WO2023204294A1 - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
WO2023204294A1
WO2023204294A1 PCT/JP2023/015878 JP2023015878W WO2023204294A1 WO 2023204294 A1 WO2023204294 A1 WO 2023204294A1 JP 2023015878 W JP2023015878 W JP 2023015878W WO 2023204294 A1 WO2023204294 A1 WO 2023204294A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
test
steel
ssc resistance
content
Prior art date
Application number
PCT/JP2023/015878
Other languages
French (fr)
Japanese (ja)
Inventor
浩行 富士
晋士 吉田
勇次 荒井
桂一 近藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023547516A priority Critical patent/JP7364993B1/en
Publication of WO2023204294A1 publication Critical patent/WO2023204294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Definitions

  • the present disclosure relates to steel materials, and more particularly to steel materials suitable for use in sour environments.
  • oil wells and gas wells become deeper, there is a demand for higher strength steel materials for oil well applications, such as steel pipes for oil wells.
  • oil well steel materials of 80 ksi class yield strength of less than 80 to 95 ksi, that is, less than 552 to 655 MPa
  • 95 ksi class yield strength of less than 95 to 110 ksi, that is, less than 655 to 758 MPa
  • oil well steel materials of 110 ksi class yield strength of 758 MPa to less than 862 MPa
  • 125 ksi class yield strength of 862 to less than 965 MPa
  • a sour environment refers to an acidified environment containing hydrogen sulfide. Note that the sour environment may also contain carbon dioxide. Steel materials used in such a sour environment are required not only to have high strength but also to have sulfide stress cracking resistance (hereinafter referred to as SSC resistance).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-297344
  • Patent Document 2 International Publication No. 2008/123422
  • the steel material disclosed in Patent Document 1 has C: 0.15 to 0.3%, Cr: 0.2 to 1.5%, Mo: 0.1 to 1%, V: 0. 05 to 0.3%, and Nb: 0.003 to 0.1%.
  • the total amount of precipitated carbides is 1.5 to 4% by mass
  • the proportion of MC type carbides in the total amount of carbides is 5 to 45% by mass
  • the proportion of M 23 C 6 type carbides is 1.5 to 4% by mass.
  • t (mm) it is less than (200/t)% by mass.
  • the SSC resistance is improved by suppressing the proportion of M 23 C 6 type carbide.
  • the number of M 23 C 6 type precipitates with a grain size of 1 ⁇ m or more is 0.1 pieces/mm 2 or less.
  • this steel material also has improved SSC resistance by suppressing the proportion of M 23 C 6 type carbides.
  • Patent Documents 1 and 2 an attempt is made to achieve both high strength and SSC resistance by controlling precipitates.
  • a steel material capable of achieving both high strength and excellent SSC resistance may be obtained by means other than Patent Documents 1 and 2.
  • An objective of the present disclosure is to provide a steel material that has high strength and excellent SSC resistance in sour environments.
  • the steel material according to the present disclosure has the following configuration.
  • the chemical composition is in mass%, C: 0.20-0.35%, Si: 0.60-1.30%, Mn: 0.05-0.25%, P: 0.050% or less, S: 0.0100% or less, Al: 0.010-0.100%, N: 0.0100% or less, Cr: 0.20-1.00%, Mo: 0.10-1.00%, Ti: 0.003 to 0.030%, O: 0.0050% or less, Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Co: 0 to 0.50%, Ca: 0-0.0040%, Mg: 0 to 0.0040%, Rare earth elements: 0 to 0.0040%, Nb: 0 to 0.150%, V: 0 to 0.500%, B: 0 to 0.0030%, and The remainder consists of Fe and impurities, The yield strength is less than 758 to 965 MPa, When the yield strength is less than 758 to 862 MPa, EE
  • Steel materials according to the present disclosure have high strength and excellent SSC resistance in sour environments.
  • FIG. 1 is a schematic diagram for explaining a process in which hydrogen penetrates into the interior of a steel material from the surface of the steel material.
  • Fig. 2A shows the FN and , is a diagram showing the relationship between the fracture toughness value K 1SSC (MPa ⁇ m) obtained in the DCB test.
  • Figure 2B shows the FN and , is a diagram showing the relationship between the fracture toughness value K 1SSC (MPa ⁇ m) obtained in the DCB test.
  • FIG. 3A is a side view of a DCB test piece specified in NACE TM0177-2016 Method D.
  • FIG. 3B is a perspective view of a wedge driven into the DCB specimen shown in FIG. 3A.
  • the present inventors investigated and studied steel materials that have high strength and excellent SSC resistance in sour environments. As a result, the present inventors obtained the following findings.
  • the present inventors investigated a steel material having high strength and excellent SSC resistance in a sour environment from the viewpoint of chemical composition.
  • the chemical composition of the steel satisfies the following characteristic 1
  • high strength of 110 ksi class (less than 758 to 862 MPa) to 125 ksi class (less than 862 to 965 MPa) and excellent SSC resistance in sour environments can be obtained. I thought there was a possibility that it would happen.
  • the chemical composition is in mass%, C: 0.20 to 0.35%, Si: 0.60 to 1.30%, Mn: 0.05 to 0.25%, P: 0.050% or less, S : 0.0100% or less, Al: 0.010 to 0.100%, N: 0.0100% or less, Cr: 0.20 to 1.00%, Mo: 0.10 to 1.00%, Ti: 0.003 to 0.030%, O: 0.0050% or less, Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.
  • Co 50%, Co: 0 to 0.50%, Ca: 0 to 0.0040%, Mg: 0 to 0.0040%, Rare earth elements: 0 to 0.0040%, Nb: 0 to 0.150%, V : 0 to 0.500%, B: 0 to 0.0030%, and the balance consists of Fe and impurities.
  • the present inventors investigated means for further increasing the SSC resistance of steel materials whose chemical composition satisfies Feature 1.
  • FIG. 1 is a schematic diagram for explaining a process in which hydrogen penetrates into the interior of a steel material from the surface of the steel material.
  • steel material 1 corrodes in a sour environment
  • the surface of steel material 1 becomes electrochemically active.
  • Fe in the steel material 1 becomes Fe 2+ and dissolves in the environment.
  • electrons e - are released to the outside of the steel material 1 (A: occurrence of corrosion).
  • Hydrogen ions H + present in the environment receive electrons e ⁇ emitted from the steel material 1, are reduced, and are adsorbed on the surface of the steel material 1 as adsorbed hydrogen atoms H ad (B: adsorption reaction of hydrogen ions). Due to the above mechanism, a plurality of adsorbed hydrogen atoms Had exist on the surface of the steel material 1. Most of these adsorbed hydrogen atoms H ad combine with each other to become hydrogen gas H 2 and are released from the surface of the steel material 1 into the environment.
  • the present inventors have determined that in order to suppress the generation and propagation of SSC and obtain excellent SSC resistance, it is necessary to suppress the penetration of hydrogen from the surface of the steel material. was considered to be effective. Therefore, the present inventors investigated means for suppressing hydrogen from penetrating from the surface of the steel material.
  • the inventors first investigated and studied elements that affect the penetration of hydrogen from the surface of steel materials. As a result of studies, the present inventors obtained the following findings regarding steel materials whose chemical composition satisfies Feature 1.
  • Si, Cr, Mo, Zr, Sb, Cu, Ni, and Co suppress the electrochemical activity of the steel surface in a sour environment. As a result, these elements suppress the intrusion of hydrogen from the surface of the steel material.
  • C and Mn promote electrochemical activity on the surface of steel in a sour environment. As a result, these elements promote hydrogen penetration from the steel surface.
  • the present inventors determined the content of these hydrogen penetration inhibiting elements (Si, Cr, Mo, Zr, Sb, Cu, Ni, and Co) and the hydrogen penetration promoting elements (C, It was thought that if the content of Mn) was appropriately adjusted, hydrogen penetration from the steel surface could be suppressed by electrochemical action. Therefore, in steel materials whose chemical composition satisfies Characteristic 1, the relationship between hydrogen penetration inhibiting elements, hydrogen penetration promoting elements, and SSC resistance was investigated. As a result, it was thought that excellent SSC resistance in a sour environment could be obtained in a steel material having high strength by increasing the electrochemical elements (EE) defined by the following formula (1).
  • EE electrochemical elements
  • the present inventors investigated EE when the yield strength of the steel material is 110 ksi class (less than 758 to 862 MPa) and EE when the yield strength of the steel material is 125 ksi class (less than 862 to 965 MPa). .
  • the EE is 2.75 or more when the yield strength is 110 ksi class, and the EE is 3.00 or more when the yield strength is 125 ksi class, excellent SSC resistance can be obtained even with high strength. It turned out that it was possible.
  • the present inventors considered that the occurrence and propagation of SSC in a steel material whose chemical composition satisfies Feature 1 is affected not only by the above-mentioned electrochemical factors but also by physical factors due to the microstructure. Therefore, the present inventors further investigated means for increasing the SSC resistance of steel materials not only from the viewpoint of electrochemical factors but also from the viewpoint of physical factors. As a result, the present inventors found that the average equivalent circle diameter ( ⁇ m) of prior austenite grains in steel material acts synergistically with the above-mentioned electrochemical factors and significantly influences the SSC resistance of steel material. found out.
  • the present inventors further investigated the above-mentioned electrochemical factors (hydrogen penetration inhibiting element and hydrogen penetration promoting element), physical factors (average equivalent circular diameter of prior austenite grains), and SSC resistance.
  • electrochemical factors hydrogen penetration inhibiting element and hydrogen penetration promoting element
  • physical factors average equivalent circular diameter of prior austenite grains
  • SSC resistance we examined the relationship with gender.
  • EE electrochemical factor
  • FN FN defined by the following formula (2) according to the strength, even if the strength is high from 110ski to 125ksi
  • the present inventors have discovered that excellent SSC resistance can be obtained.
  • FN EE/(D 0.9 ) (2)
  • the average circular equivalent diameter in ⁇ m of prior austenite grains in the steel material is substituted for D in equation (2).
  • FN is an index indicating the degree of influence of electrochemical factors (hydrogen penetration suppressing elements and hydrogen penetration promoting elements) and physical factors (average equivalent circular diameter of prior austenite grains) on SSC resistance. If the steel material has a chemical composition that satisfies Characteristic 1 and has a yield strength of 110 ksi class, the EE should be 2.75 or more and the FN should be 0.185 or more. Further, in the case of a steel material whose chemical composition satisfies Characteristic 1 and whose yield strength is 125 ksi class, the EE should be 3.00 or more and the FN should be 0.200 or more. In this case, excellent SSC resistance can be obtained even if the strength is as high as 110 to 125 ksi. This point will be explained below.
  • Figure 2A shows the FN and fracture obtained in the DCB test for a steel material whose chemical composition satisfies Feature 1, whose yield strength is 110 ksi class (758 to less than 862 MPa), and whose EE is 2.75 or more. It is a figure which shows the relationship with toughness value K1SSC (MPa ⁇ m).
  • FIG. 2A was created based on data obtained in Example 1, which will be described later.
  • the fracture toughness value K1SSC is as high as 25.0 MPa ⁇ m or more, and excellent SSC resistance is obtained.
  • the fracture toughness value K 1SSC decreases significantly to less than 25.0 MPa ⁇ m. Therefore, by setting FN to 0.185 or more, excellent SSC resistance can be obtained in 110 ksi class (less than 758 to 862 MPa) steel materials.
  • Figure 2B shows the FN and fracture obtained in the DCB test for a steel material whose chemical composition satisfies Feature 1, whose yield strength is 125 ksi class (862 to less than 965 MPa), and whose EE is 3.00 or more. It is a figure which shows the relationship with toughness value K1SSC (MPa ⁇ m).
  • FIG. 2B was created based on data obtained in Example 2, which will be described later.
  • the fracture toughness value K1SSC is as high as 24.0 MPa ⁇ m or more, and excellent SSC resistance is obtained.
  • the fracture toughness value K 1SSC decreases significantly to less than 24.0 MPa ⁇ m. Therefore, by setting FN to 0.200 or more, excellent SSC resistance can be obtained in 125 ksi class (less than 862 to 965 MPa) steel materials.
  • the steel material according to this embodiment which was completed based on the above findings, has the following configuration.
  • the chemical composition is in mass%, C: 0.20-0.35%, Si: 0.60-1.30%, Mn: 0.05-0.25%, P: 0.050% or less, S: 0.0100% or less, Al: 0.010-0.100%, N: 0.0100% or less, Cr: 0.20-1.00%, Mo: 0.10-1.00%, Ti: 0.003 to 0.030%, O: 0.0050% or less, Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Co: 0 to 0.50%, Ca: 0-0.0040%, Mg: 0 to 0.0040%, Rare earth elements: 0 to 0.0040%, Nb: 0 to 0.150%, V: 0 to 0.500%, B: 0 to 0.0030%, and The remainder consists of Fe and impurities, The yield strength is less than 758 to 965 MPa, When the yield strength is less than 758 to 862 MPa,
  • the steel material according to [1], The chemical composition is Zr: 0.0001 to 0.0040%, Sb: 0.01 to 0.50%, Cu: 0.01 to 0.50%, Ni: 0.01-0.50%, Co: 0.01 to 0.50%, Ca: 0.0001-0.0040%, Mg: 0.0001 to 0.0040%, Rare earth elements: 0.0001-0.0040%, Nb: 0.001 to 0.150%, V: 0.001 to 0.500%, and B: 0.0001 to 0.0030%, Containing one or more selected from the group consisting of Steel material.
  • the steel material according to [1] or [2] is a steel pipe for oil wells, Steel material.
  • the steel material of this embodiment satisfies the following characteristics 1 to 3.
  • the chemical composition is in mass%, C: 0.20 to 0.35%, Si: 0.60 to 1.30%, Mn: 0.05 to 0.25%, P: 0.050% or less, S : 0.0100% or less, Al: 0.010 to 0.100%, N: 0.0100% or less, Cr: 0.20 to 1.00%, Mo: 0.10 to 1.00%, Ti: 0.003 to 0.030%, O: 0.0050% or less, Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.
  • Yield strength is 758 to less than 965 MPa.
  • EE defined by formula (1) is 2.75 or more
  • FN defined by formula (2) is 0.185 or more
  • the yield strength is less than 862 to 965 MPa
  • the EE is 3.00 or more and the FN is 0.200 or more.
  • FN EE/(D 0.9 ) (2)
  • each element symbol in formula (1) is substituted with the content in mass % of the corresponding element.
  • D in equation (2) is substituted with the average circular equivalent diameter in ⁇ m of prior austenite grains in the steel material.
  • the chemical composition of the steel material of this embodiment contains the following elements.
  • Carbon (C) increases the strength of steel by increasing the hardenability of the steel and forming carbides. Furthermore, C promotes the spheroidization of carbides during tempering during the manufacturing process and improves the SSC resistance of the steel material. If the C content is less than 0.20%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. If the C content exceeds 0.35%, coarse carbides are excessively produced. Further, C is an element that promotes hydrogen penetration. Therefore, even if the contents of other elements are within the range of this embodiment, the SSC resistance of the steel material is reduced. Therefore, the C content is 0.20-0.35%.
  • the preferable lower limit of the C content is 0.22%, more preferably 0.23%, still more preferably 0.24%, and still more preferably 0.25%.
  • a preferable upper limit of the C content is 0.32%, more preferably 0.30%, still more preferably 0.28%, and still more preferably 0.27%.
  • Si 0.60-1.30%
  • Silicon (Si) is a hydrogen intrusion suppressing element and suppresses hydrogen intrusion from the surface of the steel material. This increases the SSC resistance of the steel material. If the Si content is less than 0.60%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Si content exceeds 1.30%, the prior austenite grains become coarse even if the contents of other elements are within the range of this embodiment. In this case, although the amount of hydrogen penetrating from the surface of the steel material is suppressed by the electrochemical action of Si, the SSC resistance of the steel material decreases due to the physical action. Therefore, the Si content is 0.60-1.30%.
  • the lower limit of the Si content is preferably 0.62%, more preferably 0.65%, even more preferably 0.70%, even more preferably 0.72%, and even more preferably 0.75%. %, more preferably 0.80%.
  • a preferable upper limit of the Si content is 1.28%, more preferably 1.25%, and still more preferably 1.20%.
  • Mn 0.05-0.25%
  • Mn Manganese
  • Mn deoxidizes steel. Mn further improves the hardenability of the steel material. If the Mn content is less than 0.05%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
  • Mn is an element that promotes hydrogen penetration. If the Mn content exceeds 0.25%, excessive Mn sulfide will be produced. Mn sulfide becomes a starting point for pitting corrosion. Therefore, if Mn sulfide is produced excessively, the corrosion rate will increase and hydrogen penetration into the steel material will be promoted. As a result, even if the contents of other elements are within the range of this embodiment, the SSC resistance of the steel material decreases.
  • the Mn content is 0.05-0.25%.
  • the preferable lower limit of the Mn content is 0.06%, more preferably 0.07%, even more preferably 0.08%, and still more preferably 0.10%.
  • a preferable upper limit of the Mn content is 0.24%, more preferably 0.23%, even more preferably 0.22%, still more preferably 0.20%, and even more preferably 0.18%. %.
  • P 0.050% or less Phosphorus (P) is an impurity. That is, the P content is more than 0%. If the P content exceeds 0.050%, even if the contents of other elements are within the ranges of this embodiment, P will segregate at grain boundaries and the SSC resistance of the steel material will decrease. Therefore, the P content is 0.050% or less. It is preferable that the P content is as low as possible. However, extreme reduction in P content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.003%.
  • the upper limit of the P content is preferably 0.030%, more preferably 0.025%, even more preferably 0.020%, and still more preferably 0.015%.
  • S 0.0100% or less Sulfur (S) is an impurity. That is, the S content is more than 0%. If the S content exceeds 0.0100%, even if the contents of other elements are within the ranges of this embodiment, S will segregate at grain boundaries and the SSC resistance of the steel material will decrease. Therefore, the S content is 0.0100% or less. It is preferable that the S content is as low as possible. However, extreme reduction in S content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the S content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%. A preferable upper limit of the S content is 0.0070%, more preferably 0.0050%, even more preferably 0.0030%, still more preferably 0.0025%, and even more preferably 0.0020%. %, more preferably 0.0015%.
  • Al 0.010-0.100%
  • Aluminum (Al) deoxidizes steel. If the Al content is less than 0.010%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Al content exceeds 0.100%, coarse oxide-based inclusions will be generated even if the contents of other elements are within the range of this embodiment. Therefore, the SSC resistance of the steel material decreases. Therefore, the Al content is 0.010 to 0.100%.
  • the lower limit of the Al content is preferably 0.012%, more preferably 0.015%, even more preferably 0.020%, and still more preferably 0.025%.
  • a preferable upper limit of the Al content is 0.080%, more preferably 0.070%, and still more preferably 0.060%.
  • the "Al" content as used herein means the content of "acid-soluble Al", that is, "sol.Al".
  • N 0.0100% or less Nitrogen (N) is unavoidably contained. That is, the lower limit of the N content is over 0%. N combines with Ti to form nitrides and refines the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. However, if the N content exceeds 0.0100%, coarse nitrides will be formed even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases. Therefore, the N content is 0.0100% or less.
  • the preferable lower limit of the N content is 0.0001%, more preferably 0.0005%, even more preferably 0.0010%, still more preferably 0.0015%, and even more preferably 0.0020%. %.
  • a preferable upper limit of the N content is 0.0070%, more preferably 0.0060%, even more preferably 0.0050%, still more preferably 0.0045%, and even more preferably 0.0040%. %.
  • Chromium (Cr) improves the hardenability of steel materials. Cr further functions as a hydrogen intrusion suppressing element. Specifically, Cr stabilizes the corrosion product film formed on the surface of the steel material in a sour environment, thereby suppressing hydrogen from penetrating into the steel material. As a result, the SSC resistance of the steel material increases. If the Cr content is less than 0.20%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Cr content exceeds 1.00%, the hardness of the steel material will become excessively high even if the contents of other elements are within the range of this embodiment. Therefore, the SSC resistance of the steel material decreases.
  • the Cr content is between 0.20 and 1.00%.
  • the preferable lower limit of the Cr content is 0.25%, more preferably 0.30%, even more preferably 0.35%, still more preferably 0.40%, even more preferably 0.45%. %, more preferably 0.50%, still more preferably 0.55%, still more preferably 0.60%.
  • the upper limit of the Cr content is preferably 0.98%, more preferably 0.95%, and still more preferably 0.90%.
  • Mo 0.10 ⁇ 1.00%
  • Molybdenum (Mo) functions as a hydrogen penetration inhibiting element. Specifically, Mo stabilizes the corrosion product film formed on the surface of the steel material in a sour environment, thereby suppressing hydrogen from penetrating into the steel material. As a result, the SSC resistance of the steel material increases. Mo further improves the hardenability of the steel material. Mo further increases the temper softening resistance of the steel material and enables high temperature tempering. As a result, the SSC resistance of the steel material increases. If the Mo content is less than 0.10%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Mo content exceeds 1.00%, the above effects will be saturated.
  • the Mo content is 0.10-1.00%.
  • the lower limit of the Mo content is preferably 0.20%, more preferably 0.25%, even more preferably 0.30%, and still more preferably 0.35%.
  • the preferable upper limit of the Mo content is 0.95%, more preferably 0.90%, even more preferably 0.85%, even more preferably 0.80%, and even more preferably 0.70%. %.
  • Ti 0.003 ⁇ 0.030% Titanium (Ti) combines with N to form a nitride, and the pinning effect refines the crystal grains of the steel material. As a result, the strength of the steel material increases. If the Ti content is less than 0.003%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Ti content exceeds 0.030%, coarse Ti nitrides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases. Therefore, the Ti content is 0.003 to 0.030%. The lower limit of the Ti content is preferably 0.004%, more preferably 0.005%. A preferable upper limit of the Ti content is 0.028%, more preferably 0.025%, still more preferably 0.022%, and still more preferably 0.020%.
  • Oxygen (O) is an impurity. That is, the lower limit of the O content is over 0%. If the O content exceeds 0.0050%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the low-temperature toughness and SSC resistance of the steel material decrease. Therefore, the O content is 0.0050% or less. It is preferable that the O content is as low as possible. However, extreme reduction in O content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the O content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%. A preferable upper limit of the O content is 0.0040%, more preferably 0.0030%, still more preferably 0.0025%, and still more preferably 0.0020%.
  • the remainder of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
  • impurities in the chemical composition are those that are mixed in from raw materials such as ore, scrap, or the manufacturing environment when manufacturing steel materials industrially, and are not intentionally contained. It means what is permissible within a range that does not adversely affect the steel material according to this embodiment.
  • the chemical composition of the steel material of this embodiment further includes: Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Co: 0 to 0.50%, Ca: 0-0.0040%, Mg: 0 to 0.0040%, Rare earth elements: 0 to 0.0040%, Nb: 0 to 0.150%, V: 0 to 0.500%, and B: 0 to 0.0030%, It may contain one or more elements selected from the group consisting of. These arbitrary elements will be explained below.
  • the chemical composition of the steel material according to the present embodiment further includes one or more elements selected from the group consisting of Zr, Sb, Cu, Ni, Co, Ca, Mg, and rare earth elements (REM) in place of a part of Fe. You may. All of these elements are optional elements and improve the SSC resistance of the steel material.
  • Zr 0 to 0.0040%
  • Zirconium (Zr) is an optional element and may not be included. That is, the Zr content may be 0%.
  • Zr When Zr is contained, that is, when the Zr content is more than 0%, Zr functions as a hydrogen penetration inhibiting element. Specifically, Zr stabilizes the corrosion product film formed on the surface of the steel material in a sour environment and suppresses hydrogen from penetrating into the steel material. As a result, the SSC resistance of the steel material increases. If even a small amount of Zr is contained, the above effects can be obtained to some extent. However, if the Zr content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment.
  • the Zr content is 0 to 0.0040%.
  • the preferable lower limit of the Zr content is 0.0001%, more preferably 0.0003%, even more preferably 0.0006%, still more preferably 0.0010%, and even more preferably 0.0015%. %.
  • a preferable upper limit of the Zr content is 0.0038%, more preferably 0.0035%, and still more preferably 0.0032%.
  • Sb 0-0.50%
  • Antimony (Sb) is an optional element and may not be included. That is, the Sb content may be 0%.
  • Sb When Sb is contained, that is, when the Sb content is more than 0%, Sb functions as a hydrogen penetration suppressing element. Specifically, Sb suppresses hydrogen from entering the steel material in a sour environment. As a result, the SSC resistance of the steel material increases. If even a small amount of Sb is contained, the above effects can be obtained to some extent. However, if the Sb content exceeds 0.50%, the hot workability of the steel material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the Sb content is 0 to 0.50%.
  • the preferable lower limit of the Sb content is 0.01%, more preferably 0.03%, still more preferably 0.05%, and still more preferably 0.08%.
  • a preferable upper limit of the Sb content is 0.40%, more preferably 0.35%, still more preferably 0.30%, and still more preferably 0.25%.
  • Cu 0-0.50% Copper (Cu) is an optional element and may not be included. That is, the Cu content may be 0%.
  • Cu functions as a hydrogen penetration suppressing element. Specifically, Cu concentrates at the interface between the corrosion product film and the base material in a sour environment. This suppresses the surface activity of the base material and suppresses hydrogen from entering the steel material. As a result, the SSC resistance of the steel material increases. Furthermore, Cu is dissolved in the steel material to improve the hardenability of the steel material, thereby increasing the strength of the steel material. If even a small amount of Cu is contained, the above effects can be obtained to some extent.
  • the Cu content is 0-0.50%.
  • the preferable lower limit of the Cu content is 0.01%, more preferably 0.02%, and still more preferably 0.05%.
  • a preferable upper limit of the Cu content is 0.40%, more preferably 0.38%, still more preferably 0.35%, and still more preferably 0.30%.
  • Nickel (Ni) is an optional element and may not be included. That is, the Ni content may be 0%.
  • Ni functions as a hydrogen penetration suppressing element. Specifically, Ni concentrates at the interface between the corrosion product film and the base material in a sour environment. This suppresses the surface activity of the base material and suppresses hydrogen from entering the steel material. As a result, the SSC resistance of the steel material increases. If even a small amount of Ni is contained, the above effects can be obtained to some extent.
  • the Ni content is 0 to 0.50%.
  • the preferable lower limit of the Ni content is 0.01%, more preferably 0.05%, and still more preferably 0.07%.
  • a preferable upper limit of the Ni content is 0.45%, more preferably 0.40%, still more preferably 0.35%, and still more preferably 0.32%.
  • Co 0-0.50%
  • Cobalt (Co) is an optional element and may not be included. That is, the Co content may be 0%.
  • Co functions as a hydrogen penetration suppressing element. Specifically, Co concentrates at the interface between the corrosion product film and the base material in a sour environment. This suppresses the surface activity of the base material and suppresses hydrogen from entering the steel material. As a result, the SSC resistance of the steel material increases. If even a small amount of Co is contained, the above effects can be obtained to some extent.
  • the Co content is 0-0.50%.
  • the preferable lower limit of the Co content is 0.01%, more preferably 0.02%, even more preferably 0.03%, still more preferably 0.05%, and even more preferably 0.08%. %.
  • a preferable upper limit of the Co content is 0.40%, more preferably 0.30%, still more preferably 0.20%, and still more preferably 0.15%.
  • Ca 0-0.0040% Calcium (Ca) is an optional element and may not be included. That is, the Ca content may be 0%.
  • Ca When Ca is contained, that is, when the Ca content is more than 0%, Ca renders S in the steel material harmless as sulfide and improves the SSC resistance of the steel material. If even a small amount of Ca is contained, the above effects can be obtained to some extent. However, if the Ca content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases. Therefore, the Ca content is 0 to 0.0040%.
  • the lower limit of the Ca content is preferably 0.0001%, more preferably 0.0003%.
  • a preferable upper limit of the Ca content is 0.0030%, more preferably 0.0020%, still more preferably 0.0015%, and still more preferably 0.0012%.
  • Mg 0-0.0040%
  • Mg Magnesium
  • Mg is an optional element and may not be included. That is, the Mg content may be 0%.
  • Mg When Mg is contained, that is, when the Mg content is more than 0%, Mg renders S in the steel material harmless as sulfide and improves the SSC resistance of the steel material. If even a small amount of Mg is contained, the above effects can be obtained to some extent. However, if the Mg content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases. Therefore, the Mg content is 0 to 0.0040%.
  • the lower limit of the Mg content is preferably 0.0001%, more preferably 0.0003%.
  • the upper limit of the Mg content is preferably 0.0030%, more preferably 0.0025%, even more preferably 0.0020%, and still more preferably 0.0015%.
  • Rare earth elements are optional elements and may not be included. That is, the REM content may be 0%.
  • REM When REM is contained, that is, when the REM content is more than 0%, REM renders S in the steel material harmless as sulfide, and improves the SSC resistance of the steel material.
  • REM further combines with P in the steel material to suppress segregation of P at grain boundaries. Therefore, a decrease in the SSC resistance of the steel material due to P segregation is suppressed. If even a small amount of REM is contained, the above effects can be obtained to some extent. However, if the REM content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment.
  • the REM content is between 0 and 0.0040%.
  • the lower limit of the REM content is preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.
  • a preferable upper limit of the REM content is 0.0035%, more preferably 0.0030%, and still more preferably 0.0025%.
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids such as lanthanum (La) with atomic number 57 to atomic number 71. It means one or more elements selected from the group consisting of lutetium (Lu). Moreover, the REM content in this specification means the total content of these elements.
  • the chemical composition of the steel material according to the present embodiment may further contain one or more elements selected from the group consisting of Nb, V, and B in place of a part of Fe. All of these elements are optional elements and increase the strength of the steel material.
  • Niobium (Nb) is an optional element and may not be included. That is, the Nb content may be 0%.
  • Nb combines with C and/or N to form Nb carbonitride or the like.
  • These Nb carbonitrides etc. refine the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. If even a small amount of Nb is contained, the above effects can be obtained to some extent. However, if the Nb content exceeds 0.150%, coarse Nb carbonitrides and the like will be generated even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
  • the Nb content is between 0 and 0.150%.
  • the lower limit of the Nb content is preferably 0.001%, more preferably 0.003%, even more preferably 0.005%, even more preferably 0.008%, and still more preferably 0.012%. %.
  • a preferable upper limit of the Nb content is 0.100%, more preferably 0.050%, even more preferably 0.030%, still more preferably 0.025%, and even more preferably 0.020%. %.
  • V 0-0.500%
  • Vanadium (V) is an optional element and may not be included. That is, the V content may be 0%.
  • V combines with C and/or N to form V carbonitride or the like.
  • These V carbonitrides etc. refine the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. If even a small amount of V is contained, the above effects can be obtained to some extent. However, if the V content exceeds 0.500%, the toughness of the steel material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the V content is 0-0.500%.
  • the lower limit of the V content is preferably 0.001%, more preferably 0.005%, and still more preferably 0.010%.
  • a preferable upper limit of the V content is 0.300%, more preferably 0.250%, even more preferably 0.200%, still more preferably 0.150%, and even more preferably 0.120%. %, more preferably 0.100%.
  • B 0-0.0030% Boron (B) is an optional element and may not be included. That is, the B content may be 0%.
  • B forms a solid solution in the steel material, improves the hardenability of the steel material, and increases the strength of the steel material. If even a small amount of B is contained, the above effects can be obtained to some extent. However, if the B content exceeds 0.0030%, coarse B nitrides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases. Therefore, the B content is 0 to 0.0030%.
  • the lower limit of the B content is preferably 0.0001%, more preferably 0.0005%, and even more preferably 0.0008%.
  • a preferable upper limit of the B content is 0.0028%, more preferably 0.0025%, and still more preferably 0.0023%.
  • the yield strength of the steel material according to this embodiment is 758 to less than 965 MPa (110 ksi class to 125 ksi class).
  • the steel material of this embodiment has excellent SSC resistance even if it has a high yield strength of less than 758 to 965 MPa when characteristics 1 and 3 are satisfied.
  • Yield strength is measured by the following method.
  • a tensile test is performed in accordance with ASTM E8/E8M (2021). Specifically, a tensile test piece is taken from the steel material.
  • the size of the tensile test piece is not particularly limited.
  • the tensile test piece is, for example, a round bar tensile test piece with a parallel part diameter of 6.0 mm and a gage length of 30.0 mm. If the steel material is a steel pipe, take a tensile test piece from the center of the wall thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the axial direction of the steel pipe.
  • the steel material is a steel plate, take a tensile test piece from the center of the plate thickness.
  • the longitudinal direction of the tensile test piece is parallel to the rolling direction of the steel plate.
  • a tensile test piece is taken from section R/2.
  • round steel means a steel bar whose cross section perpendicular to the axial direction is circular.
  • the R/2 section means the center of the radius R in a cross section perpendicular to the axial direction (rolling direction) of the round steel.
  • the longitudinal direction of the tensile test piece shall be parallel to the axial direction of the round steel.
  • the total area ratio of tempered martensite and tempered bainite is 90% or more.
  • the remainder of the microstructure is, for example, ferrite and/or pearlite.
  • the total area ratio of tempered martensite and tempered bainite is 90% or more. Therefore, if the chemical composition of a steel material satisfies feature 1 and the yield strength satisfies feature 2, the total area ratio of tempered martensite and tempered bainite can be considered to be 90% or more in the microstructure of the steel material. can.
  • the total area ratio of tempered martensite and tempered bainite can be determined by the following method. First, a test piece is taken from the steel material. When the steel material is a steel pipe, a test piece having an observation surface of 10 mm in the tube axis direction and 10 mm in the tube diameter direction from the center of the wall thickness is taken. If the steel material is a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction is taken.
  • a test piece having an observation surface extending 10 mm in the rolling direction and 10 mm in the plate thickness direction from the center of the plate thickness is taken. If the steel material is a steel plate with a thickness of less than 10 mm, a test piece having an observation surface of 10 mm in the rolling direction and the thickness of the steel plate in the thickness direction is taken. If the steel material is a round steel, a test piece is taken from a cross section perpendicular to the axial direction (rolling direction) of the round steel. Specifically, a test piece is taken that includes the R/2 part in the center and has an observation surface of 10 mm in the axial direction and 10 mm in the radial direction of the cross section. If the diameter of the cross section is less than 10 mm, take a test piece that includes the R/2 portion and has an observation surface that is 10 mm in the axial direction and has a diameter in the radial direction of the cross section.
  • polish the observation surface of the test piece to a mirror surface After polishing, the observation surface is immersed in a nital corrosive solution for about 10 seconds to be etched.
  • the etched observation surface is observed in 10 fields of view using a secondary electron image using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the field of view area is, for example, 10000 ⁇ m 2 (1000x magnification).
  • tempered martensite and tempered bainite are identified from the contrast.
  • tempered martensite and tempered bainite can be distinguished from other structures (ferrite, pearlite, etc.) based on their morphology.
  • the tissue having lamellae can be identified as pearlite.
  • the structure containing laths and lenses can be identified as tempered martensite and tempered bainite.
  • a structure without substructure within the grain can be identified as ferrite.
  • the total area ratio of the specified tempered martensite and tempered bainite is determined.
  • the method for determining the total area ratio is not particularly limited, and any known method may be used.
  • the total area ratio of tempered martensite and tempered bainite can be determined by image analysis.
  • the arithmetic mean value of the total area ratio of tempered martensite and tempered bainite determined in all fields of view (10 fields of view) is defined as the total area ratio (%) of tempered martensite and tempered bainite.
  • FN EE/(D 0.9 ) (2)
  • each element symbol in formula (1) is substituted with the content in mass % of the corresponding element.
  • D in equation (2) is substituted with the average circular equivalent diameter in ⁇ m of prior austenite grains in the steel material.
  • EE [About EE defined by formula (1)]
  • Si, Cr, Mo, Zr, Sb, Cu, Ni, and Co are elements that suppress hydrogen penetration from the surface of the steel material (hydrogen penetration suppressing elements).
  • C and Mn are elements that promote hydrogen penetration from the steel surface (hydrogen penetration promoting elements).
  • EE is an index of electrochemical hydrogen penetration suppression effect in steel materials.
  • the yield strength of the steel material is 110 ksi class (less than 758 to 862 MPa)
  • the hydrogen penetration inhibiting element is sufficiently larger than the hydrogen penetration promoting element. Therefore, hydrogen penetration from the steel surface is electrochemically suppressed.
  • excellent SSC resistance can be obtained on the premise that Features 1 and 2 are satisfied and FN is 0.185 or more.
  • the preferable lower limit of EE is 2.78, more preferably 2.80, even more preferably 2.85, still more preferably 2.90, even more preferably It is 2.95, more preferably 3.00.
  • the upper limit of EE is not particularly limited, but the preferable upper limit of EE is 6.60, more preferably 6.00, still more preferably 5.80, and still more preferably 5.50.
  • the yield strength of the steel material is 125 ksi class (less than 862 to 965 MPa)
  • the strength is higher than that of 110 ksi class, so in order to improve SSC resistance, it is necessary to further suppress hydrogen intrusion.
  • EE is 3.00 or more
  • hydrogen penetration from the surface of the steel material is electrochemically suppressed in a steel material having a yield strength of 125 ksi class.
  • excellent SSC resistance can be obtained on the premise that Features 1 and 2 are satisfied and FN is 0.200 or more.
  • the preferable lower limit of EE is 3.10, more preferably 3.15, still more preferably 3.20, still more preferably 3.25, even more preferably 3.30, more preferably 3.35.
  • the upper limit of EE is not particularly limited, but the preferable upper limit of EE is 6.60, more preferably 6.00, still more preferably 5.80, and still more preferably 5.50.
  • the preferable lower limit of FN is 0.187, more preferably 0.190, still more preferably 0.192, and still more preferably 0.195.
  • the upper limit of FN is not particularly limited, the preferable upper limit of FN is 0.580, more preferably 0.550, still more preferably 0.500, and even more preferably 0.450.
  • the yield strength of the steel material whose chemical composition satisfies characteristic 1 is 125 ksi class (less than 862 to 965 MPa)
  • EE is 3.00 or more and FN is 0.200 or more
  • the preferable lower limit of FN is 0.205, more preferably 0.210, still more preferably 0.215, and still more preferably 0.220.
  • the upper limit of FN is not particularly limited, the preferable upper limit of FN is 0.580, more preferably 0.550, still more preferably 0.500, and still more preferably 0.450.
  • the average equivalent circle diameter D ( ⁇ m) of the prior austenite grains of the steel material according to this embodiment is determined by the following method. First, a test piece is taken from the steel material.
  • the steel material is a steel pipe
  • a test piece having an observation surface of 10 mm in the tube axis direction and 10 mm in the tube diameter direction from the center of the wall thickness is taken. If the steel material is a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction is taken.
  • the steel material is a steel plate
  • a test piece having an observation surface extending 10 mm in the rolling direction and 10 mm in the plate thickness direction from the center of the plate thickness is taken.
  • the steel material is a steel plate with a thickness of less than 10 mm
  • a test piece having an observation surface of 10 mm in the rolling direction and the thickness of the steel plate in the thickness direction is taken.
  • the steel material is a round steel
  • a test piece is taken from a cross section perpendicular to the axial direction (rolling direction) of the round steel. Specifically, a test piece is taken that includes the R/2 part in the center and has an observation surface of 10 mm in the axial direction and 10 mm in the radial direction of the cross section.
  • the diameter of the cross section is less than 10 mm, take a test piece that includes the R/2 portion and has an observation surface that is 10 mm in the axial direction and has a diameter in the radial direction of the cross section.
  • the polished test piece is immersed in a saturated aqueous solution of picric acid for about 60 seconds.
  • the observation surface is etched, and prior austenite grain boundaries appear on the observation surface.
  • the etched observation surface is observed using an optical microscope at 420 times magnification for 10 fields of view.
  • the visual field area of each visual field is a rectangle of 450 ⁇ m ⁇ 450 ⁇ m.
  • the grain size number of prior austenite grains in each field of view is determined by a cutting method. At this time, the number of grid points, which are the intersections of the grid lines, is set to 16.
  • the arithmetic mean value of the grain size numbers of prior austenite grains determined in 10 fields of view is determined.
  • the average area of the prior austenite grains is calculated based on the arithmetic mean value of the grain size numbers of the prior austenite grains.
  • the equivalent circle diameter is calculated from the calculated average area of the prior austenite grains.
  • the equivalent circle diameter is the diameter of a circle having the same area as the average area of prior austenite grains.
  • the calculated equivalent circle diameter is defined as the average equivalent circle diameter D ( ⁇ m) of the prior austenite grains.
  • the average equivalent circle diameter D is an integer obtained by rounding off the calculated value to the first decimal place.
  • the preferable upper limit of the average equivalent circle diameter of the prior austenite grains is 40 ⁇ m, more preferably 35 ⁇ m, still more preferably 30 ⁇ m, and even more preferably 25 ⁇ m.
  • the lower limit of the average equivalent circle diameter of the prior austenite grains is preferably 10 ⁇ m, more preferably 15 ⁇ m, and even more preferably 17 ⁇ m.
  • the shape of the steel material according to this embodiment is not particularly limited.
  • the steel material is, for example, a steel pipe, a steel plate, or a round steel.
  • the steel material of this embodiment is a steel pipe for oil wells.
  • Steel pipes for oil wells are, for example, casings, tubing, drill pipes, etc. used for drilling oil or gas wells, extracting crude oil or natural gas, and the like.
  • the wall thickness is, for example, 9 to 60 mm.
  • the steel material of this embodiment satisfies the characteristics 1 to 3 described above. Therefore, the steel material of this embodiment has excellent SSC resistance despite having a high strength of 110 ksi class (758 to less than 862 MPa) to 125 ksi class (862 to less than 965 MPa).
  • SSC resistance evaluation method SSC resistance is evaluated by a room temperature SSC resistance evaluation test and a low temperature SSC resistance evaluation test based on NACE TM0177-2016 Method A, and a DCB test based on NACE TM0177-2016 Method D.
  • the longitudinal direction of the round bar test piece is parallel to the axial direction of the round steel.
  • the size of the round bar test piece is, for example, 6.35 mm in diameter and 25.4 mm in length of the parallel part. Take three round bar test pieces from the steel material.
  • a stress equivalent to 90% of the actual yield stress is applied to the round bar test piece.
  • a test solution at 24° C. is poured into a test container so that the round rod test piece to which stress is applied is immersed, and this is used as a test bath.
  • H 2 S gas is bubbled into the test bath to saturate it. Specifically, 1 atm H 2 S gas is blown into the test bath.
  • the test bath, flushed with H 2 S gas, is held at 24° C. for 720 hours.
  • Low temperature SSC resistance evaluation test In the low temperature SSC resistance evaluation test, NACE solution A is used as the test solution as in the room temperature SSC resistance evaluation test. As in the normal temperature SSC resistance evaluation test, three round bar test pieces are taken from the steel material. The size of the round bar test piece is, for example, 6.35 mm in diameter and 25.4 mm in length of the parallel part. Note that the longitudinal direction of the round bar test piece is the same as in the room temperature SSC resistance evaluation test.
  • a stress equivalent to 85% of the actual yield stress is applied to the round bar test piece.
  • a test solution at 4° C. is poured into a test container so that the round rod test piece to which stress is applied is immersed, and this is used as a test bath.
  • H 2 S gas is bubbled into the test bath to saturate it. Specifically, 1 atm H 2 S gas is blown into the test bath.
  • the test bath, flushed with H 2 S gas, is maintained at 4° C. for 720 hours.
  • the presence or absence of sulfide stress cracking (SSC) in the round bar test piece is observed after holding for 720 hours.
  • the round bar test piece after being held for 720 hours is observed with the naked eye and using a projector with 10x magnification.
  • no cracks were confirmed in all three round bar test pieces in the room temperature SSC resistance evaluation test, and all three round bar test pieces in the low temperature SSC resistance evaluation test. No cracks are observed.
  • a DCB test piece shown in FIG. 3A is taken from the steel material.
  • a DCB test piece is taken from the center of the wall thickness.
  • the longitudinal direction of the DCB test piece is parallel to the axial direction of the steel pipe.
  • the steel material is a steel plate
  • a DCB test piece is taken from the center of the plate thickness.
  • the longitudinal direction of the DCB test piece is parallel to the rolling direction of the steel plate.
  • the steel material is round steel, take a DCB test piece from section R/2. In this case, the longitudinal direction of the DCB test piece is parallel to the axial direction of the round steel.
  • a wedge shown in FIG. 3B is further extracted from the steel material. The thickness t of the wedge is 3.10 (mm).
  • the wedge is driven between the arms of the DCB test piece.
  • the DCB test piece with the wedge driven into it is sealed in a test container. Thereafter, the test solution is poured into the test container leaving the gas phase behind to form a test bath. The amount of test bath is 1 L per test piece. Subsequently, N 2 gas is blown into the test bath for 3 hours to degas the test bath until the dissolved oxygen in the test bath becomes 20 ppb or less.
  • H 2 S gas is blown into the degassed test bath to create a corrosive environment. Specifically, 5 atm (0.5 MPa) H 2 S gas is blown into the test bath. The pH of the test bath is in the range 3.5-4.0 throughout the immersion. While stirring the test bath, the inside of the test container is maintained at 24 ⁇ 3° C. for 14 days (336 hours). The DCB test piece is taken out from the test container after holding.
  • a pin is inserted into a hole formed at the end of the arm of the taken out DCB test piece, the notch is opened using a tensile tester, and the wedge release stress P is measured. Furthermore, the notch of the DCB test piece is opened in liquid nitrogen, and the crack growth length a of the DCB test piece while immersed in the test bath is measured. The crack growth length a can be measured visually using a caliper. Based on the measured wedge release stress P and the crack growth length a, the fracture toughness value K 1SSC (MPa ⁇ m) is determined using the following equation.
  • h (mm) is the height of each arm of the DCB test piece.
  • B (mm) is the thickness of the DCB test piece.
  • Bn (mm) is the web thickness of the DCB specimen.
  • Excellent SSC resistance can be obtained in the case of 110 ksi class (758 to less than 862 MPa) means that the evaluation test for room temperature SSC resistance at 24°C and low temperature resistance at 4°C in accordance with NACE TM0177-2016 Method A is used. This means that no cracks were confirmed in the SSC property evaluation test, and the fracture toughness value K1SSC obtained in the DCB test in accordance with NACE TM0177-2016 Method D is 25.0 MPa ⁇ m or more.
  • excellent SSC resistance can be obtained refers to the evaluation test of room temperature SSC resistance at 24°C and low temperature resistance at 4°C in accordance with NACE TM0177-2016 Method A. It means that no cracks were confirmed in the SSC property evaluation test, and the fracture toughness value K1SSC obtained in the DCB test in accordance with NACE TM0177-2016 Method D is 24.0 MPa ⁇ m or more.
  • An example of the method for manufacturing a seamless steel pipe of this embodiment includes the following steps.
  • (Process 1) Material preparation process (Process 2) Hot processing process (Process 3) Quenching process (Process 4) Tempering process
  • a material is manufactured using molten steel whose chemical composition satisfies Feature 1.
  • the method for producing the material is not particularly limited, and any known method may be used. Specifically, a slab (slab, bloom, or billet) may be manufactured by a continuous casting method using molten steel. An ingot may be manufactured by an ingot-forming method using molten steel. A material (slab, bloom, or billet) is manufactured through the above steps.
  • Step 2 Hot processing step In the hot working step, the prepared material is hot worked to produce an intermediate steel material.
  • the hot working method for manufacturing the intermediate steel material is not particularly limited. The hot working may be hot forging, hot extrusion, or hot rolling.
  • the hot working process is, for example, as follows.
  • the raw material is subjected to blooming rolling using a blooming mill to produce a billet.
  • the heating temperature before blooming is not particularly limited, but is, for example, 1100 to 1350°C.
  • piercing rolling is performed using the Mannesmann method.
  • the billet is first heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1350°C.
  • the billet extracted from the heating furnace is subjected to piercing rolling to produce an intermediate steel material (base pipe).
  • the perforation ratio in the perforation rolling is not particularly limited, but is, for example, 1.0 to 4.0.
  • the billet after piercing and rolling is subjected to elongation rolling using a mandrel mill.
  • the billet after elongation rolling is subjected to sizing rolling using a reducer or a sizing mill.
  • an intermediate steel material (raw pipe) is manufactured.
  • the cumulative area reduction rate in the hot working process is not particularly limited, but is, for example, 20 to 70%.
  • the billet is subjected to the Eugene-Séjournet method or the Erhardt push bench method (i.e., hot extrusion) to produce an intermediate steel material (raw pipe).
  • the Kaphardt push bench method i.e., hot extrusion
  • the hot working process is, for example, as follows.
  • Rough rolling is performed on the slab using a reverse rolling mill to produce a rough bar.
  • the heating temperature before rough rolling is not particularly limited, but is, for example, 1100 to 1350°C.
  • finish rolling is performed on the rough bar using a tandem rolling mill to produce an intermediate steel material (steel plate).
  • the hot working process is, for example, as follows.
  • the raw material is subjected to blooming rolling using a blooming mill to produce a billet.
  • the heating temperature before blooming is not particularly limited, but is, for example, 1100 to 1350°C.
  • a billet manufactured by blooming rolling or a billet manufactured by a continuous casting method in the material preparation process is heated.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1350°C.
  • Finish rolling is performed on the heated billet using a continuous rolling mill to produce an intermediate steel material (round steel).
  • a continuous rolling mill has a horizontal stand having a pair of grooved rolls arranged in parallel in the vertical direction and a vertical stand having a pair of grooved rolls arranged in parallel in the horizontal direction, which are arranged alternately.
  • the intermediate steel material manufactured by the above hot working may be air cooled. Intermediate steel products manufactured by hot working may also be quenched directly after hot working without being cooled to room temperature, or quenching may be performed after reheating (reheating) after hot working. Good too. When quenching is performed directly after hot working, or when quenching is performed after reheating after hot working, stress relief annealing (SR treatment) is performed before the next quenching step in order to remove residual stress. May be implemented.
  • SR treatment stress relief annealing
  • Step 3 Quenching step In the quenching process, the intermediate steel material produced in the hot working process is quenched. Hardening is carried out by a well-known method. Specifically, the intermediate steel material after the hot working step is charged into a heat treatment furnace and held at the quenching temperature.
  • the quenching temperature shall be at least the AC3 transformation point. However, if the quenching temperature is too high, the prior austenite grains may become coarse. Therefore, the quenching temperature is, for example, 800 to 950°C. After holding the intermediate steel material at the quenching temperature, it is rapidly cooled (quenched).
  • the holding time at the quenching temperature is not particularly limited, but is, for example, 10 to 60 minutes.
  • the quenching method is, for example, water cooling or oil cooling.
  • the quenching method is not particularly limited.
  • the intermediate steel material may be quenched by immersing it in a water tank or an oil tank.
  • the steel pipe may be rapidly cooled by shower cooling or mist cooling by pouring or spraying cooling water onto the outer surface and/or inner surface of the steel pipe.
  • quenching may be performed immediately after hot working without cooling the raw pipe to room temperature after the hot working step. Furthermore, before the temperature of the mother tube after hot working decreases, it may be charged into a reheating furnace and maintained at the quenching temperature, and then quenched.
  • the quenching temperature refers to the surface temperature of the intermediate steel material measured with a thermometer installed on the exit side of the equipment that performs the final hot working when quenching is performed directly after hot working. Equivalent to. Furthermore, the quenching temperature corresponds to the temperature of the furnace in which the reheating or reheating is performed when quenching is performed after the hot working.
  • Step 4 Tempering step
  • the intermediate steel material after quenching is further tempered.
  • the yield strength of the steel material can be adjusted by appropriately adjusting the tempering temperature depending on the chemical composition. Specifically, the tempering conditions are adjusted so that the yield strength of the steel material is 110 ksi class (758 to less than 862 MPa) to 125 ksi class (862 to less than 965 MPa).
  • the tempering temperature T is 660 to 740°C, and the holding time t at the tempering temperature T is 20 to 180 minutes.
  • FA defined by formula (A) is further adjusted according to the strength. Specifically, when the yield strength of the manufactured steel material is 110 ksi class, FA is set to 2500 or less. When the yield strength of the manufactured steel material is 125 ksi class, FA is set to 2400 or less.
  • FA T ⁇ (-3.0C+4.7Si-4.4Mn-2.4Cr+2.2Mo-2.2Cu-3.2Ni) ⁇ (t/60) 0.5 (A)
  • each element symbol in formula (A) is substituted with the content in mass % of the corresponding element in the steel material.
  • the tempering temperature (° C.) is substituted for T.
  • the holding time (minutes) at the tempering temperature T is substituted for t.
  • the steel material of this embodiment has a pressure of 758 to 965 MPa due to the synergistic effect of the electrochemical element (EE defined by formula (1)) and the physical element (average equivalent circle diameter of prior austenite grains).
  • Excellent SSC resistance can be obtained even with a high strength of less than FA is an index for appropriately adjusting the electrochemical elements that make up the numerator of formula (2), the physical elements that make up the denominator of formula (2), and the strength of the steel material.
  • the strength of the manufactured steel is 110ksi class, and the FA is 2500 or less, the relationship between electrochemical elements, physical elements, and strength should be appropriately determined, assuming that the chemical composition satisfies characteristic 1. Can be adjusted. Therefore, steel materials satisfying Features 1 to 3 can be manufactured.
  • the strength of the manufactured steel is 125 ksi class, and the FA is 2400 or less
  • the relationship between electrochemical elements, physical elements, and strength is determined based on the premise that the chemical composition satisfies characteristic 1. can be adjusted appropriately. Therefore, steel materials satisfying Features 1 to 3 can be manufactured.
  • the steel material of this embodiment can be manufactured.
  • an example of the manufacturing method of the steel material by this embodiment was demonstrated.
  • the steel material according to this embodiment may also be manufactured by a manufacturing method other than the manufacturing method described above. Even in this case, if the steel material satisfies Features 1 to 3, high strength of 110 ksi class (758 to less than 862 MPa) to 125 ksi class (862 to less than 965 MPa) and excellent SSC resistance can be obtained.
  • Example 1 the SSC resistance of a steel material having a yield strength of 110 ksi class (758 to less than 862 MPa) was investigated. Specifically, steel materials (seamless steel pipes) having chemical compositions shown in Tables 1-1 and 1-2 were manufactured.
  • Blank areas in Table 1-2 mean that the content of the corresponding element is at the impurity level. Note that the EE of each test number is shown in the "EE" column of Table 2.
  • a bloom was manufactured using a continuous casting method using molten steel. Thereafter, the bloom was subjected to blooming rolling to produce a round billet with a diameter of 310 mm.
  • the heating temperature before blooming was 1100 to 1350°C.
  • Hot working was performed on a round billet manufactured by blooming. Specifically, the round billet was placed in a heating furnace and heated at 1100 to 1350°C. The round billet extracted from the heating furnace was hot rolled (hot worked) by the Mannesmann method to produce raw pipes (seamless steel pipes) of each test number. At this time, the perforation ratio was within the range of 1.0 to 4.0, and the cumulative area reduction rate during hot working was within the range of 20 to 70%.
  • the quenching temperature (°C) in quenching is shown in “Quenching temperature (°C)” in the “Quenching conditions” column of Table 2.
  • the holding time at the quenching temperature was 15 minutes.
  • the raw tube was tempered.
  • the tempering temperature T (°C) in tempering is shown in “Tempering temperature T (°C)” in the “Tempering conditions” column of Table 2.
  • the holding time t (minutes) at the tempering temperature T is shown in "Holding time t (minutes)” in the “Tempering conditions” column of Table 2.
  • the FA during tempering is shown in the "FA” column of Table 2.
  • Test 1 The total area ratio (%) of tempered martensite and tempered bainite of the steel material of each test number was determined by the following method. A test piece having an observation surface of 10 mm in the pipe axis direction and 10 mm in the pipe diameter direction was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. In addition, in the case where the steel material was a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction was taken.
  • the total area ratio (%) of tempered martensite and tempered bainite was determined by the method described in the above-mentioned [Microstructure observation method]. As a result, in all test numbers, the total area ratio of tempered martensite and tempered bainite was 90% or more.
  • the average equivalent circular diameter D ( ⁇ m) of prior austenite grains of steel materials of each test number was determined by the following method. A test piece having an observation surface of 10 mm in the pipe axis direction and 10 mm in the pipe diameter direction was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. In addition, in the case where the steel material was a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction was taken.
  • the average equivalent circle diameter D ( ⁇ m) of the prior austenite grains was determined by the method described in [How to determine the average equivalent circle diameter D of the prior austenite grains] above.
  • the average equivalent circular diameter D of the obtained prior austenite grains is shown in the "D ( ⁇ m)" column in Table 2.
  • the yield strength (MPa) of the steel material of each test number was determined by the following method. A round bar tensile test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar tensile test piece was 6.0 mm in parallel part diameter and 30.0 mm in gage distance. The longitudinal direction of the round bar tensile test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • the yield strength (MPa) was determined by the method described in the above-mentioned [Method for measuring yield strength]. The yield strength obtained is shown in the "YS (MPa)" column of Table 2.
  • the SSC resistance at 24°C was evaluated by the method described in the above-mentioned [Room Temperature SSC Resistance Evaluation Test].
  • a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number.
  • the size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part.
  • the longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • the test bath was blown with 1 atm H 2 S gas.
  • the SSC resistance at 4° C. was evaluated by the method described in [Low-temperature SSC resistance evaluation test].
  • a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number.
  • the size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part.
  • the longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • the test bath was blown with 1 atm H 2 S gas.
  • the DCB test piece shown in FIG. 3A was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number.
  • the longitudinal direction of the DCB test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • a wedge shown in FIG. 3B was collected from the steel material.
  • the thickness t of the wedge was 3.10 mm. 5 atm (0.5 MPa) of H 2 S gas was blown into the test bath.
  • test number 15 Although the chemical composition was appropriate, the quenching temperature was too high. Therefore, FN was too low. As a result, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa ⁇ m.
  • test number 30 Although the chemical composition was appropriate, the EE was too low. Further, in test numbers 31 and 32, although the chemical composition was appropriate, the EE was too low and the FN was also too low. In test number 33, although the chemical composition was appropriate, the EE was too low and the FA was too high. As a result, FN was too low. Therefore, with these test numbers, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K 1SSC was less than 25.0 MPa ⁇ m.
  • test numbers 34 to 36 although the chemical composition was appropriate, the FA, which was the manufacturing condition, was too high. Therefore, FN was too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa ⁇ m.
  • test numbers 37 and 38 the Si content was too high. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa ⁇ m.
  • the Si content was too low. Furthermore, since the Si content was too low, EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa ⁇ m.
  • test number 40 the Mn content was too high. Furthermore, the Mn content was too high, so the EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa ⁇ m.
  • Example 2 the SSC resistance of steel materials having a yield strength of 125 ksi class (less than 862 to 965 MPa) was investigated.
  • Steel materials having the chemical compositions shown in Tables 1-1 and 1-2 were manufactured. Specifically, the bloom was manufactured by a continuous casting method using molten steel. Thereafter, the bloom was subjected to blooming rolling to produce a round billet with a diameter of 310 mm. The heating temperature before blooming was 1100 to 1350°C.
  • Hot working was performed on a round billet manufactured by blooming. Specifically, the round billet was placed in a heating furnace and heated at 1100 to 1350°C. The round billet extracted from the heating furnace was hot rolled (hot worked) by the Mannesmann method to produce raw pipes (seamless steel pipes) of each test number. At this time, the perforation ratio was within the range of 1.0 to 4.0, and the cumulative area reduction rate during hot working was within the range of 20 to 70%.
  • the quenching temperature (°C) in the quenching is shown in “Quenching temperature (°C)” in the “Quenching conditions” column of Table 3.
  • the holding time at the quenching temperature was 15 minutes.
  • the raw tube was tempered.
  • the tempering temperature T (°C) in tempering is shown in “Tempering temperature T (°C)” in the “Tempering conditions” column of Table 3.
  • the holding time t (minutes) at the tempering temperature T is shown in “Holding time t (minutes)” in the “Tempering conditions” column of Table 3.
  • the FA during tempering is shown in the "FA” column of Table 3.
  • the SSC resistance at 24°C was evaluated by the method described in the above-mentioned [Room Temperature SSC Resistance Evaluation Test].
  • a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number.
  • the size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part.
  • the longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • the test bath was blown with 1 atm H 2 S gas.
  • the SSC resistance at 4° C. was evaluated by the method described in [Low-temperature SSC resistance evaluation test].
  • a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number.
  • the size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part.
  • the longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • the test bath was blown with 1 atm H 2 S gas.
  • the DCB test piece shown in FIG. 3A was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number.
  • the longitudinal direction of the DCB test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
  • a wedge shown in FIG. 3B was collected from the steel material.
  • the thickness t of the wedge was 3.10 mm. 5 atm (0.5 MPa) of H 2 S gas was blown into the test bath.
  • test number 13 although the chemical composition was appropriate, the EE was too low. Further, in test numbers 14 and 29 to 32, although the chemical composition was appropriate, the EE was too low and the FN was also too low. In test number 33, although the chemical composition was appropriate, the EE was too low and the FA was too high. As a result, FN was too low. Therefore, with these test numbers, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K 1SSC was less than 24.0 MPa ⁇ m.
  • test number 15 Although the chemical composition was appropriate, the quenching temperature was too high. Therefore, FN was too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa ⁇ m.
  • test numbers 34 to 36 although the chemical composition was appropriate, the FA, which was the manufacturing condition, was too high. Therefore, FN was too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa ⁇ m.
  • test numbers 37 and 38 the Si content was too high. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa ⁇ m.
  • the Si content was too low. Furthermore, since the Si content was too low, EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa ⁇ m.
  • test number 40 the Mn content was too high. Furthermore, the Mn content was too high, so the EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa ⁇ m.

