WO2019065115A1 - Oil well pipe martensitic stainless seamless steel pipe and production method for same - Google Patents

Oil well pipe martensitic stainless seamless steel pipe and production method for same Download PDF

Info

Publication number
WO2019065115A1
WO2019065115A1 PCT/JP2018/032685 JP2018032685W WO2019065115A1 WO 2019065115 A1 WO2019065115 A1 WO 2019065115A1 JP 2018032685 W JP2018032685 W JP 2018032685W WO 2019065115 A1 WO2019065115 A1 WO 2019065115A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
oil well
martensitic stainless
pipe
Prior art date
Application number
PCT/JP2018/032685
Other languages
French (fr)
Japanese (ja)
Inventor
まみ 遠藤
祐一 加茂
正雄 柚賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018564431A priority Critical patent/JP6540920B1/en
Priority to EP18861269.1A priority patent/EP3690073A4/en
Priority to BR112020004808-9A priority patent/BR112020004808B1/en
Priority to MX2020002857A priority patent/MX2020002857A/en
Priority to US16/646,667 priority patent/US20200407814A1/en
Publication of WO2019065115A1 publication Critical patent/WO2019065115A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a martensitic stainless steel seamless steel pipe for oil well used for oil wells and gas wells of crude oil or natural gas (hereinafter simply referred to as oil wells) and a method for producing the same.
  • the present invention relates to a seamless steel pipe for oil well pipe excellent in sulfide stress corrosion cracking resistance (SSC resistance) in an environment containing hydrogen sulfide (H 2 S) with a yield stress YS of 758 MPa or more, and a manufacturing method thereof.
  • SSC resistance sulfide stress corrosion cracking resistance
  • Patent Document 1 describes a component system 13% Cr-based martensitic stainless steel pipe containing a very low C amount of 0.015% or less and Ti of 0.03% or more, and has a high strength of yield stress 95 ksi class, It has low hardness of less than 27 in HRC, and has excellent SSC resistance.
  • Patent Document 2 describes a martensitic stainless steel satisfying 6.0 ⁇ Ti / C ⁇ 10.1 because Ti / C has a correlation with a value obtained by subtracting a yield stress from a tensile stress. According to the described technology, the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more, and it is possible to suppress the variation in hardness which lowers the SSC resistance.
  • the amount of Mo in the steel is defined as Mo0.82.3 ⁇ 0.89 Si + 32.2 C, and the metal structure is mainly tempered martensite, carbide precipitated during tempering, and Laves precipitated finely during tempering.
  • a martensitic stainless steel composed of intermetallic compounds such as phase and ⁇ phase is described. According to the described technology, it is said that the 0.2% proof stress of the steel becomes high strength of 860 MPa or more, and can have excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.
  • Patent Document 1 states that resistance to sulfide stress cracking can be maintained under a condition of applying a stress of 655 MPa in an atmosphere adjusted to a pH of 3.5 with a 5% NaCl aqueous solution (H 2 S: 0.10 bar). .
  • H 2 S: 0.10 bar a 5% NaCl aqueous solution
  • Patent Document 2 25% NaCl aqueous solution (H 2 S: 0.03) is used in the atmosphere in which 20% NaCl aqueous solution (H 2 S: 0.03 bar, CO 2 bal.) Is adjusted to pH: 4.5.
  • the steel is considered to have resistance to sulfide stress cracking under an atmosphere adjusted to pH: 4.0 bar, CO 2 bal).
  • sulfide stress corrosion cracking resistance under an atmosphere other than the above has not been studied, and it can not be said to have sulfide stress corrosion cracking resistance that can withstand the current severe corrosion environment.
  • An object of the present invention is to provide a martensitic stainless steel seamless steel pipe for oil well pipes having a yield stress of 758 MPa (110 ksi) or more and having excellent sulfide stress corrosion cracking resistance and a method for producing the same. .
  • excellent resistance to sulfide stress corrosion cracking refers to a test solution: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 1 bar, CO 2 bal), Na acetate acetic acid + hydrochloric acid Add 0.82 g / L acetic acid Na + acetic acid to an aqueous solution adjusted to pH: 3.5 and to a test solution: 20 mass% aqueous NaCl solution (liquid temperature: 25 ° C, H 2 S: 0.1 bar, CO 2 bal)
  • the test piece is immersed in an aqueous solution adjusted to pH 5.0, the immersion time is 720 hours, 90% of the yield stress is applied as a load stress, and the test is conducted, and no crack occurs in the test piece after the test. Shall be said.
  • the present inventors have resistance to sulfide stress corrosion cracking in a corrosive environment containing 13% Cr-based stainless steel pipe as a basic composition, CO 2 , Cl ⁇ and H 2 S.
  • the effects of various alloying elements on SSC resistance) were studied intensively.
  • each component is contained in a predetermined range, and C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti are adjusted and contained so as to satisfy an appropriate relational expression and range.
  • the appropriate hardening and tempering treatment the stress near the yield stress is applied under the corrosive atmosphere having the desired strength and containing CO 2 , Cl ⁇ , and H 2 S. It has been found that the martensitic stainless steel seamless steel pipe for oil well pipes having excellent SSC resistance can be obtained under
  • the present invention has been completed based on the above-mentioned findings, with further studies. That is, the gist of the present invention is as follows. [1] mass%, C: 0.010% or more, Si: 0.5% or less, Mn: 0.05 to 0.24%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0%, Mo: 1.0 to 2.7%, Al: 0.1% or less, V: 0.005 to 0.2%, N: 0.1% or less Ti: 0.06 to 0.25%, Cu: 0.01 to 1.0%, Co: 0.01 to 1.0%
  • Nb not more than 0.1% in mass%
  • W The martensitic stainless steel seamless steel pipe for oil well tubes according to [1], which has a composition containing one or two or more selected from 1.0% or less.
  • Ca 0.010% or less
  • REM 0.010% or less
  • Mg 0.010% or less
  • B A martensitic stainless steel seamless steel pipe for oil well tubes according to [1] or [2], which has a composition containing one or more selected from 0.010% or less.
  • the present invention has excellent sulfide stress corrosion cracking resistance (SSC resistance) in a corrosive environment containing CO 2 , Cl ⁇ and further H 2 S, and yield stress YS: 758 MPa (110 ksi)
  • SSC resistance sulfide stress corrosion cracking resistance
  • composition limitation reason of the steel pipe of the present invention will be described.
  • mass% is simply described as% unless otherwise specified.
  • C 0.010% or more C is an important element related to the strength of martensitic stainless steel, and is effective for improving the strength. In the present invention, C is limited to 0.010% or more in order to secure a desired strength. On the other hand, by containing excessively, hardness will become high and sulfide stress corrosion cracking sensitivity will increase. For this reason, it is desirable to contain 0.040% or less. Therefore, it is preferably 0.010% to 0.040%.
  • Si 0.5% or less Since Si acts as a deoxidizer, it is desirable to contain 0.05% or more. On the other hand, the content exceeding 0.5% reduces carbon dioxide corrosion resistance and hot workability. For this reason, Si was limited to 0.5% or less. Preferably, it is 0.10 to 0.30% from the viewpoint of securing stable strength.
  • Mn 0.05 to 0.24%
  • Mn is an element that improves the hot workability and strength, and in order to secure the required strength, it is desirable to contain 0.05% or more.
  • Mn is limited to 0.05 to 0.24%.
  • P 0.030% or less
  • P is an element that reduces both carbon dioxide gas corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and in the present invention, it is desirable to reduce as much as possible.
  • extreme reductions increase manufacturing costs. Therefore, P was limited to 0.030% or less as an industrially inexpensively practicable range within a range that does not cause an extreme decrease in the characteristics. In addition, Preferably it is 0.015% or less.
  • S 0.005% or less Since S is an element that significantly reduces the hot workability, it is desirable to reduce it as much as possible. By reducing the amount to 0.005% or less, it is possible to manufacture a pipe in a normal process, so S in the present invention is limited to 0.005% or less. In addition, Preferably it is 0.002% or less.
  • Ni 4.6 to 8.0%
  • Ni is an element which strengthens the protective film to improve the corrosion resistance and further increases the strength of the steel by solid solution. In order to obtain such an effect, the content needs to be 4.6% or more. On the other hand, when the content exceeds 8.0%, the stability of the martensitic phase decreases and the strength decreases. Therefore, Ni was limited to 4.6 to 8.0%.
  • Cr 10.0 to 14.0% Cr is an element which forms a protective film and improves corrosion resistance, and by containing 10.0% or more, the corrosion resistance necessary for oil well pipes can be secured. On the other hand, if the content exceeds 14.0%, the formation of ferrite becomes easy, so that the martensite phase can not be stably ensured. Therefore, Cr is limited to 10.0 to 14.0%. Preferably, it is 11.0 to 13.5%.
  • Mo 1.0 to 2.7% Mo is an element that improves the resistance to pitting corrosion by Cl ⁇ , and needs to be 1.0% or more in order to obtain the corrosion resistance necessary for a severe corrosive environment.
  • Mo is an expensive element, the content exceeding 2.7% causes a rise in manufacturing cost. Therefore, Mo was limited to 1.0 to 2.7%. Preferably, it is 1.5 to 2.5%.
