WO2008018526A1 - Soldering inspection method, soldering method, and soldering apparatus - Google Patents

Soldering inspection method, soldering method, and soldering apparatus Download PDF

Info

Publication number
WO2008018526A1
WO2008018526A1 PCT/JP2007/065580 JP2007065580W WO2008018526A1 WO 2008018526 A1 WO2008018526 A1 WO 2008018526A1 JP 2007065580 W JP2007065580 W JP 2007065580W WO 2008018526 A1 WO2008018526 A1 WO 2008018526A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
soldering
image data
light
wavelength
Prior art date
Application number
PCT/JP2007/065580
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiomi Munesawa
Seiichi Kitano
Tsuyoshi Kobayashi
Original Assignee
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Okayama University filed Critical National University Corporation Okayama University
Priority to CN2007800298983A priority Critical patent/CN101501444B/en
Publication of WO2008018526A1 publication Critical patent/WO2008018526A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • B23K3/047Heating appliances electric
    • B23K3/0478Heating appliances electric comprising means for controlling or selecting the temperature or power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/063Solder feeding devices for wire feeding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3447Lead-in-hole components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process

Definitions

  • Soldering inspection method soldering method, and soldering apparatus
  • the present invention relates to a soldering inspection method, a soldering method, and a soldering apparatus, and in particular, automatically supplies solder to a solder melting means such as a soldering iron that melts solder.
  • a soldering inspection method, a soldering method, and a soldering apparatus that can automatically perform soldering.
  • a member that is always subjected to stress such as an electrode body in contact with a battery electrode, is bonded to the mounting substrate, or a so-called power electronics component used at high power is bonded to the mounting substrate.
  • solder is fed while supplying thread solder that has been processed into a thread shape. It had to be soldered while being raised into a mountain shape by melting.
  • the soldering state is monitored in real time by the infrared sensor, the soldering state is detected by a CCD camera (hereinafter simply referred to as a CCD camera) using a silicon photodiode array as an image sensor.
  • a CCD camera hereinafter simply referred to as a CCD camera
  • silicon photodiode array as an image sensor.
  • soldering state is monitored with a CCD camera
  • at least first image data and second image data are generated by photographing the soldering state with a predetermined time difference, and this first
  • the difference image data By generating the difference image data by taking the difference between the first image data and the second image data, the soldering iron melts between the first image data generation timing and the second image data generation timing.
  • the amount of solder that has been detected can be detected, and the soldering state can be monitored based on the detected amount of solder.
  • solder melted by a solder melting means such as a soldering iron generally has a spherical shape due to its extremely high surface tension. Therefore, when the melted solder is photographed with a CCD camera, The surface of the melted solder that is in front of the camera becomes a plane that can be regarded as a flat surface, and even if the solder is further melted, the surface change has become extremely small.
  • the portion of the surface that can be regarded as approximately a flat surface is extracted in the differential processing for generating the differential image data because no change with time is seen like the substrate portion other than the soldering region.
  • the solder specified by the difference image data cannot be This shows all the solder melted by the field melting means! / ,!
  • the CCD camera cannot accurately detect the solder melted by the solder melting means, so the soldering state cannot be completely monitored! /, And! / was there.
  • the present inventor has conducted research and development to perform soldering while reliably monitoring the soldering state even in the case of soldering using lead-free solder, thereby forming the present invention. Has been reached.
  • soldering inspection method of the present invention in the soldering inspection method in which the solder melting means for melting the solder is disposed in a soldering area where soldering is performed and the solder is supplied to the solder melting means.
  • solder melting is performed in the soldering method of the present invention.
  • the step of sequentially shooting the solder melted by the means at a predetermined timing with a camera and sequentially generating image data reflected from the solder and having a longer wavelength than red, and the timing of shooting among the image data At least two different images
  • the difference image data is sequentially generated by taking the difference of the data, the difference image data is sequentially superimposed and synthesized to generate the synthesized image data, and the solder in the soldering area of the synthesized image data
  • the solder is supplied to the solder melting means in the soldering apparatus for soldering the component to a predetermined position of the substrate by melting the solder with the solder melting means for melting the solder.
  • the generation timing of the image data differs from the solder supply device and the camera that sequentially generates image data of light having a longer wavelength than red, reflected from the solder melted by the solder melting means, at a predetermined timing.
  • Difference image data is sequentially generated by taking a difference between at least two pieces of image data, and the generated difference image data is sequentially superimposed on each other to be combined to generate combined image data.
  • a control unit for detecting the area of the solder melted by the melting means is provided.
  • soldering apparatus of the present invention is also characterized by the following points. That is,
  • the wavelength of light having a longer wavelength than red is in the range of 670 to UOOnm.
  • Light shielding means force S at least a cover body covering the substrate and camera
  • a light source for projecting light having a wavelength longer than that of red toward the solder melted by the solder melting means is provided.
  • the solder melting means is a soldering iron.
  • the solder melting means is a focused laser beam spot.
  • the laser beam spot is formed by the output light of the laser diode.
  • the light source is a laser diode or a light emitting diode.
  • the wavelength of the light projected from the light source is the output light of the laser diode as the solder melting means. If it is longer than the wavelength of this output light.
  • the wavelength of the light emitted from the light source is shorter than the wavelength of the output light when the solder melting means is the output light of the laser diode.
  • image data is generated by sequentially photographing the solder melted by the solder melting means for melting the solder in the soldering region at a predetermined timing with a camera, and at least two image data having different photographing timings.
  • the difference image data is sequentially generated by taking the difference between the generated difference image data, and the generated difference image data is sequentially superimposed and combined to generate composite image data.
  • the difference image data is generated. Undetected solder that occurs during data generation can be supplemented with other differential image data, and the area of the solder can be reliably detected from the composite image data.
  • the camera generates image data using light having a wavelength longer than that of the red color reflected from the solder melted by the solder melting means, so that smoke generated during soldering is reflected in an image photographed by the camera. It is possible to generate image data obtained by accurately photographing the solder melted by the solder melting means that cannot be inserted.
  • FIG. 1 is an explanatory diagram of a method for detecting the area of solder.
  • FIG. 2 is a schematic explanatory diagram of the soldering apparatus of the first embodiment.
  • FIG. 3 is a flowchart of a soldering process by the soldering apparatus of the first embodiment.
  • FIG. 4 is a schematic explanatory diagram of a soldering apparatus according to a second embodiment.
  • the soldering inspection method, soldering method, and soldering apparatus of the present invention are soldered using a relatively inexpensive imaging device such as a CCD camera rather than an expensive infrared sensor!
  • a relatively inexpensive imaging device such as a CCD camera rather than an expensive infrared sensor!
  • an imaging device using a semiconductor imaging device consisting of a silicon photodiode, such as a CCD camera or CMOS camera is simply referred to as a “camera”.
  • the camera is capable of detecting light in the infrared region, and an image is obtained by light having a wavelength longer than that of red reflected from solder melted by a solder melting means such as a soldering iron or a laser beam spot.
  • a solder melting means such as a soldering iron or a laser beam spot. The data is being generated.
  • the smoke generated during soldering is composed of particles having a particle size distribution centered around 300 nm due to the performance of the dust collection filter provided in the duct provided for the removal of the smoke. It is inferred that Particles of this size cause light scattering called so-called mi-scattering in the visible light wavelength range, and appear as whitish smoke with scattering. It is what.
  • soldering in soldering, a surface tension acting on the solder melted by the solder melting means. Since the melted solder tends to spheroidize due to the force, the amount of solder can be estimated from a two-dimensional image of the solder obtained by photographing the solder melted by the solder melting means with a camera. . Therefore, the soldering apparatus only needs to monitor the solder melted by the solder melting means with the camera.
  • the first image data is obtained by photographing the state before the supply of solder to the solder melting means with the camera. Then, the supply of solder to the solder melting means is started, and a state in which a predetermined amount of solder is melted is photographed with a camera to generate second image data.
  • the first image data and the second image data Difference image data is generated by taking the difference between and the amount of solder that is detected from the difference image data.
  • the soldering iron or the soldering means that is the solder melting means in the first image data is soldered There is a risk of errors due to the influence of leads and the like.
  • image data composed of an image in a state before starting the supply of solder to the solder melting means is used as the first image data. Is not suitable.
  • the present inventor sequentially generates image data with a camera while performing soldering, and at the same time, the difference between at least two image data having different shooting timings among the generated image data.
  • the difference image data? & 13 Pd is generated sequentially, and these difference image data Pa, Pb, Pc, Pd are sequentially superimposed on each other.
  • the synthesized image data Pe is generated as shown in FIG.
  • difference image data? & 13 (By combining 1 and generating composite image data? 6, the undetected area L can be eliminated with other difference image data, and by using the composite image data Pe, solder melting is performed. The amount of solder melted by the means can be accurately detected.
  • FIG. 2 is a schematic diagram of the soldering apparatus A1 according to the first embodiment.
  • the power to explain the solder melting means as a general soldering iron.
  • solder melting means using a laser light source such as a laser diode is also known, and a laser light source is provided instead of the soldering iron.
  • Any solder melting means that can sequentially melt the supplied solder using a solder melting device may be used.
  • the base 10 provided with the mounting portion 11 on which the mounting substrate 20 on which the required electronic components 21 are temporarily mounted is mounted, and the mounting substrate 20 is soldered to be soldered.
  • a solder supplier 17 as supply means, and a control unit 18 for controlling the solder supplier 17 and analyzing the output signal of the camera 13 are provided.
  • 19 is a guide body that guides the yarn solder 16 toward the soldering iron 15.
  • the soldering apparatus A1 is provided with a transfer device that transfers the mounting board 20 to the mounting unit 11 and transfers the mounting board 20 that has undergone the soldering process to a subsequent process.
  • the transfer device is provided with a rectangular lift body (not shown) that moves in the transfer direction and can be moved up and down.
  • the lift body has a tip that contacts the mounting substrate 20 from below.
  • a plurality of support columns (not shown) are provided in contact with each other.
  • the mounting substrate 20 is placed on the placement unit 11 by transferring the substrate 20 to the placement unit 11 and lowering the lifting body. With the same transfer device, the mounting substrate 20 of the mounting portion 11 can be transferred to a subsequent process.
  • the mounting portion 11 includes a plurality of pillars 11a projectingly contacting the upper surface of the base 10, and the mounting bodies 20 are placed in a horizontal state by arranging the pillars 11a at predetermined intervals. Can be supported.
  • a CCD camera capable of photographing in the infrared region is used.
  • This CCD camera can use what is generally used as a surveillance camera, for example.
  • an infrared cut filter may be built in depending on the case. It is desirable to remove this infrared cut filter before use.
  • the camera 13 is equipped with a filter F that transmits only light having a longer wavelength than red.