Abstract

Provided is a steel material that has high strength and excellent SSC resistance. The steel material according to the present disclosure contains, by mass%, 0.20%–0.35% C, 0.60%–1.30% Si, 0.05%–0.25% Mn, no more than 0.050% P, no more than 0.0100% S, 0.010%–0.100% Al, no more than 0.0100% N, 0.20%–1.00% Cr, 0.10%-1.00% Mo, and 0.003%–0.030% Ti, the remainder being Fe and impurities. If the steel material is 110 ksi-grade, EE of formula (1) is at least 2.75 and FN of formula (2) is at least 0.185. If the steel material is 125 ksi-grade, EE is at least 3.00 and FN is at least 0.200. Formula (1): EE = -0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co. Formula (2): FN = EE/(D0.9) (D: average equivalent circle diameter (μm) of prior austenite grains).

Description

鋼材steel material
 本開示は、鋼材に関し、さらに詳しくは、サワー環境での使用に適した鋼材に関する。 The present disclosure relates to steel materials, and more particularly to steel materials suitable for use in sour environments.
 油井及びガス井(以下、油井及びガス井を総称して、単に「油井」という)の深井戸化により、油井用鋼管に代表される油井用途の鋼材の高強度化が要求されている。具体的には、80ksi級(降伏強度が80~95ksi未満、つまり、552~655MPa未満)や、95ksi級(降伏強度が95~110ksi未満、つまり、655~758MPa未満)の油井用鋼材が広く利用されている。最近ではさらに、110ksi級(降伏強度が758MPa~862MPa未満)、及び、125ksi級(降伏強度が862~965MPa未満)の油井用鋼材が求められ始めている。 As oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to as "oil wells") become deeper, there is a demand for higher strength steel materials for oil well applications, such as steel pipes for oil wells. Specifically, oil well steel materials of 80 ksi class (yield strength of less than 80 to 95 ksi, that is, less than 552 to 655 MPa) and 95 ksi class (yield strength of less than 95 to 110 ksi, that is, less than 655 to 758 MPa) are widely used. has been done. Recently, oil well steel materials of 110 ksi class (yield strength of 758 MPa to less than 862 MPa) and 125 ksi class (yield strength of 862 to less than 965 MPa) have begun to be sought.
 さらに、深井戸の多くは、腐食性を有する硫化水素を含有するサワー環境である。本明細書において、サワー環境とは、硫化水素を含み、酸性化した環境を意味する。なお、サワー環境は、二酸化炭素を含む場合もある。このようなサワー環境で使用される鋼材は、高強度だけでなく、耐硫化物応力割れ性(耐Sulfide Stress Cracking性:以下、耐SSC性という)も要求される。 Furthermore, many deep wells are in sour environments containing corrosive hydrogen sulfide. As used herein, a sour environment refers to an acidified environment containing hydrogen sulfide. Note that the sour environment may also contain carbon dioxide. Steel materials used in such a sour environment are required not only to have high strength but also to have sulfide stress cracking resistance (hereinafter referred to as SSC resistance).
 油井用鋼管に代表される鋼材の耐SSC性を高める技術が、特開2000-297344号公報(特許文献1)、及び、国際公開第2008/123422号(特許文献2)に提案されている。 A technique for increasing the SSC resistance of steel materials, typified by steel pipes for oil wells, has been proposed in Japanese Patent Application Laid-Open No. 2000-297344 (Patent Document 1) and International Publication No. 2008/123422 (Patent Document 2).
 特許文献1に開示されている鋼材は、質量%で、C:0.15~0.3%、Cr:0.2~1.5%、Mo:0.1~1%、V:0.05~0.3%、Nb:0.003~0.1%を含有する。この鋼材は、析出している炭化物の総量が1.5~4質量%、炭化物の総量に占めるMC型炭化物の割合が5~45質量%、M23型炭化物の割合が製品の肉厚をt(mm)とした時、(200/t)質量%以下である。この鋼材では、M23型炭化物の割合を抑制することにより、耐SSC性を高めている。 The steel material disclosed in Patent Document 1 has C: 0.15 to 0.3%, Cr: 0.2 to 1.5%, Mo: 0.1 to 1%, V: 0. 05 to 0.3%, and Nb: 0.003 to 0.1%. In this steel material, the total amount of precipitated carbides is 1.5 to 4% by mass, the proportion of MC type carbides in the total amount of carbides is 5 to 45% by mass, and the proportion of M 23 C 6 type carbides is 1.5 to 4% by mass. When is t (mm), it is less than (200/t)% by mass. In this steel material, the SSC resistance is improved by suppressing the proportion of M 23 C 6 type carbide.
 特許文献2に開示されている鋼材は、質量%で、C:0.10~0.20%、Si:0.05~1.0%、Mn:0.05~1.5%、Cr:1.0~2.0%、Mo:0.05~2.0%、Al:0.10%以下、及び、Ti:0.002~0.05%を含有し、かつ、Ceq(=C+(Mn/6)+(Cr+Mo+V)/5)が0.65以上であり、残部がFe及び不純物からなり、不純物中、P:0.025%以下、S:0.010%以下、N:0.007%以下、B:0.0003%未満である。この鋼材は、粒径が1μm以上のM23型析出物が0.1個/mm以下である。この鋼材も、特許文献1と同様に、M23型炭化物の割合を抑制することにより、耐SSC性を高めている。 The steel material disclosed in Patent Document 2 has, in mass%, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.5%, and Cr: 1.0 to 2.0%, Mo: 0.05 to 2.0%, Al: 0.10% or less, and Ti: 0.002 to 0.05%, and Ceq (=C+ (Mn/6)+(Cr+Mo+V)/5) is 0.65 or more, the balance consists of Fe and impurities, and among the impurities, P: 0.025% or less, S: 0.010% or less, N: 0 .007% or less, B: less than 0.0003%. In this steel material, the number of M 23 C 6 type precipitates with a grain size of 1 μm or more is 0.1 pieces/mm 2 or less. Similarly to Patent Document 1, this steel material also has improved SSC resistance by suppressing the proportion of M 23 C 6 type carbides.
特開2000-297344号公報Japanese Patent Application Publication No. 2000-297344 国際公開第2008/123422号International Publication No. 2008/123422
 上述のとおり、最近では、油井環境の過酷化に伴い、110ksi級以上(758MPa以上)の高強度と優れた耐SSC性とを両立可能な鋼材が要求されつつある。上記特許文献1及び2では、析出物を制御することにより、高強度と耐SSC性との両立を試みている。しかしながら、特許文献1及び2以外の他の手段により、高強度と優れた耐SSC性とを両立できる鋼材が得られてもよい。 As mentioned above, recently, as oil well environments have become harsher, there has been a growing demand for steel materials that can both have high strength of 110 ksi class or higher (758 MPa or higher) and excellent SSC resistance. In Patent Documents 1 and 2, an attempt is made to achieve both high strength and SSC resistance by controlling precipitates. However, a steel material capable of achieving both high strength and excellent SSC resistance may be obtained by means other than Patent Documents 1 and 2.
 本開示の目的は、高強度と、サワー環境での優れた耐SSC性とを有する鋼材を提供することである。 An objective of the present disclosure is to provide a steel material that has high strength and excellent SSC resistance in sour environments.
 本開示による鋼材は、次の構成を有する。 The steel material according to the present disclosure has the following configuration.
 化学組成が、質量%で、
 C:0.20~0.35%、
 Si:0.60~1.30%、
 Mn:0.05~0.25%、
 P:0.050%以下、
 S:0.0100%以下、
 Al:0.010~0.100%、
 N:0.0100%以下、
 Cr:0.20~1.00%、
 Mo:0.10~1.00%、
 Ti:0.003~0.030%、
 O:0.0050%以下、
 Zr:0~0.0040%、
 Sb:0~0.50%、
 Cu:0~0.50%、
 Ni:0~0.50%、
 Co:0~0.50%、
 Ca:0~0.0040%、
 Mg:0~0.0040%、
 希土類元素:0~0.0040%、
 Nb:0~0.150%、
 V:0~0.500%、
 B:0~0.0030%、及び、
 残部がFe及び不純物からなり、
 降伏強度が758~965MPa未満であり、
 前記降伏強度が758~862MPa未満である場合、式(1)で定義されるEEが2.75以上であり、式(2)で定義されるFNが0.185以上であり、
 前記降伏強度が862~965MPa未満である場合、前記EEが3.00以上であり、前記FNが0.200以上である、
 鋼材。
 EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
 FN=EE/(D0.9) (2)
 ここで、式(1)中の各元素記号には、対応する元素の質量%での含有量が代入される。式(2)中のDには、前記鋼材中の旧オーステナイト粒のμm単位での平均円相当径が代入される。
The chemical composition is in mass%,
C: 0.20-0.35%,
Si: 0.60-1.30%,
Mn: 0.05-0.25%,
P: 0.050% or less,
S: 0.0100% or less,
Al: 0.010-0.100%,
N: 0.0100% or less,
Cr: 0.20-1.00%,
Mo: 0.10-1.00%,
Ti: 0.003 to 0.030%,
O: 0.0050% or less,
Zr: 0 to 0.0040%,
Sb: 0 to 0.50%,
Cu: 0 to 0.50%,
Ni: 0 to 0.50%,
Co: 0 to 0.50%,
Ca: 0-0.0040%,
Mg: 0 to 0.0040%,
Rare earth elements: 0 to 0.0040%,
Nb: 0 to 0.150%,
V: 0 to 0.500%,
B: 0 to 0.0030%, and
The remainder consists of Fe and impurities,
The yield strength is less than 758 to 965 MPa,
When the yield strength is less than 758 to 862 MPa, EE defined by formula (1) is 2.75 or more, FN defined by formula (2) is 0.185 or more,
When the yield strength is less than 862 to 965 MPa, the EE is 3.00 or more, and the FN is 0.200 or more.
Steel material.
EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
FN=EE/(D 0.9 ) (2)
Here, each element symbol in formula (1) is substituted with the content in mass % of the corresponding element. D in equation (2) is substituted with the average circular equivalent diameter in μm of the prior austenite grains in the steel material.
 本開示による鋼材は、高強度と、サワー環境での優れた耐SSC性とを有する。 Steel materials according to the present disclosure have high strength and excellent SSC resistance in sour environments.
図1は、鋼材の表面から鋼材の内部に水素が侵入するプロセスを説明するための模式図である。FIG. 1 is a schematic diagram for explaining a process in which hydrogen penetrates into the interior of a steel material from the surface of the steel material. 図2Aは、化学組成が特徴1を満たし、降伏強度が110ksi級(758~862MPa未満)であり、かつ、式(1)で定義されるEEが2.75以上である鋼材での、FNと、DCB試験で得られた破壊靭性値K1SSC(MPa√m)との関係を示す図である。Fig. 2A shows the FN and , is a diagram showing the relationship between the fracture toughness value K 1SSC (MPa√m) obtained in the DCB test. 図2Bは、化学組成が特徴1を満たし、降伏強度が125ksi級(862~965MPa未満)であり、かつ、式(1)で定義されるEEが3.00以上である鋼材での、FNと、DCB試験で得られた破壊靭性値K1SSC(MPa√m)との関係を示す図である。Figure 2B shows the FN and , is a diagram showing the relationship between the fracture toughness value K 1SSC (MPa√m) obtained in the DCB test. 図3Aは、NACE TM0177-2016 Method Dに規定されたDCB試験片の側面図である。FIG. 3A is a side view of a DCB test piece specified in NACE TM0177-2016 Method D. 図3Bは、図3Aに示すDCB試験片に打ち込むクサビの斜視図である。FIG. 3B is a perspective view of a wedge driven into the DCB specimen shown in FIG. 3A.
 本発明者らは、高強度と、サワー環境での優れた耐SSC性とを有する鋼材について、調査及び検討を行った。その結果、本発明者らは、次の知見を得た。 The present inventors investigated and studied steel materials that have high strength and excellent SSC resistance in sour environments. As a result, the present inventors obtained the following findings.
 まず本発明者らは、高強度と、サワー環境での優れた耐SSC性とを有する鋼材について、化学組成の観点から検討を行った。その結果、鋼材の化学組成が次の特徴1を満たせば、110ksi級(758~862MPa未満)~125ksi級(862~965MPa未満)の高強度と、サワー環境での優れた耐SSC性とが得られる可能性があると考えた。
 (特徴1)
 化学組成が、質量%で、C:0.20~0.35%、Si:0.60~1.30%、Mn:0.05~0.25%、P:0.050%以下、S:0.0100%以下、Al:0.010~0.100%、N:0.0100%以下、Cr:0.20~1.00%、Mo:0.10~1.00%、Ti:0.003~0.030%、O:0.0050%以下、Zr:0~0.0040%、Sb:0~0.50%、Cu:0~0.50%、Ni:0~0.50%、Co:0~0.50%、Ca:0~0.0040%、Mg:0~0.0040%、希土類元素:0~0.0040%、Nb:0~0.150%、V:0~0.500%、B:0~0.0030%、及び、残部がFe及び不純物からなる。
First, the present inventors investigated a steel material having high strength and excellent SSC resistance in a sour environment from the viewpoint of chemical composition. As a result, if the chemical composition of the steel satisfies the following characteristic 1, high strength of 110 ksi class (less than 758 to 862 MPa) to 125 ksi class (less than 862 to 965 MPa) and excellent SSC resistance in sour environments can be obtained. I thought there was a possibility that it would happen.
(Feature 1)
The chemical composition is in mass%, C: 0.20 to 0.35%, Si: 0.60 to 1.30%, Mn: 0.05 to 0.25%, P: 0.050% or less, S : 0.0100% or less, Al: 0.010 to 0.100%, N: 0.0100% or less, Cr: 0.20 to 1.00%, Mo: 0.10 to 1.00%, Ti: 0.003 to 0.030%, O: 0.0050% or less, Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0. 50%, Co: 0 to 0.50%, Ca: 0 to 0.0040%, Mg: 0 to 0.0040%, Rare earth elements: 0 to 0.0040%, Nb: 0 to 0.150%, V : 0 to 0.500%, B: 0 to 0.0030%, and the balance consists of Fe and impurities.
 そこで、本発明者らは、化学組成が特徴1を満たす鋼材において、耐SSC性をさらに高める手段について検討を行った。 Therefore, the present inventors investigated means for further increasing the SSC resistance of steel materials whose chemical composition satisfies Feature 1.
 SSCは、次のプロセスにより、発生すると考えられる。図1は、鋼材の表面から鋼材の内部に水素が侵入するプロセスを説明するための模式図である。図1を参照して、初めに、鋼材1がサワー環境中で腐食すると、鋼材1の表面が電気化学的に活性状態となる。そして、鋼材1中のFeがFe2+となって、環境中に溶解する。このとき、電子eが鋼材1の外部に放出される(A:腐食の発生)。環境中に存在する水素イオンHが、鋼材1から放出された電子eを受け取って還元され、吸着水素原子Hadとして鋼材1の表面に吸着する(B:水素イオンの吸着反応)。以上のメカニズムにより、鋼材1の表面には、複数の吸着水素原子Hadが存在する。これらの吸着水素原子Hadのほとんどは、吸着水素原子Had同士で結合して水素ガスHとなり、鋼材1の表面から環境中に離脱する。しかしながら、鋼材1の表面に存在する複数の吸着水素原子Hadのうち、ごく一部の吸着水素原子Hadは、鋼材1の表面から鋼材1の内部に侵入して、侵入水素原子Habとなる(C:水素の侵入)。そして、侵入水素原子Habにより、鋼材中でSSCが発生及び伝播する。つまり、侵入水素原子Habは、SSCの発生だけでなく、伝播も促進する。 SSC is thought to occur through the following process. FIG. 1 is a schematic diagram for explaining a process in which hydrogen penetrates into the interior of a steel material from the surface of the steel material. Referring to FIG. 1, first, when steel material 1 corrodes in a sour environment, the surface of steel material 1 becomes electrochemically active. Then, Fe in the steel material 1 becomes Fe 2+ and dissolves in the environment. At this time, electrons e - are released to the outside of the steel material 1 (A: occurrence of corrosion). Hydrogen ions H + present in the environment receive electrons e emitted from the steel material 1, are reduced, and are adsorbed on the surface of the steel material 1 as adsorbed hydrogen atoms H ad (B: adsorption reaction of hydrogen ions). Due to the above mechanism, a plurality of adsorbed hydrogen atoms Had exist on the surface of the steel material 1. Most of these adsorbed hydrogen atoms H ad combine with each other to become hydrogen gas H 2 and are released from the surface of the steel material 1 into the environment. However, among the plurality of adsorbed hydrogen atoms H ad existing on the surface of the steel material 1, a small portion of the adsorbed hydrogen atoms H ad enters into the interior of the steel material 1 from the surface of the steel material 1, and becomes the invading hydrogen atoms H ab . (C: Invasion of hydrogen). Then, SSC occurs and propagates in the steel material due to the invading hydrogen atoms H ab . In other words, the invading hydrogen atoms H ab promote not only the generation but also the propagation of SSC.
 以上のSSCの発生のメカニズムを考慮して、本発明者らは、SSCの発生と伝播とを抑制し、優れた耐SSC性を得るためには、鋼材表面からの水素の侵入を抑制することが有効であると考えた。そこで、本発明者らは、鋼材表面からの水素の侵入を抑制する手段について、検討を行った。 Considering the above mechanism of SSC generation, the present inventors have determined that in order to suppress the generation and propagation of SSC and obtain excellent SSC resistance, it is necessary to suppress the penetration of hydrogen from the surface of the steel material. was considered to be effective. Therefore, the present inventors investigated means for suppressing hydrogen from penetrating from the surface of the steel material.
 本発明者らはまず、鋼材表面からの水素の侵入に影響を与える元素について、調査及び検討を行った。検討の結果、本発明者らは、化学組成が特徴1を満たす鋼材において、次の知見を得た。 The inventors first investigated and studied elements that affect the penetration of hydrogen from the surface of steel materials. As a result of studies, the present inventors obtained the following findings regarding steel materials whose chemical composition satisfies Feature 1.
 上述のとおり、鋼材表面が電気化学的に活性状態となった場合に(図1のA)、吸着水素原子Hadが鋼材表面に付着する(図1のB)。そして、吸着水素原子Hadが侵入水素原子Habとなり、鋼材内部に侵入する(図1のC)。したがって、鋼材表面からの水素の侵入を抑制するには、鋼材表面での電気化学的な活性を抑制することが有効である。 As described above, when the surface of the steel material becomes electrochemically active (A in FIG. 1), adsorbed hydrogen atoms H ad adhere to the surface of the steel material (B in FIG. 1). Then, the adsorbed hydrogen atoms H ad become interstitial hydrogen atoms H ab and enter into the steel material (C in FIG. 1). Therefore, in order to suppress the intrusion of hydrogen from the surface of the steel material, it is effective to suppress the electrochemical activity on the surface of the steel material.
 Si、Cr、Mo、Zr、Sb、Cu、Ni、及び、Coは、サワー環境において、鋼材表面の電気化学的な活性を抑制する。その結果、これらの元素は、鋼材表面からの水素の侵入を抑制する。一方、C及びMnは、サワー環境において、鋼材表面の電気化学的な活性を助長する。その結果、これらの元素は、鋼材表面からの水素の侵入を促進する。 Si, Cr, Mo, Zr, Sb, Cu, Ni, and Co suppress the electrochemical activity of the steel surface in a sour environment. As a result, these elements suppress the intrusion of hydrogen from the surface of the steel material. On the other hand, C and Mn promote electrochemical activity on the surface of steel in a sour environment. As a result, these elements promote hydrogen penetration from the steel surface.
 以上の知見に基づいて、本発明者らは、これらの水素侵入抑制元素(Si、Cr、Mo、Zr、Sb、Cu、Ni、及び、Co)の含有量と、水素侵入促進元素(C、Mn)の含有量とを適切に調整すれば、電気化学的な作用により、鋼材表面からの水素の侵入を抑制できると考えた。そこで、化学組成が特徴1を満たす鋼材において、水素侵入抑制元素と、水素侵入促進元素と、耐SSC性との関係を検討した。その結果、次の式(1)で定義される電気化学的要素EE(Electrochemical Elements)を高めることにより、高強度を有する鋼材において、サワー環境での優れた耐SSC性が得られると考えた。
 EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
 ここで、式(1)中の各元素記号には、対応する元素の質量%での含有量が代入される。
Based on the above findings, the present inventors determined the content of these hydrogen penetration inhibiting elements (Si, Cr, Mo, Zr, Sb, Cu, Ni, and Co) and the hydrogen penetration promoting elements (C, It was thought that if the content of Mn) was appropriately adjusted, hydrogen penetration from the steel surface could be suppressed by electrochemical action. Therefore, in steel materials whose chemical composition satisfies Characteristic 1, the relationship between hydrogen penetration inhibiting elements, hydrogen penetration promoting elements, and SSC resistance was investigated. As a result, it was thought that excellent SSC resistance in a sour environment could be obtained in a steel material having high strength by increasing the electrochemical elements (EE) defined by the following formula (1).
EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
Here, each element symbol in formula (1) is substituted with the content in mass % of the corresponding element.
 一般的に、鋼材の強度が高くなれば、鋼材の耐SSC性が低下する傾向がある。そのため、本発明者らは、鋼材の強度が高い場合、水素侵入をより抑制する必要があると考えた。そこで、本発明者らは、鋼材の降伏強度が110ksi級(758~862MPa未満)の場合のEEと、鋼材の降伏強度が125ksi級(862~965MPa未満)の場合のEEとについて検討を行った。その結果、降伏強度が110ksi級の場合のEEを2.75以上とし、降伏強度が125ksi級の場合のEEを3.00以上とすれば、高強度であっても優れた耐SSC性が得られることが判明した。 Generally, as the strength of steel increases, the SSC resistance of the steel tends to decrease. Therefore, the present inventors considered that it is necessary to further suppress hydrogen intrusion when the strength of the steel material is high. Therefore, the present inventors investigated EE when the yield strength of the steel material is 110 ksi class (less than 758 to 862 MPa) and EE when the yield strength of the steel material is 125 ksi class (less than 862 to 965 MPa). . As a result, if the EE is 2.75 or more when the yield strength is 110 ksi class, and the EE is 3.00 or more when the yield strength is 125 ksi class, excellent SSC resistance can be obtained even with high strength. It turned out that it was possible.
 しかしながら、上述の電気化学的要素の調整だけでは、化学組成が特徴1を満たす鋼材において、110ksi級~125ksi級の高強度と、優れた耐SSC性とが十分に得られない場合があった。そこで、本発明者はさらに検討を行った。 However, in steel materials whose chemical composition satisfies Feature 1, high strength of 110 ksi class to 125 ksi class and excellent SSC resistance may not be sufficiently obtained by simply adjusting the electrochemical elements described above. Therefore, the inventor conducted further study.
 ここで、本発明者らは、化学組成が特徴1を満たす鋼材でのSSCの発生及び伝播は、上述の電気化学的要素だけでなく、ミクロ組織による物理的要素も影響すると考えた。そこで、本発明者らはさらに、電気化学的要素の観点だけでなく、物理的要素の観点からも、鋼材の耐SSC性を高める手段について検討を行った。その結果、鋼材中の旧オーステナイト粒の平均円相当径(μm)が、上述の電気化学的要素と相乗的に作用して、鋼材の耐SSC性に顕著に影響することを、本発明者らは見出した。 Here, the present inventors considered that the occurrence and propagation of SSC in a steel material whose chemical composition satisfies Feature 1 is affected not only by the above-mentioned electrochemical factors but also by physical factors due to the microstructure. Therefore, the present inventors further investigated means for increasing the SSC resistance of steel materials not only from the viewpoint of electrochemical factors but also from the viewpoint of physical factors. As a result, the present inventors found that the average equivalent circle diameter (μm) of prior austenite grains in steel material acts synergistically with the above-mentioned electrochemical factors and significantly influences the SSC resistance of steel material. found out.
 以上の知見に基づいて、本発明者らはさらに、上述の電気化学的要素(水素侵入抑制元素及び水素侵入促進元素)と、物理的要素(旧オーステナイト粒の平均円相当径)と、耐SSC性との関係を検討した。その結果、EEを上述の範囲に調整しつつ、さらに、以下の式(2)で定義されるFNを、強度に応じて調整することにより、110ski級~125ksi級の高強度であっても、優れた耐SSC性が得られることを、本発明者らは見出した。
 FN=EE/(D0.9) (2)
 ここで、式(2)中のDには、鋼材中の旧オーステナイト粒のμm単位での平均円相当径が代入される。
Based on the above findings, the present inventors further investigated the above-mentioned electrochemical factors (hydrogen penetration inhibiting element and hydrogen penetration promoting element), physical factors (average equivalent circular diameter of prior austenite grains), and SSC resistance. We examined the relationship with gender. As a result, by adjusting the EE to the above range and further adjusting the FN defined by the following formula (2) according to the strength, even if the strength is high from 110ski to 125ksi, The present inventors have discovered that excellent SSC resistance can be obtained.
FN=EE/(D 0.9 ) (2)
Here, the average circular equivalent diameter in μm of prior austenite grains in the steel material is substituted for D in equation (2).
 FNは、電気化学的要素(水素侵入抑制元素及び水素侵入促進元素)及び物理的要素(旧オーステナイト粒の平均円相当径)の耐SSC性への影響の程度を示す指標である。化学組成が特徴1を満たす鋼材であって、降伏強度が110ksi級である場合、EEを2.75以上とし、かつ、FNを0.185以上とする。また、化学組成が特徴1を満たす鋼材であって、降伏強度が125ksi級である場合、EEを3.00以上とし、かつ、FNを0.200以上とする。この場合、110級~125ksi級の高強度であっても、優れた耐SSC性が得られる。以下、この点について説明する。 FN is an index indicating the degree of influence of electrochemical factors (hydrogen penetration suppressing elements and hydrogen penetration promoting elements) and physical factors (average equivalent circular diameter of prior austenite grains) on SSC resistance. If the steel material has a chemical composition that satisfies Characteristic 1 and has a yield strength of 110 ksi class, the EE should be 2.75 or more and the FN should be 0.185 or more. Further, in the case of a steel material whose chemical composition satisfies Characteristic 1 and whose yield strength is 125 ksi class, the EE should be 3.00 or more and the FN should be 0.200 or more. In this case, excellent SSC resistance can be obtained even if the strength is as high as 110 to 125 ksi. This point will be explained below.
 図2Aは、化学組成が特徴1を満たし、降伏強度が110ksi級(758~862MPa未満)であり、かつ、EEが2.75以上である鋼材での、FNと、DCB試験で得られた破壊靭性値K1SSC(MPa√m)との関係を示す図である。図2Aは後述の実施例1で得られたデータに基づいて作成した。 Figure 2A shows the FN and fracture obtained in the DCB test for a steel material whose chemical composition satisfies Feature 1, whose yield strength is 110 ksi class (758 to less than 862 MPa), and whose EE is 2.75 or more. It is a figure which shows the relationship with toughness value K1SSC (MPa√m). FIG. 2A was created based on data obtained in Example 1, which will be described later.
 図2Aを参照して、FNが0.185以上であれば、破壊靭性値K1SSCは25.0MPa√m以上と高く、優れた耐SSC性が得られる。しかしながら、FNが0.185未満であれば、破壊靭性値K1SSCは25.0MPa√m未満に顕著に低下する。したがって、FNを0.185以上にすることで、110ksi級(758~862MPa未満)の鋼材において優れた耐SSC性が得られる。 Referring to FIG. 2A, when FN is 0.185 or more, the fracture toughness value K1SSC is as high as 25.0 MPa√m or more, and excellent SSC resistance is obtained. However, if FN is less than 0.185, the fracture toughness value K 1SSC decreases significantly to less than 25.0 MPa√m. Therefore, by setting FN to 0.185 or more, excellent SSC resistance can be obtained in 110 ksi class (less than 758 to 862 MPa) steel materials.
 図2Bは、化学組成が特徴1を満たし、降伏強度が125ksi級(862~965MPa未満)であり、かつ、EEが3.00以上である鋼材での、FNと、DCB試験で得られた破壊靭性値K1SSC(MPa√m)との関係を示す図である。図2Bは後述の実施例2で得られたデータに基づいて作成した。 Figure 2B shows the FN and fracture obtained in the DCB test for a steel material whose chemical composition satisfies Feature 1, whose yield strength is 125 ksi class (862 to less than 965 MPa), and whose EE is 3.00 or more. It is a figure which shows the relationship with toughness value K1SSC (MPa√m). FIG. 2B was created based on data obtained in Example 2, which will be described later.
 図2Bを参照して、FNが0.200以上であれば、破壊靭性値K1SSCは24.0MPa√m以上と高く、優れた耐SSC性が得られる。しかしながら、FNが0.200未満であれば、破壊靭性値K1SSCは24.0MPa√m未満に顕著に低下する。したがって、FNを0.200以上にすることで、125ksi級(862~965MPa未満)の鋼材において優れた耐SSC性が得られる。 Referring to FIG. 2B, when FN is 0.200 or more, the fracture toughness value K1SSC is as high as 24.0 MPa√m or more, and excellent SSC resistance is obtained. However, if FN is less than 0.200, the fracture toughness value K 1SSC decreases significantly to less than 24.0 MPa√m. Therefore, by setting FN to 0.200 or more, excellent SSC resistance can be obtained in 125 ksi class (less than 862 to 965 MPa) steel materials.
 上述の電気化学的要素及び物理的要素と耐SSC性との関係は推定であり、上述と異なるメカニズムで優れた耐SSC性が得られている可能性もある。しかしながら、化学組成が特徴1を満たす鋼材において、降伏強度が110ksi級(758~862MPa未満)である場合、EEが2.75以上であり、FNが0.185以上であり、降伏強度が125ksi級(862~965MPa未満)である場合、EEが3.00以上であり、FNが0.200以上であれば、110ksi級~125ksi級の高強度であっても優れた耐SSC性が得られることは、後述の実施例でも証明されている。 The relationship between the electrochemical and physical factors and SSC resistance described above is only an estimate, and there is a possibility that the excellent SSC resistance is obtained by a mechanism different from that described above. However, in a steel material whose chemical composition satisfies characteristic 1, if the yield strength is 110 ksi class (less than 758 to 862 MPa), the EE is 2.75 or more, the FN is 0.185 or more, and the yield strength is 125 ksi class. (less than 862 to 965 MPa), if EE is 3.00 or more and FN is 0.200 or more, excellent SSC resistance can be obtained even with high strength of 110 ksi class to 125 ksi class. This is also proven in the examples described below.
 以上の知見に基づいて完成した本実施形態による鋼材は、次の構成を有する。 The steel material according to this embodiment, which was completed based on the above findings, has the following configuration.
 [1]
 化学組成が、質量%で、
 C:0.20~0.35%、
 Si:0.60~1.30%、
 Mn:0.05~0.25%、
 P:0.050%以下、
 S:0.0100%以下、
 Al:0.010~0.100%、
 N:0.0100%以下、
 Cr:0.20~1.00%、
 Mo:0.10~1.00%、
 Ti:0.003~0.030%、
 O:0.0050%以下、
 Zr:0~0.0040%、
 Sb:0~0.50%、
 Cu:0~0.50%、
 Ni:0~0.50%、
 Co:0~0.50%、
 Ca:0~0.0040%、
 Mg:0~0.0040%、
 希土類元素:0~0.0040%、
 Nb:0~0.150%、
 V:0~0.500%、
 B:0~0.0030%、及び、
 残部がFe及び不純物からなり、
 降伏強度が758~965MPa未満であり、
 前記降伏強度が758~862MPa未満である場合、式(1)で定義されるEEが2.75以上であり、式(2)で定義されるFNが0.185以上であり、
 前記降伏強度が862~965MPa未満である場合、前記EEが3.00以上であり、前記FNが0.200以上である、
 鋼材。
 EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
 FN=EE/(D0.9) (2)
 ここで、式(1)中の各元素記号には、対応する元素の質量%での含有量が代入される。式(2)中のDには、前記鋼材中の旧オーステナイト粒のμm単位での平均円相当径が代入される。
[1]
The chemical composition is in mass%,
C: 0.20-0.35%,
Si: 0.60-1.30%,
Mn: 0.05-0.25%,
P: 0.050% or less,
S: 0.0100% or less,
Al: 0.010-0.100%,
N: 0.0100% or less,
Cr: 0.20-1.00%,
Mo: 0.10-1.00%,
Ti: 0.003 to 0.030%,
O: 0.0050% or less,
Zr: 0 to 0.0040%,
Sb: 0 to 0.50%,
Cu: 0 to 0.50%,
Ni: 0 to 0.50%,
Co: 0 to 0.50%,
Ca: 0-0.0040%,
Mg: 0 to 0.0040%,
Rare earth elements: 0 to 0.0040%,
Nb: 0 to 0.150%,
V: 0 to 0.500%,
B: 0 to 0.0030%, and
The remainder consists of Fe and impurities,
The yield strength is less than 758 to 965 MPa,
When the yield strength is less than 758 to 862 MPa, EE defined by formula (1) is 2.75 or more, FN defined by formula (2) is 0.185 or more,
When the yield strength is less than 862 to 965 MPa, the EE is 3.00 or more, and the FN is 0.200 or more.
Steel material.
EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
FN=EE/(D 0.9 ) (2)
Here, each element symbol in formula (1) is substituted with the content in mass % of the corresponding element. D in equation (2) is substituted with the average circular equivalent diameter in μm of the prior austenite grains in the steel material.
 [2]
 [1]に記載の鋼材であって、
 前記化学組成は、
 Zr:0.0001~0.0040%、
 Sb:0.01~0.50%、
 Cu:0.01~0.50%、
 Ni:0.01~0.50%、
 Co:0.01~0.50%、
 Ca:0.0001~0.0040%、
 Mg:0.0001~0.0040%、
 希土類元素:0.0001~0.0040%、
 Nb:0.001~0.150%、
 V:0.001~0.500%、及び、
 B:0.0001~0.0030%、
 からなる群から選択される1種以上を含有する、
 鋼材。
[2]
The steel material according to [1],
The chemical composition is
Zr: 0.0001 to 0.0040%,
Sb: 0.01 to 0.50%,
Cu: 0.01 to 0.50%,
Ni: 0.01-0.50%,
Co: 0.01 to 0.50%,
Ca: 0.0001-0.0040%,
Mg: 0.0001 to 0.0040%,
Rare earth elements: 0.0001-0.0040%,
Nb: 0.001 to 0.150%,
V: 0.001 to 0.500%, and
B: 0.0001 to 0.0030%,
Containing one or more selected from the group consisting of
Steel material.
