WO2008018329A1 - Solid-state imaging apparatus and method for manufacturing same, and electronic information apparatus - Google Patents

Solid-state imaging apparatus and method for manufacturing same, and electronic information apparatus Download PDF

Info

Publication number
WO2008018329A1
WO2008018329A1 PCT/JP2007/065022 JP2007065022W WO2008018329A1 WO 2008018329 A1 WO2008018329 A1 WO 2008018329A1 JP 2007065022 W JP2007065022 W JP 2007065022W WO 2008018329 A1 WO2008018329 A1 WO 2008018329A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solid
imaging device
state imaging
manufacturing
Prior art date
Application number
PCT/JP2007/065022
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Kawano
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008018329A1 publication Critical patent/WO2008018329A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • Solid-state imaging device manufacturing method thereof, and electronic information device
  • the present invention relates to a solid-state imaging device such as a CMOS type image sensor or a CCD type image sensor in which a photodiode and a MOS transistor are mixedly mounted on a semiconductor substrate, a manufacturing method thereof, and a solid-state imaging manufactured by the manufacturing method.
  • the present invention relates to an electronic information device such as an imaging camera, an image input camera, a scanner, a facsimile, and a camera-equipped mobile phone as an image input device.
  • this type of conventional solid-state imaging device has an imaging element in which a plurality of photodiodes that photoelectrically convert incident light are arranged in a two-dimensional manner and other functions in order to increase added value.
  • Peripheral circuits are mixedly mounted on the same semiconductor substrate (same chip), and in particular, the operation of peripheral circuits is speeded up and functions are being added.
  • an LDD structure As this LDD structure, an LDD (Lightly Doped Drain) region is formed between the channel region and the source / drain region, in which impurities having a lower concentration than the source / drain region are implanted.
  • a step of forming a sidewall on the side wall of the gate electrode is required. A sidewall is formed on the side wall of the gate electrode, and impurity ions are implanted using the gate electrode and the side wall as a mask, thereby forming a channel region without implanting impurities under the gate electrode.
  • an LDD region in which impurities are implanted at a low concentration is formed under the sidewall, and a gate electrode and a sidewall are provided! /, N! /, And a predetermined concentration on both sides has a high concentration of impurity. Implanted source and drain regions are formed.
  • Such a sidewall formation step is a step that is not required for forming a photodiode, and is newly added. For this reason, in the manufacturing process of the solid-state imaging device, the number of processes increases by that amount, and as a result, the manufacturing cost of the solid-state imaging device is increased.
  • Patent Document 1 In order to solve this problem, for example, in Patent Document 1, the formation of an antireflection film on the surface of the photodiode and the formation of a sidewall on the side wall of the gate electrode of the peripheral circuit are performed simultaneously. A method for manufacturing a solid-state imaging device that can suppress an increase in the number of processes is disclosed.
  • Patent Document 1 a conventional solid-state imaging device disclosed in Patent Document 1 will be described in detail with reference to FIG.
  • FIG. 4 is a longitudinal cross-sectional view showing an example of the configuration of the main parts of the imaging region and the peripheral circuit region in a predetermined intermediate manufacturing process of the conventional solid-state imaging device disclosed in Patent Document 1.
  • a conventional solid-state imaging device 20 is provided with a plurality of two-dimensional impurity diffusion layers 12 constituting a photodiode in an imaging element forming part (imaging region) of a semiconductor substrate 11.
  • a plurality of gate electrodes 13 of MOS transistors are provided via a gate insulating film.
  • a silicon oxide film 14 and a silicon nitride film 15 are provided in this order on the impurity diffusion layer 12. These silicon oxide film 14 and silicon nitride film 15 constitute an antireflection film 16.
  • a side wall 17 is provided on the side wall of the gate electrode 13, and the side wall 17 is also composed of a silicon oxide film 14 and a silicon nitride film 15.
  • FIGS. 5 (a) and 5 (b) are diagrams showing each manufacturing process up to a predetermined intermediate manufacturing process for explaining the manufacturing method of the solid-state imaging device of FIG. 4 disclosed in Patent Document 1. Sectional section It is.
  • a plurality of impurity diffusion layers 12 constituting a photodiode are formed two-dimensionally in an imaging element formation portion (imaging region) of a semiconductor substrate 11, and the semiconductor
  • a plurality of gate electrodes 13 of each MOS transistor are formed in the peripheral circuit forming portion of the substrate 11.
  • a silicon oxide film 14 and a silicon nitride film 15 are laminated in this order so as to cover the impurity diffusion layer 12 and the gate electrode 13.
  • a resist film (not shown) is formed so as to cover the silicon oxide film 14 and the silicon nitride film 15 on the photodiode (impurity diffusion layer 12), and this is formed into a predetermined pattern.
  • anisotropic dry etching is selectively performed on the silicon oxide film 14 and the silicon nitride film 15 which are not covered with the patterned resist film, the resist film covering the surface of the photodiode is removed.
  • the antireflection film 16 formed of the silicon oxide film 14 and the silicon nitride film 15 is formed on the surface of the photodiode to improve the sensitivity of the imaging device, and its periphery.
  • the side 17 of the silicon oxide film 14 and the silicon nitride film 15 formed on the side wall of the gate electrode 13 of each MOS transistor is formed while suppressing an increase in the number of processes. be able to.
  • Patent Document 2 discloses four layers of a silicon oxide film serving as a gate insulating film, a silicon oxide film and a silicon nitride film also used for forming a sidewall, and a silicon nitride film serving as an interlayer insulating film.
  • a solid-state imaging device in which a reflective film having a structural force is formed is disclosed. In this solid-state imaging device, when the antireflection film has a four-layer structure, the silicon oxide film and the silicon nitride film are partly used as an antireflection film to form a three-layer sidewall.
  • Patent Document 1 JP 2004-228425 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-340475
  • the film thickness of the antireflection film 16 provided on the photodiode surface and the side wall of the gate electrode The problem is that the thickness of the provided sidewall 17 cannot be controlled independently. That is, the thickness of the antireflection film 16 provided on the photodiode surface is controlled by the thickness of the silicon oxide film 14 and the silicon nitride film 15, and the thickness of the sidewall 17 provided on the side wall of the gate electrode 13 is also set. Similarly, since the thickness is controlled by the thickness of the silicon oxide film 14 and the silicon nitride film 15, the thicknesses of the antireflection film 16 and the sidewall 17 which are different from each other cannot be controlled optimally independently. .
  • the antireflection film 16 provided on the surface of the photodiode is deposited so that incident light to the image pickup device is captured without being reflected by the surface of the photodiode, and its film quality (transmittance)
  • a high-sensitivity image sensor can be obtained.
  • a high-performance transistor can be obtained by accurately setting the film thickness of the sidewall 17 formed on the sidewall of the gate electrode 13 and accurately forming the LDD structure. For this reason, solving the above problem is an important issue for improving the performance of the solid-state imaging device.
  • the present invention solves the above-described conventional problems, and in manufacturing a solid-state imaging device in which an imaging element in which a plurality of photodiodes are arranged and a peripheral circuit including a MOS transistor are mixedly mounted. Properly control the film thickness of the antireflection film provided on the photodiode surface and the side wall thickness provided on the side wall of the gate electrode of the MOS transistor without increasing the number of manufacturing processes. It is an object to provide a manufacturing method of a solid-state imaging device that can be manufactured, a solid-state imaging device manufactured by this manufacturing method, and an electronic information device using the solid-state imaging device manufactured by this manufacturing method as an imaging unit Say it.
  • the method for manufacturing a solid-state imaging device of the present invention includes a desired optimum film having a different number of stacked layers, each of an antireflection film formed on a photodiode surface and a sidewall formed on a side wall of a gate electrode of a MOS transistor.
  • the anti-reflection film and the side wall forming step are simultaneously formed with a thickness, and the above object is achieved thereby.
  • the manufacturing method of the solid-state imaging device of the present invention is a solid-state in which an imaging element in which a plurality of photodiodes that photoelectrically convert incident light are arranged on a semiconductor substrate and a peripheral circuit having a MOS transistor are mixedly mounted.
  • the imaging element forming portion and the peripheral circuit forming portion are provided with an antireflection film formed on the surface of the photodiode and a sidewall formed on the side wall of the gate electrode of the MOS transistor.
