WO2008023494A1 - Microlenses, imaging device, and portable terminal device - Google Patents

Microlenses, imaging device, and portable terminal device Download PDF

Info

Publication number
WO2008023494A1
WO2008023494A1 PCT/JP2007/062290 JP2007062290W WO2008023494A1 WO 2008023494 A1 WO2008023494 A1 WO 2008023494A1 JP 2007062290 W JP2007062290 W JP 2007062290W WO 2008023494 A1 WO2008023494 A1 WO 2008023494A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
microlens
present
light
subject
Prior art date
Application number
PCT/JP2007/062290
Other languages
French (fr)
Japanese (ja)
Inventor
Tsukuru Maruyama
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008023494A1 publication Critical patent/WO2008023494A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • Microlens, imaging device, and portable terminal device are Microlens, imaging device, and portable terminal device
  • the present invention relates to a microlens provided in a solid-state imaging device, an imaging device using the microlens, and a portable terminal device.
  • a conventional imaging device includes a solid-state imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). Yes.
  • CMOS complementary metal-oxide semiconductor
  • a microlens is provided in each light receiving portion in order to increase the light collection efficiency of the light receiving portion.
  • the solid-state imaging device since the solid-state imaging device has high sensitivity to infrared rays longer than visible light, it is necessary to block incident infrared rays in order to realize natural color reproduction.
  • a conventional solid-state imaging device includes a flat-plate reflective infrared cut filter coated with a multilayer thin film, an absorption infrared cut filter that is doped with divalent copper ions and absorbs infrared light, and the like. It was installed in front of the camera and was designed to block incident infrared rays.
  • Patent Document 1 a thin film coat of an infrared blocking dielectric multilayer film is formed on the surface of a microlens so that incident infrared rays can be blocked.
  • Patent Document 2 provides an infrared absorption layer formed of a resin coating solution having an infrared absorption function on the surface of a microlens or the surface of a solid-state imaging device, thereby making incident infrared rays. It can be blocked. Therefore, the ones disclosed in Patent Documents 1 and 2 can eliminate the infrared cut filter, and thus can reduce the size of the imaging apparatus.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-139035
  • Patent Document 2 JP 2004-200360 A
  • Patent Document 1 since the microlens is configured to be relatively small so as to correspond to each pixel of the fixed image sensor, the one disclosed in Patent Document 1 has a thin film coat of an infrared shielding dielectric multilayer film. It is difficult to apply with high accuracy, and the filter characteristics by blocking infrared rays are not sufficient ⁇ and ⁇ If the filter characteristics change according to the problem and the incident angle of the light incident on the micro lens ⁇ There was a problem.
  • Patent Document 2 it is known that an infrared absorption layer formed of a resin coating solution having an infrared absorption function has a problem in heat resistance, for example, When reflow soldering a solid-state image sensor on a mounting board at a temperature of 200 ° C or higher, there was a problem that the absorption characteristics of infrared rays deteriorated.
  • the present invention has been made to solve the conventional problems, and a microlens whose filter characteristics do not depend on the incident angle of incident light and has higher heat resistance than the conventional one, and this An object of the present invention is to provide an imaging device and a mobile terminal device using a clo lens. Means for solving the problem
  • the microlens of the present invention is provided in a solid-state imaging device that images a subject.
  • the glass material includes a component that absorbs infrared rays. .
  • the microlens of the present invention is formed of a glass material containing a component that absorbs infrared rays. Therefore, unlike the conventional multilayer film, the filter characteristic has an incident angle of incident light. In addition, the heat resistance is superior to the conventional one.
  • the microlens of the present invention has a configuration in which the shape with respect to the optical axis on which light from the subject is incident is spherical! / Speak.
  • the microlens of the present invention reduces the loss of incident light and has an infrared cut function.
  • the microlens of the present invention may have a configuration in which a shape with respect to an optical axis on which light from the subject is incident is an aspherical shape. With this configuration, the microlens of the present invention can reduce image quality degradation of a subject image.
  • the imaging apparatus of the present invention has a configuration including a microlens and an imaging optical system that forms a subject image by irradiating light from the subject.
  • the imaging apparatus of the present invention includes the microlens whose filter characteristics do not depend on the incident angle of incident light and has better heat resistance than the conventional one, so that the color reproduction than the conventional one is achieved. A good subject image can be obtained, and deterioration of infrared absorption characteristics due to heating in the reflow soldering process can be prevented.
  • the mobile terminal device of the present invention has a configuration including an imaging device.
  • the mobile terminal device of the present invention can improve the user authentication accuracy over the conventional one by obtaining a subject image with better color reproducibility than the conventional one.
  • the present invention provides a microlens whose filter characteristics do not depend on the incident angle of incident light and has better heat resistance than conventional ones, and an imaging device and a portable terminal device using the microlens. It is something that can be done.
  • FIG. 1 is a conceptual diagram showing a configuration example of a main part of an imaging apparatus according to the present invention.
  • FIG. 2 is a conceptual diagram showing a configuration example of a solid-state image sensor in an imaging device according to the present invention.
  • FIG. 2 (a) is a conceptual plan view of a solid-state imaging device according to the present invention.
  • FIG. 2 (b) is a conceptual cross-sectional view of a solid-state imaging device according to the present invention.
  • FIG. 2 (c) is a conceptual cross-sectional view of another aspect of the solid-state imaging device according to the present invention.
  • FIG. 3 is a diagram showing spectral characteristics of a conventional imaging device.
  • FIG. 4 is a diagram showing the spectral characteristics of the imaging apparatus according to the present invention.
  • FIG. 5 is a conceptual diagram showing a configuration example of a mobile phone device according to the present invention.
  • Optical aperture 12 (12a, 12b) lens (imaging optics)
  • an imaging apparatus 10 includes an optical aperture 11 that adjusts the amount of light from a subject, and a lens 12 (including 12a and 12b) that collects the subject light. And a solid-state imaging device 20.
  • FIG. 1 is a conceptual diagram of the main part of the imaging device 10.
  • the imaging device 10 is configured in detail as follows.
  • the optical aperture 11 is formed of a shielding plate that limits the range of light rays to be transmitted in order to improve imaging performance.
  • the lens 12 is formed of, for example, a glass or plastic material, and captures a subject image as a solid image. An image is formed on a light receiving portion (not shown) of the element 20.
  • the lens 12 constitutes the imaging optical system of the present invention.
  • the solid-state imaging device 20 includes a microlens array 21 provided on a surface on the subject side, and an imaging unit 22 that images the subject.
  • the imaging unit 22 is composed of, for example, a CCD or CMOS image sensor, and has a plurality of pixels arranged in a matrix. 32mm) and includes 1.3 million pixel bay array elements.
  • the solid-state imaging device 20 is configured as shown in FIG. Fig. 2 (a) is a plan view showing a conceptual configuration of the solid-state imaging device 20, Fig. 2 (b) is a sectional view conceptually showing a partial cross-section of the solid-state imaging device 20, and Fig. 2 (c) is a solid-state imaging. 12 is a cross-sectional view conceptually showing a partial cross section of another aspect of the element 20.
  • FIG. Fig. 2 (a) is a plan view showing a conceptual configuration of the solid-state imaging device 20
  • Fig. 2 (b) is a sectional view conceptually showing a partial cross-section of the solid-state imaging device 20
  • Fig. 2 (c) is a solid-state imaging.
  • 12 is a cross-sectional view conceptually showing a partial cross section of another aspect of the element 20.
  • the microlens array 21 includes a plurality of microlenses 21a arranged in a matrix.
  • the imaging unit 22 includes a color filter 22a, a light shielding layer 22b, and a pixel 22c.
  • Each of the microlenses 21a is formed in a convex lens shape having a certain curvature on the surface on which the subject light is incident and the surface on the imaging unit 22 side, and is provided at a position corresponding to each pixel 22c. Therefore, the light collection rate of the subject light incident on each pixel 22c is increased.
  • the shape of the microlens 21a is not limited to that shown in FIG. 2 (b) .For example, as shown in FIG. The surface on the part 22 side may be planar.