 [3]
 [1]又は[2]に記載の鋼材であって、
 前記鋼材は油井用鋼管である、
 鋼材。
[3]
The steel material according to [1] or [2],
The steel material is a steel pipe for oil wells,
Steel material.
 以下、本実施形態の鋼材について詳述する。なお、元素に関する「%」は、特に断りがない限り、質量%を意味する。 Hereinafter, the steel material of this embodiment will be explained in detail. Note that "%" regarding elements means mass % unless otherwise specified.
 [本実施形態の鋼材の特徴]
 本実施形態の鋼材は、次の特徴1~特徴3を満たす。
 (特徴1)
 化学組成が、質量%で、C:0.20~0.35%、Si:0.60~1.30%、Mn:0.05~0.25%、P:0.050%以下、S:0.0100%以下、Al:0.010~0.100%、N:0.0100%以下、Cr:0.20~1.00%、Mo:0.10~1.00%、Ti:0.003~0.030%、O:0.0050%以下、Zr:0~0.0040%、Sb:0~0.50%、Cu:0~0.50%、Ni:0~0.50%、Co:0~0.50%、Ca:0~0.0040%、Mg:0~0.0040%、希土類元素:0~0.0040%、Nb:0~0.150%、V:0~0.500%、B:0~0.0030%、及び、残部がFe及び不純物からなる。
 (特徴2)
 降伏強度が758~965MPa未満である。
 (特徴3)
 降伏強度が758~862MPa未満である場合、式(1)で定義されるEEが2.75以上であり、式(2)で定義されるFNが0.185以上であり、
 降伏強度が862~965MPa未満である場合、EEが3.00以上であり、FNが0.200以上である。
 EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
 FN=EE/(D0.9) (2)
 ここで、式(1)中の各元素記号には、対応する元素の質量%での含有量が代入される。式(2)中のDには、鋼材中の旧オーステナイト粒のμm単位での平均円相当径が代入される。
 以下、特徴1~特徴3について説明する。
[Characteristics of the steel material of this embodiment]
The steel material of this embodiment satisfies the following characteristics 1 to 3.
(Feature 1)
The chemical composition is in mass%, C: 0.20 to 0.35%, Si: 0.60 to 1.30%, Mn: 0.05 to 0.25%, P: 0.050% or less, S : 0.0100% or less, Al: 0.010 to 0.100%, N: 0.0100% or less, Cr: 0.20 to 1.00%, Mo: 0.10 to 1.00%, Ti: 0.003 to 0.030%, O: 0.0050% or less, Zr: 0 to 0.0040%, Sb: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0. 50%, Co: 0 to 0.50%, Ca: 0 to 0.0040%, Mg: 0 to 0.0040%, Rare earth elements: 0 to 0.0040%, Nb: 0 to 0.150%, V : 0 to 0.500%, B: 0 to 0.0030%, and the balance consists of Fe and impurities.
(Feature 2)
Yield strength is 758 to less than 965 MPa.
(Feature 3)
When the yield strength is less than 758 to 862 MPa, EE defined by formula (1) is 2.75 or more, FN defined by formula (2) is 0.185 or more,
When the yield strength is less than 862 to 965 MPa, the EE is 3.00 or more and the FN is 0.200 or more.
EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
FN=EE/(D 0.9 ) (2)
Here, each element symbol in formula (1) is substituted with the content in mass % of the corresponding element. D in equation (2) is substituted with the average circular equivalent diameter in μm of prior austenite grains in the steel material.
Features 1 to 3 will be explained below.
 [(特徴1)化学組成について]
 本実施形態の鋼材の化学組成は、次の元素を含有する。
[(Feature 1) Regarding chemical composition]
The chemical composition of the steel material of this embodiment contains the following elements.
 C:0.20~0.35%
 炭素(C)は鋼材の焼入れ性を高めたり、炭化物を形成したりすることにより、鋼材の強度を高める。Cはさらに、製造工程中の焼戻しにおいて、炭化物の球状化を促進し、鋼材の耐SSC性を高める。C含有量が0.20%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 C含有量が0.35%を超えれば、粗大な炭化物が過剰に生成する。また、Cは水素侵入促進元素である。そのため、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が低下する。
 したがって、C含有量は0.20~0.35%である。
 C含有量の好ましい下限は0.22%であり、さらに好ましくは0.23%であり、さらに好ましくは0.24%であり、さらに好ましくは0.25%である。
 C含有量の好ましい上限は0.32%であり、さらに好ましくは0.30%であり、さらに好ましくは0.28%であり、さらに好ましくは0.27%である。
C: 0.20-0.35%
Carbon (C) increases the strength of steel by increasing the hardenability of the steel and forming carbides. Furthermore, C promotes the spheroidization of carbides during tempering during the manufacturing process and improves the SSC resistance of the steel material. If the C content is less than 0.20%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
If the C content exceeds 0.35%, coarse carbides are excessively produced. Further, C is an element that promotes hydrogen penetration. Therefore, even if the contents of other elements are within the range of this embodiment, the SSC resistance of the steel material is reduced.
Therefore, the C content is 0.20-0.35%.
The preferable lower limit of the C content is 0.22%, more preferably 0.23%, still more preferably 0.24%, and still more preferably 0.25%.
A preferable upper limit of the C content is 0.32%, more preferably 0.30%, still more preferably 0.28%, and still more preferably 0.27%.
 Si:0.60~1.30%
 シリコン(Si)は、水素侵入抑制元素であり、鋼材表面からの水素の侵入を抑制する。これにより、鋼材の耐SSC性が高まる。Si含有量が0.60%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Si含有量が1.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、旧オーステナイト粒が粗大化する。この場合、Siの電気化学的作用により鋼材表面からの水素侵入量は抑制されるものの、物理的作用により、鋼材の耐SSC性が低下する。
 したがって、Si含有量は0.60~1.30%である。
 Si含有量の好ましい下限は0.62%であり、さらに好ましくは0.65%であり、さらに好ましくは0.70%であり、さらに好ましくは0.72%であり、さらに好ましくは0.75%であり、さらに好ましくは0.80%である。
 Si含有量の好ましい上限は1.28%であり、さらに好ましくは1.25%であり、さらに好ましくは1.20%である。
Si: 0.60-1.30%
Silicon (Si) is a hydrogen intrusion suppressing element and suppresses hydrogen intrusion from the surface of the steel material. This increases the SSC resistance of the steel material. If the Si content is less than 0.60%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Si content exceeds 1.30%, the prior austenite grains become coarse even if the contents of other elements are within the range of this embodiment. In this case, although the amount of hydrogen penetrating from the surface of the steel material is suppressed by the electrochemical action of Si, the SSC resistance of the steel material decreases due to the physical action.
Therefore, the Si content is 0.60-1.30%.
The lower limit of the Si content is preferably 0.62%, more preferably 0.65%, even more preferably 0.70%, even more preferably 0.72%, and even more preferably 0.75%. %, more preferably 0.80%.
A preferable upper limit of the Si content is 1.28%, more preferably 1.25%, and still more preferably 1.20%.
 Mn:0.05~0.25%
 マンガン(Mn)は鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高める。Mn含有量が0.05%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Mnは水素侵入促進元素である。Mn含有量が0.25%を超えれば、Mn硫化物が過剰に生成してしまう。Mn硫化物は孔食の起点となる。そのため、Mn硫化物が過剰に生成すれば、腐食速度が速まり、水素の鋼材への侵入が促進される。その結果、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が低下する。
 したがって、Mn含有量は0.05~0.25%である。
 Mn含有量の好ましい下限は0.06%であり、さらに好ましくは0.07%であり、さらに好ましくは0.08%であり、さらに好ましくは0.10%である。
 Mn含有量の好ましい上限は0.24%であり、さらに好ましくは0.23%であり、さらに好ましくは0.22%であり、さらに好ましくは0.20%であり、さらに好ましくは0.18%である。
Mn: 0.05-0.25%
Manganese (Mn) deoxidizes steel. Mn further improves the hardenability of the steel material. If the Mn content is less than 0.05%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, Mn is an element that promotes hydrogen penetration. If the Mn content exceeds 0.25%, excessive Mn sulfide will be produced. Mn sulfide becomes a starting point for pitting corrosion. Therefore, if Mn sulfide is produced excessively, the corrosion rate will increase and hydrogen penetration into the steel material will be promoted. As a result, even if the contents of other elements are within the range of this embodiment, the SSC resistance of the steel material decreases.
Therefore, the Mn content is 0.05-0.25%.
The preferable lower limit of the Mn content is 0.06%, more preferably 0.07%, even more preferably 0.08%, and still more preferably 0.10%.
A preferable upper limit of the Mn content is 0.24%, more preferably 0.23%, even more preferably 0.22%, still more preferably 0.20%, and even more preferably 0.18%. %.
 P:0.050%以下
 燐(P)は不純物である。すなわち、P含有量は0%超である。P含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Pが粒界に偏析し、鋼材の耐SSC性が低下する。
 したがって、P含有量は0.050%以下である。
 P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。
 P含有量の好ましい上限は0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。
P: 0.050% or less Phosphorus (P) is an impurity. That is, the P content is more than 0%. If the P content exceeds 0.050%, even if the contents of other elements are within the ranges of this embodiment, P will segregate at grain boundaries and the SSC resistance of the steel material will decrease.
Therefore, the P content is 0.050% or less.
It is preferable that the P content is as low as possible. However, extreme reduction in P content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.003%.
The upper limit of the P content is preferably 0.030%, more preferably 0.025%, even more preferably 0.020%, and still more preferably 0.015%.
 S:0.0100%以下
 硫黄(S)は不純物である。すなわち、S含有量は0%超である。S含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Sが粒界に偏析し、鋼材の耐SSC性が低下する。
 したがって、S含有量は0.0100%以下である。
 S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
 S含有量の好ましい上限は0.0070%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
S: 0.0100% or less Sulfur (S) is an impurity. That is, the S content is more than 0%. If the S content exceeds 0.0100%, even if the contents of other elements are within the ranges of this embodiment, S will segregate at grain boundaries and the SSC resistance of the steel material will decrease.
Therefore, the S content is 0.0100% or less.
It is preferable that the S content is as low as possible. However, extreme reduction in S content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the S content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%.
A preferable upper limit of the S content is 0.0070%, more preferably 0.0050%, even more preferably 0.0030%, still more preferably 0.0025%, and even more preferably 0.0020%. %, more preferably 0.0015%.
 Al:0.010~0.100%
 アルミニウム(Al)は鋼を脱酸する。Al含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物系介在物が生成する。そのため、鋼材の耐SSC性が低下する。
 したがって、Al含有量は0.010~0.100%である。
 Al含有量の好ましい下限は0.012%であり、さらに好ましくは0.015%であり、さらに好ましくは0.020%であり、さらに好ましくは0.025%である。
 Al含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%であり、さらに好ましくは0.060%である。
 本明細書にいう「Al」含有量は「酸可溶Al」、つまり、「sol.Al」の含有量を意味する。
Al: 0.010-0.100%
Aluminum (Al) deoxidizes steel. If the Al content is less than 0.010%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Al content exceeds 0.100%, coarse oxide-based inclusions will be generated even if the contents of other elements are within the range of this embodiment. Therefore, the SSC resistance of the steel material decreases.
Therefore, the Al content is 0.010 to 0.100%.
The lower limit of the Al content is preferably 0.012%, more preferably 0.015%, even more preferably 0.020%, and still more preferably 0.025%.
A preferable upper limit of the Al content is 0.080%, more preferably 0.070%, and still more preferably 0.060%.
The "Al" content as used herein means the content of "acid-soluble Al", that is, "sol.Al".
 N:0.0100%以下
 窒素(N)は不可避に含有される。すなわち、N含有量の下限は0%超である。NはTiと結合して窒化物を形成し、ピンニング効果により、鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。
 しかしながら、N含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が形成する。その結果、鋼材の耐SSC性が低下する。
 したがって、N含有量は0.0100%以下である。
 N含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0020%である。
 N含有量の好ましい上限は0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0045%であり、さらに好ましくは0.0040%である。
N: 0.0100% or less Nitrogen (N) is unavoidably contained. That is, the lower limit of the N content is over 0%. N combines with Ti to form nitrides and refines the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases.
However, if the N content exceeds 0.0100%, coarse nitrides will be formed even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the N content is 0.0100% or less.
The preferable lower limit of the N content is 0.0001%, more preferably 0.0005%, even more preferably 0.0010%, still more preferably 0.0015%, and even more preferably 0.0020%. %.
A preferable upper limit of the N content is 0.0070%, more preferably 0.0060%, even more preferably 0.0050%, still more preferably 0.0045%, and even more preferably 0.0040%. %.
 Cr:0.20~1.00%
 クロム(Cr)は鋼材の焼入れ性を高める。Crはさらに、水素侵入抑制元素として機能する。具体的には、Crは、サワー環境において、鋼材表面に形成される腐食生成物皮膜を安定化して、水素が鋼材に侵入するのを抑制する。その結果、鋼材の耐SSC性が高まる。Cr含有量が0.20%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Cr含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の硬さが過度に高くなる。そのため、鋼材の耐SSC性が低下する。
 したがって、Cr含有量は0.20~1.00%である。
 Cr含有量の好ましい下限は0.25%であり、さらに好ましくは0.30%であり、さらに好ましくは0.35%であり、さらに好ましくは0.40%であり、さらに好ましくは0.45%であり、さらに好ましくは0.50%であり、さらに好ましくは0.55%であり、さらに好ましくは0.60%である。
 Cr含有量の好ましい上限は0.98%であり、さらに好ましくは0.95%であり、さらに好ましくは0.90%である。
Cr:0.20~1.00%
Chromium (Cr) improves the hardenability of steel materials. Cr further functions as a hydrogen intrusion suppressing element. Specifically, Cr stabilizes the corrosion product film formed on the surface of the steel material in a sour environment, thereby suppressing hydrogen from penetrating into the steel material. As a result, the SSC resistance of the steel material increases. If the Cr content is less than 0.20%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Cr content exceeds 1.00%, the hardness of the steel material will become excessively high even if the contents of other elements are within the range of this embodiment. Therefore, the SSC resistance of the steel material decreases.
Therefore, the Cr content is between 0.20 and 1.00%.
The preferable lower limit of the Cr content is 0.25%, more preferably 0.30%, even more preferably 0.35%, still more preferably 0.40%, even more preferably 0.45%. %, more preferably 0.50%, still more preferably 0.55%, still more preferably 0.60%.
The upper limit of the Cr content is preferably 0.98%, more preferably 0.95%, and still more preferably 0.90%.
 Mo:0.10~1.00%
 モリブデン(Mo)は、水素侵入抑制元素として機能する。具体的には、Moは、サワー環境において、鋼材表面に形成される腐食生成物皮膜を安定化して、水素が鋼材に侵入するのを抑制する。その結果、鋼材の耐SSC性が高まる。Moはさらに、鋼材の焼入れ性を高める。Moはさらに、鋼材の焼戻し軟化抵抗を高め、高温焼戻しを可能にする。その結果、鋼材の耐SSC性が高まる。Mo含有量が0.10%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Mo含有量が1.00%を超えれば、上記効果が飽和する。
 したがって、Mo含有量は0.10~1.00%である。
 Mo含有量の好ましい下限は0.20%であり、さらに好ましくは0.25%であり、さらに好ましくは0.30%であり、さらに好ましくは0.35%である。
 Mo含有量の好ましい上限は0.95%であり、さらに好ましくは0.90%であり、さらに好ましくは0.85%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%である。
Mo: 0.10~1.00%
Molybdenum (Mo) functions as a hydrogen penetration inhibiting element. Specifically, Mo stabilizes the corrosion product film formed on the surface of the steel material in a sour environment, thereby suppressing hydrogen from penetrating into the steel material. As a result, the SSC resistance of the steel material increases. Mo further improves the hardenability of the steel material. Mo further increases the temper softening resistance of the steel material and enables high temperature tempering. As a result, the SSC resistance of the steel material increases. If the Mo content is less than 0.10%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Mo content exceeds 1.00%, the above effects will be saturated.
Therefore, the Mo content is 0.10-1.00%.
The lower limit of the Mo content is preferably 0.20%, more preferably 0.25%, even more preferably 0.30%, and still more preferably 0.35%.
The preferable upper limit of the Mo content is 0.95%, more preferably 0.90%, even more preferably 0.85%, even more preferably 0.80%, and even more preferably 0.70%. %.
 Ti:0.003~0.030%
 チタン(Ti)はNと結合して窒化物を形成し、ピンニング効果により、鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。Ti含有量が0.003%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Ti含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なTi窒化物が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、Ti含有量は0.003~0.030%である。
 Ti含有量の好ましい下限は0.004%であり、さらに好ましくは0.005%である。
 Ti含有量の好ましい上限は0.028%であり、さらに好ましくは0.025%であり、さらに好ましくは0.022%であり、さらに好ましくは0.020%である。
Ti: 0.003~0.030%
Titanium (Ti) combines with N to form a nitride, and the pinning effect refines the crystal grains of the steel material. As a result, the strength of the steel material increases. If the Ti content is less than 0.003%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Ti content exceeds 0.030%, coarse Ti nitrides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the Ti content is 0.003 to 0.030%.
The lower limit of the Ti content is preferably 0.004%, more preferably 0.005%.
A preferable upper limit of the Ti content is 0.028%, more preferably 0.025%, still more preferably 0.022%, and still more preferably 0.020%.
 O:0.0050%以下
 酸素(O)は不純物である。すなわち、O含有量の下限は0%超である。O含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。その結果、鋼材の低温靭性及び耐SSC性が低下する。
 したがって、O含有量は0.0050%以下である。
 O含有量はなるべく低い方が好ましい。ただし、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
 O含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
O: 0.0050% or less Oxygen (O) is an impurity. That is, the lower limit of the O content is over 0%. If the O content exceeds 0.0050%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the low-temperature toughness and SSC resistance of the steel material decrease.
Therefore, the O content is 0.0050% or less.
It is preferable that the O content is as low as possible. However, extreme reduction in O content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the O content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%.
A preferable upper limit of the O content is 0.0040%, more preferably 0.0030%, still more preferably 0.0025%, and still more preferably 0.0020%.
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、化学組成における不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、意図的に含有されるものではなく、本実施形態による鋼材に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the steel material according to this embodiment consists of Fe and impurities. Here, impurities in the chemical composition are those that are mixed in from raw materials such as ore, scrap, or the manufacturing environment when manufacturing steel materials industrially, and are not intentionally contained. It means what is permissible within a range that does not adversely affect the steel material according to this embodiment.
 [任意元素(Optional Elements)]
 本実施形態の鋼材の化学組成はさらに、
 Zr:0~0.0040%、
 Sb:0~0.50%、
 Cu:0~0.50%、
 Ni:0~0.50%、
 Co:0~0.50%、
 Ca:0~0.0040%、
 Mg:0~0.0040%、
 希土類元素:0~0.0040%、
 Nb:0~0.150%、
 V:0~0.500%、及び、
 B:0~0.0030%、
 からなる群から選択される1元素以上を含有してもよい。
 以下、これらの任意元素について説明する。
[Optional Elements]
The chemical composition of the steel material of this embodiment further includes:
Zr: 0 to 0.0040%,
Sb: 0 to 0.50%,
Cu: 0 to 0.50%,
Ni: 0 to 0.50%,
Co: 0 to 0.50%,
Ca: 0-0.0040%,
Mg: 0 to 0.0040%,
Rare earth elements: 0 to 0.0040%,
Nb: 0 to 0.150%,
V: 0 to 0.500%, and
B: 0 to 0.0030%,
It may contain one or more elements selected from the group consisting of.
These arbitrary elements will be explained below.
 [第1群:Zr、Sb、Cu、Ni、Co、Ca、Mg及び希土類元素(REM)について]
 本実施形態による鋼材の化学組成はさらに、Feの一部に代えて、Zr、Sb、Cu、Ni、Co、Ca、Mg及び希土類元素(REM)からなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の耐SSC性を高める。
[Group 1: Regarding Zr, Sb, Cu, Ni, Co, Ca, Mg and rare earth elements (REM)]
The chemical composition of the steel material according to the present embodiment further includes one or more elements selected from the group consisting of Zr, Sb, Cu, Ni, Co, Ca, Mg, and rare earth elements (REM) in place of a part of Fe. You may. All of these elements are optional elements and improve the SSC resistance of the steel material.
 Zr:0~0.0040%
 ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。つまり、Zr含有量は0%であってもよい。
 Zrが含有される場合、つまり、Zr含有量が0%超である場合、Zrは水素侵入抑制元素として機能する。具体的には、Zrは、サワー環境において、鋼材表面に形成される腐食生成物皮膜を安定化して、水素が鋼材に侵入するのを抑制する。その結果、鋼材の耐SSC性が高まる。Zrが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Zr含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、Zr含有量は0~0.0040%である。
 Zr含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%である。
 Zr含有量の好ましい上限は0.0038%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0032%である。
Zr: 0 to 0.0040%
Zirconium (Zr) is an optional element and may not be included. That is, the Zr content may be 0%.
When Zr is contained, that is, when the Zr content is more than 0%, Zr functions as a hydrogen penetration inhibiting element. Specifically, Zr stabilizes the corrosion product film formed on the surface of the steel material in a sour environment and suppresses hydrogen from penetrating into the steel material. As a result, the SSC resistance of the steel material increases. If even a small amount of Zr is contained, the above effects can be obtained to some extent.
However, if the Zr content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the Zr content is 0 to 0.0040%.
The preferable lower limit of the Zr content is 0.0001%, more preferably 0.0003%, even more preferably 0.0006%, still more preferably 0.0010%, and even more preferably 0.0015%. %.
A preferable upper limit of the Zr content is 0.0038%, more preferably 0.0035%, and still more preferably 0.0032%.
 Sb:0~0.50%
 アンチモン(Sb)は任意元素であり、含有されなくてもよい。つまり、Sb含有量は0%であってもよい。
 Sbが含有される場合、つまり、Sb含有量が0%超である場合、Sbは水素侵入抑制元素として機能する。具体的には、Sbは、サワー環境下において、水素の鋼材への侵入を抑制する。その結果、鋼材の耐SSC性が高まる。Sbが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Sb含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。
 したがって、Sb含有量は0~0.50%である。
 Sb含有量の好ましい下限は0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.08%である。
 Sb含有量の好ましい上限は0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%である。
Sb: 0-0.50%
Antimony (Sb) is an optional element and may not be included. That is, the Sb content may be 0%.
When Sb is contained, that is, when the Sb content is more than 0%, Sb functions as a hydrogen penetration suppressing element. Specifically, Sb suppresses hydrogen from entering the steel material in a sour environment. As a result, the SSC resistance of the steel material increases. If even a small amount of Sb is contained, the above effects can be obtained to some extent.
However, if the Sb content exceeds 0.50%, the hot workability of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the Sb content is 0 to 0.50%.
The preferable lower limit of the Sb content is 0.01%, more preferably 0.03%, still more preferably 0.05%, and still more preferably 0.08%.
A preferable upper limit of the Sb content is 0.40%, more preferably 0.35%, still more preferably 0.30%, and still more preferably 0.25%.
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。
 Cuが含有される場合、つまり、Cu含有量が0%超である場合、Cuは水素侵入抑制元素として機能する。具体的には、Cuは、サワー環境下において、腐食生成物皮膜と母材との界面に濃化する。これにより、母材の表面活性が抑制され、水素の鋼材への侵入が抑制される。その結果、鋼材の耐SSC性が高まる。Cuはさらに、鋼材に固溶して鋼材の焼入れ性を高め、鋼材の強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Cu含有量が0.50%を超えれば、Cuが鋼材中に析出する。析出したCuは水素をトラップしやすい。そのため、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が低下する。
 したがって、Cu含有量は0~0.50%である。
 Cu含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%である。
 Cu含有量の好ましい上限は0.40%であり、さらに好ましくは0.38%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
Cu: 0-0.50%
Copper (Cu) is an optional element and may not be included. That is, the Cu content may be 0%.
When Cu is contained, that is, when the Cu content is more than 0%, Cu functions as a hydrogen penetration suppressing element. Specifically, Cu concentrates at the interface between the corrosion product film and the base material in a sour environment. This suppresses the surface activity of the base material and suppresses hydrogen from entering the steel material. As a result, the SSC resistance of the steel material increases. Furthermore, Cu is dissolved in the steel material to improve the hardenability of the steel material, thereby increasing the strength of the steel material. If even a small amount of Cu is contained, the above effects can be obtained to some extent.
However, if the Cu content exceeds 0.50%, Cu will precipitate into the steel material. Precipitated Cu tends to trap hydrogen. Therefore, even if the contents of other elements are within the range of this embodiment, the SSC resistance of the steel material is reduced.
Therefore, the Cu content is 0-0.50%.
The preferable lower limit of the Cu content is 0.01%, more preferably 0.02%, and still more preferably 0.05%.
A preferable upper limit of the Cu content is 0.40%, more preferably 0.38%, still more preferably 0.35%, and still more preferably 0.30%.
 Ni:0~0.50%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。
 Niが含有される場合、つまり、Ni含有量が0%超である場合、Niは水素侵入抑制元素として機能する。具体的には、Niは、サワー環境下において、腐食生成物皮膜と母材との界面に濃化する。これにより、母材の表面活性が抑制され、水素の鋼材への侵入が抑制される。その結果、鋼材の耐SSC性が高まる。Niが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ni含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、局部腐食が進行しやすくなり、鋼材の耐水素脆化特性が低下する。
 したがって、Ni含有量は0~0.50%である。
 Ni含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.07%である。
 Ni含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.32%である。
Ni: 0-0.50%
Nickel (Ni) is an optional element and may not be included. That is, the Ni content may be 0%.
When Ni is contained, that is, when the Ni content is more than 0%, Ni functions as a hydrogen penetration suppressing element. Specifically, Ni concentrates at the interface between the corrosion product film and the base material in a sour environment. This suppresses the surface activity of the base material and suppresses hydrogen from entering the steel material. As a result, the SSC resistance of the steel material increases. If even a small amount of Ni is contained, the above effects can be obtained to some extent.
However, if the Ni content exceeds 0.50%, even if the contents of other elements are within the ranges of this embodiment, local corrosion tends to progress and the hydrogen embrittlement resistance of the steel material deteriorates.
Therefore, the Ni content is 0 to 0.50%.
The preferable lower limit of the Ni content is 0.01%, more preferably 0.05%, and still more preferably 0.07%.
A preferable upper limit of the Ni content is 0.45%, more preferably 0.40%, still more preferably 0.35%, and still more preferably 0.32%.
 Co:0~0.50%
 コバルト(Co)は任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。
 Coが含有される場合、つまり、Co含有量が0%超である場合、Coは水素侵入抑制元素として機能する。具体的には、Coは、サワー環境下において、腐食生成物皮膜と母材との界面に濃化する。これにより、母材の表面活性が抑制され、水素の鋼材への侵入が抑制される。その結果、鋼材の耐SSC性が高まる。Coが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Co含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が低下して、鋼材の強度が低下する。
 したがって、Co含有量は0~0.50%である。
 Co含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.08%である。
 Co含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%である。
Co: 0-0.50%
Cobalt (Co) is an optional element and may not be included. That is, the Co content may be 0%.
When Co is contained, that is, when the Co content is more than 0%, Co functions as a hydrogen penetration suppressing element. Specifically, Co concentrates at the interface between the corrosion product film and the base material in a sour environment. This suppresses the surface activity of the base material and suppresses hydrogen from entering the steel material. As a result, the SSC resistance of the steel material increases. If even a small amount of Co is contained, the above effects can be obtained to some extent.
However, if the Co content exceeds 0.50%, even if the contents of other elements are within the ranges of this embodiment, the hardenability of the steel material decreases, and the strength of the steel material decreases.
Therefore, the Co content is 0-0.50%.
The preferable lower limit of the Co content is 0.01%, more preferably 0.02%, even more preferably 0.03%, still more preferably 0.05%, and even more preferably 0.08%. %.
A preferable upper limit of the Co content is 0.40%, more preferably 0.30%, still more preferably 0.20%, and still more preferably 0.15%.
 Ca:0~0.0040%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。
 Caが含有される場合、つまり、Ca含有量が0%超である場合、Caは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ca含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、Ca含有量は0~0.0040%である。