  • Three layers of insulating films are laminated so that each film thickness becomes an optimum film thickness, and an antireflection film / sidewall forming step for forming the antireflection film and the sidewall from the three layers is provided. Yes, and the above objective is achieved.
  • the antireflection film is composed of two or three layers, and the sidewall is composed of three layers including the two layers from the lower layer. Yes.
  • a resist film is predetermined by photolithography so as to cover the three insulating films on the photodiode.
  • the antireflection film and the side wall are formed by removing the three layers of insulating films other than the region covered with the resist film by anisotropic dry etching.
  • the antireflection film is preferably controlled by controlling the refractive index and film thickness of the two layers of the lower insulating film and the intermediate insulating film.
  • the thickness of the sidewall is controlled by controlling the refractive index and the film thickness of the film, and also controlling the film thickness of the three layers of the lower insulating film, the intermediate insulating film, and the upper insulating film.
  • the antireflection film in the method for manufacturing a solid-state imaging device of the present invention is set to have a refractive index and a film thickness configuration capable of suppressing reflection of incident light to the photodiode.
  • the sidewall in the method for manufacturing a solid-state imaging device of the present invention is set to an optimum film thickness for forming the LDD structure of the MOS transistor.
  • a silicon oxide film, a silicon nitride film, and a silicon oxide film are laminated in this order from the lower layer.
  • the three layers in the method of manufacturing a solid-state imaging device of the present invention are plasma C
  • the antireflection film in the method for manufacturing a solid-state imaging device of the present invention is not the entire surface of the imaging element forming portion in which the photodiodes are arranged, but a part thereof, and at least the photodiode It is formed so as to cover the surface.
  • the uppermost insulating film of the three layers is removed by etching.
  • the necessary characteristics of the antireflection film and the sidewall are not impaired, and among the three layers. Then, dry etching conditions or wet etching chemicals are selected so that the interlayer insulating film does not lose its thickness.
  • an interlayer insulating film is formed on the photodiode and the MOS transistor, and the interlayer insulating film is formed on the interlayer insulating film.
  • Metal wiring is formed to electrically connect the imaging element and the peripheral circuit through the provided outer contour hole.
  • the uppermost insulating film of the three layers or the uppermost insulating film is used as an etching stopper at the time of forming the contact hole.
  • an insulating film made of a material different from that of the uppermost insulating film is formed.
  • the three layers are configured so that the antireflection function is optimized.
  • the refractive index and film thickness are set.
  • the silicon nitride film when the film thickness of the silicon oxide film is lOnm, the silicon nitride film is set to an optimum film thickness of 50 nm to 70 nm. Further, when the thickness of the silicon oxide film is lOnm, the silicon nitride film may be set to a thickness of 40 nm to 70 nm.
  • the silicon acid is used.
  • the silicon nitride film is set to an optimum film thickness of 20 nm to 35 nm.
  • the silicon nitride film is set to an optimum film thickness of lOnm or more and 20 nm or less.
  • the silicon nitride film when the thickness of the silicon oxide film is 5 nm or more and 50 nm or less, the silicon nitride film is set to lOnm or more and 80 nm or less. More preferably, when the thickness of the silicon oxide film is not less than lOnm and not more than 30 nm, the silicon nitride film is set to not less than 30 nm and not more than 70 nm.
  • the silicon nitride film is set to 50 nm soil lOnm. Note that the film thickness of the insulating film described above is set so that the antireflection function is optimal or favorable in consideration of the refractive index of the insulating film.
  • an interlayer insulating film is formed on the photodiode and the MOS transistor, and the thickness of the interlayer insulating film is set to 300 to 1000 mm. Set to.
  • the necessary characteristics of the antireflection film are transmittance and refractive index, and the necessary characteristics of the sidewall adversely affect the operating characteristics of the MOS transistor. It is a characteristic that does not give
  • the peripheral circuit in the method for manufacturing the solid-state imaging device of the present invention is a drive control circuit for driving and controlling the imaging element, and for converting an imaging signal from the imaging element into a display signal. At least one of signal processing circuits
  • the solid-state imaging device of the present invention is manufactured by the above-described method for manufacturing a solid-state imaging device of the present invention, and thereby the above object is achieved.
  • the electronic information device of the present invention uses a solid-state imaging device manufactured by the manufacturing method of the solid-state imaging device of the present invention for an imaging unit, and thereby the above-described object is achieved. [0047] With the above configuration, the operation of the present invention will be described below.
  • the antireflection film provided on the photodiode surface and the sidewall provided on the side wall of the gate electrode of the MOS transistor are simultaneously formed with a desired optimum film thickness with different number of layers. To do.
  • the refractive index and film thickness of the antireflective film are controlled by controlling the refractive index and film thickness of the two layers of the lower insulating film and the intermediate insulating film among the three insulating films. Set to film thickness.
  • the thickness of the sidewall is set to an appropriate thickness by controlling the thickness of the three layers of the lower insulating film, the intermediate insulating film, and the upper insulating film. This makes it possible to control the film thicknesses of the antireflection film and the side wall, which are different from each other, to the optimum film thickness independently.
  • the three-layer insulating film for example, a silicon oxide film, a silicon nitride film, and a silicon oxide film that are used in the manufacturing method of the solid-state imaging device are stacked in this order.
  • the antireflection film is formed on a part of the entire surface of the imaging element forming portion where the photodiodes are arranged. If the entire surface is covered with a silicon nitride film, water will be used during the H sintering process (hydrogenation process to eliminate silicon dangling bonds), which is performed to reduce the interface states generated on the semiconductor substrate.
  • an antireflection film having a high antireflection effect on the photodiode surface and a high-performance transistor in the peripheral circuit while suppressing an increase in the number of processes.
  • a solid-state imaging device having both an imaging element with good sensitivity and a peripheral circuit with excellent operating characteristics can be realized easily and satisfactorily at low cost.
  • FIG. 1 is a longitudinal sectional view showing a configuration example of main parts of an imaging region and a peripheral circuit region in a predetermined halfway manufacturing process of a solid-state imaging device according to an embodiment of the present invention.
  • FIG. 3 In the method for manufacturing a solid-state imaging device according to the embodiment of the present invention, the thicknesses of the silicon oxide film as the lower insulating film and the silicon nitride film as the intermediate insulating film are changed. ! / Is a graph showing a change in reflectance of incident light.
  • FIG. 4 is a longitudinal sectional view showing a configuration example of main parts of an imaging region and a peripheral circuit region in a predetermined halfway manufacturing process of a conventional solid-state imaging device.
  • 5 (a) and 5 (b) are longitudinal sectional views of main parts showing respective manufacturing steps up to a predetermined intermediate manufacturing step for explaining the manufacturing method of the solid-state imaging device of FIG.
  • FIG. 1 is a vertical cross-sectional view showing a configuration example of main parts of an imaging region and a peripheral circuit region in a halfway manufacturing process of the solid-state imaging device according to the embodiment of the present invention.
  • a plurality of impurity diffusion layers 2 constituting photodiodes are provided in a two-dimensional manner on the surface portion of the semiconductor substrate 1 of the imaging element forming portion (imaging region).
  • a plurality of gate electrodes 3 of each MOS transistor are provided in the peripheral circuit region of the imaging region.
  • the peripheral circuit is at least one of a drive control circuit for driving and controlling the image sensor and a signal processing circuit that performs signal processing for converting the image signal obtained from the image sensor into a display signal. is there.
  • An antireflection film 7 composed of three layers of insulating films 4 to 6 having an optimum film thickness is provided on each photodiode surface.
  • the antireflection film 7 is provided with an antireflection film. Since the function is determined by two layers from the lower layer, the film thickness of the antireflection film 7 may be set by the film thickness of these two layers.
  • a side wall 9 made of three insulating films 4 to 6 having an optimum film thickness is provided on the side wall of the gate electrode 3. Therefore, the thickness of the side wall 9 may be set by these three insulating films 4-6.
  • the antireflection film 7 and the sidewall 9 formed on the side wall of the gate electrode 3 of the MOS transistor are laminated in different layers by the antireflection film / sidewall formation process.
  • a plurality of desired optimum film thicknesses are simultaneously formed.