  • the filter F is preferably a filter that blocks light outside the wavelength range of 670 to UOOnm and transmits light with a wavelength of 670 to 1100 nm, and is preferably the highest in the infrared light range of 800 to 900 nm. It is desirable to use a filter that has transmittance. This filter F prevents light in the visible light range from entering the image sensor of the camera 13, and suppresses the reflection of smoke generated during soldering!
  • the light 14 is provided to increase the amount of reflected light composed of light having a longer wavelength than that of the red color from the solder melted by the soldering iron 15.
  • the light 14 has a longer wavelength than that of the red light.
  • the one that irradiates is used.
  • the light 14 is preferably irradiated with light having a wavelength longer than 600 nm, and more preferably irradiated with light having a wavelength of about 800 to 900 nm. Even if the light 14 is not irradiated, the light 14 is not necessarily provided if the amount of light reflected from the solder by light having a longer wavelength than red is sufficiently large.
  • a light of a special light source it is not necessary to use a light of a special light source.
  • a continuous spectrum light such as a tungsten lamp, a halogen lamp, or sunlight
  • the light amount of the infrared component is simply increased.
  • the light 14 may be used as a state in which the ratio of the infrared component is increased by using it below the rated current.
  • the solder melting means is a solder melting means using a laser light source
  • halation is caused by the laser light spot melting the solder and the light emitted from the light 14, and the camera 13 It may be difficult to generate appropriate image data.
  • the light 14 is irradiated with 780 nm light using a GaAlAs laser diode, or GaAs It is desirable to irradiate light of 800 to 900nm using a system diode.
  • a light emitting diode such as GaAs or GalnAs is used for the light 14. 850 ⁇ ; It is desirable to irradiate UOOnm light.
  • the light 14 serving as the light source can prevent the occurrence of halation by irradiating light having a wavelength different from that of the output light of the laser light source of the solder melting means.
  • the wavelength of light emitted from the light 14 may be as short as possible only when it is longer than the wavelength of the output light of the laser light source. desirable.
  • an appropriate light shielding body such as a filter or a polarizing plate that can shield light other than the wavelength 670 to light other than UOOnm as much as possible or completely is used. And solder that is the subject.
  • the camera 13 and the light 14 are arranged apart from the position immediately above the placement unit 11 instead of being arranged at a position directly above the placement unit 11. It is desirable not to hit light 14. Further, since the camera 13 needs to photograph the solder melted by the soldering iron 15, it is disposed at an obliquely upper position of the mounting portion 11.
  • the light 14 is attached to the camera 13 and arranged as close to the camera 13 as possible. Therefore, the light 14 can be easily arranged, and the force lens 13 can easily obtain a strong reflected light from the solder, so that the camera 13 can reliably photograph the solder.
  • the soldering iron 15 is mounted on a lifting device (not shown) so that the soldering iron 15 can be raised and lowered.
  • the soldering iron 15 is lowered after the mounting board 20 is placed on the placing portion 11, so that the supplied thread solder can be melted. Yes.
  • the lifting device may be provided with moving means in the X and Y directions so that the position of the soldering iron 15 can be moved appropriately.
  • the substrate 20 may be moved as appropriate using an XY table or the like.
  • the solder supplier 17 can feed the thread solder 16 processed into a thread shape by a predetermined amount at a predetermined timing.
  • the thread solder 16 fed out from the solder feeder 17 is placed in the guide body 19 and fed to the soldering iron 15 at the joint.
  • the control unit 18 can execute an appropriate program.
  • the control unit 18 is composed of a personal computer, analyzes the output signal of the camera 13, and finishes the feeding of the thread solder 16 from the solder supplier 17. The timing is detected, and a control signal for stopping the operation of the solder supplier 17 is output in accordance with the detection of the end timing.
  • the mounting board 20 is transferred and placed on the placement unit 11 (step S).
  • step S2 1) Light having a longer wavelength than red is irradiated onto the soldering region of the mounting board 20 with the light 14 as the light source (step S2).
  • step S3 supply of the thread solder 16 is started by the solder supplier 17 (step S3), and photographing of the soldering area by the camera 13 is started (step S4).
  • smoke S is generated due to soldering S, and shooting using light having a wavelength longer than red, suppresses smoke from appearing in the image taken by camera 13. Use the power S to obtain clear images.
  • the camera 13 sequentially photographs the soldering area at a predetermined timing, and inputs an output signal to the control unit 18 of the soldering apparatus A1.
  • the control unit 18 sequentially generates image data from the input output signal of the camera 13. Further, the control unit 18 takes the difference between the first image data generated from the output signal of the camera 13 and the second image data whose shooting timing is later than the first image data. (Step S5).
  • the first image data and the second image data have different shooting timings, so that only the solder shape in the soldering area is different.
  • the change in the solder shape is extracted.
  • the Rukoto In the difference image data of the present embodiment, the area where the difference value between the first image data and the second image data is smaller than a predetermined threshold is “0”, and the area above the threshold is “1”. Yes.
  • the control unit 18 sets the image data provided for temporarily storing the image data.
  • the stored stored image data is read from the data memory (step S6).
  • the stored image data is composite image data generated by superposing and combining the difference image data as will be described later.
  • the image data memory stores image data that is “0” in all areas as a default!
  • the control unit 18 performs a logical OR process on the difference image data generated from the first image data and the second image data and the saved image data (synthesized image data) read from the image data memory.
  • the composition is performed by superimposing the difference image data to generate new composite image data (step S7).
  • control unit 18 detects the area of the solder melted by the soldering iron 15 in the soldering area from the composite image data (step S8). Specifically, “1” areas in the combined difference image are counted.
  • the control unit 18 compares the detected solder area with a preset end condition threshold (step S9), and when the detected solder area is smaller than the end condition threshold (step S9).
  • step S9: NO the composite image data generated in step S7 is stored in the image data memory (step S10), the process returns to step S5, and the previous second image data and the second image data are used. Also, the difference image data is generated from the third image data whose shooting timing is later, and new difference image data is generated.
  • control unit 18 combines the difference image data with the stored image data (synthesized image data) stored in the image data memory read out in step S6, thereby generating new synthesized image data. (Step S7), the solder area is detected from this composite image data.
  • control unit 18 sequentially generates the difference image data, and sequentially generates the combined image data by synthesizing the generated difference image data, so that the soldering iron 15 in the soldering area 15 Control that stops the operation of the solder feeder 17 when the area of the melted solder can be detected correctly and the solder area becomes larger than the preset threshold value of the end condition in step S9 (step S9: YES).
  • a signal is being output (step Sll).
  • Step SI 2 the mounting substrate 20 is removed from the mounting portion 11, and the process proceeds to a subsequent process.
  • the camera 13 equipped with the filter F that transmits only light having a wavelength longer than red is used to photograph the solder melted by the soldering iron 15.
  • the state of solder can be monitored, and by detecting the area of the solder based on composite image data generated by overlaying difference image data, Solder can be detected with high accuracy.
  • soldering apparatus A1 of the present embodiment it is possible to perform soldering with the minimum necessary solder, and to shorten the soldering work time.
  • the soldering apparatus A1 of the present embodiment can detect the soldering abnormality by detecting the solder with high precision, it also serves as an inspection apparatus, and the soldering part after soldering The inspection process can be eliminated, and the manufacturing cost can be reduced by shortening the manufacturing process.
  • the detection of the soldering abnormality at the time of soldering may be a shape abnormality detected from an image photographed by the camera 13, or the feeding time of the thread solder 16 by the solder feeder 17. It is possible to determine that an abnormality has occurred when this feeding time exceeds a predetermined time. In the present invention, a state in which such an abnormality has not occurred is regarded as a state in which correct soldering is performed.
  • FIG. 4 is a schematic diagram of a soldering apparatus A2 according to the second embodiment.
  • the cover that covers the mounting substrate 20 mounted on the mounting portion 11 that does not mount the filter F on the camera 13 like the soldering apparatus A1 of the first embodiment.
  • the body 12 is provided.
  • the configuration is the same as that of the soldering apparatus A1 of the first embodiment except that a cover body 12 is provided instead of the filter F, and the same reference numerals are used for the same parts as the soldering apparatus A1 of the first embodiment. Detailed description will be omitted.
  • the cover body 12 is composed of a sheet-like filter that transmits only light having a wavelength longer than that of red.
  • a cover formed in a box shape with a transparent acrylic plate is longer than red.
  • a sheet-like filter that transmits only light having a wavelength was pasted and formed.
  • the sheet-shaped finerator is preferably one that has the highest transmittance in the infrared light region of 800 to 900 nm.
  • the cover body 12 is large enough to cover not only the mounting substrate 20 placed on the placement portion 11 but also the camera 13.
  • the solder supply device 17 and, in some cases, the control unit 18 may be covered with the cover body 12.
  • the light that passes through the cover body 12 and is incident on the cover body 12 is converted into light having a wavelength longer than that of red, and then a soldering iron.
  • the reflected light from the solder melted by 15 can be made light having a longer wavelength than red. As a result, it is possible to suppress the reflection of smoke generated by soldering when the solder is photographed by the camera 13, and to reliably photograph the solder.
  • a light 14 that irradiates light having a wavelength longer than red is provided in the cover body 12, and the amount of light that passes through the cover body 12 and enters the cover body 12 is not sufficient.
  • the light emitted from the light 14 is used to ensure that the camera 13 can photograph the solder.
  • the light 14 is preferably irradiated with light having a wavelength longer than 600 nm, and is preferably irradiated with light having a wavelength of about 800 to 900 nm.
  • the cover body 12 is not necessarily required to transmit light having a wavelength longer than that of red, and the cover body 12 is integrated with a light shielding plate that completely shields light. May be configured.
  • the camera 13 has at least a filter for cutting light with a wavelength of 670 to UOOnm and necessary. It is desirable to install a light shielding body such as a polarizing plate according to the conditions.
  • the cover body 12 can be moved up and down by a lifting device (not shown).
  • a lifting device not shown.
  • the cover body 12 is retracted upward to transfer the mounting board 20.
  • the cover 12 is lowered to cover the mounting board 20 during soldering.
  • the present invention is not limited to the case where an elevating device is provided in the cover body 12.
  • a feeding opening (not shown) for introducing the mounting substrate 20 into the cover body 12 in a part of the wall surface of the cover body 12.
  • a delivery opening (not shown) for delivering the mounting board 20 after soldering to the outside of the cover body 12 may be provided so that the mounting board 20 can be taken in and out of the cover body 12. .
  • the cover body 12 is provided with an exhaust device such as an exhaust fan (not shown) to prevent the smoke generated by soldering from filling the cover body 12. Better Yes.
  • an exhaust device such as an exhaust fan (not shown) to prevent the smoke generated by soldering from filling the cover body 12. Better Yes.
  • soldering device A1 of the first embodiment is used. It is desirable to use the finoleta F.
  • the filter F and the cover body 12 are used in combination, and the cover body 12 suppresses extraneous light from entering the soldering area while ensuring a certain degree of visibility, and the filter F is longer than red.
  • the light blocking effect by the filter F may be improved by making light in a wavelength band incident on the image sensor of the camera 13.
  • soldering inspection method, soldering method, and soldering apparatus of the present invention can reliably monitor the solder in the soldering area without using an expensive infrared sensor, and can be a low-cost soldering inspection method.
  • a soldering method and a soldering apparatus can be provided.

