WO2020166668A1 - Steel material for use in sour environments - Google Patents

Steel material for use in sour environments Download PDF

Info

Publication number
WO2020166668A1
WO2020166668A1 PCT/JP2020/005617 JP2020005617W WO2020166668A1 WO 2020166668 A1 WO2020166668 A1 WO 2020166668A1 JP 2020005617 W JP2020005617 W JP 2020005617W WO 2020166668 A1 WO2020166668 A1 WO 2020166668A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
content
tempering
steel
test
Prior art date
Application number
PCT/JP2020/005617
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀 神谷
陽平 乙▲め▼
貴志 相馬
大江 太郎
伸明 小松原
晋士 吉田
勇次 荒井
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP20755579.8A priority Critical patent/EP3926059A4/en
Priority to BR112021013441-7A priority patent/BR112021013441A2/en
Priority to US17/422,870 priority patent/US20220098712A1/en
Priority to MX2021009588A priority patent/MX2021009588A/en
Priority to JP2020572313A priority patent/JP7036237B2/en
Publication of WO2020166668A1 publication Critical patent/WO2020166668A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present disclosure relates to steel materials, and more particularly to steel materials suitable for use in sour environments.
  • oil wells and gas wells are collectively referred to simply as "oil wells").
  • steel pipes for oil wells of 80 ksi class yield strength of 80 to less than 95 ksi, that is, 552 to 655 MPa
  • 95 ksi class yield strength of 95 to less than 110 ksi, that is, 655 to 758 MPa
  • 110 ksi class yield strength of 110 to 125 ksi, that is, 758 to 862 MPa
  • the sour environment means an environment that contains hydrogen sulfide and is acidified. Note that carbon dioxide may be included in the sour environment. Oil well steel pipes used in such a sour environment are required to have not only high strength but also sulfide stress cracking resistance (Sulfide Stress Cracking resistance: hereinafter referred to as SSC resistance).
  • SSC resistance sulfide Stress Cracking resistance
  • Patent Document 1 JP-A-62-253720
  • Patent Document 2 JP-A-59-232220
  • Patent Document 3 Japanese Unexamined Patent Publication (Kokai) No. 8-311551
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2000-256783
  • Patent Document 6 Japanese Unexamined Patent Application Publication 2000-297344
  • Patent Document 7 Japanese Patent Laid-Open No. 2012-510238
  • Patent Document 9 Japanese Patent Laid-Open No. 2012-26030
  • Patent Document 1 proposes a method of reducing impurities such as Mn and P to enhance SSC resistance of oil well steel.
  • Patent Document 2 proposes a method in which quenching is performed twice to make crystal grains finer and enhance the SSC resistance of steel.
  • Patent Document 3 proposes a method of refining the steel structure by induction heating heat treatment to enhance the SSC resistance of 125 ksi class steel materials.
  • Patent Document 4 proposes a method of improving the SSC resistance of a 110 to 140 ksi class steel pipe by increasing the hardenability of steel by using a direct quenching method and further increasing the tempering temperature.
  • Patent Documents 5 and 6 propose a method of controlling the morphology of carbides to enhance the SSC resistance of 110-140 ksi grade low alloy oil country tubular goods steels.
  • Patent Document 7 proposes a method of controlling the dislocation density and the hydrogen diffusion coefficient to desired values to enhance the SSC resistance of steel materials of 125 ksi class or higher.
  • Patent Document 8 proposes a method of increasing the SSC resistance of 125 ksi class steel by performing quenching a plurality of times on a low alloy steel containing 0.3 to 0.5% C.
  • Patent Document 9 proposes a method of controlling the form and number of carbides by adopting a tempering process of a two-stage heat treatment. More specifically, in Patent Document 9, the number density of large M 3 C or M 2 C is suppressed and the SSC resistance of 125 ksi grade steel is increased.
  • a steel material for example, oil well steel pipe
  • a yield strength of 110 ksi class (758 to 862 MPa) and excellent SSC resistance can be obtained by a technique other than the techniques disclosed in Patent Documents 1 to 9 above. Good.
  • An object of the present disclosure is to provide a steel material having a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance in a sour environment.
  • the steel material according to the present disclosure has a mass% of C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, and P: 0.030% or less. , S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: over 1.00 to 2.00%, Ti: 0.002 to 0 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: 0.0020 %, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu: 0 to 0.50%, Ni : 0 to 0.50%, Co: 0 to 0.50%, and W: 0 to 0.50%, the balance being Fe and impurities, and having a chemical composition satisfying the formula (1).
  • the steel material according to the present disclosure has a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance in a sour environment.
  • FIG. 1 is a diagram showing the relationship between the Mo content and the old ⁇ particle size.
  • the present inventors have investigated and investigated a method for obtaining excellent SSC resistance while maintaining a yield strength of 758 to 862 MPa (110 ksi class) in a steel material that is supposed to be used in a sour environment, and made the following findings. Obtained.
  • the yield strength YS Yield Strength
  • dislocations in the steel material may occlude hydrogen. Therefore, if the dislocation density of the steel material increases, the amount of hydrogen stored in the steel material may increase. If the hydrogen concentration in the steel material increases as a result of increasing the dislocation density, the SSC resistance of the steel material deteriorates even if high strength is obtained. Therefore, in order to achieve both 110 ksi class yield strength and excellent SSC resistance, it is not preferable to increase the strength using the dislocation density.
  • the inventors of the present invention may obtain excellent SSC resistance even if the yield strength of the steel material is increased to 110 ksi class. I thought it might be.
  • the present inventors have a chemical composition, in mass%, of C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Ti: 0.002 to 0.020%, V : 0.05-0.30%, Nb: 0.005-0.100%, B: 0.0005-0.0040%, N: 0.0100% or less, O: less than 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu: 0 to 0.50%, Ni: 0 to 0. A steel material containing 50%, Co: 0 to 0.50%, and W: 0 to 0.50% is considered to be able to achieve both 110 ksi class yield strength and SSC resistance. It was
  • the inventors further thought that, in addition to the above-mentioned chemical composition, if Mo is contained, alloy carbide is formed, so that the yield strength can be increased without increasing the dislocation density too much. Therefore, the present inventors manufactured various steel materials in which Mo was added to the above-mentioned chemical composition, and investigated the characteristics thereof. As a result, the present inventors have found that in steel materials having the above chemical composition, there is a new dependence on the Mo content and the particle size of old austenite grains (hereinafter, also referred to as “old ⁇ grains”). I found out.
  • FIG. 1 is a diagram showing the relationship between the Mo content and the old ⁇ particle size.
  • FIG. 1 shows the Mo content (mass %) of a steel material manufactured by a preferred manufacturing method described later, in which the chemical composition other than the Mo content satisfies the above-mentioned chemical composition range in Examples described later.
  • the "old ⁇ grain size” means the crystal grain size of the old ⁇ grain obtained by the method based on the comparison method defined in ASTM E112-10.
  • the present inventors consider the reason for this as follows.
  • Mo is contained in the range of more than 1.00 to 2.00%
  • Mo dissolved in the steel material may be segregated to the austenite grain boundaries during heating during quenching. Therefore, the solid solution Mo segregated at the austenite grain boundaries suppresses the movement of the crystal grain boundaries. As a result, the austenite grains are less likely to coarsen during heating during quenching, and it is considered that the old ⁇ grains after tempering become fine.
  • the hardenability of the steel material is high.
  • F1 is an index of the hardenability of the steel material. If F1 is too low, the hardenability of the steel material may not be sufficiently obtained and 110 ksi class yield strength may not be obtained. Therefore, the steel material according to the present embodiment has the above-described chemical composition and further has F1 of 3.90 or more.
  • the chemical composition of the steel material according to the present embodiment is, in mass %, C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: more than 1.00 to 2.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% Below, O: less than 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu: 0 .About.0.50%, Ni:0.about.0.50%, Co:0.about.0.50%, and W:0.about.0.50%, the balance consisting of Fe and impurities.
  • F1 is 3.90 or more.
  • the present inventors examined in more detail the carbides that reduce the SSC resistance in the steel materials having the above-described chemical composition. As a result, the following findings were obtained. Coarse carbides tend to be a source of stress concentration and promote the propagation of cracks caused by SSC. Therefore, it has been considered that if the coarse carbides are reduced, the SSC resistance of the steel material is enhanced.
  • the coarse carbides precipitated in the old ⁇ grain boundaries may reduce the SSC resistance of the steel material.
  • the present inventors have found that the SSC resistance of the steel material can be enhanced by not simply reducing the coarse carbides but by reducing the coarse carbides precipitated at the old ⁇ grain boundaries.
  • the steel material according to the present embodiment has the above-described chemical composition, the old ⁇ grain size is 11.0 ⁇ m or less, and further reduces the coarse carbides precipitated at the old ⁇ grain boundaries.
  • the steel material according to the present embodiment has the above-described chemical composition, the old ⁇ grain size is 11.0 ⁇ m or less, and the average area of the precipitates of the old ⁇ grain boundary is 10.0 ⁇ 10 ⁇ . It is 3 ⁇ m 2 or less.
  • the steel material according to the present embodiment can achieve both a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance in a sour environment.
  • the steel material according to the present embodiment completed on the basis of the above findings is, in mass%, C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00. %, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: over 1.00 to 2.00 %, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.
  • the crystal grain size of the former austenite grains is 11.0 ⁇ m or less.
  • the average area of the precipitates precipitated at the former austenite grain boundaries is 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 or less.
  • the yield strength of steel is 758 to 862 MPa. 2.7 ⁇ C+0.4 ⁇ Si+Mn+0.45 ⁇ Ni+0.45 ⁇ Cu+0.8 ⁇ Cr+2 ⁇ Mo ⁇ 3.90 (1)
  • the content (mass %) of the corresponding element is substituted for the element symbol in the formula (1).
  • "0" is substituted for the element symbol.
  • the steel material is not particularly limited, but is, for example, a steel pipe or a steel plate.
  • the above chemical composition may contain at least one selected from the group consisting of Cu: 0.02 to 0.50% and Ni: 0.02 to 0.50%.
  • the above steel material may be a steel pipe for oil wells.
  • the oil well steel pipe may be a line pipe steel pipe or an oil well pipe.
  • the shape of the oil well steel pipe is not limited, and may be, for example, a seamless steel pipe or a welded steel pipe.
  • the oil country tubular goods are, for example, steel tubes used for casings and tubing applications.
  • the above steel material may be a seamless steel pipe. If the steel material according to the present embodiment is a seamless steel tube, it has a yield strength of 758 to 862 MPa (110 ksi class) even if the wall thickness is 15 mm or more, and has more stable SSC resistance in a sour environment. ..
  • the excellent SSC resistance can be evaluated specifically by a method based on NACE TM0177-2005 Method A and a 4-point bending test.
  • a mixed aqueous solution of 5.0 mass% sodium chloride and 0.5 mass% acetic acid (NACE solution A) at 4° C. is used for the test bath.
  • a test piece taken from a steel material is immersed in a test bath under a stress equivalent to 90% of the actual yield stress. Subsequently, the test bath is degassed, and 1 atm of H 2 S gas is blown into the test bath to saturate it. The test bath saturated with H 2 S gas is kept at 4° C. for 720 hours.
  • the stress applied to the test piece taken from the steel material should be 90% of the actual yield stress of the steel material.
  • Stress is applied by four-point bending.
  • a 5.0 mass% sodium chloride aqueous solution at 24° C. is used for the test bath.
  • the stressed test piece is immersed in a test bath in an autoclave. After deaeration of the test bath, 20 atm of H 2 S gas is pressurized and sealed in the autoclave. After sealing the autoclave, the test bath is stirred at 24° C. for 720 hours.
  • Mn 0.01-1.00%
  • Manganese (Mn) deoxidizes steel. Mn further enhances the hardenability of the steel material and enhances the yield strength of the steel material. If the Mn content is too low, these effects cannot be obtained. On the other hand, if the Mn content is too high, Mn segregates at the grain boundaries together with impurities such as P and S. In this case, the SSC resistance of the steel material decreases. Therefore, the Mn content is 0.01 to 1.00%.
  • the preferable lower limit of the Mn content is 0.02%, more preferably 0.03%, and further preferably 0.10%.
  • the preferable upper limit of the Mn content is 0.80%, more preferably 0.70%, further preferably 0.65%, further preferably less than 0.60%, further preferably 0. 55%.
  • S 0.0050% or less Sulfur (S) is an impurity. That is, the S content is more than 0%. S segregates at the grain boundaries and reduces the SSC resistance of the steel material. Therefore, the S content is 0.0050% or less.
  • the preferable upper limit of the S content is 0.0040%, more preferably 0.0030%, and further preferably 0.0020%. It is preferable that the S content is as low as possible. However, the extreme reduction of the S content significantly increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the S content is 0.0001%, more preferably 0.0003%.
  • Mo over 1.00 to 2.00% Molybdenum (Mo) enhances the hardenability of steel and enhances the yield strength of steel. Further, Mo is solid-dissolved in the steel material, and a part thereof is segregated at the austenite grain boundaries during heating during quenching. As a result, the old ⁇ grain size of the steel material after tempering becomes small due to the pinning effect. In this case, the SSC resistance of the steel material is enhanced. If the Mo content is too low, these effects cannot be obtained. On the other hand, if the Mo content is too high, coarse carbides are generated at the old ⁇ grain boundaries in the steel material. In this case, the SSC resistance of the steel material decreases. Therefore, the Mo content is more than 1.00 to 2.00%.
  • the preferable lower limit of the Mo content is 1.01%, more preferably 1.05%, further preferably 1.10%, further preferably 1.15%, further preferably 1.20. %.
  • the preferable upper limit of the Mo content is 1.90%, more preferably 1.80%, further preferably 1.75%, further preferably 1.70%, further preferably 1.65. %.
  • the Mo content is preferably less than 2.00 times the Cr content. If the Mo content is too high relative to the Cr content, the old ⁇ grains of the steel material may become coarse. The reason for this is unknown. However, in the steel material having the chemical composition according to the present embodiment, if the Mo content is less than 2.00 times the Cr content, the old ⁇ grain size of the steel material can be stably reduced to 11.0 ⁇ m or less. Therefore, in the chemical composition of the steel material according to the present embodiment, the Mo content is preferably less than 2.00 times the Cr content.
  • the more preferable upper limit of the ratio of Mo content to Cr content is 1.98, more preferably 1.95, and further preferably 1.90.
  • the lower limit of the Mo/Cr ratio is not particularly limited, the chemical composition of the steel material according to the present embodiment is substantially 0.67 or more.
  • Titanium (Ti) forms a nitride and refines the structure of the steel material by the pinning effect. As a result, the SSC resistance of the steel material is enhanced. If the Ti content is too low, this effect cannot be obtained. On the other hand, if the Ti content is too high, a large amount of Ti nitride is formed. As a result, the SSC resistance of the steel material decreases. Therefore, the Ti content is 0.002 to 0.020%.
  • the preferable lower limit of the Ti content is 0.003%, more preferably 0.004%.
  • the preferable upper limit of the Ti content is 0.018%, more preferably 0.015%.
  • V 0.05 to 0.30% Vanadium (V) combines with C and/or N to form a carbide, a nitride, or a carbonitride (hereinafter, referred to as “carbonitride or the like”). Carbonitride and the like refine the structure of the steel material by the pinning effect. As a result, the SSC resistance of the steel material is enhanced. V further combines with C to form fine carbides. As a result, the yield strength of the steel material increases. If the V content is too low, these effects cannot be obtained. On the other hand, if the V content is too high, carbonitrides and the like are excessively generated, and the SSC resistance of the steel material deteriorates. Therefore, the V content is 0.05 to 0.30%.
  • the preferable lower limit of the V content is more than 0.05%, more preferably 0.06%, further preferably 0.07%, and further preferably 0.09%.
  • the preferable upper limit of the V content is 0.25%, more preferably 0.20%, and further preferably 0.15%.
  • B 0.0005 to 0.0040% Boron (B) forms a solid solution in steel to enhance the hardenability of the steel material and enhance the yield strength of the steel material. If the B content is too low, this effect cannot be obtained. On the other hand, if the B content is too high, coarse nitrides are generated, and the SSC resistance of the steel material deteriorates. Therefore, the B content is 0.0005 to 0.0040%.
  • the preferable lower limit of the B content is 0.0007%, more preferably 0.0010%, and further preferably 0.0012%.
  • the preferable upper limit of the B content is 0.0035%, more preferably 0.0030%, and further preferably 0.0025%.
  • Oxygen (O) is an impurity. That is, the O content is more than 0%. O forms a coarse oxide and reduces the SSC resistance of the steel material. Therefore, the O content is less than 0.0020%.
  • the preferable upper limit of the O content is 0.0018%, and more preferably 0.0015%.
  • the O content is preferably as low as possible. However, the extreme reduction of the O content significantly increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the O content is 0.0001%, and more preferably 0.0003%.
  • the balance of the chemical composition of the steel material according to this embodiment is Fe and impurities.
  • the impurities are ores as raw materials when industrially manufacturing a steel material, scrap, or those that are mixed from the manufacturing environment, etc. within a range that does not adversely affect the steel material according to the present embodiment. Means acceptable.
  • the chemical composition of the above-described steel material may further contain, in place of part of Fe, one or more selected from the group consisting of Ca, Mg, Zr, and a rare earth element (REM).
  • REM rare earth element
  • Ca 0 to 0.0100% Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When included, Ca renders S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. This effect can be obtained to some extent if even a small amount of Ca is contained. However, if the Ca content is too high, the oxides in the steel material become coarse, and the SSC resistance of the steel material decreases. Therefore, the Ca content is 0 to 0.0100%.
  • the preferable lower limit of the Ca content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is.
  • the preferable upper limit of the Ca content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
  • Mg 0 to 0.0100%
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg makes S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. This effect can be obtained to some extent if Mg is contained at all. However, if the Mg content is too high, the oxides in the steel material become coarse, and the SSC resistance of the steel material decreases. Therefore, the Mg content is 0 to 0.0100%.
  • the preferable lower limit of the Mg content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is.
  • the preferable upper limit of the Mg content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
  • Zr Zirconium
  • Zr Zirconium
  • the Zr content may be 0%.
  • Zr renders S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. This effect can be obtained to some extent if Zr is contained even in a small amount.
  • the Zr content is 0 to 0.0100%.
  • the preferable lower limit of the Zr content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is.
  • the preferable upper limit of the Zr content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
  • the rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When contained, REM renders S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. REM further binds to P in the steel material and suppresses the segregation of P at the grain boundaries. Therefore, the deterioration of the low temperature toughness and SSC resistance of the steel material due to the segregation of P is suppressed. These effects can be obtained to some extent if REM is contained in any amount. However, if the REM content is too high, the oxide is coarsened, and the low temperature toughness and SSC resistance of the steel material deteriorate.
  • the REM content is 0 to 0.0100%.
  • the preferable lower limit of the REM content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is.
  • the preferable upper limit of the REM content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
  • REM in this specification means scandium (Sc) having an atomic number of 21, an yttrium (Y) having an atomic number of 39, and a lanthanide (lanthanum (La) having an atomic number of 57 to an atomic number of 71). It is one or more elements selected from the group consisting of lutetium (Lu).
  • the REM content in the present specification is the total content of these elements.
  • the chemical composition of the above-mentioned steel material may further contain one or more selected from the group consisting of Cu and Ni, instead of part of Fe. All of these elements are optional elements and enhance the hardenability of steel materials.
  • Cu 0 to 0.50% Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of the steel material and enhances the yield strength of the steel material. This effect can be obtained to some extent if Cu is contained in a small amount. However, if the Cu content is too high, the hardenability of the steel material becomes too high, and the SSC resistance of the steel material deteriorates. Therefore, the Cu content is 0 to 0.50%.
  • the preferable lower limit of the Cu content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%.
  • the preferable upper limit of the Cu content is 0.35%, more preferably 0.25%.
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of the steel material and enhances the yield strength of the steel material. This effect can be obtained to some extent if Ni is contained at all. However, if the Ni content is too high, localized corrosion is promoted and the SSC resistance of the steel material deteriorates. Therefore, the Ni content is 0 to 0.50%.
  • the preferable lower limit of the Ni content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%.
  • the preferable upper limit of the Ni content is 0.35%, more preferably 0.25%.
  • the chemical composition of the above-mentioned steel material may further contain one or more selected from the group consisting of Co and W instead of part of Fe.
  • Each of these elements is an arbitrary element and forms a protective corrosive film in a hydrogen sulfide environment to suppress hydrogen invasion. Thereby, these elements enhance the SSC resistance of the steel material.
  • Co is an optional element and may not be contained. That is, the Co content may be 0%. When contained, Co forms a protective corrosion film in a hydrogen sulfide environment and suppresses hydrogen invasion. As a result, the SSC resistance of the steel material is enhanced. This effect can be obtained to some extent if Co is contained in a small amount. However, if the Co content is too high, the hardenability of the steel material deteriorates, and the yield strength of the steel material decreases. Therefore, the Co content is 0 to 0.50%.
  • the preferable lower limit of the Co content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%.
  • the preferable upper limit of the Co content is 0.45%, and more preferably 0.40%.
  • W 0 to 0.50%
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When contained, W forms a protective corrosion film in a hydrogen sulfide environment and suppresses hydrogen invasion. As a result, the SSC resistance of the steel material is enhanced. If W is contained even a little, this effect can be obtained to some extent. However, if the W content is too high, coarse carbides are generated in the steel material, and the SSC resistance of the steel material deteriorates. Therefore, the W content is 0 to 0.50%.
  • the preferable lower limit of the W content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%.
  • the preferable upper limit of the W content is 0.45%, more preferably 0.40%.
  • F1 is less than 3.90, sufficient hardenability cannot be obtained and yield strength of steel cannot be obtained. Therefore, the steel material according to the present embodiment has F1 of 3.90 or more.
  • the preferable lower limit of F1 is 3.93, and more preferably 4.00.
  • the upper limit of F1 is not particularly limited. However, in the steel material according to the present embodiment having the above chemical composition, the upper limit of F1 is, for example, 8.27.
  • the preferable upper limit of F1 is 8.20, more preferably 8.10, and further preferably 8.00.
  • the former austenite grain size (former ⁇ grain size) is 11.0 ⁇ m or less.
  • the crystal grain size of old austenite grains means the crystal grain size of old austenite grains, which is obtained in accordance with the comparison method of ASTM E112-10. If the old ⁇ grains of the steel material are fine, the yield strength and SSC resistance are stably enhanced. Therefore, in the present embodiment, the old ⁇ grains of the steel material are made fine by including Mo in the steel material in an amount of more than 1.00%.
  • the preferable upper limit of the old ⁇ grain size of the steel material according to the present embodiment is 10.5 ⁇ m, more preferably 10.0 ⁇ m.
  • the lower limit of the old ⁇ grain size of the steel material according to the present embodiment is not particularly limited.
  • the lower limit of the old ⁇ grain size of the steel material according to the present embodiment is, for example, 4.5 ⁇ m.
  • the old ⁇ particle size can be determined according to the comparison method of ASTM E112-10. More specifically, it can be determined by the following method.
  • the steel material is a steel plate
  • a test piece having an observation surface perpendicular to the rolling direction is cut out from the center part of the plate thickness.
  • the steel material is a steel pipe
  • a test piece having an observation surface perpendicular to the pipe axis direction is cut out from the central portion of the wall thickness. After the observation surface is mirror-polished, it is embedded in a resin and immersed in a 2% Nital etchant for about 10 seconds to expose old ⁇ grain boundaries by etching.
  • the etched observation surface with a secondary electron image using a scanning electron microscope (SEM: Scanning Electron Microscope) to generate a photographic image.
  • the observation magnification is, for example, 200 times.
  • the grain size number is evaluated by comparison with the grain size standard diagram specified in ASTM E112-10. From the evaluated grain size number, the average grain size of the old ⁇ grains in each visual field is determined. The arithmetic average value of the average crystal grain size of the old ⁇ grains obtained in the 10 fields of view is defined as the crystal grain size of the old ⁇ grains (old ⁇ grain size) ( ⁇ m).
  • the average area of the precipitates precipitated at the former austenite grain boundaries is 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 or less.
  • the precipitate deposited on the old ⁇ grain boundary is also referred to as “specific precipitate”. If the average area of the specific precipitate is 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 or less, 110 ksi class yield strength and excellent SSC resistance are provided, provided that the other requirements of the steel material according to the present embodiment are satisfied. Can be compatible.
  • the average area of the precipitates (specific precipitates) that precipitate at the old ⁇ grain boundaries is 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 or less. If the average area of the specific precipitates exceeds 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 , the SSC resistance of the steel material may deteriorate. If the average area of the specific precipitates exceeds 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 , the yield strength of 758 to 862 MPa (110 ksi class) may not be obtained.
  • the average area of the precipitates precipitated at the old ⁇ grain boundary is 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 or less.
  • the preferable upper limit of the average area of the specific precipitate is 9.9 ⁇ 10 ⁇ 3 ⁇ m 2 , and more preferably 9.7 ⁇ 10 ⁇ 3 ⁇ m 2 .
  • the lower limit of the average area of the specific precipitate is not particularly limited and may be 0.0 ⁇ 10 ⁇ 3 ⁇ m 2 .
  • the lower limit of the average area of specific precipitates is, for example, 3.0 ⁇ 10 ⁇ 3 ⁇ m 2 .
  • the average area of specific precipitates can be obtained by the following method.
  • a test piece is cut out from the steel material in the same manner as the above-described method for measuring the old ⁇ particle size. Specifically, when the steel material is a steel plate, a test piece having an observation surface perpendicular to the rolling direction is cut out from the center part of the plate thickness. When the steel material is a steel pipe, a test piece having an observation surface perpendicular to the pipe axis direction is cut out from the central portion of the wall thickness. After the observation surface is mirror-polished, it is embedded in a resin and immersed in a 2% Nital etchant for about 10 seconds to expose old ⁇ grain boundaries by etching. The observation surface of the test piece is observed in 10 fields of view with a secondary electron image by SEM to generate a photographic image. The observation magnification is, for example, 10,000 times.
  • the observation magnification is, for example, 10,000 times in the observation of the specific precipitate. Therefore, if the precipitate has a circle equivalent diameter of 50 nm or more, it can be specified based on the contrast from the observation visual field.
  • the upper limit of the equivalent circle diameter of the specified precipitate is not particularly limited. In the steel material having the above chemical composition, the upper limit of the equivalent circle diameter of the identified precipitate is, for example, 1000 nm. Therefore, in the present embodiment, the equivalent circle diameter of the specific precipitate is, for example, 50 to 1000 nm.
  • the yield strength is 758, provided that the other regulations of this embodiment are satisfied. Up to 862 MPa (110 ksi class).
  • the total volume ratio of tempered martensite and tempered bainite can be obtained by microstructure observation.
  • the microstructure a photographic image generated when obtaining the above-mentioned old ⁇ grain size is used.
  • the tempered martensite and tempered bainite and the other phases can be distinguished from the contrast. Therefore, tempered martensite and tempered bainite are specified based on the contrast in each visual field.
  • the arithmetic average value of the total area ratios of tempered martensite and tempered bainite obtained from all fields of view is taken as the volume ratio of tempered martensite and tempered bainite.
  • the yield strength of the steel material according to this embodiment is 758 to 862 MPa (110 ksi class).
  • the yield strength as used herein means the stress at 0.7% elongation (0.7% proof stress) obtained in a tensile test.
  • the steel material according to the present embodiment has excellent SSC resistance even if the yield strength is 110 ksi class, by satisfying the above-mentioned chemical composition, old ⁇ grain size, and average area of the specific precipitate.
  • the yield strength of the steel material according to this embodiment can be obtained by the following method. Perform a tensile test by the method based on ASTM E8/E8M (2013).
  • a round bar test piece is sampled from the steel material according to the present embodiment.
  • the steel material is a steel plate
  • a round bar test piece is taken from the center part of the plate thickness. If the steel material is a steel pipe, collect a round bar test piece from the center of the wall thickness.
  • the size of the round bar test piece is, for example, the parallel portion diameter 8.9 mm and the parallel portion length 35.6 mm.
  • the axial direction of the round bar test piece is parallel to the rolling direction of the steel material.
  • a tensile test is carried out at room temperature (25° C.) in the atmosphere, and the stress at 0.7% elongation obtained is defined as the yield strength (MPa).
  • a round bar test piece is collected from the steel material according to this embodiment.
  • the steel material is a steel plate
  • a round bar test piece is taken from the center part of the plate thickness. If the steel material is a steel pipe, collect a round bar test piece from the center of the wall thickness.
  • the size of the round bar test piece is, for example, a diameter of 6.35 mm and a parallel portion length of 25.4 mm.
  • the axial direction of the round bar test piece is parallel to the rolling direction of the steel material.
  • the test solution is a mixed aqueous solution (NACE solution A) of 5.0% by mass sodium chloride and 0.5% by mass acetic acid at 4°C.
  • NACE solution A a mixed aqueous solution
  • a stress equivalent to 90% of the actual yield stress is applied to the round bar test piece.
  • a test solution at 4° C. is poured into a test container so that a stress-loaded round bar test piece is immersed therein to form a test bath. After deaeration of the test bath, 1 atm of H 2 S gas is blown into the test bath to saturate the test bath with H 2 S gas. The test bath saturated with H 2 S gas is kept at 4° C. for 720 hours.
  • test pieces are taken from the steel material according to the present embodiment.
  • the steel material is a steel plate
  • a test piece is taken from the center part of the plate thickness.
  • the steel material is a steel pipe
  • the size of the test piece is, for example, 2 mm in thickness, 10 mm in width, and 75 mm in length.
  • the length direction of the test piece is parallel to the rolling direction of the steel material.
  • the shape of the steel material according to the present embodiment is not particularly limited.
  • the steel material is, for example, a steel pipe or a steel plate.
  • the preferable wall thickness is 9 to 60 mm.
  • the steel material according to the present embodiment is suitable for use as a thick-walled seamless steel pipe. More specifically, even if the steel material according to the present embodiment is a seamless steel pipe having a thickness of 15 mm or more and further 20 mm or more, it exhibits a yield strength of 110 ksi class and excellent SSC resistance.
  • the method for manufacturing a steel material according to this embodiment will be described.
  • the manufacturing method described below is a method for manufacturing a seamless steel pipe as an example of the steel material according to the present embodiment.
  • the manufacturing method of the steel material according to the present embodiment is not limited to the manufacturing method described below.
  • the preparation step may include a step of preparing a material (material preparation step) and a step of hot working the material to produce an intermediate steel material (hot working step).
  • material preparation step a step of preparing a material
  • hot working step a step of hot working the material to produce an intermediate steel material
  • the material is manufactured using the molten steel having the above chemical composition.
  • a slab slab, bloom, or billet
  • a slab, bloom or ingot may be slab-rolled to produce a billet.
  • a material is manufactured by the above steps.
  • the prepared raw material is hot worked to produce an intermediate steel material.
  • the steel material is a steel pipe
  • the intermediate steel material corresponds to a raw pipe.
  • the billet is heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the billet extracted from the heating furnace is subjected to hot working to manufacture a raw pipe (seamless steel pipe).
  • the Mannesmann method may be carried out as hot working to manufacture a raw tube.
  • a round billet is perforated and rolled by a perforator.
  • the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0.
  • the pierced and rolled round billet is further hot-rolled by a mandrel mill, reducer, sizing mill or the like to obtain a raw tube.
  • the cumulative area reduction rate in the hot working step is, for example, 20 to 70%.
  • the raw pipe may be manufactured from the billet by another hot working method.
  • forging such as the Erhard method may be carried out to manufacture the raw pipe.
  • a raw tube is manufactured by the above steps.
  • the wall thickness of the manufactured raw pipe is not particularly limited, but is, for example, 9 to 60 mm.
  • the raw pipe manufactured by hot working may be air-cooled (As-Rolled).
  • the blank produced by hot working may be directly quenched without cooling to room temperature, or may be supplemented (reheated) and then quenched.
  • cooling may be stopped or slow cooling may be performed during quenching. In this case, it is possible to suppress the occurrence of quench cracks in the raw pipe.
  • the stress relief annealing SR treatment
  • the quenching is performed directly or after the supplementary heat treatment
  • the stress relief annealing may be performed after the quenching and before the heat treatment (tempering etc.) in the next step. In this case, the residual stress of the raw pipe is removed.
  • the intermediate steel is prepared in the preparation process.
  • the intermediate steel material may be manufactured by the above-described preferable process, or the intermediate steel material manufactured by a third party, or a factory other than the factory where the quenching process and the tempering process described below are carried out, other establishments. You may prepare the intermediate steel material manufactured by.
  • heat treatment process In the heat treatment step, heat treatment is performed on the prepared intermediate steel material. Specifically, quenching and tempering are performed on the prepared intermediate steel material.
  • quenching means quenching of an intermediate steel material having a point A 3 or higher.
  • tempering means to reheat and hold the intermediate steel material after quenching at the A c1 point or less.
  • the heat treatment step according to the present embodiment may be performed by rapidly cooling the intermediate steel material at 800 to 1000° C. after hot working, or using the auxiliary steel furnace or the heat treatment furnace as the intermediate steel material after hot working. It may be carried out by heating to 800 to 1000° C. and then quenching, or by heating the intermediate steel material after tempering to 800 to 1000° C. using a heat treatment furnace and then quenching. Good.
  • the quenching temperature is preferably 800 to 1000°C. A more preferable upper limit of the quenching temperature is 950°C.
  • a preferable quenching time is 5 to 20 minutes.
  • the "quenching time” means the time from the charging of the intermediate steel material into the supplementary heat treatment furnace or the heat treatment furnace to the removal thereof.
  • the quenching time is preferably 5 to 20 minutes.
  • the quenching method is, for example, to continuously cool the raw pipe from the quenching start temperature and continuously lower the temperature of the raw pipe.
  • the method of continuous cooling treatment is not particularly limited, and a known method may be used.
  • the method of continuous cooling treatment is, for example, a method of immersing the base pipe in a water tank for cooling, or a method of accelerating the base pipe by shower water cooling or mist cooling.
  • a preferable cooling rate during quenching, CR 800-500 is 8° C./second or more.
  • the microstructure of the intermediate steel material (base pipe) after quenching stably becomes mainly martensite and bainite.
  • the more preferable lower limit of the cooling rate during quenching CR 800-500 is 10°C/sec.
  • the preferable upper limit of the cooling rate CR 800-500 during quenching is 500° C./sec.
  • the tempered intermediate steel material is tempered.
  • the tempering temperature and the tempering time were adjusted according to the chemical composition of the steel material and the yield strength to be obtained. In this case, only the final tempering is controlled, and for the non-final tempering, it has been conventionally considered that the tempering temperature should be A c1 point or less.
  • the tempering parameter TMP 2 of the second to last tempering is 15000 to 19000, the old ⁇ grain size of the steel material after the final tempering is made fine. be able to. If the tempering parameter TMP 2 in the penultimate tempering is less than 15000, the tempering effect may not be sufficiently obtained, and the steel material may be subject to temper cracking or set cracking. On the other hand, if the tempering parameter TMP 2 in the penultimate tempering exceeds 19000, the amount of solute Mo is not sufficiently obtained during heating in the final quenching, and the old ⁇ grain size after the final tempering becomes coarse. There is.
  • the tempering temperature is 500 to less than 700°C.
  • the tempering time (holding time) is set to 10 to 60 minutes. That is, in the second to last tempering in the present embodiment, the tempering temperature is 500 to less than 700° C., the tempering time is 10 to 60 minutes, and the tempering parameter TMP 2 is 15,000 to 19000.
  • the "tempering temperature” corresponds to the temperature of the heat treatment furnace when heating and holding the intermediate steel after quenching.
  • the “tempering time (holding time)” means the time from heating the intermediate steel after quenching and holding the intermediate steel in the heat treatment furnace until holding it.
  • the steel material according to the present embodiment further reduces coarse specific precipitates among the precipitates (specific precipitates) precipitated at the old ⁇ grain boundaries.
  • the tempering parameter TMP 1 of the final tempering is 19100 to 19600, coarse specific precipitates can be reduced in the steel material after the final tempering. it can. If the tempering parameter TMP 1 in the final tempering is less than 19100, the tempering effect may not be sufficiently obtained, and the yield strength of the steel material after tempering may be too high. If the tempering parameter TMP 1 in the final tempering is less than 19100, a large number of coarse specific precipitates may be further precipitated.
  • the tempering parameter TMP 1 in the final tempering exceeds 19600, the yield strength of the steel material after tempering may be too low. If the tempering parameter TMP 1 in the final tempering exceeds 19600, a large number of coarse specific precipitates may be further precipitated.
  • the tempering temperature is 650 to 730°C.
  • the tempering time (holding time) is set to 10 to 90 minutes. That is, in the present embodiment, in the final tempering, the tempering temperature is 650 to 730° C., the tempering time is 10 to 90 minutes, and the tempering parameter TMP 1 is 19100 to 19600.
  • the tempering time is preferably 15 to 90 minutes. It is sufficiently possible for those skilled in the art to set the yield strength to 758 to 862 MPa (110 ksi class) by appropriately adjusting the tempering temperature and the tempering time in the steel material having the chemical composition of the present embodiment. ..
  • the steel material according to the present embodiment can be manufactured by the above manufacturing method.
  • the manufacturing method of the seamless steel pipe has been described as an example.
  • the steel material according to the present embodiment may be a steel plate or another shape.
  • the manufacturing method of a steel plate or another shape also includes, for example, a preparation step and a heat treatment step, similar to the above-described manufacturing method.
  • the above-described manufacturing method is an example, and the manufacturing method may be performed by another manufacturing method.
  • Billet was manufactured by continuous casting using the above molten steel. After holding the manufactured billet of each test number at 1250° C. for 1 hour, hot rolling (hot working) by a Mannesmann-mandrel system was performed to manufacture a raw pipe (seamless steel pipe) of each test number.
  • Heat treatment was performed twice for each hot-worked test tube of each test number. Specifically, heat treatment was performed on the raw tubes of each test number by the following method.
  • the raw pipe of each test number manufactured by hot working was held in a supplementary heating furnace at 950° C. for 5 minutes and then directly quenched (that is, the first quench).
  • the cooling rate during quenching CR 800-500 in the first quenching of each test number was in the range of 8 to 500° C./sec in all cases.
  • the cooling rate during quenching, CR 800-500 was determined by measuring the surface temperature of the raw pipe of each test number.
  • the first tempering that is, the second tempering from the last
  • tempering was performed on the raw tubes of each test number at the tempering temperature (° C.) shown in the “second tempering from the last” column in Table 2 for the tempering time (minutes).
  • the second quenching that is, the final quenching, was performed on the raw tubes of the respective test numbers for which the first tempering was performed. Specifically, for the test tubes of each test number, quenching was carried out after holding for the quenching time (minutes) at the quenching temperature (°C) described in the "final quenching" column of Table 2.
  • the cooling rate during quenching CR 800-500 of the second quenching of each test number was in the range of 8 to 500° C./sec in all cases.
  • the second tempering that is, the final tempering
  • the second tempering was performed on the raw pipe of each test number on which the final quenching was performed. Specifically, tempering was performed on the raw tubes of each test number at the tempering temperature (° C.) described in the “final tempering” column of Table 2 for the tempering time (minutes).
  • the temperature of the auxiliary heating furnace and the heat treatment furnace used for heating the quenching was set to the "quenching temperature (°C)". Further, the temperature of the heat treatment furnace used for tempering was defined as “tempering temperature (°C)”.
  • the time from the time the raw tube was charged into the supplementary heating furnace or the heat treatment furnace to the time it was taken out at the time of heating during quenching was defined as “quenching time (minutes)”. The time from the time the raw tube was put into the heat treatment furnace during tempering to the time it was taken out was defined as "tempering time (minutes)".
  • Step SSC resistance evaluation test Using the seamless steel pipe of each test number, a test based on NACE TM0177-2005 Method A and a 4-point bending test were carried out to evaluate SSC resistance. Specifically, the test based on NACE TM0177-2005 Method A was performed by the following method.
  • 3Three round bar test pieces with a diameter of 6.35 mm and a parallel length of 25.4 mm were taken from the center of the wall thickness of the seamless steel pipe of each test number.
  • the round bar test piece was sampled so that its axial direction was parallel to the axial direction of the seamless steel pipe.
  • Tensile stress was applied in the axial direction of the round bar test piece of each test number. At this time, the applied stress was adjusted to be 90% of the actual yield stress of the seamless steel pipe of each test number.
  • test solution a mixed aqueous solution of 5.0 mass% sodium chloride and 0.5 mass% acetic acid (NACE solution A) was used.
  • the test solution at 4° C. was poured into three test containers to prepare a test bath. Three stress-loaded round bar test pieces were immersed in the test baths of different test containers one by one. After deaeration of each test bath, 1 atm of H 2 S gas was blown thereinto to saturate the test bath. The test bath saturated with 1 atm of H 2 S gas was kept at 4° C. for 720 hours.
  • the 4-point bending test was carried out by the following method. Three test pieces each having a thickness of 2 mm, a width of 10 mm, and a length of 75 mm were collected from the central portion of the wall thickness of the seamless steel pipe of each test number. The test piece was sampled so that its longitudinal direction was parallel to the axial direction of the seamless steel pipe. In accordance with ASTM G39-99 (2011), the stress applied to each test piece of each test number is 90% of the actual yield stress of the seamless steel pipe of each test number. Stress was applied by 4-point bending. The stress-loaded test piece was enclosed together with the test jig in an autoclave.
  • test solution a 5.0 mass% sodium chloride aqueous solution was used.
  • the test solution was injected into the autoclave, leaving the gas phase, to prepare a test bath. After deaeration of the test bath, 20 atm of H 2 S gas was pressure-filled, and the test bath was stirred to saturate the test bath with H 2 S gas. After sealing the autoclave, the test bath was stirred at 24° C. for 720 hours.
  • Table 2 shows the test results. Regarding the SSC resistance test, the result of the test based on NACE TM0177-2005 Method A is shown in the “1 atmH 2 S” column, and the result of the four-point bending test is shown in the “20 atmH 2 S” column.
  • the seamless steel pipes of test numbers 1 to 8 have appropriate chemical compositions, yield strength of 758 to 862 MPa, old ⁇ grain size of 11.0 ⁇ m or less, and The average area of the specific precipitate was 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 or less. As a result, excellent SSC resistance was exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
  • the tempering parameter TMP 1 in the final tempering was too large. Therefore, the average area of the specific precipitate exceeded 10.0 ⁇ 10 ⁇ 3 ⁇ m 2 . As a result, the yield strength was less than 758 MPa, and 110 ksi class yield strength was not obtained.
  • the steel material according to the present disclosure is widely applicable to steel materials used in harsh environments such as polar regions, preferably steel materials used in oil well environments, and more preferably casing, tubing, line pipes, etc. It can be used as a steel material.