  • the peripheral circuit including the imaging element in which a plurality of photodiodes for photoelectrically converting incident light are arranged on the semiconductor substrate 1 and the MOS transistor through the longitudinal cross-sectional configuration in the intermediate manufacturing process of FIG. Is manufactured, and the solid-state imaging device 10 of this embodiment is manufactured.
  • FIGS. 2 (a) to 2 (c) illustrate each manufacturing process up to an intermediate manufacturing process of the solid-state imaging device of FIG. It is a principal part longitudinal cross-sectional view for clarifying.
  • a plurality of impurity diffusion layers 2 constituting a photodiode are two-dimensionally arranged and formed in an imaging element formation portion (imaging region) of the semiconductor substrate 1, Gate electrodes 3 of a plurality of MOS transistors are formed in the peripheral circuit formation region (peripheral circuit portion) via a gate insulating film.
  • the imaging element forming portion in order to form the impurity diffusion layer 2 of the photodiode, a well is formed through an ion implantation process and a heat treatment process.
  • element isolation formation by STI or the like, and LDD impurity diffusion layer formation after the sidewall formation described later are performed. Details of these steps can be performed in the same manner as in the prior art, and thus detailed description thereof is omitted here.
  • Three insulating films 4 to 6 are sequentially laminated so as to cover the surface of 2 (photodiode surface) and each gate electrode 3 of the peripheral circuit formation portion.
  • the refractive indexes of the lower insulating film 4 and the intermediate insulating film 5 are important as the antireflection film 7 formed on the surface of the photodiode.
  • the horizontal axis in FIG. 3 represents the film thickness of the intermediate silicon nitride film (interlayer insulating film 5), and the vertical axis in FIG. 3 represents the reflection of incident light in accordance with the film thickness of the intermediate layer insulating film 5). Shows the rate.
  • the black circle indicates a black diamond when the thickness of the lower silicon oxide film (lower insulating film 4) is set to lOnm, and the black square indicates a black diamond when the lower silicon oxide film (lower insulating film 4) is set to 30 nm. Indicates the case where the film thickness of the lower silicon oxide film (lower insulating film 4) is set to 50 nm.
  • the film thickness of an interlayer insulating film which will be described later, is 530 nm (usually 200 nm to 1; film thickness range of 1 OOOnm; the film thickness of the interlayer insulating film has little effect on the antireflection effect).
  • various structures are used on the interlayer insulating film and in multiple layers of metal wiring, and the antireflection film type (refractive index) and The film thickness can be set.
  • the lower insulating film 4 is a silicon oxide film of 10 nm
  • the intermediate insulating film 5 is a silicon nitride film with a thickness of 50 nm to 70 nm
  • the upper insulating film 6 is a silicon oxide film of 40 nm.
  • Lamination was performed using an (LP-CVD) apparatus.
  • the lower insulating film 4 is a silicon oxide film of 30 nm
  • the intermediate insulating film 5 is a silicon nitride film of 20 nm to 35 nm
  • the upper insulating film 6 is a silicon oxide film of 40 nm, both of which are reduced pressure CVD (LP-CVD) It laminated
  • LP-CVD reduced pressure CVD
  • the lower insulating film 4 is a silicon oxide film of 50 nm
  • the intermediate insulating film 5 is a silicon nitride film of lOnm or more and 20 nm or less
  • the upper insulating film 6 is a silicon oxide film of 40 nm.
  • Lamination was performed using a CVD (LP—CVD) apparatus.
  • the antireflection film 7 has an optimum antireflection effect (with a reflectance of approximately 0) by combining the optimum film thickness of the lower insulating film 4 (silicon oxide film) and the intermediate insulating film 5 (silicon nitride film). Percent). This is the case when the refractive index is about 2.0 or 2.0.
  • the thickness of the silicon oxide film (here, the lower insulating film 4) is 5 nm to 50 nm and the silicon nitride film (here, the intermediate insulating film 5) is set to 10 ⁇ m to 80 nm, the reflectivity A better anti-reflection effect of about 0 to 5 percent is obtained. More preferably, the silicon nitride film (here, the intermediate insulating film 5) is set to 30 nm or more and 70 nm or less when the film thickness force S1Onm of the silicon oxide film (here, the lower insulating film 4) is 30 nm or less.
  • the film thickness is 50 nm.
  • the silicon oxide film as the lower insulating film 4 is 10 ⁇ m ⁇ 5 nm
  • the silicon nitride film as the intermediate insulating film 5 is 50 nm ⁇ lOnm.
  • the above-mentioned insulating film thickness and film thickness range are set so that the antireflection function is optimal or better in consideration of the refractive index of the insulating film.
  • a resist film 8 is formed by photolithography so as to cover the antireflection film 7 on the surface of the photodiode (impurity diffusion layer 2). 3 layers of silicon oxide film (lower insulating film 4), silicon nitride film (interlayer insulating film 5) and silicon oxide film (upper insulating layer) After the film 6) is subjected to anisotropic dry etching, the resist film 8 above the photodiode is removed.
  • the antireflection film 7 for improving the sensitivity of the image sensor is formed on the surface of the photodiode so as to remain.
  • the insulating films 4 to 6 are etched by anisotropic etching, and a sidewall 9 for forming an LDD region for improving transistor characteristics is formed on the sidewall of the gate electrode 3.
  • the side wall 9 formed on the side wall of the gate electrode 3 of the MOS transistor has an offset region (from the gate electrode 3) when the source / drain region is formed by ion implantation. It becomes important because the film thickness becomes the LDD region. Therefore, the total film thickness of the three insulating films 4 to 6 can be set to the optimum film thickness of the sidewall 9 (offset width from the gate electrode 3; LDD region).
  • an LDD structure is formed by three layers of a silicon oxide film as the lower insulating film 4, a silicon nitride film as the intermediate insulating film 5, and a silicon oxide film as the upper insulating film 6. Therefore, the film thickness can be made as necessary.
  • These insulating films 4 to 6 can be deposited not only by a low pressure CVD apparatus but also by a CVD apparatus.
  • the refractive index and film thickness required for the antireflection film 7 provided on the surface of the photodiode (impurity diffusion layer 2) are reduced by the two layers of the lower insulating film 4 and the intermediate insulating film 5.
  • the film thickness required for the side wall 9 provided on the side wall of the gate electrode 3 of each MOS transistor constituting the peripheral circuit portion is made up of three layers of the lower insulating film 4, the intermediate insulating film 5 and the upper insulating film 6. It becomes possible to control each independently to a good film thickness.
  • the surface of the photodiode Of the antireflection film 7 and the gate electrode 3 of the MOS transistor A side wall 9 provided on the side wall is formed by laminating three layers of insulating films 4 to 6 at the same time in the same process by photolithography and dry etching.
  • the antireflection film 7 optimally controls the refractive index and film thickness of the lower insulating film 3 and the intermediate insulating film 4 so that the antireflection effect is enhanced, and the sidewall 9 is formed in the LDD region.
  • a high-sensitivity photodiode can be formed by setting the antireflection film 7 provided on the surface of each photodiode to a refractive index and a film thickness having a high antireflection effect.
  • a high performance transistor can be formed by setting the side wall 9 provided on the side wall of the gate electrode 3 of each MOS transistor constituting the peripheral circuit to an appropriate film thickness.
  • dry etching used here can be performed using an RIE apparatus, for example, using C4F gas, CHF gas, or the like.
  • each of the upper insulating film 6, the intermediate insulating film 5, and the lower insulating film 4 can be selectively removed, so that the sidewalls 9 can be formed uniformly.
  • the resist film 8 on the photodiode covers only the surface of the photodiode, and the other part of the imaging element formation portion (imaging region) is exposed. It is preferable to keep it. This is because the H sintering performed to reduce the interface state generated on the semiconductor substrate 1 can be carried out more effectively.
  • the interface state on the conductor substrate 1 is one of the causes of the leakage current ( ⁇ current) in the image sensor. If the entire surface of the image sensor formation part is covered with a silicon nitride film, the H
  • an ion implantation step for forming the imaging element and the MOS transistor of the peripheral circuit after the antireflection film side wall forming step of the present embodiment Perform an implantation diffusion process and form an interlayer insulation film on it
  • a contact hole forming process for forming a contact hole in the interlayer insulating film and a metal wiring forming process for forming a metal wiring for connecting the image pickup device and the peripheral circuit through the contact hole are performed.