  • the microlens 21a can be manufactured by the same glass transfer method as that of a normal glass forming lens.
  • the microlens 21a is formed using a glass material containing a component that absorbs infrared rays, for example, a glass material doped with divalent copper ions, and has a function of an infrared cut filter.
  • a glass material containing a component that absorbs infrared rays for example, a glass material doped with divalent copper ions, and has a function of an infrared cut filter.
  • specific glass materials for example, BS series from Matsunami Glass Industrial Co., Ltd., NF-50 from Asahi Techno Glass Co., Ltd. can be used.
  • Fig. 3 shows the transmittance data for light wavelengths with incident angles of 0, 10, 20, and 30 degrees. In the conventional device, the transmittance varies depending on the incident angle of the incident light. is doing.
  • the spectral characteristics of the microlens 21a according to the present embodiment have characteristics that do not depend on the incident angle of incident light, as shown in FIG.
  • the microlens 21a in the present embodiment is configured using a glass material containing a component that absorbs infrared rays, the microlens 21a is more than the conventional one in which an infrared ray absorbing layer is formed with a resin coating solution having an infrared absorption function.
  • the infrared absorption characteristics will not deteriorate.
  • FIG. 1 is a conceptual diagram showing the main part of the imaging device 10.
  • the force imaging device 10 includes a mechanism part and an electric circuit part (not shown) as a configuration other than the main part. Yes.
  • the mechanism include a lens adjustment mechanism that is attached to the lens 12 and adjusts the focus and angle of view of the subject image.
  • Examples of the electric circuit unit include a drive circuit that drives each mechanism unit and a pulse generation circuit that generates a timing pulse for driving the solid-state imaging device 20.
  • the subject light passes through the optical aperture 11 and enters the lens 12.
  • the subject light is collected by the lens 12 and emitted to the microlens array 21.
  • the infrared light component of the subject light incident on the microlens array 21 is absorbed by the microlens 21 a and is condensed on the pixel 22 c of the imaging unit 22.
  • the solid-state image pickup device 20 outputs data of a subject image with good image quality that is superior in color reproducibility than the conventional one.
  • each microlens 21a constituting the microlens array 21 is configured with a glass material containing a component that absorbs infrared rays. As a result, spectral characteristics that do not depend on the incident angle can be obtained. It is possible to prevent blurring of the contour of the subject image due to the influence, redness on the entire subject image, and the like, and improve the image quality of the subject image.
  • the imaging apparatus 10 in the present embodiment unlike the conventional apparatus, there is no need for a space for providing a reflective infrared cut filter, an absorption infrared cut filter, or the like. Can be miniaturized.
  • the microlens 21a in the present embodiment is configured using a glass material containing a component that absorbs infrared rays
  • a conventional infrared absorption layer is formed with a resin coating solution having an infrared absorption function. It can improve the heat resistance compared to other devices, and the infrared absorption characteristics will not deteriorate even if the solid-state image sensor 20 or electronic components are reflow soldered on the mounting board at a temperature of 200 ° C or higher. ⁇ .
  • the configuration of the imaging device in the present embodiment is different from the imaging device 10 (see FIG. 1) in the first embodiment in the shape of the microlens constituting the microlens array. That is, the imaging device 10 in the first embodiment includes the microlens 21a formed in a convex lens shape having a constant curvature.
  • the imaging device in the present embodiment has a microlens shape as an axis. It is characterized by a symmetric aspherical surface.
  • the configuration other than the microlens is the same as that of the imaging device 10 in the first embodiment, and a description thereof is omitted.
  • the shape of the microlens in the present embodiment is an aspherical lens generally represented by a high-order polynomial in equation (1).
  • Z is the coordinate in the optical axis direction of the microlens
  • r is the coordinate from the optical axis in the radial direction of the microphone lens
  • c is the curvature at the apex of the microlens
  • K and An are aspheric coefficients
  • the optical performance of the imaging apparatus according to the present embodiment is that the performance of the lens 12 is a major force.
  • the shape of the micro lens is a general aspheric lens
  • the imaging apparatus in this embodiment can reduce the aberration and improve the image quality of the subject image.
  • a mobile phone device as a mobile terminal device according to the present invention will be described.
  • a mobile phone device 30 in the present embodiment is obtained by mounting the imaging device 10 in the first embodiment on a known mobile phone device with a camera.
  • the mobile phone device 30 includes the imaging device 10 that captures an image of the subject, the upper housing 31, the lower housing 32, and the hinge portion 33 that connects the upper housing 31 and the lower housing 32.
  • the cellular phone device 30 in the present embodiment includes the imaging device 10 in the first embodiment, so that when used as a camera, spectral characteristics independent of the incident angle can be obtained.
  • the mobile phone device 30 is configured such that the upper housing 31 and the lower housing 32 can be folded via a hinge 33, and the mobile phone device 30 is shown in FIG.
  • the imaging device 10 can take an image of the user of the mobile phone device 30 in the opened state.
  • the mobile phone device 30 has a face image authentication function for authenticating whether or not the person is a person registered in advance as a regular user based on the user's imaging data acquired by the imaging device 10. Security is ensured so that only authorized persons can use it.
  • the imaging apparatus 10 can acquire subject image data with good image quality that is superior in color reproducibility than the conventional one.
  • Mobile phone device 30 in the form of It can be carried out.
  • the cellular phone device 30 according to the present embodiment includes the imaging device 10 as described above, the function of the face image authentication can be more complicated than that of the conventional device, thereby further improving the security. Even in such a case, the convenience as a mobile phone device cannot be reduced!
  • the imaging device 10 is provided, so that when used as a camera, spectral characteristics that do not depend on the incident angle can be obtained. At the same time, it is possible to prevent blurring of the contour of the subject image due to the influence of infrared rays, redness on the entire subject image, and the like, thereby improving the image quality of the subject image.
  • the imaging device 10 that can improve the image quality of the subject image is provided, the accuracy is higher in a shorter time than the conventional one. Authentication can be performed.
  • the imaging device 10 that does not require a space for providing a reflective infrared cut filter, an absorption infrared cut filter, or the like is provided. Therefore, it is possible to reduce the size of the apparatus.
  • the mobile phone device 30 has a configuration in which the upper housing 31 and the lower housing 32 can be folded via the hinge 33, and the imaging device 10 is the upper housing.
  • the present invention is not limited to this and can be applied to various types of portable information devices. For example, it can be applied to PDAs (Personal Digital Assistants), personal computers, and portable information devices such as personal computer external devices.
  • PDAs Personal Digital Assistants
  • personal computers Personal computers
  • portable information devices such as personal computer external devices.
  • the imaging device 10 of the present invention can also be applied to these cameras.
  • the imaging apparatus of the present invention can be applied to devices such as DSCs (digital still cameras) and camcorders that place importance on color reproducibility, and devices such as surveillance cameras that place importance on improving visibility. Can be applied to reduce the size of these devices.
  • the filter characteristics depend on the incident angle of incident light. It has an effect that it has better heat resistance than conventional ones, and is useful as a microlens provided in a solid-state image sensor, an imaging device using the microlens, a portable terminal device, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lens Barrels (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided are microlenses having filter characteristics not dependent on the incident angle of incident light and having better heat resistance characteristics than conventional products, and an imaging device and portable terminal device using the microlenses. The imaging device (10) has an optical aperture (11) for adjusting the amount of light from an object, a lens (12) for collecting the light from the object, and a solid imaging element (20). The solid imaging element (20) has microlenses (21a) arranged in a matrix pattern. The microlenses (21a) are made by using a glass material containing an infrared absorbing component and have a function of an infrared cutting filter.

