JP2004200360A - Solid-state imaging device and method of manufacturing the same - Google Patents

Solid-state imaging device and method of manufacturing the same Download PDF

Info

Publication number
JP2004200360A
JP2004200360A JP2002366318A JP2002366318A JP2004200360A JP 2004200360 A JP2004200360 A JP 2004200360A JP 2002366318 A JP2002366318 A JP 2002366318A JP 2002366318 A JP2002366318 A JP 2002366318A JP 2004200360 A JP2004200360 A JP 2004200360A
Authority
JP
Japan
Prior art keywords
layer
infrared absorbing
solid
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002366318A
Other languages
Japanese (ja)
Inventor
Kenzo Fukuyoshi
健蔵 福吉
Tadashi Ishimatsu
忠 石松
Tomohito Kitamura
智史 北村
Keisuke Ogata
啓介 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002366318A priority Critical patent/JP2004200360A/en
Priority to US10/813,179 priority patent/US7084472B2/en
Publication of JP2004200360A publication Critical patent/JP2004200360A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging element having the function to cut the light in the infrared region, which does not require a thick infrared cutting filter and improves light collection property, an S/N by reducing the reflected light, and quality of image, and also to provide a method of manufacturing the same solid-state imaging element. <P>SOLUTION: A micro lens 39 and a flat layer 34 have the infrared absorbing function. A method of manufacturing the solid-state imaging element comprises the steps of (1) forming a flat layer 34 having the infrared absorbing function on a photo-electric conversion element 32, (2) forming a color filter layer 33, (3) forming an infrared absorbing layer 35, (4) forming a lens mother die 20 with the photolithography and heat treatment, and (5) converting the infrared absorbing layer into a micro lens 39 having the infrared absorbing function by conducting the dry-etching and transferring a lens mother pattern to the infrared absorbing layer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、C−MOSやCCDで代表される固体撮像素子に関するものであり、特に、色再現性を損なうことなくカメラの光学系を小型にすることができ、また、集光性、S/N比の改善、及び画質向上を可能とする固体撮像素子に関する。
【0002】
【従来の技術】
カメラに装着されたC−MOSやCCD等の光電変換素子を有する固体撮像素子には、撮像時に色分解を行わせるために、その光電変換素子上に原色(RGB)系、或いは補色(YMC)系の三原色の有機カラーフィルタ層が設けられている。
しかし、光電変換素子は、人間の可視領域(400nm〜700nm)外に、すなわち、長波長の赤外領域(700nm〜1100nm)にも高い感度を有しており、また、有機カラーフィルタ層には赤外領域の光をカットする機能がなく、従って、700nm以上の長波長の光が光電変換素子に入ってしまい正確な色分解がなされない。
【0003】
この不正確な色分解を避けるため、例えば、無機多層膜による反射型の赤外線カットフィルタと、金属イオンを含む無機ガラスや有機色素を用いた吸収型の赤外線カットフィルタとをカメラの光学系に挿入しているのが現状である。
無機多層膜による反射型の赤外線カットフィルタは、その面に垂直な方向からの入射光に対しては赤外領域の光をカットする機能は高いが、斜め方向からの入射光に対しては赤外領域の光をカットする機能は不十分である。これを補うために、赤外領域の光の斜め入射や再入射の影響をなくす目的で吸収型の赤外線カットフィルタを併用している。
また、これらの赤外線カットフィルタは、カメラの部材として光学系に組み込まれるが厚みがそれぞれ1〜3mmあり、カメラを小型化する点で、またコストの観点からも問題となっていた。
【0004】
マイクロレンズの形成技術に関する公知の技術としては、例えば、特開昭60−53073号公報に比較的詳細に示されている。この特開昭60−53073号公報には、レンズを丸く半球状に形成する技術として熱による樹脂の熱流動性(熱フロー)を用いた技術、また、いくつかのエッチング方法によりレンズを加工する技術も詳細に開示されている。
【0005】
加えて、レンズ表面の光散乱による集光性能のロスの改善策として、レンズ表面にポリグリシジルメタクリレート(PGMA)などの有機膜や、OCD(東京応化工業(株)製のSiO2 系被膜形成用塗布液)の無機膜を形成する技術なども開示されている。
また、マイクロレンズをドライエッチング加工する技術は、上記の技術以外に特開平1−10666号公報に詳細な記載がある。
【0006】
【特許文献1】
特開昭60−53073号公報
【特許文献2】
特開平1−10666号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題に鑑みてなされたものであり、カメラの光学系の厚みを増やすことなく、赤外領域の光をカットする機能を固体撮像素子の構成そのままで、固体撮像素子に効率よく、最適化した状態で持たせるものである。
すなわち、本発明の第一の課題は、1mm〜3mm程度の厚みのある赤外カットフィルタを不要なものとした薄い固体撮像素子を提供することである。
【0008】
図8は、公知技術による固体撮像素子の一例の断面図を示したものである。図8に示すように、光電変換素子(82)上には、平坦化層(84)、(85)、カラーフィルタ層(83)、場合により層内レンズなどが形成され、一般には5〜6μm程度の大きめの(厚めの)レンズ下距離(78)となっている。
通常、マイクロレンズ(89)は、屈折率1.6〜1.7程度の高屈折率樹脂で形成されるが、マイクロレンズ(89)からの入射光の集光性を向上させ、かつ、光電変換素子(82)でのS/N(信号/ノイズ)比を向上させる有力な手段は、レンズ下距離(78)を小さく(薄く)することである。
本発明の第二の課題は、レンズ下距離を小さくし、集光性、S/N比の改善を図ることにある。
【0009】
図4(a)は、固体撮像素子の他の例のマイクロレンズ側からの平面図であり、また、図4(b)は、図4(a)におけるB−B線での断面図である。
光電変換素子(52)のピッチやサイズが微細ピッチ、例えば、3μm以下の場合、マイクロレンズ(55)間の非開口部(マイクロレンズ間ギャップ)(49)からの反射光の影響が大きくなる。この反射光は、固体撮像素子の上面に配設されてれいるカバーガラスや、さらにその上の光学レンズ群で再反射し隣接する他の光電変換素子に再入射して、画質低下に結びつくノイズ光となる。
【0010】
また、図8に示す固体撮像素子におけるマイクロレンズは、熱フローで形成したマイクロレンズであるが、一般に熱フロー方式で形成したマイクロレンズは、屈折率が高く、マイクロレンズの表面からの反射光の量もかなり大きく画質低下の原因となっていた。
本発明の第三の課題は、図4に示すマイクロレンズ間の非開口部(49)、及び図8に示すマイクロレンズ(89)の表面からの反射光を極力低減させ、固体撮像素子のS/N比を改善し、画質向上を図ることにある。
【0011】
