufactured by hot forging the ingot after heating. After hot forging, the block was heated at 1230° C. for 3 hours, and then hot rolled. Thus, a steel material (steel plate) having a thickness of 13 mm was produced.
 各試験番号の鋼材に対して、焼入れを実施した。具体的に、各試験番号の鋼板を、表2に記載の焼入れ温度(℃)となるように加熱した。各試験番号の鋼板について、焼入れ温度で15分保持した後、水冷を実施した。焼入れ後の各試験番号の鋼材に対して、表2に記載の焼戻し温度(℃)で30分保持する焼戻しを実施した。 Quenching was performed on the steel material of each test number. Specifically, the steel sheets of each test number were heated to the quenching temperature (°C) shown in Table 2. The steel sheets of each test number were held at the quenching temperature for 15 minutes and then water-cooled. The steel material of each test number after quenching was tempered at the tempering temperature (° C.) shown in Table 2 for 30 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の製造工程により、各試験番号の鋼板を製造した。 A steel plate with each test number was manufactured through the above manufacturing process.
 [評価試験]
 製造された各試験番号の鋼板に対して、ミクロ組織観察試験、引張試験、及び、耐SSC性評価試験を実施した。
[Evaluation test]
A microstructure observation test, a tensile test, and an SSC resistance evaluation test were performed on the manufactured steel sheets of each test number.
 [ミクロ組織観察試験]
 各試験番号の鋼板に対して、ミクロ組織観察試験を実施した。まず、各試験番号の鋼板について、上述のX線回折法により、残留オーステナイトの体積率(%)を求めた。なお、X線回折強度の測定では、X線回折装置として、株式会社リガク製、商品名RINT-TTRを用いた。線源をCoKα線、出力を30kV-100mA、測定角度(2θ)を45~105°として測定した。得られた各試験番号の鋼板における残留オーステナイトの体積率(%)を、表2の「残留γ(%)」欄に示す。
[Microstructure Observation Test]
A microstructure observation test was performed on the steel sheets of each test number. First, the volume fraction (%) of retained austenite was obtained for the steel sheets of each test number by the above-described X-ray diffraction method. In the measurement of the X-ray diffraction intensity, RINT-TTR manufactured by Rigaku Corporation was used as an X-ray diffraction device. The radiation source was CoKα rays, the output was 30 kV-100 mA, and the measurement angle (2θ) was 45 to 105°. The volume fraction (%) of retained austenite in the obtained steel sheets of each test number is shown in the column of "retained γ (%)" in Table 2.
 また、上述の点算法により、フェライトの体積率(%)を求めた。具体的に、各試験番号の鋼板の板厚中央位置から、試験片を作製した。試験片の観察面は、圧延方向に平行な面とした。なお、本実施例では、上述のASTM E562(2019)に準拠した方法で求めたフェライトの面積率を、フェライトの体積率(%)とした。得られた各試験番号の鋼板におけるフェライトの体積率を、表2の「フェライト(%)」に示す。 In addition, the volume fraction (%) of ferrite was obtained by the above-mentioned point counting method. Specifically, a test piece was produced from the thickness center position of the steel plate of each test number. The observation surface of the test piece was parallel to the rolling direction. In this example, the area ratio of ferrite determined by the method based on ASTM E562 (2019) was used as the volume ratio (%) of ferrite. The volume fraction of ferrite in the obtained steel sheets of each test number is shown in "Ferrite (%)" in Table 2.
 さらに、各試験番号の鋼板について、残留オーステナイトの体積率(%)と、フェライトの体積率(%)とを用いて、マルテンサイトの体積率(%)を次の式により求めた。
 マルテンサイトの体積率(%)=100-{残留オーステナイトの体積率(%)+フェライトの体積率(%)}
 得られた各試験番号のマルテンサイトの体積率(%)を、表2の「マルテンサイト(%)」欄に示す。
Furthermore, for the steel sheets of each test number, the volume fraction (%) of martensite was determined by the following formula using the volume fraction (%) of retained austenite and the volume fraction (%) of ferrite.
Volume fraction of martensite (%) = 100 - {volume fraction of retained austenite (%) + volume fraction of ferrite (%)}
The obtained volume fraction (%) of martensite for each test number is shown in Table 2 in the “Martensite (%)” column.