Description

明 細 書  Specification
マイクロレンズ、撮像装置及び携帯端末装置  Microlens, imaging device, and portable terminal device
技術分野  Technical field
[0001] 本発明は、固体撮像素子に設けられるマイクロレンズ及びこのマイクロレンズを用い た撮像装置、携帯端末装置に関する。  The present invention relates to a microlens provided in a solid-state imaging device, an imaging device using the microlens, and a portable terminal device.
背景技術  Background art
[0002] 従来の撮像装置は、 CCD (Charge Coupled Device:電荷結合素子)や CMO S (Complementary Metal -Oxide Semiconductor:相ネ甫型金属酸ィ匕物半導 体)等の固体撮像素子を備えている。これらの固体撮像素子には、受光部の集光効 率を高めるため、各受光部にマイクロレンズが設けられている。また、固体撮像素子 は、可視光線よりも長波長側の赤外線にも高い感度を有するので、自然な色再現を 実現するため、入射する赤外線を遮断する必要がある。例えば、従来のものは、多層 膜の薄膜コートを施した平板の反射型赤外カットフィルタや、 2価の銅イオンがドープ され赤外光を吸収する吸収型赤外カットフィルタ等が固体撮像素子の前面に設けら れ、入射する赤外線を遮断するようになっていた。  [0002] A conventional imaging device includes a solid-state imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). Yes. In these solid-state imaging devices, a microlens is provided in each light receiving portion in order to increase the light collection efficiency of the light receiving portion. In addition, since the solid-state imaging device has high sensitivity to infrared rays longer than visible light, it is necessary to block incident infrared rays in order to realize natural color reproduction. For example, a conventional solid-state imaging device includes a flat-plate reflective infrared cut filter coated with a multilayer thin film, an absorption infrared cut filter that is doped with divalent copper ions and absorbs infrared light, and the like. It was installed in front of the camera and was designed to block incident infrared rays.
[0003] しカゝしながら、前述の構成では、反射型赤外カットフィルタや吸収型赤外カットフィ ルタ等を設けるためのスペースが必要となるので、撮像装置の小型化が図れないと いう課題があり、この課題の解決を図ることを目的として例えば特許文献 1及び 2に示 されたものが提案されて 、る。  However, the above-described configuration requires a space for providing a reflection-type infrared cut filter, an absorption-type infrared cut filter, and the like, so that the imaging apparatus cannot be reduced in size. For the purpose of solving this problem, for example, those shown in Patent Documents 1 and 2 have been proposed.
[0004] まず、特許文献 1に示されたものは、マイクロレンズの表面に赤外線遮断誘電体多 層膜の薄膜コートを形成することにより、入射された赤外線を遮断することができるよ うになつている。また、特許文献 2に示されたものは、赤外線吸収機能を有する榭脂 塗布液で形成された赤外線吸収層をマイクロレンズの表面又は固体撮像素子の表 面に設けることにより、入射された赤外線を遮断することができるようになつている。し たがって、特許文献 1及び 2に示されたものは、赤外カットフィルタを廃止することがで きるので、撮像装置の小型化を図ることができる。  [0004] Firstly, in Patent Document 1, a thin film coat of an infrared blocking dielectric multilayer film is formed on the surface of a microlens so that incident infrared rays can be blocked. Yes. In addition, what is disclosed in Patent Document 2 provides an infrared absorption layer formed of a resin coating solution having an infrared absorption function on the surface of a microlens or the surface of a solid-state imaging device, thereby making incident infrared rays. It can be blocked. Therefore, the ones disclosed in Patent Documents 1 and 2 can eliminate the infrared cut filter, and thus can reduce the size of the imaging apparatus.
特許文献 1 :特開 2004— 139035号公報 特許文献 2:特開 2004 - 200360号公報 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-139035 Patent Document 2: JP 2004-200360 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、マイクロレンズは固定撮像素子の各画素に対応するよう比較的小さく 構成されているので、特許文献 1に示されたものでは、赤外線遮断誘電体多層膜の 薄膜コートを高精度で施すことが困難であり、赤外線の遮断によるフィルタ特性が十 分なものとはならな ヽと ヽぅ課題や、マイクロレンズに入射する光線の入射角に応じて フィルタ特性が変化すると ヽぅ課題があった。  [0005] However, since the microlens is configured to be relatively small so as to correspond to each pixel of the fixed image sensor, the one disclosed in Patent Document 1 has a thin film coat of an infrared shielding dielectric multilayer film. It is difficult to apply with high accuracy, and the filter characteristics by blocking infrared rays are not sufficient ヽ and ヽ If the filter characteristics change according to the problem and the incident angle of the light incident on the micro lens ヽThere was a problem.
[0006] また、特許文献 2に示されたもののように、赤外線吸収機能を有する榭脂塗布液で 赤外線吸収層が形成されたものは、耐熱性に問題があることが知られており、例えば 固体撮像素子を実装基板上に 200°C以上の温度でリフロー半田付けする際、赤外 線の吸収特性が劣化するという課題があった。  [0006] Further, as shown in Patent Document 2, it is known that an infrared absorption layer formed of a resin coating solution having an infrared absorption function has a problem in heat resistance, for example, When reflow soldering a solid-state image sensor on a mounting board at a temperature of 200 ° C or higher, there was a problem that the absorption characteristics of infrared rays deteriorated.
[0007] 本発明は、従来の課題を解決するためになされたものであり、フィルタ特性が入射 光の入射角に依存せず、従来のものよりも耐熱性に優れたマイクロレンズと、このマイ クロレンズを用いた撮像装置及び携帯端末装置とを提供することを目的とする。 課題を解決するための手段  [0007] The present invention has been made to solve the conventional problems, and a microlens whose filter characteristics do not depend on the incident angle of incident light and has higher heat resistance than the conventional one, and this An object of the present invention is to provide an imaging device and a mobile terminal device using a clo lens. Means for solving the problem
[0008] 本発明のマイクロレンズは、被写体を撮像する固体撮像素子に設けられ、ガラス材 料で形成されたマイクロレンズにおいて、前記ガラス材料は、赤外線を吸収する成分 を含む構成を有している。 [0008] The microlens of the present invention is provided in a solid-state imaging device that images a subject. In the microlens formed of a glass material, the glass material includes a component that absorbs infrared rays. .
[0009] この構成により、本発明のマイクロレンズは、赤外線を吸収する成分を含むガラス材 料で形成されるので、従来の多層膜を用いたものとは異なり、フィルタ特性が入射光 の入射角に依存せず、また、従来のものよりも耐熱性に優れるものとなる。 [0009] With this configuration, the microlens of the present invention is formed of a glass material containing a component that absorbs infrared rays. Therefore, unlike the conventional multilayer film, the filter characteristic has an incident angle of incident light. In addition, the heat resistance is superior to the conventional one.
[0010] また、本発明のマイクロレンズは、前記被写体からの光が入射される光軸に対する 形状が球面状である構成を有して!/ヽる。 In addition, the microlens of the present invention has a configuration in which the shape with respect to the optical axis on which light from the subject is incident is spherical! / Speak.