Abstract

A soldering inspection method which is performed while accurately detecting solder melted by a solder melting means such as a soldering iron. A soldering method and a soldering apparatus are also provided. In a soldering method and a soldering apparatus for performing soldering by supplying solder to a solder melting means such as a soldering iron disposed in a soldering region, solder melted by the solder melting means is photographed sequentially by means of a camera in predetermined timing, image data by light, which is reflected from the solder and has a wavelength longer than that of red, is generated, differential image data is generated sequentially by taking the difference of at least two image data taken in different photography timing, compound image data is generated by compounding the differential image data by superposing sequentially, the area of solder in the soldering region of the compound image data is detected, and then the amount of solder supplied to the solder melting means is detected based on the area of solder.

Description

明 細 書  Specification
半田付けの検査方法、半田付け方法、及び半田付け装置  Soldering inspection method, soldering method, and soldering apparatus
技術分野  Technical field
[0001] 本発明は、半田付けの検査方法、半田付け方法、及び半田付け装置に関するもの であり、特に、半田を溶融させる半田ごてなどの半田溶融手段に半田を自動的に供 給することにより、半田付けを自動的に実施可能としている半田付けの検査方法、半 田付け方法、及び半田付け装置に関するものである。  The present invention relates to a soldering inspection method, a soldering method, and a soldering apparatus, and in particular, automatically supplies solder to a solder melting means such as a soldering iron that melts solder. Thus, the present invention relates to a soldering inspection method, a soldering method, and a soldering apparatus that can automatically perform soldering.
背景技術  Background art
[0002] 昨今、実装基板に電子部品を実装する場合には、実装基板の所定位置にペースト 状の半田をあらかじめ塗布し、このペースト状の半田を介して実装基板上の所定位 置に所要の電子部品を載置し、実装基板を半田の溶融温度以上に加熱するリフロ 一処理を行うことにより半田を溶融させて電子部品の実装基板への半田接合を行つ ている。  [0002] In recent years, when electronic components are mounted on a mounting board, a paste-like solder is applied in advance to a predetermined position of the mounting board, and a predetermined position on the mounting board is required via the paste-like solder. The electronic component is placed, and the solder is melted by performing a reflow process in which the mounting substrate is heated to a temperature higher than the melting temperature of the solder, and the electronic component is soldered to the mounting substrate.
[0003] しかしながら、電池の電極と接触する電極体のように常に応力が作用した状態とな る部材を実装基板に接合したり、高電力で使用されるいわゆるパワーエレクトロニクス 部品を実装基板に接合したりする場合には、半田の応力緩和性を利用するために、 比較的多量の半田を用いて接合する必要があり、リフロー処理ではなぐ糸状に加工 された糸半田などを送給しながら半田を溶融させることにより山形状に盛り上がらせ ながら半田付けする必要があった。  [0003] However, a member that is always subjected to stress, such as an electrode body in contact with a battery electrode, is bonded to the mounting substrate, or a so-called power electronics component used at high power is bonded to the mounting substrate. In order to take advantage of the stress relaxation property of solder, it is necessary to join using a relatively large amount of solder. In reflow processing, solder is fed while supplying thread solder that has been processed into a thread shape. It had to be soldered while being raised into a mountain shape by melting.
[0004] このように半田を山形形状に盛り上げるには比較的高度な技能が要求されるため、 最近までは作業者による半田ごてを用いた手作業で行われる場合が多かったが、糸 半田の繰出し精度が向上したことによって半田の供給が円滑に行えるようになったこ とから、自動半田付け装置が開発され、手作業での半田付けが、自動半田付け装置 による半田付けに取って代わることにより、生産性の向上が図られている。  [0004] As described above, since a relatively high skill is required to raise the solder into a chevron shape, until recently, it was often performed manually by a worker using a soldering iron. Since the feeding accuracy has been improved, the solder can be supplied smoothly, so an automatic soldering device has been developed, and manual soldering replaces soldering by the automatic soldering device. As a result, productivity is improved.
[0005] なお、自動半田付け装置で半田付けする場合には、半田付けが正確に行われて いるかを監視する必要があり、赤外線センサで半田付け領域部分の温度分布を測定 することによって半田付け状態をリアルタイムで監視可能とした監視装置が提案され ている(例えば、特許文献 1参照。)。 [0005] When soldering with an automatic soldering apparatus, it is necessary to monitor whether the soldering is performed accurately, and soldering is performed by measuring the temperature distribution in the soldering area with an infrared sensor. A monitoring device that can monitor the status in real time has been proposed. (For example, refer to Patent Document 1).
[0006] このように、赤外線センサで半田付け状態をリアルタイムで監視する場合には、シリ コンフォトダイオードアレイを撮像素子として用いた CCDカメラ(以下、単に CCDカメ ラと称する)で半田付け状態を監視する場合と比較して半田の検出精度を向上させ ることはできる力 比較的高価となるために、より低コストで導入可能な CCDカメラを 用いることが望まれていた。  [0006] As described above, when the soldering state is monitored in real time by the infrared sensor, the soldering state is detected by a CCD camera (hereinafter simply referred to as a CCD camera) using a silicon photodiode array as an image sensor. The ability to improve the detection accuracy of solder compared with the case of monitoring Since it is relatively expensive, it was desired to use a CCD camera that can be introduced at a lower cost.
[0007] CCDカメラで半田付け状態を監視する場合には、所定の時間差を設けて半田付け 状態を撮影することにより少なくとも第 1の画像データと第 2の画像データを生成し、こ の第 1の画像データと第 2の画像データの差分をとつて差分画像データを生成するこ とにより、第 1の画像データの生成タイミングと、第 2の画像データの生成タイミングの 間に半田ごてで溶融された半田の量を検出することができ、この検出された半田の 量に基づいて半田付け状態を監視することができる。  [0007] When the soldering state is monitored with a CCD camera, at least first image data and second image data are generated by photographing the soldering state with a predetermined time difference, and this first By generating the difference image data by taking the difference between the first image data and the second image data, the soldering iron melts between the first image data generation timing and the second image data generation timing. The amount of solder that has been detected can be detected, and the soldering state can be monitored based on the detected amount of solder.
[0008] なお、差分画像データの生成においては、第 1の画像データと第 2の画像データの 少なくとも一方に、半田ごてによる半田の溶融の開始直後あるいは開始直前のタイミ ングによる撮影によって生成された画像データを基本画像データとして用い、他方の 画像データとして逐次のタイミングによる撮影によって生成された画像データを用い て、基本画像データとの差分をとつて差分画像データを生成するのが一般的である 力 S、適宜の 3つ以上の画像データから差分をとつて差分データを生成することもある。 特許文献 1 :特開平 07— 270239号公報  [0008] Note that, in the generation of the difference image data, at least one of the first image data and the second image data is generated by photographing at a timing immediately after the start of melting of the solder by the soldering iron or immediately before the start. It is common to generate difference image data by using the difference between this image data as basic image data and using the image data generated by sequential shooting as the other image data. A difference S may be generated by taking a difference from three or more appropriate image data. Patent Document 1: Japanese Patent Application Laid-Open No. 07-270239
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかしながら、半田ごてなどの半田溶融手段で溶融された半田は、一般的に表面 張力が極めて大きいために球状となるので、 CCDカメラで溶融された半田を撮影し た際に、 CCDカメラに対して正面となる溶融された半田の表面が近似的に平面と見 なせる面となり、半田がさらに溶融されても表面的な変化が極めて小さくなつていた。  However, the solder melted by a solder melting means such as a soldering iron generally has a spherical shape due to its extremely high surface tension. Therefore, when the melted solder is photographed with a CCD camera, The surface of the melted solder that is in front of the camera becomes a plane that can be regarded as a flat surface, and even if the solder is further melted, the surface change has become extremely small.
[0010] したがって、この近似的に平面と見なせる面の部分は、半田付け領域以外の基板 部分と同様に経時的な変化が見られないために、差分画像データを生成するための 差分処理において抽出することができず、差分画像データで特定される半田が、半 田溶融手段で溶融された全ての半田を示してレ、ることとなって!/、な!/、場合があるとレ、 う不具合があった。 [0010] Therefore, the portion of the surface that can be regarded as approximately a flat surface is extracted in the differential processing for generating the differential image data because no change with time is seen like the substrate portion other than the soldering region. The solder specified by the difference image data cannot be This shows all the solder melted by the field melting means! / ,!
[0011] すなわち、 CCDカメラでは、半田溶融手段で溶融された半田を正確に検出できな V、ことがあるために、半田付け状態を完全には監視できな!/、と!/、う問題があった。  [0011] In other words, the CCD camera cannot accurately detect the solder melted by the solder melting means, so the soldering state cannot be completely monitored! /, And! / was there.
[0012] しかも、半田付けの際に発生した煙が CCDカメラで撮影した画像に映り込むことに より、煙が邪魔となって半田付け状態の監視ができないという問題もあった。特に、昨 今のいわゆる鉛フリー半田を用いた半田付けの際には、さらに大量の煙が発生する ために、半田付け部分の半田を CCDカメラで正確に撮影することさえ困難となってい た。  [0012] Moreover, since smoke generated during soldering is reflected in an image taken by a CCD camera, there is a problem that the soldering state cannot be monitored due to the smoke. In particular, when soldering using so-called lead-free solder, a larger amount of smoke is generated, making it difficult to accurately photograph the solder in the soldered portion with a CCD camera.
[0013] 本発明者はこのような現状に鑑み、鉛フリー半田を用いた半田付けの際にも確実に 半田付け状態を監視しながら半田付けを行うべく研究開発を行って、本発明を成す に至ったものである。  [0013] In view of such a current situation, the present inventor has conducted research and development to perform soldering while reliably monitoring the soldering state even in the case of soldering using lead-free solder, thereby forming the present invention. Has been reached.
課題を解決するための手段  Means for solving the problem
[0014] 本発明の半田付けの検査方法では、半田を溶融させる半田溶融手段を半田付け が行われる半田付け領域に配置し、半田溶融手段に半田を供給して行う半田付けの 検査方法において、半田溶融手段で溶融された半田をカメラで所定のタイミングで 逐次撮影して、半田から反射してきた、赤色よりも長波長の光による画像データを逐 次生成するステップと、画像データのうち、撮影のタイミングが異なる少なくとも 2つの 画像データの差分をとつて差分画像データを逐次生成するステップと、差分画像デ ータを逐次互いに重ね合わせて合成して合成画像データを生成するステップと、合 成画像データの半田付け領域における半田の面積を検出するステップと、半田の面 積に基づいて半田付けが正しく行われているか否かを判定するステップとを有するこ ととした。 [0014] In the soldering inspection method of the present invention, in the soldering inspection method in which the solder melting means for melting the solder is disposed in a soldering area where soldering is performed and the solder is supplied to the solder melting means. A step of sequentially generating image data of light having a wavelength longer than red, reflected from the solder by sequentially shooting the solder melted by the solder melting means at a predetermined timing with a camera, and shooting of the image data A step of sequentially generating difference image data by taking a difference between at least two pieces of image data having different timings, a step of sequentially superposing the difference image data on each other and generating a composite image data, and a composite image A step of detecting the solder area in the data soldering region and a step of determining whether or not the soldering is correctly performed based on the solder area. It was a child and a flop.