すなわち、本発明は、赤外領域の光をカットする機能をもった固体撮像素子であって、厚みのある赤外カットフィルタを不要なものとした、また、レンズ下距離を小さくして集光性、S/N比を改善した、さらには、非開口部及びマイクロレンズの表面からの反射光を低減させS/N比を改善し、画質を向上させた固体撮像素子を提供することを課題とするものである。
また、その製造方法を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明は、複数の光電変換素子上に、少なくとも平坦化層、カラーフィルタ層、略半球状のマイクロレンズが構成要素として順次に配設された固体撮像素子において、該略半球状のマイクロレンズ及び該平坦化層が赤外線吸収機能をもつことを特徴とする固体撮像素子である。
【0013】
また、本発明は、上記発明による固体撮像素子において、前記平坦化層とカラーフィルタ層との間に紫外線吸収層を配設したことを特徴とする固体撮像素子である。
【0014】
また、本発明は、複数の光電変換素子上に、少なくとも平坦化層、カラーフィルタ層、略半球状のマイクロレンズが構成要素として順次に配設された固体撮像素子の製造方法において、
1)半導体基板の光電変換素子上に、赤外線吸収機能をもつ樹脂塗布液を用い、赤外線吸収機能をもつ平坦化層を形成する工程、
2)該平坦化層上に、色素を色材とした感光性着色レジストを用い、フォトリソグラフィによって複数色のカラーフィルタ層を形成する工程、
3)該複数色のカラーフィルタ層上に、赤外線吸収機能をもつ樹脂塗布液を用い、赤外線吸収層を形成する工程、
4)該赤外線吸収層上に、アルカリ可溶性、感光性、及び熱フロー性を有するレンズ材料を用い、フォトリソグラフィ及び熱処理によってレンズ母型を形成する工程、
5)該レンズ母型上に、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつ略半球状のマイクロレンズとする工程、
を具備することを特徴とする固体撮像素子の製造方法である。
【0015】
また、本発明は、上記発明による固体撮像素子の製造方法において、前記3)該複数色のカラーフィルタ層上に、赤外線吸収機能をもつ樹脂塗布液を用い、赤外線吸収層を形成する工程と、前記4)該赤外線吸収層上に、アルカリ可溶性、感光性、及び熱フロー性を有するレンズ材料を用い、フォトリソグラフィ及び熱処理によってレンズ母型を形成する工程との間に、紫外線吸収層を塗布によって形成する工程を挿入することを特徴とする固体撮像素子の製造方法である。
【0016】
また、本発明は、上記発明による固体撮像素子の製造方法において、前記樹脂塗布液が、赤外線吸収波長域の異なる複数の赤外線吸収剤を含有させた樹脂塗布液であることを特徴とする固体撮像素子の製造方法である。
【0017】
また、本発明は、上記発明による固体撮像素子の製造方法において、前記5)該レンズ母型上に、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつ略半球状のマイクロレンズとする工程において、レンズ母型パターンの転写をカラーフィルタ層の厚み方向の途中まで行うことを特徴とする固体撮像素子の製造方法である。
【0018】
また、本発明は、上記発明による固体撮像素子の製造方法において、前記5)該レンズ母型上に、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつ略半球状のマイクロレンズとする工程の後に、赤外線吸収層の薄膜を塗布によって積層する工程を加えることを特徴とする固体撮像素子の製造方法である。
【0019】
また、本発明は、上記発明による固体撮像素子の製造方法において、前記マイクロレンズの最外層に、低屈折率樹脂の薄膜を積層する工程を加えることを特徴とする固体撮像素子の製造方法である。
【0020】
【発明の実施の形態】
以下に本発明による固体撮像素子を、その実施形態に基づいて説明する。
図9は、本発明による固体撮像素子の一実施例を示す断面図である。図9に示すように、本発明による固体撮像素子は、その表面に光電変換素子(32)、遮光層(30)などが形成された半導体基板(31)上に、赤外線吸収機能をもつ平坦化層(34)、カラーフィルタ層(33)、及び赤外線吸収機能をもつ略半球状のマイクロレンズ(39)が順次に形成されたものである。
図9に示すように、この固体撮像素子の一実施例は、構成要素の内、略半球状のマイクロレンズ(39)及び平坦化層(34)が赤外線吸収機能をもったものであるので、色再現性を損なうことなく、従来の赤外カットフィルタを不要なものとした固体撮像素子となっている。
【0021】
また、本発明による固体撮像素子は、平坦化層とカラーフィルタ層との間に紫外線吸収層を配設したことを特徴とする固体撮像素子である。
近時、固体撮像素子の微細化は進み、画素(もしくはマイクロレンズ)は、3μmピッチ以下、あるいは2μmピッチ以下の極めて微細な領域になりつつある。これらの微細な画素ではパターン形状のビリツキが、画質にムラなどの形で悪い影響を及ぼす。
パターン形状のビリツキの原因となるステッパー露光装置(露光波長は365nmの紫外線)でのハレーションを防止するために、予めカラーフィルタ層の下地として紫外線吸収層を形成しておくことが望ましい。
【0022】
また、本発明による固体撮像素子の製造方法は、赤外線吸収層を形成する工程と、レンズ母型を形成する工程との間に、紫外線吸収層を塗布によって形成する工程を挿入することを特徴とする固体撮像素子の製造方法であるが、紫外線吸収層を設けることにより、ステッパー露光装置でのハレーションを防止して、高精度のマイクロレンズパターンを形成できる。また、比較的耐光性の低い赤外線吸収層を紫外線から保護する機能を付与することができる。
【0023】
紫外線吸収層は、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、メラミン樹脂、尿素樹脂、スチレン樹脂、フェノール樹脂、あるいはこれらの共重合物などの透明樹脂が使用可能である。
紫外線は、固体撮像素子の製造プロセスで使用するi線(365nm)と、固体撮像素子が装着されたカメラを使用する際の外光に含まれる紫外線が対象となる。紫外線吸収層は、前者に対しては、i線(365nm)のハレーションを防止してレンズ母型のパターン形状を確保することになる。後者に対しては、これを吸収して赤外線吸収層の機能劣化を防ぐ。
【0024】
紫外線吸収機能は、紫外線吸収性化合物や紫外線吸収剤を前記の透明樹脂に添加あるいはペンダント(反応型紫外線吸収剤などの形で樹脂分子鎖に組み込む)方式にて可能である。
本発明で使用可能な紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、サリチル酸系化合物、クマリン系化合物などがあげられ、これら紫外線吸収剤に、例えば、ヒンダードミン系化合物のような光安定化剤やクエンチャー(例えば、一重項酸素クエンチャー)を添加しても良い。
また、酸化セリウムや酸化チタンなどの金属酸化物微粒子の紫外線吸収剤も利用可能である。
【0025】
本発明で使用可能な赤外線吸収剤としては、アントラキノン系化合物、フタロシアニン系化合物、シアニン系化合物、ポリメチレン系化合物、アルミニウム系化合物、ジイモニウム系化合物、イモニウム系化合物、アゾ系化合物などがあげられる。
また、赤外線吸収機能は、赤外線吸収性化合物や赤外線吸収剤を前記の透明樹脂に添加あるいはペンダント(反応性染料など反応型赤外線吸収剤などの形で樹脂分子鎖に組み込む)方式にて可能である。
【0026】
赤外線吸収剤の多くは、その吸収波長域が限定され、C−MOSやCCD等の光電変換素子で要求される近赤外および赤外域(例えば、650nm〜1100nm)の領域全てを1種の赤外線吸収剤でカバーすることは困難である。故に、2種から6種類程度の複数の赤外吸収剤を混合して、或いは、1構成要素を多層にして用いることが好ましい。
【0027】
また、可視領域(400nm〜700nm)の透過率を確保しながら、十分な赤外線吸収機能を付与するには、C−MOSやCCD等の光電変換素子上に備えた構成要素の複数に赤外線吸収機能を分担させることが好ましい。
例えば、同一の赤外線吸収剤を、異なる構成要素に含有させて赤外線吸収機能を強化するとか、吸収波長域の異なる赤外線吸収剤を、各々異なる構成要素に含有させるなどを行い赤外線吸収機能を分担させることが好ましい。
尚、赤外線吸収剤のもつ耐熱性などを考慮して、どの構成要素に含有させるかを選択することもできる。
【0028】
また、光電変換素子上に備えた原色(RGB)系、或いは補色(YMC)系の三原色のカラーフィルタ層においては、色毎に赤外領域の分光特性(吸収)が異なるために、赤外線吸収機能をもたせる際には、吸収波長域の異なる、すなわち、赤外線吸収剤の種類及び含有量を調節して含有させることが好ましい。
【0029】
本発明では、基本的には、レンズ下距離を小さくするためドライエッチングをできるだけ深く入れることは好ましい。しかし、カラーフィルタ層の下地面まで入れるとカラーフィルタ層の平坦面(有効面)が小さくなり、マイクロレンズ周辺からの色純度の低下した入射光量が増え、画質低下につながることになる。
故に、ドライエッチングの深さは、カラーフィルタ層の厚み方向の途中までとすることが、より好ましい。
【0030】
また、本発明では、複数色のカラーフィルタ層の形成に用いる材料として、有機顔料を色材とした着色樹脂を採用しても良い。しかし、有機顔料の場合、その種類によってはドライエッチングでのエッチングレートに差があり、色毎にマイクロレンズの形状が変化しやすいこと、また、その表面形状が荒れること、加えて本発明が対象とする微細な画素ピッチの固体撮像素子では、顔料自体の粒径(粒子)がS/N比に悪い影響を与えやすく、その材料のフィルトレーション(異物除去)も難しいことから、染料を色材とする着色樹脂であることが、より好ましい。