[0011] この構成により、本発明のマイクロレンズは、入射光の損失を低減すると共に、赤外 カットの機能を有することとなる。 With this configuration, the microlens of the present invention reduces the loss of incident light and has an infrared cut function.
[0012] さらに、本発明のマイクロレンズは、前記被写体からの光が入射される光軸に対す る形状が非球面状である構成を有して ヽる。 [0013] この構成により、本発明のマイクロレンズは、被写体像の画質劣化を低減することが できる。 Furthermore, the microlens of the present invention may have a configuration in which a shape with respect to an optical axis on which light from the subject is incident is an aspherical shape. With this configuration, the microlens of the present invention can reduce image quality degradation of a subject image.
[0014] さらに、本発明の撮像装置は、マイクロレンズと、前記被写体からの光^^光して被 写体像を結像する撮像光学系とを備えた構成を有している。  Furthermore, the imaging apparatus of the present invention has a configuration including a microlens and an imaging optical system that forms a subject image by irradiating light from the subject.
[0015] この構成により、本発明の撮像装置は、フィルタ特性が入射光の入射角に依存せ ず、従来のものよりも耐熱性に優れたマイクロレンズを備えるので、従来のものよりも 色再現性の良い被写体像を得ることができ、リフロー半田付け工程等での加熱による 赤外線の吸収特性の劣化を防止することができる。 [0015] With this configuration, the imaging apparatus of the present invention includes the microlens whose filter characteristics do not depend on the incident angle of incident light and has better heat resistance than the conventional one, so that the color reproduction than the conventional one is achieved. A good subject image can be obtained, and deterioration of infrared absorption characteristics due to heating in the reflow soldering process can be prevented.
[0016] さらに、本発明の携帯端末装置は、撮像装置を備えた構成を有している。 Furthermore, the mobile terminal device of the present invention has a configuration including an imaging device.
[0017] この構成により、本発明の携帯端末装置は、従来のものよりも色再現性の良い被写 体像を得ることによって、使用者の認証精度を従来のものよりも向上させることができ る。 [0017] With this configuration, the mobile terminal device of the present invention can improve the user authentication accuracy over the conventional one by obtaining a subject image with better color reproducibility than the conventional one. The
発明の効果  The invention's effect
[0018] 本発明は、フィルタ特性が入射光の入射角に依存せず、従来のものよりも耐熱性に 優れるマイクロレンズと、このマイクロレンズを用いた撮像装置及び携帯端末装置とを 提供することができるものである。  The present invention provides a microlens whose filter characteristics do not depend on the incident angle of incident light and has better heat resistance than conventional ones, and an imaging device and a portable terminal device using the microlens. It is something that can be done.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は本発明に係る撮像装置の主要部の構成例を示す概念図である。 FIG. 1 is a conceptual diagram showing a configuration example of a main part of an imaging apparatus according to the present invention.
[図 2]図 2は本発明に係る撮像装置における固体撮像素子の構成例を示す概念図で ある。 図 2 (a)は本発明に係る固体撮像素子の平面概念図である。  FIG. 2 is a conceptual diagram showing a configuration example of a solid-state image sensor in an imaging device according to the present invention. FIG. 2 (a) is a conceptual plan view of a solid-state imaging device according to the present invention.
図 2 (b)は本発明に係る固体撮像素子の断面概念図である。 図 2 (c)は本 発明に係る固体撮像素子の他の態様の断面概念図である。  FIG. 2 (b) is a conceptual cross-sectional view of a solid-state imaging device according to the present invention. FIG. 2 (c) is a conceptual cross-sectional view of another aspect of the solid-state imaging device according to the present invention.
[図 3]図 3は従来の撮像装置の分光特性を示す図である。  FIG. 3 is a diagram showing spectral characteristics of a conventional imaging device.
[図 4]図 4は本発明に係る撮像装置の分光特性を示す図である。  FIG. 4 is a diagram showing the spectral characteristics of the imaging apparatus according to the present invention.
[図 5]図 5は本発明に係る携帯電話装置の構成例を示す概念図である。  FIG. 5 is a conceptual diagram showing a configuration example of a mobile phone device according to the present invention.
符号の説明  Explanation of symbols
[0020] 10 撮像装置 [0020] 10 Imaging device
11 光学絞り 12 (12a、 12b) レンズ (撮像光学系) 11 Optical aperture 12 (12a, 12b) lens (imaging optics)
20 固体撮像素子  20 Solid-state image sensor
21 マイクロレンズアレイ  21 Micro lens array
21a マイクロレンズ  21a micro lens
22 撮像部  22 Imaging unit
22a カラーフィノレタ  22a Colorfinoleta
22b 遮光層  22b Shading layer
22c 画素  22c pixels
30 携帯電話装置 (携帯端末装置)  30 Mobile phone device (mobile terminal device)
31 上側筐体  31 Upper housing
32 下側筐体  32 Lower housing
33 蝶番部  33 Hinge
34 ディスプレイ  34 display
35 スピーカ部  35 Speaker
36 アンテナ部  36 Antenna section
37 キーボード部  37 Keyboard
38 マイク咅  38 Microphone
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022] (第 1の実施の形態) [0022] (First embodiment)
まず、本発明に係るマイクロレンズを用いた撮像装置の構成について説明する。  First, the configuration of an imaging apparatus using the microlens according to the present invention will be described.
[0023] 図 1に示すように、本実施の形態における撮像装置 10は、被写体からの光量を調 節する光学絞り 11と、被写体光を集光するレンズ 12 (12a及び 12bを含む。)と、固 体撮像素子 20とを備えている。ここで図 1は、撮像装置 10の主要部の概念図でありAs shown in FIG. 1, an imaging apparatus 10 according to the present embodiment includes an optical aperture 11 that adjusts the amount of light from a subject, and a lens 12 (including 12a and 12b) that collects the subject light. And a solid-state imaging device 20. Here, FIG. 1 is a conceptual diagram of the main part of the imaging device 10.
、撮像装置 10は、詳細には以下のように構成されている。 The imaging device 10 is configured in detail as follows.
[0024] 光学絞り 11は、結像性能を向上させるため、透過する光線の範囲を制限させる遮 へい板で構成されている。 [0024] The optical aperture 11 is formed of a shielding plate that limits the range of light rays to be transmitted in order to improve imaging performance.
[0025] レンズ 12は、例えばガラスやプラスチックの材料で形成され、被写体像を固体撮像 素子 20の受光部(図示省略)に結像するようになっている。なお、レンズ 12は、本発 明の撮像光学系を構成している。 [0025] The lens 12 is formed of, for example, a glass or plastic material, and captures a subject image as a solid image. An image is formed on a light receiving portion (not shown) of the element 20. The lens 12 constitutes the imaging optical system of the present invention.