  • the H sintering process is performed after this metal wiring formation process.
  • a salicide process using a refractory metal such as cobalt may be used to speed up the operation of the peripheral circuit.
  • a silicon nitride film may be formed as an etching stopper under the interlayer insulating film.
  • SiN film silicon nitride film
  • the purpose of removing the silicon oxide film (upper insulating film 6) is to reduce the antireflection effect when multiple types of films having different refractive indexes are laminated on the antireflection film 7 on the photodiode. Because there is.
  • the necessary characteristics of the antireflection film 7 provided on the photodiode surface and the side wall 9 provided on the side wall of the gate electrode 3 of each MOS transistor in the peripheral circuit portion are not impaired.
  • various etching conditions such as dry etching conditions and wet etching chemicals are appropriately selected.
  • the necessary characteristics of the antireflection film 7 are transmittance and refractive index, and the necessary characteristics of the sidewall 9 are characteristics that do not adversely affect the operation characteristics of the MOS transistor.
  • the refractive index and film thickness of the lower insulating film 4, the intermediate insulating film 5 and the upper insulating film 6 need to be set in consideration of the refractive index and film thickness of the film used as an etching stopper.
  • this type of insulating film can be used other than the combination of a silicon oxide film and a silicon nitride film.
  • the types of insulating films used in the method of manufacturing the solid-state imaging device include silicon oxide films and silicon nitride films. Three layers of film and silicon oxide film are stacked in this order from the bottom layer.
  • the antireflection film 7 formed on the surface of the photodiode (impurity diffusion layer 2) in the antireflection film side wall forming step of the present embodiment and The side walls 9 formed on the side walls of the gate electrode of the MOS transistor are simultaneously formed with a desired optimum film thickness with a different number of layers. This makes it High performance solid state by properly controlling the thickness of the antireflection film 7 provided on the photodiode surface and the thickness of the side wall 9 provided on the side wall of the gate electrode of the MOS transistor without increasing the manufacturing process.
  • the object of the present invention capable of manufacturing an imaging device can be achieved.
  • the refractive index and film thickness of the antireflection film 7 are two layers of the lower insulating film 4 and the intermediate insulating film 5 among the three insulating films 4 to 6 so that the reflectance is optimal or good.
  • the refractive index and film thickness can be set appropriately by controlling the refractive index and film thickness, but the antireflection film 7 is composed of two layers, a lower insulating film 4 and an intermediate insulating film 5.
  • three layers of a lower insulating film 4, an intermediate insulating film 5, and an upper insulating film 6 may be used.
  • the thickness of the side 9 can be set to an appropriate thickness by controlling the thickness of the three layers of the lower insulating film 4, the intermediate insulating film 5, and the upper insulating film 5.
  • the antireflection film 7 can be composed of two or three layers, and the sidewall 9 can be composed of three layers including two layers from the lower layer of the antireflection film 7.
  • specific examples thereof are not limited to, for example, two layers of antireflection films and three layers of sidewalls having different numbers of layers, which may be three layers as antireflection films and the same three layers as sidewalls.
  • the antireflection film 7 and the side wall 9 are formed, the antireflection film 7 can be formed in consideration of two layers, and the sidewall 9 can be formed of three layers.
  • an electronic device having the image input device such as the solid-state imaging device digital camera of the above embodiment, an image input camera, a scanner, a facsimile, or a camera-equipped mobile phone device.
  • Information devices will be described.
  • the electronic information device of the present invention is a memory such as a recording medium for recording data after performing predetermined signal processing for recording high-quality image data obtained by using the solid-state imaging device 10 of the above-described embodiment of the present invention as an imaging unit.
  • a display means such as a liquid crystal display device for displaying the image data on a display screen such as a liquid crystal display screen after performing predetermined signal processing for display of the image data, and after performing predetermined signal processing of the image data for communication It has at least one of communication means such as a transmission / reception device for performing communication processing and image output means for printing (printing) and outputting (printing out) the image data.
  • communication means such as a transmission / reception device for performing communication processing and image output means for printing (printing) and outputting (printing out) the image data.
  • the present invention relates to a solid-state imaging device such as a CMOS type image sensor or a CCD type image sensor in which a photodiode and a MOS transistor are mixedly mounted on a semiconductor substrate, a manufacturing method thereof, and a solid-state imaging device manufactured by this manufacturing method.
  • a solid-state imaging device such as a CMOS type image sensor or a CCD type image sensor in which a photodiode and a MOS transistor are mixedly mounted on a semiconductor substrate, a manufacturing method thereof, and a solid-state imaging device manufactured by this manufacturing method.
  • the anti-reflection effect on the photodiode surface is high!
  • a high-performance transistor in a peripheral circuit can be formed while suppressing an increase in the number of steps.
  • a solid-state imaging device having both an imaging element with good sensitivity and a peripheral circuit with excellent operating characteristics can be realized easily and satisfactorily at low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A high performance solid-state imaging apparatus is manufactured by correctly controlling the thickness of a reflection preventing film arranged on the surface of a photodiode and the thickness of a side wall arranged on a gate electrode side wall of a MOS transistor, without increasing the number of manufacturing steps. In the solid-state imaging apparatus (10) wherein a plurality of photodiodes in an imaging region and each MOS transistor in the peripheral circuit region are mixedly mounted, the reflection preventing film (7) on the surface of the photodiode and the side wall (9) arranged on the side wall of the gate electrode (3) of the MOS transistor are formed at the same time in the same step by laminating three layers of insulating films (4-6) and by employing photography and dry etching. Specifically, the reflection preventing film (7) controls the refractive indexes and the thicknesses of the lower layer insulating film (3) and the middle layer insulating film (4) to be optimum so that reflection preventing effects are high, and the side wall (9) controls the thicknesses of the lower insulating film (4), the middle layer insulating film (5) and the upper layer insulating film (6) to be optimum so that an LDD region can be accurately formed.

Description

明 細 書  Specification
固体撮像装置およびその製造方法、電子情報機器  Solid-state imaging device, manufacturing method thereof, and electronic information device
技術分野  Technical field
[0001] 本発明は、半導体基板上にフォトダイオードと MOSトランジスタとが混載された CM OS型イメージセンサや CCD型イメージセンサなどの固体撮像装置およびその製造 方法、この製造方法により作製された固体撮像装置を、画像入力デバイスとして撮像 カメラや、画像入力カメラ、スキャナ、ファクシミリ、カメラ付き携帯電話装置などの電 子情報機器に関する。  [0001] The present invention relates to a solid-state imaging device such as a CMOS type image sensor or a CCD type image sensor in which a photodiode and a MOS transistor are mixedly mounted on a semiconductor substrate, a manufacturing method thereof, and a solid-state imaging manufactured by the manufacturing method. The present invention relates to an electronic information device such as an imaging camera, an image input camera, a scanner, a facsimile, and a camera-equipped mobile phone as an image input device.
背景技術  Background art
[0002] 近年、この種の従来の固体撮像装置は、付加価値を高めるために、入射光を光電 変換する複数のフォトダイオードが 2次元状に配列された撮像素子と、その他の機能 を備えた周辺回路とが、同一半導体基板(同一チップ)上に混載されており、特に、 周辺回路の動作の高速化および機能追加が進められている。  [0002] In recent years, this type of conventional solid-state imaging device has an imaging element in which a plurality of photodiodes that photoelectrically convert incident light are arranged in a two-dimensional manner and other functions in order to increase added value. Peripheral circuits are mixedly mounted on the same semiconductor substrate (same chip), and in particular, the operation of peripheral circuits is speeded up and functions are being added.
[0003] このような周辺回路の性能向上については、周辺回路を構成する各 MOSトランジ スタの特性向上が非常に重要である。し力もながら、入射光を光電変換するフォトダ ィオードを主体とした撮像素子とその周辺回路とを同一半導体基板上に形成するた めには、いくつかの課題が存在する。そのうちの一つの課題は、フォトダイオード形成 のためには、特に必要とされない工程力 周辺回路を構成する MOSトランジスタ形 成のために必要になることである。  [0003] For improving the performance of such peripheral circuits, it is very important to improve the characteristics of each MOS transistor constituting the peripheral circuit. However, there are several problems in forming an image sensor mainly composed of a photodiode that photoelectrically converts incident light and its peripheral circuit on the same semiconductor substrate. One of these issues is that it is necessary to form MOS transistors that form peripheral circuits that are not required for the formation of photodiodes.