 [引張試験]
 各試験番号の鋼板に対して、ASTM E8/E8M(2013)に準拠して、引張試験を実施した。具体的には、各試験番号の鋼板の板厚中央位置から、平行部の直径を8.9mm、標点距離を35.6mmとする丸棒引張試験片を作製した。丸棒引張試験片の長手方向は、鋼板の圧延方向と平行であった。各試験番号の丸棒引張試験片を用いて、常温(24±3℃)、大気中にて引張試験を実施して、0.2%オフセット耐力(MPa)を求めた。求めた0.2%オフセット耐力を降伏強度(MPa)と定義した。得られた各試験番号の降伏強度を、表2の「YS(MPa)」欄に示す。さらに、各試験番号の鋼板について、化学組成と、降伏強度と、式(1)を用いて、F1を求めた。得られた各試験番号のF1の値を、表2の「F1」欄に示す。
[Tensile test]
A tensile test was performed on the steel sheets of each test number in accordance with ASTM E8/E8M (2013). Specifically, a round-bar tensile test piece having a diameter of a parallel portion of 8.9 mm and a gauge length of 35.6 mm was prepared from the plate thickness center position of the steel plate of each test number. The longitudinal direction of the round bar tensile test piece was parallel to the rolling direction of the steel plate. A tensile test was performed at normal temperature (24±3° C.) in the atmosphere using a round bar tensile test piece of each test number to obtain a 0.2% offset yield strength (MPa). The obtained 0.2% offset yield strength was defined as the yield strength (MPa). The obtained yield strength of each test number is shown in Table 2, "YS (MPa)" column. Furthermore, F1 was obtained for the steel sheet of each test number using the chemical composition, yield strength, and formula (1). The obtained F1 value for each test number is shown in Table 2, column “F1”.
 [耐SSC性評価試験]
 各試験番号の鋼板に対して、耐SSC性評価試験を実施した。具体的には、各試験番号の鋼板の板厚中央位置から、径6.35mm、平行部の長さ25.4mmの丸棒試験片を作製した。作製した丸棒試験片のうち3本に対して、NACE TM0177-2016 Method Aに準拠した、耐SSC性評価試験を実施した。なお、丸棒試験片の軸方向は、圧延方向に平行であった。
[SSC resistance evaluation test]
An SSC resistance evaluation test was performed on the steel sheets of each test number. Specifically, a round bar test piece having a diameter of 6.35 mm and a parallel portion length of 25.4 mm was prepared from the plate thickness center position of the steel plate of each test number. An SSC resistance evaluation test based on NACE TM0177-2016 Method A was performed on three of the prepared round bar test pieces. The axial direction of the round bar test piece was parallel to the rolling direction.
 試験溶液は、pHが3.0の0.17質量%塩化ナトリウム水溶液とした。試験溶液は、0.17質量%の塩化ナトリウムと0.41g/Lの酢酸ナトリウムとを含有する水溶液に酢酸を添加してpHを3.0に調整した。各試験番号の丸棒試験片に対して、実降伏応力の90%に相当する応力を負荷した。試験容器に24℃の試験溶液を、応力を負荷された丸棒試験片が浸漬するように注入し、試験浴とした。試験浴を脱気した後、0.03barのHSガス及び0.97barのCOガスを試験浴に吹き込み、試験浴にHSガスを飽和させた。HSガスが飽和した試験浴を、24℃で720時間保持した。 The test solution was a 0.17 mass % sodium chloride aqueous solution with a pH of 3.0. A test solution was prepared by adding acetic acid to an aqueous solution containing 0.17 mass % sodium chloride and 0.41 g/L sodium acetate to adjust the pH to 3.0. A stress equivalent to 90% of the actual yield stress was applied to the round bar test piece of each test number. The test solution at 24° C. was poured into the test container so that the stress-loaded round-bar test piece was immersed therein to form a test bath. After degassing the test bath, 0.03 bar H 2 S gas and 0.97 bar CO 2 gas were blown into the test bath to saturate the test bath with H 2 S gas. A test bath saturated with H 2 S gas was held at 24° C. for 720 hours.
 720時間保持後の丸棒試験片の平行部の表面を、拡大率が10倍のルーペで観察して、孔食の有無を確認した。3本の丸棒試験片のうち、孔食の発生が確認された本数を、「孔食発生本数(本)」として、表2に示す。 The surface of the parallel portion of the round bar test piece after holding for 720 hours was observed with a loupe with a magnification of 10 times to confirm the presence or absence of pitting corrosion. Table 2 shows the number of test pieces for which pitting corrosion was confirmed among the three round bar test pieces as "the number of pitting corrosion occurrences (pieces)".