[0026] 固体撮像素子 20は、被写体側の面に設けられたマイクロレンズアレイ 21と、被写体 を撮像する撮像部 22とを備えている。撮像部 22は、例えば CCDや CMOSのィメー ジセンサで構成され、マトリクス状に配列された複数の画素を有し、例えば 1Z4イン チサイズ(水平: 3. 456mm X垂直: 2. 592mm X対角: 4. 32mm)で約 130万画 素のべィャ配列の素子を含む。  [0026] The solid-state imaging device 20 includes a microlens array 21 provided on a surface on the subject side, and an imaging unit 22 that images the subject. The imaging unit 22 is composed of, for example, a CCD or CMOS image sensor, and has a plurality of pixels arranged in a matrix. 32mm) and includes 1.3 million pixel bay array elements.
[0027] 具体的には、固体撮像素子 20は、図 2に示すように構成されている。図 2 (a)は固 体撮像素子 20の概念的な構成を示す平面図、図 2 (b)は固体撮像素子 20の部分 断面を概念的に示す断面図、図 2 (c)は固体撮像素子 20の他の態様の部分断面を 概念的に示す断面図である。  Specifically, the solid-state imaging device 20 is configured as shown in FIG. Fig. 2 (a) is a plan view showing a conceptual configuration of the solid-state imaging device 20, Fig. 2 (b) is a sectional view conceptually showing a partial cross-section of the solid-state imaging device 20, and Fig. 2 (c) is a solid-state imaging. 12 is a cross-sectional view conceptually showing a partial cross section of another aspect of the element 20. FIG.
[0028] 図 2 (a)及び (b)に示すように、マイクロレンズアレイ 21は、マトリクス状に配列された 複数のマイクロレンズ 21aを備えている。撮像部 22は、カラーフィルタ 22aと、遮光層 22bと、画素 22cとを備えている。  [0028] As shown in Figs. 2 (a) and (b), the microlens array 21 includes a plurality of microlenses 21a arranged in a matrix. The imaging unit 22 includes a color filter 22a, a light shielding layer 22b, and a pixel 22c.
[0029] マイクロレンズ 21aは、それぞれ、被写体光が入射する側の面と、撮像部 22側の面 とに一定の曲率を有する凸レンズ形状で形成され、各画素 22cに対応した位置に設 けられており、各画素 22cに入射する被写体光の集光率を高めるようになつている。 なお、マイクロレンズ 21aの形状は、図 2 (b)に示すものに限定されるものではなぐ例 えば図 2 (c)に示すように、被写体光が入射する側の面を凸レンズ形状とし、撮像部 2 2側の面を平面形状としてもよい。また、マイクロレンズ 21aは、通常のガラス成形レン ズと同じガラス転写方式により製造することができる。  [0029] Each of the microlenses 21a is formed in a convex lens shape having a certain curvature on the surface on which the subject light is incident and the surface on the imaging unit 22 side, and is provided at a position corresponding to each pixel 22c. Therefore, the light collection rate of the subject light incident on each pixel 22c is increased. Note that the shape of the microlens 21a is not limited to that shown in FIG. 2 (b) .For example, as shown in FIG. The surface on the part 22 side may be planar. The microlens 21a can be manufactured by the same glass transfer method as that of a normal glass forming lens.
[0030] マイクロレンズ 21aは、赤外線を吸収する成分を含むガラス材料、例えば 2価の銅ィ オンがドープされたガラス材料を用いて形成され、赤外カットフィルタの機能を有する 構成となっている。具体的なガラス材料としては、例えば松浪硝子工業株式会社の B Sシリーズ、旭テクノグラス株式会社の NF— 50等を用いることができる。  [0030] The microlens 21a is formed using a glass material containing a component that absorbs infrared rays, for example, a glass material doped with divalent copper ions, and has a function of an infrared cut filter. . As specific glass materials, for example, BS series from Matsunami Glass Industrial Co., Ltd., NF-50 from Asahi Techno Glass Co., Ltd. can be used.
[0031] ここで、本実施の形態におけるマイクロレンズ 21aの分光特性を従来のものと比較し て説明する。  Here, the spectral characteristics of the microlens 21a in the present embodiment will be described in comparison with a conventional one.
[0032] まず、多層膜で形成された従来の赤外カットフィルタの分光特性は、図 3に示すよう なものである。図 3は、入射角 0、 10、 20及び 30度の光の波長に対する透過率のデ ータを示したものであり、従来のものは、入射する光の入射角に応じて透過率が変化 している。これに対し、本実施の形態におけるマイクロレンズ 21aの分光特性は、図 4 に示すように、入射する光の入射角には依存しな 、特性を有して ヽる。 First, the spectral characteristics of a conventional infrared cut filter formed of a multilayer film are as shown in FIG. It is a thing. Fig. 3 shows the transmittance data for light wavelengths with incident angles of 0, 10, 20, and 30 degrees. In the conventional device, the transmittance varies depending on the incident angle of the incident light. is doing. On the other hand, the spectral characteristics of the microlens 21a according to the present embodiment have characteristics that do not depend on the incident angle of incident light, as shown in FIG.
[0033] したがって、本実施の形態におけるマイクロレンズ 21aを用いることにより、入射角 に依存しない分光特性が得られると共に、赤外線の影響による被写体像の輪郭のぼ けや、被写体像の全体に赤みがかかり、色再現性が劣化すること等を防止することが できる。また、本実施の形態におけるマイクロレンズ 21aは、赤外線を吸収する成分を 含むガラス材料を用いる構成としたので、赤外線吸収機能を有する榭脂塗布液で赤 外線吸収層が形成された従来のものよりも耐熱性を向上させることができ、固体撮像 素子 20や電子部品等を実装基板上に 200°C以上の温度でリフロー半田付けを実施 しても赤外線の吸収特性が劣化することはな 、。  Therefore, by using the microlens 21a in the present embodiment, spectral characteristics that do not depend on the incident angle can be obtained, and the outline of the subject image due to the influence of infrared rays is blurred, or the entire subject image is reddish. It is possible to prevent the color reproducibility from being deteriorated. In addition, since the microlens 21a in the present embodiment is configured using a glass material containing a component that absorbs infrared rays, the microlens 21a is more than the conventional one in which an infrared ray absorbing layer is formed with a resin coating solution having an infrared absorption function. However, even if reflow soldering is performed on the mounting substrate at a temperature of 200 ° C or higher on the mounting substrate, the infrared absorption characteristics will not deteriorate.
[0034] なお、前述のように、図 1は撮像装置 10の主要部を示した概念図である力 撮像装 置 10は、主要部以外の構成として図示しない機構部や電気回路部を備えている。機 構部としては、例えば、レンズ 12に取り付けられて被写体像のピントや画角を調整す るレンズ調整機構部等がある。また、電気回路部としては、例えば各機構部を駆動す る駆動回路や、固体撮像素子 20を駆動するためのタイミングパルスを発生するパル ス発生回路等がある。  [0034] As described above, FIG. 1 is a conceptual diagram showing the main part of the imaging device 10. The force imaging device 10 includes a mechanism part and an electric circuit part (not shown) as a configuration other than the main part. Yes. Examples of the mechanism include a lens adjustment mechanism that is attached to the lens 12 and adjusts the focus and angle of view of the subject image. Examples of the electric circuit unit include a drive circuit that drives each mechanism unit and a pulse generation circuit that generates a timing pulse for driving the solid-state imaging device 20.
[0035] 次に、本実施の形態における撮像装置 10の動作について図 1を用いて説明する。  Next, the operation of the imaging apparatus 10 in the present embodiment will be described with reference to FIG.