 Ca含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 Ca含有量の好ましい上限は0.0030%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0012%である。
Ca: 0-0.0040%
Calcium (Ca) is an optional element and may not be included. That is, the Ca content may be 0%.
When Ca is contained, that is, when the Ca content is more than 0%, Ca renders S in the steel material harmless as sulfide and improves the SSC resistance of the steel material. If even a small amount of Ca is contained, the above effects can be obtained to some extent.
However, if the Ca content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the Ca content is 0 to 0.0040%.
The lower limit of the Ca content is preferably 0.0001%, more preferably 0.0003%.
A preferable upper limit of the Ca content is 0.0030%, more preferably 0.0020%, still more preferably 0.0015%, and still more preferably 0.0012%.
 Mg:0~0.0040%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。
 Mgが含有される場合、つまり、Mg含有量が0%超である場合、Mgは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Mg含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、Mg含有量は0~0.0040%である。
 Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 Mg含有量の好ましい上限は0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
Mg: 0-0.0040%
Magnesium (Mg) is an optional element and may not be included. That is, the Mg content may be 0%.
When Mg is contained, that is, when the Mg content is more than 0%, Mg renders S in the steel material harmless as sulfide and improves the SSC resistance of the steel material. If even a small amount of Mg is contained, the above effects can be obtained to some extent.
However, if the Mg content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the Mg content is 0 to 0.0040%.
The lower limit of the Mg content is preferably 0.0001%, more preferably 0.0003%.
The upper limit of the Mg content is preferably 0.0030%, more preferably 0.0025%, even more preferably 0.0020%, and still more preferably 0.0015%.
 希土類元素:0~0.0040%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。
 REMが含有される場合、つまり、REM含有量が0%超である場合、REMは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。REMはさらに、鋼材中のPと結合して、結晶粒界におけるPの偏析を抑制する。そのため、Pの偏析に起因した鋼材の耐SSC性の低下が抑制される。REMが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、REM含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、REM含有量は0~0.0040%である。
 REM含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
 REM含有量の好ましい上限は0.0035%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%である。
Rare earth elements: 0-0.0040%
Rare earth elements (REM) are optional elements and may not be included. That is, the REM content may be 0%.
When REM is contained, that is, when the REM content is more than 0%, REM renders S in the steel material harmless as sulfide, and improves the SSC resistance of the steel material. REM further combines with P in the steel material to suppress segregation of P at grain boundaries. Therefore, a decrease in the SSC resistance of the steel material due to P segregation is suppressed. If even a small amount of REM is contained, the above effects can be obtained to some extent.
However, if the REM content exceeds 0.0040%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the REM content is between 0 and 0.0040%.
The lower limit of the REM content is preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0005%.
A preferable upper limit of the REM content is 0.0035%, more preferably 0.0030%, and still more preferably 0.0025%.
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素を意味する。また、本明細書におけるREM含有量とは、これら元素の合計含有量を意味する。 In this specification, REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids such as lanthanum (La) with atomic number 57 to atomic number 71. It means one or more elements selected from the group consisting of lutetium (Lu). Moreover, the REM content in this specification means the total content of these elements.
 [第2群:Nb、V及びBについて]
 本実施形態による鋼材の化学組成はさらに、Feの一部に代えて、Nb、V及びBからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の強度を高める。
[Group 2: Regarding Nb, V and B]
The chemical composition of the steel material according to the present embodiment may further contain one or more elements selected from the group consisting of Nb, V, and B in place of a part of Fe. All of these elements are optional elements and increase the strength of the steel material.
 Nb:0~0.150%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。
 Nbが含有される場合、Nbは、C及び/又はNと結合してNb炭窒化物等を形成する。これらのNb炭窒化物等は、ピンニング効果により、鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Nb含有量が0.150%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なNb炭窒化物等が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、Nb含有量は0~0.150%である。
 Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%であり、さらに好ましくは0.008%であり、さらに好ましくは0.012%である。
 Nb含有量の好ましい上限は0.100%であり、さらに好ましくは0.050%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%である。
Nb: 0-0.150%
Niobium (Nb) is an optional element and may not be included. That is, the Nb content may be 0%.
When Nb is contained, Nb combines with C and/or N to form Nb carbonitride or the like. These Nb carbonitrides etc. refine the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. If even a small amount of Nb is contained, the above effects can be obtained to some extent.
However, if the Nb content exceeds 0.150%, coarse Nb carbonitrides and the like will be generated even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the Nb content is between 0 and 0.150%.
The lower limit of the Nb content is preferably 0.001%, more preferably 0.003%, even more preferably 0.005%, even more preferably 0.008%, and still more preferably 0.012%. %.
A preferable upper limit of the Nb content is 0.100%, more preferably 0.050%, even more preferably 0.030%, still more preferably 0.025%, and even more preferably 0.020%. %.
 V:0~0.500%
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。
 Vが含有される場合、Vは、C及び/又はNと結合してV炭窒化物等を形成する。これらのV炭窒化物等は、ピンニング効果により、鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。Vが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、V含有量が0.500%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性が低下する。
 したがって、V含有量は0~0.500%である。
 V含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。
 V含有量の好ましい上限は0.300%であり、さらに好ましくは0.250%であり、さらに好ましくは0.200%であり、さらに好ましくは0.150%であり、さらに好ましくは0.120%であり、さらに好ましくは0.100%である。
V: 0-0.500%
Vanadium (V) is an optional element and may not be included. That is, the V content may be 0%.
When V is contained, V combines with C and/or N to form V carbonitride or the like. These V carbonitrides etc. refine the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. If even a small amount of V is contained, the above effects can be obtained to some extent.
However, if the V content exceeds 0.500%, the toughness of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the V content is 0-0.500%.
The lower limit of the V content is preferably 0.001%, more preferably 0.005%, and still more preferably 0.010%.
A preferable upper limit of the V content is 0.300%, more preferably 0.250%, even more preferably 0.200%, still more preferably 0.150%, and even more preferably 0.120%. %, more preferably 0.100%.
 B:0~0.0030%
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。
 Bが含有される場合、Bは鋼材に固溶して鋼材の焼入れ性を高め、鋼材の強度を高める。Bが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、B含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なB窒化物が生成する。その結果、鋼材の耐SSC性が低下する。
 したがって、B含有量は0~0.0030%である。
 B含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0008%である。
 B含有量の好ましい上限は0.0028%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0023%である。
B: 0-0.0030%
Boron (B) is an optional element and may not be included. That is, the B content may be 0%.
When B is contained, B forms a solid solution in the steel material, improves the hardenability of the steel material, and increases the strength of the steel material. If even a small amount of B is contained, the above effects can be obtained to some extent.
However, if the B content exceeds 0.0030%, coarse B nitrides will be produced even if the contents of other elements are within the range of this embodiment. As a result, the SSC resistance of the steel material decreases.
Therefore, the B content is 0 to 0.0030%.
The lower limit of the B content is preferably 0.0001%, more preferably 0.0005%, and even more preferably 0.0008%.
A preferable upper limit of the B content is 0.0028%, more preferably 0.0025%, and still more preferably 0.0023%.
 [(特徴2)降伏強度について]
 本実施形態による鋼材の降伏強度は758~965MPa未満(110ksi級~125ksi級)である。本実施形態の鋼材は、特徴1及び特徴3を満たした場合に、降伏強度が758~965MPa未満の高強度であっても、優れた耐SSC性を有する。
[(Feature 2) Regarding yield strength]
The yield strength of the steel material according to this embodiment is 758 to less than 965 MPa (110 ksi class to 125 ksi class). The steel material of this embodiment has excellent SSC resistance even if it has a high yield strength of less than 758 to 965 MPa when characteristics 1 and 3 are satisfied.
 [降伏強度の測定方法]
 降伏強度は、次の方法で測定する。ASTM E8/E8M(2021)に準拠して、引張試験を行う。具体的には、鋼材から、引張試験片を採取する。引張試験片のサイズは特に限定されない。引張試験片は例えば、平行部直径が6.0mm、標点距離が30.0mmの丸棒引張試験片とする。
 鋼材が鋼管である場合、肉厚中央部から引張試験片を採取する。この場合、引張試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が鋼板である場合、板厚中央部から引張試験片を採取する。この場合、引張試験片の長手方向は、鋼板の圧延方向と平行とする。鋼材が丸鋼である場合、R/2部から引張試験片を採取する。本明細書において、丸鋼とは、軸方向に垂直な断面が円形状の棒鋼を意味する。R/2部とは、丸鋼の軸方向(圧延方向)に垂直な断面における半径Rの中心部を意味する。引張試験片の長手方向は、丸鋼の軸方向と平行とする。
 採取した引張試験片を用いて、常温(24±3℃)、大気中で引張試験を実施する。得られた0.2%オフセット耐力(MPa)を、降伏強度(MPa)と定義する。
[Method of measuring yield strength]
Yield strength is measured by the following method. A tensile test is performed in accordance with ASTM E8/E8M (2021). Specifically, a tensile test piece is taken from the steel material. The size of the tensile test piece is not particularly limited. The tensile test piece is, for example, a round bar tensile test piece with a parallel part diameter of 6.0 mm and a gage length of 30.0 mm.
If the steel material is a steel pipe, take a tensile test piece from the center of the wall thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the axial direction of the steel pipe. If the steel material is a steel plate, take a tensile test piece from the center of the plate thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the rolling direction of the steel plate. When the steel material is round steel, a tensile test piece is taken from section R/2. In this specification, round steel means a steel bar whose cross section perpendicular to the axial direction is circular. The R/2 section means the center of the radius R in a cross section perpendicular to the axial direction (rolling direction) of the round steel. The longitudinal direction of the tensile test piece shall be parallel to the axial direction of the round steel.
Using the collected tensile test piece, a tensile test is conducted in the atmosphere at room temperature (24±3°C). The obtained 0.2% offset proof stress (MPa) is defined as yield strength (MPa).
 [ミクロ組織]
 本実施形態による鋼材のミクロ組織は、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率が90%以上である。ミクロ組織の残部は例えば、フェライト、及び/又は、パーライトである。
[Microstructure]
In the microstructure of the steel material according to this embodiment, the total area ratio of tempered martensite and tempered bainite is 90% or more. The remainder of the microstructure is, for example, ferrite and/or pearlite.
 化学組成が特徴1を満たし、降伏強度が特徴2を満たす鋼材のミクロ組織では、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率が90%以上となる。したがって、鋼材の化学組成が特徴1を満たし、かつ、降伏強度が特徴2を満たせば、当該鋼材のミクロ組織では、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率が90%以上であるとみなすことができる。 In the microstructure of a steel material whose chemical composition satisfies Feature 1 and whose yield strength satisfies Feature 2, the total area ratio of tempered martensite and tempered bainite is 90% or more. Therefore, if the chemical composition of a steel material satisfies feature 1 and the yield strength satisfies feature 2, the total area ratio of tempered martensite and tempered bainite can be considered to be 90% or more in the microstructure of the steel material. can.
 [ミクロ組織観察方法]
 焼戻しマルテンサイト及び焼戻しベイナイトの総面積率は、次の方法で求めることができる。初めに、鋼材から試験片を採取する。
 鋼材が鋼管の場合、肉厚中央部から管軸方向10mm、管径方向10mmの観察面を有する試験片を採取する。鋼材が肉厚10mm未満の鋼管の場合、管軸方向10mm、管径方向に鋼管の肉厚の観察面を有する試験片を採取する。
 鋼材が鋼板の場合、板厚中央部から圧延方向10mm、板厚方向10mmの観察面を有する試験片を採取する。鋼材が板厚10mm未満の鋼板の場合、圧延方向10mm、板厚方向に鋼板の厚さの観察面を有する試験片を採取する。
 鋼材が丸鋼の場合、丸鋼の軸方向(圧延方向)に垂直な断面から試験片を採取する。具体的には、R/2部を中央に含み、軸方向10mm、当該断面における径方向10mmの観察面を有する試験片を採取する。断面の直径が10mm未満の場合、R/2部を含み、軸方向10mm、当該断面の径方向が直径の観察面を有する試験片を採取する。
[Microstructure observation method]
The total area ratio of tempered martensite and tempered bainite can be determined by the following method. First, a test piece is taken from the steel material.
When the steel material is a steel pipe, a test piece having an observation surface of 10 mm in the tube axis direction and 10 mm in the tube diameter direction from the center of the wall thickness is taken. If the steel material is a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction is taken.
When the steel material is a steel plate, a test piece having an observation surface extending 10 mm in the rolling direction and 10 mm in the plate thickness direction from the center of the plate thickness is taken. If the steel material is a steel plate with a thickness of less than 10 mm, a test piece having an observation surface of 10 mm in the rolling direction and the thickness of the steel plate in the thickness direction is taken.
If the steel material is a round steel, a test piece is taken from a cross section perpendicular to the axial direction (rolling direction) of the round steel. Specifically, a test piece is taken that includes the R/2 part in the center and has an observation surface of 10 mm in the axial direction and 10 mm in the radial direction of the cross section. If the diameter of the cross section is less than 10 mm, take a test piece that includes the R/2 portion and has an observation surface that is 10 mm in the axial direction and has a diameter in the radial direction of the cross section.
 試験片の観察面を鏡面に研磨する。研磨後の観察面をナイタール腐食液に10秒程度浸漬して、エッチングする。エッチングした観察面を、走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、二次電子像にて10視野観察する。視野面積は、例えば、10000μm(倍率1000倍)である。 Polish the observation surface of the test piece to a mirror surface. After polishing, the observation surface is immersed in a nital corrosive solution for about 10 seconds to be etched. The etched observation surface is observed in 10 fields of view using a secondary electron image using a scanning electron microscope (SEM). The field of view area is, for example, 10000 μm 2 (1000x magnification).
 各視野において、コントラストから焼戻しマルテンサイト及び焼戻しベイナイトを特定する。各視野において、焼戻しマルテンサイト及び焼戻しベイナイトと、その他の組織(フェライト、パーライト等)とは、形態から区別できる。具体的には、ラメラを有する組織はパーライトと特定できる。ラスやレンズを含む組織は、焼戻しマルテンサイト及び焼戻しベイナイトと特定できる。粒内に下部組織がない組織はフェライトと特定できる。 In each field of view, tempered martensite and tempered bainite are identified from the contrast. In each field of view, tempered martensite and tempered bainite can be distinguished from other structures (ferrite, pearlite, etc.) based on their morphology. Specifically, the tissue having lamellae can be identified as pearlite. The structure containing laths and lenses can be identified as tempered martensite and tempered bainite. A structure without substructure within the grain can be identified as ferrite.
 特定した焼戻しマルテンサイト及び焼戻しベイナイトの総面積率を求める。総面積率を求める方法は特に限定されず、周知の方法でよい。例えば、画像解析によって、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率を求めることができる。本実施形態では、全ての視野(10視野)で求めた、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率の算術平均値を、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率(%)と定義する。
 [(特徴3)電気化学的要素EE及びFNについて]
 本実施形態の鋼材ではさらに、降伏強度が758~862MPa未満(110ksi級)である場合、式(1)で定義されるEEが2.75以上であり、式(2)で定義されるFNが0.185以上であり、降伏強度が862~965MPa未満(125ksi級)である場合、EEが3.00以上であり、FNが0.200以上である。
 EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
 FN=EE/(D0.9) (2)
 ここで、式(1)中の各元素記号には、対応する元素の質量%での含有量が代入される。式(2)中のDには、鋼材中の旧オーステナイト粒のμm単位での平均円相当径が代入される。
The total area ratio of the specified tempered martensite and tempered bainite is determined. The method for determining the total area ratio is not particularly limited, and any known method may be used. For example, the total area ratio of tempered martensite and tempered bainite can be determined by image analysis. In this embodiment, the arithmetic mean value of the total area ratio of tempered martensite and tempered bainite determined in all fields of view (10 fields of view) is defined as the total area ratio (%) of tempered martensite and tempered bainite.
[(Feature 3) Regarding electrochemical elements EE and FN]
Furthermore, in the steel material of this embodiment, when the yield strength is 758 to less than 862 MPa (110 ksi class), the EE defined by formula (1) is 2.75 or more, and the FN defined by formula (2) is When it is 0.185 or more and the yield strength is 862 to less than 965 MPa (125 ksi class), EE is 3.00 or more and FN is 0.200 or more.
EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
FN=EE/(D 0.9 ) (2)
Here, each element symbol in formula (1) is substituted with the content in mass % of the corresponding element. D in equation (2) is substituted with the average circular equivalent diameter in μm of prior austenite grains in the steel material.
 [式(1)で定義されるEEについて]
 EEにおいて、Si、Cr、Mo、Zr、Sb、Cu、Ni、及び、Coは、鋼材表面からの水素の侵入を抑制する元素(水素侵入抑制元素)である。EEにおいて、C及びMnは、鋼材表面からの水素の侵入を促進する元素(水素侵入促進元素)である。EEは、鋼材において、電気化学的な水素侵入抑制効果の指標である。
[About EE defined by formula (1)]
In EE, Si, Cr, Mo, Zr, Sb, Cu, Ni, and Co are elements that suppress hydrogen penetration from the surface of the steel material (hydrogen penetration suppressing elements). In EE, C and Mn are elements that promote hydrogen penetration from the steel surface (hydrogen penetration promoting elements). EE is an index of electrochemical hydrogen penetration suppression effect in steel materials.
 鋼材の降伏強度が110ksi級(758~862MPa未満)である場合、EEが2.75以上であれば、水素侵入促進元素に対して、水素侵入抑制元素が十分に多い。そのため、電気化学的に、鋼材表面からの水素の侵入が抑制される。その結果、特徴1、特徴2を満たし、さらに、FNが0.185以上であることを前提として、優れた耐SSC性が得られる。 When the yield strength of the steel material is 110 ksi class (less than 758 to 862 MPa), if the EE is 2.75 or more, the hydrogen penetration inhibiting element is sufficiently larger than the hydrogen penetration promoting element. Therefore, hydrogen penetration from the steel surface is electrochemically suppressed. As a result, excellent SSC resistance can be obtained on the premise that Features 1 and 2 are satisfied and FN is 0.185 or more.
 降伏強度が110ksi級である場合のEEの好ましい下限は2.78であり、さらに好ましくは2.80であり、さらに好ましくは2.85であり、さらに好ましくは2.90であり、さらに好ましくは2.95であり、さらに好ましくは3.00である。
 EEの上限は特に限定されないが、EEの好ましい上限は6.60であり、さらに好ましくは6.00であり、さらに好ましくは5.80であり、さらに好ましくは5.50である。
When the yield strength is 110 ksi class, the preferable lower limit of EE is 2.78, more preferably 2.80, even more preferably 2.85, still more preferably 2.90, even more preferably It is 2.95, more preferably 3.00.
The upper limit of EE is not particularly limited, but the preferable upper limit of EE is 6.60, more preferably 6.00, still more preferably 5.80, and still more preferably 5.50.
 鋼材の降伏強度が125ksi級(862~965MPa未満)である場合、110ksi級よりも強度が高いため、耐SSC性を高めるためには、水素侵入をより抑制する必要がある。EEが3.00以上であれば、降伏強度が125ksi級の鋼材において、電気化学的に、鋼材表面からの水素の侵入が抑制される。その結果、特徴1及び特徴2を満たし、さらに、FNが0.200以上であることを前提として、優れた耐SSC性が得られる。 If the yield strength of the steel material is 125 ksi class (less than 862 to 965 MPa), the strength is higher than that of 110 ksi class, so in order to improve SSC resistance, it is necessary to further suppress hydrogen intrusion. When EE is 3.00 or more, hydrogen penetration from the surface of the steel material is electrochemically suppressed in a steel material having a yield strength of 125 ksi class. As a result, excellent SSC resistance can be obtained on the premise that Features 1 and 2 are satisfied and FN is 0.200 or more.
 降伏強度が125ksi級である場合のEEの好ましい下限は3.10であり、さらに好ましくは3.15であり、さらに好ましくは3.20であり、さらに好ましくは3.25であり、さらに好ましくは3.30であり、さらに好ましくは3.35である。
 EEの上限は特に限定されないが、EEの好ましい上限は6.60であり、さらに好ましくは6.00であり、さらに好ましくは5.80であり、さらに好ましくは5.50である。
When the yield strength is 125 ksi class, the preferable lower limit of EE is 3.10, more preferably 3.15, still more preferably 3.20, still more preferably 3.25, even more preferably 3.30, more preferably 3.35.
The upper limit of EE is not particularly limited, but the preferable upper limit of EE is 6.60, more preferably 6.00, still more preferably 5.80, and still more preferably 5.50.
 [式(2)で定義されるFNについて]
 上述のとおり、化学組成が特徴1を満たす鋼材において、鋼材表面からの水素の侵入を抑制するためには、式(1)で定義される電気化学的要素EEと、物理的要素との相乗作用が有効である。
[About FN defined by formula (2)]
As mentioned above, in order to suppress the penetration of hydrogen from the steel material surface in a steel material whose chemical composition satisfies characteristic 1, a synergistic effect between the electrochemical element EE defined by formula (1) and the physical element is required. is valid.
 化学組成が特徴1を満たす鋼材の降伏強度が110ksi級(758~862MPa未満)である場合、EEが2.75以上であり、かつ、FNが0.185以上であれば、図2Aに示すとおり、耐SSC性が顕著に高まる。 If the yield strength of the steel material whose chemical composition satisfies Feature 1 is 110 ksi class (less than 758 to 862 MPa), if EE is 2.75 or more and FN is 0.185 or more, as shown in Figure 2A , SSC resistance increases significantly.
 降伏強度が110ksi級である場合のFNの好ましい下限は0.187であり、さらに好ましくは0.190であり、さらに好ましくは0.192であり、さらに好ましくは0.195である。FNの上限は特に限定されないが、FNの好ましい上限は0.580であり、さらに好ましくは0.550であり、さらに好ましくは0.500であり、さらに好ましくは0.450である。 When the yield strength is 110 ksi class, the preferable lower limit of FN is 0.187, more preferably 0.190, still more preferably 0.192, and still more preferably 0.195. Although the upper limit of FN is not particularly limited, the preferable upper limit of FN is 0.580, more preferably 0.550, still more preferably 0.500, and even more preferably 0.450.
 また、化学組成が特徴1を満たす鋼材の降伏強度が125ksi級(862~965MPa未満)である場合、EEが3.00以上であり、かつ、FNが0.200以上であれば、図2Bに示すとおり、耐SSC性が顕著に高まる。 In addition, if the yield strength of the steel material whose chemical composition satisfies characteristic 1 is 125 ksi class (less than 862 to 965 MPa), if EE is 3.00 or more and FN is 0.200 or more, then As shown, the SSC resistance is significantly increased.
 降伏強度が125ksi級である場合のFNの好ましい下限は0.205であり、さらに好ましくは0.210であり、さらに好ましくは0.215であり、さらに好ましくは0.220である。FNの上限は特に限定されないが、FNの好ましい上限は0.580であり、さらに好ましくは0.550であり、さらに好ましくは0.500であり、さらに好ましくは0.450である。 When the yield strength is 125 ksi class, the preferable lower limit of FN is 0.205, more preferably 0.210, still more preferably 0.215, and still more preferably 0.220. Although the upper limit of FN is not particularly limited, the preferable upper limit of FN is 0.580, more preferably 0.550, still more preferably 0.500, and still more preferably 0.450.
 [旧オーステナイト粒の平均円相当径Dの求め方]
 本実施形態による鋼材の旧オーステナイト粒の平均円相当径D(μm)は次の方法で求める。最初に、鋼材から試験片を採取する。
[How to determine the average circular equivalent diameter D of prior austenite grains]
The average equivalent circle diameter D (μm) of the prior austenite grains of the steel material according to this embodiment is determined by the following method. First, a test piece is taken from the steel material.
 鋼材が鋼管の場合、肉厚中央部から管軸方向10mm、管径方向10mmの観察面を有する試験片を採取する。鋼材が肉厚10mm未満の鋼管の場合、管軸方向10mm、管径方向に鋼管の肉厚の観察面を有する試験片を採取する。
 鋼材が鋼板の場合、板厚中央部から圧延方向10mm、板厚方向10mmの観察面を有する試験片を採取する。鋼材が板厚10mm未満の鋼板の場合、圧延方向10mm、板厚方向に鋼板の厚さの観察面を有する試験片を採取する。
 鋼材が丸鋼の場合、丸鋼の軸方向(圧延方向)に垂直な断面から試験片を採取する。具体的には、R/2部を中央に含み、軸方向10mm、当該断面における径方向10mmの観察面を有する試験片を採取する。断面の直径が10mm未満の場合、R/2部を含み、軸方向10mm、当該断面の径方向が直径の観察面を有する試験片を採取する。
When the steel material is a steel pipe, a test piece having an observation surface of 10 mm in the tube axis direction and 10 mm in the tube diameter direction from the center of the wall thickness is taken. If the steel material is a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction is taken.
When the steel material is a steel plate, a test piece having an observation surface extending 10 mm in the rolling direction and 10 mm in the plate thickness direction from the center of the plate thickness is taken. If the steel material is a steel plate with a thickness of less than 10 mm, a test piece having an observation surface of 10 mm in the rolling direction and the thickness of the steel plate in the thickness direction is taken.
If the steel material is a round steel, a test piece is taken from a cross section perpendicular to the axial direction (rolling direction) of the round steel. Specifically, a test piece is taken that includes the R/2 part in the center and has an observation surface of 10 mm in the axial direction and 10 mm in the radial direction of the cross section. If the diameter of the cross section is less than 10 mm, take a test piece that includes the R/2 portion and has an observation surface that is 10 mm in the axial direction and has a diameter in the radial direction of the cross section.
 試験片を樹脂に埋め込み、観察面を鏡面に研磨する。研磨後の試験片を、ピクリン酸飽和水溶液に60秒程度浸漬する。これにより、観察面がエッチングされて、観察面に旧オーステナイト粒界が現出する。エッチングした観察面を、光学顕微鏡を用いて、420倍で10視野観察する。各視野の視野面積は450μm×450μmの矩形とする。JIS G 0551(2020)に準拠して、切断法により、各視野での旧オーステナイト粒の粒度番号をそれぞれ求める。このとき、格子線同士の交点である格子点数を16個とする。10視野において求めた旧オーステナイト粒の粒度番号の算術平均値を求める。旧オーステナイト粒の粒度番号の算術平均値に基づいて、旧オーステナイト粒の平均面積を算出する。算出した旧オーステナイト粒の平均面積から円相当径を算出する。ここで、円相当径とは、旧オーステナイト粒の平均面積と同じ面積である円の直径である。算出した円相当径を、旧オーステナイト粒の平均円相当径D(μm)と定義する。平均円相当径Dは、算出した値の小数第一位を四捨五入して得られた整数とする。 Embed the test piece in resin and polish the observation surface to a mirror surface. The polished test piece is immersed in a saturated aqueous solution of picric acid for about 60 seconds. As a result, the observation surface is etched, and prior austenite grain boundaries appear on the observation surface. The etched observation surface is observed using an optical microscope at 420 times magnification for 10 fields of view. The visual field area of each visual field is a rectangle of 450 μm×450 μm. In accordance with JIS G 0551 (2020), the grain size number of prior austenite grains in each field of view is determined by a cutting method. At this time, the number of grid points, which are the intersections of the grid lines, is set to 16. The arithmetic mean value of the grain size numbers of prior austenite grains determined in 10 fields of view is determined. The average area of the prior austenite grains is calculated based on the arithmetic mean value of the grain size numbers of the prior austenite grains. The equivalent circle diameter is calculated from the calculated average area of the prior austenite grains. Here, the equivalent circle diameter is the diameter of a circle having the same area as the average area of prior austenite grains. The calculated equivalent circle diameter is defined as the average equivalent circle diameter D (μm) of the prior austenite grains. The average equivalent circle diameter D is an integer obtained by rounding off the calculated value to the first decimal place.
 なお、旧オーステナイト粒の平均円相当径の好ましい上限は40μmであり、さらに好ましくは35μmであり、さらに好ましくは30μmであり、さらに好ましくは25μmである。
 旧オーステナイト粒の平均円相当径の好ましい下限は10μmであり、さらに好ましくは15μmであり、さらに好ましくは17μmである。
The preferable upper limit of the average equivalent circle diameter of the prior austenite grains is 40 μm, more preferably 35 μm, still more preferably 30 μm, and even more preferably 25 μm.