【0031】
また、本発明では、非開口部を小さくし、マイクロレンズの開口率をあげるため、あるいは、赤外線吸収機能を向上させるため、マイクロレンズ上に赤外線吸収層の薄膜を塗布によって積層しても良い。
また、本発明においては、マイクロレンズの表面や非開口部からの入射光の再反射を軽減するため、マイクロレンズ上や、上記の赤外線吸収層の薄膜の上にさらに低屈折率樹脂の薄膜を形成することが望ましい。
また、マイクロレンズ間に露出される下層には、マイクロレンズの表面で反射される迷光を吸収し、固体撮像素子に発生するノイズ(この場合は、反射光の再入射)を幾分でも減らすため、屈折率の低い材料の薄膜を積層しても良い。
【0032】
【実施例】
以下に、本発明による固体撮像素子の製造方法を実施例により詳細に説明する。
<実施例1>
図1に示すように、光電変換素子(32)及び遮光層(30)が形成された半導体基板(31)上に平坦化層(34)を形成後、R(赤)、G(緑)、B(青)3色のカラーレジストを用い、ステッパー露光装置を使用しての公知のフォトリソグラフィにて、順次に3色のカラーフィルタ層(33)を形成した。各々のカラーフィルタ層(33)の膜厚は0.9μm〜0.8μmとした。
【0033】
なお、カラーフィルタ層(33)のR(赤)、G(緑)、B(青)は、それぞれ有機顔料を色材とする東洋インキ製造(株)製のカラーレジストを用いた。当実施例の色配列は、一画素を2つのG(緑)と1つのR(赤)、1つのB(青)との合計4素子で構成する、いわゆるベイヤー配列とした。前記図4(a)は、固体撮像素子の一例のマイクロレンズ側からの平面図であるが、またベイヤー配列におけるカラーフィルタ層およびマイクロレンズの2次元(平面)的な配列を示したものである。
【0034】
次に、図2に示すように、カラーフィルタ層(33)上に3種類の赤外線吸収剤を含む樹脂塗布液を用いて1μm膜厚に赤外線吸収層(35)を形成した。さらに、熱フロー性をもつ感光性のフェノール樹脂をスピンコートで塗布し、露光、現像、熱フローさせて半球状のレンズ母型(20)とした。
熱フローの温度は200℃とし、レンズ母型の厚み(レンズ高さ)は0.7μmとした。
尚、赤外線吸収機能を持つ樹脂塗布液として、熱硬化アクリル樹脂の100重量部と、山本化成(株)製、赤外線吸収剤YKR3080、YKR3030、YKR200の3種類を合わせ20重量部をシクロヘキサノンなど有機溶剤に溶解させた樹脂塗布液を用いた。
【0035】
次に、図3に示すように、レンズ母型(20)を形成した半導体基板(31)を、ドライエッチング装置にてO2 ガスによるエッチング処理(白矢印)を行った。基板温度は常温、圧力1Pa、RFパワー500W、バイアス50Wの条件で処理し、下方の赤外線吸収層にレンズ母型を完全に転写して、マイクロレンズ(39)とした。
尚、レンズ母型の材料をフェノール系樹脂のようにエッチングレートの遅い樹脂とする(あるいは、下方の赤外線吸収層の樹脂のエッチングレートを速い材料とする)など、エッチングレートの異なる樹脂材料を用いることにより、マイクロレンズの形状を最適な光学特性に合わせることが可能である。
【0036】
<実施例2>
図7は、実施例2における固体撮像素子の断面図である。光電変換素子(72)が形成された半導体基板(71)上に、赤外線吸収機能をもつ平坦化層(74)を平均厚み0.6μm、また、紫外線吸収層(70)を0.5μmで塗布により積層し、さらに 反応性染料による色材を用いた3色のカラーフィルタ層(73)(図7はベイヤー配列、すなわち、図4(a)でのB−B線の断面のため、G(緑)画素のみの表示となっている。)を厚み0.9μmで形成したものである。
【0037】
カラーフィルタ層(73)上には、さらに赤外線吸収層の薄膜(76)および低屈折率樹脂(77)の薄膜が、それぞれ約0.1μmの厚みで形成してある。
これら薄膜の形成方法は、スピンコートの手法を用いてたが、マイクロレンズ(75)間の凹みの部分には、赤外線吸収層の薄膜は0.5μm程度とやや厚めになっている。これは、後に示すように、ドライエッチングにてカラーフィルタ層の色間に、予め、およそ0.4μmの深さの凹みを形成しておいた効果である。
【0038】
先ず、図5に示すように、半導体基板(71)上に、赤外線吸収機能をもつ平坦化層(74)及び紫外線吸収層(70)をいずれもスピンコートの手法を用い塗布によって形成した。これらの層の硬膜は230℃のホットプレートで行った。さらに、染料を色材とするカラーレジスト(アクリル感光性樹脂ベース)を用いて、実施例1と同じフォトリソグラフィにて、順次に3色のカラーフィルタ層(73)を形成した。
実施例1と同様、赤外線吸収層およびレンズ母型を形成した後、ドライエッチングでレンズ母型を転写してマイクロレンズ(75)とした。この場合に、カラーフィルタ層(73)の一部にまでエッチングを入れた。カラーフィルタ層(73)の画素間には、およそ0.4μmの深さの凹みを形成した。
【0039】
次に、図6に示すように、およそ0.1μm膜厚(マイクロレンズ間凹みは厚くなる)に赤外線吸収層の薄膜(76)を形成した。
次に、図7に示すように、およそ0.1μm膜厚に低屈折率樹脂(フッソ系アクリル樹脂、屈折率1.45)(77)を塗布により形成した。低屈折率樹脂(77)の積層により、低屈折率樹脂(77)のない構成(例えば、図6の構成)と比較して、光の反射率は、およそ2%低下した(光の透過率が2%増加した)。
【0040】
【発明の効果】
本発明は、固体撮像素子の構成要素であるマイクロレンズ及び平坦化層が赤外線吸収機能をもっているので、従来の赤外カットフィルタを不要なものとし、カメラを小型にすることが容易にできる。
【0041】
また、本発明は、半導体基板の光電変換素子上に赤外線吸収機能をもつ平坦化層を形成する工程、カラーフィルタ層を形成する工程、赤外線吸収層を形成する工程、フォトリソグラフィ及び熱処理によってレンズ母型を形成する工程、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつマイクロレンズとする工程、を具備する固体撮像素子の製造方法であるので、固体撮像素子の構成要素であるマイクロレンズ及び平坦化層に赤外線吸収機能をもたせ、従来の赤外カットフィルタを不要なものとする固体撮像素子の製造方法となる。
【0042】
また、本発明は、赤外線吸収波長域の異なる複数の赤外線吸収剤を各構成要素に分割して吸収性能を付与するので、固体撮像素子に広域の赤外線吸収機能を無理なく任意に設定できる。加えて、赤外線吸収剤それぞれの耐熱性や耐光性によって、最適の場所にそれを配設できるッメリットがある。
また、本発明は、ドライエッチングを用いてレンズ母型を赤外線吸収層に転写するため、光の利用効率が高い薄膜構成の撮像素子を提供できる。また、カラーフィルタの一部にまでエッチングを入れるため、さらに薄膜化でき、より高い画質の固体撮像素子を提供できる。
【0043】
また、本発明は、マイクロレンズの表面に、もしくは、カラーフィルタの下地に紫外線吸収機能を付与することにより、やや耐光性の乏しい赤外線吸収剤を保護する効果を持たせることができる。また、マイクロレンズの表面及び非開口部に低屈折率樹脂の薄膜を形成することにより、反射光を減らすことができ、固体撮像素子の画質が改善される。また、マイクロレンズ、もしくは赤外線吸収層の薄膜の表面からの反射光は、固体撮像素子のカバーガラスからの再反射光となり固体撮像素子に再入射し、ノイズとなり画質低下の原因となるが、本発明の固体撮像素子は、こうしたノイズを軽減できるため、高画質を得ることができる。
【図面の簡単な説明】
【図1】本発明による固体撮像素子の製造方法の説明図である。
【図2】本発明による固体撮像素子の製造方法の説明図である。
【図3】本発明による固体撮像素子の製造方法の説明図である。
【図4】(a)は、固体撮像素子の他の例のマイクロレンズ側からの平面図である。(b)は、図4(a)におけるB−B線での断面図である。
【図5】実施例2における固体撮像素子の製造方法の説明図である。
【図6】実施例2における固体撮像素子の製造方法の説明図である。
【図7】実施例2における固体撮像素子の断面図である。
【図8】公知技術による固体撮像素子の一例の断面図を示したものである。
【図9】本発明による固体撮像素子の一実施例を示す断面図である。
【符号の説明】
20・・・レンズ母型
30・・・遮光層
31、71・・・半導体基板
32、52、72、82・・・光電変換素子
33、73、83・・・カラーフィルタ層
34、74、84、85・・・平坦化層
35、70・・・赤外線吸収層
39、55、75、89・・・マイクロレンズ
49・・・非開口部
76・・・赤外線吸収層の薄膜
77・・・低屈折率樹脂
78・・・レンズ下距離
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device typified by a C-MOS or a CCD, and in particular, can reduce the size of an optical system of a camera without impairing color reproducibility, and improve light condensing and S / S The present invention relates to a solid-state imaging device capable of improving an N ratio and improving image quality.