[0036] まず、被写体光は、光学絞り 11を通過し、レンズ 12に入射される。次いで、被写体 光は、レンズ 12によって集光され、マイクロレンズアレイ 21に出射される。ここで、マイ クロレンズアレイ 21に入射した被写体光は、マイクロレンズ 21aによって、その赤外線 成分が吸収され、撮像部 22の画素 22cに集光される。その結果、固体撮像素子 20 力 は、従来のものよりも色再現性に優れた良好な画質の被写体像のデータが出力 される。 First, the subject light passes through the optical aperture 11 and enters the lens 12. Next, the subject light is collected by the lens 12 and emitted to the microlens array 21. Here, the infrared light component of the subject light incident on the microlens array 21 is absorbed by the microlens 21 a and is condensed on the pixel 22 c of the imaging unit 22. As a result, the solid-state image pickup device 20 outputs data of a subject image with good image quality that is superior in color reproducibility than the conventional one.
[0037] 以上のように、本実施の形態における撮像装置 10によれば、マイクロレンズアレイ 2 1を構成する各マイクロレンズ 21aは、赤外線を吸収する成分を含むガラス材料で形 成される構成としたので、入射角に依存しない分光特性が得られると共に、赤外線の 影響による被写体像の輪郭のぼけや、被写体像の全体に赤みが力かること等を防止 することができ、被写体画像の画質を向上させることができる。 [0037] As described above, according to the imaging device 10 of the present embodiment, each microlens 21a constituting the microlens array 21 is configured with a glass material containing a component that absorbs infrared rays. As a result, spectral characteristics that do not depend on the incident angle can be obtained. It is possible to prevent blurring of the contour of the subject image due to the influence, redness on the entire subject image, and the like, and improve the image quality of the subject image.
[0038] また、本実施の形態における撮像装置 10によれば、従来のもののように、反射型赤 外カットフィルタや吸収型赤外カットフィルタ等を設けるためのスペースを必要としな いので、装置の小型化を図ることができる。  [0038] Further, according to the imaging apparatus 10 in the present embodiment, unlike the conventional apparatus, there is no need for a space for providing a reflective infrared cut filter, an absorption infrared cut filter, or the like. Can be miniaturized.
[0039] また、本実施の形態におけるマイクロレンズ 21aは、赤外線を吸収する成分を含む ガラス材料を用いる構成としたので、赤外線吸収機能を有する榭脂塗布液で赤外線 吸収層が形成された従来のものよりも耐熱性を向上させることができ、固体撮像素子 20や電子部品等を実装基板上に 200°C以上の温度でリフロー半田付けを実施して も赤外線の吸収特性が劣化することはな ヽ。  [0039] In addition, since the microlens 21a in the present embodiment is configured using a glass material containing a component that absorbs infrared rays, a conventional infrared absorption layer is formed with a resin coating solution having an infrared absorption function. It can improve the heat resistance compared to other devices, and the infrared absorption characteristics will not deteriorate even if the solid-state image sensor 20 or electronic components are reflow soldered on the mounting board at a temperature of 200 ° C or higher.ヽ.
[0040] (第 2の実施の形態)  [0040] (Second Embodiment)
本発明に係る撮像装置の第 2の実施の形態について説明する。本実施の形態に おける撮像装置の構成は、第 1の実施の形態における撮像装置 10 (図 1参照)と比 ベ、マイクロレンズアレイを構成するマイクロレンズの形状が異なるものである。すなわ ち、第 1の実施の形態における撮像装置 10は、一定の曲率を有する凸レンズ形状で 形成されたマイクロレンズ 21aを備えている力 本実施の形態における撮像装置は、 マイクロレンズの形状が軸対称非球面であることを特徴としている。なお、マイクロレン ズ以外の構成は、第 1の実施の形態における撮像装置 10と同様であり、説明を省略 する。  A second embodiment of the imaging apparatus according to the present invention will be described. The configuration of the imaging device in the present embodiment is different from the imaging device 10 (see FIG. 1) in the first embodiment in the shape of the microlens constituting the microlens array. That is, the imaging device 10 in the first embodiment includes the microlens 21a formed in a convex lens shape having a constant curvature. The imaging device in the present embodiment has a microlens shape as an axis. It is characterized by a symmetric aspherical surface. The configuration other than the microlens is the same as that of the imaging device 10 in the first embodiment, and a description thereof is omitted.
[0041] 本実施の形態におけるマイクロレンズの形状は、一般的に式(1)の高次の多項式 で表される非球面レンズである。ここで、 Zはマイクロレンズの光軸方向の座標、 rはマ イク口レンズの半径方向の光軸からの座標、 cはマイクロレンズの頂点における曲率、 K及び Anは非球面係数、 nは整数 (n = 1、 2· · を示す。  [0041] The shape of the microlens in the present embodiment is an aspherical lens generally represented by a high-order polynomial in equation (1). Where Z is the coordinate in the optical axis direction of the microlens, r is the coordinate from the optical axis in the radial direction of the microphone lens, c is the curvature at the apex of the microlens, K and An are aspheric coefficients, and n is an integer (Indicates n = 1, 2.
[数 1]  [Number 1]
Figure imgf000009_0001
[0042] 本実施の形態における撮像装置の光学性能は、レンズ 12の性能が大部分を占め る力 レンズ 12だけで取りきれない各収差に対して、マイクロレンズの形状を一般的 な非球面レンズと同様な非球面形状にすることにより、本実施の形態における撮像装 置は、収差を軽減させて被写体像の画質を向上させることができる。
Figure imgf000009_0001
[0042] The optical performance of the imaging apparatus according to the present embodiment is that the performance of the lens 12 is a major force. For each aberration that cannot be removed by the lens 12 alone, the shape of the micro lens is a general aspheric lens By using the same aspherical shape, the imaging apparatus in this embodiment can reduce the aberration and improve the image quality of the subject image.
[0043] (第 3の実施の形態)  [0043] (Third embodiment)
本発明に係る携帯端末装置としての携帯電話装置にっ 、て説明する。  A mobile phone device as a mobile terminal device according to the present invention will be described.
[0044] 図 5に示すように、本実施の形態における携帯電話装置 30は、第 1の実施の形態 における撮像装置 10を公知のカメラ付き携帯電話装置に搭載したものである。すな わち、携帯電話装置 30は、被写体を撮像する撮像装置 10と、上側筐体 31と、下側 筐体 32と、上側筐体 31と下側筐体 32とを連結する蝶番部 33と、画像やメッセージを 表示するディスプレイ 34と、音を出力するスピーカ部 35と、電波を捕捉するアンテナ 部 36と、ユーザが情報を入力するキーボード部 37と、音声を入力するマイク部 38と を備えている。  As shown in FIG. 5, a mobile phone device 30 in the present embodiment is obtained by mounting the imaging device 10 in the first embodiment on a known mobile phone device with a camera. In other words, the mobile phone device 30 includes the imaging device 10 that captures an image of the subject, the upper housing 31, the lower housing 32, and the hinge portion 33 that connects the upper housing 31 and the lower housing 32. A display 34 for displaying images and messages, a speaker unit 35 for outputting sound, an antenna unit 36 for capturing radio waves, a keyboard unit 37 for inputting information by a user, and a microphone unit 38 for inputting sound. I have.