[0004] 具体的には、 MOSトランジスタの特性を向上させるためには、 LDD構造を形成す ることが有効である。この LDD構造として、チャンネル領域とソース'ドレイン領域との 間に、ソース'ドレイン領域よりも低濃度の不純物が注入された LDD (Lightly Dop ed Drain)領域が形成されている。この LDD領域を形成するためには、ゲート電極 側壁にサイドウォールを形成する工程が必要とされる。ゲート電極側壁にサイドゥォ ールを形成し、ゲート電極およびサイドウォールをマスクとして不純物イオン注入を行 うことにより、ゲート電極下の部分には不純物が注入されずにチャンネル領域を形成 し、サイドウォール下の部分には不純物が低濃度に注入された LDD領域を形成し、 ゲート電極およびサイドウォールが設けられて!/、な!/、両側の所定部分には不純物が 高濃度に注入されたソース領域およびドレイン領域を形成する。 [0004] Specifically, in order to improve the characteristics of a MOS transistor, it is effective to form an LDD structure. As this LDD structure, an LDD (Lightly Doped Drain) region is formed between the channel region and the source / drain region, in which impurities having a lower concentration than the source / drain region are implanted. In order to form this LDD region, a step of forming a sidewall on the side wall of the gate electrode is required. A sidewall is formed on the side wall of the gate electrode, and impurity ions are implanted using the gate electrode and the side wall as a mask, thereby forming a channel region without implanting impurities under the gate electrode. In addition, an LDD region in which impurities are implanted at a low concentration is formed under the sidewall, and a gate electrode and a sidewall are provided! /, N! /, And a predetermined concentration on both sides has a high concentration of impurity. Implanted source and drain regions are formed.
[0005] このようなサイドウォール形成工程は、フォトダイオード形成のためには必要とされ ない工程であり、これが新たに追加されることになる。このため、固体撮像装置の製 造工程において、その分だけ工程数が増加することになり、この結果、固体撮像装置 の製造コストの増加に繋がっている。  [0005] Such a sidewall formation step is a step that is not required for forming a photodiode, and is newly added. For this reason, in the manufacturing process of the solid-state imaging device, the number of processes increases by that amount, and as a result, the manufacturing cost of the solid-state imaging device is increased.
[0006] この課題を解決するために、例えば特許文献 1には、フォトダイオード表面への反 射防止膜の形成と、その周辺回路のゲート電極側壁へのサイドウォール形成とを同 時に行うことによって、工程数の増加を抑制することができる固体撮像装置の製造方 法が開示されている。  [0006] In order to solve this problem, for example, in Patent Document 1, the formation of an antireflection film on the surface of the photodiode and the formation of a sidewall on the side wall of the gate electrode of the peripheral circuit are performed simultaneously. A method for manufacturing a solid-state imaging device that can suppress an increase in the number of processes is disclosed.
[0007] 以下に、特許文献 1に開示されている従来の固体撮像装置について、図 4を用い て詳細に説明する。  Hereinafter, a conventional solid-state imaging device disclosed in Patent Document 1 will be described in detail with reference to FIG.
[0008] 図 4は、特許文献 1に開示されている従来の固体撮像装置の所定途中製造工程に おける撮像領域および周辺回路領域の各要部構成例を示す縦断面図である。  FIG. 4 is a longitudinal cross-sectional view showing an example of the configuration of the main parts of the imaging region and the peripheral circuit region in a predetermined intermediate manufacturing process of the conventional solid-state imaging device disclosed in Patent Document 1.
[0009] 図 4において、従来の固体撮像装置 20には、半導体基板 11の撮像素子形成部( 撮像領域)に、フォトダイオードを構成する不純物拡散層 12が 2次元状に複数設けら れ、その周辺回路部には、ゲート絶縁膜を介して MOSトランジスタのゲート電極 13 が複数設けられている。  In FIG. 4, a conventional solid-state imaging device 20 is provided with a plurality of two-dimensional impurity diffusion layers 12 constituting a photodiode in an imaging element forming part (imaging region) of a semiconductor substrate 11. In the peripheral circuit portion, a plurality of gate electrodes 13 of MOS transistors are provided via a gate insulating film.
[0010] この不純物拡散層 12上にはシリコン酸化膜 14およびシリコン窒化膜 15がこの順に 設けられている。これらのシリコン酸化膜 14およびシリコン窒化膜 15により反射防止 膜 16が構成されている。  A silicon oxide film 14 and a silicon nitride film 15 are provided in this order on the impurity diffusion layer 12. These silicon oxide film 14 and silicon nitride film 15 constitute an antireflection film 16.
[0011] 一方、このゲート電極 13の側壁にはサイドウォール 17が設けられており、サイドゥォ ール 17も、シリコン酸化膜 14およびシリコン窒化膜 15で構成されている。 On the other hand, a side wall 17 is provided on the side wall of the gate electrode 13, and the side wall 17 is also composed of a silicon oxide film 14 and a silicon nitride film 15.
[0012] 上記構成の従来の固体撮像装置 20の製造方法について、図 5 (a)および図 5 (b) を参照して詳細に説明する。 A method for manufacturing the conventional solid-state imaging device 20 having the above-described configuration will be described in detail with reference to FIGS. 5 (a) and 5 (b).
[0013] 図 5 (a)および図 5 (b)は、特許文献 1に開示されている図 4の固体撮像装置の製造 方法を説明するための所定途中製造工程までの各製造工程を示す要部縦断面図 である。 [0013] FIGS. 5 (a) and 5 (b) are diagrams showing each manufacturing process up to a predetermined intermediate manufacturing process for explaining the manufacturing method of the solid-state imaging device of FIG. 4 disclosed in Patent Document 1. Sectional section It is.
[0014] まず、図 5 (a)に示すように、半導体基板 11の撮像素子形成部(撮像領域)に、フォ トダイオードを構成する不純物拡散層 12を 2次元状に複数形成し、その半導体基板 11の周辺回路形成部には、各 MOSトランジスタのゲート電極 13を複数形成する。こ の後に、これらの不純物拡散層 12およびゲート電極 13上を覆うようにシリコン酸化膜 14およびシリコン窒化膜 15をこの順に積層する。  First, as shown in FIG. 5 (a), a plurality of impurity diffusion layers 12 constituting a photodiode are formed two-dimensionally in an imaging element formation portion (imaging region) of a semiconductor substrate 11, and the semiconductor A plurality of gate electrodes 13 of each MOS transistor are formed in the peripheral circuit forming portion of the substrate 11. Thereafter, a silicon oxide film 14 and a silicon nitride film 15 are laminated in this order so as to cover the impurity diffusion layer 12 and the gate electrode 13.
[0015] 次に、このフォトダイオード(不純物拡散層 12)上のシリコン酸化膜 14およびシリコ ン窒化膜 15を覆うように、図示しないレジスト膜を成膜し、これを所定パターンに形成 し、このパターンユングされたレジスト膜で覆われていない部分のシリコン酸化膜 14 およびシリコン窒化膜 15に異方性ドライエッチングを選択的に行った後、このフォトダ ィオード表面を覆ったレジスト膜を除去する。  Next, a resist film (not shown) is formed so as to cover the silicon oxide film 14 and the silicon nitride film 15 on the photodiode (impurity diffusion layer 12), and this is formed into a predetermined pattern. After anisotropic dry etching is selectively performed on the silicon oxide film 14 and the silicon nitride film 15 which are not covered with the patterned resist film, the resist film covering the surface of the photodiode is removed.
[0016] その後、図 5 (b)に示すように、撮像素子の感度向上のためにフォトダイオード表面 に形成される、シリコン酸化膜 14およびシリコン窒化膜 15からなる反射防止膜 16と、 その周辺回路のトランジスタ特性向上のために、各 MOSトランジスタのゲート電極 13 の側壁に形成される、シリコン酸化膜 14およびシリコン窒化膜 15からなるサイドゥォ ール 17とを、工程数の増加を抑えながら形成することができる。  Thereafter, as shown in FIG. 5 (b), the antireflection film 16 formed of the silicon oxide film 14 and the silicon nitride film 15 is formed on the surface of the photodiode to improve the sensitivity of the imaging device, and its periphery. In order to improve the transistor characteristics of the circuit, the side 17 of the silicon oxide film 14 and the silicon nitride film 15 formed on the side wall of the gate electrode 13 of each MOS transistor is formed while suppressing an increase in the number of processes. be able to.