[0002]
[Prior art]
A solid-state image sensor having a photoelectric conversion element such as a C-MOS or CCD mounted on a camera has a primary color (RGB) system or a complementary color (YMC) on the photoelectric conversion element in order to perform color separation at the time of imaging. An organic color filter layer of three primary colors is provided.
However, the photoelectric conversion element has high sensitivity outside the human visible region (400 nm to 700 nm), that is, also in the long wavelength infrared region (700 nm to 1100 nm). There is no function of cutting light in the infrared region, and therefore, light having a long wavelength of 700 nm or more enters the photoelectric conversion element, and accurate color separation is not performed.
[0003]
In order to avoid this inaccurate color separation, for example, a reflection type infrared cut filter using an inorganic multilayer film and an absorption type infrared cut filter using inorganic glass or organic dye containing metal ions are inserted into the optical system of the camera. That is the current situation.
The reflection type infrared cut filter made of inorganic multilayer film has a high function to cut the light in the infrared region for the incident light from the direction perpendicular to the surface, but it is red for the incident light from the oblique direction. The function of cutting light in the outer region is insufficient. To compensate for this, an absorption-type infrared cut filter is used in combination to eliminate the effects of oblique incidence and re-incidence of light in the infrared region.
Further, these infrared cut filters are incorporated in an optical system as members of a camera, but have a thickness of 1 to 3 mm, respectively, and have been problematic in terms of miniaturizing the camera and from the viewpoint of cost.
[0004]
A well-known technique relating to a microlens forming technique is disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 60-53073 in relatively detail. Japanese Patent Application Laid-Open No. Sho 60-53073 discloses a technique for forming a lens into a round and hemispherical shape, a technique using thermal fluidity (heat flow) of a resin by heat, and a method of processing a lens by several etching methods. The technology is also disclosed in detail.
[0005]
In addition, as a measure to reduce the loss of light-collecting performance due to light scattering on the lens surface, an organic film such as polyglycidyl methacrylate (PGMA) or an OCD (for forming an SiO 2 -based film manufactured by Tokyo Ohka Kogyo Co. A technique for forming an inorganic film of a coating liquid) is also disclosed.
In addition to the technique described above, a detailed description of a technique for dry-etching a microlens is described in Japanese Patent Application Laid-Open No. Hei 1-106666.
[0006]
[Patent Document 1]
JP-A-60-53073 [Patent Document 2]
JP-A-1-106666
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and has a function of cutting light in an infrared region without increasing the thickness of an optical system of a camera. Well, it is something that is kept in an optimized state.
That is, a first object of the present invention is to provide a thin solid-state imaging device which does not require an infrared cut filter having a thickness of about 1 mm to 3 mm.
[0008]
FIG. 8 is a cross-sectional view illustrating an example of a solid-state imaging device according to a known technique. As shown in FIG. 8, on the photoelectric conversion element (82), flattening layers (84) and (85), a color filter layer (83), and optionally an inner lens are formed. It is a relatively large (thicker) lens lower distance (78).
Usually, the microlens (89) is formed of a high refractive index resin having a refractive index of about 1.6 to 1.7. An effective means for improving the S / N (signal / noise) ratio in the conversion element (82) is to reduce (thin) the distance under the lens (78).
A second object of the present invention is to reduce the distance under the lens and improve the light collecting property and the S / N ratio.
[0009]
FIG. 4A is a plan view of another example of the solid-state image sensor from the microlens side, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. .
When the pitch and the size of the photoelectric conversion elements (52) are fine pitches, for example, 3 μm or less, the influence of the reflected light from the non-opening portion (gap between microlenses) (49) between the microlenses (55) increases. The reflected light is re-reflected by the cover glass disposed on the upper surface of the solid-state imaging device, and further by the optical lens group thereon, and re-enters another adjacent photoelectric conversion device, thereby causing noise that leads to deterioration of image quality. It becomes light.
[0010]
Further, the microlens in the solid-state imaging device shown in FIG. 8 is a microlens formed by a heat flow, but a microlens formed by a heat flow method generally has a high refractive index and reflects light reflected from the surface of the microlens. The amount was also quite large, causing a decrease in image quality.
A third object of the present invention is to minimize reflection light from the non-opening (49) between the microlenses shown in FIG. 4 and the surface of the microlenses (89) shown in FIG. The object is to improve the image quality by improving the / N ratio.
[0011]
That is, the present invention relates to a solid-state imaging device having a function of cutting light in an infrared region, eliminating the need for a thick infrared cut filter, and reducing the distance below the lens to collect light. Further, it is an object of the present invention to provide a solid-state image pickup device having improved image quality, improved S / N ratio, improved S / N ratio by reducing light reflected from the non-opening portion and the surface of the microlens, and improved image quality. It is assumed that.
Another object is to provide a manufacturing method thereof.
[0012]
[Means for Solving the Problems]
The present invention provides a solid-state imaging device in which at least a flattening layer, a color filter layer, and a substantially hemispherical microlens are sequentially arranged as constituent elements on a plurality of photoelectric conversion elements. The solid-state imaging device is characterized in that the flattening layer has an infrared absorbing function.
[0013]
Further, the present invention is the solid-state imaging device according to the above invention, wherein an ultraviolet absorbing layer is provided between the flattening layer and the color filter layer.
[0014]
Further, the present invention provides a method for manufacturing a solid-state imaging device in which at least a flattening layer, a color filter layer, and a substantially hemispherical microlens are sequentially arranged as constituent elements on a plurality of photoelectric conversion elements.
1) a step of forming a flattening layer having an infrared absorbing function on a photoelectric conversion element of a semiconductor substrate by using a resin coating solution having an infrared absorbing function;
2) a step of forming a color filter layer of a plurality of colors by photolithography on the flattening layer using a photosensitive colored resist using a coloring material as a coloring material;
3) forming an infrared absorbing layer on the color filter layers of the plurality of colors using a resin coating solution having an infrared absorbing function;
4) using an alkali-soluble, photosensitive, and heat-flowable lens material on the infrared absorption layer to form a lens matrix by photolithography and heat treatment;
5) a step of performing dry etching on the lens matrix, transferring the lens matrix pattern to the infrared absorbing layer, and forming the infrared absorbing layer into a substantially hemispherical microlens having an infrared absorbing function;
A method for manufacturing a solid-state imaging device, comprising:
[0015]
Further, the present invention provides the method for manufacturing a solid-state imaging device according to the present invention, wherein, 3) forming an infrared absorbing layer on the color filter layers of the plurality of colors by using a resin coating liquid having an infrared absorbing function; 4) using an alkali-soluble, photosensitive, and heat-flowable lens material on the infrared-absorbing layer, and applying an ultraviolet-absorbing layer between the step of forming a lens matrix by photolithography and heat treatment. A method of manufacturing a solid-state imaging device, comprising a step of forming a solid-state imaging device.
[0016]
Also, the present invention provides the method for manufacturing a solid-state imaging device according to the above invention, wherein the resin coating liquid is a resin coating liquid containing a plurality of infrared absorbers having different infrared absorption wavelength ranges. This is a method for manufacturing an element.
[0017]
Further, the present invention provides the method for manufacturing a solid-state imaging device according to the above invention, wherein the 5) dry etching is performed on the lens matrix, a lens matrix pattern is transferred to an infrared absorption layer, and the infrared absorption layer is subjected to infrared absorption. A method for manufacturing a solid-state imaging device, characterized in that in a process of forming a substantially hemispherical microlens having a function, transfer of a lens matrix pattern is performed halfway in a thickness direction of a color filter layer.
[0018]
Further, the present invention provides the method for manufacturing a solid-state imaging device according to the above invention, wherein the 5) dry etching is performed on the lens matrix, a lens matrix pattern is transferred to an infrared absorption layer, and the infrared absorption layer is subjected to infrared absorption. A method of manufacturing a solid-state imaging device, characterized by adding a step of coating and laminating a thin film of an infrared absorbing layer after a step of forming a substantially hemispherical microlens having a function.