[0045] したがって、本実施の形態における携帯電話装置 30は、第 1の実施の形態におけ る撮像装置 10を備えることにより、カメラとして使用される際に、入射角に依存しない 分光特性が得られると共に、赤外線の影響による被写体像の輪郭のぼけや、被写体 像の全体に赤みが力かること等を防止することができ、被写体画像の画質を向上さ せることができる。  [0045] Therefore, the cellular phone device 30 in the present embodiment includes the imaging device 10 in the first embodiment, so that when used as a camera, spectral characteristics independent of the incident angle can be obtained. In addition, it is possible to prevent blurring of the contour of the subject image due to the influence of infrared rays, redness on the entire subject image, and the like, thereby improving the image quality of the subject image.
[0046] また、本実施の形態における携帯電話装置 30は、上側筐体 31と下側筐体 32とが 蝶番部 33を介して折りたたみ可能な構成であり、携帯電話装置 30を図 5に示すよう に開いた状態で、携帯電話装置 30の使用者を撮像装置 10が撮像することができる ようになつている。また、携帯電話装置 30は、撮像装置 10によって取得される使用者 の撮像データに基づき、正規の使用者として予め登録された人物か否かを認証する 顔画像認証の機能を有しており、正規に登録された人物のみが使用できるようセキュ リティが確保されている。  In addition, the mobile phone device 30 according to the present embodiment is configured such that the upper housing 31 and the lower housing 32 can be folded via a hinge 33, and the mobile phone device 30 is shown in FIG. Thus, the imaging device 10 can take an image of the user of the mobile phone device 30 in the opened state. Further, the mobile phone device 30 has a face image authentication function for authenticating whether or not the person is a person registered in advance as a regular user based on the user's imaging data acquired by the imaging device 10. Security is ensured so that only authorized persons can use it.
[0047] 第 1の実施の形態において説明したように、撮像装置 10は、従来のものよりも色再 現性に優れた良好な画質の被写体像のデータを取得することができるので、本実施 の形態における携帯電話装置 30は、従来のものよりも短時間で精度の高い認証を 行うことができる。また、本実施の形態における携帯電話装置 30は、前述のような撮 像装置 10を備えているので、従来のものよりも顔画像認証の機能を複雑ィ匕してセキ ユリティをさらに高めることができ、その場合でも携帯電話装置としての利便性を低下 させることがな!、と 、う効果を有する。 [0047] As described in the first embodiment, the imaging apparatus 10 can acquire subject image data with good image quality that is superior in color reproducibility than the conventional one. Mobile phone device 30 in the form of It can be carried out. In addition, since the cellular phone device 30 according to the present embodiment includes the imaging device 10 as described above, the function of the face image authentication can be more complicated than that of the conventional device, thereby further improving the security. Even in such a case, the convenience as a mobile phone device cannot be reduced!
[0048] 以上のように、本実施の形態における携帯電話装置 30によれば、撮像装置 10を備 える構成としたので、カメラとして使用される際に、入射角に依存しない分光特性が 得られると共に、赤外線の影響による被写体像の輪郭のぼけや、被写体像の全体に 赤みが力かること等を防止することができ、被写体画像の画質を向上させることがで きる。 As described above, according to the mobile phone device 30 of the present embodiment, the imaging device 10 is provided, so that when used as a camera, spectral characteristics that do not depend on the incident angle can be obtained. At the same time, it is possible to prevent blurring of the contour of the subject image due to the influence of infrared rays, redness on the entire subject image, and the like, thereby improving the image quality of the subject image.
[0049] また、本実施の形態における携帯電話装置 30によれば、被写体画像の画質を向 上させることができる撮像装置 10を備える構成としたので、従来のものよりも短時間 で精度の高 、認証を行うことができる。  [0049] In addition, according to the mobile phone device 30 in the present embodiment, since the imaging device 10 that can improve the image quality of the subject image is provided, the accuracy is higher in a shorter time than the conventional one. Authentication can be performed.
[0050] また、本実施の形態における携帯電話装置 30によれば、反射型赤外カットフィルタ や吸収型赤外カットフィルタ等を設けるためのスペースを必要としない撮像装置 10を 備える構成としたので、装置の小型化を図ることができる。  [0050] In addition, according to the mobile phone device 30 in the present embodiment, since the imaging device 10 that does not require a space for providing a reflective infrared cut filter, an absorption infrared cut filter, or the like is provided. Therefore, it is possible to reduce the size of the apparatus.
[0051] なお、前述の実施の形態において、携帯電話装置 30は、上側筐体 31と下側筐体 32とが蝶番部 33を介して折りたたみ可能な構成であり、撮像装置 10が上側筐体 31 に搭載されている例を示したが、本発明はこれに限定されるものではなぐ様々な形 態の携帯情報装置に適用可能である。たとえば、 PDA (パーソナル ·デジタル ·ァシ スタント)や、パーソナルコンピュータ、パーソナルコンピュータの外付け機器等の携 帯情報装置などにも応用することができる。  In the above-described embodiment, the mobile phone device 30 has a configuration in which the upper housing 31 and the lower housing 32 can be folded via the hinge 33, and the imaging device 10 is the upper housing. However, the present invention is not limited to this and can be applied to various types of portable information devices. For example, it can be applied to PDAs (Personal Digital Assistants), personal computers, and portable information devices such as personal computer external devices.
[0052] また、近年車載用途などにもカメラが多用されるようになり、これらに対しても本発明 の撮像装置 10を応用することも可能である。その他、 DSC (デジタル静止カメラ)や カムコーダ等のような色再現性に重点がおかれる機器、監視カメラのような視認性の 向上に重点が置かれる機器等に対しても本発明の撮像装置 10を応用することがで き、これらの機器の小型化を図ることができる。  In recent years, cameras have been frequently used for in-vehicle applications and the like, and the imaging device 10 of the present invention can also be applied to these cameras. In addition, the imaging apparatus of the present invention can be applied to devices such as DSCs (digital still cameras) and camcorders that place importance on color reproducibility, and devices such as surveillance cameras that place importance on improving visibility. Can be applied to reduce the size of these devices.
産業上の利用可能性  Industrial applicability
[0053] 以上のように、本発明に係るマイクロレンズは、フィルタ特性が入射光の入射角に依 存せず、従来のものよりも耐熱性に優れるという効果を有し、固体撮像素子に設けら れるマイクロレンズ及びこのマイクロレンズを用いた撮像装置、携帯端末装置等として 有用である。 As described above, in the microlens according to the present invention, the filter characteristics depend on the incident angle of incident light. It has an effect that it has better heat resistance than conventional ones, and is useful as a microlens provided in a solid-state image sensor, an imaging device using the microlens, a portable terminal device, and the like.