[0015] また、本発明の半田付け方法では、半田を溶融させる半田溶融手段を半田付けが 行われる半田付け領域に配置し、半田溶融手段に半田を供給して行う半田付け方 法において、半田溶融手段で溶融された半田をカメラで所定のタイミングで逐次撮 影して、半田から反射してきた、赤色よりも長波長の光による画像データを逐次生成 するステップと、画像データのうち、撮影のタイミングが異なる少なくとも 2つの画像デ ータの差分をとつて差分画像データを逐次生成するステップと、差分画像データを逐 次互いに重ね合わせて合成して合成画像データを生成するステップと、合成画像デ ータの半田付け領域における半田の面積を検出するステップと、半田の面積に基づ いて半田溶融手段に供給された半田の供給量を検出するステップを有することとした [0015] Further, in the soldering method of the present invention, in the soldering method in which the solder melting means for melting the solder is disposed in the soldering area where soldering is performed and the solder is supplied to the solder melting means, the solder melting is performed. The step of sequentially shooting the solder melted by the means at a predetermined timing with a camera and sequentially generating image data reflected from the solder and having a longer wavelength than red, and the timing of shooting among the image data At least two different images The difference image data is sequentially generated by taking the difference of the data, the difference image data is sequentially superimposed and synthesized to generate the synthesized image data, and the solder in the soldering area of the synthesized image data And a step of detecting the amount of solder supplied to the solder melting means based on the area of the solder.
[0016] また、本発明の半田付け装置では、半田を溶融させる半田溶融手段で半田を溶融 することにより基板の所定位置に部品を半田付けする半田付け装置において、半田 溶融手段に半田を供給する半田供給器と、半田溶融手段で溶融された半田から反 射してきた、赤色よりも長波長の光による画像データを所定のタイミングで逐次生成 するカメラと、画像データのうち、生成のタイミングが異なる少なくとも 2つの画像デー タの差分をとつて差分画像データを逐次生成するとともに、生成された差分画像デー タを逐次互いに重ね合わせて合成することにより合成画像データを生成し、この合成 画像データから半田溶融手段で溶融された半田の面積を検出する制御部を備える こととした。 [0016] Further, in the soldering apparatus of the present invention, the solder is supplied to the solder melting means in the soldering apparatus for soldering the component to a predetermined position of the substrate by melting the solder with the solder melting means for melting the solder. The generation timing of the image data differs from the solder supply device and the camera that sequentially generates image data of light having a longer wavelength than red, reflected from the solder melted by the solder melting means, at a predetermined timing. Difference image data is sequentially generated by taking a difference between at least two pieces of image data, and the generated difference image data is sequentially superimposed on each other to be combined to generate combined image data. A control unit for detecting the area of the solder melted by the melting means is provided.
[0017] さらに、本発明の半田付け装置では、以下の点にも特徴を有するものである。すな わち、  Furthermore, the soldering apparatus of the present invention is also characterized by the following points. That is,
(1)赤色よりも長波長の光の波長が、 670〜; UOOnmの範囲であること。  (1) The wavelength of light having a longer wavelength than red is in the range of 670 to UOOnm.
(2)少なくとも波長 670〜; UOOnm以外の光を遮光する遮光手段を有すること。 (2) At least a wavelength of 670 or more; having light shielding means for shielding light other than UOOnm.
(3)遮光手段力 S、カメラに装着したフィルタであること。 (3) Shading means power S, filter attached to the camera.
(4)遮光手段力 S、少なくとも基板とカメラに覆い被せたカバー体であること  (4) Light shielding means force S, at least a cover body covering the substrate and camera
(5)半田溶融手段で溶融された半田に向けて赤色よりも長波長の光を投光する光源 を設けたこと。  (5) A light source for projecting light having a wavelength longer than that of red toward the solder melted by the solder melting means is provided.
(6)光源をカメラに近接させて配置したこと。  (6) The light source is placed close to the camera.
(7)半田溶融手段が半田ごてであること。  (7) The solder melting means is a soldering iron.
(8)半田溶融手段が集光されたレーザ光スポットであること。  (8) The solder melting means is a focused laser beam spot.
(9)レーザ光スポットがレーザダイオードの出力光により形成されていること。  (9) The laser beam spot is formed by the output light of the laser diode.
(10)光源がレーザダイオードまたは発光ダイオードであること。  (10) The light source is a laser diode or a light emitting diode.
(11 )光源から投光する光の波長を、半田溶融手段をレーザダイオードの出力光とし た場合に、この出力光の波長よりも長くしたこと。 (11) The wavelength of the light projected from the light source is the output light of the laser diode as the solder melting means. If it is longer than the wavelength of this output light.
(12)光源から投光する光の波長を、半田溶融手段をレーザダイオードの出力光とし た場合に、この出力光の波長よりも短くしたこと。  (12) The wavelength of the light emitted from the light source is shorter than the wavelength of the output light when the solder melting means is the output light of the laser diode.
発明の効果  The invention's effect
[0018] 本発明では、半田付け領域において半田を溶融させる半田溶融手段で溶解された 半田をカメラで所定のタイミングで逐次撮影することにより画像データを生成し、撮影 タイミングの異なる少なくとも 2つの画像データの差分をとつて差分画像データを逐次 生成し、生成された差分画像データを逐次重ね合わせて合成することにより合成画 像データを生成し、この合成画像データから半田を検出することにより、差分画像デ ータの生成時に生じる半田の未検出を他の差分画像データで補うことができ、合成 画像データから半田の面積を確実に検出することができる。  [0018] In the present invention, image data is generated by sequentially photographing the solder melted by the solder melting means for melting the solder in the soldering region at a predetermined timing with a camera, and at least two image data having different photographing timings. The difference image data is sequentially generated by taking the difference between the generated difference image data, and the generated difference image data is sequentially superimposed and combined to generate composite image data. By detecting the solder from the combined image data, the difference image data is generated. Undetected solder that occurs during data generation can be supplemented with other differential image data, and the area of the solder can be reliably detected from the composite image data.
[0019] しかも、カメラは、半田溶融手段で溶融された半田から反射してきた赤色よりも長波 長の光による画像データを生成することにより、半田付け時に発生する煙がカメラで 撮影した画像に写り込むことがなぐ半田溶融手段で溶融された半田を正確に撮影 した画像データを生成できる。  In addition, the camera generates image data using light having a wavelength longer than that of the red color reflected from the solder melted by the solder melting means, so that smoke generated during soldering is reflected in an image photographed by the camera. It is possible to generate image data obtained by accurately photographing the solder melted by the solder melting means that cannot be inserted.
[0020] したがって、カメラを用いた場合であっても半田付け領域の半田の量を正確に検出 することができ、適正な量の半田で半田付けが行われている力、を検査可能な半田付 けの検査方法を提供することができる。また、適正な量の半田で半田付けが可能な 半田付け方法及び半田付け装置を提供することができる。  [0020] Therefore, even when a camera is used, the amount of solder in the soldering area can be accurately detected, and the solder that can inspect the force of soldering with an appropriate amount of solder can be inspected. Additional inspection methods can be provided. Further, it is possible to provide a soldering method and a soldering apparatus capable of soldering with an appropriate amount of solder.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]半田の面積の検出方法の説明図である。  FIG. 1 is an explanatory diagram of a method for detecting the area of solder.
[図 2]第 1実施形態の半田付け装置の概略説明図である。  FIG. 2 is a schematic explanatory diagram of the soldering apparatus of the first embodiment.
[図 3]第 1実施形態の半田付け装置による半田付け工程のフローチャートである。  FIG. 3 is a flowchart of a soldering process by the soldering apparatus of the first embodiment.
[図 4]第 2実施形態の半田付け装置の概略説明図である。  FIG. 4 is a schematic explanatory diagram of a soldering apparatus according to a second embodiment.
符号の説明  Explanation of symbols
[0022] A1 半田付け装置 [0022] A1 Soldering device
A2 半田付け装置  A2 Soldering equipment
F フイノレタ 10 基台 F Finoleta 10 base
11 載置部  11 Place
12 カバー体  12 Cover body
13 カメラ  13 Camera
14 ライ卜  14 Lai
15 半田ごて  15 Soldering iron
16 糸半田  16 Thread solder
17 半田供給器  17 Solder feeder
18 制御部  18 Control unit
20 実装基板  20 Mounting board
21 ェナ ロ口ロ  21.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の半田付けの検査方法、半田付け方法、及び半田付け装置では、高価な 赤外線センサではなぐ比較的安価な CCDカメラなどの撮像装置を用いて半田付け されて!/、る部分の半田を監視して、適正な量の半田で半田付けが行われて!/、るかを 確認可能とすることにより、半田付けの終了、あるいは半田付けの異常の発生を検出 可能としているものである。以下において、 CCDカメラや CMOSカメラなどのシリコン フォトダイオードからなる半導体製の撮像素子を用いた撮像装置を単に「カメラ」と呼 ぶこととする。  [0023] The soldering inspection method, soldering method, and soldering apparatus of the present invention are soldered using a relatively inexpensive imaging device such as a CCD camera rather than an expensive infrared sensor! By monitoring the solder of the solder, it is possible to detect the end of soldering or the occurrence of soldering abnormality by making it possible to confirm whether soldering is performed with an appropriate amount of solder! It is. In the following, an imaging device using a semiconductor imaging device consisting of a silicon photodiode, such as a CCD camera or CMOS camera, is simply referred to as a “camera”.
[0024] 特に、カメラは赤外線領域の光を検出可能としているものであり、半田ごてやレーザ 光スポットなどの半田溶融手段で溶融された半田から反射してきた赤色よりも長波長 の光により画像データを生成しているものである。  [0024] In particular, the camera is capable of detecting light in the infrared region, and an image is obtained by light having a wavelength longer than that of red reflected from solder melted by a solder melting means such as a soldering iron or a laser beam spot. The data is being generated.
[0025] このように赤色よりも長波長の光を用いることにより、半田付けの際に発生する煙の 影響を低減させて半田付け状態を監視することができる。  [0025] By using light having a wavelength longer than that of red as described above, the influence of smoke generated during soldering can be reduced and the soldering state can be monitored.
[0026] すなわち、半田付けの際に発生する煙は、この煙の排除用に設けたダクトに設けた 集塵用フィルタの性能から、粒子径分布の中心が 300nm付近にある粒子で構成さ れていると推察される。この大きさの粒子は、可視光の波長範囲においていわゆるミ 一散乱と呼ばれている光散乱の原因となり、散乱にともなって白っぽい煙として見え ているものである。 [0026] That is, the smoke generated during soldering is composed of particles having a particle size distribution centered around 300 nm due to the performance of the dust collection filter provided in the duct provided for the removal of the smoke. It is inferred that Particles of this size cause light scattering called so-called mi-scattering in the visible light wavelength range, and appear as whitish smoke with scattering. It is what.
[0027] したがって、カメラが可視光域で撮影を行う場合には、半田付けの際に発生する煙 も撮影されることとなり、半田溶融手段で溶融された半田とカメラとの間に煙が存在す ると、半田が煙に隠れて明瞭に撮影することができな力 た。  [0027] Therefore, when the camera performs photographing in the visible light range, smoke generated during soldering is also photographed, and there is smoke between the solder melted by the solder melting means and the camera. As a result, the solder was hidden behind the smoke and was unable to capture a clear picture.
[0028] しかし、可視光よりも長波長である近赤外領域では、半田付けの際に発生する煙に よる光散乱がレイリー散乱を主体とするものとなることが判明した。このレイリー散乱で は、散乱の強さが波長の 4乗分の 1に比例して減少するので散乱が抑制されやすぐ カメラでの撮影における煙の写り込みを抑制して、半田付け状態の監視を可能として いるものである。  [0028] However, it has been found that in the near-infrared region, which has a longer wavelength than visible light, light scattering due to smoke generated during soldering is mainly Rayleigh scattering. In this Rayleigh scattering, the intensity of the scattering decreases in proportion to one fourth power of the wavelength, so the scattering is suppressed. Is possible.
[0029] このように、赤色よりも長波長の光により画像データを生成することによって、半田付 けの際に発生する煙の影響を低減させて、カメラを用いて半田付け領域における半 田の状態を確実に監視でき、適正な量の半田で半田付けが行われて!/、るかを確認 して半田付けの終了判定を行うことができるとともに、たとえば所定時間を経過しても 所定量の半田が溶融されていないなどといった異常の検出を可能とすることができる  [0029] In this way, by generating image data with light having a wavelength longer than that of red, the effect of smoke generated during soldering is reduced, and the use of a camera in the soldering region is reduced. The status can be monitored reliably, soldering can be done with the proper amount of solder! /, And the end of soldering can be judged. It is possible to detect abnormalities such as solder not being melted
[0030] なお、赤色よりも長波長の光としては、半田の溶融にともなって発生する煙の場合 に、 670nm辺りから煙によるレイリー散乱の強度が半田からの反射光よりも小さくなる ことが初めて実験的に確認できたため、 670nmよりも長波長の光を用いることが望ま しい。 [0030] It should be noted that light having a wavelength longer than that of red is the first time that in the case of smoke generated as the solder melts, the intensity of Rayleigh scattering due to smoke becomes smaller than the reflected light from the solder from around 670 nm. Since it was confirmed experimentally, it is desirable to use light with a wavelength longer than 670 nm.