[0017] また、特許文献 2には、ゲート絶縁膜となるシリコン酸化膜と、サイドウォール形成の ために兼用されるシリコン酸化膜およびシリコン窒化膜と、層間絶縁膜となるシリコン 窒化膜の 4層構造力 なる反射膜が形成された固体撮像装置が開示されている。こ の固体撮像装置では、反射防止膜が 4層構造の場合に、上記シリコン酸化膜とシリコ ン窒化膜が反射防止膜と一部兼用されて 3層構造のサイドウォールが形成されてい 特許文献 1 :特開 2004— 228425号公報  [0017] Further, Patent Document 2 discloses four layers of a silicon oxide film serving as a gate insulating film, a silicon oxide film and a silicon nitride film also used for forming a sidewall, and a silicon nitride film serving as an interlayer insulating film. A solid-state imaging device in which a reflective film having a structural force is formed is disclosed. In this solid-state imaging device, when the antireflection film has a four-layer structure, the silicon oxide film and the silicon nitride film are partly used as an antireflection film to form a three-layer sidewall. Patent Document 1 : JP 2004-228425 A
特許文献 2:特開 2005— 340475号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-340475
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] しかしながら、上述した特許文献 1に開示された従来の固体撮像装置の製造方法 では、フォトダイオード表面に設けられた反射防止膜 16の膜厚と、ゲート電極側壁に 設けられたサイドウォール 17の膜厚とを独立して制御することができないという問題 力 る。つまり、フォトダイオード表面に設けられた反射防止膜 16の膜厚は、シリコン 酸化膜 14とシリコン窒化膜 15の膜厚によって制御され、ゲート電極 13の側壁に設け られたサイドウォール 17の膜厚も、これと同様に、シリコン酸化膜 14とシリコン窒化膜 15の膜厚によって制御されるから、互いに異なる反射防止膜 16とサイドウォール 17 との各膜厚を独立して最適に制御することができない。 However, in the conventional method for manufacturing a solid-state imaging device disclosed in Patent Document 1 described above, the film thickness of the antireflection film 16 provided on the photodiode surface and the side wall of the gate electrode The problem is that the thickness of the provided sidewall 17 cannot be controlled independently. That is, the thickness of the antireflection film 16 provided on the photodiode surface is controlled by the thickness of the silicon oxide film 14 and the silicon nitride film 15, and the thickness of the sidewall 17 provided on the side wall of the gate electrode 13 is also set. Similarly, since the thickness is controlled by the thickness of the silicon oxide film 14 and the silicon nitride film 15, the thicknesses of the antireflection film 16 and the sidewall 17 which are different from each other cannot be controlled optimally independently. .
[0019] このフォトダイオード表面に設けられる反射防止膜 16は、撮像素子への入射光がフ オトダイオード表面で反射されることなく取り込まれるように堆積されるものであり、そ の膜質 (透過率および屈折率)や膜厚を適正に設定することによって、高感度の撮像 素子が得られ得る。また、その周辺回路のトランジスタにおいては、ゲート電極 13の 側壁に形成されたサイドウォール 17の膜厚を適正に設定して LDD構造を精度良く 形成することにより、高性能なトランジスタが得られる。このこと力 、上記問題を解決 することは、固体撮像装置の性能を向上させるために重要な課題である。  [0019] The antireflection film 16 provided on the surface of the photodiode is deposited so that incident light to the image pickup device is captured without being reflected by the surface of the photodiode, and its film quality (transmittance) In addition, by appropriately setting the refractive index) and the film thickness, a high-sensitivity image sensor can be obtained. Further, in the transistor of the peripheral circuit, a high-performance transistor can be obtained by accurately setting the film thickness of the sidewall 17 formed on the sidewall of the gate electrode 13 and accurately forming the LDD structure. For this reason, solving the above problem is an important issue for improving the performance of the solid-state imaging device.
[0020] 特許文献 2の場合にも、互いに異なる反射防止膜 16とサイドウォール 17との各膜 厚を独立して最適膜厚にそれぞれ制御することができない。  [0020] Also in the case of Patent Document 2, the film thicknesses of the antireflection film 16 and the sidewall 17 which are different from each other cannot be controlled independently to the optimum film thickness.
[0021] 本発明は、上記従来の問題を解決するもので、複数のフォトダイオードが配列され た撮像素子と、 MOSトランジスタを備えた周辺回路とが混載された固体撮像装置を 製造する際に、製造工程を増加させることなぐフォトダイオード表面に設けられた反 射防止膜の膜厚および MOSトランジスタのゲート電極側壁に設けられたサイドゥォ 一ル厚を適正に制御して、高性能な固体撮像装置を作製することができる固体撮像 装置の製造方法、この製造方法により製造された固体撮像装置および、この製造方 法により製造された固体撮像装置を撮像部に用いた電子情報機器を提供することを 目白勺とする。  [0021] The present invention solves the above-described conventional problems, and in manufacturing a solid-state imaging device in which an imaging element in which a plurality of photodiodes are arranged and a peripheral circuit including a MOS transistor are mixedly mounted. Properly control the film thickness of the antireflection film provided on the photodiode surface and the side wall thickness provided on the side wall of the gate electrode of the MOS transistor without increasing the number of manufacturing processes. It is an object to provide a manufacturing method of a solid-state imaging device that can be manufactured, a solid-state imaging device manufactured by this manufacturing method, and an electronic information device using the solid-state imaging device manufactured by this manufacturing method as an imaging unit Say it.
課題を解決するための手段  Means for solving the problem
[0022] 本発明の固体撮像装置の製造方法は、フォトダイオード表面に形成される反射防 止膜と MOSトランジスタのゲート電極側壁に形成されるサイドウォールとをそれぞれ 、異なる積層数の所望の最適膜厚で同時に形成する反射防止膜 ·サイドウォール形 成工程を有するものであり、そのことにより上記目的が達成される。 [0023] 本発明の固体撮像装置の製造方法は、半導体基板上に、入射光を光電変換する 複数のフォトダイオードが配列された撮像素子と、 MOSトランジスタを有する周辺回 路とが混載された固体撮像装置の製造方法にお!/、て、撮像素子形成部および周辺 回路形成部に、該フォトダイオード表面に形成される反射防止膜と該 MOSトランジス タのゲート電極側壁に形成されるサイドウォールとの各膜厚がそれぞれ最適な膜厚 になるように絶縁膜を 3層積層し、該 3層から、該反射防止膜および該サイドウォール を形成する反射防止膜 ·サイドウォール形成工程を有するものであり、そのことにより 上記目的が達成される。 [0022] The method for manufacturing a solid-state imaging device of the present invention includes a desired optimum film having a different number of stacked layers, each of an antireflection film formed on a photodiode surface and a sidewall formed on a side wall of a gate electrode of a MOS transistor. The anti-reflection film and the side wall forming step are simultaneously formed with a thickness, and the above object is achieved thereby. [0023] The manufacturing method of the solid-state imaging device of the present invention is a solid-state in which an imaging element in which a plurality of photodiodes that photoelectrically convert incident light are arranged on a semiconductor substrate and a peripheral circuit having a MOS transistor are mixedly mounted. In the imaging device manufacturing method !, the imaging element forming portion and the peripheral circuit forming portion are provided with an antireflection film formed on the surface of the photodiode and a sidewall formed on the side wall of the gate electrode of the MOS transistor. Three layers of insulating films are laminated so that each film thickness becomes an optimum film thickness, and an antireflection film / sidewall forming step for forming the antireflection film and the sidewall from the three layers is provided. Yes, and the above objective is achieved.
[0024] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜は 2層 または 3層で構成され、前記サイドウォールは下層からの該 2層を含む 3層で構成さ れている。  [0024] Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, the antireflection film is composed of two or three layers, and the sidewall is composed of three layers including the two layers from the lower layer. Yes.