Abstract

Provided is a steel material that has 110-ksi-grade yield strength and excellent SSC resistance. This steel material has a chemical composition that is, by mass%, 0.20%–0.45% C, 0.05%–1.00% Si, 0.01%–1.00% Mn, no more than 0.030% P, no more than 0.0050% S, 0.005%–0.100% Al, 0.60%–1.50% Cr, more than 1.00% but no more than 2.00% Mo, 0.002%–0.020% Ti, 0.05%–0.30% V, 0.005%–0.100% Nb, 0.0005%–0.0040% B, no more than 0.0100% N, and less than 0.0020% O, the remainder being Fe and impurities. The chemical composition also satisfies formula (1) set forth in the description. The crystal grain size of prior austenite grains is no more than 11.0 μm, and the average area of precipitates that precipitate at prior austenite grain boundaries is no more than 10.0×10-3 μm2. The yield strength of the steel material s 758–862 MPa.

Description

サワー環境での使用に適した鋼材Steel suitable for use in sour environments
 本開示は、鋼材に関し、さらに詳しくは、サワー環境での使用に適した鋼材に関する。 The present disclosure relates to steel materials, and more particularly to steel materials suitable for use in sour environments.
 油井やガス井(以下、油井及びガス井を総称して、単に「油井」という)の深井戸化により、油井用鋼管の高強度化が要求されている。具体的には、80ksi級(降伏強度が80~95ksi未満、つまり、552~655MPa未満)や、95ksi級(降伏強度が95~110ksi未満、つまり、655~758MPa未満)の油井用鋼管が広く利用されており、最近ではさらに、110ksi級(降伏強度が110~125ksi、つまり、758~862MPa)の油井用鋼管が求められ始めている。 Demand for higher strength steel pipes for oil wells is required due to the deeper wells of oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to simply as "oil wells"). Specifically, steel pipes for oil wells of 80 ksi class (yield strength of 80 to less than 95 ksi, that is, 552 to 655 MPa) and 95 ksi class (yield strength of 95 to less than 110 ksi, that is, 655 to 758 MPa) are widely used. Recently, further, 110 ksi class (yield strength of 110 to 125 ksi, that is, 758 to 862 MPa) oil well steel pipes have begun to be demanded.
 深井戸の多くは、腐食性を有する硫化水素を含有するサワー環境である。本明細書において、サワー環境とは、硫化水素を含み、酸性化した環境を意味する。なお、サワー環境では、二酸化炭素を含む場合もある。このようなサワー環境で使用される油井用鋼管は、高強度だけでなく、耐硫化物応力割れ性(耐Sulfide Stress Cracking性:以下、耐SSC性という)も要求される。 Most of the deep wells are in a sour environment containing corrosive hydrogen sulfide. As used herein, the sour environment means an environment that contains hydrogen sulfide and is acidified. Note that carbon dioxide may be included in the sour environment. Oil well steel pipes used in such a sour environment are required to have not only high strength but also sulfide stress cracking resistance (Sulfide Stress Cracking resistance: hereinafter referred to as SSC resistance).
 油井用鋼管に代表される鋼材の耐SSC性を高める技術が、特開昭62-253720号公報(特許文献1)、特開昭59-232220号公報(特許文献2)、特開平6-322478号公報(特許文献3)、特開平8-311551号公報(特許文献4)、特開2000-256783号公報(特許文献5)、特開2000-297344号公報(特許文献6)、特開2005-350754号公報(特許文献7)、特表2012-519238号公報(特許文献8)及び特開2012-26030号公報(特許文献9)に開示されている。 Techniques for increasing the SSC resistance of steel materials represented by oil well steel pipes are disclosed in JP-A-62-253720 (Patent Document 1), JP-A-59-232220 (Patent Document 2), and JP-A-6-322478. Japanese Unexamined Patent Application Publication (Patent Document 3), Japanese Unexamined Patent Publication (Kokai) No. 8-311551 (Patent Document 4), Japanese Unexamined Patent Application Publication No. 2000-256783 (Patent Document 5), Japanese Unexamined Patent Application Publication 2000-297344 (Patent Document 6), and Japanese Unexamined Patent Application Publication 2005 -350754 (Patent Document 7), Japanese Patent Laid-Open No. 2012-510238 (Patent Document 8) and Japanese Patent Laid-Open No. 2012-26030 (Patent Document 9).
 特許文献1は、Mn、P等の不純物を低減して、油井用鋼の耐SSC性を高める方法を提案する。特許文献2は、焼入れを2回実施して結晶粒を微細化し、鋼の耐SSC性を高める方法を提案する。 Patent Document 1 proposes a method of reducing impurities such as Mn and P to enhance SSC resistance of oil well steel. Patent Document 2 proposes a method in which quenching is performed twice to make crystal grains finer and enhance the SSC resistance of steel.
 特許文献3は、誘導加熱熱処理により鋼組織を微細化して、125ksi級の鋼材の耐SSC性を高める方法を提案する。特許文献4は、直接焼入れ法を利用して鋼の焼入れ性を高め、さらに、焼戻し温度を高めることにより、110~140ksi級の鋼管の耐SSC性を高める方法を提案する。 Patent Document 3 proposes a method of refining the steel structure by induction heating heat treatment to enhance the SSC resistance of 125 ksi class steel materials. Patent Document 4 proposes a method of improving the SSC resistance of a 110 to 140 ksi class steel pipe by increasing the hardenability of steel by using a direct quenching method and further increasing the tempering temperature.
 特許文献5及び特許文献6は、炭化物の形態を制御して110~140ksi級の低合金油井管用鋼の耐SSC性を高める方法を提案する。特許文献7は、転位密度と水素拡散係数とを所望の値に制御して、125ksi級以上の鋼材の耐SSC性を高める方法を提案する。特許文献8は、0.3~0.5%のCを含有する低合金鋼に対して、複数回の焼入れを実施することにより、125ksi級の鋼の耐SSC性を高める方法を提案する。特許文献9は、2段熱処理の焼戻し工程を採用して、炭化物の形態や個数を制御する方法を提案する。より具体的には、特許文献9では、大型のM3C又はM2Cの個数密度を抑制して、125ksi級の鋼の耐SSC性を高める。 Patent Documents 5 and 6 propose a method of controlling the morphology of carbides to enhance the SSC resistance of 110-140 ksi grade low alloy oil country tubular goods steels. Patent Document 7 proposes a method of controlling the dislocation density and the hydrogen diffusion coefficient to desired values to enhance the SSC resistance of steel materials of 125 ksi class or higher. Patent Document 8 proposes a method of increasing the SSC resistance of 125 ksi class steel by performing quenching a plurality of times on a low alloy steel containing 0.3 to 0.5% C. Patent Document 9 proposes a method of controlling the form and number of carbides by adopting a tempering process of a two-stage heat treatment. More specifically, in Patent Document 9, the number density of large M 3 C or M 2 C is suppressed and the SSC resistance of 125 ksi grade steel is increased.
特開昭62-253720号公報JP 62-253720 特開昭59-232220号公報JP-A-59-232220 特開平6-322478号公報JP-A-6-322478 特開平8-311551号公報JP-A-8-311551 特開2000-256783号公報Japanese Patent Laid-Open No. 2000-256783 特開2000-297344号公報Japanese Patent Laid-Open No. 2000-297344 特開2005-350754号公報JP 2005-350754 A 特表2012-519238号公報Special table 2012-518238 特開2012-26030号公報Japanese Patent Laid-Open No. 2012-26030
 しかしながら、上記特許文献1~9に開示された技術以外の技術によって、降伏強度が110ksi級(758~862MPa)であり、優れた耐SSC性を示す鋼材(たとえば、油井用鋼管)が得られてもよい。 However, a steel material (for example, oil well steel pipe) having a yield strength of 110 ksi class (758 to 862 MPa) and excellent SSC resistance can be obtained by a technique other than the techniques disclosed in Patent Documents 1 to 9 above. Good.
 本開示の目的は、758~862MPa(110ksi級)の降伏強度を有し、かつ、サワー環境において優れた耐SSC性を有する鋼材を提供することである。 An object of the present disclosure is to provide a steel material having a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance in a sour environment.
 本開示による鋼材は、質量%で、C:0.20~0.45%、Si:0.05~1.00%、Mn:0.01~1.00%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.100%、Cr:0.60~1.50%、Mo:1.00超~2.00%、Ti:0.002~0.020%、V:0.05~0.30%、Nb:0.005~0.100%、B:0.0005~0.0040%、N:0.0100%以下、O:0.0020%未満、Ca:0~0.0100%、Mg:0~0.0100%、Zr:0~0.0100%、希土類元素:0~0.0100%、Cu:0~0.50%、Ni:0~0.50%、Co:0~0.50%、及び、W:0~0.50%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する。鋼材中において、旧オーステナイト粒の結晶粒径が11.0μm以下である。鋼材中において、旧オーステナイト粒界に析出する析出物の平均面積は10.0×10-3μm2以下である。鋼材の降伏強度は758~862MPaである。
 2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
The steel material according to the present disclosure has a mass% of C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, and P: 0.030% or less. , S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: over 1.00 to 2.00%, Ti: 0.002 to 0 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: 0.0020 %, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu: 0 to 0.50%, Ni : 0 to 0.50%, Co: 0 to 0.50%, and W: 0 to 0.50%, the balance being Fe and impurities, and having a chemical composition satisfying the formula (1). In the steel material, the crystal grain size of the former austenite grains is 11.0 μm or less. In the steel material, the average area of the precipitates precipitated at the former austenite grain boundaries is 10.0×10 −3 μm 2 or less. The yield strength of steel is 758 to 862 MPa.
2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
Here, the content (mass %) of the corresponding element is substituted for the element symbol in the formula (1). When the corresponding element is not contained, "0" is substituted for the element symbol.
 本開示による鋼材は、758~862MPa(110ksi級)の降伏強度を有し、かつ、サワー環境において優れた耐SSC性を有する。 The steel material according to the present disclosure has a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance in a sour environment.
図1は、Mo含有量と旧γ粒径との関係を示す図である。FIG. 1 is a diagram showing the relationship between the Mo content and the old γ particle size.
 本発明者らは、サワー環境での使用が想定された鋼材において、758~862MPa(110ksi級)の降伏強度を維持しながら、優れた耐SSC性を得る方法について調査検討し、次の知見を得た。 The present inventors have investigated and investigated a method for obtaining excellent SSC resistance while maintaining a yield strength of 758 to 862 MPa (110 ksi class) in a steel material that is supposed to be used in a sour environment, and made the following findings. Obtained.
 鋼材中の転位密度を高めれば、鋼材の降伏強度YS(Yield Strength)が高まる。一方、鋼材中の転位は、水素を吸蔵する可能性がある。そのため、鋼材の転位密度が高まれば、鋼材が吸蔵する水素量も高まる可能性がある。転位密度を高めた結果、鋼材中の水素濃度が高まれば、高強度は得られても、鋼材の耐SSC性が低下する。したがって、110ksi級の降伏強度と、優れた耐SSC性とを両立するためには、転位密度を利用した高強度化は、好ましくない。 If the dislocation density in the steel material is increased, the yield strength YS (Yield Strength) of the steel material is increased. On the other hand, dislocations in the steel material may occlude hydrogen. Therefore, if the dislocation density of the steel material increases, the amount of hydrogen stored in the steel material may increase. If the hydrogen concentration in the steel material increases as a result of increasing the dislocation density, the SSC resistance of the steel material deteriorates even if high strength is obtained. Therefore, in order to achieve both 110 ksi class yield strength and excellent SSC resistance, it is not preferable to increase the strength using the dislocation density.
 そこで本発明者らは、鋼材の転位密度を高めるのではなく、異なる手法で鋼材の降伏強度を高めれば、鋼材の降伏強度を110ksi級まで高めても、優れた耐SSC性が得られるのではないかと考えた。 Therefore, if the yield strength of the steel material is increased by a different method instead of increasing the dislocation density of the steel material, the inventors of the present invention may obtain excellent SSC resistance even if the yield strength of the steel material is increased to 110 ksi class. I thought it might be.
 具体的に本発明者らは、化学組成が、質量%で、C:0.20~0.45%、Si:0.05~1.00%、Mn:0.01~1.00%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.100%、Cr:0.60~1.50%、Ti:0.002~0.020%、V:0.05~0.30%、Nb:0.005~0.100%、B:0.0005~0.0040%、N:0.0100%以下、O:0.0020%未満、Ca:0~0.0100%、Mg:0~0.0100%、Zr:0~0.0100%、希土類元素:0~0.0100%、Cu:0~0.50%、Ni:0~0.50%、Co:0~0.50%、及び、W:0~0.50%を含有する鋼材であれば、110ksi級の降伏強度と、耐SSC性とを両立できる可能性があると考えた。 Specifically, the present inventors have a chemical composition, in mass%, of C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Ti: 0.002 to 0.020%, V : 0.05-0.30%, Nb: 0.005-0.100%, B: 0.0005-0.0040%, N: 0.0100% or less, O: less than 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu: 0 to 0.50%, Ni: 0 to 0. A steel material containing 50%, Co: 0 to 0.50%, and W: 0 to 0.50% is considered to be able to achieve both 110 ksi class yield strength and SSC resistance. It was
 本発明者らはさらに、上述の化学組成に加えて、Moを含有させれば、合金炭化物が形成されるため、転位密度を高めすぎずに降伏強度を高められるのではないかと考えた。そこで本発明者らは、上述の化学組成にMoを加えた鋼材を種々製造して、その特性を調査した。その結果、本発明者らは、上述の化学組成を有する鋼材においては、Mo含有量と旧オーステナイト粒(以下、「旧γ粒」ともいう)の粒径とに依存性があることを、新たに知見した。 The inventors further thought that, in addition to the above-mentioned chemical composition, if Mo is contained, alloy carbide is formed, so that the yield strength can be increased without increasing the dislocation density too much. Therefore, the present inventors manufactured various steel materials in which Mo was added to the above-mentioned chemical composition, and investigated the characteristics thereof. As a result, the present inventors have found that in steel materials having the above chemical composition, there is a new dependence on the Mo content and the particle size of old austenite grains (hereinafter, also referred to as “old γ grains”). I found out.
 具体的に、図を用いてMo含有量と旧γ粒径との関係を説明する。図1は、Mo含有量と旧γ粒径との関係を示す図である。図1は、後述する実施例のうち、Mo含有量以外の化学組成が上述の化学組成の範囲を満たし、かつ、後述の好ましい製造方法によって製造された鋼材について、Mo含有量(質量%)と、後述するミクロ組織観察によって得られた旧γ粒径(μm)とを用いて作成した。本明細書において、「旧γ粒径」とは、ASTM E112-10に規定される比較法に準拠した方法で求めた旧γ粒の結晶粒径を意味する。 Specifically, the relationship between the Mo content and the old γ particle size will be explained using the figure. FIG. 1 is a diagram showing the relationship between the Mo content and the old γ particle size. FIG. 1 shows the Mo content (mass %) of a steel material manufactured by a preferred manufacturing method described later, in which the chemical composition other than the Mo content satisfies the above-mentioned chemical composition range in Examples described later. , And the former γ grain size (μm) obtained by microstructure observation described later. In the present specification, the "old γ grain size" means the crystal grain size of the old γ grain obtained by the method based on the comparison method defined in ASTM E112-10.
 図1を参照して、Mo含有量が高まると、旧γ粒径が急激に小さくなる。上述の化学組成を有する鋼材においては、Mo含有量が1.00%を超えると、旧γ粒径が11.0μm以下になる顕著な効果が得られることが、明らかになった。さらに、旧γ粒が微細であれば、鋼材は、降伏強度と耐SSC性とをいずれも高めることができる。したがって、本実施形態による鋼材の化学組成は、上述の化学組成に加えて、Moを1.00超~2.00%含有する。この場合、鋼材の旧γ粒径は、11.0μm以下となる。 Referring to FIG. 1, as the Mo content increases, the old γ particle size sharply decreases. In the steel material having the above-mentioned chemical composition, it became clear that when the Mo content exceeds 1.00%, the remarkable effect that the old γ particle diameter becomes 11.0 μm or less is obtained. Further, if the old γ-grains are fine, the steel material can have improved yield strength and SSC resistance. Therefore, the chemical composition of the steel material according to the present embodiment contains Mo in excess of 1.00 to 2.00% in addition to the above-described chemical composition. In this case, the old γ grain size of the steel material is 11.0 μm or less.
 この理由について、本発明者らは次のように考えている。上述の化学組成を有する鋼材において、Moを1.00超~2.00%含有する場合、鋼材中に固溶したMoは、焼入れの加熱時にオーステナイト粒界に偏析する可能性がある。そのため、オーステナイト粒界に偏析した固溶Moによって、結晶粒界の移動が抑制される。その結果、焼入れの加熱時にオーステナイト粒が粗大化しにくくなるため、焼戻し後の旧γ粒が微細になると考えられる。 The present inventors consider the reason for this as follows. In the steel material having the above-described chemical composition, when Mo is contained in the range of more than 1.00 to 2.00%, Mo dissolved in the steel material may be segregated to the austenite grain boundaries during heating during quenching. Therefore, the solid solution Mo segregated at the austenite grain boundaries suppresses the movement of the crystal grain boundaries. As a result, the austenite grains are less likely to coarsen during heating during quenching, and it is considered that the old γ grains after tempering become fine.
 一方、上述の化学組成を有する鋼材が、110ksi級の降伏強度を得るためには、鋼材の焼入れ性は高い方が好ましい。本明細書において、F1=2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Moと定義する。F1は鋼材の焼入れ性の指標である。F1が低すぎれば、鋼材の焼入れ性が十分に得られず、110ksi級の降伏強度が得られない場合がある。したがって、本実施形態による鋼材は、上述の化学組成を有し、さらに、F1が3.90以上である。 On the other hand, in order for the steel material having the above chemical composition to obtain a yield strength of 110 ksi class, it is preferable that the hardenability of the steel material is high. In this specification, it is defined as F1=2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo. F1 is an index of the hardenability of the steel material. If F1 is too low, the hardenability of the steel material may not be sufficiently obtained and 110 ksi class yield strength may not be obtained. Therefore, the steel material according to the present embodiment has the above-described chemical composition and further has F1 of 3.90 or more.
 したがって、本実施形態による鋼材は、化学組成が、質量%で、C:0.20~0.45%、Si:0.05~1.00%、Mn:0.01~1.00%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.100%、Cr:0.60~1.50%、Mo:1.00超~2.00%、Ti:0.002~0.020%、V:0.05~0.30%、Nb:0.005~0.100%、B:0.0005~0.0040%、N:0.0100%以下、O:0.0020%未満、Ca:0~0.0100%、Mg:0~0.0100%、Zr:0~0.0100%、希土類元素:0~0.0100%、Cu:0~0.50%、Ni:0~0.50%、Co:0~0.50%、及び、W:0~0.50%を含有し、残部がFe及び不純物からなり、さらに、上述のF1が3.90以上である。本実施形態による鋼材はさらに、ミクロ組織において、旧γ粒径が11.0μm以下である。 Therefore, the chemical composition of the steel material according to the present embodiment is, in mass %, C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: more than 1.00 to 2.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% Below, O: less than 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu: 0 .About.0.50%, Ni:0.about.0.50%, Co:0.about.0.50%, and W:0.about.0.50%, the balance consisting of Fe and impurities. F1 is 3.90 or more. Further, the steel material according to the present embodiment has a microstructure with a former γ grain size of 11.0 μm or less.
 一方、上述の化学組成を有し、旧γ粒径が11.0μm以下の鋼材では、110ksi級の降伏強度を得ようとすると、鋼材中に粗大な炭化物が多数析出する場合がある。本発明者らのさらなる調査の結果、上述の化学組成を有する鋼材では、鋼材中に粗大な炭化物が多数析出した場合、サワー環境において優れた耐SSC性が得られない場合があることが判明した。 On the other hand, with steel materials having the above-mentioned chemical composition and old γ grain size of 11.0 μm or less, when trying to obtain a yield strength of 110 ksi class, a large number of coarse carbides may precipitate in the steel material. As a result of further investigation by the present inventors, it has been found that in the steel material having the above-described chemical composition, when a large number of coarse carbides are precipitated in the steel material, excellent SSC resistance may not be obtained in a sour environment. ..
 そこで本発明者らは、上述の化学組成を有する鋼材において、耐SSC性を低下させる炭化物について、さらに詳細に検討した。その結果、次の知見を得た。粗大な炭化物は、応力集中源になりやすく、SSCによって生じたき裂の伝播を助長する。そのため、粗大な炭化物を低減させれば、鋼材の耐SSC性が高まるように考えられてきた。 Therefore, the present inventors examined in more detail the carbides that reduce the SSC resistance in the steel materials having the above-described chemical composition. As a result, the following findings were obtained. Coarse carbides tend to be a source of stress concentration and promote the propagation of cracks caused by SSC. Therefore, it has been considered that if the coarse carbides are reduced, the SSC resistance of the steel material is enhanced.
 しかしながら、本発明者らの詳細な検討により、粗大な炭化物の中でも特に、旧γ粒界に析出した粗大な炭化物が、鋼材の耐SSC性を低下させる可能性があることを、本発明者らは知見した。すなわち、単に粗大な炭化物を低減するのではなく、旧γ粒界に析出する粗大な炭化物を低減することにより、鋼材の耐SSC性を高められることを、本発明者らは見出した。 However, according to the detailed study by the present inventors, it was found that, among the coarse carbides, the coarse carbides precipitated in the old γ grain boundaries may reduce the SSC resistance of the steel material. Found out. That is, the present inventors have found that the SSC resistance of the steel material can be enhanced by not simply reducing the coarse carbides but by reducing the coarse carbides precipitated at the old γ grain boundaries.
 なお、上述の化学組成を有する、本実施形態による鋼材においては、旧γ粒界に析出する析出物は、そのほとんどが炭化物である。したがって、旧γ粒界に析出する粗大な析出物を低減させれば、旧γ粒界に析出する粗大な炭化物を低減させることができる。 Note that, in the steel material according to the present embodiment having the above-described chemical composition, most of the precipitates that precipitate at the old γ grain boundaries are carbides. Therefore, by reducing the coarse precipitates that precipitate at the old γ grain boundaries, it is possible to reduce the coarse carbides that precipitate at the old γ grain boundaries.
 したがって、本実施形態による鋼材は、上述の化学組成を有し、旧γ粒径が11.0μm以下であり、さらに、旧γ粒界に析出する粗大な炭化物を低減させる。具体的に、本実施形態による鋼材は、上述の化学組成を有し、旧γ粒径が11.0μm以下であり、さらに、旧γ粒界の析出物の平均面積が10.0×10-3μm2以下である。その結果、本実施形態による鋼材は、758~862MPa(110ksi級)の降伏強度と、サワー環境における優れた耐SSC性とを両立することができる。 Therefore, the steel material according to the present embodiment has the above-described chemical composition, the old γ grain size is 11.0 μm or less, and further reduces the coarse carbides precipitated at the old γ grain boundaries. Specifically, the steel material according to the present embodiment has the above-described chemical composition, the old γ grain size is 11.0 μm or less, and the average area of the precipitates of the old γ grain boundary is 10.0×10 −. It is 3 μm 2 or less. As a result, the steel material according to the present embodiment can achieve both a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance in a sour environment.
 以上の知見に基づいて完成した本実施形態による鋼材は、質量%で、C:0.20~0.45%、Si:0.05~1.00%、Mn:0.01~1.00%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.100%、Cr:0.60~1.50%、Mo:1.00超~2.00%、Ti:0.002~0.020%、V:0.05~0.30%、Nb:0.005~0.100%、B:0.0005~0.0040%、N:0.0100%以下、O:0.0020%未満、Ca:0~0.0100%、Mg:0~0.0100%、Zr:0~0.0100%、希土類元素:0~0.0100%、Cu:0~0.50%、Ni:0~0.50%、Co:0~0.50%、及び、W:0~0.50%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する。鋼材中において、旧オーステナイト粒の結晶粒径が11.0μm以下である。鋼材中において、旧オーステナイト粒界に析出する析出物の平均面積は10.0×10-3μm2以下である。鋼材の降伏強度は758~862MPaである。
 2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
The steel material according to the present embodiment completed on the basis of the above findings is, in mass%, C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00. %, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: over 1.00 to 2.00 %, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0. 0100% or less, O: less than 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, rare earth element: 0 to 0.0100%, Cu : 0 to 0.50%, Ni: 0 to 0.50%, Co: 0 to 0.50%, and W: 0 to 0.50%, the balance consisting of Fe and impurities, and the formula ( It has a chemical composition satisfying 1). In the steel material, the crystal grain size of the former austenite grains is 11.0 μm or less. In the steel material, the average area of the precipitates precipitated at the former austenite grain boundaries is 10.0×10 −3 μm 2 or less. The yield strength of steel is 758 to 862 MPa.
2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
Here, the content (mass %) of the corresponding element is substituted for the element symbol in the formula (1). When the corresponding element is not contained, "0" is substituted for the element symbol.
 本明細書において、鋼材とは、特に限定されないが、たとえば、鋼管、鋼板である。 In the present specification, the steel material is not particularly limited, but is, for example, a steel pipe or a steel plate.
 本実施形態による鋼材は、758~862MPa(110ksi級)の降伏強度と、優れた耐SSC性とを示す。 The steel material according to the present embodiment exhibits a yield strength of 758 to 862 MPa (110 ksi class) and excellent SSC resistance.
 上記化学組成は、Ca:0.0001~0.0100%、Mg:0.0001~0.0100%、Zr:0.0001~0.0100%、及び、希土類元素:0.0001~0.0100%からなる群から選択される1種又は2種以上を含有してもよい。 The above chemical composition is Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0100%, Zr: 0.0001 to 0.0100%, and rare earth element: 0.0001 to 0.0100%. You may contain 1 type(s) or 2 or more types selected from the group which consists of %.
 上記化学組成は、Cu:0.02~0.50%、及び、Ni:0.02~0.50%からなる群から選択される1種以上を含有してもよい。 The above chemical composition may contain at least one selected from the group consisting of Cu: 0.02 to 0.50% and Ni: 0.02 to 0.50%.
 上記化学組成は、Co:0.02~0.50%、及び、W:0.02~0.50%からなる群から選択される1種以上を含有してもよい。 The above chemical composition may contain one or more selected from the group consisting of Co: 0.02 to 0.50% and W: 0.02 to 0.50%.