The lower limit of the average equivalent circle diameter of the prior austenite grains is preferably 10 μm, more preferably 15 μm, and even more preferably 17 μm.
 [鋼材の形状]
 本実施形態による鋼材の形状は特に限定されない。鋼材は例えば、鋼管、鋼板、又は、丸鋼である。
[Shape of steel material]
The shape of the steel material according to this embodiment is not particularly limited. The steel material is, for example, a steel pipe, a steel plate, or a round steel.
 好ましくは、本実施形態の鋼材は、油井用鋼管である。油井用鋼管は例えば、油井又はガス井の掘削、原油又は天然ガスの採取等に用いられるケーシング、チュービング、ドリルパイプ等である。鋼材が油井用鋼管である場合、肉厚は例えば、9~60mmである。 Preferably, the steel material of this embodiment is a steel pipe for oil wells. Steel pipes for oil wells are, for example, casings, tubing, drill pipes, etc. used for drilling oil or gas wells, extracting crude oil or natural gas, and the like. When the steel material is a steel pipe for oil wells, the wall thickness is, for example, 9 to 60 mm.
 [本実施形態の鋼材の効果について]
 本実施形態の鋼材は上述の特徴1~特徴3を満たす。そのため、本実施形態の鋼材では、110ksi級(758~862MPa未満)~125ksi級(862~965MPa未満)の高強度であるにも関わらず、優れた耐SSC性が得られる。
[About the effects of the steel material of this embodiment]
The steel material of this embodiment satisfies the characteristics 1 to 3 described above. Therefore, the steel material of this embodiment has excellent SSC resistance despite having a high strength of 110 ksi class (758 to less than 862 MPa) to 125 ksi class (862 to less than 965 MPa).
 [耐SSC性評価方法]
 耐SSC性は、NACE TM0177-2016 Method Aに準拠した常温耐SSC性評価試験及び低温耐SSC性評価試験と、NACE TM0177-2016 Method Dに準拠したDCB試験とにより評価する。
[SSC resistance evaluation method]
SSC resistance is evaluated by a room temperature SSC resistance evaluation test and a low temperature SSC resistance evaluation test based on NACE TM0177-2016 Method A, and a DCB test based on NACE TM0177-2016 Method D.
 [常温耐SSC性評価試験]
 常温耐SSC性評価試験では、5.0質量%塩化ナトリウムと0.5質量%酢酸との混合水溶液(NACE solution A)を、試験溶液とする。鋼材から丸棒試験片を採取する。
 鋼材が鋼管である場合、肉厚中央部から丸棒試験片を採取する。この場合、丸棒試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が鋼板である場合、板厚中央部から丸棒試験片を採取する。この場合、丸棒試験片の長手方向は、鋼板の圧延方向と平行とする。鋼材が丸鋼である場合、R/2部から丸棒試験片を採取する。この場合、丸棒試験片の長手方向は、丸鋼の軸方向と平行とする。丸棒試験片の大きさは、例えば、径6.35mm、平行部の長さ25.4mmである。鋼材から丸棒試験片を3本採取する。
[Room temperature SSC resistance evaluation test]
In the room temperature SSC resistance evaluation test, a mixed aqueous solution (NACE solution A) of 5.0 mass% sodium chloride and 0.5 mass% acetic acid is used as the test solution. Collect a round bar test piece from the steel material.
If the steel material is a steel pipe, take a round bar test piece from the center of the wall thickness. In this case, the longitudinal direction of the round bar test piece is parallel to the axial direction of the steel pipe. If the steel material is a steel plate, take a round bar test piece from the center of the plate thickness. In this case, the longitudinal direction of the round bar test piece is parallel to the rolling direction of the steel plate. If the steel material is round steel, take a round bar test piece from section R/2. In this case, the longitudinal direction of the round bar test piece is parallel to the axial direction of the round steel. The size of the round bar test piece is, for example, 6.35 mm in diameter and 25.4 mm in length of the parallel part. Take three round bar test pieces from the steel material.
 丸棒試験片に対し、実降伏応力の90%に相当する応力を負荷する。応力を付加した丸棒試験片が浸漬するように、24℃の試験溶液を試験容器に注入し、試験浴とする。試験浴を脱気した後、HSガスを試験浴に吹き込み、試験浴に飽和させる。具体的には、試験浴に1atmのHSガスを吹き込む。HSガスを吹き込んだ試験浴を、24℃で720時間、保持する。 A stress equivalent to 90% of the actual yield stress is applied to the round bar test piece. A test solution at 24° C. is poured into a test container so that the round rod test piece to which stress is applied is immersed, and this is used as a test bath. After degassing the test bath, H 2 S gas is bubbled into the test bath to saturate it. Specifically, 1 atm H 2 S gas is blown into the test bath. The test bath, flushed with H 2 S gas, is held at 24° C. for 720 hours.
 [低温耐SSC性評価試験]
 低温耐SSC性評価試験では、常温耐SSC性評価試験と同様に、NACE solution Aを、試験溶液とする。常温耐SSC性評価試験と同様に、鋼材から3本の丸棒試験片を採取する。丸棒試験片の大きさは、例えば、径6.35mm、平行部の長さ25.4mmである。なお、丸棒試験片の長手方向は、常温耐SSC性評価試験の場合と同様である。
[Low temperature SSC resistance evaluation test]
In the low temperature SSC resistance evaluation test, NACE solution A is used as the test solution as in the room temperature SSC resistance evaluation test. As in the normal temperature SSC resistance evaluation test, three round bar test pieces are taken from the steel material. The size of the round bar test piece is, for example, 6.35 mm in diameter and 25.4 mm in length of the parallel part. Note that the longitudinal direction of the round bar test piece is the same as in the room temperature SSC resistance evaluation test.
 丸棒試験片に対し、実降伏応力の85%に相当する応力を負荷する。応力を付加した丸棒試験片が浸漬するように、4℃の試験溶液を試験容器に注入し、試験浴とする。試験浴を脱気した後、HSガスを試験浴に吹き込み、試験浴に飽和させる。具体的には、試験浴に1atmのHSガスを吹き込む。HSガスを吹き込んだ試験浴を、4℃で720時間、保持する。 A stress equivalent to 85% of the actual yield stress is applied to the round bar test piece. A test solution at 4° C. is poured into a test container so that the round rod test piece to which stress is applied is immersed, and this is used as a test bath. After degassing the test bath, H 2 S gas is bubbled into the test bath to saturate it. Specifically, 1 atm H 2 S gas is blown into the test bath. The test bath, flushed with H 2 S gas, is maintained at 4° C. for 720 hours.
 常温耐SSC性評価試験、及び、低温耐SSC性評価試験において、720時間保持後、丸棒試験片での硫化物応力割れ(SSC)の発生の有無を観察する。具体的には、720時間保持後の丸棒試験片を、肉眼及び倍率10倍の投影機を用いて観察する。
 本実施形態の鋼材では、観察の結果、常温耐SSC性評価試験の3本全ての丸棒試験片に割れが確認されず、かつ、低温耐SSC性評価試験の3本全ての丸棒試験片に割れが確認されない。
In the room temperature SSC resistance evaluation test and the low temperature SSC resistance evaluation test, the presence or absence of sulfide stress cracking (SSC) in the round bar test piece is observed after holding for 720 hours. Specifically, the round bar test piece after being held for 720 hours is observed with the naked eye and using a projector with 10x magnification.
In the steel material of this embodiment, as a result of observation, no cracks were confirmed in all three round bar test pieces in the room temperature SSC resistance evaluation test, and all three round bar test pieces in the low temperature SSC resistance evaluation test. No cracks are observed.
 [DCB試験]
 DCB試験を次の方法で実施する。5.0質量%塩化ナトリウム水溶液を、試験溶液とする。鋼材から、図3Aに示すDCB試験片を採取する。
 鋼材が鋼管である場合、肉厚中央部からDCB試験片を採取する。この場合、DCB試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が鋼板である場合、板厚中央部からDCB試験片を採取する。この場合、DCB試験片の長手方向は、鋼板の圧延方向と平行とする。鋼材が丸鋼である場合、R/2部からDCB試験片を採取する。この場合、DCB試験片の長手方向は、丸鋼の軸方向と平行とする。鋼材からさらに、図3Bに示すクサビを採取する。クサビの厚さtは、3.10(mm)とする。
[DCB test]
The DCB test is carried out in the following manner. A 5.0% by mass aqueous sodium chloride solution is used as the test solution. A DCB test piece shown in FIG. 3A is taken from the steel material.
When the steel material is a steel pipe, a DCB test piece is taken from the center of the wall thickness. In this case, the longitudinal direction of the DCB test piece is parallel to the axial direction of the steel pipe. When the steel material is a steel plate, a DCB test piece is taken from the center of the plate thickness. In this case, the longitudinal direction of the DCB test piece is parallel to the rolling direction of the steel plate. If the steel material is round steel, take a DCB test piece from section R/2. In this case, the longitudinal direction of the DCB test piece is parallel to the axial direction of the round steel. A wedge shown in FIG. 3B is further extracted from the steel material. The thickness t of the wedge is 3.10 (mm).
 図3Aを参照して、DCB試験片のアームの間に、上記クサビを打ち込む。クサビが打ち込まれたDCB試験片を、試験容器に封入する。その後、試験容器に試験溶液を、気相部を残して注入して、試験浴とする。試験浴の量は、試験片1つあたり1Lとする。続いて、試験浴にNガスを3時間吹き込み、試験浴の溶存酸素が20ppb以下になるまで脱気する。 Referring to FIG. 3A, the wedge is driven between the arms of the DCB test piece. The DCB test piece with the wedge driven into it is sealed in a test container. Thereafter, the test solution is poured into the test container leaving the gas phase behind to form a test bath. The amount of test bath is 1 L per test piece. Subsequently, N 2 gas is blown into the test bath for 3 hours to degas the test bath until the dissolved oxygen in the test bath becomes 20 ppb or less.
 脱気した試験浴に、HSガスを吹き込み、試験浴を腐食環境とする。具体的には、試験浴に5atm(0.5MPa)のHSガスを吹き込む。試験浴のpHは、浸漬中を通して3.5~4.0の範囲とする。試験浴を撹拌しながら、試験容器内を24±3℃で14日間(336時間)保持する。保持後の試験容器からDCB試験片を取り出す。 H 2 S gas is blown into the degassed test bath to create a corrosive environment. Specifically, 5 atm (0.5 MPa) H 2 S gas is blown into the test bath. The pH of the test bath is in the range 3.5-4.0 throughout the immersion. While stirring the test bath, the inside of the test container is maintained at 24±3° C. for 14 days (336 hours). The DCB test piece is taken out from the test container after holding.
 取り出したDCB試験片のアーム先端に形成された孔にピンを差し込み、引張試験機で切欠部を開口して、クサビ解放応力Pを測定する。さらに、DCB試験片の切欠きを液体窒素中で解放させて、試験浴に浸漬中のDCB試験片の割れ進展長さaを測定する。割れ進展長さaは、ノギスを用いて目視で測定できる。測定したクサビ解放応力Pと、割れ進展長さaとに基づいて、次式を用いて破壊靭性値K1SSC(MPa√m)を求める。
Figure JPOXMLDOC01-appb-M000001
A pin is inserted into a hole formed at the end of the arm of the taken out DCB test piece, the notch is opened using a tensile tester, and the wedge release stress P is measured. Furthermore, the notch of the DCB test piece is opened in liquid nitrogen, and the crack growth length a of the DCB test piece while immersed in the test bath is measured. The crack growth length a can be measured visually using a caliper. Based on the measured wedge release stress P and the crack growth length a, the fracture toughness value K 1SSC (MPa√m) is determined using the following equation.
Figure JPOXMLDOC01-appb-M000001
 上記式において、h(mm)はDCB試験片の各アームの高さである。B(mm)はDCB試験片の厚さである。Bn(mm)はDCB試験片のウェブ厚さである。これらは、NACE TM0177-2016 Method Dに規定されている。 In the above formula, h (mm) is the height of each arm of the DCB test piece. B (mm) is the thickness of the DCB test piece. Bn (mm) is the web thickness of the DCB specimen. These are defined in NACE TM0177-2016 Method D.
 本実施形態の鋼材では、110ksi級(758~862MPa未満)の場合、DCB試験で求めた破壊靭性値K1SSCが25.0MPa√m以上であれば、DCB試験において、優れた破壊靭性が得られたと判断する。125ksi級(862~965MPa未満)の場合、DCB試験で求めた破壊靭性値K1SSCが24.0MPa√m以上であれば、DCB試験において、優れた破壊靭性が得られたと判断する。 In the case of the steel material of this embodiment, in the case of 110 ksi class (less than 758 to 862 MPa), if the fracture toughness value K1SSC determined by the DCB test is 25.0 MPa√m or more, excellent fracture toughness can be obtained in the DCB test. I judge that. In the case of 125 ksi class (less than 862 to 965 MPa), if the fracture toughness value K 1SSC determined by the DCB test is 24.0 MPa√m or more, it is judged that excellent fracture toughness was obtained in the DCB test.
 以上をまとめると、次のとおりである。
 110ksi級(758~862MPa未満)の場合の「優れた耐SSC性が得られる」とは、NACE TM0177-2016 Method Aに準拠した24℃での常温耐SSC性評価試験及び4℃での低温耐SSC性評価試験において割れが確認されず、かつ、NACE TM0177-2016 Method Dに準拠したDCB試験で得られた破壊靭性値K1SSCが25.0MPa√m以上であることを意味する。
The above can be summarized as follows.
"Excellent SSC resistance can be obtained" in the case of 110 ksi class (758 to less than 862 MPa) means that the evaluation test for room temperature SSC resistance at 24°C and low temperature resistance at 4°C in accordance with NACE TM0177-2016 Method A is used. This means that no cracks were confirmed in the SSC property evaluation test, and the fracture toughness value K1SSC obtained in the DCB test in accordance with NACE TM0177-2016 Method D is 25.0 MPa√m or more.
 125ksi級(862~965MPa未満)の場合の「優れた耐SSC性が得られる」とは、NACE TM0177-2016 Method Aに準拠した24℃での常温耐SSC性評価試験及び4℃での低温耐SSC性評価試験において割れが確認されず、かつ、NACE TM0177-2016 Method Dに準拠したDCB試験で得られた破壊靭性値K1SSCが24.0MPa√m以上であることを意味する。 In the case of 125 ksi class (less than 862 to 965 MPa), "excellent SSC resistance can be obtained" refers to the evaluation test of room temperature SSC resistance at 24°C and low temperature resistance at 4°C in accordance with NACE TM0177-2016 Method A. It means that no cracks were confirmed in the SSC property evaluation test, and the fracture toughness value K1SSC obtained in the DCB test in accordance with NACE TM0177-2016 Method D is 24.0 MPa√m or more.
 [製造方法]
 本実施形態による鋼材の製造方法の一例として、継目無鋼管の製造方法を説明する。以降に説明する鋼材の製造方法は、本実施形態の鋼材を製造するための一例である。したがって、上述の構成を有する鋼材は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、本実施形態の鋼材の製造方法の好ましい一例である。
[Production method]
As an example of the method for manufacturing a steel material according to the present embodiment, a method for manufacturing a seamless steel pipe will be described. The method for manufacturing steel materials described below is an example for manufacturing the steel materials of this embodiment. Therefore, the steel material having the above-mentioned configuration may be manufactured by a manufacturing method other than the manufacturing method described below. However, the manufacturing method described below is a preferable example of the method for manufacturing the steel material of this embodiment.
 本実施形態の継目無鋼管の製造方法の一例は、次の工程を含む。
 (工程1)素材準備工程
 (工程2)熱間加工工程
 (工程3)焼入れ工程
 (工程4)焼戻し工程
An example of the method for manufacturing a seamless steel pipe of this embodiment includes the following steps.
(Process 1) Material preparation process (Process 2) Hot processing process (Process 3) Quenching process (Process 4) Tempering process
 上記製造方法での主な製造条件は、次のとおりである。
 (条件1)工程4において、製造される鋼材の降伏強度が110ksi級(758~862MPa未満)である場合、式(A)で定義されるFAを2500以下とする。また、工程4において、製造される鋼材の降伏強度が125ksi級(862~965MPa未満)である場合、式(A)で定義されるFAを2400以下とする。
 FA=T×(-3.0C+4.7Si-4.4Mn-2.4Cr+2.2Mo-2.2Cu-3.2Ni)×(t/60)0.5 (A)
 ここで、式(A)中の各元素記号には、鋼材中の対応する元素の質量%での含有量が代入される。Tには、焼戻し温度(℃)が代入される。tには、焼戻し温度Tでの保持時間t(分)が代入される。
The main manufacturing conditions in the above manufacturing method are as follows.
(Condition 1) In step 4, if the yield strength of the steel material to be manufactured is 110 ksi class (758 to less than 862 MPa), FA defined by formula (A) is 2500 or less. Further, in step 4, if the yield strength of the steel material to be manufactured is 125 ksi class (less than 862 to 965 MPa), FA defined by formula (A) is set to 2400 or less.
FA=T×(-3.0C+4.7Si-4.4Mn-2.4Cr+2.2Mo-2.2Cu-3.2Ni)×(t/60) 0.5 (A)
Here, each element symbol in formula (A) is substituted with the content in mass % of the corresponding element in the steel material. The tempering temperature (° C.) is substituted for T. The holding time t (minutes) at the tempering temperature T is substituted for t.
 以下、各工程について説明する。 Each step will be explained below.
 [(工程1)素材準備工程]
 素材準備工程では、化学組成が特徴1を満たす溶鋼を用いて素材を製造する。素材の製造方法は特に限定されず、周知の方法でよい。具体的には、溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造してもよい。溶鋼を用いて造塊法によりインゴットを製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
[(Process 1) Material preparation process]
In the material preparation step, a material is manufactured using molten steel whose chemical composition satisfies Feature 1. The method for producing the material is not particularly limited, and any known method may be used. Specifically, a slab (slab, bloom, or billet) may be manufactured by a continuous casting method using molten steel. An ingot may be manufactured by an ingot-forming method using molten steel. A material (slab, bloom, or billet) is manufactured through the above steps.
 [(工程2)熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工して中間鋼材を製造する。中間鋼材を製造する熱間加工の方法は、特に限定されない。熱間加工は、熱間鍛造であってもよく、熱間押出であってもよく、熱間圧延であってもよい。
[(Step 2) Hot processing step]
In the hot working step, the prepared material is hot worked to produce an intermediate steel material. The hot working method for manufacturing the intermediate steel material is not particularly limited. The hot working may be hot forging, hot extrusion, or hot rolling.
 鋼材が鋼管である場合、熱間加工工程は例えば、次のとおりである。素材としてブルーム又はインゴットを用いる場合、初めに、分塊圧延機を用いて、素材に対して分塊圧延を実施し、ビレットを製造する。分塊圧延前の加熱温度は特に限定されないが、例えば、1100~1350℃である。 When the steel material is a steel pipe, the hot working process is, for example, as follows. When using a bloom or an ingot as a raw material, first, the raw material is subjected to blooming rolling using a blooming mill to produce a billet. The heating temperature before blooming is not particularly limited, but is, for example, 1100 to 1350°C.
 分塊圧延により製造されたビレット、又は、素材準備工程の連続鋳造法により製造されたビレットを用いて、マンネスマン法による穿孔圧延を実施する。この場合、初めに、ビレットを加熱炉で加熱する。加熱温度は特に限定されないが、例えば、1100~1350℃である。加熱炉から抽出されたビレットに対して穿孔圧延を実施して、中間鋼材(素管)を製造する。穿孔圧延における、穿孔比は特に限定されないが、例えば、1.0~4.0である。穿孔圧延後のビレットに対して、マンドレルミルを用いた延伸圧延を実施する。さらに、必要に応じて、延伸圧延後のビレットに対して、レデューサ又はサイジングミルを用いた定径圧延を実施する。以上の工程により、中間鋼材(素管)を製造する。熱間加工工程での累積の減面率は特に限定されないが、例えば、20~70%である。 Using a billet manufactured by blooming rolling or a billet manufactured by a continuous casting method in the material preparation process, piercing rolling is performed using the Mannesmann method. In this case, the billet is first heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1350°C. The billet extracted from the heating furnace is subjected to piercing rolling to produce an intermediate steel material (base pipe). The perforation ratio in the perforation rolling is not particularly limited, but is, for example, 1.0 to 4.0. The billet after piercing and rolling is subjected to elongation rolling using a mandrel mill. Furthermore, if necessary, the billet after elongation rolling is subjected to sizing rolling using a reducer or a sizing mill. Through the above steps, an intermediate steel material (raw pipe) is manufactured. The cumulative area reduction rate in the hot working process is not particularly limited, but is, for example, 20 to 70%.
 鋼材が鋼管である場合、マンネスマン法による穿孔圧延に代えて、ビレットに対して、ユジーン・セジュルネ法、又は、エルハルトプッシュベンチ法(すなわち、熱間押出)を実施して中間鋼材(素管)を製造してもよい。 When the steel material is a steel pipe, instead of piercing and rolling using the Mannesmann method, the billet is subjected to the Eugene-Séjournet method or the Erhardt push bench method (i.e., hot extrusion) to produce an intermediate steel material (raw pipe). may be manufactured.
 鋼材が鋼板である場合、熱間加工工程は例えば、次のとおりである。リバース式の圧延機を用いて、スラブに対して粗圧延を実施して、粗バーを製造する。粗圧延前の加熱温度は特に限定されないが、例えば、1100~1350℃である。さらに、タンデム式の圧延機を用いて、粗バーに対して仕上げ圧延を実施して、中間鋼材(鋼板)を製造する。 When the steel material is a steel plate, the hot working process is, for example, as follows. Rough rolling is performed on the slab using a reverse rolling mill to produce a rough bar. The heating temperature before rough rolling is not particularly limited, but is, for example, 1100 to 1350°C. Furthermore, finish rolling is performed on the rough bar using a tandem rolling mill to produce an intermediate steel material (steel plate).
 鋼材が丸鋼である場合、熱間加工工程は例えば、次のとおりである。素材としてブルーム又はインゴットを用いる場合、初めに、分塊圧延機を用いて、素材に対して分塊圧延を実施し、ビレットを製造する。分塊圧延前の加熱温度は特に限定されないが、例えば、1100~1350℃である。 When the steel material is round steel, the hot working process is, for example, as follows. When using a bloom or an ingot as a raw material, first, the raw material is subjected to blooming rolling using a blooming mill to produce a billet. The heating temperature before blooming is not particularly limited, but is, for example, 1100 to 1350°C.
 分塊圧延により製造されたビレット、又は、素材準備工程の連続鋳造法により製造されたビレットを加熱する。加熱温度は特に限定されないが、例えば、1100~1350℃である。連続圧延機を用いて、加熱されたビレットに対して仕上げ圧延を実施して、中間鋼材(丸鋼)を製造する。連続圧延機は、上下方向に並んで配置された一対の孔型ロールを有する水平スタンドと、水平方向に並んで配置された一対の孔型ロールを有する垂直スタンドとが交互に配列されている。 A billet manufactured by blooming rolling or a billet manufactured by a continuous casting method in the material preparation process is heated. The heating temperature is not particularly limited, but is, for example, 1100 to 1350°C. Finish rolling is performed on the heated billet using a continuous rolling mill to produce an intermediate steel material (round steel). A continuous rolling mill has a horizontal stand having a pair of grooved rolls arranged in parallel in the vertical direction and a vertical stand having a pair of grooved rolls arranged in parallel in the horizontal direction, which are arranged alternately.
 以上の熱間加工により製造された中間鋼材は、空冷されてもよい。熱間加工により製造された中間鋼材はまた、常温まで冷却せずに、熱間加工後に直接焼入れを実施してもよく、熱間加工後に補熱(再加熱)した後、焼入れを実施してもよい。熱間加工後に直接焼入れ、又は、熱間加工後に補熱した後焼入れを実施した場合、残留応力を除去することを目的として、次工程の焼入れ工程の前に、応力除去焼鈍(SR処理)を実施してもよい。 The intermediate steel material manufactured by the above hot working may be air cooled. Intermediate steel products manufactured by hot working may also be quenched directly after hot working without being cooled to room temperature, or quenching may be performed after reheating (reheating) after hot working. Good too. When quenching is performed directly after hot working, or when quenching is performed after reheating after hot working, stress relief annealing (SR treatment) is performed before the next quenching step in order to remove residual stress. May be implemented.
 [(工程3)焼入れ工程]
 焼入れ工程では、熱間加工工程で製造された中間鋼材に対して、焼入れを実施する。焼入れは周知の方法で実施する。具体的には、熱間加工工程後の中間鋼材を熱処理炉に装入し、焼入れ温度で保持する。焼入れ温度はAC3変態点以上とする。しかしながら、焼入れ温度が高すぎれば、旧オーステナイト粒が粗大になる場合がある。したがって、焼入れ温度は例えば、800~950℃である。中間鋼材を焼入れ温度で保持した後、急冷(焼入れ)する。焼入れ温度での保持時間は特に限定されないが、例えば、10~60分である。
[(Step 3) Quenching step]
In the quenching process, the intermediate steel material produced in the hot working process is quenched. Hardening is carried out by a well-known method. Specifically, the intermediate steel material after the hot working step is charged into a heat treatment furnace and held at the quenching temperature. The quenching temperature shall be at least the AC3 transformation point. However, if the quenching temperature is too high, the prior austenite grains may become coarse. Therefore, the quenching temperature is, for example, 800 to 950°C. After holding the intermediate steel material at the quenching temperature, it is rapidly cooled (quenched). The holding time at the quenching temperature is not particularly limited, but is, for example, 10 to 60 minutes.
 焼入れ方法は例えば、水冷又は油冷である。焼入れ方法は特に制限されない。例えば、水槽又は油槽に浸漬して中間鋼材を急冷してもよい。中間鋼材が鋼管である場合、シャワー冷却又はミスト冷却により、鋼管の外面及び/又は内面に対して冷却水を注いだり、噴射したりして、鋼管を急冷してもよい。 The quenching method is, for example, water cooling or oil cooling. The quenching method is not particularly limited. For example, the intermediate steel material may be quenched by immersing it in a water tank or an oil tank. When the intermediate steel material is a steel pipe, the steel pipe may be rapidly cooled by shower cooling or mist cooling by pouring or spraying cooling water onto the outer surface and/or inner surface of the steel pipe.
 中間鋼材が素管(継目無鋼管)である場合、熱間加工工程後、素管を常温まで冷却することなく、熱間加工直後に焼入れ(直接焼入れ)を実施してもよい。また、熱間加工後の素管の温度が低下する前に補熱炉に装入して焼入れ温度に保持した後、焼入れを実施してもよい。 When the intermediate steel material is a raw pipe (seamless steel pipe), quenching (direct quenching) may be performed immediately after hot working without cooling the raw pipe to room temperature after the hot working step. Furthermore, before the temperature of the mother tube after hot working decreases, it may be charged into a reheating furnace and maintained at the quenching temperature, and then quenched.
 本明細書において、焼入れ温度とは、熱間加工後に直接焼入れを実施する場合、最終の熱間加工を実施する装置の出側に設置された温度計で測定された、中間鋼材の表面温度に相当する。焼入れ温度とはさらに、熱間加工後に補熱又は再加熱した後、焼入れを実施する場合、補熱又は再加熱を実施する炉の温度に相当する。 In this specification, the quenching temperature refers to the surface temperature of the intermediate steel material measured with a thermometer installed on the exit side of the equipment that performs the final hot working when quenching is performed directly after hot working. Equivalent to. Furthermore, the quenching temperature corresponds to the temperature of the furnace in which the reheating or reheating is performed when quenching is performed after the hot working.
 [(工程4)焼戻し工程]
 焼戻し工程では、焼入れ後の中間鋼材に対してさらに、焼戻しを実施する。焼戻し工程では、化学組成に応じて焼戻し温度を適宜調整することにより、鋼材の降伏強度を調整することができる。具体的には、鋼材の降伏強度が110ksi級(758~862MPa未満)~125ksi級(862~965MPa未満)となるように、焼戻し条件を調整する。
[(Step 4) Tempering step]
In the tempering step, the intermediate steel material after quenching is further tempered. In the tempering step, the yield strength of the steel material can be adjusted by appropriately adjusting the tempering temperature depending on the chemical composition. Specifically, the tempering conditions are adjusted so that the yield strength of the steel material is 110 ksi class (758 to less than 862 MPa) to 125 ksi class (862 to less than 965 MPa).
 焼戻し工程では、焼戻し温度Tを660~740℃とし、焼戻し温度Tでの保持時間tを20~180分とする。焼戻し工程ではさらに、式(A)で定義されるFAを強度に応じて調整する。具体的には、製造される鋼材の降伏強度が110ksi級である場合、FAを2500以下とする。製造される鋼材の降伏強度が125ksi級である場合、FAを2400以下とする。
 FA=T×(-3.0C+4.7Si-4.4Mn-2.4Cr+2.2Mo-2.2Cu-3.2Ni)×(t/60)0.5 (A)
 ここで、式(A)中の各元素記号には、鋼材中の対応する元素の質量%での含有量が代入される。Tには、焼戻し温度(℃)が代入される。tには、焼戻し温度Tでの保持時間(分)が代入される。
In the tempering step, the tempering temperature T is 660 to 740°C, and the holding time t at the tempering temperature T is 20 to 180 minutes. In the tempering process, FA defined by formula (A) is further adjusted according to the strength. Specifically, when the yield strength of the manufactured steel material is 110 ksi class, FA is set to 2500 or less. When the yield strength of the manufactured steel material is 125 ksi class, FA is set to 2400 or less.
FA=T×(-3.0C+4.7Si-4.4Mn-2.4Cr+2.2Mo-2.2Cu-3.2Ni)×(t/60) 0.5 (A)
Here, each element symbol in formula (A) is substituted with the content in mass % of the corresponding element in the steel material. The tempering temperature (° C.) is substituted for T. The holding time (minutes) at the tempering temperature T is substituted for t.
 上述のとおり、本実施形態の鋼材では、電気化学的要素(式(1)で定義されるEE)と、物理的要素(旧オーステナイト粒の平均円相当径)との相乗効果により、758~965MPa未満の高強度であっても、優れた耐SSC性が得られる。FAは、式(2)の分子を構成する電気化学的要素と、式(2)の分母を構成する物理的要素と、鋼材の強度とを適切に調整するための指標である。 As mentioned above, the steel material of this embodiment has a pressure of 758 to 965 MPa due to the synergistic effect of the electrochemical element (EE defined by formula (1)) and the physical element (average equivalent circle diameter of prior austenite grains). Excellent SSC resistance can be obtained even with a high strength of less than FA is an index for appropriately adjusting the electrochemical elements that make up the numerator of formula (2), the physical elements that make up the denominator of formula (2), and the strength of the steel material.
 製造される鋼材の強度が110ksi級である場合、FAが2500以下であれば、化学組成が特徴1を満たすことを前提として、電気化学的要素、物理的要素、及び、強度の関係を適切に調整できる。そのため、特徴1~特徴3を満たす鋼材を製造できる。 If the strength of the manufactured steel is 110ksi class, and the FA is 2500 or less, the relationship between electrochemical elements, physical elements, and strength should be appropriately determined, assuming that the chemical composition satisfies characteristic 1. Can be adjusted. Therefore, steel materials satisfying Features 1 to 3 can be manufactured.
 同様に、製造される鋼材の強度が125ksi級である場合、FAが2400以下であれば、化学組成が特徴1を満たすことを前提として、電気化学的要素、物理的要素、及び、強度の関係を適切に調整できる。そのため、特徴1~特徴3を満たす鋼材を製造できる。 Similarly, if the strength of the manufactured steel is 125 ksi class, and the FA is 2400 or less, the relationship between electrochemical elements, physical elements, and strength is determined based on the premise that the chemical composition satisfies characteristic 1. can be adjusted appropriately. Therefore, steel materials satisfying Features 1 to 3 can be manufactured.