  • Al 0.1% or less Since Al acts as a deoxidizer, in order to obtain such an effect, it is necessary to contain 0.01% or more. However, since the content exceeding 0.1% adversely affects the toughness, Al in the present invention is limited to 0.1% or less. Preferably, it is 0.01 to 0.03%.
  • V 0.005 to 0.2%
  • V is required to be contained at 0.005% or more in order to improve the strength of the steel by precipitation strengthening and further improve the resistance to sulfide stress corrosion cracking.
  • the V content in the present invention is limited to 0.005 to 0.2%, since the toughness is lowered when the content exceeds 0.2%.
  • N 0.1% or less N improves the pitting resistance and has an effect of dissolving in steel and increasing the strength. However, if the content is more than 0.1%, many various nitride-based inclusions are generated, and the pitting resistance is lowered. Therefore, N in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.010% or less.
  • Ti 0.06 to 0.25%
  • Ti can form carbides, reduce solid solution carbon, and reduce hardness.
  • the content exceeds 0.25%, TiN is generated as inclusions to be a starting point of pitting corrosion, and the sulfide stress corrosion cracking resistance is deteriorated. Therefore, Ti was limited to 0.06 to 0.25%.
  • the content is 0.08 to 0.15%.
  • Cu 0.01 to 1.0%
  • Cu is contained 0.01% or more in order to strengthen a protective film and to improve sulfide stress corrosion cracking resistance. However, if the content exceeds 1.0%, CuS precipitates to reduce the hot workability. Therefore, Cu was limited to 0.01 to 1.0%.
  • Co 0.01 to 1.0%
  • Co is an element that reduces the hardness and improves the pitting resistance by raising the Ms point and promoting the ⁇ transformation. In order to acquire such an effect, 0.01% or more needs to be contained. On the other hand, excessive content may lower the toughness and further increase the material cost. Therefore, Co in the present invention is limited to 0.01 to 1.0%. More preferably, it is 0.03 to 0.6%.
  • the following value (1), value (2) and value (3) Each element is contained to be satisfied.
  • the value (1) is an equation correlating to the amount of residual ⁇ , and by reducing the value of the value (1), retained austenite is reduced, the hardness is reduced, and the sulfide stress corrosion cracking resistance is improved.
  • the value (2) is an equation correlating to the re-passivation potential, and C, Mn, Cr, Cu, Ni, Mo, W, Nb so that the value (1) satisfies the range of the equation (4).
  • the value (3) is an equation correlating to the pitting potential, and C, Mn, Cr, Cu, Ni, Mo, W, Nb, and so that the value (1) satisfies the range of the equation (4).
  • Nb can reduce solid solution carbon and reduce hardness by forming carbides.
  • excessive content may lower toughness.
  • W is an element improving the pitting resistance, but an excessive content may lower the toughness and further increase the material cost. Therefore, in the case of containing Nb: 0.1% or less, W: 1.0% or less.
  • Ca 0.010% or less
  • REM 0.010% or less
  • Mg 0.010% or less
  • B One or more selected from 0.010% or less can be contained.
  • Ca, REM, Mg and B are all elements which improve corrosion resistance through shape control of inclusions. To get this effect, Ca: 0.0005% or more, REM: 0.0005% or more, Mg: 0.0005% or more, B: It is desirable to contain 0.0005% or more. on the other hand, Ca: 0.010%, REM: 0.010%, Mg: 0.010%, B: 0.010% If the content is more than the above, the toughness and the carbon dioxide corrosion resistance decrease. Therefore, when it contains, Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: Limited to 0.010% or less.
  • the balance other than the above-mentioned component composition consists of Fe and unavoidable impurities.
  • a steel pipe material having the above composition is used, but the method of manufacturing a stainless steel seamless steel pipe, which is a steel pipe material, is not particularly limited, and any known method of manufacturing a seamless pipe can be applied.
  • the molten steel of the above composition is melted by a melting method such as a converter and made into a steel pipe material such as billet by a method such as continuous casting or ingot-slab rolling. Subsequently, these steel tube materials are heated, hot worked and piped in a pipe forming process of Mannesman-plug mill method or Mannesman-mandrel mill method which is a known pipe forming method, and a joint having the above composition No steel pipe.
  • the treatment after forming the steel pipe material into the steel pipe is not particularly limited, but preferably, the steel pipe is heated to a temperature above the Ac 3 transformation point and then quenched to a cooling stop temperature of 100 ° C. or less And a tempering treatment which tempers at a temperature below the Ac 1 transformation point.
  • the steel pipe is further reheated to a temperature above the Ac 3 transformation point, preferably held for 5 minutes or more, and then subjected to quenching treatment for cooling to a cooling stop temperature of 100 ° C. or less.
  • a cooling stop temperature 100 ° C. or less.
  • cooling is performed by air cooling (cooling rate 0.05 ° C./s or more and 20 ° C./s or less) or water cooling (cooling rate 5 ° C./s or more and 100 ° C./s or less). It is not limited.
  • tempering treatment is applied to the steel pipe subjected to the quenching treatment.
  • the tempering treatment is a treatment in which the steel pipe is heated to a temperature below the Ac 1 transformation point, preferably held for 10 minutes or more, and air-cooled.
  • the tempering temperature becomes higher than the Ac 1 transformation point, a martensitic phase precipitates after tempering, and desired high toughness and excellent corrosion resistance can not be secured. Therefore, the tempering temperature is limited to the Ac 1 transformation point or less.
  • the above-mentioned Ac 3 transformation point (° C.) and Ac 1 transformation point (° C.) give a temperature history of heating and cooling to the test piece and detect the transformation point from minute displacement of expansion and contraction by the Fourmaster test It can be measured.
  • this billet After melting the molten steel of the component shown in Table 1 with a converter, it casts into a billet (steel pipe material) by a continuous casting method. Further, this billet was formed by hot working using a model seamless rolling mill and then cooled by air cooling or water cooling to obtain a seamless steel pipe having an outer diameter of 83.8 mm and a thickness of 12.7 mm.
  • test material was cut out from the obtained seamless steel pipe, and the test material was subjected to quenching and tempering treatment under the conditions shown in Table 2. After a test piece for observation of structure was collected from a test material subjected to quenching and tempering treatment and polished, the amount of retained austenite ( ⁇ ) was measured by X-ray diffraction method.
  • API arc-shaped tensile test specimens are collected from the test material subjected to quenching and tempering treatment, and a tensile test is performed according to the specification of API to determine tensile properties (yield stress YS, tensile stress TS).
  • yield stress YS yield stress YS
  • tensile stress TS tensile stress TS.
  • the In Table 2 for Ac 3 point (° C.) and Ac 1 point (° C.), test pieces of 4 mm ⁇ ⁇ 10 mm were collected from the test material subjected to quenching treatment and measured by Fourmaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C. at 0.25 ° C./s, held for 10 minutes, and then cooled to room temperature at 2 ° C./s. Ac 3 point (° C.) and Ac 1 point (° C.) were obtained by detecting the expansion and contraction of the test piece accompanying the temperature history
  • the SSC test was performed according to NACE TM0177 Method A.
  • the test environment is an aqueous solution prepared by adding Na acetate / acetic acid to a test environment 1: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 1 bar, CO 2 bal) to adjust pH to 3.5, and a test environment 2 : Using an aqueous solution adjusted to pH: 5.0 by adding 0.82 g / L acetic acid Na + acetic acid to 20 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 bar, CO 2 bal), soaking time 720 The test was carried out with 90% of the yield stress as the applied stress. The case where a crack did not generate
  • the martensitic stainless steel seamless steel pipe having excellent SSC resistance all of which have high strength of yield stress of 758 MPa or more and no generation of cracking even when stressed in an environment containing H 2 S according to the present invention. It has become.
  • the comparative example out of the range of the present invention although the desired high strength is obtained, the excellent SSC resistance can not be secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The purpose of the present invention is to provide: an oil well pipe martensitic stainless seamless steel pipe that has a yield stress of at least 758 MPa (110 ksi) and excellent sulfide stress cracking resistance; and a production method for the oil well pipe martensitic stainless seamless steel pipe. An oil well pipe martensitic stainless seamless steel pipe that: has a composition that contains, by mass, at least 0.010% of C, no more than 0.5% of Si, 0.05%–0.24% of Mn, no more than 0.030% of P, no more than 0.005% of S, 4.6%–8.0% of Ni, 10.0%–14.0% of Cr, 1.0%–2.7% of Mo, no more than 0.1% of Al, 0.005%–0.2% of V, no more than 0.1% of N, 0.06%–0.25% of Ti, 0.01%–1.0% of Cu, and 0.01%–1.0% of Co and that satisfies a prescribed relational expression for C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti, the remainder being Fe and unavoidable impurities; and has a yield stress of at least 758 MPa.