 上記鋼材は、油井用鋼管であってもよい。 The above steel material may be a steel pipe for oil wells.
 本明細書において、油井用鋼管はラインパイプ用鋼管であってもよく、油井管であってもよい。油井用鋼管の形状は限定されず、たとえば、継目無鋼管であってもよく、溶接鋼管であってもよい。油井管は、たとえば、ケーシングやチュービング用途で用いられる鋼管である。 In the present specification, the oil well steel pipe may be a line pipe steel pipe or an oil well pipe. The shape of the oil well steel pipe is not limited, and may be, for example, a seamless steel pipe or a welded steel pipe. The oil country tubular goods are, for example, steel tubes used for casings and tubing applications.
 上記鋼材は、継目無鋼管であってもよい。本実施形態による鋼材が継目無鋼管であれば、肉厚が15mm以上であっても、758~862MPa(110ksi級)の降伏強度を有し、かつ、サワー環境においてさらに安定した耐SSC性を有する。 The above steel material may be a seamless steel pipe. If the steel material according to the present embodiment is a seamless steel tube, it has a yield strength of 758 to 862 MPa (110 ksi class) even if the wall thickness is 15 mm or more, and has more stable SSC resistance in a sour environment. ..
 上記優れた耐SSC性とは、具体的には、NACE TM0177-2005 Method Aに準拠した方法、及び、4点曲げ試験によって評価できる。NACE TM0177-2005 Method Aに準拠した方法では、4℃の5.0質量%塩化ナトリウムと0.5質量%酢酸との混合水溶液(NACE solution A)を、試験浴に用いる。鋼材から採取した試験片に対し、実降伏応力の90%に相当する応力を負荷し、試験浴に浸漬する。続いて、試験浴を脱気した後、1atmのH2Sガスを試験浴に吹き込んで飽和させる。H2Sガスが飽和した試験浴を4℃で720時間保持する。 The excellent SSC resistance can be evaluated specifically by a method based on NACE TM0177-2005 Method A and a 4-point bending test. In the method based on NACE TM0177-2005 Method A, a mixed aqueous solution of 5.0 mass% sodium chloride and 0.5 mass% acetic acid (NACE solution A) at 4° C. is used for the test bath. A test piece taken from a steel material is immersed in a test bath under a stress equivalent to 90% of the actual yield stress. Subsequently, the test bath is degassed, and 1 atm of H 2 S gas is blown into the test bath to saturate it. The test bath saturated with H 2 S gas is kept at 4° C. for 720 hours.
 一方、4点曲げ試験では、鋼材から採取した試験片に対して、ASTM G39-99(2011)に準拠して、試験片に与えられる応力が、鋼材の実降伏応力の90%になるように、4点曲げによって応力を負荷する。24℃の5.0質量%塩化ナトリウム水溶液を試験浴に用いる。応力を負荷した試験片を、オートクレーブ中で試験浴に浸漬する。試験浴を脱気した後、20atmのH2Sガスをオートクレーブに加圧封入する。オートクレーブを封じた後、試験浴を24℃で720時間撹拌する。 On the other hand, in the four-point bending test, according to ASTM G39-99 (2011), the stress applied to the test piece taken from the steel material should be 90% of the actual yield stress of the steel material. Stress is applied by four-point bending. A 5.0 mass% sodium chloride aqueous solution at 24° C. is used for the test bath. The stressed test piece is immersed in a test bath in an autoclave. After deaeration of the test bath, 20 atm of H 2 S gas is pressurized and sealed in the autoclave. After sealing the autoclave, the test bath is stirred at 24° C. for 720 hours.
 本実施形態による鋼材は、以上のMethod Aに準拠した方法、及び、4点曲げ試験のいずれにおいても、720時間経過後に、割れが確認されない。 In the steel material according to the present embodiment, cracking is not confirmed after 720 hours in any of the method based on the above Method A and the four-point bending test.
 以下、本実施形態による鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。 The steel material according to this embodiment will be described in detail below. "%" regarding an element means mass% unless otherwise specified.
 [化学組成]
 本実施形態による鋼材の化学組成は、次の元素を含有する。
[Chemical composition]
The chemical composition of the steel material according to the present embodiment contains the following elements.
 C:0.20~0.45%
 炭素(C)は、鋼材の焼入れ性を高め、鋼材の降伏強度を高める。Cはさらに、製造工程中の焼戻し時において、炭化物の球状化を促進し、鋼材の耐SSC性を高める。炭化物が分散されればさらに、鋼材の降伏強度が高まる。C含有量が低すぎれば、これらの効果が得られない。一方、C含有量が高すぎれば、鋼材の靭性が低下し、焼割れが発生しやすくなる。したがって、C含有量は0.20~0.45%である。C含有量の好ましい下限は0.21%であり、より好ましくは0.22%であり、さらに好ましくは0.25%である。C含有量の好ましい上限は0.40%であり、より好ましくは0.38%であり、さらに好ましくは0.35%である。
C: 0.20 to 0.45%
Carbon (C) enhances the hardenability of steel and enhances the yield strength of steel. C further promotes spheroidization of carbides and enhances SSC resistance of steel during tempering during the manufacturing process. If the carbide is dispersed, the yield strength of the steel material is further increased. If the C content is too low, these effects cannot be obtained. On the other hand, if the C content is too high, the toughness of the steel material decreases and quench cracking easily occurs. Therefore, the C content is 0.20 to 0.45%. The preferable lower limit of the C content is 0.21%, more preferably 0.22%, and further preferably 0.25%. The preferable upper limit of the C content is 0.40%, more preferably 0.38%, and further preferably 0.35%.
 Si:0.05~1.00%
 シリコン(Si)は、鋼を脱酸する。Si含有量が低すぎれば、この効果が得られない。一方、Si含有量が高すぎれば、鋼材の耐SSC性が低下する。したがって、Si含有量は0.05~1.00%である。好ましいSi含有量の下限は0.10%であり、より好ましくは0.15%である。Si含有量の好ましい上限は0.85%であり、より好ましくは0.70%であり、さらに好ましくは0.60%である。
Si: 0.05-1.00%
Silicon (Si) deoxidizes steel. If the Si content is too low, this effect cannot be obtained. On the other hand, if the Si content is too high, the SSC resistance of the steel material deteriorates. Therefore, the Si content is 0.05 to 1.00%. The lower limit of the Si content is preferably 0.10%, more preferably 0.15%. The preferable upper limit of the Si content is 0.85%, more preferably 0.70%, and further preferably 0.60%.
 Mn:0.01~1.00%
 マンガン(Mn)は、鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高め、鋼材の降伏強度を高める。Mn含有量が低すぎれば、これらの効果が得られない。一方、Mn含有量が高すぎれば、Mnは、P及びS等の不純物とともに、粒界に偏析する。この場合、鋼材の耐SSC性が低下する。したがって、Mn含有量は0.01~1.00%である。Mn含有量の好ましい下限は0.02%であり、より好ましくは0.03%であり、さらに好ましくは0.10%である。Mn含有量の好ましい上限は0.80%であり、より好ましくは0.70%であり、さらに好ましくは0.65%であり、さらに好ましくは0.60%未満であり、さらに好ましくは0.55%である。
Mn: 0.01-1.00%
Manganese (Mn) deoxidizes steel. Mn further enhances the hardenability of the steel material and enhances the yield strength of the steel material. If the Mn content is too low, these effects cannot be obtained. On the other hand, if the Mn content is too high, Mn segregates at the grain boundaries together with impurities such as P and S. In this case, the SSC resistance of the steel material decreases. Therefore, the Mn content is 0.01 to 1.00%. The preferable lower limit of the Mn content is 0.02%, more preferably 0.03%, and further preferably 0.10%. The preferable upper limit of the Mn content is 0.80%, more preferably 0.70%, further preferably 0.65%, further preferably less than 0.60%, further preferably 0. 55%.
 P:0.030%以下
 燐(P)は不純物である。すなわち、P含有量は0%超である。Pは、粒界に偏析して、鋼材の耐SSC性を低下する。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、より好ましくは0.020%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.0001%であり、より好ましくは0.0003%であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
P: 0.030% or less Phosphorus (P) is an impurity. That is, the P content is more than 0%. P segregates at the grain boundaries and reduces the SSC resistance of the steel material. Therefore, the P content is 0.030% or less. The preferable upper limit of the P content is 0.025%, more preferably 0.020%. It is preferable that the P content is as low as possible. However, the extreme reduction of the P content significantly increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of P content is 0.0001%, more preferably 0.0003%, further preferably 0.001%, and further preferably 0.002%. Is.
 S:0.0050%以下
 硫黄(S)は不純物である。すなわち、S含有量は0%超である。Sは、粒界に偏析して、鋼材の耐SSC性を低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、より好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、より好ましくは0.0003%である。
S: 0.0050% or less Sulfur (S) is an impurity. That is, the S content is more than 0%. S segregates at the grain boundaries and reduces the SSC resistance of the steel material. Therefore, the S content is 0.0050% or less. The preferable upper limit of the S content is 0.0040%, more preferably 0.0030%, and further preferably 0.0020%. It is preferable that the S content is as low as possible. However, the extreme reduction of the S content significantly increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the S content is 0.0001%, more preferably 0.0003%.
 Al:0.005~0.100%
 アルミニウム(Al)は、鋼を脱酸する。Al含有量が低すぎれば、この効果が得られず、鋼材の耐SSC性が低下する。一方、Al含有量が高すぎれば、粗大な酸化物系介在物が生成して、鋼材の耐SSC性が低下する。したがって、Al含有量は0.005~0.100%である。Al含有量の好ましい下限は0.015%であり、より好ましくは0.020%である。Al含有量の好ましい上限は0.080%であり、より好ましくは0.060%である。本明細書にいう「Al」含有量は「酸可溶Al」、つまり、「sol.Al」の含有量を意味する。
Al: 0.005 to 0.100%
Aluminum (Al) deoxidizes steel. If the Al content is too low, this effect cannot be obtained, and the SSC resistance of the steel material deteriorates. On the other hand, if the Al content is too high, coarse oxide-based inclusions are generated, and the SSC resistance of the steel material deteriorates. Therefore, the Al content is 0.005 to 0.100%. The preferable lower limit of the Al content is 0.015%, more preferably 0.020%. The preferable upper limit of the Al content is 0.080%, more preferably 0.060%. The “Al” content as used herein means the content of “acid-soluble Al”, that is, “sol.Al”.
 Cr:0.60~1.50%
 クロム(Cr)は、鋼材の焼入れ性を高め、鋼材の降伏強度を高める。Crはさらに、焼戻し軟化抵抗を高め、高温焼戻しを可能にする。その結果、鋼材の耐SSC性が高まる。Cr含有量が低すぎれば、これらの効果が得られない。一方、Cr含有量が高すぎれば、鋼材中の旧γ粒界に粗大な炭化物が生成する。この場合、鋼材の耐SSC性が低下する。したがって、Cr含有量は0.60~1.50%である。Cr含有量の好ましい下限は0.62%であり、より好ましくは0.64%であり、さらに好ましくは0.65%であり、さらに好ましくは0.67%であり、さらに好ましくは0.70%である。Cr含有量の好ましい上限は1.40%であり、より好ましくは1.30%であり、さらに好ましくは1.20%であり、さらに好ましくは1.10%であり、さらに好ましくは1.00%未満であり、さらに好ましくは0.95%である。
Cr: 0.60 to 1.50%
Chromium (Cr) enhances the hardenability of steel and enhances the yield strength of steel. Cr further increases the temper softening resistance and enables high temperature tempering. As a result, the SSC resistance of the steel material is enhanced. If the Cr content is too low, these effects cannot be obtained. On the other hand, if the Cr content is too high, coarse carbides are formed at the old γ grain boundaries in the steel material. In this case, the SSC resistance of the steel material decreases. Therefore, the Cr content is 0.60 to 1.50%. The preferable lower limit of the Cr content is 0.62%, more preferably 0.64%, further preferably 0.65%, further preferably 0.67%, further preferably 0.70. %. The preferable upper limit of the Cr content is 1.40%, more preferably 1.30%, further preferably 1.20%, further preferably 1.10%, further preferably 1.00. %, and more preferably 0.95%.
 Mo:1.00超~2.00%
 モリブデン(Mo)は、鋼材の焼入れ性を高め、鋼材の降伏強度を高める。Moはさらに、鋼材中に固溶して、その一部が焼入れの加熱時にオーステナイト粒界に偏析する。その結果、ピンニング効果により、焼戻し後の鋼材の旧γ粒径が小さくなる。この場合、鋼材の耐SSC性が高まる。Mo含有量が低すぎれば、これらの効果が得られない。一方、Mo含有量が高すぎれば、鋼材中の旧γ粒界に粗大な炭化物が生成する。この場合、鋼材の耐SSC性が低下する。したがって、Mo含有量は1.00超~2.00%である。Mo含有量の好ましい下限は1.01%であり、より好ましくは1.05%であり、さらに好ましくは1.10%であり、さらに好ましくは1.15%であり、さらに好ましくは1.20%である。Mo含有量の好ましい上限は1.90%であり、より好ましくは1.80%であり、さらに好ましくは1.75%であり、さらに好ましくは1.70%であり、さらに好ましくは1.65%である。
Mo: over 1.00 to 2.00%
Molybdenum (Mo) enhances the hardenability of steel and enhances the yield strength of steel. Further, Mo is solid-dissolved in the steel material, and a part thereof is segregated at the austenite grain boundaries during heating during quenching. As a result, the old γ grain size of the steel material after tempering becomes small due to the pinning effect. In this case, the SSC resistance of the steel material is enhanced. If the Mo content is too low, these effects cannot be obtained. On the other hand, if the Mo content is too high, coarse carbides are generated at the old γ grain boundaries in the steel material. In this case, the SSC resistance of the steel material decreases. Therefore, the Mo content is more than 1.00 to 2.00%. The preferable lower limit of the Mo content is 1.01%, more preferably 1.05%, further preferably 1.10%, further preferably 1.15%, further preferably 1.20. %. The preferable upper limit of the Mo content is 1.90%, more preferably 1.80%, further preferably 1.75%, further preferably 1.70%, further preferably 1.65. %.
 本実施形態による鋼材の化学組成において、好ましくは、Mo含有量はCr含有量の2.00倍未満である。Mo含有量がCr含有量に対して高すぎれば、鋼材の旧γ粒が粗大になる場合がある。この理由については明らかになっていない。しかしながら、本実施形態による化学組成を有する鋼材では、Mo含有量がCr含有量の2.00倍未満であれば、鋼材の旧γ粒径を安定して11.0μm以下にすることができる。したがって、本実施形態による鋼材の化学組成において、Mo含有量はCr含有量の2.00倍未満とするのが好ましい。 In the chemical composition of the steel material according to the present embodiment, the Mo content is preferably less than 2.00 times the Cr content. If the Mo content is too high relative to the Cr content, the old γ grains of the steel material may become coarse. The reason for this is unknown. However, in the steel material having the chemical composition according to the present embodiment, if the Mo content is less than 2.00 times the Cr content, the old γ grain size of the steel material can be stably reduced to 11.0 μm or less. Therefore, in the chemical composition of the steel material according to the present embodiment, the Mo content is preferably less than 2.00 times the Cr content.
 Mo含有量のCr含有量に対する比(Mo/Cr比)のより好ましい上限は1.98であり、さらに好ましくは1.95であり、さらに好ましくは1.90である。Mo/Cr比の下限は特に限定されないが、本実施形態による鋼材の化学組成では、実質的には0.67以上である。 The more preferable upper limit of the ratio of Mo content to Cr content (Mo/Cr ratio) is 1.98, more preferably 1.95, and further preferably 1.90. Although the lower limit of the Mo/Cr ratio is not particularly limited, the chemical composition of the steel material according to the present embodiment is substantially 0.67 or more.
 Ti:0.002~0.020%
 チタン(Ti)は、窒化物を形成し、ピンニング効果により鋼材の組織を微細化する。その結果、鋼材の耐SSC性が高まる。Ti含有量が低すぎれば、この効果が得られない。一方、Ti含有量が高すぎれば、Ti窒化物が多量に形成する。その結果、鋼材の耐SSC性が低下する。したがって、Ti含有量は0.002~0.020%である。Ti含有量の好ましい下限は0.003%であり、より好ましくは0.004%である。Ti含有量の好ましい上限は0.018%であり、より好ましくは0.015%である。
Ti: 0.002-0.020%
Titanium (Ti) forms a nitride and refines the structure of the steel material by the pinning effect. As a result, the SSC resistance of the steel material is enhanced. If the Ti content is too low, this effect cannot be obtained. On the other hand, if the Ti content is too high, a large amount of Ti nitride is formed. As a result, the SSC resistance of the steel material decreases. Therefore, the Ti content is 0.002 to 0.020%. The preferable lower limit of the Ti content is 0.003%, more preferably 0.004%. The preferable upper limit of the Ti content is 0.018%, more preferably 0.015%.
 V:0.05~0.30%
 バナジウム(V)は、C及び/又はNと結合して、炭化物、窒化物又は炭窒化物(以下、「炭窒化物等」という)を形成する。炭窒化物等は、ピンニング効果により鋼材の組織を微細化する。その結果、鋼材の耐SSC性が高まる。Vはさらに、Cと結合して微細な炭化物を形成する。その結果、鋼材の降伏強度が高まる。V含有量が低すぎれば、これらの効果が得られない。一方、V含有量が高すぎれば、炭窒化物等が過剰に生成して、鋼材の耐SSC性が低下する。したがって、V含有量は0.05~0.30%である。V含有量の好ましい下限は0.05%超であり、より好ましくは0.06%であり、さらに好ましくは0.07%であり、さらに好ましくは0.09%である。V含有量の好ましい上限は0.25%であり、より好ましくは0.20%であり、さらに好ましくは0.15%である。
V: 0.05 to 0.30%
Vanadium (V) combines with C and/or N to form a carbide, a nitride, or a carbonitride (hereinafter, referred to as “carbonitride or the like”). Carbonitride and the like refine the structure of the steel material by the pinning effect. As a result, the SSC resistance of the steel material is enhanced. V further combines with C to form fine carbides. As a result, the yield strength of the steel material increases. If the V content is too low, these effects cannot be obtained. On the other hand, if the V content is too high, carbonitrides and the like are excessively generated, and the SSC resistance of the steel material deteriorates. Therefore, the V content is 0.05 to 0.30%. The preferable lower limit of the V content is more than 0.05%, more preferably 0.06%, further preferably 0.07%, and further preferably 0.09%. The preferable upper limit of the V content is 0.25%, more preferably 0.20%, and further preferably 0.15%.
 Nb:0.005~0.100%
 ニオブ(Nb)は、C及び/又はNと結合して、炭窒化物等を形成する。炭窒化物等は、ピンニング効果により鋼材の組織を微細化する。その結果、鋼材の耐SSC性が高まる。Nbはさらに、Cと結合して微細な炭化物を形成する。その結果、鋼材の降伏強度が高まる。Nb含有量が低すぎれば、これらの効果が得られない。一方、Nb含有量が高すぎれば、炭窒化物等が過剰に生成して、鋼材の耐SSC性が低下する。したがって、Nb含有量は0.005~0.100%である。Nb含有量の好ましい下限は0.007%であり、より好ましくは0.010%であり、さらに好ましくは0.012%であり、さらに好ましくは0.015%である。Nb含有量の好ましい上限は0.080%であり、より好ましくは0.060%であり、さらに好ましくは0.050%であり、さらに好ましくは0.030%である。
Nb: 0.005 to 0.100%
Niobium (Nb) combines with C and/or N to form a carbonitride or the like. Carbonitride and the like refine the structure of the steel material by the pinning effect. As a result, the SSC resistance of the steel material is enhanced. Nb further combines with C to form fine carbides. As a result, the yield strength of the steel material increases. If the Nb content is too low, these effects cannot be obtained. On the other hand, if the Nb content is too high, carbonitrides and the like are excessively produced, and the SSC resistance of the steel material deteriorates. Therefore, the Nb content is 0.005 to 0.100%. The preferable lower limit of the Nb content is 0.007%, more preferably 0.010%, further preferably 0.012%, further preferably 0.015%. The preferable upper limit of the Nb content is 0.080%, more preferably 0.060%, further preferably 0.050%, and further preferably 0.030%.
 B:0.0005~0.0040%
 ホウ素(B)は、鋼に固溶して鋼材の焼入れ性を高め、鋼材の降伏強度を高める。B含有量が低すぎれば、この効果が得られない。一方、B含有量が高すぎれば、粗大な窒化物が生成して、鋼材の耐SSC性が低下する。したがって、B含有量は0.0005~0.0040%である。B含有量の好ましい下限は0.0007%であり、より好ましくは0.0010%であり、さらに好ましくは0.0012%である。B含有量の好ましい上限は0.0035%であり、より好ましくは0.0030%であり、さらに好ましくは0.0025%である。
B: 0.0005 to 0.0040%
Boron (B) forms a solid solution in steel to enhance the hardenability of the steel material and enhance the yield strength of the steel material. If the B content is too low, this effect cannot be obtained. On the other hand, if the B content is too high, coarse nitrides are generated, and the SSC resistance of the steel material deteriorates. Therefore, the B content is 0.0005 to 0.0040%. The preferable lower limit of the B content is 0.0007%, more preferably 0.0010%, and further preferably 0.0012%. The preferable upper limit of the B content is 0.0035%, more preferably 0.0030%, and further preferably 0.0025%.
 N:0.0100%以下
 窒素(N)は不可避に含有される。すなわち、N含有量は0%超である。NはTiと結合して微細窒化物を形成し、ピンニング効果により鋼材の組織を微細化する。その結果、鋼材の耐SSC性が高まる。一方、N含有量が高すぎれば、粗大な窒化物が生成して、鋼材の耐SSC性が低下する。したがって、N含有量は0.0100%以下である。N含有量の好ましい上限は0.0080%であり、より好ましくは0.0070%である。上記効果を有効に得るためのN含有量の好ましい下限は0.0020%であり、より好ましくは0.0025%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0040%である。
N: 0.0100% or less Nitrogen (N) is inevitably contained. That is, the N content is more than 0%. N combines with Ti to form a fine nitride, and refines the structure of the steel material by the pinning effect. As a result, the SSC resistance of the steel material is enhanced. On the other hand, if the N content is too high, coarse nitrides are generated, and the SSC resistance of the steel material deteriorates. Therefore, the N content is 0.0100% or less. The preferable upper limit of the N content is 0.0080%, more preferably 0.0070%. The preferable lower limit of the N content for effectively obtaining the above effect is 0.0020%, more preferably 0.0025%, further preferably 0.0030%, further preferably 0.0035%. Yes, and more preferably 0.0040%.
 O:0.0020%未満
 酸素(O)は不純物である。すなわち、O含有量は0%超である。Oは粗大な酸化物を形成し、鋼材の耐SSC性を低下する。したがって、O含有量は0.0020%未満である。O含有量の好ましい上限は0.0018%であり、より好ましくは0.0015%である。O含有量はなるべく低い方が好ましい。ただし、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、より好ましくは0.0003%である。
O: less than 0.0020% Oxygen (O) is an impurity. That is, the O content is more than 0%. O forms a coarse oxide and reduces the SSC resistance of the steel material. Therefore, the O content is less than 0.0020%. The preferable upper limit of the O content is 0.0018%, and more preferably 0.0015%. The O content is preferably as low as possible. However, the extreme reduction of the O content significantly increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the O content is 0.0001%, and more preferably 0.0003%.
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、本実施形態による鋼材に悪影響を与えない範囲で許容されるものを意味する。 The balance of the chemical composition of the steel material according to this embodiment is Fe and impurities. Here, the impurities are ores as raw materials when industrially manufacturing a steel material, scrap, or those that are mixed from the manufacturing environment, etc. within a range that does not adversely affect the steel material according to the present embodiment. Means acceptable.
 [任意元素]
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Ca、Mg、Zr、及び、希土類元素(REM)からなる群から選択される1種又は2種以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材中の硫化物の形態を制御して、鋼材の耐SSC性を高める。
[Arbitrary element]
The chemical composition of the above-described steel material may further contain, in place of part of Fe, one or more selected from the group consisting of Ca, Mg, Zr, and a rare earth element (REM). Each of these elements is an arbitrary element and controls the form of sulfides in the steel material to enhance the SSC resistance of the steel material.
 Ca:0~0.0100%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。すなわち、Ca含有量は0%であってもよい。含有される場合、Caは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。Caが少しでも含有されれば、この効果がある程度得られる。しかしながら、Ca含有量が高すぎれば、鋼材中の酸化物が粗大化して、鋼材の耐SSC性が低下する。したがって、Ca含有量は0~0.0100%である。Ca含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0040%であり、より好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
Ca: 0 to 0.0100%
Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When included, Ca renders S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. This effect can be obtained to some extent if even a small amount of Ca is contained. However, if the Ca content is too high, the oxides in the steel material become coarse, and the SSC resistance of the steel material decreases. Therefore, the Ca content is 0 to 0.0100%. The preferable lower limit of the Ca content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is. The preferable upper limit of the Ca content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
 Mg:0~0.0100%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。すなわち、Mg含有量は0%であってもよい。含有される場合、Mgは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。Mgが少しでも含有されれば、この効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、鋼材中の酸化物が粗大化して、鋼材の耐SSC性が低下する。したがって、Mg含有量は0~0.0100%である。Mg含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。Mg含有量の好ましい上限は0.0040%であり、より好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
Mg: 0 to 0.0100%
Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg makes S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. This effect can be obtained to some extent if Mg is contained at all. However, if the Mg content is too high, the oxides in the steel material become coarse, and the SSC resistance of the steel material decreases. Therefore, the Mg content is 0 to 0.0100%. The preferable lower limit of the Mg content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is. The preferable upper limit of the Mg content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
 Zr:0~0.0100%
 ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。すなわち、Zr含有量は0%であってもよい。含有される場合、Zrは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。Zrが少しでも含有されれば、この効果がある程度得られる。しかしながら、Zr含有量が高すぎれば、鋼材中の酸化物が粗大化して、鋼材の耐SSC性が低下する。したがって、Zr含有量は0~0.0100%である。Zr含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。Zr含有量の好ましい上限は0.0040%であり、より好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
Zr: 0 to 0.0100%