[0031] さらに、従来の CCD撮像素子を内蔵したカメラを用いて、数 mの波長まで使用し て画像処理をしていたところ、シリコンフォトダイオードアレイからなる CCD撮像素子 の感度領域までの波長でも画像データの生成が十分に可能であることが実験的に 初めて判明したことから、バンドギャップ 1. 17eVであるシリコンフォトダイオードの感 度範囲の波長である l lOOnmまでは少なくとも利用できることが確認された。  [0031] Furthermore, when a conventional camera with a built-in CCD image sensor was used to perform image processing up to a wavelength of several meters, even a wavelength up to the sensitivity region of a CCD image sensor composed of a silicon photodiode array was obtained. Since it was first experimentally found that image data can be generated sufficiently, it was confirmed that at least l lOOnm, the wavelength in the sensitivity range of silicon photodiodes with a band gap of 1.17 eV, could be used. .
[0032] したがって、赤色よりも長波長の光として、少なくとも 670nm〜; UOOnmの赤外光 を用いることが望ましぐこれによつて、半田付け装置において、大幅に低コスト化で きるとともに、溶融された半田の撮影の高感度化にともなう高精度化が可能となる。  [0032] Therefore, it is desirable to use infrared light of at least 670 nm or more; UOOnm as light having a wavelength longer than that of red. This makes it possible to significantly reduce the cost and to melt the soldering apparatus. Therefore, it is possible to increase the accuracy in accordance with the higher sensitivity of the photographed solder.
[0033] 一方、半田付けにおいては、半田溶融手段で溶融された半田に作用する表面張 力によって、溶融された半田が球状化する傾向があるので、半田溶融手段で溶融さ れた半田をカメラで撮影して得られた半田の二次元画像から半田の量を推定可能と なっている。したがって、半田付け装置では、半田溶融手段で溶融された半田をカメ ラで監視するだけでよい。 [0033] On the other hand, in soldering, a surface tension acting on the solder melted by the solder melting means. Since the melted solder tends to spheroidize due to the force, the amount of solder can be estimated from a two-dimensional image of the solder obtained by photographing the solder melted by the solder melting means with a camera. . Therefore, the soldering apparatus only needs to monitor the solder melted by the solder melting means with the camera.
[0034] ただし、カメラで撮影した画像から半田溶融手段で溶融された半田の量を検出する ためには、半田溶融手段への半田の供給開始前の状態をカメラで撮影して第 1画像 データを生成し、半田溶融手段への半田の供給を開始して所定量の半田を溶融さ せた状態をカメラで撮影して第 2画像データを生成して、第 1画像データと第 2画像 データとの差分をとつて差分画像データを生成し、この差分画像データから半田の 量を検出することとなる力 この場合、第 1画像データ中の半田溶融手段である半田 ごてや半田付けされるリードなどの影響による誤差が生じるおそれがある。  [0034] However, in order to detect the amount of solder melted by the solder melting means from the image photographed by the camera, the first image data is obtained by photographing the state before the supply of solder to the solder melting means with the camera. Then, the supply of solder to the solder melting means is started, and a state in which a predetermined amount of solder is melted is photographed with a camera to generate second image data. The first image data and the second image data Difference image data is generated by taking the difference between and the amount of solder that is detected from the difference image data. In this case, the soldering iron or the soldering means that is the solder melting means in the first image data is soldered There is a risk of errors due to the influence of leads and the like.
[0035] したがって、半田溶融手段で溶融された半田の量を精度よく検出したい場合には、 第 1画像データとして半田溶融手段への半田の供給開始前の状態の画像からなる 画像データを用いることは好適ではなレ、。  Therefore, when it is desired to accurately detect the amount of solder melted by the solder melting means, image data composed of an image in a state before starting the supply of solder to the solder melting means is used as the first image data. Is not suitable.
[0036] このような場合、通常の差分処理による解析では、観察対象の変化以外の変化を 抽出することを抑制するためにできるだけ短い時間間隔で連続的に撮影して得られ た少なくとも 2つの画像データを用いる力 観察対象が半田である場合には、前述し たように、半田が存在する領域に対する差分処理にお!/、て変化量が小さ!/、領域が生 じるために、半田を正しく抽出できな!/、領域が生じることとなって!/、る。  [0036] In such a case, in the analysis by the normal difference processing, at least two images obtained by continuously capturing images at a time interval as short as possible in order to suppress extraction of changes other than the change of the observation target. Force using data When the object to be observed is solder, as described above, the amount of change is small in the difference processing for the area where the solder exists! Cannot be extracted correctly! /, An area will be generated! /, Ru.
[0037] すなわち、半田の場合には、カメラに対して正面となる溶融された半田の表面が近 似的に平面と見なせる面となり、半田がさらに溶融されても表面的な変化が極めて小 さいために、差分処理における二値化の際に閾値を越えることができず、図 1 (c)や 図 1 (d)に示すように、中央において半田が検出できない未検出領域 Lが生じることと なっている。  [0037] That is, in the case of solder, the surface of the melted solder that is the front face of the camera becomes a plane that can be regarded as a flat surface, and even if the solder is further melted, the surface change is extremely small. For this reason, the threshold cannot be exceeded during binarization in difference processing, and as shown in Fig. 1 (c) and Fig. 1 (d), an undetected area L where solder cannot be detected occurs in the center. It has become.
[0038] そこで、本発明者は、半田付けを行っている際に、カメラで画像データを逐次生成 するとともに、生成された画像データのうち、撮影のタイミングが異なる少なくとも 2つ の画像データの差分をとつて、図 1 (a)〜(d)に示すょぅに差分画像データ?& 13 Pdを逐次生成し、これらの差分画像データ Pa, Pb,Pc,Pdを逐次互いに重ね合わせて 合成して、図 1 (e)に示すように合成画像データ Peを生成することとした。 [0038] Therefore, the present inventor sequentially generates image data with a camera while performing soldering, and at the same time, the difference between at least two image data having different shooting timings among the generated image data. As shown in Fig. 1 (a) to (d), the difference image data? & 13 Pd is generated sequentially, and these difference image data Pa, Pb, Pc, Pd are sequentially superimposed on each other. The synthesized image data Pe is generated as shown in FIG.
[0039] このように差分画像データ?& 13 (: (1を合成して合成画像データ?6を生成するこ とにより、未検出領域 Lを他の差分画像データで解消することができ、合成画像デー タ Peを用いることにより半田溶融手段で溶融された半田の量を正確に検出することが できる。 [0039] In this way, difference image data? & 13 (: (By combining 1 and generating composite image data? 6, the undetected area L can be eliminated with other difference image data, and by using the composite image data Pe, solder melting is performed. The amount of solder melted by the means can be accurately detected.
[0040] 以下において、図面に基づいて本発明の実施形態を詳説する。図 2は、第 1実施形 態の半田付け装置 A1の概略模式図である。なお、以下において半田溶融手段は一 般的な半田ごてとして説明する力 昨今、レーザダイオードなどのレーザ光源を用い た半田溶融手段も知られており、半田ごての替わりにレーザ光源を備えた半田溶融 器を用いてもよぐ供給された半田を順次溶融させることができる半田溶融手段であ れば何であってもよい。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a schematic diagram of the soldering apparatus A1 according to the first embodiment. In the following, the power to explain the solder melting means as a general soldering iron. Recently, solder melting means using a laser light source such as a laser diode is also known, and a laser light source is provided instead of the soldering iron. Any solder melting means that can sequentially melt the supplied solder using a solder melting device may be used.
[0041] 半田付け装置 A1では、所要の電子部品 21が仮装着された実装基板 20が載置され る載置部 11が設けられた基台 10と、実装基板 20の半田付けされる半田付け領域を撮 影するカメラ 13と、半田付け領域を照らすライト 14と、半田付け領域に配置した半田 溶融手段である半田ごて 15と、この半田ごて 15に向けて糸半田 16を供給する半田供 給手段としての半田供給器 17と、この半田供給器 17を制御するとともにカメラ 13の出 力信号を解析する制御部 18とを備えている。図 2中、 19は半田ごて 15に向けて糸半 田 16を案内するガイド体である。  [0041] In the soldering apparatus A1, the base 10 provided with the mounting portion 11 on which the mounting substrate 20 on which the required electronic components 21 are temporarily mounted is mounted, and the mounting substrate 20 is soldered to be soldered. A camera 13 for photographing the area, a light 14 for illuminating the soldering area, a soldering iron 15 as a solder melting means disposed in the soldering area, and a solder for supplying the thread solder 16 toward the soldering iron 15 A solder supplier 17 as supply means, and a control unit 18 for controlling the solder supplier 17 and analyzing the output signal of the camera 13 are provided. In FIG. 2, 19 is a guide body that guides the yarn solder 16 toward the soldering iron 15.
[0042] 図示しないが、半田付け装置 A1には、実装基板 20を載置部 11に移送するとともに、 半田付け処理が終了した実装基板 20を後工程へと移送する移送装置を設けている 。具体的には、移送装置には、移送方向に移動するとともに上下に昇降可能とした 矩形状の昇降体(図示せず)を設けるとともに、この昇降体には先端を実装基板 20に 下方から当接させる複数の支持柱(図示せず)を設けている。そして、実装基板 20を 載置部 11に移送する際には、昇降体を上昇させることにより支持柱を実装基板 20に 当接させて持ち上げ、その状態で昇降体を水平方向に移動させて実装基板 20を載 置部 11に移送し、昇降体を降下させることにより載置部 11に実装基板 20を載置して いる。同様の移送装置によって、載置部 11の実装基板 20を後工程へと移送すること ができる。 [0043] 載置部 11は、本実施形態では基台 10の上面に突接した複数の柱体 11aで構成して おり、この柱体 11aを所定間隔で配置して実装基板 20を水平状態に支持可能として いる。 [0042] Although not shown, the soldering apparatus A1 is provided with a transfer device that transfers the mounting board 20 to the mounting unit 11 and transfers the mounting board 20 that has undergone the soldering process to a subsequent process. Specifically, the transfer device is provided with a rectangular lift body (not shown) that moves in the transfer direction and can be moved up and down. The lift body has a tip that contacts the mounting substrate 20 from below. A plurality of support columns (not shown) are provided in contact with each other. When the mounting board 20 is transferred to the mounting portion 11, the lifting body is lifted to raise the support pillar in contact with the mounting board 20, and in that state, the lifting body is moved in the horizontal direction for mounting. The mounting substrate 20 is placed on the placement unit 11 by transferring the substrate 20 to the placement unit 11 and lowering the lifting body. With the same transfer device, the mounting substrate 20 of the mounting portion 11 can be transferred to a subsequent process. [0043] In this embodiment, the mounting portion 11 includes a plurality of pillars 11a projectingly contacting the upper surface of the base 10, and the mounting bodies 20 are placed in a horizontal state by arranging the pillars 11a at predetermined intervals. Can be supported.
[0044] カメラ 13は、赤外領域の撮影が可能な CCDカメラを用いている。この CCDカメラは 、たとえば監視カメラとして一般的に用いられているものを利用することができる。な お、市販の CCDカメラを用いる場合には、場合によっては赤外線カットフィルタが内 蔵されている場合があり、この赤外線カットフィルタを取り外して使用することが望まし い。  As the camera 13, a CCD camera capable of photographing in the infrared region is used. This CCD camera can use what is generally used as a surveillance camera, for example. When using a commercially available CCD camera, an infrared cut filter may be built in depending on the case. It is desirable to remove this infrared cut filter before use.
[0045] さらに、カメラ 13には、赤色よりも長波長の光のみを透過させるフィルタ Fを装着して いる。フィルタ Fは、波長が 670〜; UOOnmの範囲以外の光を遮断して、波長が 670 〜1100nmの光を透過させるフィルタであればよぐ好適には 800〜900nmの赤外 光域で最も高レ、透過率となるフィルタを用いるのが望ましレ、。このフィルタ Fによって 可視光域の光がカメラ 13の撮像素子に入射されることを抑止し、半田付けの際に発 生した煙の写り込みを抑止して!/、る。  [0045] Further, the camera 13 is equipped with a filter F that transmits only light having a longer wavelength than red. The filter F is preferably a filter that blocks light outside the wavelength range of 670 to UOOnm and transmits light with a wavelength of 670 to 1100 nm, and is preferably the highest in the infrared light range of 800 to 900 nm. It is desirable to use a filter that has transmittance. This filter F prevents light in the visible light range from entering the image sensor of the camera 13, and suppresses the reflection of smoke generated during soldering!