Description

油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
 本発明は、原油あるいは天然ガスの油井、ガス井(以下、単に油井と称する)に使用される油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法に係るものである。とくに、降伏応力YSが758MPa以上で、硫化水素(H2S)を含む環境における耐硫化物応力腐食割れ性(耐SSC性)に優れた油井管用継目無鋼管およびその製造方法に関する。 The present invention relates to a martensitic stainless steel seamless steel pipe for oil well used for oil wells and gas wells of crude oil or natural gas (hereinafter simply referred to as oil wells) and a method for producing the same. In particular, the present invention relates to a seamless steel pipe for oil well pipe excellent in sulfide stress corrosion cracking resistance (SSC resistance) in an environment containing hydrogen sulfide (H 2 S) with a yield stress YS of 758 MPa or more, and a manufacturing method thereof.
 近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来、省みられなかったような高深度の油田や、炭酸ガス、塩素イオンや硫化水素を含む厳しい腐食環境の油田やガス油田等の開発が盛んになっている。このような環境下で使用される油井管用鋼管には、高強度で、かつ優れた耐食性を兼ね備えた材質を有することが要求される。 In recent years, in view of soaring crude oil prices and the near-future depletion of petroleum resources, severe corrosive environments including deep-field oil fields, carbon dioxide gas, chloride ions and hydrogen sulfide that could not be seen before Development of fields such as oil fields and gas fields. A steel pipe for oil well pipes used under such an environment is required to have a material which has high strength and excellent corrosion resistance.
 従来、炭酸ガス、塩素イオン等を含む環境の油田、ガス田では、採掘に使用する油井管として13%Crマルテンサイト系ステンレス鋼管が多く使用されている。最近では、硫化水素を含む極めて厳しい腐食環境での油田等の開発が世界規模で行われているため、耐SSC性要求が高まりつつあり、Cを低減させ、NiやMoを増加させた成分系の改良型13%Crマルテンサイト系ステンレス鋼管の使用も拡大している。 Conventionally, in oil fields and gas fields in environments containing carbon dioxide gas, chloride ions and the like, 13% Cr martensitic stainless steel pipes are often used as oil well pipes used for mining. Recently, development of oil fields and the like in a very severe corrosive environment including hydrogen sulfide is carried out on a global scale, so the requirement for SSC resistance is increasing, a component system in which C is reduced and Ni and Mo are increased. The use of improved 13% Cr martensitic stainless steel tubes is also expanding.
 特許文献1では、0.015%以下の極低C量、および0.03%以上のTiを含有する成分系の13%Cr系マルテンサイト系ステンレス鋼管が記載されており、降伏応力95ksi級の高強度と、HRCで27未満という低硬さを兼備し、優れた耐SSC性を有するとしている。また、特許文献2では、Ti/Cが、引張応力から降伏応力を差し引いた値と相関関係を有するとの理由から6.0≦Ti/C≦10.1を満たすマルテンサイト系ステンレス鋼が記載されている。記載された技術によって、引張応力から降伏応力を引いた値が20.7MPa以上であり、かつ、耐SSC性を低下させる硬度のばらつきを抑えることができるとしている。 Patent Document 1 describes a component system 13% Cr-based martensitic stainless steel pipe containing a very low C amount of 0.015% or less and Ti of 0.03% or more, and has a high strength of yield stress 95 ksi class, It has low hardness of less than 27 in HRC, and has excellent SSC resistance. Patent Document 2 describes a martensitic stainless steel satisfying 6.0 ≦ Ti / C ≦ 10.1 because Ti / C has a correlation with a value obtained by subtracting a yield stress from a tensile stress. According to the described technology, the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more, and it is possible to suppress the variation in hardness which lowers the SSC resistance.
 また、特許文献3では、鋼中のMo量をMo≧2.3-0.89Si+32.2Cで規定し、かつ、金属組織を、主として焼戻しマルテンサイト、焼き戻し時に析出した炭化物および焼き戻し時に微細析出したラーベス相やδ相等の金属間化合物から構成されるマルテンサイト系ステンレス鋼が記載されている。記載された技術により、前記鋼の0.2%耐力が860MPa以上の高強度となり、優れた耐炭酸ガス腐食性および耐硫化物応力腐食割れ性を有することができるとされている。 Further, in Patent Document 3, the amount of Mo in the steel is defined as Mo0.82.3−0.89 Si + 32.2 C, and the metal structure is mainly tempered martensite, carbide precipitated during tempering, and Laves precipitated finely during tempering. A martensitic stainless steel composed of intermetallic compounds such as phase and δ phase is described. According to the described technology, it is said that the 0.2% proof stress of the steel becomes high strength of 860 MPa or more, and can have excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.
特開2010-242163号公報JP, 2010-242163, A 国際公開2008/023702号International Publication 2008/023702 国際公開2004/057050号International Publication 2004/057050
 近年の油田やガス田は、CO2、Cl、H2Sを含む厳しい腐食環境で開発されている。更に、油田やガス田の経年変化によるH2S濃度の増加が懸念されており、使用される油井用鋼管には、優れた耐硫化物応力腐食割れ性(耐SSC性)が要求されるようになっている。 In recent years, oil fields and gas fields have been developed in harsh corrosive environments including CO 2 , Cl and H 2 S. Furthermore, there is a concern that the H 2 S concentration will increase due to aging of oil fields and gas fields, and it is required that the steel pipe for oil wells used has excellent resistance to sulfide stress corrosion cracking (SSC resistance). It has become.
 特許文献1では、5%NaCl水溶液(H2S:0.10bar)をpH:3.5に調整した雰囲気下において、655MPaの応力を負荷するという条件で耐硫化物応力割れ性が保持できるとされている。特許文献2では、20%NaCl水溶液(H2S:0.03bar、CO2bal.)をpH:4.5に調整した雰囲気下で、また、特許文献3では、25%NaCl水溶液(H2S:0.03bar、CO2bal)をpH:4.0に調整した雰囲気下において、鋼が耐硫化物応力割れ性を有するとされている。しかしながら、上記以外の雰囲気下での耐硫化物応力腐食割れ性は検討されておらず、昨今のより厳しい腐食環境に耐え得る、耐硫化物応力腐食割れ性を具備するとは言い難い。 Patent Document 1 states that resistance to sulfide stress cracking can be maintained under a condition of applying a stress of 655 MPa in an atmosphere adjusted to a pH of 3.5 with a 5% NaCl aqueous solution (H 2 S: 0.10 bar). . In Patent Document 2, 25% NaCl aqueous solution (H 2 S: 0.03) is used in the atmosphere in which 20% NaCl aqueous solution (H 2 S: 0.03 bar, CO 2 bal.) Is adjusted to pH: 4.5. The steel is considered to have resistance to sulfide stress cracking under an atmosphere adjusted to pH: 4.0 bar, CO 2 bal). However, sulfide stress corrosion cracking resistance under an atmosphere other than the above has not been studied, and it can not be said to have sulfide stress corrosion cracking resistance that can withstand the current severe corrosion environment.
 本発明は、758MPa(110ksi)以上の降伏応力を有し、かつ、優れた耐硫化物応力腐食割れ性を有する油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a martensitic stainless steel seamless steel pipe for oil well pipes having a yield stress of 758 MPa (110 ksi) or more and having excellent sulfide stress corrosion cracking resistance and a method for producing the same. .
 なお、ここでいう「優れた耐硫化物応力腐食割れ性」とは、試験液:0.165質量%NaCl水溶液(液温:25℃、H2S:1bar、CO2bal)に、酢酸Na+塩酸を加えてpH:3.5に調整した水溶液中、かつ試験液:20質量%NaCl水溶液(液温:25℃、H2S:0.1bar、CO2bal)に、0.82g/L酢酸Na+酢酸を加えてpH:5.0に調整した水溶液中に、試験片を浸漬させ、浸漬時間を720時間として、降伏応力の90%を負荷応力として付加して試験を行い、試験後の試験片に割れが発生しない場合をいうものとする。 As used herein, “excellent resistance to sulfide stress corrosion cracking” refers to a test solution: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 1 bar, CO 2 bal), Na acetate acetic acid + hydrochloric acid Add 0.82 g / L acetic acid Na + acetic acid to an aqueous solution adjusted to pH: 3.5 and to a test solution: 20 mass% aqueous NaCl solution (liquid temperature: 25 ° C, H 2 S: 0.1 bar, CO 2 bal) The test piece is immersed in an aqueous solution adjusted to pH 5.0, the immersion time is 720 hours, 90% of the yield stress is applied as a load stress, and the test is conducted, and no crack occurs in the test piece after the test. Shall be said.
 本発明者らは、上記した目的を達成するために、13%Cr系ステンレス鋼管を基本組成として、CO2、Cl、更にH2Sを含む腐食環境下における耐硫化物応力腐食割れ性(耐SSC性)に及ぼす各種合金元素の影響について鋭意検討した。その結果、各成分を所定の範囲で含有し、かつ、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Tiを適正な関係式及び範囲を満足するように調整して含有する組成で、適正な焼入れ処理および焼戻処理を施すことにより、所望の強度を有しかつCO2、Cl、更にH2Sを含む腐食雰囲気下で、かつ降伏応力近傍の応力が負荷される環境下において、優れた耐SSC性を有する油井管用マルテンサイト系ステンレス継目無鋼管とすることができると見出した。 In order to achieve the above-mentioned purpose, the present inventors have resistance to sulfide stress corrosion cracking in a corrosive environment containing 13% Cr-based stainless steel pipe as a basic composition, CO 2 , Cl and H 2 S. The effects of various alloying elements on SSC resistance) were studied intensively. As a result, each component is contained in a predetermined range, and C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti are adjusted and contained so as to satisfy an appropriate relational expression and range. And the appropriate hardening and tempering treatment, the stress near the yield stress is applied under the corrosive atmosphere having the desired strength and containing CO 2 , Cl , and H 2 S. It has been found that the martensitic stainless steel seamless steel pipe for oil well pipes having excellent SSC resistance can be obtained under
 本発明は、上記した知見に基づき、更に検討を加えて完成させたものである。すなわち、本発明の要旨は次のとおりである。
[1]質量%で、
  C:0.010%以上、
  Si:0.5%以下、
  Mn:0.05~0.24%、
  P:0.030%以下、
  S:0.005%以下、
  Ni:4.6~8.0%、
  Cr:10.0~14.0%、