 以上の工程により、本実施形態の鋼材を製造できる。なお、上述の製造方法では、本実施形態による鋼材の製造方法の一例を説明した。上述する製造方法以外の製造方法によっても、本実施形態による鋼材は製造される場合がある。この場合であっても、鋼材が特徴1~特徴3を満たせば、110ksi級(758~862MPa未満)~125ksi級(862~965MPa未満)の高強度と、優れた耐SSC性とが得られる。 Through the above steps, the steel material of this embodiment can be manufactured. In addition, in the above-mentioned manufacturing method, an example of the manufacturing method of the steel material by this embodiment was demonstrated. The steel material according to this embodiment may also be manufactured by a manufacturing method other than the manufacturing method described above. Even in this case, if the steel material satisfies Features 1 to 3, high strength of 110 ksi class (758 to less than 862 MPa) to 125 ksi class (862 to less than 965 MPa) and excellent SSC resistance can be obtained.
 実施例により本実施形態の鋼材の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の鋼材の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の鋼材はこの一条件例に限定されない。 The effects of the steel material of this embodiment will be explained in more detail with examples. The conditions in the following examples are examples of conditions adopted to confirm the feasibility and effects of the steel material of this embodiment. Therefore, the steel material of this embodiment is not limited to this one example condition.
 実施例1では、110ksi級(758~862MPa未満)の降伏強度を有する鋼材の耐SSC性について調査した。具体的には、表1-1及び表1-2に示す化学組成を有する鋼材(継目無鋼管)を製造した。 In Example 1, the SSC resistance of a steel material having a yield strength of 110 ksi class (758 to less than 862 MPa) was investigated. Specifically, steel materials (seamless steel pipes) having chemical compositions shown in Tables 1-1 and 1-2 were manufactured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1-2中の空白部分は、該当する元素の含有量が不純物レベルであることを意味する。なお、各試験番号のEEを、表2の「EE」欄に示す。 Blank areas in Table 1-2 mean that the content of the corresponding element is at the impurity level. Note that the EE of each test number is shown in the "EE" column of Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 溶鋼を用いて連続鋳造法によりブルームを製造した。その後、ブルームに対して分塊圧延を実施して、直径が310mmの丸ビレットを製造した。分塊圧延前の加熱温度は、1100~1350℃であった。 A bloom was manufactured using a continuous casting method using molten steel. Thereafter, the bloom was subjected to blooming rolling to produce a round billet with a diameter of 310 mm. The heating temperature before blooming was 1100 to 1350°C.
 分塊圧延により製造された丸ビレットに対して、熱間加工を実施した。具体的には、丸ビレットを加熱炉に装入して、1100~1350℃で加熱した。加熱炉から抽出した丸ビレットに対して、マンネスマン法による熱間圧延(熱間加工)を実施して、各試験番号の素管(継目無鋼管)を製造した。このとき穿孔比は1.0~4.0の範囲内であり、熱間加工での累積減面率は20~70%の範囲内であった。 Hot working was performed on a round billet manufactured by blooming. Specifically, the round billet was placed in a heating furnace and heated at 1100 to 1350°C. The round billet extracted from the heating furnace was hot rolled (hot worked) by the Mannesmann method to produce raw pipes (seamless steel pipes) of each test number. At this time, the perforation ratio was within the range of 1.0 to 4.0, and the cumulative area reduction rate during hot working was within the range of 20 to 70%.
 熱間加工後の素管に対して、焼入れを実施した。焼入れでの焼入れ温度(℃)を表2の「焼入れ条件」欄の「焼入れ温度(℃)」に示す。焼入れ温度での保持時間を15分とした。焼入れ後の素管に対して、焼戻しを実施した。焼戻しでの焼戻し温度T(℃)を表2の「焼戻し条件」欄の「焼戻し温度T(℃)」に示す。焼戻し温度Tでの保持時間t(分)を表2の「焼戻し条件」欄の「保持時間t(分)」に示す。焼戻しでのFAを表2の「FA」欄に示す。以上の製造工程により、鋼材(継目無鋼管)を製造した。 Hardening was performed on the raw tube after hot working. The quenching temperature (°C) in quenching is shown in "Quenching temperature (°C)" in the "Quenching conditions" column of Table 2. The holding time at the quenching temperature was 15 minutes. After quenching, the raw tube was tempered. The tempering temperature T (°C) in tempering is shown in "Tempering temperature T (°C)" in the "Tempering conditions" column of Table 2. The holding time t (minutes) at the tempering temperature T is shown in "Holding time t (minutes)" in the "Tempering conditions" column of Table 2. The FA during tempering is shown in the "FA" column of Table 2. Through the above manufacturing process, a steel material (seamless steel pipe) was manufactured.
 [評価試験]
 各試験番号の鋼材(継目無鋼管)に対して、次の評価試験を実施した。
 (試験1)ミクロ組織観察試験
 (試験2)旧オーステナイト粒の平均円相当径D測定試験
 (試験3)降伏強度評価試験
 (試験4)常温耐SSC性評価試験及び低温耐SSC性評価試験
 (試験5)DCB試験
 以下、各試験について説明する。
[Evaluation test]
The following evaluation tests were conducted on the steel materials (seamless steel pipes) of each test number.
(Test 1) Microstructure observation test (Test 2) Measurement test of average equivalent circle diameter D of prior austenite grains (Test 3) Yield strength evaluation test (Test 4) Room temperature SSC resistance evaluation test and low temperature SSC resistance evaluation test (Test 5) DCB Test Each test will be explained below.
 [(試験1)ミクロ組織観察試験]
 各試験番号の鋼材の焼戻しマルテンサイト及び焼戻しベイナイトの総面積率(%)を、次の方法で求めた。各試験番号の鋼材(継目無鋼管)の肉厚中央部から管軸方向10mm、管径方向10mmの観察面を有する試験片を採取した。なお、鋼材が肉厚10mm未満の鋼管の場合、管軸方向10mm、管径方向に鋼管の肉厚の観察面を有する試験片を採取した。
[(Test 1) Microstructure observation test]
The total area ratio (%) of tempered martensite and tempered bainite of the steel material of each test number was determined by the following method. A test piece having an observation surface of 10 mm in the pipe axis direction and 10 mm in the pipe diameter direction was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. In addition, in the case where the steel material was a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction was taken.
 採取した試験片を用いて、上述の[ミクロ組織観察方法]に記載の方法により、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率(%)を求めた。その結果、いずれの試験番号においても、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率が90%以上であった。 Using the sampled test piece, the total area ratio (%) of tempered martensite and tempered bainite was determined by the method described in the above-mentioned [Microstructure observation method]. As a result, in all test numbers, the total area ratio of tempered martensite and tempered bainite was 90% or more.
 [(試験2)旧オーステナイト粒の平均円相当径D測定試験]
 各試験番号の鋼材の旧オーステナイト粒の平均円相当径D(μm)を次の方法で求めた。各試験番号の鋼材(継目無鋼管)の肉厚中央部から管軸方向10mm、管径方向10mmの観察面を有する試験片を採取した。なお、鋼材が肉厚10mm未満の鋼管の場合、管軸方向10mm、管径方向に鋼管の肉厚の観察面を有する試験片を採取した。
[(Test 2) Average circular equivalent diameter D measurement test of prior austenite grains]
The average equivalent circular diameter D (μm) of prior austenite grains of steel materials of each test number was determined by the following method. A test piece having an observation surface of 10 mm in the pipe axis direction and 10 mm in the pipe diameter direction was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. In addition, in the case where the steel material was a steel pipe with a wall thickness of less than 10 mm, a test piece having an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction was taken.
 採取した試験片を用いて、上述の[旧オーステナイト粒の平均円相当径Dの求め方]に記載の方法により、旧オーステナイト粒の平均円相当径D(μm)を求めた。得られた旧オーステナイト粒の平均円相当径Dを、表2中の「D(μm)」欄に示す。 Using the sampled test piece, the average equivalent circle diameter D (μm) of the prior austenite grains was determined by the method described in [How to determine the average equivalent circle diameter D of the prior austenite grains] above. The average equivalent circular diameter D of the obtained prior austenite grains is shown in the "D (μm)" column in Table 2.
 [(試験3)降伏強度評価試験]
 各試験番号の鋼材の降伏強度(MPa)を次の方法で求めた。各試験番号の鋼材(継目無鋼管)の肉厚中央部から丸棒引張試験片を採取した。丸棒引張試験片の大きさは、平行部直径6.0mm、標点距離30.0mmとした。丸棒引張試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。
[(Test 3) Yield strength evaluation test]
The yield strength (MPa) of the steel material of each test number was determined by the following method. A round bar tensile test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar tensile test piece was 6.0 mm in parallel part diameter and 30.0 mm in gage distance. The longitudinal direction of the round bar tensile test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe).
 採取した丸棒引張試験片を用いて、上述の[降伏強度の測定方法]に記載の方法で、降伏強度(MPa)を求めた。得られた降伏強度を、表2の「YS(MPa)」欄に示す。 Using the collected round bar tensile test piece, the yield strength (MPa) was determined by the method described in the above-mentioned [Method for measuring yield strength]. The yield strength obtained is shown in the "YS (MPa)" column of Table 2.
 [(試験4)常温耐SSC性評価試験及び低温耐SSC性評価試験]
 各試験番号の鋼材のNACE TM0177-2016 Method Aに準拠した耐SSC性評価試験を、次の方法で実施した。
[(Test 4) Room temperature SSC resistance evaluation test and low temperature SSC resistance evaluation test]
An SSC resistance evaluation test based on NACE TM0177-2016 Method A of the steel materials with each test number was conducted using the following method.
 上述の[常温耐SSC性評価試験]に記載の方法により、24℃での耐SSC性を評価した。なお、各試験番号の鋼材(継目無鋼管)の肉厚中央部から丸棒試験片を採取した。丸棒試験片の大きさは、直径6.35mm、平行部の長さ25.4mmとした。丸棒試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。試験浴には、1atmのHSガスを吹き込んだ。 The SSC resistance at 24°C was evaluated by the method described in the above-mentioned [Room Temperature SSC Resistance Evaluation Test]. In addition, a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part. The longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe). The test bath was blown with 1 atm H 2 S gas.
 さらに、[低温耐SSC性評価試験]に記載の方法により、4℃での耐SSC性を評価した。なお、各試験番号の鋼材(継目無鋼管)の肉厚中央部から丸棒試験片を採取した。丸棒試験片の大きさは、直径6.35mm、平行部の長さ25.4mmとした。丸棒試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。試験浴には、1atmのHSガスを吹き込んだ。 Furthermore, the SSC resistance at 4° C. was evaluated by the method described in [Low-temperature SSC resistance evaluation test]. In addition, a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part. The longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe). The test bath was blown with 1 atm H 2 S gas.
 常温耐SSC性評価試験の結果、3本全ての丸棒試験片に割れが確認されなかった場合、優れた常温耐SSC性が得られたと判断した(表2中の「耐SSC性」欄の「24℃」欄で「E」(Excellent)で表示)。一方、3本の丸棒試験片のうち1本以上で割れが確認された場合、優れた常温耐SSC性が得られなかったと判断した(表2中の「耐SSC性」欄の「24℃」欄で「B」(Bad)で表示)。 As a result of the room temperature SSC resistance evaluation test, if no cracks were confirmed in all three round bar test pieces, it was judged that excellent room temperature SSC resistance was obtained (the "SSC resistance" column in Table 2 Displayed as "E" (Excellent) in the "24°C" column). On the other hand, if cracks were confirmed in one or more of the three round bar test pieces, it was determined that excellent room temperature SSC resistance was not obtained ("24℃ resistance" in the "SSC resistance" column in Table 2). ” column).
 また、低温耐SSC性評価試験の結果、3本全ての丸棒試験片に割れが確認されなかった場合、優れた低温耐SSC性が得られたと判断した(表2中の「耐SSC性」欄の「4℃」欄で「E」(Excellent)で表示)。一方、3本の丸棒試験片のうち1本以上で割れが確認された場合、優れた低温耐SSC性が得られなかったと判断した(表2中の「耐SSC性」欄の「4℃」欄で「B」(Bad)で表示)。 In addition, as a result of the low-temperature SSC resistance evaluation test, if no cracks were confirmed in all three round bar test pieces, it was judged that excellent low-temperature SSC resistance was obtained ("SSC resistance" in Table 2). (Displayed as "E" (Excellent) in the "4°C" column). On the other hand, if cracks were confirmed in one or more of the three round bar test pieces, it was determined that excellent low-temperature SSC resistance was not obtained ("4℃ resistance" in the "SSC resistance" column in Table 2). ” column).
 [(試験5)DCB試験]
 各試験番号の鋼材の破壊靭性値K1SSC(MPa√m)を、上述の[DCB試験]に記載の方法で求めた。得られた破壊靭性値K1SSC(MPa√m)を、表2中の「K1SSC(MPa√m)」欄に示す。
[(Test 5) DCB test]
The fracture toughness value K 1SSC (MPa√m) of the steel material of each test number was determined by the method described in the above-mentioned [DCB test]. The obtained fracture toughness value K 1SSC (MPa√m) is shown in the “K 1SSC (MPa√m)” column in Table 2.
 なお、各試験番号の鋼材(継目無鋼管)の肉厚中央部から図3Aに示すDCB試験片を採取した。DCB試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。さらに、鋼材から図3Bに示すクサビを採取した。クサビの厚さtは3.10mmであった。試験浴には、5atm(0.5MPa)のHSガスを吹き込んだ。 Note that the DCB test piece shown in FIG. 3A was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The longitudinal direction of the DCB test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe). Furthermore, a wedge shown in FIG. 3B was collected from the steel material. The thickness t of the wedge was 3.10 mm. 5 atm (0.5 MPa) of H 2 S gas was blown into the test bath.
 [試験結果]
 表1-1、表1-2及び表2を参照して、試験番号1~14及び16~29の鋼材(継目無鋼管)の化学組成は適切であり、製造方法も適切であった。そのため、これらの試験番号の鋼材では、特徴1~特徴3を満たした。その結果、優れた常温耐SSC性、優れた低温耐SSC性が得られ、かつ、破壊靭性値K1SSCが25.0MPa√m以上であった。これらの試験番号の鋼材では、110ksi級(758~862MPa未満)の高強度を有するにもかかわらず、優れた耐SSC性が得られた。
[Test results]
Referring to Tables 1-1, 1-2, and 2, the chemical compositions of the steel materials (seamless steel pipes) of test numbers 1 to 14 and 16 to 29 were appropriate, and the manufacturing methods were also appropriate. Therefore, the steel materials with these test numbers satisfied Features 1 to 3. As a result, excellent room temperature SSC resistance and excellent low temperature SSC resistance were obtained, and the fracture toughness value K1SSC was 25.0 MPa√m or more. The steel materials with these test numbers had excellent SSC resistance despite having a high strength of 110 ksi class (758 to less than 862 MPa).
 一方、試験番号15では、化学組成は適切であったものの、焼入れ温度が高すぎた。そのため、FNが低すぎた。その結果、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが25.0MPa√m未満であった。 On the other hand, in test number 15, although the chemical composition was appropriate, the quenching temperature was too high. Therefore, FN was too low. As a result, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa√m.
 試験番号30では、化学組成が適切であったものの、EEが低すぎた。また、試験番号31及び32では、化学組成が適切であったものの、EEが低すぎ、さらに、FNも低すぎた。試験番号33では、化学組成が適切であったものの、EEが低すぎ、さらに、FAが高すぎた。その結果、FNが低すぎた。そのため、これらの試験番号では、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが25.0MPa√m未満であった。 In test number 30, although the chemical composition was appropriate, the EE was too low. Further, in test numbers 31 and 32, although the chemical composition was appropriate, the EE was too low and the FN was also too low. In test number 33, although the chemical composition was appropriate, the EE was too low and the FA was too high. As a result, FN was too low. Therefore, with these test numbers, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K 1SSC was less than 25.0 MPa√m.
 試験番号34~36では、化学組成が適切であったものの、製造条件であるFAが高すぎた。そのため、FNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが25.0MPa√m未満であった。 In test numbers 34 to 36, although the chemical composition was appropriate, the FA, which was the manufacturing condition, was too high. Therefore, FN was too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa√m.
 試験番号37及び38では、Si含有量が高すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが25.0MPa√m未満であった。 In test numbers 37 and 38, the Si content was too high. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa√m.
 試験番号39では、Si含有量が低すぎた。さらに、Si含有量が低すぎたため、EE及びFNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが25.0MPa√m未満であった。 In test number 39, the Si content was too low. Furthermore, since the Si content was too low, EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa√m.
 試験番号40では、Mn含有量が高すぎた。さらに、Mn含有量が高すぎたため、EE及びFNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが25.0MPa√m未満であった。 In test number 40, the Mn content was too high. Furthermore, the Mn content was too high, so the EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 25.0 MPa√m.
 実施例2では、125ksi級(862~965MPa未満)の降伏強度を有する鋼材の耐SSC性について調査した。 In Example 2, the SSC resistance of steel materials having a yield strength of 125 ksi class (less than 862 to 965 MPa) was investigated.
 表1-1及び表1-2に示す化学組成を有する鋼材(継目無鋼管)を製造した。具体的には、溶鋼を用いて連続鋳造法によりブルームを製造した。その後、ブルームに対して分塊圧延を実施して、直径が310mmの丸ビレットを製造した。分塊圧延前の加熱温度は、1100~1350℃であった。 Steel materials (seamless steel pipes) having the chemical compositions shown in Tables 1-1 and 1-2 were manufactured. Specifically, the bloom was manufactured by a continuous casting method using molten steel. Thereafter, the bloom was subjected to blooming rolling to produce a round billet with a diameter of 310 mm. The heating temperature before blooming was 1100 to 1350°C.
 分塊圧延により製造された丸ビレットに対して、熱間加工を実施した。具体的には、丸ビレットを加熱炉に装入して、1100~1350℃で加熱した。加熱炉から抽出した丸ビレットに対して、マンネスマン法による熱間圧延(熱間加工)を実施して、各試験番号の素管(継目無鋼管)を製造した。このとき穿孔比は1.0~4.0の範囲内であり、熱間加工での累積減面率は20~70%の範囲内であった。 Hot working was performed on a round billet manufactured by blooming. Specifically, the round billet was placed in a heating furnace and heated at 1100 to 1350°C. The round billet extracted from the heating furnace was hot rolled (hot worked) by the Mannesmann method to produce raw pipes (seamless steel pipes) of each test number. At this time, the perforation ratio was within the range of 1.0 to 4.0, and the cumulative area reduction rate during hot working was within the range of 20 to 70%.
 熱間加工後の素管に対して、焼入れを実施した。焼入れでの焼入れ温度(℃)を表3の「焼入れ条件」欄の「焼入れ温度(℃)」に示す。焼入れ温度での保持時間を15分とした。焼入れ後の素管に対して、焼戻しを実施した。焼戻しでの焼戻し温度T(℃)を表3の「焼戻し条件」欄の「焼戻し温度T(℃)」に示す。焼戻し温度Tでの保持時間t(分)を表3の「焼戻し条件」欄の「保持時間t(分)」に示す。焼戻しでのFAを表3の「FA」欄に示す。以上の製造工程により、鋼材(継目無鋼管)を製造した。なお、各試験番号のEEを表3の「EE」欄に示す。 Hardening was performed on the raw tube after hot working. The quenching temperature (°C) in the quenching is shown in "Quenching temperature (°C)" in the "Quenching conditions" column of Table 3. The holding time at the quenching temperature was 15 minutes. After quenching, the raw tube was tempered. The tempering temperature T (°C) in tempering is shown in "Tempering temperature T (°C)" in the "Tempering conditions" column of Table 3. The holding time t (minutes) at the tempering temperature T is shown in “Holding time t (minutes)” in the “Tempering conditions” column of Table 3. The FA during tempering is shown in the "FA" column of Table 3. Through the above manufacturing process, a steel material (seamless steel pipe) was manufactured. Note that the EE of each test number is shown in the "EE" column of Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [評価試験]
 実施例1と同様に、各試験番号の鋼材(継目無鋼管)に対して、次の評価試験を実施した。
 (試験1)ミクロ組織観察試験
 (試験2)旧オーステナイト粒の平均円相当径D測定試験
 (試験3)降伏強度評価試験
 (試験4)常温耐SSC性評価試験及び低温耐SSC性評価試験
 (試験5)DCB試験
[Evaluation test]
As in Example 1, the following evaluation tests were conducted on the steel materials (seamless steel pipes) of each test number.
(Test 1) Microstructure observation test (Test 2) Measurement test of average equivalent circle diameter D of prior austenite grains (Test 3) Yield strength evaluation test (Test 4) Room temperature SSC resistance evaluation test and low temperature SSC resistance evaluation test (Test 5) DCB test
 [(試験1)ミクロ組織観察試験]
 実施例1のミクロ組織観察試験と同じ方法により、各試験番号の鋼材の焼戻しマルテンサイト及び焼戻しベイナイトの総面積率(%)を求めた。その結果、いずれの試験番号においても、焼戻しマルテンサイト及び焼戻しベイナイトの総面積率が90%以上であった。
[(Test 1) Microstructure observation test]
By the same method as the microstructure observation test of Example 1, the total area ratio (%) of tempered martensite and tempered bainite of the steel material of each test number was determined. As a result, in all test numbers, the total area ratio of tempered martensite and tempered bainite was 90% or more.
 [(試験2)旧オーステナイト粒の平均円相当径D測定試験]
 実施例1の旧オーステナイト粒の平均円相当径D測定試験と同じ方法により、各試験番号の鋼材の旧オーステナイト粒の平均円相当径D(μm)を求めた。得られた旧オーステナイト粒の平均円相当径Dを、表3中の「D(μm)」欄に示す。
[(Test 2) Average circular equivalent diameter D measurement test of prior austenite grains]
The average equivalent circle diameter D (μm) of the prior austenite grains of the steel material of each test number was determined by the same method as the measurement test for the average equivalent circle diameter D of the prior austenite grains in Example 1. The average equivalent circular diameter D of the obtained prior austenite grains is shown in the "D (μm)" column in Table 3.
 [(試験3)降伏強度評価試験]
 実施例1の降伏強度評価試験と同じ方法により、各試験番号の鋼材の降伏強度(MPa)を求めた。得られた降伏強度を、表3の「YS(MPa)」欄に示す。
[(Test 3) Yield strength evaluation test]
By the same method as the yield strength evaluation test of Example 1, the yield strength (MPa) of the steel material of each test number was determined. The obtained yield strength is shown in the "YS (MPa)" column of Table 3.
 [(試験4)常温耐SSC性評価試験及び低温耐SSC性評価試験]
 各試験番号の鋼材のNACE TM0177-2016 Method Aに準拠した耐SSC性評価試験を、次の方法で実施した。
[(Test 4) Room temperature SSC resistance evaluation test and low temperature SSC resistance evaluation test]
An SSC resistance evaluation test based on NACE TM0177-2016 Method A of the steel materials with each test number was conducted using the following method.
 上述の[常温耐SSC性評価試験]に記載の方法により、24℃での耐SSC性を評価した。なお、各試験番号の鋼材(継目無鋼管)の肉厚中央部から丸棒試験片を採取した。丸棒試験片の大きさは、直径6.35mm、平行部の長さ25.4mmとした。丸棒試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。試験浴には、1atmのHSガスを吹き込んだ。 The SSC resistance at 24°C was evaluated by the method described in the above-mentioned [Room Temperature SSC Resistance Evaluation Test]. In addition, a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part. The longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe). The test bath was blown with 1 atm H 2 S gas.
 さらに、[低温耐SSC性評価試験]に記載の方法により、4℃での耐SSC性を評価した。なお、各試験番号の鋼材(継目無鋼管)の肉厚中央部から丸棒試験片を採取した。丸棒試験片の大きさは、直径6.35mm、平行部の長さ25.4mmとした。丸棒試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。試験浴には、1atmのHSガスを吹き込んだ。 Furthermore, the SSC resistance at 4° C. was evaluated by the method described in [Low-temperature SSC resistance evaluation test]. In addition, a round bar test piece was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar test piece was 6.35 mm in diameter and 25.4 mm in length of the parallel part. The longitudinal direction of the round bar test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe). The test bath was blown with 1 atm H 2 S gas.
 常温耐SSC性評価試験の結果、3本全ての丸棒試験片に割れが確認されなかった場合、優れた常温耐SSC性が得られたと判断した(表3中の「耐SSC性」欄の「24℃」欄で「E」(Excellent)で表示)。一方、3本の丸棒試験片のうち1本以上で割れが確認された場合、優れた常温耐SSC性が得られなかったと判断した(表3中の「耐SSC性」欄の「24℃」欄で「B」(Bad)で表示)。 As a result of the room temperature SSC resistance evaluation test, if no cracks were confirmed in all three round bar test pieces, it was judged that excellent room temperature SSC resistance was obtained (the "SSC resistance" column in Table 3 Displayed as "E" (Excellent) in the "24°C" column). On the other hand, if cracks were confirmed in one or more of the three round bar test pieces, it was determined that excellent room temperature SSC resistance was not obtained ("24℃ resistance" in the "SSC resistance" column in Table 3). ” column).
 また、低温耐SSC性評価試験の結果、3本全ての丸棒試験片に割れが確認されなかった場合、優れた低温耐SSC性が得られたと判断した(表3中の「耐SSC性」欄の「4℃」欄で「E」(Excellent)で表示)。一方、3本の丸棒試験片のうち1本以上で割れが確認された場合、優れた低温耐SSC性が得られなかったと判断した(表3中の「耐SSC性」欄の「4℃」欄で「B」(Bad)で表示)。 In addition, as a result of the low-temperature SSC resistance evaluation test, if no cracks were confirmed in all three round bar test pieces, it was judged that excellent low-temperature SSC resistance was obtained ("SSC resistance" in Table 3). (Displayed as "E" (Excellent) in the "4°C" column). On the other hand, if cracks were confirmed in one or more of the three round bar test pieces, it was determined that excellent low-temperature SSC resistance was not obtained ("4℃ resistance" in the "SSC resistance" column in Table 3). ” column).
 [(試験5)DCB試験]
 各試験番号の鋼材の破壊靭性値K1SSC(MPa√m)を、上述の[DCB試験]に記載の方法で求めた。得られた破壊靭性値K1SSC(MPa√m)を、表3中の「K1SSC(MPa√m)」欄に示す。
[(Test 5) DCB test]
The fracture toughness value K 1SSC (MPa√m) of the steel material of each test number was determined by the method described in the above-mentioned [DCB test]. The obtained fracture toughness value K 1SSC (MPa√m) is shown in the “K 1SSC (MPa√m)” column in Table 3.
 なお、各試験番号の鋼材(継目無鋼管)の肉厚中央部から図3Aに示すDCB試験片を採取した。DCB試験片の長手方向は、鋼材(継目無鋼管)の管軸方向と平行とした。さらに、鋼材から図3Bに示すクサビを採取した。クサビの厚さtは3.10mmであった。試験浴には、5atm(0.5MPa)のHSガスを吹き込んだ。 Note that the DCB test piece shown in FIG. 3A was taken from the center of the wall thickness of the steel material (seamless steel pipe) of each test number. The longitudinal direction of the DCB test piece was parallel to the pipe axis direction of the steel material (seamless steel pipe). Furthermore, a wedge shown in FIG. 3B was collected from the steel material. The thickness t of the wedge was 3.10 mm. 5 atm (0.5 MPa) of H 2 S gas was blown into the test bath.
 [試験結果]
 表1-1、表1-2及び表3を参照して、試験番号1~12及び16~28の鋼材(継目無鋼管)の化学組成は適切であり、製造方法も適切であった。そのため、これらの試験番号の鋼材では、特徴1~特徴3を満たした。その結果、優れた常温耐SSC性、優れた低温耐SSC性が得られ、かつ、破壊靭性値K1SSCが24.0MPa√m以上であった。これらの試験番号の鋼材では、125ksi級(862~965MPa未満)の高強度を有するにもかかわらず、優れた耐SSC性が得られた。
[Test results]
Referring to Tables 1-1, 1-2, and 3, the chemical compositions of the steel materials (seamless steel pipes) of test numbers 1 to 12 and 16 to 28 were appropriate, and the manufacturing methods were also appropriate. Therefore, the steel materials with these test numbers satisfied Features 1 to 3. As a result, excellent room temperature SSC resistance and excellent low temperature SSC resistance were obtained, and the fracture toughness value K1SSC was 24.0 MPa√m or more. The steel materials with these test numbers had excellent SSC resistance despite having a high strength of 125 ksi class (less than 862 to 965 MPa).
 一方、試験番号13では、化学組成が適切であったものの、EEが低すぎた。また、試験番号14、29~32では、化学組成が適切であったものの、EEが低すぎ、さらに、FNも低すぎた。試験番号33では、化学組成が適切であったものの、EEが低すぎ、さらに、FAが高すぎた。その結果、FNが低すぎた。そのため、これらの試験番号では、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが24.0MPa√m未満であった。 On the other hand, in test number 13, although the chemical composition was appropriate, the EE was too low. Further, in test numbers 14 and 29 to 32, although the chemical composition was appropriate, the EE was too low and the FN was also too low. In test number 33, although the chemical composition was appropriate, the EE was too low and the FA was too high. As a result, FN was too low. Therefore, with these test numbers, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K 1SSC was less than 24.0 MPa√m.
 試験番号15では、化学組成は適切であったものの、焼入れ温度が高すぎた。そのため、FNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが24.0MPa√m未満であった。 In test number 15, although the chemical composition was appropriate, the quenching temperature was too high. Therefore, FN was too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa√m.
 試験番号34~36では、化学組成が適切であったものの、製造条件であるFAが高すぎた。そのため、FNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが24.0MPa√m未満であった。 In test numbers 34 to 36, although the chemical composition was appropriate, the FA, which was the manufacturing condition, was too high. Therefore, FN was too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa√m.
 試験番号37及び38では、Si含有量が高すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが24.0MPa√m未満であった。 In test numbers 37 and 38, the Si content was too high. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa√m.
 試験番号39では、Si含有量が低すぎた。さらに、Si含有量が低すぎたため、EE及びFNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが24.0MPa√m未満であった。 In test number 39, the Si content was too low. Furthermore, since the Si content was too low, EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa√m.
 試験番号40では、Mn含有量が高すぎた。さらに、Mn含有量が高すぎたため、EE及びFNが低すぎた。そのため、優れた常温耐SSC性、優れた低温耐SSC性が得られず、破壊靭性値K1SSCが24.0MPa√m未満であった。 In test number 40, the Mn content was too high. Furthermore, the Mn content was too high, so the EE and FN were too low. Therefore, excellent room temperature SSC resistance and excellent low temperature SSC resistance were not obtained, and the fracture toughness value K1SSC was less than 24.0 MPa√m.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiments of the present disclosure have been described above. However, the embodiments described above are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the embodiments described above, and the embodiments described above can be modified and implemented as appropriate without departing from the spirit thereof.