[0046] ライト 14は、半田ごて 15で溶融された半田からの赤色よりも長波長の光からなる反 射光の光量を多くするために設けているものであり、赤色よりも長波長の光を照射す るものを使用している。特に、ライト 14には、 600nmよりも長波長の光を照射するもの が望ましぐ好適には 800〜900nm程度の光を照射するものが望ましい。なお、ライ ト 14による照射を行わなくとも、赤色よりも長波長の光による半田からの反射光の光量 が十分大きい場合には、ライト 14は必ずしも設けなくてもよい。  [0046] The light 14 is provided to increase the amount of reflected light composed of light having a longer wavelength than that of the red color from the solder melted by the soldering iron 15. The light 14 has a longer wavelength than that of the red light. The one that irradiates is used. In particular, the light 14 is preferably irradiated with light having a wavelength longer than 600 nm, and more preferably irradiated with light having a wavelength of about 800 to 900 nm. Even if the light 14 is not irradiated, the light 14 is not necessarily provided if the amount of light reflected from the solder by light having a longer wavelength than red is sufficiently large.
[0047] また、場合によっては特別な光源のライトを用いる必要はなぐ例えば、タングステン ランプやハロゲンランプ、あるいは太陽光などの連続スペクトル光を利用して、赤外 成分の光量を単に増加させるだけでもよい。特に、タングステンランプやハロゲンラン プなどの場合には、定格電流以下で使用することによって赤外成分の割合を増やし た状態として、ライト 14の替わりとしてもよい。  [0047] In some cases, it is not necessary to use a light of a special light source. For example, by simply using a continuous spectrum light such as a tungsten lamp, a halogen lamp, or sunlight, the light amount of the infrared component is simply increased. Good. In particular, in the case of a tungsten lamp or a halogen lamp, the light 14 may be used as a state in which the ratio of the infrared component is increased by using it below the rated current.
[0048] また、半田溶融手段がレーザ光源を用いた半田溶融手段である場合には、半田を 溶融させているレーザ光スポットと、ライト 14から照射された光とによってハレーション を生じ、カメラ 13での適正な画像データの生成が困難となるおそれがある。 [0049] そこで、例えば、レーザ光源として GalnP系レーザダイオードによる 670nmの赤色 レーザ光を照射する場合は、ライト 14には、 GaAlAs系のレーザダイオードを用いて 7 80nmの光の照射を行ったり、 GaAs系のレードダイオードを用いて 800〜900nmの 光の照射を行ったりすることが望ましレ、。 [0048] When the solder melting means is a solder melting means using a laser light source, halation is caused by the laser light spot melting the solder and the light emitted from the light 14, and the camera 13 It may be difficult to generate appropriate image data. [0049] Therefore, for example, when irradiating a 670 nm red laser beam by a GalnP laser diode as a laser light source, the light 14 is irradiated with 780 nm light using a GaAlAs laser diode, or GaAs It is desirable to irradiate light of 800 to 900nm using a system diode.
[0050] あるいは、レーザ光源として GaAlAs系や GaAs系のレーザダイオードを用いて 78 Onmや 800nmのレーザ光を照射する場合には、ライト 14には、 GaAs系や GalnAs 系等の発光ダイオードを用いて 850〜; UOOnmの光の照射を行うことが望ましい。  [0050] Alternatively, when using a GaAlAs or GaAs laser diode as a laser light source and irradiating a 78 Onm or 800 nm laser beam, a light emitting diode such as GaAs or GalnAs is used for the light 14. 850 ~; It is desirable to irradiate UOOnm light.
[0051] すなわち、光源となるライト 14は、半田溶融手段のレーザ光源の出力光と異なる波 長の光を照射することによりハレーションの発生を防止できる。なお、ライト 14が照射 する光の波長は、レーザ光源の出力光の波長よりも長い場合だけでなぐ短くしても よぐレーザ光源の出力光の波長とできるだけ異なる波長のレーザ光を用いることが 望ましい。  That is, the light 14 serving as the light source can prevent the occurrence of halation by irradiating light having a wavelength different from that of the output light of the laser light source of the solder melting means. Note that the wavelength of light emitted from the light 14 may be as short as possible only when it is longer than the wavelength of the output light of the laser light source. desirable.
[0052] また、レーザ光源の出力が極めて大きい場合には、少なくとも波長 670〜; UOOnm 以外の光をできるだけ、あるいは完全に遮光してもよぐ適宜のフィルタや偏光板等 の遮光体をカメラ 13と被写体である半田との間に設けてもよい。  [0052] Further, when the output of the laser light source is extremely large, an appropriate light shielding body such as a filter or a polarizing plate that can shield light other than the wavelength 670 to light other than UOOnm as much as possible or completely is used. And solder that is the subject.
[0053] カメラ 13及びライト 14は、載置部 11の直上位置に配置するのではなぐ載置部 11の 直上位置から離隔させて配置して、半田付けにともなって発生した煙がカメラ 13及び ライト 14に当たらないようにすることが望ましい。また、カメラ 13は、半田ごて 15で溶融 された半田を撮影する必要があるので、載置部 11の斜め上方位置に配置している。  [0053] The camera 13 and the light 14 are arranged apart from the position immediately above the placement unit 11 instead of being arranged at a position directly above the placement unit 11. It is desirable not to hit light 14. Further, since the camera 13 needs to photograph the solder melted by the soldering iron 15, it is disposed at an obliquely upper position of the mounting portion 11.
[0054] さらに、本実施形態では、ライト 14はカメラ 13に装着して、できるだけカメラ 13に近接 させて配置している。したがって、ライト 14の配設を容易に行うことができるとともに、力 メラ 13が半田による強い反射光を得られやすくすることができ、カメラ 13による半田の 撮影を確実に行うことができる。  Furthermore, in the present embodiment, the light 14 is attached to the camera 13 and arranged as close to the camera 13 as possible. Therefore, the light 14 can be easily arranged, and the force lens 13 can easily obtain a strong reflected light from the solder, so that the camera 13 can reliably photograph the solder.
[0055] 半田ごて 15は、図示しない昇降装置に装着して昇降自在としており、載置部 11に実 装基板 20が載置された後に降下させて、供給された糸半田を溶融可能としている。 なお、 1つの実装基板 20で複数力所の半田付けが必要な場合には、昇降装置に X— Y方向の移動手段を設けて半田ごて 15の位置を適宜移動可能としてもよいし、実装 基板 20を X— Yテーブルなどで適宜移動させてもよい。 [0056] 半田供給器 17は、糸状に加工された糸半田 16を所定のタイミングで所定量ずつ繰 り出し可能としている。半田供給器 17から繰り出された糸半田 16は、ガイド体 19に案 内されて接合部の半田ごて 15に送給されている。 [0055] The soldering iron 15 is mounted on a lifting device (not shown) so that the soldering iron 15 can be raised and lowered. The soldering iron 15 is lowered after the mounting board 20 is placed on the placing portion 11, so that the supplied thread solder can be melted. Yes. If soldering at multiple locations is required on one mounting board 20, the lifting device may be provided with moving means in the X and Y directions so that the position of the soldering iron 15 can be moved appropriately. The substrate 20 may be moved as appropriate using an XY table or the like. [0056] The solder supplier 17 can feed the thread solder 16 processed into a thread shape by a predetermined amount at a predetermined timing. The thread solder 16 fed out from the solder feeder 17 is placed in the guide body 19 and fed to the soldering iron 15 at the joint.
[0057] 制御部 18は適宜のプログラムを実行可能としており、本実施形態ではパーソナルコ ンピュータで構成して、カメラ 13の出力信号を解析し、半田供給器 17からの糸半田 16 の繰り出しの終了タイミングを検出して、終了タイミングの検出にともなって半田供給 器 17の動作を停止させる制御信号を出力している。 The control unit 18 can execute an appropriate program. In this embodiment, the control unit 18 is composed of a personal computer, analyzes the output signal of the camera 13, and finishes the feeding of the thread solder 16 from the solder supplier 17. The timing is detected, and a control signal for stopping the operation of the solder supplier 17 is output in accordance with the detection of the end timing.
[0058] 以下において、図 3のフローチャートに基づいて、半田付け装置 A1による半田接合 工程について説明する。 [0058] In the following, the solder joining process by the soldering apparatus A1 will be described based on the flowchart of FIG.
[0059] まず、半田付け装置 A1では、実装基板 20を移送して載置部 11に載置し (ステップ SFirst, in the soldering apparatus A1, the mounting board 20 is transferred and placed on the placement unit 11 (step S
1)、光源であるライト 14で実装基板 20の半田付け領域に赤色よりも長波長の光を照 射する(ステップ S 2)。 1) Light having a longer wavelength than red is irradiated onto the soldering region of the mounting board 20 with the light 14 as the light source (step S2).
[0060] 次いで、半田付け装置 A1では、半田供給器 17によって糸半田 16の供給を開始し( ステップ S3)、カメラ 13での半田付け領域の撮影を開始する(ステップ S4)。このとき、 半田付けにともなって煙が発生している力 S、赤色よりも長波長の光を用いて撮影して いることによりカメラ 13で撮影された画像に煙が写り込むことを抑止して、明瞭な画像 を得ること力 Sでさる。  [0060] Next, in the soldering apparatus A1, supply of the thread solder 16 is started by the solder supplier 17 (step S3), and photographing of the soldering area by the camera 13 is started (step S4). At this time, smoke S is generated due to soldering S, and shooting using light having a wavelength longer than red, suppresses smoke from appearing in the image taken by camera 13. Use the power S to obtain clear images.
[0061] カメラ 13では所定タイミングで半田付け領域を逐次撮影して、出力信号を半田付け 装置 A1の制御部 18に入力する。制御部 18では、入力されたカメラ 13の出力信号から 画像データを順次生成している。さらに、制御部 18では、カメラ 13の出力信号から生 成した第 1画像データと、この第 1画像データよりも撮影タイミングが後となっている第 2画像データとから差分をとつて差分画像データを生成している (ステップ S 5)。  The camera 13 sequentially photographs the soldering area at a predetermined timing, and inputs an output signal to the control unit 18 of the soldering apparatus A1. The control unit 18 sequentially generates image data from the input output signal of the camera 13. Further, the control unit 18 takes the difference between the first image data generated from the output signal of the camera 13 and the second image data whose shooting timing is later than the first image data. (Step S5).
[0062] 第 1画像データと第 2画像データとでは撮影タイミングが異なることにより、半田付け 領域における半田の形状のみが異なっており、差分画像データでは、この半田の形 状の変化分が抽出されることとなる。本実施形態の差分画像データでは、第 1画像デ 一タと第 2画像データとの差分の値が所定の閾値より小さい領域を「0」、閾値以上の 領域を「1」とした画像データとしている。  [0062] The first image data and the second image data have different shooting timings, so that only the solder shape in the soldering area is different. In the difference image data, the change in the solder shape is extracted. The Rukoto. In the difference image data of the present embodiment, the area where the difference value between the first image data and the second image data is smaller than a predetermined threshold is “0”, and the area above the threshold is “1”. Yes.
[0063] 次いで、制御部 18は、画像データを一時的に記憶するために設けている画像デー タ用メモリから、記憶されている保存画像データを読み出している(ステップ S6)。保 存画像データは、後述するように差分画像データどうしを重ね合わせて合成すること により生成した合成画像データである。なお、画像データ用メモリには、デフォルトと して全ての領域で「0」となった画像データを記憶して!/、る。 [0063] Next, the control unit 18 sets the image data provided for temporarily storing the image data. The stored stored image data is read from the data memory (step S6). The stored image data is composite image data generated by superposing and combining the difference image data as will be described later. The image data memory stores image data that is “0” in all areas as a default!
[0064] 制御部 18は、第 1画像データと第 2画像データとから生成した差分画像データと、 画像データ用メモリから読み出した保存画像データ (合成画像データ)との論理和処 理を行うことにより差分画像データの重ね合わせによる合成を行って、新たな合成画 像データを生成してレ、る(ステップ S 7)。  [0064] The control unit 18 performs a logical OR process on the difference image data generated from the first image data and the second image data and the saved image data (synthesized image data) read from the image data memory. Thus, the composition is performed by superimposing the difference image data to generate new composite image data (step S7).
[0065] 合成画像データの生成後、制御部 18は、合成画像データから半田付け領域にお ける半田ごて 15により溶融した半田の面積を検出している (ステップ S8)。具体的に は、合成された差分画像中の「1」の領域をカウントしている。  [0065] After the composite image data is generated, the control unit 18 detects the area of the solder melted by the soldering iron 15 in the soldering area from the composite image data (step S8). Specifically, “1” areas in the combined difference image are counted.
[0066] 制御部 18は、検出した半田の面積と、あらかじめ設定した終了条件の閾値とを比較 して (ステップ S9)、検出した半田の面積が、終了条件の閾値よりも小さい場合 (ステ ップ S9 : NO)には、ステップ S7で生成された合成画像データを画像データ用メモリ に記憶して (ステップ S10)、ステップ S5に戻り、先の第 2画像データと、この第 2画像 データよりも撮影タイミングが後となっている第 3画像データとから差分をとつて新たな 差分画像データを生成してレ、る。  [0066] The control unit 18 compares the detected solder area with a preset end condition threshold (step S9), and when the detected solder area is smaller than the end condition threshold (step S9). In step S9: NO), the composite image data generated in step S7 is stored in the image data memory (step S10), the process returns to step S5, and the previous second image data and the second image data are used. Also, the difference image data is generated from the third image data whose shooting timing is later, and new difference image data is generated.