Claims

請求の範囲 The scope of the claims
[1] 被写体を撮像する固体撮像素子に設けられ、ガラス材料で形成されたマイクロレンズ において、前記ガラス材料は、赤外線を吸収する成分を含むことを特徴とするマイク 口レンズ。  [1] A microlens provided in a solid-state imaging device that images a subject and made of a glass material, wherein the glass material includes a component that absorbs infrared rays.
[2] 前記被写体からの光が入射される光軸に対する形状が球面状であることを特徴とす る請求項 1に記載のマイクロレンズ。  2. The microlens according to claim 1, wherein the shape with respect to the optical axis on which light from the subject is incident is spherical.
[3] 前記被写体からの光が入射される光軸に対する形状が非球面状であることを特徴と する請求項 1に記載のマイクロレンズ。 3. The microlens according to claim 1, wherein the shape with respect to the optical axis on which light from the subject is incident is aspheric.
[4] 請求項 1から請求項 3までのいずれ力 1項に記載のマイクロレンズと、前記被写体か らの光を集光して被写体像を結像する撮像光学系とを備えたことを特徴とする撮像 装置。 [4] A force according to any one of claims 1 to 3, comprising the microlens according to claim 1 and an imaging optical system that focuses light from the subject to form a subject image. An imaging device.
[5] 請求項 4に記載の撮像装置を備えたことを特徴とする携帯端末装置。  [5] A portable terminal device comprising the imaging device according to claim 4.
PCT/JP2007/062290 2006-08-22 2007-06-19 Microlenses, imaging device, and portable terminal device WO2008023494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006225436A JP2008051877A (en) 2006-08-22 2006-08-22 Micro lens, imaging apparatus, and personal digital assistant
JP2006-225436 2006-08-22

Publications (1)

Publication Number Publication Date
WO2008023494A1 true WO2008023494A1 (en) 2008-02-28

Family

ID=39106587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062290 WO2008023494A1 (en) 2006-08-22 2007-06-19 Microlenses, imaging device, and portable terminal device

Country Status (2)

Country Link
JP (1) JP2008051877A (en)
WO (1) WO2008023494A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740088A (en) * 2011-04-06 2012-10-17 云南北方奥雷德光电科技股份有限公司 Portable 3D playing terminal
WO2014091076A1 (en) * 2012-12-12 2014-06-19 Ledil Oy An optical surface, lens, reflector, optical arrangement and illuminator
CN104749739A (en) * 2015-04-08 2015-07-01 浙江舜宇光学有限公司 Assembly method for array-type lens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119478A1 (en) * 2008-03-27 2009-10-01 コニカミノルタオプト株式会社 Optical element assembly, imaging module, and method of manufacturing electronic apparatus
JP5597979B2 (en) * 2009-12-03 2014-10-01 凸版印刷株式会社 Display body and article with display body
KR101730142B1 (en) * 2010-04-10 2017-04-25 엘지이노텍 주식회사 Lens for a lighting unit
US10847565B2 (en) 2018-12-20 2020-11-24 Samsung Electronics Co., Ltd. Back side illumination image sensors having an infrared filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200360A (en) * 2002-12-18 2004-07-15 Toppan Printing Co Ltd Solid-state imaging device and method of manufacturing the same
JP2005082406A (en) * 2003-09-04 2005-03-31 Hoya Corp Preform for precision press forming, its manufacturing method, optical element, and its manufacturing method
JP2006066912A (en) * 2004-08-24 2006-03-09 Agilent Technol Inc Image sensors including integrated type electro-optical device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200360A (en) * 2002-12-18 2004-07-15 Toppan Printing Co Ltd Solid-state imaging device and method of manufacturing the same
JP2005082406A (en) * 2003-09-04 2005-03-31 Hoya Corp Preform for precision press forming, its manufacturing method, optical element, and its manufacturing method
JP2006066912A (en) * 2004-08-24 2006-03-09 Agilent Technol Inc Image sensors including integrated type electro-optical device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740088A (en) * 2011-04-06 2012-10-17 云南北方奥雷德光电科技股份有限公司 Portable 3D playing terminal
WO2014091076A1 (en) * 2012-12-12 2014-06-19 Ledil Oy An optical surface, lens, reflector, optical arrangement and illuminator
CN104749739A (en) * 2015-04-08 2015-07-01 浙江舜宇光学有限公司 Assembly method for array-type lens

Also Published As

Publication number Publication date
JP2008051877A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
EP2380345B1 (en) Improving the depth of field in an imaging system
US9674461B2 (en) Imaging device and imaging method
US20190383975A1 (en) Optical lens assembly, imaging lens module and electronic apparatus
WO2008023494A1 (en) Microlenses, imaging device, and portable terminal device
US7362518B2 (en) Small sized wide angle lens
US10764512B2 (en) Method of image fusion on camera device equipped with multiple cameras
US20150189140A1 (en) Curved sensor array camera
US20090080090A1 (en) Image pickup device and portable terminal device
TW201015105A (en) Miniature image capture lens
JP2012058407A (en) Imaging apparatus and portable information terminal
JP2004309695A (en) Imaging optical system and imaging apparatus using imaging optical system
US7170690B2 (en) Zoom lens
JP2014103458A (en) Camera module and display device
US20220365314A1 (en) Imaging device, imaging system, and recording medium
US8159602B2 (en) Imaging system with relaxed assembly tolerances and associated methods
JP5542248B2 (en) Imaging device and imaging apparatus
JP2004356175A (en) Image pickup device
US7663817B1 (en) Optical system with plano convex lens
WO2012026074A1 (en) Image pickup device, image pickup module, and camera
JP2010134286A (en) Combined lens, imaging apparatus, and electronic equipment
JP2007148051A (en) Photographing lens unit
JP2004311666A (en) Solid state imaging element
CN114764157A (en) Imaging lens, image capturing device and electronic device
JP2002171447A (en) Compound eye imaging system, imaging device and electronic equipment
WO2020233418A1 (en) Elastic sheet design method and elastic sheet, sma assembly, lens module, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767164

Country of ref document: EP

Kind code of ref document: A1