[0019]
Further, the present invention is the method for manufacturing a solid-state imaging device according to the above invention, further comprising a step of laminating a thin film of a low refractive index resin on the outermost layer of the microlens. .
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a solid-state imaging device according to the present invention will be described based on its embodiments.
FIG. 9 is a sectional view showing one embodiment of the solid-state imaging device according to the present invention. As shown in FIG. 9, the solid-state imaging device according to the present invention has a flat surface having an infrared absorption function on a semiconductor substrate (31) having a photoelectric conversion element (32), a light shielding layer (30), etc. formed on the surface thereof. A layer (34), a color filter layer (33), and a substantially hemispherical microlens (39) having an infrared absorbing function are sequentially formed.
As shown in FIG. 9, in one embodiment of this solid-state imaging device, the substantially hemispherical microlens (39) and the flattening layer (34) among the components have an infrared absorbing function. This is a solid-state imaging device that does not require a conventional infrared cut filter without deteriorating color reproducibility.
[0021]
Further, the solid-state imaging device according to the present invention is a solid-state imaging device in which an ultraviolet absorbing layer is provided between the flattening layer and the color filter layer.
In recent years, the miniaturization of solid-state imaging devices has progressed, and pixels (or microlenses) are becoming extremely fine regions with a pitch of 3 μm or less or a pitch of 2 μm or less. In these fine pixels, the fluctuation of the pattern shape has a bad influence on the image quality such as unevenness.
In order to prevent halation in a stepper exposure apparatus (ultraviolet light having an exposure wavelength of 365 nm), which causes pattern pattern fluctuation, it is desirable to form an ultraviolet absorbing layer as a base of the color filter layer in advance.
[0022]
Further, the method for manufacturing a solid-state imaging device according to the present invention is characterized in that a step of forming an ultraviolet absorbing layer by coating is inserted between the step of forming an infrared absorbing layer and the step of forming a lens matrix. By providing an ultraviolet absorbing layer, halation in a stepper exposure apparatus can be prevented, and a high-precision microlens pattern can be formed. Further, a function of protecting the infrared absorbing layer having relatively low light resistance from ultraviolet light can be provided.
[0023]
For the ultraviolet absorbing layer, a transparent resin such as an acrylic resin, an epoxy resin, a polyester resin, a urethane resin, a melamine resin, a urea resin, a styrene resin, a phenol resin, or a copolymer thereof can be used.
The ultraviolet rays include an i-line (365 nm) used in the manufacturing process of the solid-state imaging device and ultraviolet light included in external light when using a camera equipped with the solid-state imaging device. With respect to the former, the ultraviolet absorbing layer prevents the halation of the i-line (365 nm) and secures the pattern shape of the lens matrix. The latter is absorbed to prevent functional deterioration of the infrared absorbing layer.
[0024]
The ultraviolet absorbing function can be achieved by adding an ultraviolet absorbing compound or an ultraviolet absorbing agent to the transparent resin or by a pendant (incorporating a reactive ultraviolet absorbing agent into a resin molecular chain).
Examples of the ultraviolet absorber usable in the present invention include benzotriazole-based compounds, benzophenone-based compounds, salicylic acid-based compounds, coumarin-based compounds, and the like. Among these ultraviolet absorbers, for example, light stabilization such as hinderedamine-based compounds An agent or a quencher (for example, a singlet oxygen quencher) may be added.
Further, an ultraviolet absorber of fine metal oxide particles such as cerium oxide and titanium oxide can also be used.
[0025]
Examples of the infrared absorber usable in the present invention include anthraquinone compounds, phthalocyanine compounds, cyanine compounds, polymethylene compounds, aluminum compounds, diimonium compounds, immonium compounds, and azo compounds.
The infrared absorbing function can be achieved by adding an infrared absorbing compound or an infrared absorbing agent to the transparent resin or by pendant (incorporating a reactive dye such as a reactive dye into a resin molecular chain in the form of a reactive infrared absorbing agent). .
[0026]
Most of the infrared absorbers have a limited absorption wavelength range, and all the regions in the near-infrared region and the infrared region (for example, 650 nm to 1100 nm) required for a photoelectric conversion element such as a C-MOS or a CCD are a single type of infrared light. It is difficult to cover with an absorbent. Therefore, it is preferable to use a mixture of a plurality of infrared absorbers of about 2 to 6 kinds or to use one constituent element in a multilayer.
[0027]
In order to provide a sufficient infrared absorption function while securing the transmittance in the visible region (400 nm to 700 nm), a plurality of components provided on a photoelectric conversion element such as a C-MOS or a CCD need to have an infrared absorption function. Is preferably shared.
For example, the same infrared absorbing agent is contained in different components to enhance the infrared absorbing function, or the infrared absorbing agents having different absorption wavelength ranges are included in different components to share the infrared absorbing function. Is preferred.
In addition, it is also possible to select which component to include in consideration of the heat resistance and the like of the infrared absorber.
[0028]
Further, in the primary color (RGB) -based or complementary color (YMC) -based color filter layers provided on the photoelectric conversion element, the spectral characteristics (absorption) in the infrared region are different for each color. In the case of having an infrared absorbing agent, it is preferable that the absorbing agent has a different absorption wavelength range, that is, the type and content of the infrared absorbing agent are adjusted.
[0029]
In the present invention, it is basically preferable to make dry etching as deep as possible in order to reduce the distance under the lens. However, when the color filter layer is placed under the ground, the flat surface (effective surface) of the color filter layer becomes small, and the amount of incident light with reduced color purity from around the microlens increases, which leads to deterioration of image quality.
Therefore, it is more preferable that the depth of the dry etching is halfway in the thickness direction of the color filter layer.
[0030]
Further, in the present invention, as a material used for forming the color filter layers of a plurality of colors, a coloring resin using an organic pigment as a coloring material may be employed. However, in the case of organic pigments, there is a difference in the etching rate in dry etching depending on the type thereof, the shape of the microlens is easily changed for each color, and the surface shape is rough, and in addition, the present invention is intended for In a solid-state imaging device with a fine pixel pitch, the particle size (particles) of the pigment itself tends to have a bad effect on the S / N ratio, and the filtration of the material (removal of foreign substances) is difficult, so that the dye is colored. It is more preferable that the material is a colored resin.
[0031]
In the present invention, a thin film of an infrared absorbing layer may be laminated on the microlens by coating in order to reduce the non-opening and increase the aperture ratio of the microlens or to improve the infrared absorbing function.
Further, in the present invention, in order to reduce the re-reflection of incident light from the surface of the microlens and the non-opening, a thin film of a low refractive index resin is further formed on the microlens or the thin film of the infrared absorption layer. It is desirable to form.
In addition, the lower layer exposed between the microlenses absorbs stray light reflected on the surface of the microlens and reduces noise (in this case, re-incident reflected light) generated in the solid-state imaging device to some extent. Alternatively, a thin film of a material having a low refractive index may be laminated.
[0032]
【Example】
Hereinafter, a method for manufacturing a solid-state imaging device according to the present invention will be described in detail with reference to examples.
<Example 1>
As shown in FIG. 1, after a flattening layer (34) is formed on a semiconductor substrate (31) on which a photoelectric conversion element (32) and a light shielding layer (30) are formed, R (red), G (green), Using three color resists of B (blue), color filter layers (33) of three colors were sequentially formed by known photolithography using a stepper exposure apparatus. The thickness of each color filter layer (33) was 0.9 μm to 0.8 μm.
[0033]
For R (red), G (green), and B (blue) of the color filter layer (33), a color resist manufactured by Toyo Ink Mfg. Co., Ltd. using an organic pigment as a coloring material was used. The color arrangement of this embodiment is a so-called Bayer arrangement in which one pixel is composed of a total of four elements of two G (green), one R (red), and one B (blue). FIG. 4A is a plan view from the microlens side of an example of the solid-state imaging device, and also shows a two-dimensional (planar) arrangement of the color filter layers and the microlenses in the Bayer arrangement. .
[0034]
Next, as shown in FIG. 2, an infrared absorbing layer (35) having a thickness of 1 μm was formed on the color filter layer (33) using a resin coating solution containing three types of infrared absorbing agents. Further, a photosensitive phenol resin having a heat flow property was applied by spin coating, exposed, developed, and heat-flowed to obtain a hemispherical lens matrix (20).
The temperature of the heat flow was 200 ° C., and the thickness (lens height) of the lens matrix was 0.7 μm.