Zirconium (Zr) is an optional element and may not be contained. That is, the Zr content may be 0%. When contained, Zr renders S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. This effect can be obtained to some extent if Zr is contained even in a small amount. However, if the Zr content is too high, the oxides in the steel material become coarse, and the SSC resistance of the steel material decreases. Therefore, the Zr content is 0 to 0.0100%. The preferable lower limit of the Zr content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is. The preferable upper limit of the Zr content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
 希土類元素(REM):0~0.0100%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。すなわち、REM含有量は0%であってもよい。含有される場合、REMは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。REMはさらに、鋼材中のPと結合して、結晶粒界におけるPの偏析を抑制する。そのため、Pの偏析に起因した、鋼材の低温靭性及び耐SSC性の低下が抑制される。REMが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、REM含有量が高すぎれば、酸化物が粗大化して、鋼材の低温靭性及び耐SSC性が低下する。したがって、REM含有量は0~0.0100%である。REM含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。REM含有量の好ましい上限は0.0040%であり、より好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
Rare earth element (REM): 0-0.0100%
The rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When contained, REM renders S in the steel material harmless as a sulfide and enhances the SSC resistance of the steel material. REM further binds to P in the steel material and suppresses the segregation of P at the grain boundaries. Therefore, the deterioration of the low temperature toughness and SSC resistance of the steel material due to the segregation of P is suppressed. These effects can be obtained to some extent if REM is contained in any amount. However, if the REM content is too high, the oxide is coarsened, and the low temperature toughness and SSC resistance of the steel material deteriorate. Therefore, the REM content is 0 to 0.0100%. The preferable lower limit of the REM content is more than 0%, more preferably 0.0001%, further preferably 0.0003%, further preferably 0.0006%, further preferably 0.0010%. Is. The preferable upper limit of the REM content is 0.0040%, more preferably 0.0030%, further preferably 0.0025%, and further preferably 0.0020%.
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素である。また、本明細書におけるREM含有量とは、これら元素の合計含有量である。 Note that REM in this specification means scandium (Sc) having an atomic number of 21, an yttrium (Y) having an atomic number of 39, and a lanthanide (lanthanum (La) having an atomic number of 57 to an atomic number of 71). It is one or more elements selected from the group consisting of lutetium (Lu). In addition, the REM content in the present specification is the total content of these elements.
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Cu及びNiからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の焼入れ性を高める。 The chemical composition of the above-mentioned steel material may further contain one or more selected from the group consisting of Cu and Ni, instead of part of Fe. All of these elements are optional elements and enhance the hardenability of steel materials.
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。すなわち、Cu含有量は0%であってもよい。含有される場合、Cuは鋼材の焼入れ性を高め、鋼材の降伏強度を高める。Cuが少しでも含有されれば、この効果がある程度得られる。しかしながら、Cu含有量が高すぎれば、鋼材の焼入れ性が高くなりすぎ、鋼材の耐SSC性が低下する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Cu含有量の好ましい上限は0.35%であり、より好ましくは0.25%である。
Cu: 0 to 0.50%
Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of the steel material and enhances the yield strength of the steel material. This effect can be obtained to some extent if Cu is contained in a small amount. However, if the Cu content is too high, the hardenability of the steel material becomes too high, and the SSC resistance of the steel material deteriorates. Therefore, the Cu content is 0 to 0.50%. The preferable lower limit of the Cu content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%. The preferable upper limit of the Cu content is 0.35%, more preferably 0.25%.
 Ni:0~0.50%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。すなわち、Ni含有量は0%であってもよい。含有される場合、Niは鋼材の焼入れ性を高め、鋼材の降伏強度を高める。Niが少しでも含有されれば、この効果がある程度得られる。しかしながら、Ni含有量が高すぎれば、局部的な腐食が促進され、鋼材の耐SSC性が低下する。したがって、Ni含有量は0~0.50%である。Ni含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Ni含有量の好ましい上限は0.35%であり、より好ましくは0.25%である。
Ni: 0 to 0.50%
Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of the steel material and enhances the yield strength of the steel material. This effect can be obtained to some extent if Ni is contained at all. However, if the Ni content is too high, localized corrosion is promoted and the SSC resistance of the steel material deteriorates. Therefore, the Ni content is 0 to 0.50%. The preferable lower limit of the Ni content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%. The preferable upper limit of the Ni content is 0.35%, more preferably 0.25%.
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Co及びWからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、硫化水素環境中で保護性の腐食被膜を形成し、水素侵入を抑制する。これにより、これらの元素は鋼材の耐SSC性を高める。 The chemical composition of the above-mentioned steel material may further contain one or more selected from the group consisting of Co and W instead of part of Fe. Each of these elements is an arbitrary element and forms a protective corrosive film in a hydrogen sulfide environment to suppress hydrogen invasion. Thereby, these elements enhance the SSC resistance of the steel material.
 Co:0~0.50%
 コバルト(Co)は任意元素であり、含有されなくてもよい。すなわち、Co含有量は0%であってもよい。含有される場合、Coは硫化水素環境中で保護性の腐食被膜を形成し、水素侵入を抑制する。その結果、鋼材の耐SSC性が高まる。Coが少しでも含有されれば、この効果がある程度得られる。しかしながら、Co含有量が高すぎれば、鋼材の焼入れ性が低下して、鋼材の降伏強度が低下する。したがって、Co含有量は0~0.50%である。Co含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Co含有量の好ましい上限は0.45%であり、より好ましくは0.40%である。
Co: 0 to 0.50%
Cobalt (Co) is an optional element and may not be contained. That is, the Co content may be 0%. When contained, Co forms a protective corrosion film in a hydrogen sulfide environment and suppresses hydrogen invasion. As a result, the SSC resistance of the steel material is enhanced. This effect can be obtained to some extent if Co is contained in a small amount. However, if the Co content is too high, the hardenability of the steel material deteriorates, and the yield strength of the steel material decreases. Therefore, the Co content is 0 to 0.50%. The preferable lower limit of the Co content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%. The preferable upper limit of the Co content is 0.45%, and more preferably 0.40%.
 W:0~0.50%
 タングステン(W)は任意元素であり、含有されなくてもよい。すなわち、W含有量は0%であってもよい。含有される場合、Wは硫化水素環境中で保護性の腐食被膜を形成し、水素侵入を抑制する。その結果、鋼材の耐SSC性が高まる。Wが少しでも含有されれば、この効果がある程度得られる。しかしながら、W含有量が高すぎれば、鋼材中に粗大な炭化物が生成して、鋼材の耐SSC性が低下する。したがって、W含有量は0~0.50%である。W含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。W含有量の好ましい上限は0.45%であり、より好ましくは0.40%である。
W: 0 to 0.50%
Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When contained, W forms a protective corrosion film in a hydrogen sulfide environment and suppresses hydrogen invasion. As a result, the SSC resistance of the steel material is enhanced. If W is contained even a little, this effect can be obtained to some extent. However, if the W content is too high, coarse carbides are generated in the steel material, and the SSC resistance of the steel material deteriorates. Therefore, the W content is 0 to 0.50%. The preferable lower limit of the W content is more than 0%, more preferably 0.02%, further preferably 0.03%, further preferably 0.05%. The preferable upper limit of the W content is 0.45%, more preferably 0.40%.
 [式(1)について]
 本実施形態による鋼材の化学組成はさらに、式(1)を満たす。
 2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
[About Formula (1)]
The chemical composition of the steel material according to the present embodiment further satisfies Expression (1).
2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
Here, the content (mass %) of the corresponding element is substituted for the element symbol in the formula (1). When the corresponding element is not contained, "0" is substituted for the element symbol.
 F1(=2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo)は、上述の化学組成を有する鋼材における焼入れ性を示す指標である。F1が3.90未満である場合、焼入れ性が十分に得られず、鋼材の降伏強度が得られない。したがって、本実施形態による鋼材は、F1が3.90以上である。 F1 (=2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo) is an index showing the hardenability of the steel material having the above chemical composition. When F1 is less than 3.90, sufficient hardenability cannot be obtained and yield strength of steel cannot be obtained. Therefore, the steel material according to the present embodiment has F1 of 3.90 or more.
 F1の好ましい下限は3.93であり、より好ましくは4.00である。F1の上限は特に限定されない。しかしながら、上述の化学組成を有する本実施形態による鋼材においては、F1の上限はたとえば、8.27である。F1の好ましい上限は8.20であり、より好ましくは8.10であり、さらに好ましくは8.00である。 The preferable lower limit of F1 is 3.93, and more preferably 4.00. The upper limit of F1 is not particularly limited. However, in the steel material according to the present embodiment having the above chemical composition, the upper limit of F1 is, for example, 8.27. The preferable upper limit of F1 is 8.20, more preferably 8.10, and further preferably 8.00.
 [旧オーステナイト粒径]
 本実施形態による鋼材のミクロ組織において、旧オーステナイト粒径(旧γ粒径)は11.0μm以下である。上述のとおり、本明細書において、旧オーステナイト粒の結晶粒径(旧γ粒径)とは、ASTM E112-10の比較法に準拠して求めた、旧オーステナイト粒の結晶粒径を意味する。鋼材の旧γ粒が微細であれば、降伏強度及び耐SSC性が安定して高まる。そこで、本実施形態では、鋼材中にMoを1.00%超含有することにより、鋼材の旧γ粒を微細にする。
[Old austenite grain size]
In the microstructure of the steel material according to the present embodiment, the former austenite grain size (former γ grain size) is 11.0 μm or less. As described above, in the present specification, the crystal grain size of old austenite grains (old γ grain size) means the crystal grain size of old austenite grains, which is obtained in accordance with the comparison method of ASTM E112-10. If the old γ grains of the steel material are fine, the yield strength and SSC resistance are stably enhanced. Therefore, in the present embodiment, the old γ grains of the steel material are made fine by including Mo in the steel material in an amount of more than 1.00%.
 本実施形態による鋼材の旧γ粒径が11.0μm以下であれば、本実施形態による鋼材のその他の規定を満たすことを条件に、110ksi級の降伏強度と、優れた耐SSC性とを両立することができる。 If the old γ grain size of the steel material according to the present embodiment is 11.0 μm or less, both 110 ksi class yield strength and excellent SSC resistance are satisfied, provided that the other requirements of the steel material according to the present embodiment are satisfied. can do.
 本実施形態による鋼材の旧γ粒径の好ましい上限は10.5μmであり、より好ましくは10.0μmである。本実施形態による鋼材の旧γ粒径の下限は、特に限定されない。本実施形態による鋼材の旧γ粒径の下限は、たとえば、4.5μmである。 The preferable upper limit of the old γ grain size of the steel material according to the present embodiment is 10.5 μm, more preferably 10.0 μm. The lower limit of the old γ grain size of the steel material according to the present embodiment is not particularly limited. The lower limit of the old γ grain size of the steel material according to the present embodiment is, for example, 4.5 μm.
 上述のとおり、旧γ粒径は、ASTM E112-10の比較法に準拠し求めることができる。より具体的には、次の方法で求めることができる。鋼材が鋼板の場合は、板厚中央部から圧延方向に垂直な観察面を有する試験片を切り出す。鋼材が鋼管の場合は、肉厚中央部から管軸方向に垂直な観察面を有する試験片を切り出す。観察面を鏡面に研磨した後、樹脂に埋め込み、2%ナイタール腐食液に10秒程度浸漬して、エッチングにより旧γ粒界を現出する。 As mentioned above, the old γ particle size can be determined according to the comparison method of ASTM E112-10. More specifically, it can be determined by the following method. When the steel material is a steel plate, a test piece having an observation surface perpendicular to the rolling direction is cut out from the center part of the plate thickness. When the steel material is a steel pipe, a test piece having an observation surface perpendicular to the pipe axis direction is cut out from the central portion of the wall thickness. After the observation surface is mirror-polished, it is embedded in a resin and immersed in a 2% Nital etchant for about 10 seconds to expose old γ grain boundaries by etching.
 エッチングした観察面を、走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、二次電子像にて10視野観察して、写真画像を生成する。観察倍率は、たとえば、200倍である。生成した写真画像を用いて、ASTM E112-10に規定される結晶粒度標準図との比較により、結晶粒度番号を評価する。評価した結晶粒度番号から、各視野における旧γ粒の平均結晶粒径を求める。10視野において求めた旧γ粒の平均結晶粒径の算術平均値を、旧γ粒の結晶粒径(旧γ粒径)(μm)と定義する。 -10-field observation of the etched observation surface with a secondary electron image using a scanning electron microscope (SEM: Scanning Electron Microscope) to generate a photographic image. The observation magnification is, for example, 200 times. Using the generated photographic image, the grain size number is evaluated by comparison with the grain size standard diagram specified in ASTM E112-10. From the evaluated grain size number, the average grain size of the old γ grains in each visual field is determined. The arithmetic average value of the average crystal grain size of the old γ grains obtained in the 10 fields of view is defined as the crystal grain size of the old γ grains (old γ grain size) (μm).
 [旧γ粒界に析出する析出物]
 本実施形態による鋼材中において、旧オーステナイト粒界(旧γ粒界)に析出する析出物の平均面積は10.0×10-3μm2以下である。本明細書において、旧γ粒界に析出する析出物を「特定析出物」ともいう。特定析出物の平均面積が10.0×10-3μm2以下であれば、本実施形態による鋼材のその他の規定を満たすことを条件に、110ksi級の降伏強度と、優れた耐SSC性とを両立することができる。
[Precipitate that precipitates on the old γ grain boundary]
In the steel material according to the present embodiment, the average area of the precipitates precipitated at the former austenite grain boundaries (former γ grain boundaries) is 10.0×10 −3 μm 2 or less. In the present specification, the precipitate deposited on the old γ grain boundary is also referred to as “specific precipitate”. If the average area of the specific precipitate is 10.0×10 −3 μm 2 or less, 110 ksi class yield strength and excellent SSC resistance are provided, provided that the other requirements of the steel material according to the present embodiment are satisfied. Can be compatible.
 上述のとおり、上述の化学組成を有し、旧γ粒径が11.0μm以下の鋼材では、110ksi級の降伏強度を得ようとすると、鋼材中に粗大な炭化物が多数析出する場合がある。さらに、鋼材中の粗大な炭化物のうち、旧γ粒界に析出した炭化物は、鋼材の耐SSC性を低下させる。また、本実施形態による鋼材においては、旧γ粒界に析出する析出物は、そのほとんどが炭化物である。 As described above, with steel materials having the above chemical composition and old γ grain size of 11.0 μm or less, when trying to obtain a yield strength of 110 ksi class, many coarse carbides may precipitate in the steel material. Furthermore, among the coarse carbides in the steel material, the carbides precipitated at the old γ grain boundaries reduce the SSC resistance of the steel material. Further, in the steel material according to the present embodiment, most of the precipitates precipitated at the old γ grain boundaries are carbides.
 そこで、本実施形態による鋼材は、旧γ粒界に析出する析出物(特定析出物)の平均面積を、10.0×10-3μm2以下とする。特定析出物の平均面積が10.0×10-3μm2を超えれば、鋼材の耐SSC性が低下する場合がある。特定析出物の平均面積が10.0×10-3μm2を超えればさらに、758~862MPa(110ksi級)の降伏強度が得られない場合がある。 Therefore, in the steel material according to the present embodiment, the average area of the precipitates (specific precipitates) that precipitate at the old γ grain boundaries is 10.0×10 −3 μm 2 or less. If the average area of the specific precipitates exceeds 10.0×10 −3 μm 2 , the SSC resistance of the steel material may deteriorate. If the average area of the specific precipitates exceeds 10.0×10 −3 μm 2 , the yield strength of 758 to 862 MPa (110 ksi class) may not be obtained.
 したがって、本実施形態による鋼材中において、旧γ粒界に析出する析出物の平均面積は10.0×10-3μm2以下である。特定析出物の平均面積の好ましい上限は9.9×10-3μm2であり、より好ましくは9.7×10-3μm2である。 Therefore, in the steel material according to the present embodiment, the average area of the precipitates precipitated at the old γ grain boundary is 10.0×10 −3 μm 2 or less. The preferable upper limit of the average area of the specific precipitate is 9.9×10 −3 μm 2 , and more preferably 9.7×10 −3 μm 2 .
 特定析出物の平均面積の下限は特に限定されず、0.0×10-3μm2であってもよい。しかしながら、上述の化学組成を有する本実施形態による鋼材においては、特定析出物の平均面積の下限は、たとえば、3.0×10-3μm2である。 The lower limit of the average area of the specific precipitate is not particularly limited and may be 0.0×10 −3 μm 2 . However, in the steel material according to the present embodiment having the above-described chemical composition, the lower limit of the average area of specific precipitates is, for example, 3.0×10 −3 μm 2 .
 特定析出物の平均面積は、次の方法で求めることができる。上述の旧γ粒径の測定方法と同様に、鋼材から試験片を切り出す。具体的に、鋼材が鋼板の場合は、板厚中央部から圧延方向に垂直な観察面を有する試験片を切り出す。鋼材が鋼管の場合は、肉厚中央部から管軸方向に垂直な観察面を有する試験片を切り出す。観察面を鏡面に研磨した後、樹脂に埋め込み、2%ナイタール腐食液に10秒程度浸漬して、エッチングにより旧γ粒界を現出する。試験片の観察面をSEMによる二次電子像にて10視野観察して、写真画像を生成する。観察倍率は、たとえば、10000倍である。 The average area of specific precipitates can be obtained by the following method. A test piece is cut out from the steel material in the same manner as the above-described method for measuring the old γ particle size. Specifically, when the steel material is a steel plate, a test piece having an observation surface perpendicular to the rolling direction is cut out from the center part of the plate thickness. When the steel material is a steel pipe, a test piece having an observation surface perpendicular to the pipe axis direction is cut out from the central portion of the wall thickness. After the observation surface is mirror-polished, it is embedded in a resin and immersed in a 2% Nital etchant for about 10 seconds to expose old γ grain boundaries by etching. The observation surface of the test piece is observed in 10 fields of view with a secondary electron image by SEM to generate a photographic image. The observation magnification is, for example, 10,000 times.
 生成した写真画像から、コントラストに基づいて、旧γ粒界を特定する。生成した写真画像からさらに、コントラストに基づいて、析出物を特定する。なお、本実施形態では、特定析出物の観察において、観察倍率は、たとえば、10000倍である。そのため、円相当径で50nm以上の析出物であれば、観察視野からコントラストに基づいて特定することができる。一方、本実施形態において、特定される析出物の円相当径の上限は、特に限定されない。上述の化学組成を有する鋼材においては、特定される析出物の円相当径の上限は、たとえば、1000nmである。したがって、本実施形態においては、特定析出物の円相当径は、たとえば、50~1000nmである。 From the generated photographic image, specify the old γ grain boundary based on the contrast. Further, a precipitate is specified from the generated photographic image based on the contrast. In the present embodiment, the observation magnification is, for example, 10,000 times in the observation of the specific precipitate. Therefore, if the precipitate has a circle equivalent diameter of 50 nm or more, it can be specified based on the contrast from the observation visual field. On the other hand, in the present embodiment, the upper limit of the equivalent circle diameter of the specified precipitate is not particularly limited. In the steel material having the above chemical composition, the upper limit of the equivalent circle diameter of the identified precipitate is, for example, 1000 nm. Therefore, in the present embodiment, the equivalent circle diameter of the specific precipitate is, for example, 50 to 1000 nm.
 特定された旧γ粒界と重複する、及び/又は、特定された旧γ粒界と接触する析出物を、「特定析出物」と特定する。すなわち、特定析出物(旧γ粒界に析出する析出物)とは、その一部が旧γ粒界と重複、及び/又は、接触する析出物を意味する。特定された特定析出物について、画像解析により、平均面積(μm2)を求める。 A precipitate that overlaps with the specified old γ grain boundary and/or is in contact with the specified old γ grain boundary is specified as a “specific precipitate”. That is, the specific precipitate (precipitate that precipitates at the old γ grain boundary) means a precipitate that partially overlaps with and/or contacts the old γ grain boundary. The average area (μm 2 ) of the identified specific precipitate is determined by image analysis.
 [ミクロ組織]
 本実施形態による鋼材のミクロ組織は、主として焼戻しマルテンサイト及び焼戻しベイナイトからなる。より具体的には、ミクロ組織は、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上である。ミクロ組織の残部はたとえば、フェライト、又は、パーライトである。
[Microstructure]
The microstructure of the steel material according to the present embodiment mainly includes tempered martensite and tempered bainite. More specifically, the microstructure has a total volume ratio of tempered martensite and tempered bainite of 90% or more. The rest of the microstructure is, for example, ferrite or pearlite.
 上述の化学組成を有する鋼材のミクロ組織が、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上を含有すれば、本実施形態の他の規定を満たすことを条件に、降伏強度が758~862MPa(110ksi級)となる。 If the microstructure of the steel material having the above-described chemical composition contains 90% or more of the total volume fraction of tempered martensite and tempered bainite, the yield strength is 758, provided that the other regulations of this embodiment are satisfied. Up to 862 MPa (110 ksi class).
 焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計は、ミクロ組織観察によって求めることができる。ミクロ組織は、上述の旧γ粒径に求める際に生成した写真画像を用いる。各視野において、焼戻しマルテンサイト及び焼戻しベイナイトと、その他の相(たとえば、フェライト、又は、パーライト)とは、コントラストから区別できる。したがって、各視野において、コントラストに基づいて焼戻しマルテンサイト及び焼戻しベイナイトを特定する。 The total volume ratio of tempered martensite and tempered bainite can be obtained by microstructure observation. As the microstructure, a photographic image generated when obtaining the above-mentioned old γ grain size is used. In each field of view, the tempered martensite and tempered bainite and the other phases (for example ferrite or pearlite) can be distinguished from the contrast. Therefore, tempered martensite and tempered bainite are specified based on the contrast in each visual field.
 特定された焼戻しマルテンサイト及び焼戻しベイナイトの面積率の合計を求める。本実施形態において、すべての視野で求めた、焼戻しマルテンサイト及び焼戻しベイナイトの面積率の合計の算術平均値を、焼戻しマルテンサイト及び焼戻しベイナイトの体積率とする。 Calculate the total area ratio of the specified tempered martensite and tempered bainite. In the present embodiment, the arithmetic average value of the total area ratios of tempered martensite and tempered bainite obtained from all fields of view is taken as the volume ratio of tempered martensite and tempered bainite.
 [鋼材の降伏強度]
 本実施形態による鋼材の降伏強度は758~862MPa(110ksi級)である。本明細書でいう降伏強度は、引張試験で得られた0.7%伸び時の応力(0.7%耐力)を意味する。本実施形態による鋼材は、降伏強度が110ksi級であっても、上述の化学組成、旧γ粒径、及び、特定析出物の平均面積を満たすことで、優れた耐SSC性を有する。
[Yield strength of steel]
The yield strength of the steel material according to this embodiment is 758 to 862 MPa (110 ksi class). The yield strength as used herein means the stress at 0.7% elongation (0.7% proof stress) obtained in a tensile test. The steel material according to the present embodiment has excellent SSC resistance even if the yield strength is 110 ksi class, by satisfying the above-mentioned chemical composition, old γ grain size, and average area of the specific precipitate.
 本実施形態による鋼材の降伏強度は、次の方法で求めることができる。ASTM E8/E8M(2013)に準拠した方法で、引張試験を行う。本実施形態による鋼材から、丸棒試験片を採取する。鋼材が鋼板である場合、板厚中央部から丸棒試験片を採取する。鋼材が鋼管である場合、肉厚中央部から丸棒試験片を採取する。丸棒試験片の大きさは、たとえば、平行部直径8.9mm、平行部長さ35.6mmである。なお、丸棒試験片の軸方向は、鋼材の圧延方向と平行である。丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、得られた0.7%伸び時の応力を降伏強度(MPa)と定義する。 The yield strength of the steel material according to this embodiment can be obtained by the following method. Perform a tensile test by the method based on ASTM E8/E8M (2013). A round bar test piece is sampled from the steel material according to the present embodiment. When the steel material is a steel plate, a round bar test piece is taken from the center part of the plate thickness. If the steel material is a steel pipe, collect a round bar test piece from the center of the wall thickness. The size of the round bar test piece is, for example, the parallel portion diameter 8.9 mm and the parallel portion length 35.6 mm. The axial direction of the round bar test piece is parallel to the rolling direction of the steel material. Using a round bar test piece, a tensile test is carried out at room temperature (25° C.) in the atmosphere, and the stress at 0.7% elongation obtained is defined as the yield strength (MPa).