 [評価結果]
 表1及び表2を参照して、試験番号1~22の鋼板は、化学組成が適切であり、0~5.0体積%の残留オーステナイト、0~5.0体積%のフェライト、及び、残部がマルテンサイトからなるミクロ組織を有していた。これらの鋼板はさらに、降伏強度が758MPa以上の高強度を有していた。これらの鋼板はさらに、F1が0.15~1.00を満たしていた。その結果、これらの鋼板は、pH3.0のサワー環境において、孔食が発生した本数が0本であり、優れた耐SSC性を有していた。
[Evaluation results]
With reference to Tables 1 and 2, the steel sheets of test numbers 1 to 22 have appropriate chemical compositions, 0 to 5.0% by volume of retained austenite, 0 to 5.0% by volume of ferrite, and the balance had a microstructure consisting of martensite. These steel sheets also had a high yield strength of 758 MPa or more. These steel sheets further satisfied F1 of 0.15 to 1.00. As a result, none of these steel sheets had pitting corrosion in a sour environment of pH 3.0, and had excellent SSC resistance.
 一方、試験番号23~26の鋼板は、F1が低すぎた。その結果、これらの鋼板は、pH3.0のサワー環境において、少なくとも1本以上孔食が発生し、優れた耐SSC性を有していなかった。 On the other hand, the steel sheets with test numbers 23 to 26 had too low F1. As a result, these steel sheets had at least one pitting corrosion in a sour environment of pH 3.0 and did not have excellent SSC resistance.
 試験番号27~30の鋼板は、F1が高すぎた。その結果、これらの鋼板は、pH3.0のサワー環境において、3本に孔食が発生し、優れた耐SSC性を有していなかった。 The steel sheets with test numbers 27 to 30 had too high F1. As a result, three of these steel sheets suffered from pitting corrosion in a sour environment of pH 3.0, and did not have excellent SSC resistance.
 試験番号31の鋼板は、Snを含有しなかった。その結果、この鋼板は、pH3.0のサワー環境において、1本に孔食が発生し、優れた耐SSC性を有していなかった。 The steel plate of test number 31 did not contain Sn. As a result, one of the steel sheets suffered from pitting corrosion in a sour environment of pH 3.0, and did not have excellent SSC resistance.
 試験番号32~34の鋼板は、Snを含有しなかった。これらの鋼板はさらに、F1が低すぎた。その結果、これらの鋼板は、pH3.0のサワー環境において、少なくとも1本以上孔食が発生し、優れた耐SSC性を有していなかった。 The steel sheets of test numbers 32 to 34 did not contain Sn. These steel plates also had too low F1. As a result, these steel sheets had at least one pitting corrosion in a sour environment of pH 3.0 and did not have excellent SSC resistance.
 試験番号35の鋼板は、Snを含有しなかった。この鋼板はさらに、F1が高すぎた。その結果、この鋼板は、pH3.0のサワー環境において、3本に孔食が発生し、優れた耐SSC性を有していなかった。 The steel plate of test number 35 did not contain Sn. This steel plate also had a too high F1. As a result, this steel sheet had pitting corrosion in three in a sour environment of pH 3.0, and did not have excellent SSC resistance.
 試験番号36の鋼板は、Co含有量が低すぎた。その結果、この鋼板は、pH3.0のサワー環境において、1本に孔食が発生し、優れた耐SSC性を有していなかった。 The Co content of the steel sheet of test number 36 was too low. As a result, one of the steel sheets suffered from pitting corrosion in a sour environment of pH 3.0, and did not have excellent SSC resistance.
 試験番号37の鋼板は、Co含有量が低すぎた。この鋼板はさらに、F1が低すぎた。その結果、この鋼板は、pH3.0のサワー環境において、3本に孔食が発生し、優れた耐SSC性を有していなかった。 The Co content of the steel sheet of test number 37 was too low. This steel plate also had a too low F1. As a result, this steel sheet had pitting corrosion in three in a sour environment of pH 3.0, and did not have excellent SSC resistance.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present disclosure has been described above. However, the above-described embodiments are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiments, and the above-described embodiments can be modified as appropriate without departing from the scope of the present disclosure.