[0067] そして、制御部 18では、この差分画像データを、ステップ S6で読み出した画像デー タ用メモリに記憶された保存画像データ (合成画像データ)に合成して新たな合成画 像データを生成し (ステップ S 7)、この合成画像データから半田の面積の検出を行つ  [0067] Then, the control unit 18 combines the difference image data with the stored image data (synthesized image data) stored in the image data memory read out in step S6, thereby generating new synthesized image data. (Step S7), the solder area is detected from this composite image data.
[0068] このように、制御部 18では、差分画像データを逐次生成するとともに、生成した差分 画像データを逐次合成して合成画像データを生成することにより、半田付け領域に おける半田ごて 15により溶融された半田の面積を正しく検出することができ、ステップ S9において半田の面積があらかじめ設定した終了条件の閾値よりも大きくなると (ス テツプ S9 : YES)、半田供給器 17の動作を停止させる制御信号を出力している(ステ ップ S l l)。 As described above, the control unit 18 sequentially generates the difference image data, and sequentially generates the combined image data by synthesizing the generated difference image data, so that the soldering iron 15 in the soldering area 15 Control that stops the operation of the solder feeder 17 when the area of the melted solder can be detected correctly and the solder area becomes larger than the preset threshold value of the end condition in step S9 (step S9: YES). A signal is being output (step Sll).
[0069] その後、半田付け装置 A1では、載置部 11から実装基板 20を除去して後工程へと移 送している(ステップ SI 2)。 [0069] After that, in the soldering apparatus A1, the mounting substrate 20 is removed from the mounting portion 11, and the process proceeds to a subsequent process. (Step SI 2).
[0070] 本実施形態の半田付け装置 A1では、赤色よりも長波長の光のみを透過させるフィ ルタ Fを装着したカメラ 13で半田ごて 15により溶融された半田を撮影していることによ り、半田付けにともなって発生する煙の影響を低減させて半田の状態を監視できると ともに、差分画像データどうしを重ね合わせて生成した合成画像データに基づいて 半田の面積を検出することにより、精度よく半田を検出することができる。  [0070] In the soldering apparatus A1 of the present embodiment, the camera 13 equipped with the filter F that transmits only light having a wavelength longer than red is used to photograph the solder melted by the soldering iron 15. In addition to reducing the effects of smoke generated by soldering, the state of solder can be monitored, and by detecting the area of the solder based on composite image data generated by overlaying difference image data, Solder can be detected with high accuracy.
[0071] したがって、本実施形態の半田付け装置 A1では、必要最小限の半田で半田付け を行うことができ、半田付けの作業時間を短縮できる。  Therefore, in the soldering apparatus A1 of the present embodiment, it is possible to perform soldering with the minimum necessary solder, and to shorten the soldering work time.
[0072] しかも、本実施形態の半田付け装置 A1では、精度よく半田を検出することができる ことによって半田付けの異常を検出できるので、検査装置を兼ねており、半田付け後 の半田付け部分の検査工程を不要とすることもでき、製造工程の短縮化による製造 コストの低減を図ることもできる。  [0072] Moreover, since the soldering apparatus A1 of the present embodiment can detect the soldering abnormality by detecting the solder with high precision, it also serves as an inspection apparatus, and the soldering part after soldering The inspection process can be eliminated, and the manufacturing cost can be reduced by shortening the manufacturing process.
[0073] ここで、半田付け時における半田付けの異常の検出は、カメラ 13で撮影した画像か ら検出される形状異常であってもよいし、半田供給器 17による糸半田 16の繰り出し時 間を計測して、この繰り出し時間が所定時間以上となった場合を異常が生じていると 判定してもよい。このような異常が生じていない状態を、本発明では正しい半田付け が行われてレ、る状態としてレ、る。  Here, the detection of the soldering abnormality at the time of soldering may be a shape abnormality detected from an image photographed by the camera 13, or the feeding time of the thread solder 16 by the solder feeder 17. It is possible to determine that an abnormality has occurred when this feeding time exceeds a predetermined time. In the present invention, a state in which such an abnormality has not occurred is regarded as a state in which correct soldering is performed.
[0074] 図 4は、第 2実施形態の半田付け装置 A2の概略模式図である。第 2実施形態の半 田付け装置 A2では、第 1実施形態の半田付け装置 A1のようにカメラ 13にフィルタ Fを 装着するのではなぐ載置部 11に載置された実装基板 20を覆うカバー体 12を設けて いるものである。フィルタ Fの替わりにカバー体 12を設けた点以外は、第 1実施形態の 半田付け装置 A1と同一構成であって、第 1実施形態の半田付け装置 A1と同一部分 には同一符号を用レ、、詳細な説明は省略する。  FIG. 4 is a schematic diagram of a soldering apparatus A2 according to the second embodiment. In the soldering apparatus A2 of the second embodiment, the cover that covers the mounting substrate 20 mounted on the mounting portion 11 that does not mount the filter F on the camera 13 like the soldering apparatus A1 of the first embodiment. The body 12 is provided. The configuration is the same as that of the soldering apparatus A1 of the first embodiment except that a cover body 12 is provided instead of the filter F, and the same reference numerals are used for the same parts as the soldering apparatus A1 of the first embodiment. Detailed description will be omitted.
[0075] カバー体 12は、赤色よりも長波長の光のみを透過させるシート状フィルタで構成し ており、本実施形態では、透明なアクリル板でボックス状に形成した基体に、赤色より も長波長の光のみを透過させるシート状フィルタを貼付けて形成した。シート状フィノレ タは、好ましくは 800〜900nmの赤外光域で最も高い透過率となるものが望ましい。  [0075] The cover body 12 is composed of a sheet-like filter that transmits only light having a wavelength longer than that of red. In this embodiment, a cover formed in a box shape with a transparent acrylic plate is longer than red. A sheet-like filter that transmits only light having a wavelength was pasted and formed. The sheet-shaped finerator is preferably one that has the highest transmittance in the infrared light region of 800 to 900 nm.
[0076] カバー体 12は、載置部 11に載置された実装基板 20だけでなくカメラ 13も覆う大きさ とし、半田供給器 17や、場合によっては制御部 18もカバー体 12で被覆してもよい。 [0076] The cover body 12 is large enough to cover not only the mounting substrate 20 placed on the placement portion 11 but also the camera 13. The solder supply device 17 and, in some cases, the control unit 18 may be covered with the cover body 12.
[0077] このように、実装基板 20及びカメラ 13をカバー体 12で被覆することにより、カバー体 12を透過してカバー体 12内に射し込む光を赤色よりも長波長の光として、半田ごて 15 により溶融された半田からの反射光を赤色よりも長波長の光とすることができる。した 力 Sつて、カメラ 13による半田の撮影の際における半田付けにともなって発生した煙の 写り込みを抑止でき、確実に半田を撮影することができる。  In this way, by covering the mounting substrate 20 and the camera 13 with the cover body 12, the light that passes through the cover body 12 and is incident on the cover body 12 is converted into light having a wavelength longer than that of red, and then a soldering iron. The reflected light from the solder melted by 15 can be made light having a longer wavelength than red. As a result, it is possible to suppress the reflection of smoke generated by soldering when the solder is photographed by the camera 13, and to reliably photograph the solder.
[0078] なお、本実施形態では、カバー体 12内に赤色よりも長波長の光を照射するライト 14 を設けて、カバー体 12を透過してカバー体 12内に射し込む光の量が十分でない場 合に、このライト 14から照射された光を用いて、カメラ 13による半田の撮影を確実に行 えるようにしている。ライト 14は、 600nmよりも長波長の光を照射するものが望ましぐ 好適には 800〜900nm程度の光を照射するものが望ましい。  In the present embodiment, a light 14 that irradiates light having a wavelength longer than red is provided in the cover body 12, and the amount of light that passes through the cover body 12 and enters the cover body 12 is not sufficient. In this case, the light emitted from the light 14 is used to ensure that the camera 13 can photograph the solder. The light 14 is preferably irradiated with light having a wavelength longer than 600 nm, and is preferably irradiated with light having a wavelength of about 800 to 900 nm.
[0079] また、このようにカバー体 12内にライト 14を設ける場合には、カバー体 12は必ずしも 赤色よりも長波長の光を透過させる必要はなぐ完全に遮光する遮光板などでカバ 一体 12を構成してもよい。  [0079] Further, when the light 14 is provided in the cover body 12 in this way, the cover body 12 is not necessarily required to transmit light having a wavelength longer than that of red, and the cover body 12 is integrated with a light shielding plate that completely shields light. May be configured.
[0080] なお、半田溶融手段が半田ごて 15ではなぐレーザダイオードの出力光により形成 したレーザ光スポットの場合には、カメラ 13に、少なくとも波長 670〜; UOOnmの光を カットするフィルタ、及び必要に応じて偏光板等の遮光体を装着することが望ましい。  [0080] In the case of a laser beam spot formed by the output light of the laser diode that the solder melting means is not the soldering iron 15, the camera 13 has at least a filter for cutting light with a wavelength of 670 to UOOnm and necessary. It is desirable to install a light shielding body such as a polarizing plate according to the conditions.
[0081] 本実施形態では、カバー体 12は図示しない昇降装置によって昇降自在としており、 載置部 11に実装基板 20を移送する際にはカバー体 12を上方に待避させて実装基板 20の移送を行い、半田付け時にはカバー体 12を降下させて実装基板 20を覆うことと している。  In the present embodiment, the cover body 12 can be moved up and down by a lifting device (not shown). When the mounting board 20 is transferred to the mounting portion 11, the cover body 12 is retracted upward to transfer the mounting board 20. The cover 12 is lowered to cover the mounting board 20 during soldering.
[0082] なお、カバー体 12に昇降装置を設ける場合に限定するものではなぐカバー体 12 の壁面の一部に実装基板 20をカバー体 12内に導入するための送給開口(図示せず )を設けるとともに、半田付けが終了した実装基板 20をカバー体 12外に送出するため の送出開口(図示せず)を設けて、カバー体 12への実装基板 20の出し入れを可能と してもよい。  Note that the present invention is not limited to the case where an elevating device is provided in the cover body 12. A feeding opening (not shown) for introducing the mounting substrate 20 into the cover body 12 in a part of the wall surface of the cover body 12. In addition, a delivery opening (not shown) for delivering the mounting board 20 after soldering to the outside of the cover body 12 may be provided so that the mounting board 20 can be taken in and out of the cover body 12. .
[0083] さらに、カバー体 12には、排気ファン(図示せず)などの排気装置を装着して、半田 付けにともなって発生した煙がカバー体 12内に充満することを防止することが望まし い。 [0083] Furthermore, the cover body 12 is provided with an exhaust device such as an exhaust fan (not shown) to prevent the smoke generated by soldering from filling the cover body 12. Better Yes.
[0084] このように半田付け領域をカバー体 12で被覆することにより、可視光の影響を排除 できるので半田付けにともなって発生した煙の影響を容易に排除できる。ただし、こ の場合には、作業者が半田付け領域を視認することができなくなるため、半田付け領 域の視認性が要求される場合には、第 1実施形態の半田付け装置 A1のようにフィノレ タ Fを用いることが望ましい。  [0084] By covering the soldering area with the cover body 12 in this manner, the influence of visible light can be eliminated, so that the influence of smoke generated by soldering can be easily eliminated. However, in this case, since the operator cannot visually recognize the soldering area, when the visibility of the soldering area is required, the soldering device A1 of the first embodiment is used. It is desirable to use the finoleta F.
[0085] あるいは、フィルタ Fとカバー体 12を併用し、カバー体 12では、ある程度の視認性を 確保しながら半田付け領域への余計な光の入射を抑止するとともに、フィルタ Fでは 赤色よりも長波長の帯域の光をカメラ 13の撮像素子に入射させるようにして、フィルタ Fによる遮光効果を向上させてもよい。  [0085] Alternatively, the filter F and the cover body 12 are used in combination, and the cover body 12 suppresses extraneous light from entering the soldering area while ensuring a certain degree of visibility, and the filter F is longer than red. The light blocking effect by the filter F may be improved by making light in a wavelength band incident on the image sensor of the camera 13.
産業上の利用可能性  Industrial applicability
[0086] 本発明の半田付けの検査方法、半田付け方法、及び半田付け装置では、高価な 赤外線センサを用いることなく半田付け領域の半田を確実に監視でき、低コストの半 田付けの検査方法、半田付け方法、及び半田付け装置を提供できる。 The soldering inspection method, soldering method, and soldering apparatus of the present invention can reliably monitor the solder in the soldering area without using an expensive infrared sensor, and can be a low-cost soldering inspection method. A soldering method and a soldering apparatus can be provided.