As a resin coating liquid having an infrared absorbing function, 100 parts by weight of a thermosetting acrylic resin and three types of infrared absorbers YKR3080, YKR3030, and YKR200 manufactured by Yamamoto Kasei Co., Ltd. were combined and 20 parts by weight of an organic solvent such as cyclohexanone. Was used.
[0035]
Next, as shown in FIG. 3, the semiconductor substrate (31) on which the lens matrix (20) was formed was subjected to an etching process (white arrow) using an O 2 gas in a dry etching apparatus. The substrate was processed under the conditions of normal temperature, pressure of 1 Pa, RF power of 500 W, and bias of 50 W, and the lens matrix was completely transferred to the infrared absorption layer below to obtain a microlens (39).
It is to be noted that a resin material having a different etching rate such as a resin having a low etching rate such as a phenolic resin is used as a material of the lens matrix (or a material having a high etching rate of a resin of a lower infrared absorption layer). This makes it possible to adjust the shape of the microlens to optimal optical characteristics.
[0036]
<Example 2>
FIG. 7 is a cross-sectional view of the solid-state imaging device according to the second embodiment. On the semiconductor substrate (71) on which the photoelectric conversion element (72) is formed, a flattening layer (74) having an infrared absorption function is applied with an average thickness of 0.6 μm and an ultraviolet absorption layer (70) is applied with a thickness of 0.5 μm. And a color filter layer (73) of three colors using a coloring material of a reactive dye (FIG. 7 is a Bayer arrangement, that is, G (B) because of the cross section taken along the line BB in FIG. 4A). (Green) only pixels are displayed) with a thickness of 0.9 μm.
[0037]
On the color filter layer (73), a thin film of an infrared absorbing layer (76) and a thin film of a low refractive index resin (77) are further formed with a thickness of about 0.1 μm.
These thin films are formed by spin coating, but the thin film of the infrared absorbing layer is slightly thicker at about 0.5 μm in the concave portion between the microlenses (75). This is an effect that a recess having a depth of about 0.4 μm is formed in advance between colors of the color filter layer by dry etching, as described later.
[0038]
First, as shown in FIG. 5, a planarizing layer (74) having an infrared absorbing function and an ultraviolet absorbing layer (70) were both formed on a semiconductor substrate (71) by coating using a spin coating method. The hardening of these layers was performed on a hot plate at 230 ° C. Further, color filter layers (73) of three colors were sequentially formed by the same photolithography as in Example 1 using a color resist (acrylic photosensitive resin base) using a dye as a coloring material.
After forming the infrared absorbing layer and the lens matrix in the same manner as in Example 1, the lens matrix was transferred by dry etching to form a microlens (75). In this case, etching was performed to a part of the color filter layer (73). A recess having a depth of about 0.4 μm was formed between pixels of the color filter layer (73).
[0039]
Next, as shown in FIG. 6, a thin film (76) of the infrared absorbing layer was formed to a thickness of about 0.1 μm (the recesses between the microlenses became thicker).
Next, as shown in FIG. 7, a low-refractive-index resin (fluorine-based acrylic resin, refractive index 1.45) (77) was formed to a thickness of about 0.1 μm by coating. The lamination of the low-refractive-index resin (77) reduces the light reflectance by approximately 2% (light-transmittance) as compared with a configuration without the low-refractive-index resin (77) (for example, the configuration in FIG. 6). Increased by 2%).
[0040]
【The invention's effect】
According to the present invention, since the microlens and the flattening layer, which are components of the solid-state imaging device, have an infrared absorbing function, the conventional infrared cut filter is unnecessary, and the camera can be easily reduced in size.
[0041]
The present invention also includes a step of forming a flattening layer having an infrared absorbing function on a photoelectric conversion element of a semiconductor substrate, a step of forming a color filter layer, a step of forming an infrared absorbing layer, Forming a mold, performing dry etching, transferring the lens matrix pattern to the infrared absorbing layer, and forming the infrared absorbing layer into a microlens having an infrared absorbing function. In addition, the present invention provides a method for manufacturing a solid-state imaging device in which a microlens and a flattening layer, which are components of the solid-state imaging device, have an infrared absorption function and do not require a conventional infrared cut filter.
[0042]
Further, according to the present invention, a plurality of infrared absorbers having different infrared absorption wavelength ranges are divided into respective constituent elements to provide an absorption performance, so that the solid-state imaging device can easily set a wide range of infrared absorption function without difficulty. In addition, due to the heat resistance and light resistance of each infrared absorber, there is a merit that it can be disposed at an optimum location.
Further, according to the present invention, since the lens matrix is transferred to the infrared absorption layer using dry etching, an imaging element having a thin film configuration with high light use efficiency can be provided. Further, since etching is performed on a part of the color filter, the thickness can be further reduced, and a solid-state imaging device with higher image quality can be provided.
[0043]
In addition, the present invention can provide an effect of protecting an infrared absorbing agent having slightly poor light resistance by imparting an ultraviolet absorbing function to the surface of the microlens or the base of the color filter. Further, by forming a thin film of a low refractive index resin on the surface of the microlens and the non-opening portion, reflected light can be reduced, and the image quality of the solid-state imaging device is improved. Also, the reflected light from the microlens or the surface of the thin film of the infrared absorbing layer becomes re-reflected light from the cover glass of the solid-state image sensor and re-enters the solid-state image sensor, causing noise and deteriorating image quality. The solid-state imaging device of the present invention can reduce such noise, and thus can obtain high image quality.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to the present invention.
FIG. 2 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to the present invention.
FIG. 3 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to the present invention.
FIG. 4A is a plan view of another example of the solid-state imaging device as viewed from the microlens side. FIG. 4B is a cross-sectional view taken along line BB in FIG.
FIG. 5 is an explanatory diagram of the method for manufacturing the solid-state imaging device according to the second embodiment.
FIG. 6 is an explanatory diagram of the method for manufacturing the solid-state imaging device according to the second embodiment.
FIG. 7 is a sectional view of a solid-state imaging device according to a second embodiment.
FIG. 8 is a sectional view of an example of a solid-state imaging device according to a known technique.
FIG. 9 is a sectional view showing one embodiment of a solid-state imaging device according to the present invention.