Claims (2)

  1.  マルテンサイト系ステンレス鋼材であって、
     質量%で、
     C:0.030%以下、
     Si:1.00%以下、
     Mn:1.00%以下、
     P:0.030%以下、
     S:0.0050%以下、
     Cu:0.01~3.50%、
     Cr:10.00~14.00%、
     Ni:4.50~7.50%、
     Mo:1.00~4.00%、
     Ti:0.050~0.300%、
     V:0.01~1.00%、
     Al:0.001~0.100%、
     Co:0.010~0.500%、
     Ca:0.0005~0.0050%、
     Sn:0.0005~0.0500%、
     N:0.0010~0.0500%、
     O:0.050%以下、
     W:0~0.50%、
     Nb:0~0.500%、
     As:0~0.0100%、
     Sb:0~0.0100%、及び、
     残部:Fe及び不純物からなり、
     降伏強度が、758MPa以上であり、
     前記マルテンサイト系ステンレス鋼材の元素の含有量、及び、前記降伏強度の範囲内において、前記元素の含有量と、前記降伏強度とが、式(1)を満たす、
     マルテンサイト系ステンレス鋼材。
     0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
     ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入され、YSには降伏強度がMPaで代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
    A martensitic stainless steel material,
    in % by mass,
    C: 0.030% or less,
    Si: 1.00% or less,
    Mn: 1.00% or less,
    P: 0.030% or less,
    S: 0.0050% or less,
    Cu: 0.01 to 3.50%,
    Cr: 10.00 to 14.00%,
    Ni: 4.50-7.50%,
    Mo: 1.00 to 4.00%,
    Ti: 0.050 to 0.300%,
    V: 0.01 to 1.00%,
    Al: 0.001 to 0.100%,
    Co: 0.010 to 0.500%,
    Ca: 0.0005 to 0.0050%,
    Sn: 0.0005 to 0.0500%,
    N: 0.0010 to 0.0500%,
    O: 0.050% or less,
    W: 0 to 0.50%,
    Nb: 0 to 0.500%,
    As: 0 to 0.0100%,
    Sb: 0 to 0.0100%, and
    Balance: Fe and impurities,
    Yield strength is 758 MPa or more,
    Within the range of the element content and the yield strength of the martensitic stainless steel material, the element content and the yield strength satisfy the formula (1),
    Martensitic stainless steel material.
    0.15≦(Sn+As+Sb)/{(Cu+Ni)/YS}≦1.00 (1)
    Here, the element symbol in the formula (1) is substituted with the content of the corresponding element in mass %, and YS is substituted with the yield strength in MPa. When the corresponding element is not contained, "0" is substituted for the element symbol.
  2.  請求項1に記載のマルテンサイト系ステンレス鋼材であって、
     W:0.01~0.50%、
     Nb:0.001~0.500%、
     As:0.0001~0.0100%、及び、
     Sb:0.0001~0.0100%からなる群から選択される1元素以上を含有する、
     マルテンサイト系ステンレス鋼材。
    The martensitic stainless steel material according to claim 1,
    W: 0.01 to 0.50%,
    Nb: 0.001 to 0.500%,
    As: 0.0001 to 0.0100%, and
    Sb: containing one or more elements selected from the group consisting of 0.0001 to 0.0100%,
    Martensitic stainless steel material.
PCT/JP2022/013603 2021-03-24 2022-03-23 Martensite stainless steel material WO2022202913A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112023014937A BR112023014937A2 (en) 2021-03-24 2022-03-23 MARTENSITIC STAINLESS STEEL MATERIAL
CN202280023223.2A CN117043378A (en) 2021-03-24 2022-03-23 Martensitic stainless steel material
JP2022539422A JP7151945B1 (en) 2021-03-24 2022-03-23 Martensitic stainless steel material
EP22775695.4A EP4286542A1 (en) 2021-03-24 2022-03-23 Martensite stainless steel material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021050578 2021-03-24
JP2021-050578 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202913A1 true WO2022202913A1 (en) 2022-09-29