 [鋼材の耐SSC性]
 本実施形態による鋼材の耐SSC性は、NACE TM0177-2005 Method Aに準拠した方法、及び、4点曲げ試験によって評価できる。
[Steel resistance to SSC]
The SSC resistance of the steel material according to the present embodiment can be evaluated by a method based on NACE TM0177-2005 Method A and a 4-point bending test.
 NACE TM0177-2005 Method Aに準拠した方法では、本実施形態による鋼材から、丸棒試験片を採取する。鋼材が鋼板である場合、板厚中央部から丸棒試験片を採取する。鋼材が鋼管である場合、肉厚中央部から丸棒試験片を採取する。丸棒試験片の大きさは、たとえば、径6.35mm、平行部の長さ25.4mmである。なお、丸棒試験片の軸方向は、鋼材の圧延方向と平行である。 In the method based on NACE TM0177-2005 Method A, a round bar test piece is collected from the steel material according to this embodiment. When the steel material is a steel plate, a round bar test piece is taken from the center part of the plate thickness. If the steel material is a steel pipe, collect a round bar test piece from the center of the wall thickness. The size of the round bar test piece is, for example, a diameter of 6.35 mm and a parallel portion length of 25.4 mm. The axial direction of the round bar test piece is parallel to the rolling direction of the steel material.
 試験溶液は、4℃の5.0質量%塩化ナトリウムと0.5質量%酢酸との混合水溶液(NACE solution A)とする。丸棒試験片に対して、実降伏応力の90%に相当する応力を負荷する。試験容器に4℃の試験溶液を、応力を負荷された丸棒試験片が浸漬するように注入し、試験浴とする。試験浴を脱気した後、1atmのH2Sガスを試験浴に吹き込み、試験浴にH2Sガスを飽和させる。H2Sガスが飽和した試験浴を、4℃で720時間保持する。 The test solution is a mixed aqueous solution (NACE solution A) of 5.0% by mass sodium chloride and 0.5% by mass acetic acid at 4°C. A stress equivalent to 90% of the actual yield stress is applied to the round bar test piece. A test solution at 4° C. is poured into a test container so that a stress-loaded round bar test piece is immersed therein to form a test bath. After deaeration of the test bath, 1 atm of H 2 S gas is blown into the test bath to saturate the test bath with H 2 S gas. The test bath saturated with H 2 S gas is kept at 4° C. for 720 hours.
 一方、4点曲げ試験では、本実施形態による鋼材から、試験片を採取する。鋼材が鋼板である場合、板厚中央部から試験片を採取する。鋼材が鋼管である場合、肉厚中央部から試験片を採取する。試験片の大きさは、たとえば、厚さ2mm、幅10mm、長さ75mmである。なお、試験片の長さ方向は、鋼材の圧延方向と平行である。 On the other hand, in the 4-point bending test, test pieces are taken from the steel material according to the present embodiment. When the steel material is a steel plate, a test piece is taken from the center part of the plate thickness. If the steel material is a steel pipe, collect a test piece from the center of the wall thickness. The size of the test piece is, for example, 2 mm in thickness, 10 mm in width, and 75 mm in length. The length direction of the test piece is parallel to the rolling direction of the steel material.
 試験溶液は、24℃の5.0質量%塩化ナトリウム水溶液とする。ASTM G39-99(2011)に準拠して、試験片に対して4点曲げによって、実降伏応力の90%に相当する応力を負荷する。応力を負荷した試験片を試験治具ごとオートクレーブに封入する。オートクレーブに試験溶液を、気相部を残して注入し、試験浴とする。試験浴を脱気した後、オートクレーブに20atmのH2Sガスを加圧封入し、試験浴を撹拌してH2Sガスを飽和させる。オートクレーブを封じた後、試験浴を24℃で720時間撹拌する。 The test solution is a 5.0 mass% sodium chloride aqueous solution at 24°C. According to ASTM G39-99 (2011), a stress corresponding to 90% of the actual yield stress is applied to the test piece by 4-point bending. The stressed test piece is enclosed in an autoclave together with the test jig. The test solution is injected into the autoclave, leaving the gas phase part, to prepare a test bath. After deaeration of the test bath, 20 atm of H 2 S gas was pressurized and sealed in the autoclave, and the test bath was stirred to saturate the H 2 S gas. After sealing the autoclave, the test bath is stirred at 24° C. for 720 hours.
 本実施形態による鋼材は、以上のMethod Aに準拠した方法、及び、4点曲げ試験の両方において、720時間経過後に、割れが確認されない。なお、本明細書において、「割れが確認されない」とは、試験後の試験片を肉眼によって観察した場合、割れが確認されないことを意味する。 In the steel material according to the present embodiment, cracks are not confirmed after 720 hours in both the method according to Method A and the four-point bending test. In the present specification, "no crack is confirmed" means that no crack is confirmed when the test piece after the test is visually observed.
 [鋼材の形状]
 本実施形態による鋼材の形状は特に限定されない。鋼材はたとえば鋼管、鋼板である。鋼材が油井用鋼管である場合、好ましい肉厚は9~60mmである。より好ましくは、本実施形態による鋼材は、厚肉の継目無鋼管としての使用に適する。より具体的には、本実施形態による鋼材が15mm以上、さらに、20mm以上の厚肉の継目無鋼管であっても、110ksi級の降伏強度と、優れた耐SSC性を示す。
[Shape of steel material]
The shape of the steel material according to the present embodiment is not particularly limited. The steel material is, for example, a steel pipe or a steel plate. When the steel material is a steel pipe for oil wells, the preferable wall thickness is 9 to 60 mm. More preferably, the steel material according to the present embodiment is suitable for use as a thick-walled seamless steel pipe. More specifically, even if the steel material according to the present embodiment is a seamless steel pipe having a thickness of 15 mm or more and further 20 mm or more, it exhibits a yield strength of 110 ksi class and excellent SSC resistance.
 [製造方法]
 本実施形態による鋼材の製造方法を説明する。以下に説明する製造方法は、本実施形態による鋼材の一例として、継目無鋼管の製造方法である。なお、本実施形態による鋼材の製造方法は、以下に説明する製造方法に限定されない。
[Production method]
The method for manufacturing a steel material according to this embodiment will be described. The manufacturing method described below is a method for manufacturing a seamless steel pipe as an example of the steel material according to the present embodiment. In addition, the manufacturing method of the steel material according to the present embodiment is not limited to the manufacturing method described below.
 [準備工程]
 準備工程は、上述の化学組成を有する中間鋼材を準備する。中間鋼材は、上記化学組成を有していれば、製造方法は特に限定されない。ここでいう中間鋼材は、最終製品が鋼板の場合は、板状の鋼材であり、最終製品が鋼管の場合は素管である。
[Preparation process]
In the preparing step, an intermediate steel material having the above-mentioned chemical composition is prepared. The manufacturing method of the intermediate steel material is not particularly limited as long as it has the above chemical composition. The intermediate steel material here is a plate-shaped steel material when the final product is a steel plate, and is a raw pipe when the final product is a steel pipe.
 好ましくは、準備工程は、素材を準備する工程(素材準備工程)と、素材を熱間加工して中間鋼材を製造する工程(熱間加工工程)とを含んでもよい。以下、素材準備工程と、熱間加工工程を含む場合について、詳述する。 Preferably, the preparation step may include a step of preparing a material (material preparation step) and a step of hot working the material to produce an intermediate steel material (hot working step). Hereinafter, the case of including the material preparing step and the hot working step will be described in detail.
 [素材準備工程]
 素材準備工程では、上述の化学組成を有する溶鋼を用いて素材を製造する。具体的には、溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造する。溶鋼を用いて造塊法によりインゴットを製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、鋼片(ビレット)を製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
[Material preparation process]
In the material preparing step, the material is manufactured using the molten steel having the above chemical composition. Specifically, a slab (slab, bloom, or billet) is manufactured by a continuous casting method using molten steel. You may manufacture an ingot by the ingot making method using molten steel. If necessary, a slab, bloom or ingot may be slab-rolled to produce a billet. A material (slab, bloom, or billet) is manufactured by the above steps.
 [熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工して中間鋼材を製造する。鋼材が鋼管である場合、中間鋼材は素管に相当する。始めに、ビレットを加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出されたビレットに対して熱間加工を実施して、素管(継目無鋼管)を製造する。
[Hot working process]
In the hot working step, the prepared raw material is hot worked to produce an intermediate steel material. When the steel material is a steel pipe, the intermediate steel material corresponds to a raw pipe. First, the billet is heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The billet extracted from the heating furnace is subjected to hot working to manufacture a raw pipe (seamless steel pipe).
 たとえば、熱間加工としてマンネスマン法を実施して、素管を製造してもよい。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、たとえば、1.0~4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサ、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率はたとえば、20~70%である。 For example, the Mannesmann method may be carried out as hot working to manufacture a raw tube. In this case, a round billet is perforated and rolled by a perforator. When piercing and rolling, the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0. The pierced and rolled round billet is further hot-rolled by a mandrel mill, reducer, sizing mill or the like to obtain a raw tube. The cumulative area reduction rate in the hot working step is, for example, 20 to 70%.
 他の熱間加工方法により、ビレットから素管を製造してもよい。たとえば、カップリングのように短尺の厚肉鋼材である場合、エルハルト法等の鍛造を実施して、素管を製造してもよい。以上の工程により素管が製造される。製造される素管の肉厚は、特に限定されないが、たとえば、9~60mmである。  The raw pipe may be manufactured from the billet by another hot working method. For example, in the case of a short thick steel material such as a coupling, forging such as the Erhard method may be carried out to manufacture the raw pipe. A raw tube is manufactured by the above steps. The wall thickness of the manufactured raw pipe is not particularly limited, but is, for example, 9 to 60 mm.
 熱間加工により製造された素管は空冷されてもよい(As-Rolled)。又は、熱間加工により製造された素管は、常温まで冷却せずに、直接焼入れを実施してもよく、補熱(再加熱)した後、焼入れを実施してもよい。  The raw pipe manufactured by hot working may be air-cooled (As-Rolled). Alternatively, the blank produced by hot working may be directly quenched without cooling to room temperature, or may be supplemented (reheated) and then quenched.
 直接焼入れ、又は、補熱後に焼入れを実施する場合、焼入れ途中に冷却の停止、又は、緩冷却を実施してもよい。この場合、素管に焼割れが発生するのを抑制できる。直接焼入れ、又は、補熱後に焼入れを実施する場合さらに、焼入れ後であって次工程の熱処理(焼戻し等)前に、応力除去焼鈍(SR処理)を実施してもよい。この場合、素管の残留応力が除去される。 When directly quenching or quenching after supplementing heat, cooling may be stopped or slow cooling may be performed during quenching. In this case, it is possible to suppress the occurrence of quench cracks in the raw pipe. In the case where the quenching is performed directly or after the supplementary heat treatment, the stress relief annealing (SR treatment) may be performed after the quenching and before the heat treatment (tempering etc.) in the next step. In this case, the residual stress of the raw pipe is removed.
 以上のとおり、準備工程では中間鋼材を準備する。中間鋼材は、上述の好ましい工程により製造されてもよいし、第三者により製造された中間鋼材、又は、後述の焼入れ工程及び焼戻し工程が実施される工場以外の他の工場、他の事業所にて製造された中間鋼材を準備してもよい。 As mentioned above, the intermediate steel is prepared in the preparation process. The intermediate steel material may be manufactured by the above-described preferable process, or the intermediate steel material manufactured by a third party, or a factory other than the factory where the quenching process and the tempering process described below are carried out, other establishments. You may prepare the intermediate steel material manufactured by.
 [熱処理工程]
 熱処理工程では、準備された中間鋼材に対して、熱処理を実施する。具体的には、準備された中間鋼材に対して、焼入れ及び焼戻しを実施する。本明細書において、「焼入れ」とは、A3点以上の中間鋼材を急冷することを意味する。本明細書において、「焼戻し」とは、焼入れ後の中間鋼材をAc1点以下で再加熱して、保持することを意味する。
[Heat treatment process]
In the heat treatment step, heat treatment is performed on the prepared intermediate steel material. Specifically, quenching and tempering are performed on the prepared intermediate steel material. In the present specification, “quenching” means quenching of an intermediate steel material having a point A 3 or higher. In the present specification, “tempering” means to reheat and hold the intermediate steel material after quenching at the A c1 point or less.
 本実施形態による熱処理工程では、好ましくは、複数回の焼入れ及び焼戻しを実施する。具体的には、焼入れ及び焼戻しを、それぞれ2回ずつ以上実施することが好ましい。より具体的には、準備された中間鋼材に対して、好ましくは、焼入れを実施した後、焼戻しを実施して、さらに焼入れを実施して、焼戻しを実施する。 In the heat treatment process according to the present embodiment, preferably, quenching and tempering are performed multiple times. Specifically, it is preferable that the quenching and the tempering be performed twice or more each. More specifically, preferably, the prepared intermediate steel material is preferably quenched, then tempered, further quenched, and then tempered.
 なお、本実施形態による熱処理工程では、焼入れ及び焼戻しを3回以上実施してもよい。しかしながら、焼入れ及び焼戻しを4回以上繰り返して実施しても、その熱処理の効果は飽和する。したがって、本実施形態による熱処理工程では、焼入れ及び焼戻しを、2回又は3回実施するのが好ましい。以下、焼入れ及び焼戻しについて詳述する。 Note that in the heat treatment process according to the present embodiment, quenching and tempering may be performed three times or more. However, even if quenching and tempering are repeated four times or more, the effect of the heat treatment is saturated. Therefore, in the heat treatment process according to the present embodiment, it is preferable to perform the quenching and the tempering twice or three times. Hereinafter, quenching and tempering will be described in detail.
 [焼入れ]
 準備された中間鋼材(素管)、及び/又は、焼戻しが実施された中間鋼材に対して、焼入れを実施する。本実施形態による熱処理工程において、好ましい焼入れ温度は800~1000℃である。本明細書において「焼入れ温度」とは、熱間加工後に直接焼入れを実施する場合、最終の熱間加工を実施する装置の出側に設置した温度計で測定された中間鋼材の表面温度に相当する。焼入れ温度とはさらに、熱間加工後に補熱炉又は熱処理炉を用いて焼入れを実施する場合、補熱炉又は熱処理炉の温度に相当する。
[Quenching]
Quenching is performed on the prepared intermediate steel material (base pipe) and/or the tempered intermediate steel material. In the heat treatment process according to the present embodiment, the preferable quenching temperature is 800 to 1000°C. In the present specification, "quenching temperature" corresponds to the surface temperature of the intermediate steel material measured by a thermometer installed on the outlet side of the apparatus for performing the final hot working when directly quenching after hot working. To do. Further, the quenching temperature corresponds to the temperature of the supplementary heat treatment furnace or the heat treatment furnace when the quenching is performed using the supplementary heat treatment furnace or the heat treatment furnace after the hot working.
 すなわち、本実施形態による熱処理工程では、熱間加工後に800~1000℃の中間鋼材を急冷することによって実施されてもよいし、熱間加工後の中間鋼材を、補熱炉又は熱処理炉を用いて800~1000℃まで加熱してから急冷することによって実施されてもよいし、焼戻し後の中間鋼材を、熱処理炉を用いて800~1000℃まで加熱してから急冷することによって実施されてもよい。 That is, the heat treatment step according to the present embodiment may be performed by rapidly cooling the intermediate steel material at 800 to 1000° C. after hot working, or using the auxiliary steel furnace or the heat treatment furnace as the intermediate steel material after hot working. It may be carried out by heating to 800 to 1000° C. and then quenching, or by heating the intermediate steel material after tempering to 800 to 1000° C. using a heat treatment furnace and then quenching. Good.
 焼入れ温度が高すぎれば、旧γ粒が粗大になり、鋼材の耐SSC性が低下する場合がある。したがって、焼入れ温度は800~1000℃であるのが好ましい。焼入れ温度のより好ましい上限は950℃である。 If the quenching temperature is too high, the old γ grains may become coarse and the SSC resistance of the steel material may deteriorate. Therefore, the quenching temperature is preferably 800 to 1000°C. A more preferable upper limit of the quenching temperature is 950°C.
 本実施形態による熱処理工程において、熱間加工後に補熱炉又は熱処理炉を用いて焼入れを実施する場合、好ましい焼入れ時間は5~20分である。本明細書において「焼入れ時間」とは、補熱炉又は熱処理炉に中間鋼材を装入してから、取り出すまでの時間を意味する。 In the heat treatment step according to the present embodiment, when quenching is performed using a supplementary heating furnace or a heat treatment furnace after hot working, a preferable quenching time is 5 to 20 minutes. In the present specification, the "quenching time" means the time from the charging of the intermediate steel material into the supplementary heat treatment furnace or the heat treatment furnace to the removal thereof.
 熱間加工後に補熱炉又は熱処理炉を用いて焼入れを実施する場合、焼入れ時間が長すぎれば、最終の焼戻し後の旧γ粒が粗大になる場合がある。したがって、本実施形態による熱処理工程において、熱間加工後に補熱炉又は熱処理炉を用いて焼入れを実施する場合、焼入れ時間は5~20分とするのが好ましい。 When performing quenching using a supplementary heating furnace or heat treatment furnace after hot working, if the quenching time is too long, the old γ grains after the final tempering may become coarse. Therefore, in the heat treatment process according to the present embodiment, when quenching is performed using a supplementary heating furnace or a heat treatment furnace after hot working, the quenching time is preferably 5 to 20 minutes.
 焼入れ方法はたとえば、焼入れ開始温度から素管を連続的に冷却し、素管の温度を連続的に低下させる。連続冷却処理の方法は特に限定されず、周知の方法でよい。連続冷却処理の方法はたとえば、水槽に素管を浸漬して冷却する方法や、シャワー水冷又はミスト冷却により素管を加速冷却する方法である。 The quenching method is, for example, to continuously cool the raw pipe from the quenching start temperature and continuously lower the temperature of the raw pipe. The method of continuous cooling treatment is not particularly limited, and a known method may be used. The method of continuous cooling treatment is, for example, a method of immersing the base pipe in a water tank for cooling, or a method of accelerating the base pipe by shower water cooling or mist cooling.
 焼入れ時の冷却速度が遅すぎれば、マルテンサイト及びベイナイト主体のミクロ組織とならず、本実施形態で規定する機械的特性が得られない。したがって、本実施形態による鋼材の製造方法では、焼入れ時に中間鋼材(素管)を急冷する。具体的には、焼入れ工程において、焼入れ時の中間鋼材(素管)の温度が800~500℃の範囲における平均冷却速度を、焼入れ時冷却速度CR800-500(℃/秒)と定義する。より具体的には、焼入れ時冷却速度CR800-500は、焼入れされる中間鋼材の表面において測定された温度から決定される。 If the cooling rate at the time of quenching is too slow, a microstructure mainly composed of martensite and bainite will not be obtained, and the mechanical properties defined in this embodiment cannot be obtained. Therefore, in the method for manufacturing a steel material according to the present embodiment, the intermediate steel material (base pipe) is rapidly cooled during quenching. Specifically, in the quenching step, the average cooling rate in the range of 800 to 500° C. of the intermediate steel material (base pipe) during quenching is defined as the quenching cooling rate CR 800-500 (° C./sec). More specifically, the quenching cooling rate CR 800-500 is determined from the temperature measured at the surface of the intermediate steel to be quenched.
 好ましい焼入れ時冷却速度CR800-500は8℃/秒以上である。この場合、焼入れ後の中間鋼材(素管)のミクロ組織が、安定してマルテンサイト及びベイナイト主体となる。焼入れ時冷却速度CR800-500のより好ましい下限は10℃/秒である。焼入れ時冷却速度CR800-500の好ましい上限は500℃/秒である。 A preferable cooling rate during quenching, CR 800-500, is 8° C./second or more. In this case, the microstructure of the intermediate steel material (base pipe) after quenching stably becomes mainly martensite and bainite. The more preferable lower limit of the cooling rate during quenching CR 800-500 is 10°C/sec. The preferable upper limit of the cooling rate CR 800-500 during quenching is 500° C./sec.
 [焼戻し]
 上記焼入れが実施された中間鋼材に対して、焼戻しを実施する。サワー環境での使用が想定された鋼材の焼戻しでは、鋼材の化学組成、及び、得ようとする降伏強度に応じて、焼戻し温度及び焼戻し時間を調整していた。この場合、最終の焼戻しのみが制御され、最終ではない焼戻しについては、従来、焼戻し温度がAc1点以下であればよいと考えられてきた。
[Tempering]
The tempered intermediate steel material is tempered. In the tempering of a steel material that was supposed to be used in a sour environment, the tempering temperature and the tempering time were adjusted according to the chemical composition of the steel material and the yield strength to be obtained. In this case, only the final tempering is controlled, and for the non-final tempering, it has been conventionally considered that the tempering temperature should be A c1 point or less.
 一方、本実施形態による鋼材は、Mo含有量を高めることにより、旧γ粒を微細にする。このメカニズムについては、上述のとおり、鋼材中に固溶したMoが、焼入れの加熱時にオーステナイト粒界に偏析することで、ピンニング効果により、焼戻し後の旧γ粒を微細にすると考えられる。ここで、上述の化学組成を有する鋼材では、MoはM2C型炭化物を形成しやすい。さらに、上述の化学組成を有する鋼材では、焼戻しにおいて、M2C型炭化物が析出しやすい。 On the other hand, in the steel material according to the present embodiment, the old γ grains are made fine by increasing the Mo content. Regarding this mechanism, as described above, it is considered that Mo solid-dissolved in the steel material segregates to the austenite grain boundaries during heating during quenching, and the pinning effect makes the old γ grains after tempering fine. Here, in the steel material having the above chemical composition, Mo easily forms M 2 C type carbide. Further, in the steel material having the above-mentioned chemical composition, M 2 C type carbide is likely to precipitate during tempering.
 そこで、本実施形態による熱処理工程では、最終から2番目の焼戻し後の鋼材中に、Moを十分に固溶させる。具体的に、本実施形態による熱処理工程では、最終から2番目の焼戻しにおいて、焼戻しパラメータTMP2(=(焼戻し温度(℃)+273)×(log(焼戻し時間(分)/60)+20))を制御すれば、M2C型炭化物として析出するMo量を低減させることができる。 Therefore, in the heat treatment step according to the present embodiment, Mo is sufficiently dissolved in the steel material after the second to final tempering. Specifically, in the heat treatment process according to the present embodiment, the tempering parameter TMP 2 (=(tempering temperature (° C.)+273)×(log (tempering time (min)/60)+20)) is set in the second to last tempering process. If controlled, the amount of Mo precipitated as M 2 C type carbide can be reduced.
 より具体的には、上述の化学組成を有する鋼材では、最終から2番目の焼戻しの焼戻しパラメータTMP2が15000~19000であれば、最終の焼戻し後の鋼材の旧γ粒径を、微細にすることができる。最終から2番目の焼戻しにおける焼戻しパラメータTMP2が15000未満であれば、焼戻しの効果が十分に得られず、鋼材に焼割れや置割れが発生する場合がある。一方、最終から2番目の焼戻しにおける焼戻しパラメータTMP2が19000を超えれば、最終の焼入れの加熱時に固溶Mo量が十分に得られず、最終の焼戻し後の旧γ粒径が粗大になる場合がある。 More specifically, in the steel material having the above-mentioned chemical composition, if the tempering parameter TMP 2 of the second to last tempering is 15000 to 19000, the old γ grain size of the steel material after the final tempering is made fine. be able to. If the tempering parameter TMP 2 in the penultimate tempering is less than 15000, the tempering effect may not be sufficiently obtained, and the steel material may be subject to temper cracking or set cracking. On the other hand, if the tempering parameter TMP 2 in the penultimate tempering exceeds 19000, the amount of solute Mo is not sufficiently obtained during heating in the final quenching, and the old γ grain size after the final tempering becomes coarse. There is.
 したがって、本実施形態による熱処理工程において、最終から2番目の焼戻しの焼戻しパラメータTMP2は、15000~19000とするのが好ましい。最終から2番目の焼戻しの焼戻しパラメータTMP2のより好ましい下限は15500であり、より好ましくは16000である。最終から2番目の焼戻しの焼戻しパラメータTMP2のより好ましい上限は18500であり、より好ましくは18000である。 Therefore, in the heat treatment process according to the present embodiment, it is preferable that the tempering parameter TMP 2 of the second-to-last tempering is 15,000 to 19000. The more preferable lower limit of the tempering parameter TMP 2 for the second temper from the last is 15500, and more preferably 16000. The more preferable upper limit of the tempering parameter TMP 2 for the second-to-last tempering is 18500, and more preferably 18000.
 好ましくは、最終から2番目の焼戻しでは、焼戻し温度を500~700℃未満とする。さらに、好ましくは、最終から2番目の焼戻しでは、焼戻し時間(保持時間)を10~60分とする。すなわち、本実施形態において、最終から2番目の焼戻しでは、焼戻し温度を500~700℃未満、焼戻し時間を10~60分として、さらに、焼戻しパラメータTMP2を15000~19000とする。 Preferably, in the penultimate tempering, the tempering temperature is 500 to less than 700°C. Further, preferably, in the second to last tempering, the tempering time (holding time) is set to 10 to 60 minutes. That is, in the second to last tempering in the present embodiment, the tempering temperature is 500 to less than 700° C., the tempering time is 10 to 60 minutes, and the tempering parameter TMP 2 is 15,000 to 19000.
 なお、本明細書において「焼戻し温度」とは、焼入れ後の中間鋼材を加熱して、保持する際の熱処理炉の温度に相当する。本明細書において、「焼戻し時間(保持時間)」とは、焼入れ後の中間鋼材を加熱して、保持する際の熱処理炉に中間鋼材を装入してから、取り出すまでの時間を意味する。 In the present specification, the "tempering temperature" corresponds to the temperature of the heat treatment furnace when heating and holding the intermediate steel after quenching. In the present specification, the "tempering time (holding time)" means the time from heating the intermediate steel after quenching and holding the intermediate steel in the heat treatment furnace until holding it.