[0025] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜 ·サイ ドウオール形成工程は、前記フォトダイオード上の 3層の絶縁膜を覆うようにフォトリソ グラフィ一によりレジスト膜を所定パターンに形成し、異方性ドライエッチングにより該 レジスト膜で被覆された領域以外の 3層の絶縁膜を除去することにより前記反射防止 膜および前記サイドウォールを形成する。  [0025] Further preferably, in the manufacturing method of the solid-state imaging device of the present invention, in the antireflection film / sidewall formation step, a resist film is predetermined by photolithography so as to cover the three insulating films on the photodiode. The antireflection film and the side wall are formed by removing the three layers of insulating films other than the region covered with the resist film by anisotropic dry etching.
[0026] さらに、好ましくは、本発明の固体撮像装置の製造方法における 3層のうち、下層 絶縁膜および中間層絶縁膜の 2層の屈折率および膜厚を制御することにより前記反 射防止膜の屈折率および膜厚を制御すると共に、該下層絶縁膜および該中間層絶 縁膜、上層絶縁膜の 3層の膜厚を制御することにより前記サイドウォールの膜厚を制 御する。  [0026] Further preferably, among the three layers in the method for manufacturing a solid-state imaging device of the present invention, the antireflection film is preferably controlled by controlling the refractive index and film thickness of the two layers of the lower insulating film and the intermediate insulating film. The thickness of the sidewall is controlled by controlling the refractive index and the film thickness of the film, and also controlling the film thickness of the three layers of the lower insulating film, the intermediate insulating film, and the upper insulating film.
[0027] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜を、前 記フォトダイオードへの入射光の反射を抑制可能な屈折率および膜厚構成に設定 する。  [0027] Further preferably, the antireflection film in the method for manufacturing a solid-state imaging device of the present invention is set to have a refractive index and a film thickness configuration capable of suppressing reflection of incident light to the photodiode.
[0028] さらに、好ましくは、本発明の固体撮像装置の製造方法におけるサイドウォールを、 前記 MOSトランジスタの LDD構造形成に最適な膜厚に設定する。  [0028] Further, preferably, the sidewall in the method for manufacturing a solid-state imaging device of the present invention is set to an optimum film thickness for forming the LDD structure of the MOS transistor.
[0029] さらに、好ましくは、本発明の固体撮像装置の製造方法における 3層として、シリコ ン酸化膜、シリコン窒化膜およびシリコン酸化膜を下層からこの順に積層する。 [0030] さらに、好ましくは、本発明の固体撮像装置の製造方法における 3層を、プラズマ C[0029] Further, preferably, as the three layers in the manufacturing method of the solid-state imaging device of the present invention, a silicon oxide film, a silicon nitride film, and a silicon oxide film are laminated in this order from the lower layer. [0030] Further, preferably, the three layers in the method of manufacturing a solid-state imaging device of the present invention are plasma C
VD装置または減圧 CVD装置を用いて堆積する。 Deposition using a VD apparatus or a low pressure CVD apparatus.
[0031] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜を、前 記フォトダイオードが配列された撮像素子形成部の全面ではなくその一部であって、 少なくとも該フォトダイオードの表面を覆うように形成する。 [0031] Furthermore, preferably, the antireflection film in the method for manufacturing a solid-state imaging device of the present invention is not the entire surface of the imaging element forming portion in which the photodiodes are arranged, but a part thereof, and at least the photodiode It is formed so as to cover the surface.
[0032] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜 ·サイ ドウオール形成工程後に、前記 3層のうち、最上層絶縁膜をエッチングにより除去す [0032] Further preferably, after the antireflection film / sidewall formation step in the manufacturing method of the solid-state imaging device of the present invention, the uppermost insulating film of the three layers is removed by etching.
[0033] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記エッチング を行う際に、前記反射防止膜および前記サイドウォールの必要特性を損なわないよう に、かつ、前記 3層のうち、中間層絶縁膜の膜減りが生じないように、ドライエッチング 条件またはウエットエッチングの薬液を選択する。 [0033] Further preferably, in the method of manufacturing a solid-state imaging device according to the present invention, when performing the etching, the necessary characteristics of the antireflection film and the sidewall are not impaired, and among the three layers. Then, dry etching conditions or wet etching chemicals are selected so that the interlayer insulating film does not lose its thickness.
[0034] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜 ·サイ ドウオール形成工程後に、前記フォトダイオード上および前記 MOSトランジスタ上に 層間絶縁膜を形成し、該層間絶縁膜に設けられたコンタ外ホールを介して前記撮 像素子と前記周辺回路とを電気的に接続する金属配線を形成する。  [0034] Further preferably, after the antireflection film / side wall formation step in the manufacturing method of the solid-state imaging device of the present invention, an interlayer insulating film is formed on the photodiode and the MOS transistor, and the interlayer insulating film is formed on the interlayer insulating film. Metal wiring is formed to electrically connect the imaging element and the peripheral circuit through the provided outer contour hole.
[0035] さらに、好ましくは、本発明の固体撮像装置の製造方法における層間絶縁膜下に、 前記コンタクトホール形成時のエッチングストッパーとして、前記 3層の最上層絶縁膜 、または該最上層絶縁膜上に該最上層絶縁膜とは異なる材料からなる絶縁膜を形成 する。  [0035] Further, preferably, under the interlayer insulating film in the method for manufacturing a solid-state imaging device of the present invention, the uppermost insulating film of the three layers or the uppermost insulating film is used as an etching stopper at the time of forming the contact hole. In addition, an insulating film made of a material different from that of the uppermost insulating film is formed.
[0036] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記エッチング ストッパーとして機能する絶縁膜の屈折率および膜厚を考慮して、反射防止機能が 最適になるように前記 3層の屈折率および膜厚を設定する。  [0036] Further preferably, in the method for manufacturing a solid-state imaging device according to the present invention, in consideration of a refractive index and a film thickness of the insulating film functioning as the etching stopper, the three layers are configured so that the antireflection function is optimized. The refractive index and film thickness are set.
[0037] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記シリコン酸 化膜の膜厚が lOnmの場合に、前記シリコン窒化膜が 50nm以上 70nm以下の最適 膜厚に設定する。また、前記シリコン酸化膜の膜厚が lOnmの場合に、前記シリコン 窒化膜が 40nm以上 70nm以下の膜厚に設定してもよい。  [0037] Further preferably, in the method for manufacturing a solid-state imaging device according to the present invention, when the film thickness of the silicon oxide film is lOnm, the silicon nitride film is set to an optimum film thickness of 50 nm to 70 nm. Further, when the thickness of the silicon oxide film is lOnm, the silicon nitride film may be set to a thickness of 40 nm to 70 nm.
[0038] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記シリコン酸 化膜の膜厚が 30nmの場合に、前記シリコン窒化膜が 20nm以上 35nm以下の最適 膜厚に設定する。 [0038] Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, preferably, the silicon acid is used. When the thickness of the oxide film is 30 nm, the silicon nitride film is set to an optimum film thickness of 20 nm to 35 nm.
[0039] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記シリコン酸 化膜の膜厚が 50nmの場合に、前記シリコン窒化膜が lOnm以上 20nm以下の最適 膜厚に設定する。  [0039] Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, when the thickness of the silicon oxide film is 50 nm, the silicon nitride film is set to an optimum film thickness of lOnm or more and 20 nm or less.
[0040] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記シリコン酸 化膜の膜厚が 5nm以上 50nm以下の場合に、前記シリコン窒化膜が lOnm以上 80 nm以下に設定する。より好ましくは、前記シリコン酸化膜の膜厚が lOnm以上 30nm 以下の場合に、前記シリコン窒化膜が 30nm以上 70nm以下に設定する。  [0040] Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, when the thickness of the silicon oxide film is 5 nm or more and 50 nm or less, the silicon nitride film is set to lOnm or more and 80 nm or less. More preferably, when the thickness of the silicon oxide film is not less than lOnm and not more than 30 nm, the silicon nitride film is set to not less than 30 nm and not more than 70 nm.
[0041] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記シリコン酸 化膜の膜厚が 10nm± 5nmの場合に、前記シリコン窒化膜が 50nm土 lOnmに設定 する。なお、以上の絶縁膜の膜厚は、絶縁膜の屈折率をも考慮して、反射防止機能 が最適または良好になるように設定される。  [0041] Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, when the thickness of the silicon oxide film is 10 nm ± 5 nm, the silicon nitride film is set to 50 nm soil lOnm. Note that the film thickness of the insulating film described above is set so that the antireflection function is optimal or favorable in consideration of the refractive index of the insulating film.