  Mo:1.0~2.7%、
  Al:0.1%以下、
  V:0.005~0.2%、
  N:0.1%以下、
  Ti:0.06~0.25%、
  Cu:0.01~1.0%、
  Co:0.01~1.0%
を含有し、かつ下記(1)、(2)および(3)の値が下記(4)のすべての式を満足し、残部Feおよび不可避的不純物からなる758MPa以上の降伏応力を有する油井管用マルテンサイト系ステンレス継目無鋼管。
The present invention has been completed based on the above-mentioned findings, with further studies. That is, the gist of the present invention is as follows.
[1] mass%,
C: 0.010% or more,
Si: 0.5% or less,
Mn: 0.05 to 0.24%,
P: 0.030% or less,
S: 0.005% or less,
Ni: 4.6 to 8.0%,
Cr: 10.0 to 14.0%,
Mo: 1.0 to 2.7%,
Al: 0.1% or less,
V: 0.005 to 0.2%,
N: 0.1% or less
Ti: 0.06 to 0.25%,
Cu: 0.01 to 1.0%,
Co: 0.01 to 1.0%
For oil well tubes having a yield stress of 758 MPa or more and containing all the contents of the following (1), (2) and (3) and satisfying the following formula (4): Site-based stainless steel seamless steel pipe.
                 記
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb
+196.775N-2.621Ti-120.307 ・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83              ・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W
-0.473N-0.5Ti-0.514  ・・・(3)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.100    ・・・(4)
[2]前記組成に加えてさらに、質量%で
  Nb:0.1%以下、
  W:1.0%以下
のうちから選ばれた1種または2種を含有する組成とする[1]に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
[3]前記組成に加えてさらに、質量%で、
  Ca:0.010%以下、
  REM:0.010%以下、
  Mg:0.010%以下、
  B:0.010%以下
のうちから選ばれた1種または2種以上を含有する組成とする[1]または[2]に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
[4][1]~[3]のいずれかに記載の組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。
-109.37C + 7.307Mn + 6.399Cr + 6.329Cu + 1.343Ni-13.529Mo + 1.276W + 2.925Nb
+ 196.775N-2.621Ti-120.307 ・ ・ ・ (1)
-0.0278 Mn + 0.0892 Cr + 0.00567 Ni + 0.153 Mo-0.0219 W-1.984 N + 0.208 Ti-1.83 (2)
-1.324C + 0.0533Mn + 0.0268Cr + 0.0893Cu + 0.00526Ni + 0.0222Mo-0.0132W
-0.473 N-0.5 Ti-0.514 (3)
Here, C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, Ti: content of each element (mass%) (however, elements not contained are 0 (zero)%).
−35.0 ≦ value (1) ≦ 45.0 and −0.600 ≦ value (2) ≦ −0.250 and −0.400 ≦ value (3) ≦ 0.100 (4)
[2] In addition to the above composition, Nb: not more than 0.1% in mass%,
W: The martensitic stainless steel seamless steel pipe for oil well tubes according to [1], which has a composition containing one or two or more selected from 1.0% or less.
[3] In addition to the above composition, in mass%,
Ca: 0.010% or less,
REM: 0.010% or less,
Mg: 0.010% or less,
B: A martensitic stainless steel seamless steel pipe for oil well tubes according to [1] or [2], which has a composition containing one or more selected from 0.010% or less.
[4] After forming a steel pipe material having the composition described in any one of [1] to [3] to form a steel pipe, the steel pipe is heated to a temperature above the Ac 3 transformation point and then cooling is stopped at 100 ° C. or less A method for producing a martensitic stainless steel seamless steel pipe for oil well pipe, which is subjected to a quenching treatment for cooling to a temperature and a tempering treatment for tempering at a temperature below the Ac 1 transformation point.
 本発明によれば、CO2、Cl、更にH2Sを含む腐食環境下において、優れた耐硫化物応力腐食割れ性(耐SSC性)を有し、かつ降伏応力YS:758MPa(110ksi)以上の高強度を有する油井管用マルテンサイト系ステンレス継目無鋼管を得ることができる。 According to the present invention, it has excellent sulfide stress corrosion cracking resistance (SSC resistance) in a corrosive environment containing CO 2 , Cl and further H 2 S, and yield stress YS: 758 MPa (110 ksi) The martensitic stainless steel seamless steel pipe for oil well pipes which has the above high strength can be obtained.
 まず、本発明の鋼管の組成限定理由について説明する。以下、とくに断らない限り、質量%は単に%と記す。 First, the composition limitation reason of the steel pipe of the present invention will be described. Hereinafter, mass% is simply described as% unless otherwise specified.
 C:0.010%以上
 Cはマルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、強度向上に有効である。本発明では、所望の強度を確保するために、Cは0.010%以上に限定した。一方、過剰に含有することで硬度が高くなり、硫化物応力腐食割れ感受性が増大する。このため、0.040%以下含有することが望ましい。よって、好ましくは0.010~0.040%である。
C: 0.010% or more C is an important element related to the strength of martensitic stainless steel, and is effective for improving the strength. In the present invention, C is limited to 0.010% or more in order to secure a desired strength. On the other hand, by containing excessively, hardness will become high and sulfide stress corrosion cracking sensitivity will increase. For this reason, it is desirable to contain 0.040% or less. Therefore, it is preferably 0.010% to 0.040%.
 Si:0.5%以下
 Siは、脱酸剤として作用するため、0.05%以上含有することが望ましい。一方で、0.5%を超える含有は、耐炭酸ガス腐食性および熱間加工性を低下させる。このため、Siは0.5%以下に限定した。好ましくは、安定した強度確保の観点から0.10~0.30%である。
Si: 0.5% or less Since Si acts as a deoxidizer, it is desirable to contain 0.05% or more. On the other hand, the content exceeding 0.5% reduces carbon dioxide corrosion resistance and hot workability. For this reason, Si was limited to 0.5% or less. Preferably, it is 0.10 to 0.30% from the viewpoint of securing stable strength.
 Mn:0.05~0.24%
 Mnは、熱間加工性および強度を向上させる元素であり、必要な強度を確保するためには0.05%以上含有することが望ましい。一方、0.24%を超える含有では、介在物としてMnSが多量に生成し、孔食の起点となることで耐硫化物応力腐食割れ性を悪化させる。よって、Mnは0.05~0.24%に限定した。
Mn: 0.05 to 0.24%
Mn is an element that improves the hot workability and strength, and in order to secure the required strength, it is desirable to contain 0.05% or more. On the other hand, if the content exceeds 0.24%, a large amount of MnS is generated as inclusions, and it becomes a starting point of pitting corrosion, thereby deteriorating the resistance to sulfide stress corrosion cracking. Therefore, Mn is limited to 0.05 to 0.24%.
 P:0.030%以下
 Pは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性をともに低下させる元素であり、本発明ではできるだけ低減させることが望ましい。しかしながら、極端な低減は製造コストを高騰させる。よって、特性の極端な低下を招かない範囲で、かつ工業的に安価に実施可能な範囲として、Pは0.030%以下に限定した。なお、好ましくは0.015%以下である。
P: 0.030% or less P is an element that reduces both carbon dioxide gas corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and in the present invention, it is desirable to reduce as much as possible. However, extreme reductions increase manufacturing costs. Therefore, P was limited to 0.030% or less as an industrially inexpensively practicable range within a range that does not cause an extreme decrease in the characteristics. In addition, Preferably it is 0.015% or less.
 S:0.005%以下
 Sは、熱間加工性を著しく低下させる元素であるため、できるだけ低減させることが望ましい。0.005%以下に低減することで、通常工程でのパイプ製造が可能となるため、本発明におけるSは0.005%以下に限定した。なお、好ましくは0.002%以下である。
S: 0.005% or less Since S is an element that significantly reduces the hot workability, it is desirable to reduce it as much as possible. By reducing the amount to 0.005% or less, it is possible to manufacture a pipe in a normal process, so S in the present invention is limited to 0.005% or less. In addition, Preferably it is 0.002% or less.
 Ni:4.6~8.0%
 Niは、保護被膜を強固にして耐食性を向上させ、更に固溶することで鋼の強度を増加させる元素である。このような効果を得るためには、4.6%以上の含有を必要とする。一方、含有量が8.0%を超えると、マルテンサイト相の安定性が低下して、強度が低下する。よって、Niは4.6~8.0%に限定した。
Ni: 4.6 to 8.0%
Ni is an element which strengthens the protective film to improve the corrosion resistance and further increases the strength of the steel by solid solution. In order to obtain such an effect, the content needs to be 4.6% or more. On the other hand, when the content exceeds 8.0%, the stability of the martensitic phase decreases and the strength decreases. Therefore, Ni was limited to 4.6 to 8.0%.
 Cr:10.0~14.0%
 Crは、保護被膜を形成して耐食性を向上させる元素であり、10.0%以上の含有で油井管用として必要な耐食性を確保できる。一方、含有量が14.0%を超えるとフェライトの生成が容易となるため、マルテンサイト相の安定確保ができなくなる。よって、Crは10.0~14.0%に限定した。なお、好ましくは11.0~13.5%である。
Cr: 10.0 to 14.0%
Cr is an element which forms a protective film and improves corrosion resistance, and by containing 10.0% or more, the corrosion resistance necessary for oil well pipes can be secured. On the other hand, if the content exceeds 14.0%, the formation of ferrite becomes easy, so that the martensite phase can not be stably ensured. Therefore, Cr is limited to 10.0 to 14.0%. Preferably, it is 11.0 to 13.5%.
 Mo:1.0~2.7%
 Moは、Clによる孔食に対する抵抗性を向上させる元素であり、厳しい腐食環境に必要な耐食性を得るためには、1.0%以上の含有が必要である。一方、Moは高価な元素であるため、2.7%を超える含有は製造コストの高騰を招く。よって、Moは1.0~2.7%に限定した。なお、好ましくは1.5~2.5%である。
Mo: 1.0 to 2.7%
Mo is an element that improves the resistance to pitting corrosion by Cl , and needs to be 1.0% or more in order to obtain the corrosion resistance necessary for a severe corrosive environment. On the other hand, since Mo is an expensive element, the content exceeding 2.7% causes a rise in manufacturing cost. Therefore, Mo was limited to 1.0 to 2.7%. Preferably, it is 1.5 to 2.5%.