 また、本明細書において「最終から2番目の焼戻し」とは、最終の焼入れ及び焼戻しの前に実施する焼戻しを意味する。すなわち、熱処理工程において、焼入れ及び焼戻しをそれぞれ2回ずつ実施する場合、最終から2番目の焼戻しとは、1回目の焼戻しを意味する。熱処理工程において、焼入れ及び焼戻しをそれぞれ3回ずつ実施する場合、最終から2番目の焼戻しとは、2回目の焼戻しを意味する。 Further, in the present specification, “second to last temper” means tempering performed before final quenching and tempering. That is, when the quenching and the tempering are each performed twice in the heat treatment step, the second to last tempering means the first tempering. When the quenching and the tempering are performed three times each in the heat treatment step, the second-to-last tempering means the second tempering.
 本実施形態による鋼材はさらに、旧γ粒界に析出する析出物(特定析出物)のうち、粗大な特定析出物を低減する。上述のとおり、特定析出物は、そのほとんどが炭化物である。そのため、特定析出物は、そのほとんどが最終の焼戻しにおいて析出する。したがって、本実施形態による熱処理工程では、最終から2番目の焼戻しにおける焼戻しパラメータTMP2だけでなく、最終の焼戻しにおける焼戻しパラメータTMP1(=(焼戻し温度(℃)+273)×(log(焼戻し時間(分)/60)+20))も制御する。 The steel material according to the present embodiment further reduces coarse specific precipitates among the precipitates (specific precipitates) precipitated at the old γ grain boundaries. As mentioned above, most of the specific precipitates are carbides. Therefore, most of the specific precipitates are precipitated in the final tempering. Therefore, in the heat treatment process according to the present embodiment, not only the tempering parameter TMP 2 in the penultimate tempering but also the tempering parameter TMP 1 in the final tempering (=(tempering temperature (° C.)+273)×(log(tempering time ( Min)/60)+20)) is also controlled.
 より具体的には、上述の化学組成を有する鋼材では、最終の焼戻しの焼戻しパラメータTMP1が19100~19600であれば、最終の焼戻し後の鋼材中において、粗大な特定析出物を低減することができる。最終の焼戻しにおける焼戻しパラメータTMP1が19100未満であれば、焼戻しの効果が十分に得られず、焼戻し後の鋼材の降伏強度が高くなりすぎる場合がある。最終の焼戻しにおける焼戻しパラメータTMP1が19100未満であればさらに、粗大な特定析出物が多数析出する場合がある。 More specifically, in the steel material having the above-described chemical composition, if the tempering parameter TMP 1 of the final tempering is 19100 to 19600, coarse specific precipitates can be reduced in the steel material after the final tempering. it can. If the tempering parameter TMP 1 in the final tempering is less than 19100, the tempering effect may not be sufficiently obtained, and the yield strength of the steel material after tempering may be too high. If the tempering parameter TMP 1 in the final tempering is less than 19100, a large number of coarse specific precipitates may be further precipitated.
 一方、最終の焼戻しにおける焼戻しパラメータTMP1が19600を超えれば、焼戻し後の鋼材の降伏強度が低くなりすぎる場合がある。最終の焼戻しにおける焼戻しパラメータTMP1が19600を超えればさらに、粗大な特定析出物が多数析出する場合がある。 On the other hand, if the tempering parameter TMP 1 in the final tempering exceeds 19600, the yield strength of the steel material after tempering may be too low. If the tempering parameter TMP 1 in the final tempering exceeds 19600, a large number of coarse specific precipitates may be further precipitated.
 したがって、本実施形態による熱処理工程において、最終の焼戻しの焼戻しパラメータTMP1は、19100~19600とするのが好ましい。最終の焼戻しの焼戻しパラメータTMP1のより好ましい下限は19200であり、より好ましくは19300である。最終の焼戻しの焼戻しパラメータTMP1のより好ましい上限は19570であり、より好ましくは19500である。 Therefore, in the heat treatment process according to the present embodiment, the tempering parameter TMP 1 of the final tempering is preferably set to 19100 to 19600. The more preferable lower limit of the tempering parameter TMP 1 for the final tempering is 19200, and more preferably 19300. The more preferable upper limit of the tempering parameter TMP 1 in the final tempering is 19570, and more preferably 19500.
 好ましくは、最終の焼戻しでは、焼戻し温度を650~730℃とする。さらに、好ましくは、最終の焼戻しでは、焼戻し時間(保持時間)を10~90分とする。すなわち、本実施形態において、最終の焼戻しでは、焼戻し温度を650~730℃、焼戻し時間を10~90分として、さらに、焼戻しパラメータTMP1を19100~19600とする。 Preferably, in the final tempering, the tempering temperature is 650 to 730°C. Further, preferably, in the final tempering, the tempering time (holding time) is set to 10 to 90 minutes. That is, in the present embodiment, in the final tempering, the tempering temperature is 650 to 730° C., the tempering time is 10 to 90 minutes, and the tempering parameter TMP 1 is 19100 to 19600.
 なお、鋼材が鋼管である場合、他の形状と比較して、焼戻しの保持中に、鋼管の温度にばらつきが発生しやすい。したがって、鋼材が鋼管である場合、焼戻し時間は15~90分とするのが好ましい。本実施形態の化学組成の鋼材において、上記焼戻し温度と上記焼戻し時間とを適宜調整することにより、降伏強度を758~862MPa(110ksi級)にすることは、当業者であれば十分に可能である。 Note that when the steel material is a steel pipe, the temperature of the steel pipe tends to fluctuate during holding tempering as compared to other shapes. Therefore, when the steel material is a steel pipe, the tempering time is preferably 15 to 90 minutes. It is sufficiently possible for those skilled in the art to set the yield strength to 758 to 862 MPa (110 ksi class) by appropriately adjusting the tempering temperature and the tempering time in the steel material having the chemical composition of the present embodiment. ..
 以上の製造方法によって、本実施形態による鋼材を製造することができる。なお、上述の製造方法では、一例として継目無鋼管の製造方法を説明した。しかしながら、本実施形態による鋼材は、鋼板や他の形状であってもよい。鋼板や他の形状の製造方法も、上述の製造方法と同様に、たとえば、準備工程と、熱処理工程とを備える。さらに、上述の製造方法は一例であり、他の製造方法によって製造されてもよい。 The steel material according to the present embodiment can be manufactured by the above manufacturing method. In addition, in the above-mentioned manufacturing method, the manufacturing method of the seamless steel pipe has been described as an example. However, the steel material according to the present embodiment may be a steel plate or another shape. The manufacturing method of a steel plate or another shape also includes, for example, a preparation step and a heat treatment step, similar to the above-described manufacturing method. Furthermore, the above-described manufacturing method is an example, and the manufacturing method may be performed by another manufacturing method.
 表1に示す化学組成を有する、溶鋼を製造した。さらに、表1に記載の化学組成からF1をそれぞれ求めた。なお、表1中の「-」は、各元素の含有量が不純物レベルであることを意味する。 Molten steel having the chemical composition shown in Table 1 was manufactured. Further, F1 was obtained from the chemical composition shown in Table 1. In addition, "-" in Table 1 means that the content of each element is at the impurity level.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記溶鋼を用いて、連続鋳造法によってビレットを製造した。製造した各試験番号のビレットを1250℃で1時間保持した後、マンネスマン-マンドレル方式による熱間圧延(熱間加工)を実施して、各試験番号の素管(継目無鋼管)を製造した。 Billet was manufactured by continuous casting using the above molten steel. After holding the manufactured billet of each test number at 1250° C. for 1 hour, hot rolling (hot working) by a Mannesmann-mandrel system was performed to manufacture a raw pipe (seamless steel pipe) of each test number.
 熱間加工された各試験番号の素管について、熱処理(焼入れ及び焼戻し)をそれぞれ2回ずつ実施した。具体的に、各試験番号の素管について、次の方法で熱処理を実施した。 Heat treatment (quenching and tempering) was performed twice for each hot-worked test tube of each test number. Specifically, heat treatment was performed on the raw tubes of each test number by the following method.
 熱間加工によって製造された各試験番号の素管について、950℃の補熱炉で5分間保持した後、直接焼入れ(すなわち、1回目の焼入れ)を実施した。各試験番号の1回目の焼入れの焼入れ時冷却速度CR800-500は、いずれも8~500℃/秒の範囲内であった。なお、焼入れ時冷却速度CR800-500は、各試験番号の素管の表面温度を測定することにより求めた。 The raw pipe of each test number manufactured by hot working was held in a supplementary heating furnace at 950° C. for 5 minutes and then directly quenched (that is, the first quench). The cooling rate during quenching CR 800-500 in the first quenching of each test number was in the range of 8 to 500° C./sec in all cases. The cooling rate during quenching, CR 800-500 , was determined by measuring the surface temperature of the raw pipe of each test number.
 続いて、各試験番号の素管について、1回目の焼戻し、すなわち、最終から2番目の焼戻しを実施した。具体的に、各試験番号の素管について、表2の「最終から2番目の焼戻し」欄に記載の焼戻し温度(℃)で、焼戻し時間(分)だけ保持する焼戻しを実施した。さらに、最終から2番目の焼戻しにおける焼戻しパラメータTMP2(=(焼戻し温度(℃)+273)×(log(焼戻し時間(分)/60)+20))を表2に示す。 Then, the first tempering, that is, the second tempering from the last, was carried out for the raw tubes of the respective test numbers. Specifically, tempering was performed on the raw tubes of each test number at the tempering temperature (° C.) shown in the “second tempering from the last” column in Table 2 for the tempering time (minutes). Further, Table 2 shows the tempering parameter TMP 2 (=(tempering temperature (° C.)+273)×(log (tempering time (minutes)/60)+20)) in the penultimate tempering.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述の1回目の焼戻しが実施された各試験番号の素管について、2回目の焼入れ、すなわち、最終の焼入れを実施した。具体的に、各試験番号の素管について、表2の「最終の焼入れ」欄に記載の焼入れ温度(℃)で、焼入れ時間(分)だけ保持した後、焼入れを実施した。各試験番号の2回目の焼入れの焼入れ時冷却速度CR800-500は、いずれも8~500℃/秒の範囲内であった。 The second quenching, that is, the final quenching, was performed on the raw tubes of the respective test numbers for which the first tempering was performed. Specifically, for the test tubes of each test number, quenching was carried out after holding for the quenching time (minutes) at the quenching temperature (°C) described in the "final quenching" column of Table 2. The cooling rate during quenching CR 800-500 of the second quenching of each test number was in the range of 8 to 500° C./sec in all cases.
 さらに、最終の焼入れが実施された各試験番号の素管について、2回目の焼戻し、すなわち、最終の焼戻しを実施した。具体的に、各試験番号の素管について、表2の「最終の焼戻し」欄に記載の焼戻し温度(℃)で、焼戻し時間(分)だけ保持する焼戻しを実施した。最終の焼戻しにおける焼戻しパラメータTMP1(=(焼戻し温度(℃)+273)×(log(焼戻し時間(分)/60)+20))を表2に示す。 Furthermore, the second tempering, that is, the final tempering, was performed on the raw pipe of each test number on which the final quenching was performed. Specifically, tempering was performed on the raw tubes of each test number at the tempering temperature (° C.) described in the “final tempering” column of Table 2 for the tempering time (minutes). Table 2 shows the tempering parameter TMP 1 (=(tempering temperature (° C.)+273)×(log (tempering time (min)/60)+20)) in the final tempering.
 なお、本実施例では、焼入れの加熱に用いた補熱炉及び熱処理炉の温度を「焼入れ温度(℃)」とした。さらに、焼戻しに用いた熱処理炉の温度を「焼戻し温度(℃)」とした。また、素管が焼入れの加熱時に補熱炉又は熱処理炉内に装入されてから取り出されるまでの時間を「焼入れ時間(分)」とした。素管が焼戻し時に熱処理炉内に装入されてから取り出されるまでの時間を「焼戻し時間(分)」とした。 In this example, the temperature of the auxiliary heating furnace and the heat treatment furnace used for heating the quenching was set to the "quenching temperature (°C)". Further, the temperature of the heat treatment furnace used for tempering was defined as "tempering temperature (°C)". In addition, the time from the time the raw tube was charged into the supplementary heating furnace or the heat treatment furnace to the time it was taken out at the time of heating during quenching was defined as "quenching time (minutes)". The time from the time the raw tube was put into the heat treatment furnace during tempering to the time it was taken out was defined as "tempering time (minutes)".
 [評価試験]
 焼戻し処理後の各試験番号の継目無鋼管に対して、以下に説明するミクロ組織観察、引張試験、及び、耐SSC性評価試験を実施した。
[Evaluation test]
After the tempering treatment, the seamless steel pipe of each test number was subjected to the microstructure observation, tensile test, and SSC resistance evaluation test described below.
 [ミクロ組織観察]
 各試験番号の継目無鋼管について、上述の方法で旧γ粒径を測定した。各試験番号の継目無鋼管の、旧γ粒径(μm)を表2に示す。各試験番号の継目無鋼管についてさらに、上述の方法で旧γ粒界に析出した析出物(特定析出物)の平均面積を求めた。各試験番号の継目無鋼管の、特定析出物の平均面積(×10-3μm2)を表2に示す。
[Microstructure observation]
For the seamless steel pipe of each test number, the old γ grain size was measured by the above method. Table 2 shows the old γ particle size (μm) of the seamless steel pipe of each test number. With respect to the seamless steel pipe of each test number, the average area of the precipitates (specific precipitates) precipitated at the old γ grain boundaries by the above method was obtained. Table 2 shows the average area (×10 −3 μm 2 ) of the specific precipitate in the seamless steel pipe of each test number.
 [引張試験]
 各試験番号の継目無鋼管について、上述の方法により降伏強度を測定した。具体的に、ASTM E8/E8M(2013)に準拠して、引張試験を実施した。より具体的には、各試験番号の継目無鋼管の肉厚中央部から、平行部直径8.9mm、平行部長さ35.6mmの丸棒引張試験片を作製した。丸棒引張試験片の軸方向は、継目無鋼管の軸方向と平行であった。
[Tensile test]
The yield strength of each seamless steel pipe of each test number was measured by the method described above. Specifically, the tensile test was carried out in accordance with ASTM E8/E8M (2013). More specifically, a round bar tensile test piece having a diameter of the parallel portion of 8.9 mm and a length of the parallel portion of 35.6 mm was prepared from the center portion of the seamless steel pipe of each test number. The axial direction of the round bar tensile test piece was parallel to the axial direction of the seamless steel pipe.
 各試験番号の丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、各試験番号の継目無鋼管の降伏強度(MPa)を得た。なお、本実施例では、引張試験で得られた0.7%伸び時の応力を、各試験番号の降伏強度と定義した。得られた降伏強度YS(MPa)及び引張強度TS(Tensile Strength)(MPa)を表2に示す。 Using a round bar test piece of each test number, a tensile test was performed at room temperature (25° C.) in the atmosphere to obtain the yield strength (MPa) of the seamless steel pipe of each test number. In this example, the stress at 0.7% elongation obtained in the tensile test was defined as the yield strength of each test number. Table 2 shows the obtained yield strength YS (MPa) and tensile strength TS (Tensile Strength) (MPa).
 [鋼材の耐SSC性評価試験]
 各試験番号の継目無鋼管を用いて、NACE TM0177-2005 Method Aに準拠した試験、及び、4点曲げ試験を実施して、耐SSC性を評価した。具体的に、NACE TM0177-2005 Method Aに準拠した試験は、次の方法で実施した。
[Steel SSC resistance evaluation test]
Using the seamless steel pipe of each test number, a test based on NACE TM0177-2005 Method A and a 4-point bending test were carried out to evaluate SSC resistance. Specifically, the test based on NACE TM0177-2005 Method A was performed by the following method.
 各試験番号の継目無鋼管の肉厚中央部から、径6.35mm、平行部の長さ25.4mmの丸棒試験片を3本採取した。丸棒試験片は、その軸方向が継目無鋼管の軸方向と平行になるように採取した。各試験番号の丸棒試験片の軸方向に引張応力を負荷した。このとき、与えられる応力が各試験番号の継目無鋼管の実降伏応力の90%になるように調整した。 ③Three round bar test pieces with a diameter of 6.35 mm and a parallel length of 25.4 mm were taken from the center of the wall thickness of the seamless steel pipe of each test number. The round bar test piece was sampled so that its axial direction was parallel to the axial direction of the seamless steel pipe. Tensile stress was applied in the axial direction of the round bar test piece of each test number. At this time, the applied stress was adjusted to be 90% of the actual yield stress of the seamless steel pipe of each test number.
 試験溶液は、5.0質量%塩化ナトリウムと0.5質量%酢酸との混合水溶液(NACE solution A)を用いた。3つの試験容器に4℃の試験溶液を注入し、試験浴とした。応力が負荷された3本の丸棒試験片を、1本ずつ異なる試験容器の試験浴に浸漬した。各試験浴を脱気した後、1atmのH2Sガスを吹き込み、試験浴に飽和させた。1atmのH2Sガスが飽和した試験浴を、4℃で720時間保持した。 As the test solution, a mixed aqueous solution of 5.0 mass% sodium chloride and 0.5 mass% acetic acid (NACE solution A) was used. The test solution at 4° C. was poured into three test containers to prepare a test bath. Three stress-loaded round bar test pieces were immersed in the test baths of different test containers one by one. After deaeration of each test bath, 1 atm of H 2 S gas was blown thereinto to saturate the test bath. The test bath saturated with 1 atm of H 2 S gas was kept at 4° C. for 720 hours.
 一方、4点曲げ試験は、次の方法で実施した。各試験番号の継目無鋼管の肉厚中央部から、厚さ2mm、幅10mm、長さ75mmの試験片を3本採取した。試験片は、その長手方向が継目無鋼管の軸方向と平行になるように採取した。各試験番号の試験片に対して、ASTM G39-99(2011)に準拠して、各試験片に与えられる応力が、各試験番号の継目無鋼管の実降伏応力の90%になるように、4点曲げによって応力を負荷した。応力が負荷された試験片を、試験治具ごとオートクレーブに封入した。 On the other hand, the 4-point bending test was carried out by the following method. Three test pieces each having a thickness of 2 mm, a width of 10 mm, and a length of 75 mm were collected from the central portion of the wall thickness of the seamless steel pipe of each test number. The test piece was sampled so that its longitudinal direction was parallel to the axial direction of the seamless steel pipe. In accordance with ASTM G39-99 (2011), the stress applied to each test piece of each test number is 90% of the actual yield stress of the seamless steel pipe of each test number. Stress was applied by 4-point bending. The stress-loaded test piece was enclosed together with the test jig in an autoclave.
 試験溶液は、5.0質量%塩化ナトリウム水溶液を用いた。オートクレーブに試験溶液を、気相部を残して注入し、試験浴とした。試験浴を脱気した後、20atmのH2Sガスを加圧封入し、試験浴を撹拌してH2Sガスを試験浴に飽和させた。オートクレーブを封じた後、試験浴を24℃で720時間撹拌した。 As the test solution, a 5.0 mass% sodium chloride aqueous solution was used. The test solution was injected into the autoclave, leaving the gas phase, to prepare a test bath. After deaeration of the test bath, 20 atm of H 2 S gas was pressure-filled, and the test bath was stirred to saturate the test bath with H 2 S gas. After sealing the autoclave, the test bath was stirred at 24° C. for 720 hours.
 上記NACE TM0177-2005 Method Aに準拠した試験、及び、4点曲げ試験のそれぞれについて、720時間保持後の各試験番号の試験片に対して、硫化物応力割れ(SSC)の発生の有無を観察した。具体的には、720時間保持後の試験片を肉眼で観察した。観察の結果、全ての試験片に割れが確認されなかったものを、「E」(Excellent)と判断した。一方、試験片に割れが確認されたものを、「NA」(Not Acceptable)と判断した。 For each of the NACE TM0177-2005 Method A compliant test and the 4-point bending test, observe the presence or absence of sulfide stress cracking (SSC) in the test piece of each test number after holding for 720 hours. did. Specifically, the test piece after holding for 720 hours was visually observed. As a result of the observation, when no crack was confirmed in all the test pieces, it was judged as "E" (Excellent). On the other hand, the one in which cracks were confirmed in the test piece was judged to be "NA" (Not Acceptable).
 [試験結果]
 表2に試験結果を示す。耐SSC性試験については、NACE TM0177-2005 Method Aに準拠した試験の結果を「1atmH2S」欄に、4点曲げ試験の結果を「20atmH2S」欄に、それぞれ示す。
[Test results]
Table 2 shows the test results. Regarding the SSC resistance test, the result of the test based on NACE TM0177-2005 Method A is shown in the “1 atmH 2 S” column, and the result of the four-point bending test is shown in the “20 atmH 2 S” column.
 表1及び表2を参照して、試験番号1~8の継目無鋼管の化学組成は適切であり、降伏強度が758~862MPaであり、旧γ粒径が11.0μm以下であり、かつ、特定析出物の平均面積が10.0×10-3μm2以下であった。その結果、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示した。 With reference to Table 1 and Table 2, the seamless steel pipes of test numbers 1 to 8 have appropriate chemical compositions, yield strength of 758 to 862 MPa, old γ grain size of 11.0 μm or less, and The average area of the specific precipitate was 10.0×10 −3 μm 2 or less. As a result, excellent SSC resistance was exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
 一方、試験番号9及び10の継目無鋼管では、最終から2番目の焼戻しにおける焼戻しパラメータTMP2が大きすぎた。そのため、旧γ粒径が11.0μmを超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験において、優れた耐SSC性を示さなかった。 On the other hand, in the seamless steel pipes of test numbers 9 and 10, the tempering parameter TMP 2 in the penultimate tempering was too large. Therefore, the old γ particle size exceeded 11.0 μm. As a result, in the test based on NACE TM0177-2005 Method A, excellent SSC resistance was not shown.
 試験番号11の継目無鋼管では、最終の焼戻しにおける焼戻しパラメータTMP1が大きすぎた。そのため、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、降伏強度が758MPa未満となり、110ksi級の降伏強度が得られなかった。 In the seamless steel pipe of Test No. 11, the tempering parameter TMP 1 in the final tempering was too large. Therefore, the average area of the specific precipitate exceeded 10.0×10 −3 μm 2 . As a result, the yield strength was less than 758 MPa, and 110 ksi class yield strength was not obtained.
 試験番号12の継目無鋼管では、Cr含有量が低すぎた。そのため、旧γ粒径が11.0μmを超えた。その結果、4点曲げ試験において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of test number 12, the Cr content was too low. Therefore, the old γ particle size exceeded 11.0 μm. As a result, excellent SSC resistance was not exhibited in the 4-point bending test.
 試験番号13の継目無鋼管では、Cr含有量が低すぎた。さらに、Mo含有量が低すぎた。さらに、F1が低すぎた。さらに、最終の焼戻しにおける焼戻しパラメータTMP1が小さすぎた。そのため、旧γ粒径が11.0μmを超えた。そのためさらに、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of Test No. 13, the Cr content was too low. Furthermore, the Mo content was too low. Furthermore, F1 was too low. Furthermore, the tempering parameter TMP 1 in the final tempering was too small. Therefore, the old γ particle size exceeded 11.0 μm. Therefore, the average area of the specific precipitate further exceeded 10.0×10 −3 μm 2 . As a result, excellent SSC resistance was not exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
 試験番号14の継目無鋼管では、O含有量が高すぎた。その結果、4点曲げ試験において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of test No. 14, the O content was too high. As a result, excellent SSC resistance was not exhibited in the 4-point bending test.
 試験番号15の継目無鋼管では、Mo含有量が低すぎた。さらに、F1が低すぎた。そのため、旧γ粒径が11.0μmを超えた。そのためさらに、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of Test No. 15, the Mo content was too low. Furthermore, F1 was too low. Therefore, the old γ particle size exceeded 11.0 μm. Therefore, the average area of the specific precipitate further exceeded 10.0×10 −3 μm 2 . As a result, excellent SSC resistance was not exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
 試験番号16の継目無鋼管では、Cr含有量が高すぎた。そのため、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of Test No. 16, the Cr content was too high. Therefore, the average area of the specific precipitate exceeded 10.0×10 −3 μm 2 . As a result, excellent SSC resistance was not exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
 試験番号17の継目無鋼管では、Mo含有量が低すぎた。そのため、旧γ粒径が11.0μmを超えた。そのためさらに、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of Test No. 17, the Mo content was too low. Therefore, the old γ particle size exceeded 11.0 μm. Therefore, the average area of the specific precipitate further exceeded 10.0×10 −3 μm 2 . As a result, excellent SSC resistance was not exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
 試験番号18の継目無鋼管では、Mo含有量が高すぎた。そのため、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of Test No. 18, the Mo content was too high. Therefore, the average area of the specific precipitate exceeded 10.0×10 −3 μm 2 . As a result, in the test based on NACE TM0177-2005 Method A, excellent SSC resistance was not shown.
 試験番号19の継目無鋼管では、V含有量が低すぎた。さらに、最終の焼戻しにおける焼戻しパラメータTMP1が小さすぎた。そのため、特定析出物の平均面積が10.0×10-3μm2を超えた。その結果、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of test number 19, the V content was too low. Furthermore, the tempering parameter TMP 1 in the final tempering was too small. Therefore, the average area of the specific precipitate exceeded 10.0×10 −3 μm 2 . As a result, excellent SSC resistance was not exhibited in both the test based on NACE TM0177-2005 Method A and the 4-point bending test.
 試験番号20の継目無鋼管では、最終の焼戻しにおける焼戻しパラメータTMP1が小さすぎた。その結果、降伏強度が865MPaを超え、110ksi級の降伏強度が得られなかった。その結果さらに、NACE TM0177-2005 Method Aに準拠した試験と、4点曲げ試験との両方において、優れた耐SSC性を示さなかった。 In the seamless steel pipe of Test No. 20, the tempering parameter TMP 1 in the final tempering was too small. As a result, the yield strength exceeded 865 MPa, and 110 ksi class yield strength was not obtained. As a result, further, excellent SSC resistance was not shown in both the test based on NACE TM0177-2005 Method A and the four-point bending test.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiments of the present disclosure have been described above. However, the embodiments described above are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiments, and can be implemented by appropriately modifying the above-described embodiments without departing from the spirit thereof.
 本開示による鋼材は、極地等過酷な環境に利用される鋼材に広く適用可能であり、好ましくは、油井環境に利用される鋼材として利用可能であり、さらに好ましくは、ケーシング、チュービング、ラインパイプ等の鋼材として利用可能である。 The steel material according to the present disclosure is widely applicable to steel materials used in harsh environments such as polar regions, preferably steel materials used in oil well environments, and more preferably casing, tubing, line pipes, etc. It can be used as a steel material.