Claims (3)

  1.  化学組成が、質量%で、
     C:0.20~0.35%、
     Si:0.60~1.30%、
     Mn:0.05~0.25%、
     P:0.050%以下、
     S:0.0100%以下、
     Al:0.010~0.100%、
     N:0.0100%以下、
     Cr:0.20~1.00%、
     Mo:0.10~1.00%、
     Ti:0.003~0.030%、
     O:0.0050%以下、
     Zr:0~0.0040%、
     Sb:0~0.50%、
     Cu:0~0.50%、
     Ni:0~0.50%、
     Co:0~0.50%、
     Ca:0~0.0040%、
     Mg:0~0.0040%、
     希土類元素:0~0.0040%、
     Nb:0~0.150%、
     V:0~0.500%、
     B:0~0.0030%、及び、
     残部がFe及び不純物からなり、
     降伏強度が758~965MPa未満であり、
     前記降伏強度が758~862MPa未満である場合、式(1)で定義されるEEが2.75以上であり、式(2)で定義されるFNが0.185以上であり、
     前記降伏強度が862~965MPa未満である場合、前記EEが3.00以上であり、前記FNが0.200以上である、
     鋼材。
     EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
     FN=EE/(D0.9) (2)
     ここで、式(1)中の各元素記号には、対応する元素の質量%での含有量が代入される。式(2)中のDには、前記鋼材中の旧オーステナイト粒のμm単位での平均円相当径が代入される。
    The chemical composition is in mass%,
    C: 0.20-0.35%,
    Si: 0.60-1.30%,
    Mn: 0.05-0.25%,
    P: 0.050% or less,
    S: 0.0100% or less,
    Al: 0.010-0.100%,
    N: 0.0100% or less,
    Cr: 0.20-1.00%,
    Mo: 0.10-1.00%,
    Ti: 0.003 to 0.030%,
    O: 0.0050% or less,
    Zr: 0 to 0.0040%,
    Sb: 0 to 0.50%,
    Cu: 0 to 0.50%,
    Ni: 0 to 0.50%,
    Co: 0 to 0.50%,
    Ca: 0-0.0040%,
    Mg: 0 to 0.0040%,
    Rare earth elements: 0 to 0.0040%,
    Nb: 0 to 0.150%,
    V: 0 to 0.500%,
    B: 0 to 0.0030%, and
    The remainder consists of Fe and impurities,
    The yield strength is less than 758 to 965 MPa,
    When the yield strength is less than 758 to 862 MPa, EE defined by formula (1) is 2.75 or more, FN defined by formula (2) is 0.185 or more,
    When the yield strength is less than 862 to 965 MPa, the EE is 3.00 or more, and the FN is 0.200 or more.
    Steel material.
    EE=-0.25C+2Si-5.8Mn+2.1Cr+Mo+4.1Zr+2.6Sb+0.3Cu+0.4Ni+1.5Co (1)
    FN=EE/(D 0.9 ) (2)
    Here, each element symbol in formula (1) is substituted with the content in mass % of the corresponding element. D in equation (2) is substituted with the average circular equivalent diameter in μm of the prior austenite grains in the steel material.
  2.  請求項1に記載の鋼材であって、
     前記化学組成は、
     Zr:0.0001~0.0040%、
     Sb:0.01~0.50%、
     Cu:0.01~0.50%、
     Ni:0.01~0.50%、
     Co:0.01~0.50%、
     Ca:0.0001~0.0040%、
     Mg:0.0001~0.0040%、
     希土類元素:0.0001~0.0040%、
     Nb:0.001~0.150%、
     V:0.001~0.500%、及び、
     B:0.0001~0.0030%、
     からなる群から選択される1種以上を含有する、
     鋼材。
    The steel material according to claim 1,
    The chemical composition is
    Zr: 0.0001 to 0.0040%,
    Sb: 0.01 to 0.50%,
    Cu: 0.01 to 0.50%,
    Ni: 0.01-0.50%,
    Co: 0.01 to 0.50%,
    Ca: 0.0001-0.0040%,
    Mg: 0.0001 to 0.0040%,
    Rare earth elements: 0.0001-0.0040%,
    Nb: 0.001 to 0.150%,
    V: 0.001 to 0.500%, and
    B: 0.0001 to 0.0030%,
    Containing one or more selected from the group consisting of
    Steel material.
  3.  請求項1又は請求項2に記載の鋼材であって、
     前記鋼材は油井用鋼管である、
     鋼材。
    The steel material according to claim 1 or claim 2,
    The steel material is a steel pipe for oil wells,
    Steel material.
PCT/JP2023/015878 2022-04-22 2023-04-21 Steel material WO2023204294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023547516A JP7364993B1 (en) 2022-04-22 2023-04-21 steel material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-071027 2022-04-22
JP2022071027 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023204294A1 true WO2023204294A1 (en) 2023-10-26