Claims

請求の範囲 The scope of the claims
半田を溶融させる半田溶融手段を半田付けが行われる半田付け領域に配置し、前 記半田溶融手段に半田を供給して行う半田付けの検査方法にぉレ、て、  The solder melting means for melting the solder is arranged in the soldering area where the soldering is performed, and the soldering inspection method performed by supplying the solder to the solder melting means,
前記半田溶融手段で溶融された半田をカメラで所定のタイミングで逐次撮影して、 前記半田から反射してきた、赤色よりも長波長の光による画像データを逐次生成する 前記画像データのうち、撮影のタイミングが異なる少なくとも 2つの画像データの差 分をとつて差分画像データを逐次生成するステップと、  The solder melted by the solder melting means is sequentially photographed at a predetermined timing with a camera, and image data is sequentially generated by light having a longer wavelength than red, which is reflected from the solder. Sequentially generating difference image data by taking a difference between at least two image data having different timings; and
前記差分画像データを逐次互いに重ね合わせて合成して合成画像データを生成 前記合成画像データの前記半田付け領域における半田の面積を検出するステツ プと、  A step of detecting a solder area in the soldering region of the composite image data;
前記半田の面積に基づ!/、て半田付けが正しく行われて!/、るか否かを判定するステ を有することを特徴とする半田付けの検査方法。  A method for inspecting soldering, comprising: determining whether soldering is correctly performed based on the area of the solder! /.
半田を溶融させる半田溶融手段を半田付けが行われる半田付け領域に配置し、前 記半田溶融手段に半田を供給して行う半田付け方法にお!、て、  Soldering means for melting solder is arranged in the soldering area where soldering is performed, and the soldering method is performed by supplying solder to the solder melting means.
前記半田溶融手段で溶融された半田をカメラで所定のタイミングで逐次撮影して、 前記半田から反射してきた、赤色よりも長波長の光による画像データを逐次生成する 前記画像データのうち、撮影のタイミングが異なる少なくとも 2つの画像データの差 分をとつて差分画像データを逐次生成するステップと、  The solder melted by the solder melting means is sequentially photographed at a predetermined timing with a camera, and image data is sequentially generated by light having a longer wavelength than red, which is reflected from the solder. Sequentially generating difference image data by taking a difference between at least two image data having different timings; and
前記差分画像データを逐次互いに重ね合わせて合成して合成画像データを生成 前記合成画像データの前記半田付け領域における半田の面積を検出するステツ プと、 を有することを特徴とする半田付け方法。 A step of detecting a solder area in the soldering region of the composite image data; A soldering method characterized by comprising:
[3] 半田を溶融させる半田溶融手段で半田を溶融することにより基板の所定位置に部 品を半田付けする半田付け装置において、 [3] In a soldering apparatus for soldering a part to a predetermined position of a substrate by melting the solder with a solder melting means for melting the solder,
前記半田溶融手段に半田を供給する半田供給器と、  A solder feeder for supplying solder to the solder melting means;
前記半田溶融手段で溶融された半田から反射してきた、赤色よりも長波長の光によ る画像データを所定のタイミングで逐次生成するカメラと、  A camera that sequentially generates image data of light having a wavelength longer than red reflected from the solder melted by the solder melting means at a predetermined timing;
前記画像データのうち、生成のタイミングが異なる少なくとも 2つの画像データの差 分をとつて差分画像データを逐次生成するとともに、生成された差分画像データを逐 次互いに重ね合わせて合成することにより合成画像データを生成し、この合成画像 データから前記半田溶融手段で溶融された半田の面積を検出する制御部と を備えたことを特徴とする半田付け装置。  Among the image data, differential image data is sequentially generated by taking a difference between at least two image data having different generation timings, and the generated differential image data is sequentially superimposed and synthesized. And a control unit that generates data and detects an area of the solder melted by the solder melting means from the composite image data.
[4] 前記赤色よりも長波長の光の波長が、 670〜; UOOnmの範囲であることを特徴とす る請求項 3に記載の半田付け装置。 [4] The soldering apparatus according to [3], wherein a wavelength of light having a wavelength longer than that of red is in a range of 670 to UOOnm.
[5] 少なくとも波長 670〜; 11 OOnm以外の光を遮光する遮光手段を有することを特徴 する請求項 4に記載の半田付け装置。 5. The soldering apparatus according to claim 4, further comprising light shielding means for shielding light having a wavelength of at least 670 to 11 nm.
[6] 前記遮光手段が、前記カメラに装着したフィルタであることを特徴とする請求項 5に 記載の半田付け装置。 6. The soldering apparatus according to claim 5, wherein the light shielding means is a filter attached to the camera.
[7] 前記遮光手段が、少なくとも前記基板と前記カメラに覆い被せたカバー体であるこ とを特徴とする請求項 5に記載の半田付け装置。  7. The soldering apparatus according to claim 5, wherein the light shielding means is a cover body that covers at least the substrate and the camera.
[8] 前記半田溶融手段で溶融された半田に向けて赤色よりも長波長の光を投光する光 源を設けたことを特徴とする請求項 6または請求項 7に記載の半田付け装置。 [8] The soldering apparatus according to [6] or [7], wherein a light source that projects light having a wavelength longer than red toward the solder melted by the solder melting means is provided.
[9] 前記光源を、前記カメラに近接させて配置したことを特徴とする請求項 8に記載の 半田付け装置。 9. The soldering apparatus according to claim 8, wherein the light source is disposed close to the camera.
[10] 前記半田溶融手段が、半田ごてであることを特徴とする請求項 5に記載の半田付け 装置。  10. The soldering apparatus according to claim 5, wherein the solder melting means is a soldering iron.
[11] 前記半田溶融手段が、集光されたレーザ光スポットであることを特徴とする請求項 5 に記載の半田付け装置。  11. The soldering apparatus according to claim 5, wherein the solder melting means is a focused laser beam spot.
[12] 前記レーザ光スポットが、レーザダイオードの出力光により形成されたことを特徴と する請求項 11に記載の半田付け装置。 [12] The laser beam spot is formed by output light of a laser diode. The soldering apparatus according to claim 11.
[13] 前記光源が、レーザダイオードまたは発光ダイオードであることを特徴とする請求項13. The light source is a laser diode or a light emitting diode.
8に記載の半田付け装置。 The soldering apparatus according to 8.
[14] 前記光源から投光する光の波長を、前記半田溶融手段をレーザダイオードの出力 光とした場合に、この出力光の波長よりも長くしたことを特徴とする請求項 13に記載 の半田付け装置。 14. The solder according to claim 13, wherein the wavelength of light emitted from the light source is longer than the wavelength of the output light when the solder melting means is output light of a laser diode. Attachment device.
[15] 前記光源から投光する光の波長を、前記半田溶融手段をレーザダイオードの出力 光とした場合に、この出力光の波長よりも短くしたことを特徴とする請求項 13に記載 の半田付け装置。  15. The solder according to claim 13, wherein the wavelength of light projected from the light source is shorter than the wavelength of the output light when the solder melting means is output light of a laser diode. Attachment device.
PCT/JP2007/065580 2006-08-11 2007-08-09 Soldering inspection method, soldering method, and soldering apparatus WO2008018526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800298983A CN101501444B (en) 2006-08-11 2007-08-09 Soldering inspection method, soldering method, and soldering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006220723A JP3962782B1 (en) 2006-08-11 2006-08-11 Soldering inspection method, solder bonding method, and solder bonding apparatus
JP2006-220723 2006-08-11

Publications (1)

Publication Number Publication Date
WO2008018526A1 true WO2008018526A1 (en) 2008-02-14

Family

ID=38498628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065580 WO2008018526A1 (en) 2006-08-11 2007-08-09 Soldering inspection method, soldering method, and soldering apparatus

Country Status (3)

Country Link
JP (1) JP3962782B1 (en)
CN (1) CN101501444B (en)
WO (1) WO2008018526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200374510A1 (en) * 2019-05-23 2020-11-26 Sri International Hdr image capture and display system for enhanced real-time welding visualization and assistance

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029888A (en) * 2008-07-25 2010-02-12 Okayama Univ Soldering inspection method and soldering equipment
JP5874508B2 (en) * 2012-04-17 2016-03-02 オムロン株式会社 Solder wetting state inspection method, automatic visual inspection apparatus and board inspection system using this method
US9243726B2 (en) 2012-10-03 2016-01-26 Aarne H. Reid Vacuum insulated structure with end fitting and method of making same
CN103231382B (en) * 2013-04-15 2015-10-14 苏州工业园区职业技术学院 The full-automatic soldering robot serve control system of single-degree-of-freedom middling speed based on image procossing
US9463918B2 (en) 2014-02-20 2016-10-11 Aarne H. Reid Vacuum insulated articles and methods of making same
US20150271927A1 (en) * 2014-03-18 2015-09-24 Tektronix, Inc. Integrated soldering device
KR101548462B1 (en) * 2014-05-21 2015-08-31 주식회사 넥스뷰티엑스 Soldered system
US9516762B2 (en) 2014-08-04 2016-12-06 Ok International Inc. Soldering iron with automatic soldering connection validation
US10716220B2 (en) 2014-08-04 2020-07-14 Ok International, Inc. Variable temperature controlled soldering iron
US10688578B2 (en) 2014-08-04 2020-06-23 OK International, Inc Variable temperature controlled soldering iron
DE112015004532B4 (en) * 2014-10-02 2024-02-01 Ngk Spark Plug Co., Ltd. Evaluation method, laser device and method for producing a sensor
CA2915654C (en) * 2015-07-08 2018-05-01 Delaware Capital Formation, Inc. An intelligent soldering cartridge for automatic soldering connection validation
US10497908B2 (en) 2015-08-24 2019-12-03 Concept Group, Llc Sealed packages for electronic and energy storage devices
JP5981621B1 (en) * 2015-09-16 2016-08-31 昭立電気工業株式会社 Soldering apparatus and soldering method
US10065256B2 (en) * 2015-10-30 2018-09-04 Concept Group Llc Brazing systems and methods
CN109154641B (en) 2016-03-04 2021-09-17 概念集团有限责任公司 Vacuum insulation article with reflective material enhancement
CN107764822B (en) * 2016-08-23 2020-09-04 泰科电子(上海)有限公司 Welding quality detection platform
CN110770489B (en) 2016-11-15 2022-03-01 概念集团有限责任公司 Reinforced vacuum insulation article with microporous insulation
CA3043868A1 (en) 2016-11-15 2018-05-24 Concept Group Llc Multiply-insulated assemblies
JP2020531764A (en) 2017-08-25 2020-11-05 コンセプト グループ エルエルシー Insulation parts of composite geometry and composite materials
US10780515B2 (en) 2018-04-26 2020-09-22 Raytheon Technologies Corporation Auto-adaptive braze dispensing systems and methods
CN111421954B (en) * 2019-01-10 2022-02-18 鸿富锦精密电子(天津)有限公司 Intelligent judgment feedback method and device
CN109865968B (en) * 2019-03-27 2021-10-01 热魔美国公司 Welding operation detection method and system
CN111246681B (en) * 2020-03-20 2021-02-09 秦皇岛通宝光电科技有限公司 Welding device for avoiding false welding and poor contact during tin soldering of circuit board
JP7412237B2 (en) * 2020-03-23 2024-01-12 株式会社東芝 Inspection equipment and welding equipment
CN112683170B (en) * 2020-12-28 2022-06-07 荣旗工业科技(苏州)股份有限公司 Method for detecting soldering position precision of soldering tin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259668A (en) * 1986-04-24 1987-11-12 Tokyo Keiki Co Ltd Soldering device
JPH07270239A (en) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd Soldering monitor device and soldering monitor system using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546995A (en) * 2003-12-12 2004-11-17 上海交通大学 Active infrared CCD weld seam detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259668A (en) * 1986-04-24 1987-11-12 Tokyo Keiki Co Ltd Soldering device
JPH07270239A (en) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd Soldering monitor device and soldering monitor system using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200374510A1 (en) * 2019-05-23 2020-11-26 Sri International Hdr image capture and display system for enhanced real-time welding visualization and assistance
JP2020189332A (en) * 2019-05-23 2020-11-26 川田テクノロジーズ株式会社 Hdr image capture and display system for enhancing realtime visualization and assistance of welding
US11122257B2 (en) * 2019-05-23 2021-09-14 Sri International HDR image capture and display system for enhanced real-time welding visualization and assistance

Also Published As

Publication number Publication date
CN101501444B (en) 2010-12-15
CN101501444A (en) 2009-08-05
JP3962782B1 (en) 2007-08-22
JP2008045956A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
WO2008018526A1 (en) Soldering inspection method, soldering method, and soldering apparatus
JP5077872B2 (en) Defect inspection apparatus and method by photoluminescence of solar cell
JP4140860B1 (en) Soldering method and soldering apparatus
JP6846958B2 (en) Manufacturing method of die bonding equipment and semiconductor equipment
JP3953988B2 (en) Inspection apparatus and inspection method
JP2010029888A (en) Soldering inspection method and soldering equipment
CN102590235B (en) Radiation inspection apparatus, radiation inspection method, and image pickup condition calculation apparatus
TW201918439A (en) Electronic component handler and electronic component tester
JP5830229B2 (en) Wafer defect inspection system
CN106688110B (en) It is bonded the method for detecting of defective part and checks system
WO2021134579A1 (en) Detection processing method and system, and storage medium
JP5831425B2 (en) Solar cell inspection equipment
US10869421B2 (en) Mounting device and imaging processing method
CN108604880A (en) Detect the method and system of the gap in solar wafer
KR20040100874A (en) Pattern inspection device
JP6387620B2 (en) Quality control system
JP4660441B2 (en) Substrate inspection device, substrate inspection method, and program for causing a computer to function as the inspection device
CN113436986B (en) Chip mounting apparatus and method for manufacturing semiconductor device
JP2010141208A (en) Visual inspection device and visual inspection method for semiconductor laser chip or semiconductor laser bar
JP3851787B2 (en) Inspection method of semiconductor elements
TWI655444B (en) IC inspection machine with temporary fixing effect
KR20110012965A (en) Inspecting apparatus for wire
JP2023050704A (en) Processing device
TWM560019U (en) IC inspection machine with temporarily fixed function
TW202409555A (en) X-ray inspection device and X-ray inspection method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029898.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07805911

Country of ref document: EP

Kind code of ref document: A1