Claims (6)

  1.  質量%で、
     C:0.20~0.45%、
     Si:0.05~1.00%、
     Mn:0.01~1.00%、
     P:0.030%以下、
     S:0.0050%以下、
     Al:0.005~0.100%、
     Cr:0.60~1.50%、
     Mo:1.00超~2.00%、
     Ti:0.002~0.020%、
     V:0.05~0.30%、
     Nb:0.005~0.100%、
     B:0.0005~0.0040%、
     N:0.0100%以下、
     O:0.0020%未満、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     Zr:0~0.0100%、
     希土類元素:0~0.0100%、
     Cu:0~0.50%、
     Ni:0~0.50%、
     Co:0~0.50%、及び、
     W:0~0.50%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有し、
     鋼材中において、旧オーステナイト粒の結晶粒径が11.0μm以下であり、
     旧オーステナイト粒界に析出する析出物の平均面積が10.0×10-3μm2以下であり、
     降伏強度が758~862MPaである、鋼材。
     2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
     ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
    In mass %,
    C: 0.20 to 0.45%,
    Si: 0.05 to 1.00%,
    Mn: 0.01 to 1.00%,
    P: 0.030% or less,
    S: 0.0050% or less,
    Al: 0.005 to 0.100%,
    Cr: 0.60 to 1.50%,
    Mo: over 1.00 to 2.00%,
    Ti: 0.002 to 0.020%,
    V: 0.05-0.30%,
    Nb: 0.005 to 0.100%,
    B: 0.0005 to 0.0040%,
    N: 0.0100% or less,
    O: less than 0.0020%,
    Ca: 0 to 0.0100%,
    Mg: 0 to 0.0100%,
    Zr: 0 to 0.0100%,
    Rare earth element: 0-0.0100%,
    Cu: 0 to 0.50%,
    Ni: 0 to 0.50%,
    Co: 0 to 0.50%, and
    W: 0 to 0.50%, the balance consisting of Fe and impurities, and having a chemical composition satisfying the formula (1),
    In the steel material, the crystal grain size of the former austenite grains is 11.0 μm or less,
    The average area of the precipitates deposited on the former austenite grain boundaries is 10.0×10 −3 μm 2 or less,
    A steel material having a yield strength of 758 to 862 MPa.
    2.7×C+0.4×Si+Mn+0.45×Ni+0.45×Cu+0.8×Cr+2×Mo≧3.90 (1)
    Here, the content (mass %) of the corresponding element is substituted for the element symbol in the formula (1). When the corresponding element is not contained, "0" is substituted for the element symbol.
  2.  請求項1に記載の鋼材であって、
     前記化学組成は、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     Zr:0.0001~0.0100%、及び、
     希土類元素:0.0001~0.0100%からなる群から選択される1種又は2種以上を含有する、鋼材。
    The steel material according to claim 1,
    The chemical composition is
    Ca: 0.0001 to 0.0100%,
    Mg: 0.0001 to 0.0100%,
    Zr: 0.0001 to 0.0100%, and
    Rare earth element: A steel material containing one or more selected from the group consisting of 0.0001 to 0.0100%.
  3.  請求項1又は請求項2に記載の鋼材であって、
     前記化学組成は、
     Cu:0.02~0.50%、及び、
     Ni:0.02~0.50%からなる群から選択される1種以上を含有する、鋼材。
    The steel material according to claim 1 or 2,
    The chemical composition is
    Cu: 0.02 to 0.50%, and
    Ni: A steel material containing at least one selected from the group consisting of 0.02 to 0.50%.
  4.  請求項1~請求項3のいずれか1項に記載の鋼材であって、
     前記化学組成は、
     Co:0.02~0.50%、及び、
     W:0.02~0.50%からなる群から選択される1種以上を含有する、鋼材。
    The steel material according to any one of claims 1 to 3,
    The chemical composition is
    Co: 0.02 to 0.50%, and
    W: A steel material containing at least one member selected from the group consisting of 0.02 to 0.50%.
  5.  請求項1~請求項4のいずれか1項に記載の鋼材であって、
     前記鋼材は油井用鋼管である、鋼材。
    The steel material according to any one of claims 1 to 4,
    The steel material is a steel tube for oil wells.
  6.  請求項1~請求項5のいずれか1項に記載の鋼材であって、
     前記鋼材は継目無鋼管である、鋼材。
    The steel material according to any one of claims 1 to 5,
    A steel material, wherein the steel material is a seamless steel pipe.
PCT/JP2020/005617 2019-02-15 2020-02-13 Steel material for use in sour environments WO2020166668A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20755579.8A EP3926059A4 (en) 2019-02-15 2020-02-13 Steel material for use in sour environments
BR112021013441-7A BR112021013441A2 (en) 2019-02-15 2020-02-13 STEEL MATERIAL SUITABLE FOR USE IN ACID ENVIRONMENT
US17/422,870 US20220098712A1 (en) 2019-02-15 2020-02-13 Steel material suitable for use in sour environment
MX2021009588A MX2021009588A (en) 2019-02-15 2020-02-13 Steel material for use in sour environments.
JP2020572313A JP7036237B2 (en) 2019-02-15 2020-02-13 Steel material suitable for use in sour environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025187 2019-02-15
JP2019-025187 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020166668A1 true WO2020166668A1 (en) 2020-08-20