 Al:0.1%以下
 Alは、脱酸剤として作用するため、このような効果を得るためには、0.01%以上の含有が必要である。しかしながら、0.1%を超える含有は、靱性に悪影響を及ぼすため、本発明におけるAlは0.1%以下に限定した。なお、好ましくは0.01~0.03%である。
Al: 0.1% or less Since Al acts as a deoxidizer, in order to obtain such an effect, it is necessary to contain 0.01% or more. However, since the content exceeding 0.1% adversely affects the toughness, Al in the present invention is limited to 0.1% or less. Preferably, it is 0.01 to 0.03%.
 V:0.005~0.2%
 Vは、析出強化によって鋼の強度を向上させ、更に耐硫化物応力腐食割れ性も向上させるため、0.005%以上の含有が必要である。一方、0.2%を超える含有は、靱性が低下するため、本発明におけるVは0.005~0.2%に限定した。
V: 0.005 to 0.2%
V is required to be contained at 0.005% or more in order to improve the strength of the steel by precipitation strengthening and further improve the resistance to sulfide stress corrosion cracking. On the other hand, the V content in the present invention is limited to 0.005 to 0.2%, since the toughness is lowered when the content exceeds 0.2%.
 N:0.1%以下
 Nは、耐孔食性を向上させると共に、鋼中に固溶し強度を増加させる作用を有する。しかしながら、含有量0.1%を超えると、種々の窒化物系介在物が多く生成し、耐孔食性が低下する。よって、本発明におけるNは0.1%以下に限定した。なお、好ましくは0.010%以下である。
N: 0.1% or less N improves the pitting resistance and has an effect of dissolving in steel and increasing the strength. However, if the content is more than 0.1%, many various nitride-based inclusions are generated, and the pitting resistance is lowered. Therefore, N in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.010% or less.
 Ti:0.06~0.25%
 Tiは、0.06%以上含有することで、炭化物を形成し、固溶炭素を減少させて硬度を低減できる。一方、0.25%を超える含有では、介在物としてTiNが生成することで孔食の起点となり、耐硫化物応力腐食割れ性が悪化する。よって、Tiは0.06~0.25%に限定した。なお、好ましくは0.08~0.15%である。
Ti: 0.06 to 0.25%
By containing 0.06% or more, Ti can form carbides, reduce solid solution carbon, and reduce hardness. On the other hand, if the content exceeds 0.25%, TiN is generated as inclusions to be a starting point of pitting corrosion, and the sulfide stress corrosion cracking resistance is deteriorated. Therefore, Ti was limited to 0.06 to 0.25%. Preferably, the content is 0.08 to 0.15%.
 Cu:0.01~1.0%
 Cuは、保護被膜を強固にして耐硫化物応力腐食割れ性を向上させるため、0.01%以上含有する。しかしながら、1.0%を超える含有は、CuSが析出して熱間加工性を低下させる。よって、Cuは0.01~1.0%に限定した。
Cu: 0.01 to 1.0%
Cu is contained 0.01% or more in order to strengthen a protective film and to improve sulfide stress corrosion cracking resistance. However, if the content exceeds 1.0%, CuS precipitates to reduce the hot workability. Therefore, Cu was limited to 0.01 to 1.0%.
 Co:0.01~1.0%
 Coは、Ms点を上昇させα変態を促進することで、硬さを低減すると共に、耐孔食性を向上させる元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、過剰な含有は靱性を低下させる場合があり、更に材料コストを高騰させる。よって、本発明におけるCoは0.01~1.0%に限定した。より好ましくは0.03~0.6%である。
Co: 0.01 to 1.0%
Co is an element that reduces the hardness and improves the pitting resistance by raising the Ms point and promoting the α transformation. In order to acquire such an effect, 0.01% or more needs to be contained. On the other hand, excessive content may lower the toughness and further increase the material cost. Therefore, Co in the present invention is limited to 0.01 to 1.0%. More preferably, it is 0.03 to 0.6%.
 本発明では更に、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Tiについて、下記の値(1)、値(2)および値(3)を下記の(4)式を満足するように各元素を含有する。値(1)は残留γ量に相関する式であり、値(1)の値を小さくすることで、残留オーステナイトが低減し、硬度が低下して、耐硫化物応力腐食割れ性が向上する。また、値(2)は再不動態化電位に相関する式であり、値(1)を(4)式の範囲を満足するように、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Tiを含有させつつ、値(2)も(4)式の範囲を満足するように、Mn、Cr、Ni、Mo、W、N、Tiを含有することで、不動態皮膜の再生が容易になり、再不動態化が向上する。更に、値(3)は孔食電位に相関する式であり、値(1)を(4)式の範囲を満足するように、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Tiを含有させつつ、値(3)を(4)式の範囲を満足するように、C、Mn、Cr、Cu、Ni、Mo、W、N、Tiを含有することで、硫化物応力腐食割れの起点となる孔食の発生を抑制し、耐硫化物応力腐食割れ性が顕著に向上する。尚、値(1)が(4)式の範囲を満足する場合、値(1)は10以上で硬度の上昇を招くが、値(2)または値(3)が(4)式の範囲を満足することで、不動態皮膜の再生および孔食発生の抑制が顕著に現れ、耐硫化物応力腐食割れ性が向上する。
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb
+196.775N-2.621Ti-120.307 ・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83              ・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W
-0.473N-0.5Ti-0.514  ・・・(3)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.100    ・・・(4)
 更に、必要に応じて選択元素として、Nb:0.1%以下、W:1.0%以下のうちから選ばれた1種または2種を含有することができる。
In the present invention, further, for C, Mn, Cr, Cu, Ni, Mo, W, Nb, N and Ti, the following value (1), value (2) and value (3) Each element is contained to be satisfied. The value (1) is an equation correlating to the amount of residual γ, and by reducing the value of the value (1), retained austenite is reduced, the hardness is reduced, and the sulfide stress corrosion cracking resistance is improved. Further, the value (2) is an equation correlating to the re-passivation potential, and C, Mn, Cr, Cu, Ni, Mo, W, Nb so that the value (1) satisfies the range of the equation (4). , Mn, Cr, Ni, Mo, W, N, Ti so that the value (2) also satisfies the range of the expression (4) while containing N, Ti, and the regeneration of the passive film Is easier and repassivation is improved. Further, the value (3) is an equation correlating to the pitting potential, and C, Mn, Cr, Cu, Ni, Mo, W, Nb, and so that the value (1) satisfies the range of the equation (4). Sulfide by containing C, Mn, Cr, Cu, Ni, Mo, W, N, Ti so that the value (3) satisfies the range of the equation (4) while containing N, Ti The occurrence of pitting corrosion, which is the starting point of stress corrosion cracking, is suppressed, and sulfide stress corrosion cracking resistance is significantly improved. When the value (1) satisfies the range of the equation (4), the hardness of the value (1) is 10 or more, but the increase of the hardness is caused, but the range of the value (2) or the value (3) When satisfied, the regeneration of the passive film and the suppression of the occurrence of pitting appear remarkably, and the resistance to sulfide stress corrosion cracking is improved.
-109.37C + 7.307Mn + 6. 399Cr + 6. 329Cu + 1 .343Ni-13. 529Mo + 1. 276W + 2.925Nb
+ 196.775N-2.621Ti-120.307 ・ ・ ・ (1)
-0.0278 Mn + 0.0892 Cr + 0.00567 Ni + 0.153 Mo-0.0219 W-1.984 N + 0.208 Ti-1.83 (2)
-1.324C + 0.0533Mn + 0.0268Cr + 0.0893Cu + 0.00526Ni + 0.0222Mo-0.0132W
-0.473 N-0.5 Ti-0.514 (3)
Here, C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, Ti: content of each element (mass%) (however, elements not contained are 0 (zero)%).
−35.0 ≦ value (1) ≦ 45.0 and −0.600 ≦ value (2) ≦ −0.250 and −0.400 ≦ value (3) ≦ 0.100 (4)
Furthermore, if necessary, one or two selected from Nb: 0.1% or less and W: 1.0% or less can be contained as a selection element.
 Nbは、炭化物を形成することで、固溶炭素を減少させて、硬度を低減できる。一方、過剰な含有は、靱性を低下させる場合がある。Wは、耐孔食性を向上させる元素であるが、過剰な含有は靱性を低下させる場合があり、更に材料コストを高騰させる。よって、含有する場合には、Nb:0.1%以下、W:1.0%以下に限定した。 Nb can reduce solid solution carbon and reduce hardness by forming carbides. On the other hand, excessive content may lower toughness. W is an element improving the pitting resistance, but an excessive content may lower the toughness and further increase the material cost. Therefore, in the case of containing Nb: 0.1% or less, W: 1.0% or less.
 さらにまた、必要に応じて選択元素として、
  Ca:0.010%以下、
  REM:0.010%以下、
  Mg:0.010%以下、
  B:0.010%以下
のうちから選ばれた1種または2種以上を含有することができる。
Furthermore, as a selective element as needed,
Ca: 0.010% or less,
REM: 0.010% or less,
Mg: 0.010% or less,
B: One or more selected from 0.010% or less can be contained.
 Ca、REM、Mg、Bは、いずれも介在物の形態制御を介し、耐食性を向上させる元素である。このような効果を得るためには、
  Ca:0.0005%以上、
  REM:0.0005%以上、
  Mg:0.0005%以上、
  B:0.0005%以上
含有することが望ましい。一方、
  Ca:0.010%、
  REM:0.010%、
  Mg:0.010%、
  B:0.010%
を超えて含有すると、靱性および耐炭酸ガス腐食性を低下させる。よって、含有する場合には、
  Ca:0.010%以下、
  REM:0.010%以下、
  Mg:0.010%以下、
  B:0.010%以下に限定した。
Ca, REM, Mg and B are all elements which improve corrosion resistance through shape control of inclusions. To get this effect,
Ca: 0.0005% or more,
REM: 0.0005% or more,
Mg: 0.0005% or more,
B: It is desirable to contain 0.0005% or more. on the other hand,
Ca: 0.010%,
REM: 0.010%,
Mg: 0.010%,
B: 0.010%
If the content is more than the above, the toughness and the carbon dioxide corrosion resistance decrease. Therefore, when it contains,
Ca: 0.010% or less,
REM: 0.010% or less,
Mg: 0.010% or less,
B: Limited to 0.010% or less.
 上記した成分組成以外の残部は、Feおよび不可避的不純物からなる。 The balance other than the above-mentioned component composition consists of Fe and unavoidable impurities.
 つぎに、本発明の油井管用ステンレス継目無鋼管の好ましい製造方法について説明する。 Below, the preferable manufacturing method of the stainless steel seamless steel pipe for oil well pipes of this invention is demonstrated.