Family

ID=83395744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013603 WO2022202913A1 (en) 2021-03-24 2022-03-23 Martensite stainless steel material

Country Status (5)

Country Link
EP (1) EP4286542A1 (en)
JP (1) JP7151945B1 (en)
CN (1) CN117043378A (en)
BR (1) BR112023014937A2 (en)
WO (1) WO2022202913A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074657A1 (en) * 2021-10-26 2023-05-04 日本製鉄株式会社 Martensitic stainless steel round bar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192196A (en) 1998-12-22 2000-07-11 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well
WO2008023702A1 (en) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
JP2012136742A (en) 2010-12-27 2012-07-19 Jfe Steel Corp High-strength martensitic-stainless steel seamless pipe for oil well
WO2019240127A1 (en) * 2018-06-11 2019-12-19 日鉄ステンレス株式会社 Wire rod for stainless steel wire, stainless steel wire and manufacturing method therefor, and spring component
WO2020202957A1 (en) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Stainless seamless steel pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192196A (en) 1998-12-22 2000-07-11 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well
WO2008023702A1 (en) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
JP2012136742A (en) 2010-12-27 2012-07-19 Jfe Steel Corp High-strength martensitic-stainless steel seamless pipe for oil well
WO2019240127A1 (en) * 2018-06-11 2019-12-19 日鉄ステンレス株式会社 Wire rod for stainless steel wire, stainless steel wire and manufacturing method therefor, and spring component
WO2020202957A1 (en) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Stainless seamless steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074657A1 (en) * 2021-10-26 2023-05-04 日本製鉄株式会社 Martensitic stainless steel round bar

Also Published As

Publication number Publication date
JPWO2022202913A1 (en) 2022-09-29
EP4286542A1 (en) 2023-12-06
CN117043378A (en) 2023-11-10
JP7151945B1 (en) 2022-10-12
BR112023014937A2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
US7767037B2 (en) High strength stainless steel pipe for use in oil well having superior corrosion resistance and manufacturing method thereof
WO2018181404A1 (en) Martensitic stainless steel material
US10151011B2 (en) High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
US9303296B2 (en) High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
AU2013238482B2 (en) Stainless steel for oil wells and stainless steel pipe for oil wells
WO2020067247A1 (en) Martensitic stainless steel material
JP7425360B2 (en) Martensitic stainless steel material and method for producing martensitic stainless steel material
WO2011132765A1 (en) Cr-CONTAINING STEEL PIPE FOR LINE PIPE AND HAVING EXCELLENT INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE AT WELDING-HEAT-AFFECTED PORTION
JP6372070B2 (en) Ferritic / martensitic duplex steel and oil well steel pipe
JPWO2008023702A1 (en) Martensitic stainless steel
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JP7173405B2 (en) Martensitic stainless steel material
WO2020166675A1 (en) Steel material suitable for use in sour environment
JP2019073789A (en) Stainless steel and stainless steel pipe
JP7151945B1 (en) Martensitic stainless steel material
JP7239086B1 (en) Martensitic stainless steel pipe
JP6672620B2 (en) Stainless steel for oil well and stainless steel tube for oil well
WO2020166668A1 (en) Steel material for use in sour environments
CN115485406A (en) Duplex stainless steel seamless steel pipe
JP7364993B1 (en) steel material
WO2023204294A1 (en) Steel material
JP7428952B1 (en) Martensitic stainless steel material
JP7381983B2 (en) Martensitic seamless stainless steel pipe and method for manufacturing martensitic seamless stainless steel pipe
WO2024063108A1 (en) Martensitic stainless steel material
JP7135708B2 (en) steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022539422

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008967

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014937

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022775695

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022775695

Country of ref document: EP

Effective date: 20230829

WWE Wipo information: entry into national phase

Ref document number: 202280023223.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023014937

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230725