Family

ID=72044212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005617 WO2020166668A1 (en) 2019-02-15 2020-02-13 Steel material for use in sour environments

Country Status (7)

Country Link
US (1) US20220098712A1 (en)
EP (1) EP3926059A4 (en)
JP (1) JP7036237B2 (en)
AR (1) AR118070A1 (en)
BR (1) BR112021013441A2 (en)
MX (1) MX2021009588A (en)
WO (1) WO2020166668A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR118071A1 (en) * 2019-02-15 2021-09-15 Nippon Steel Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232220A (en) 1983-06-14 1984-12-27 Sumitomo Metal Ind Ltd Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPS62253720A (en) 1986-04-25 1987-11-05 Nippon Steel Corp Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPH06322478A (en) 1993-02-26 1994-11-22 Nippon Steel Corp High strength steel excellent in sulfide stress cracking resistance and its production
JPH08311551A (en) 1995-05-15 1996-11-26 Sumitomo Metal Ind Ltd Production of high strength seamless steel pipe excellent in sulfide stress cracking resistance
JP2000256783A (en) 1999-03-11 2000-09-19 Sumitomo Metal Ind Ltd High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
JP2000297344A (en) 1999-04-09 2000-10-24 Sumitomo Metal Ind Ltd Oil well steel excellent in toughness and sulfide stress corrosion cracking resistance, and its manufacture
JP2005350754A (en) 2004-06-14 2005-12-22 Sumitomo Metal Ind Ltd Low alloy steel for oil well tube having excellent sulfide stress cracking resistance
WO2008123422A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
JP2012026030A (en) 2010-06-21 2012-02-09 Jfe Steel Corp Steel pipes for oil well use excellent in sulfide stress cracking resistance, and manufacturing method of the same
JP2012519238A (en) 2009-03-03 2012-08-23 バローレック・マネスマン・オイル・アンド・ガス・フランス Low alloy steel with high yield stress and high sulfide stress cracking resistance
WO2013191131A1 (en) * 2012-06-20 2013-12-27 新日鐵住金株式会社 Steel for oil well pipe, and method for producing same
WO2015190377A1 (en) * 2014-06-09 2015-12-17 新日鐵住金株式会社 Low alloy steel pipe for oil well

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131890B2 (en) * 2014-03-20 2017-05-24 Jfeスチール株式会社 Manufacturing method and selection method of low-alloy high-strength seamless steel pipe for oil well with excellent resistance to sulfide stress corrosion cracking
EP3222740B1 (en) * 2014-11-18 2020-03-11 JFE Steel Corporation High-strength seamless steel pipe for oil wells and method for producing same
US10975450B2 (en) * 2016-02-29 2021-04-13 Jfe Steel Corporation Low alloy high strength thick-walled seamless steel pipe for oil country tubular goods
CN109154053B (en) * 2016-05-20 2020-08-11 日本制铁株式会社 Seamless steel pipe and method for producing same
MX2019002291A (en) * 2016-09-01 2019-07-04 Nippon Steel & Sumitomo Metal Corp Steel and oil well steel pipe.
AR118071A1 (en) * 2019-02-15 2021-09-15 Nippon Steel Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232220A (en) 1983-06-14 1984-12-27 Sumitomo Metal Ind Ltd Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPS62253720A (en) 1986-04-25 1987-11-05 Nippon Steel Corp Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPH06322478A (en) 1993-02-26 1994-11-22 Nippon Steel Corp High strength steel excellent in sulfide stress cracking resistance and its production
JPH08311551A (en) 1995-05-15 1996-11-26 Sumitomo Metal Ind Ltd Production of high strength seamless steel pipe excellent in sulfide stress cracking resistance
JP2000256783A (en) 1999-03-11 2000-09-19 Sumitomo Metal Ind Ltd High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
JP2000297344A (en) 1999-04-09 2000-10-24 Sumitomo Metal Ind Ltd Oil well steel excellent in toughness and sulfide stress corrosion cracking resistance, and its manufacture
JP2005350754A (en) 2004-06-14 2005-12-22 Sumitomo Metal Ind Ltd Low alloy steel for oil well tube having excellent sulfide stress cracking resistance
WO2008123422A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
JP2012519238A (en) 2009-03-03 2012-08-23 バローレック・マネスマン・オイル・アンド・ガス・フランス Low alloy steel with high yield stress and high sulfide stress cracking resistance
JP2012026030A (en) 2010-06-21 2012-02-09 Jfe Steel Corp Steel pipes for oil well use excellent in sulfide stress cracking resistance, and manufacturing method of the same
WO2013191131A1 (en) * 2012-06-20 2013-12-27 新日鐵住金株式会社 Steel for oil well pipe, and method for producing same
WO2015190377A1 (en) * 2014-06-09 2015-12-17 新日鐵住金株式会社 Low alloy steel pipe for oil well

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926059A4

Also Published As

Publication number Publication date
AR118070A1 (en) 2021-09-15
MX2021009588A (en) 2021-09-08
US20220098712A1 (en) 2022-03-31
JP7036237B2 (en) 2022-03-15
JPWO2020166668A1 (en) 2021-10-14
BR112021013441A2 (en) 2021-10-19
EP3926059A1 (en) 2021-12-22
EP3926059A4 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10287645B2 (en) Method for producing high-strength steel material excellent in sulfide stress cracking resistance
JP4632000B2 (en) Seamless steel pipe manufacturing method
WO2020067247A1 (en) Martensitic stainless steel material
JP7425360B2 (en) Martensitic stainless steel material and method for producing martensitic stainless steel material
WO2014068794A1 (en) Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes
WO2020166675A1 (en) Steel material suitable for use in sour environment
WO2013027666A1 (en) Steel oil well pipe having excellent sulfide stress cracking resistance
CN115698358B (en) Steel material
JP7173405B2 (en) Martensitic stainless steel material
JP2023139306A (en) Martensitic stainless seamless steel pipe
JPWO2017018108A1 (en) Steel pipe for line pipe and manufacturing method thereof
WO2020090478A1 (en) Steel material and method for producing steel material
WO2020166668A1 (en) Steel material for use in sour environments
JP6981527B2 (en) Steel material suitable for use in sour environment
JP7151945B1 (en) Martensitic stainless steel material
JP6996641B2 (en) Seamless steel pipe suitable for use in sour environments
JP2006118021A (en) Low alloy steel and manufacturing method therefor
JP7364993B1 (en) steel material
WO2023157897A1 (en) Steel material suitable for use in sour environments
WO2023204294A1 (en) Steel material
JP7211554B2 (en) Steel suitable for use in sour environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572313

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013441

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020755579

Country of ref document: EP

Effective date: 20210915

ENP Entry into the national phase

Ref document number: 112021013441

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210707