 本発明では、上記の組成を有する鋼管素材を用いるが、鋼管素材であるステンレス継目無鋼管の製造方法は特に限定する必要はなく、公知の継目無管の製造方法がいずれも適用できる。 In the present invention, a steel pipe material having the above composition is used, but the method of manufacturing a stainless steel seamless steel pipe, which is a steel pipe material, is not particularly limited, and any known method of manufacturing a seamless pipe can be applied.
 上記組成の溶鋼を、転炉等の溶製方法で溶製し、連続鋳造法、造塊-分塊圧延法等の方法でビレット等の鋼管素材とすることが好ましい。続いて、これらの鋼管素材を加熱し、公知の造管方法である、マンネスマン-プラグミル方式、またはマンネスマン-マンドレルミル方式の造管工程にて、熱間加工および造管し、上記組成を有する継目無鋼管とする。 It is preferable that the molten steel of the above composition is melted by a melting method such as a converter and made into a steel pipe material such as billet by a method such as continuous casting or ingot-slab rolling. Subsequently, these steel tube materials are heated, hot worked and piped in a pipe forming process of Mannesman-plug mill method or Mannesman-mandrel mill method which is a known pipe forming method, and a joint having the above composition No steel pipe.
 このように鋼管素材を造管し鋼管としたのちの処理も、特に限定されないが、好ましくは、鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す。 The treatment after forming the steel pipe material into the steel pipe is not particularly limited, but preferably, the steel pipe is heated to a temperature above the Ac 3 transformation point and then quenched to a cooling stop temperature of 100 ° C. or less And a tempering treatment which tempers at a temperature below the Ac 1 transformation point.
 焼入れ処理
本発明では、更に鋼管をAc3変態点以上の温度に再加熱し、好ましくは5min以上保持し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理を施す。これによって、マルテンサイト相の微細化と高靱化が得られる。焼入れ加熱温度がAc3変態点未満では、組織がオーステナイト単相域とならないため、その後の冷却で十分なマルテンサイト組織が得られず、所望の高強度を達成できない。よって、焼入れ加熱温度はAc3変態点以上に限定する。なお、冷却方法は限定しないが、一般に空冷(冷却速度0.05℃/s以上20℃/s以下)または水冷(冷却速度5℃/s以上100℃/s以下)により冷却し、冷却速度の条件も限定されない。
Quenching Treatment In the present invention, the steel pipe is further reheated to a temperature above the Ac 3 transformation point, preferably held for 5 minutes or more, and then subjected to quenching treatment for cooling to a cooling stop temperature of 100 ° C. or less. This makes it possible to obtain a finer and toughened martensite phase. If the quenching heating temperature is less than the Ac 3 transformation point, the structure does not become an austenite single phase region, and a sufficient martensitic structure can not be obtained by subsequent cooling, and a desired high strength can not be achieved. Therefore, the quenching heating temperature is limited to the Ac 3 transformation point or more. In addition, although the cooling method is not limited, in general, cooling is performed by air cooling (cooling rate 0.05 ° C./s or more and 20 ° C./s or less) or water cooling (cooling rate 5 ° C./s or more and 100 ° C./s or less). It is not limited.
 焼戻処理
 続いて、焼入れ処理を施した鋼管に、焼戻処理を施す。焼戻処理は、鋼管をAc1変態点以下に加熱し、好ましくは10min以上保持し、空冷する処理である。焼戻温度がAc1変態点より高温になると、焼戻後にマルテンサイト相が析出し、所望の高靱性および優れた耐食性を確保できない。よって、焼戻温度はAc1変態点以下に限定する。なお、上記のAc3変態点(℃)、Ac1変態点(℃)については、試験片に加熱および冷却の温度履歴を与え、膨張および収縮の微小変位から変態点を検出するフォーマスター試験により測定することができる。
Tempering treatment Subsequently, tempering treatment is applied to the steel pipe subjected to the quenching treatment. The tempering treatment is a treatment in which the steel pipe is heated to a temperature below the Ac 1 transformation point, preferably held for 10 minutes or more, and air-cooled. When the tempering temperature becomes higher than the Ac 1 transformation point, a martensitic phase precipitates after tempering, and desired high toughness and excellent corrosion resistance can not be secured. Therefore, the tempering temperature is limited to the Ac 1 transformation point or less. The above-mentioned Ac 3 transformation point (° C.) and Ac 1 transformation point (° C.) give a temperature history of heating and cooling to the test piece and detect the transformation point from minute displacement of expansion and contraction by the Fourmaster test It can be measured.
 以下、実施例に基づき、さらに本発明について説明する。 Hereinafter, the present invention will be further described based on examples.
 表1に示す成分の溶鋼を転炉にて溶製した後、連続鋳造法でビレット(鋼管素材)に鋳造する。更にこのビレットをモデルシームレス圧延機を用いる熱間加工で造管した後空冷または水冷による冷却を行い外径83.8mm×肉厚12.7mmの継目無鋼管とした。 After melting the molten steel of the component shown in Table 1 with a converter, it casts into a billet (steel pipe material) by a continuous casting method. Further, this billet was formed by hot working using a model seamless rolling mill and then cooled by air cooling or water cooling to obtain a seamless steel pipe having an outer diameter of 83.8 mm and a thickness of 12.7 mm.
 得られた継目無鋼管から試験材を切り出し、この試験材に表2に示す条件で焼入及び焼戻処理を施した。焼入及び焼戻処理を施した試験材から、組織観察用試験片を採取し、研磨した後、残留オーステナイト(γ)量をX線回折法にて測定した。 A test material was cut out from the obtained seamless steel pipe, and the test material was subjected to quenching and tempering treatment under the conditions shown in Table 2. After a test piece for observation of structure was collected from a test material subjected to quenching and tempering treatment and polished, the amount of retained austenite (γ) was measured by X-ray diffraction method.
 具体的には、γの(220)面、αの(211)面の回折X線積分強度を測定し、次式
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度
    Rα:αの結晶学的理論計算値
    Iγ:γの積分強度
    Rγ:γの結晶学的理論計算値
を用いて換算した。
Specifically, the diffracted X-ray integral intensity of the (220) plane of γ and the (211) plane of α is measured, and the following equation γ (volume ratio) = 100 / (1+ (I α R γ / I γ R) α ))
Here, the integral strength of Iα: α Rα: crystallographic theoretical calculation value of α: integrated strength of Iγ: γ Rγ: the crystallographic theoretical calculation value of γ was used for conversion.
 また、焼入及び焼戻処理を施した試験材から、API弧状引張試験片を採取し、APIの規定に準拠して引張試験を実施し、引張特性(降伏応力YS、引張応力TS)を求めた。表2中、Ac3点(℃)、Ac1点(℃)については、焼入処理を施した試験材から、4mmφ×10mmの試験片を採取し、フォーマスター試験により測定した。具体的には、試験片を5℃/sで500℃まで加熱し、更に0.25℃/sで920℃まで昇温させて10分間保持した後、2℃/sで室温まで冷却した。この温度履歴に伴う試験片の膨張・収縮を検出することでAc3点(℃)、Ac1点(℃)を得た。 In addition, API arc-shaped tensile test specimens are collected from the test material subjected to quenching and tempering treatment, and a tensile test is performed according to the specification of API to determine tensile properties (yield stress YS, tensile stress TS). The In Table 2, for Ac 3 point (° C.) and Ac 1 point (° C.), test pieces of 4 mmφ × 10 mm were collected from the test material subjected to quenching treatment and measured by Fourmaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C. at 0.25 ° C./s, held for 10 minutes, and then cooled to room temperature at 2 ° C./s. Ac 3 point (° C.) and Ac 1 point (° C.) were obtained by detecting the expansion and contraction of the test piece accompanying the temperature history.
 SSC試験は、NACE TM0177 Method Aに準拠して実施した。試験環境は、試験環境1:0.165質量%NaCl水溶液(液温:25℃、H2S:1bar、CO2bal)に、酢酸Na+酢酸を加えてpH:3.5に調整した水溶液、かつ試験環境2:20質量%NaCl水溶液(液温:25℃、H2S:0.1bar、CO2bal)に、0.82g/L酢酸Na+酢酸を加えてpH:5.0に調整した水溶液を用い、浸漬時間を720時間として、降伏応力の90%を負荷応力として試験を実施した。試験後の試験片に割れが発生しない場合を合格とし、割れが発生した場合を不合格とした。 The SSC test was performed according to NACE TM0177 Method A. The test environment is an aqueous solution prepared by adding Na acetate / acetic acid to a test environment 1: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 1 bar, CO 2 bal) to adjust pH to 3.5, and a test environment 2 : Using an aqueous solution adjusted to pH: 5.0 by adding 0.82 g / L acetic acid Na + acetic acid to 20 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 bar, CO 2 bal), soaking time 720 The test was carried out with 90% of the yield stress as the applied stress. The case where a crack did not generate | occur | produce in the test piece after a test was set as pass, and the case where a crack generate | occur | produced was made into rejection.
 得られた結果を表2に示す。 The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、降伏応力758MPa以上の高強度でありH2Sを含む環境下で応力が負荷されても割れの発生が無い、優れた耐SSC性を有するマルテンサイト系ステンレス継目無鋼管となっている。一方、本発明の範囲を外れる比較例では、所望の高強度は得られているものの、優れた耐SSC性を確保できていない。 The martensitic stainless steel seamless steel pipe having excellent SSC resistance, all of which have high strength of yield stress of 758 MPa or more and no generation of cracking even when stressed in an environment containing H 2 S according to the present invention. It has become. On the other hand, in the comparative example out of the range of the present invention, although the desired high strength is obtained, the excellent SSC resistance can not be secured.