[Explanation of symbols]
20 ... Lens matrix 30 ... Light shielding layers 31, 71 ... Semiconductor substrates 32, 52, 72, 82 ... Photoelectric conversion elements 33, 73, 83 ... Color filter layers 34, 74, 84 85 flattening layers 35, 70 infrared absorbing layers 39, 55, 75, 89 microlenses 49 non-opening 76 thin film of infrared absorbing layer 77 low Refractive index resin 78: Distance under lens

Claims (8)

複数の光電変換素子上に、少なくとも平坦化層、カラーフィルタ層、略半球状のマイクロレンズが構成要素として順次に配設された固体撮像素子において、該略半球状のマイクロレンズ及び該平坦化層が赤外線吸収機能をもつことを特徴とする固体撮像素子。In a solid-state imaging device in which at least a flattening layer, a color filter layer, and a substantially hemispherical microlens are sequentially arranged as constituent elements on a plurality of photoelectric conversion elements, the substantially hemispherical microlens and the flattening layer are provided. A solid-state imaging device characterized by having an infrared absorption function. 前記平坦化層とカラーフィルタ層との間に紫外線吸収層を配設したことを特徴とする請求項1記載の固体撮像素子。The solid-state imaging device according to claim 1, wherein an ultraviolet absorbing layer is provided between the flattening layer and the color filter layer. 複数の光電変換素子上に、少なくとも平坦化層、カラーフィルタ層、略半球状のマイクロレンズが構成要素として順次に配設された固体撮像素子の製造方法において、
1)半導体基板の光電変換素子上に、赤外線吸収機能をもつ樹脂塗布液を用い、赤外線吸収機能をもつ平坦化層を形成する工程、
2)該平坦化層上に、色素を色材とした感光性着色レジストを用い、フォトリソグラフィによって複数色のカラーフィルタ層を形成する工程、
3)該複数色のカラーフィルタ層上に、赤外線吸収機能をもつ樹脂塗布液を用い、赤外線吸収層を形成する工程、
4)該赤外線吸収層上に、アルカリ可溶性、感光性、及び熱フロー性を有するレンズ材料を用い、フォトリソグラフィ及び熱処理によってレンズ母型を形成する工程、
5)該レンズ母型上に、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつ略半球状のマイクロレンズとする工程、
を具備することを特徴とする固体撮像素子の製造方法。
On a plurality of photoelectric conversion elements, at least a flattening layer, a color filter layer, a substantially hemispherical microlens is sequentially arranged as a component in a method for manufacturing a solid-state imaging device,
1) a step of forming a flattening layer having an infrared absorbing function on a photoelectric conversion element of a semiconductor substrate by using a resin coating solution having an infrared absorbing function;
2) a step of forming a color filter layer of a plurality of colors by photolithography on the flattening layer using a photosensitive colored resist using a coloring material as a coloring material;
3) forming an infrared absorbing layer on the color filter layers of the plurality of colors using a resin coating solution having an infrared absorbing function;
4) using an alkali-soluble, photosensitive, and heat-flowable lens material on the infrared absorption layer to form a lens matrix by photolithography and heat treatment;
5) a step of performing dry etching on the lens matrix, transferring the lens matrix pattern to the infrared absorbing layer, and forming the infrared absorbing layer into a substantially hemispherical microlens having an infrared absorbing function;
A method for manufacturing a solid-state imaging device, comprising:
前記3)該複数色のカラーフィルタ層上に、赤外線吸収機能をもつ樹脂塗布液を用い、赤外線吸収層を形成する工程と、前記4)該赤外線吸収層上に、アルカリ可溶性、感光性、及び熱フロー性を有するレンズ材料を用い、フォトリソグラフィ及び熱処理によってレンズ母型を形成する工程との間に、紫外線吸収層を塗布によって形成する工程を挿入することを特徴とする請求項3記載の固体撮像素子の製造方法。3) a step of forming an infrared absorbing layer on the color filter layers of the plurality of colors using a resin coating solution having an infrared absorbing function; and 4) an alkali-soluble, photosensitive, and 4. The solid according to claim 3, wherein a step of forming an ultraviolet absorbing layer by coating is inserted between the step of forming a lens matrix by photolithography and heat treatment using a lens material having a heat flow property. A method for manufacturing an image sensor. 前記樹脂塗布液が、赤外線吸収波長域の異なる複数の赤外線吸収剤を含有させた樹脂塗布液であることを特徴とする請求項3、又は請求項4記載の固体撮像素子の製造方法。The method according to claim 3, wherein the resin coating liquid is a resin coating liquid containing a plurality of infrared absorbers having different infrared absorption wavelength ranges. 前記5)該レンズ母型上に、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつ略半球状のマイクロレンズとする工程において、レンズ母型パターンの転写をカラーフィルタ層の厚み方向の途中まで行うことを特徴とする請求項3、請求項4、又は請求項5記載の固体撮像素子の製造方法。5) In the step of performing dry etching on the lens matrix, transferring the lens matrix pattern to the infrared absorbing layer, and forming the infrared absorbing layer into a substantially hemispherical microlens having an infrared absorbing function, 6. The method for manufacturing a solid-state imaging device according to claim 3, wherein the transfer of the pattern is performed halfway in the thickness direction of the color filter layer. 前記5)該レンズ母型上に、ドライエッチングを行い、赤外線吸収層へレンズ母型パターンを転写し、赤外線吸収層を赤外線吸収機能をもつ略半球状のマイクロレンズとする工程の後に、赤外線吸収層の薄膜を塗布によって積層する工程を加えることを特徴とする請求項3、請求項4、請求項5、又は請求項6記載の固体撮像素子の製造方法。5) Dry etching is performed on the lens matrix, a lens matrix pattern is transferred to an infrared absorbing layer, and the infrared absorbing layer is converted into a substantially hemispherical microlens having an infrared absorbing function. 7. The method for manufacturing a solid-state imaging device according to claim 3, further comprising a step of laminating layers by coating. 前記マイクロレンズの最外層に、低屈折率樹脂の薄膜を積層する工程を加えることを特徴とする請求項3、請求項4、請求項5、請求項6、又は請求項7記載の固体撮像素子の製造方法。8. The solid-state imaging device according to claim 3, wherein a step of laminating a thin film of a low refractive index resin is added to the outermost layer of the microlens. Manufacturing method.
JP2002366318A 2002-07-09 2002-12-18 Solid-state imaging device and method of manufacturing the same Withdrawn JP2004200360A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002366318A JP2004200360A (en) 2002-12-18 2002-12-18 Solid-state imaging device and method of manufacturing the same
US10/813,179 US7084472B2 (en) 2002-07-09 2004-03-31 Solid-state imaging device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366318A JP2004200360A (en) 2002-12-18 2002-12-18 Solid-state imaging device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004200360A true JP2004200360A (en) 2004-07-15

Family

ID=32763558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366318A Withdrawn JP2004200360A (en) 2002-07-09 2002-12-18 Solid-state imaging device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004200360A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066912A (en) * 2004-08-24 2006-03-09 Agilent Technol Inc Image sensors including integrated type electro-optical device and its manufacturing method
JP2006190905A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Solid-state imaging device and its manufacturing method
JP2007203653A (en) * 2006-02-03 2007-08-16 Toppan Printing Co Ltd Forgery-proof medium and unlawfulness judging method using this medium
WO2008023494A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Microlenses, imaging device, and portable terminal device
JP2008166762A (en) * 2006-12-29 2008-07-17 Dongbu Hitek Co Ltd Method of manufacturing image sensor
JP2008177318A (en) * 2007-01-18 2008-07-31 Sony Corp Solid-state image pickup device and its manufacturing method, and image pickup device
JP2009043772A (en) * 2007-08-06 2009-02-26 Panasonic Corp Solid-state imaging apparatus, and manufacturing method thereof
JP2009158944A (en) * 2007-12-06 2009-07-16 Sony Corp Solid-state imaging device, method of manufacturing same, and electronic equipment
US7605438B2 (en) 2005-11-14 2009-10-20 Sony Corporation Semiconductor imaging instrument and camera
WO2010050297A1 (en) * 2008-10-31 2010-05-06 コニカミノルタオプト株式会社 Imaging lens, imaging lens unit, and imaging device
WO2011071052A1 (en) * 2009-12-07 2011-06-16 旭硝子株式会社 Optical member, near-infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
US7986018B2 (en) 2006-10-23 2011-07-26 Sony Corporation Solid-state imaging device
JP2011159800A (en) * 2010-02-01 2011-08-18 Asahi Glass Co Ltd Solid-state imaging device and imaging apparatus equipped with the same
JP2011164583A (en) * 2010-01-15 2011-08-25 Asahi Glass Co Ltd Lens for imaging device, and imaging device
JP2012140306A (en) * 2011-01-04 2012-07-26 Asahi Glass Co Ltd Near-infrared ray absorption particle, method for producing the same, dispersion and resin composition
JP2014130343A (en) * 2012-11-30 2014-07-10 Fujifilm Corp Curable resin composition, and image sensor chip production method and image sensor chip using the same
JP2014130344A (en) * 2012-11-30 2014-07-10 Fujifilm Corp Curable resin composition, and image sensor chip production method and image sensor chip using the same
JP2015043063A (en) * 2013-02-19 2015-03-05 富士フイルム株式会社 Near-infrared-absorbing composition, near-infrared cut filter using this and method for producing the same, and camera module and method for producing the same
WO2015079662A1 (en) 2013-11-26 2015-06-04 ソニー株式会社 Imaging element
KR101559593B1 (en) 2007-04-16 2015-10-12 오스람 옵토 세미컨덕터스 게엠베하 Method for producing an opto-electronic component and opto-electronic component
WO2015159509A1 (en) 2014-04-16 2015-10-22 Sony Corporation Imaging device and apparatus with infrared absorbing filter