Family

ID=88419952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015878 WO2023204294A1 (en) 2022-04-22 2023-04-21 Steel material

Country Status (1)

Country Link
WO (1) WO2023204294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043570A1 (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Steel and oil well steel pipe
JP2018188696A (en) * 2017-05-01 2018-11-29 新日鐵住金株式会社 Steel material and seamless steel pipe for oil well
WO2020090478A1 (en) * 2018-10-31 2020-05-07 日本製鉄株式会社 Steel material and method for producing steel material
WO2020166675A1 (en) * 2019-02-15 2020-08-20 日本製鉄株式会社 Steel material suitable for use in sour environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043570A1 (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Steel and oil well steel pipe
JP2018188696A (en) * 2017-05-01 2018-11-29 新日鐵住金株式会社 Steel material and seamless steel pipe for oil well
WO2020090478A1 (en) * 2018-10-31 2020-05-07 日本製鉄株式会社 Steel material and method for producing steel material
WO2020166675A1 (en) * 2019-02-15 2020-08-20 日本製鉄株式会社 Steel material suitable for use in sour environment

Similar Documents

Publication Publication Date Title
WO2018043570A1 (en) Steel and oil well steel pipe
WO2018181404A1 (en) Martensitic stainless steel material
US11834725B2 (en) Martensitic stainless steel material
WO2013191131A1 (en) Steel for oil well pipe, and method for producing same
JP7425360B2 (en) Martensitic stainless steel material and method for producing martensitic stainless steel material
WO2011136175A1 (en) High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
WO2016059763A1 (en) Low alloy steel pipe for oil wells
JP7173405B2 (en) Martensitic stainless steel material
JP7036238B2 (en) Steel material suitable for use in sour environment
EP4134462A1 (en) Martensitic stainless seamless steel pipe
JP6981527B2 (en) Steel material suitable for use in sour environment
WO2020090478A1 (en) Steel material and method for producing steel material
JP7239086B1 (en) Martensitic stainless steel pipe
JP7151945B1 (en) Martensitic stainless steel material
JP7364993B1 (en) steel material
WO2023204294A1 (en) Steel material
JP7036237B2 (en) Steel material suitable for use in sour environment
US11905580B2 (en) Seamless steel pipe suitable for use in sour environment
WO2024063108A1 (en) Martensitic stainless steel material
JP7417181B1 (en) steel material
JP7417180B1 (en) steel material
JP7381983B2 (en) Martensitic seamless stainless steel pipe and method for manufacturing martensitic seamless stainless steel pipe
US20230366070A1 (en) Steel material suitable for use in sour environment
WO2023195361A1 (en) Martensite stainless steel material
WO2021210655A1 (en) Steel material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023547516

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791942

Country of ref document: EP

Kind code of ref document: A1