Claims (4)

  1.  質量%で、
      C:0.010%以上、
      Si:0.5%以下、
      Mn:0.05~0.24%、
      P:0.030%以下、
      S:0.005%以下、
      Ni:4.6~8.0%、
      Cr:10.0~14.0%、
      Mo:1.0~2.7%、
      Al:0.1%以下、
      V:0.005~0.2%、
      N:0.1%以下、
      Ti:0.06~0.25%、
      Cu:0.01~1.0%、
      Co:0.01~1.0%
    を含有し、かつ下記(1)、(2)および(3)の値が下記(4)のすべての式を満足し、残部Feおよび不可避的不純物からなる組成を有し、758MPa以上の降伏応力を有する油井管用マルテンサイト系ステンレス継目無鋼管。
                     記
    -109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb
    +196.775N-2.621Ti-120.307 ・・・(1)
    -0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83              ・・・(2)
    -1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W
    -0.473N-0.5Ti-0.514  ・・・(3)
    ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
    -35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.100    ・・・(4)
    In mass%,
    C: 0.010% or more,
    Si: 0.5% or less,
    Mn: 0.05 to 0.24%,
    P: 0.030% or less,
    S: 0.005% or less,
    Ni: 4.6 to 8.0%,
    Cr: 10.0 to 14.0%,
    Mo: 1.0 to 2.7%,
    Al: 0.1% or less,
    V: 0.005 to 0.2%,
    N: 0.1% or less
    Ti: 0.06 to 0.25%,
    Cu: 0.01 to 1.0%,
    Co: 0.01 to 1.0%
    , And the values of (1), (2) and (3) below satisfy all formulas of the following (4), and has a composition consisting of the balance Fe and unavoidable impurities, and has a yield stress of 758 MPa or more Martensitic stainless steel seamless steel pipe for oil well pipe having.
    -109.37C + 7.307Mn + 6.399Cr + 6.329Cu + 1.343Ni-13.529Mo + 1.276W + 2.925Nb
    + 196.775N-2.621Ti-120.307 ・ ・ ・ (1)
    -0.0278 Mn + 0.0892 Cr + 0.00567 Ni + 0.153 Mo-0.0219 W-1.984 N + 0.208 Ti-1.83 (2)
    -1.324C + 0.0533Mn + 0.0268Cr + 0.0893Cu + 0.00526Ni + 0.0222Mo-0.0132W
    -0.473 N-0.5 Ti-0.514 (3)
    Here, C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, Ti: content of each element (mass%) (however, elements not contained are 0 (zero)%).
    −35.0 ≦ value (1) ≦ 45.0 and −0.600 ≦ value (2) ≦ −0.250 and −0.400 ≦ value (3) ≦ 0.100 (4)
  2.  前記組成に加えてさらに、質量%で
      Nb:0.1%以下、
      W:1.0%以下
    のうちから選ばれた1種または2種を含有する組成とする請求項1に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
    In addition to the above composition, Nb: 0.1% or less by mass%
    The martensitic stainless steel seamless steel pipe for oil well tubes according to claim 1, wherein W: a composition containing one or more selected from 1.0% or less.
  3.  前記組成に加えてさらに、質量%で、
      Ca:0.010%以下、
      REM:0.010%以下、
      Mg:0.010%以下、
      B:0.010%以下
    のうちから選ばれた1種または2種以上を含有する組成とする請求項1または2に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
    In addition to the above composition, in mass%,
    Ca: 0.010% or less,
    REM: 0.010% or less,
    Mg: 0.010% or less,
    The martensitic stainless steel seamless steel pipe for oil well tubes according to claim 1 or 2, wherein B: composition containing one or more selected from 0.010% or less.
  4.  請求項1~3のいずれかに記載の組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。 A steel pipe material having the composition according to any one of claims 1 to 3 is formed into a steel pipe, and then the steel pipe is heated to a temperature above the Ac 3 transformation point and subsequently quenched to a cooling stop temperature of 100 ° C or less A method for producing a martensitic stainless steel seamless steel pipe for oil well pipe, to which a treatment and a tempering treatment of tempering at a temperature below the Ac 1 transformation point are applied.
PCT/JP2018/032685 2017-09-29 2018-09-04 Oil well pipe martensitic stainless seamless steel pipe and production method for same WO2019065115A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018564431A JP6540920B1 (en) 2017-09-29 2018-09-04 Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
EP18861269.1A EP3690073A4 (en) 2017-09-29 2018-09-04 Oil well pipe martensitic stainless seamless steel pipe and production method for same
BR112020004808-9A BR112020004808B1 (en) 2017-09-29 2018-09-04 MARTENSITIC STAINLESS STEEL SEAMLESS TUBE FOR PETROLEUM TUBULAR PRODUCTS AND METHOD FOR MANUFACTURE THEREOF
MX2020002857A MX2020002857A (en) 2017-09-29 2018-09-04 Oil well pipe martensitic stainless seamless steel pipe and production method for same.
US16/646,667 US20200407814A1 (en) 2017-09-29 2018-09-04 Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190075 2017-09-29
JP2017-190075 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065115A1 true WO2019065115A1 (en) 2019-04-04