JP2016526294A (en) * 2013-05-21 2016-09-01 クラレト,ホルヘ ヴィセンテ ブラスコ Monolithic integration of plenoptic lenses on photosensor substrates
US9523803B2 (en) 2012-10-17 2016-12-20 Sony Corporation Image capturing element and image capturing apparatus for removing infrared components from light
JP2017083749A (en) * 2015-10-30 2017-05-18 大日本印刷株式会社 Lens sheet unit, imaging module, imaging apparatus
WO2020158663A1 (en) * 2019-01-31 2020-08-06 凸版印刷株式会社 Filter for solid-state image capturing element, and solid-state image capturing element
WO2021106423A1 (en) * 2019-11-26 2021-06-03 富士フイルム株式会社 Composition, film, microlens, solid-state imaging element, and display device
US11099310B2 (en) 2015-05-27 2021-08-24 Sony Corporation Image pickup device
US11333802B2 (en) 2015-09-29 2022-05-17 Dai Nippon Printing Co., Ltd. Lens sheet, lens sheet unit, imaging module, imaging device

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016564B4 (en) * 2004-08-24 2011-06-22 Aptina Imaging Corp., Cayman Islands Image sensor with integrated electrical optical device
JP2006066912A (en) * 2004-08-24 2006-03-09 Agilent Technol Inc Image sensors including integrated type electro-optical device and its manufacturing method
US7329856B2 (en) 2004-08-24 2008-02-12 Micron Technology, Inc. Image sensor having integrated infrared-filtering optical device and related method
JP2006190905A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Solid-state imaging device and its manufacturing method
US8569854B2 (en) 2005-11-14 2013-10-29 Sony Corporation Semiconductor imaging instrument and manufacturing method thereof, and camera and manufacturing method thereof
US7605438B2 (en) 2005-11-14 2009-10-20 Sony Corporation Semiconductor imaging instrument and camera
US8093093B2 (en) 2005-11-14 2012-01-10 Sony Corporation Semiconductor imaging instrument and manufacturing method thereof, and camera and manufacturing method thereof
JP2007203653A (en) * 2006-02-03 2007-08-16 Toppan Printing Co Ltd Forgery-proof medium and unlawfulness judging method using this medium
WO2008023494A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Microlenses, imaging device, and portable terminal device
US8969987B2 (en) 2006-10-23 2015-03-03 Sony Corporation Solid-state imaging device
US7986018B2 (en) 2006-10-23 2011-07-26 Sony Corporation Solid-state imaging device
JP2008166762A (en) * 2006-12-29 2008-07-17 Dongbu Hitek Co Ltd Method of manufacturing image sensor
JP2008177318A (en) * 2007-01-18 2008-07-31 Sony Corp Solid-state image pickup device and its manufacturing method, and image pickup device
KR101559593B1 (en) 2007-04-16 2015-10-12 오스람 옵토 세미컨덕터스 게엠베하 Method for producing an opto-electronic component and opto-electronic component
JP2009043772A (en) * 2007-08-06 2009-02-26 Panasonic Corp Solid-state imaging apparatus, and manufacturing method thereof
JP2009158944A (en) * 2007-12-06 2009-07-16 Sony Corp Solid-state imaging device, method of manufacturing same, and electronic equipment
WO2010050297A1 (en) * 2008-10-31 2010-05-06 コニカミノルタオプト株式会社 Imaging lens, imaging lens unit, and imaging device
WO2011071052A1 (en) * 2009-12-07 2011-06-16 旭硝子株式会社 Optical member, near-infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
US9304236B2 (en) 2009-12-07 2016-04-05 Asahi Glass Company, Limited Optical member, near infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
JP2011164583A (en) * 2010-01-15 2011-08-25 Asahi Glass Co Ltd Lens for imaging device, and imaging device
JP2011159800A (en) * 2010-02-01 2011-08-18 Asahi Glass Co Ltd Solid-state imaging device and imaging apparatus equipped with the same
JP2012140306A (en) * 2011-01-04 2012-07-26 Asahi Glass Co Ltd Near-infrared ray absorption particle, method for producing the same, dispersion and resin composition
US9523803B2 (en) 2012-10-17 2016-12-20 Sony Corporation Image capturing element and image capturing apparatus for removing infrared components from light
JP2014130344A (en) * 2012-11-30 2014-07-10 Fujifilm Corp Curable resin composition, and image sensor chip production method and image sensor chip using the same
JP2014130343A (en) * 2012-11-30 2014-07-10 Fujifilm Corp Curable resin composition, and image sensor chip production method and image sensor chip using the same
US9657182B2 (en) 2012-11-30 2017-05-23 Fujifilm Corporation Curable resin composition, production method of image sensor chip using the same, and image sensor chip
US9620542B2 (en) 2012-11-30 2017-04-11 Fujifilm Corporation Curable resin composition, production method of image sensor chip using the same, and image sensor chip
JP2015043063A (en) * 2013-02-19 2015-03-05 富士フイルム株式会社 Near-infrared-absorbing composition, near-infrared cut filter using this and method for producing the same, and camera module and method for producing the same
US9618666B2 (en) 2013-02-19 2017-04-11 Fujifilm Corporation Near-infrared-absorbing composition, near-infrared cut-off filter using same, manufacturing method therefor, camera module, and manufacturing method therefor
JP2016526294A (en) * 2013-05-21 2016-09-01 クラレト,ホルヘ ヴィセンテ ブラスコ Monolithic integration of plenoptic lenses on photosensor substrates
WO2015079662A1 (en) 2013-11-26 2015-06-04 ソニー株式会社 Imaging element
US9991304B2 (en) 2013-11-26 2018-06-05 Sony Corporation Image pickup device having an infrared absorption layer between a laminate band-pass layer and a low refractive index layer above on-chip lenses
WO2015159509A1 (en) 2014-04-16 2015-10-22 Sony Corporation Imaging device and apparatus with infrared absorbing filter
US10317593B2 (en) 2014-04-16 2019-06-11 Sony Corporation Image device and imaging apparatus
US11099310B2 (en) 2015-05-27 2021-08-24 Sony Corporation Image pickup device
US11333802B2 (en) 2015-09-29 2022-05-17 Dai Nippon Printing Co., Ltd. Lens sheet, lens sheet unit, imaging module, imaging device
JP2017083749A (en) * 2015-10-30 2017-05-18 大日本印刷株式会社 Lens sheet unit, imaging module, imaging apparatus
JPWO2020158663A1 (en) * 2019-01-31 2021-12-02 凸版印刷株式会社 Filter for solid-state image sensor and solid-state image sensor
CN113439223A (en) * 2019-01-31 2021-09-24 凸版印刷株式会社 Optical filter for solid-state imaging element and solid-state imaging element
WO2020158663A1 (en) * 2019-01-31 2020-08-06 凸版印刷株式会社 Filter for solid-state image capturing element, and solid-state image capturing element
CN113439223B (en) * 2019-01-31 2023-06-09 凸版印刷株式会社 Optical filter for solid-state imaging element, and solid-state imaging element
TWI819187B (en) * 2019-01-31 2023-10-21 日商凸版印刷股份有限公司 Filters for solid-state photography components, and solid-state photography components
JP7463970B2 (en) 2019-01-31 2024-04-09 Toppanホールディングス株式会社 Filter for solid-state image sensor, and solid-state image sensor
JPWO2021106423A1 (en) * 2019-11-26 2021-06-03
WO2021106423A1 (en) * 2019-11-26 2021-06-03 富士フイルム株式会社 Composition, film, microlens, solid-state imaging element, and display device
JP7337189B2 (en) 2019-11-26 2023-09-01 富士フイルム株式会社 composition, film, microlens, solid-state imaging device and display device

Similar Documents

Publication Publication Date Title
JP2004200360A (en) Solid-state imaging device and method of manufacturing the same
TWI278991B (en) Solid image-pickup device and method of manufacturing the same
US7084472B2 (en) Solid-state imaging device and manufacturing method therefor
US8853758B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP5012019B2 (en) Image sensor
JP4882182B2 (en) Solid-state image sensor
JP4835065B2 (en) Manufacturing method of imaging device
JP2007318002A (en) Solid-state imaging apparatus and method of manufacturing the same
JP2007053153A (en) Solid imaging element and its manufacturing method
JP4761505B2 (en) Imaging apparatus and imaging system
JP2005340299A (en) Solid-state image pickup device, its manufacturing method and camera
JP5124917B2 (en) Image sensor
JP2000180621A (en) On-chip color filter and solid image pick-up element using the same
US20100201855A1 (en) Solid-state imaging device, camera, electronic apparatus, and method for manufacturing solid-state imaging device
US20200075651A1 (en) Double-layer color filter and method for forming the same
JPH10256518A (en) Solid state imaging element
JP4304987B2 (en) Solid-state imaging device and manufacturing method thereof
KR20050021969A (en) Solid-state imaging device and method for manufacturing the same
JP4175169B2 (en) Solid-state imaging device and manufacturing method thereof
JP5445643B2 (en) Image sensor
JP2005166992A (en) Solid-state imaging element
JP2006339377A (en) Solid state imaging device and manufacturing method thereof
JP2004311557A (en) Solid-state imaging device for linear sensor
JP2008283115A (en) Manufacturing method for solid-state image pickup device
JP2005197392A (en) Solid-state imaging device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070806