Family

ID=65901776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032685 WO2019065115A1 (en) 2017-09-29 2018-09-04 Oil well pipe martensitic stainless seamless steel pipe and production method for same

Country Status (7)

Country Link
US (1) US20200407814A1 (en)
EP (1) EP3690073A4 (en)
JP (1) JP6540920B1 (en)
AR (1) AR113185A1 (en)
BR (1) BR112020004808B1 (en)
MX (1) MX2020002857A (en)
WO (1) WO2019065115A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225281A1 (en) * 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2019225280A1 (en) * 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2021235087A1 (en) * 2020-05-18 2021-11-25 Jfeスチール株式会社 Stainless steel seamless pipe for oil well, and method for producing same
CN114829647A (en) * 2019-12-24 2022-07-29 杰富意钢铁株式会社 High-strength stainless steel seamless steel pipe for oil well
JPWO2022181164A1 (en) * 2021-02-26 2022-09-01
WO2023195361A1 (en) * 2022-04-08 2023-10-12 日本製鉄株式会社 Martensite stainless steel material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057050A1 (en) 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
WO2008023702A1 (en) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
JP2010242163A (en) 2009-04-06 2010-10-28 Jfe Steel Corp Method for manufacturing martensitic stainless steel seamless steel tube for oil well pipe
JP2017510715A (en) * 2014-02-28 2017-04-13 バローレック・トゥーボス・ド・ブラジル・エス・ア Martensite-ferritic stainless steel and products and manufacturing processes using martensite-ferritic stainless steel
WO2017200083A1 (en) * 2016-05-20 2017-11-23 新日鐵住金株式会社 Steel bar for downhole member and downhole member
WO2018079111A1 (en) * 2016-10-25 2018-05-03 Jfeスチール株式会社 Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620319B2 (en) * 1998-12-18 2005-02-16 Jfeスチール株式会社 Martensitic stainless steel with excellent corrosion resistance and weldability
JP3852248B2 (en) * 1999-07-15 2006-11-29 Jfeスチール株式会社 Manufacturing method of martensitic stainless steel with excellent stress corrosion cracking resistance
JP2003129190A (en) * 2001-10-19 2003-05-08 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor
JP3800150B2 (en) * 2002-08-29 2006-07-26 Jfeスチール株式会社 Martensitic stainless hot rolled steel strip with excellent manufacturability
JP4400423B2 (en) * 2004-01-30 2010-01-20 Jfeスチール株式会社 Martensitic stainless steel pipe
WO2018181404A1 (en) * 2017-03-28 2018-10-04 新日鐵住金株式会社 Martensitic stainless steel material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057050A1 (en) 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
WO2008023702A1 (en) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
JP2010242163A (en) 2009-04-06 2010-10-28 Jfe Steel Corp Method for manufacturing martensitic stainless steel seamless steel tube for oil well pipe
JP2017510715A (en) * 2014-02-28 2017-04-13 バローレック・トゥーボス・ド・ブラジル・エス・ア Martensite-ferritic stainless steel and products and manufacturing processes using martensite-ferritic stainless steel
WO2017200083A1 (en) * 2016-05-20 2017-11-23 新日鐵住金株式会社 Steel bar for downhole member and downhole member
WO2018079111A1 (en) * 2016-10-25 2018-05-03 Jfeスチール株式会社 Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690073A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225280A1 (en) * 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
JP6680409B1 (en) * 2018-05-25 2020-04-15 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
JP6680408B1 (en) * 2018-05-25 2020-04-15 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
US11773461B2 (en) 2018-05-25 2023-10-03 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2019225281A1 (en) * 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
EP4043591A4 (en) * 2019-12-24 2022-10-12 JFE Steel Corporation High-strength stainless steel seamless pipe for oil wells
CN114829647A (en) * 2019-12-24 2022-07-29 杰富意钢铁株式会社 High-strength stainless steel seamless steel pipe for oil well
EP4079875A4 (en) * 2020-05-18 2023-06-14 JFE Steel Corporation Stainless steel seamless pipe for oil well, and method for producing same
CN115135786A (en) * 2020-05-18 2022-09-30 杰富意钢铁株式会社 Stainless seamless steel pipe for oil well pipe and method for producing same
JP7207557B2 (en) 2020-05-18 2023-01-18 Jfeスチール株式会社 Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof
JPWO2021235087A1 (en) * 2020-05-18 2021-11-25
WO2021235087A1 (en) * 2020-05-18 2021-11-25 Jfeスチール株式会社 Stainless steel seamless pipe for oil well, and method for producing same
WO2022181164A1 (en) * 2021-02-26 2022-09-01 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil well, and method for producing same
JPWO2022181164A1 (en) * 2021-02-26 2022-09-01
JP7315097B2 (en) 2021-02-26 2023-07-26 Jfeスチール株式会社 High-strength stainless seamless steel pipe for oil wells and its manufacturing method
WO2023195361A1 (en) * 2022-04-08 2023-10-12 日本製鉄株式会社 Martensite stainless steel material
JP7428952B1 (en) 2022-04-08 2024-02-07 日本製鉄株式会社 Martensitic stainless steel material

Also Published As

Publication number Publication date
EP3690073A1 (en) 2020-08-05
MX2020002857A (en) 2020-07-24
EP3690073A4 (en) 2020-08-05
AR113185A1 (en) 2020-02-05
BR112020004808A2 (en) 2020-09-24
BR112020004808B1 (en) 2024-02-20
JP6540920B1 (en) 2019-07-10
JPWO2019065115A1 (en) 2019-11-14
US20200407814A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
JP6540922B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP6315159B1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6540920B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP6680409B1 (en) Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP5861786B2 (en) Stainless steel seamless steel pipe for oil well and manufacturing method thereof
JP5640762B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP6540921B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP6743992B1 (en) Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6680408B1 (en) Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
JP7207557B2 (en) Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof
JP6747628B1 (en) Duplex stainless steel, seamless steel pipe, and method for producing duplex stainless steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018564431

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861269

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020004808

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861269

Country of ref document: EP

Effective date: 20200429

ENP Entry into the national phase

Ref document number: 112020004808

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200310