[0042] さらに、好ましくは、本発明の固体撮像装置の製造方法において、前記フォトダイォ ード上および前記 MOSトランジスタ上に層間絶縁膜を形成し、該層間絶縁膜の膜厚 を 300應〜 1000應に設定する。  [0042] Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, an interlayer insulating film is formed on the photodiode and the MOS transistor, and the thickness of the interlayer insulating film is set to 300 to 1000 mm. Set to.
[0043] さらに、好ましくは、本発明の固体撮像装置の製造方法における反射防止膜の必 要特性は透過率および屈折率であり、前記サイドウォールの必要特性は前記 MOSト ランジスタの動作特性に悪影響を与えない特性である。  [0043] Further, preferably, in the manufacturing method of the solid-state imaging device of the present invention, the necessary characteristics of the antireflection film are transmittance and refractive index, and the necessary characteristics of the sidewall adversely affect the operating characteristics of the MOS transistor. It is a characteristic that does not give
[0044] さらに、好ましくは、本発明の固体撮像装置の製造方法における周辺回路は、前記 撮像素子を駆動制御するための駆動制御回路と、前記撮像素子からの撮像信号を 表示信号に変換するための信号処理を行う信号処理回路の少なくともいずれかであ  [0044] Further preferably, the peripheral circuit in the method for manufacturing the solid-state imaging device of the present invention is a drive control circuit for driving and controlling the imaging element, and for converting an imaging signal from the imaging element into a display signal. At least one of signal processing circuits
[0045] 本発明の固体撮像装置は、本発明の上記固体撮像装置の製造方法により製造さ れたものであり、そのことにより上記目的が達成される。 [0045] The solid-state imaging device of the present invention is manufactured by the above-described method for manufacturing a solid-state imaging device of the present invention, and thereby the above object is achieved.
[0046] 本発明の電子情報機器は、本発明の上記固体撮像装置の製造方法により製造さ れた固体撮像装置を撮像部に用いたものであり、そのことにより上記目的が達成され [0047] 上記構成により、以下に、本発明の作用について説明する。 The electronic information device of the present invention uses a solid-state imaging device manufactured by the manufacturing method of the solid-state imaging device of the present invention for an imaging unit, and thereby the above-described object is achieved. [0047] With the above configuration, the operation of the present invention will be described below.
[0048] 本発明にあっては、フォトダイオード表面に設けられる反射防止膜と、 MOSトランジ スタのゲート電極側壁に設けられるサイドウォールとをそれぞれ、異なる積層数の所 望の最適膜厚で同時に形成する。  [0048] In the present invention, the antireflection film provided on the photodiode surface and the sidewall provided on the side wall of the gate electrode of the MOS transistor are simultaneously formed with a desired optimum film thickness with different number of layers. To do.
[0049] 反射防止膜の屈折率および膜厚は、 3層の絶縁膜のうち、下層絶縁膜と中間層絶 縁膜の 2層の屈折率および膜厚を制御することにより適正な屈折率および膜厚に設 定する。また、サイドウォールの膜厚は、下層絶縁膜、中間層絶縁膜および上層絶縁 膜の 3層の膜厚を制御することにより適正な膜厚に設定する。これによつて、互いに 異なる反射防止膜とサイドウォールとの各膜厚を独立して最適膜厚にそれぞれ制御 すること力 S可倉 となる。  [0049] The refractive index and film thickness of the antireflective film are controlled by controlling the refractive index and film thickness of the two layers of the lower insulating film and the intermediate insulating film among the three insulating films. Set to film thickness. The thickness of the sidewall is set to an appropriate thickness by controlling the thickness of the three layers of the lower insulating film, the intermediate insulating film, and the upper insulating film. This makes it possible to control the film thicknesses of the antireflection film and the side wall, which are different from each other, to the optimum film thickness independently.
[0050] 撮像素子においてフォトダイオード表面に設けられる反射防止膜を、反射防止効 果が高い屈折率および膜厚に設定することによって、高感度のフォトダイオードを形 成すること力 S可能となる。また、周辺回路において MOSトランジスタのゲート電極側 壁に設けられるサイドウォールを適正な膜厚に設定することによって、 LDD領域を精 度良く形成して高性能なトランジスタを形成することが可能となる。これらにより、感度 が良好な撮像素子と、動作特性に優れた周辺回路を兼ね備えた固体撮像装置を実 現することが可能となる。  [0050] By setting the antireflective film provided on the surface of the photodiode in the image pickup device to a refractive index and a film thickness having a high antireflection effect, it is possible to form a highly sensitive photodiode. In addition, by setting the sidewall provided on the side wall of the gate electrode of the MOS transistor to an appropriate film thickness in the peripheral circuit, it becomes possible to form a high-performance transistor by accurately forming the LDD region. As a result, it is possible to realize a solid-state imaging device having both an imaging device with good sensitivity and a peripheral circuit with excellent operating characteristics.
[0051] 3層の絶縁膜として、固体撮像装置の製造方法で用いる例えばシリコン酸化膜、シ リコン窒化膜およびシリコン酸化膜をこの順に積層する。  As the three-layer insulating film, for example, a silicon oxide film, a silicon nitride film, and a silicon oxide film that are used in the manufacturing method of the solid-state imaging device are stacked in this order.
[0052] シリコン窒化膜を用いた場合、反射防止膜は、フォトダイオードが配列された撮像 素子形成部の全面ではなぐ一部に形成することが好ましい。シリコン窒化膜で全面 が覆われていると、半導体基板上で発生する界面準位を低減させるために行われる Hシンター処理(シリコンのダングリングボンドを無くすための水素化処理)時に、水 [0052] When the silicon nitride film is used, it is preferable that the antireflection film is formed on a part of the entire surface of the imaging element forming portion where the photodiodes are arranged. If the entire surface is covered with a silicon nitride film, water will be used during the H sintering process (hydrogenation process to eliminate silicon dangling bonds), which is performed to reduce the interface states generated on the semiconductor substrate.
2 2
素イオンが遮蔽されるからである。  This is because elementary ions are shielded.
[0053] さらに、層間絶縁膜のコンタクトホール形成時にエッチングストッパーとして層間絶 縁膜下にシリコン窒化膜を形成する場合には、フォトダイオード表面に反射防止膜を 形成した後、最上層絶縁膜のシリコン酸化膜を除去することが好ましい。フォトダイォ ード表面の反射防止膜上に屈折率が異なる多種類の膜が積層されると、反射防止 効果が低下することがあるからである。 [0053] Furthermore, when a silicon nitride film is formed under the interlayer insulating film as an etching stopper when forming a contact hole in the interlayer insulating film, an antireflection film is formed on the surface of the photodiode, and then the silicon of the uppermost insulating film is formed. It is preferable to remove the oxide film. When various types of films with different refractive indexes are stacked on the antireflection film on the photodiode surface, antireflection It is because an effect may fall.
発明の効果  The invention's effect
[0054] 以上により、本発明によれば、フォトダイオード表面の反射防止効果が高い反射防 止膜と、周辺回路の高性能なトランジスタとを、工程増加を抑制しながら形成すること ができる。これにより、感度が良好な撮像素子と、動作特性に優れた周辺回路とを兼 ね備えた固体撮像装置を低コストで容易かつ良好に実現することができる。  As described above, according to the present invention, it is possible to form an antireflection film having a high antireflection effect on the photodiode surface and a high-performance transistor in the peripheral circuit while suppressing an increase in the number of processes. As a result, a solid-state imaging device having both an imaging element with good sensitivity and a peripheral circuit with excellent operating characteristics can be realized easily and satisfactorily at low cost.
図面の簡単な説明  Brief Description of Drawings
[0055] [図 1]本発明の実施形態に係る固体撮像装置の所定途中製造工程における撮像領 域および周辺回路領域の各要部構成例を示す縦断面図である。  FIG. 1 is a longitudinal sectional view showing a configuration example of main parts of an imaging region and a peripheral circuit region in a predetermined halfway manufacturing process of a solid-state imaging device according to an embodiment of the present invention.
[図 2] (a)〜(c)は、図 1の固体撮像装置の製造方法を説明するための所定途中製造 工程までの各製造工程を示す要部縦断面図である。  2] (a) to (c) are principal part longitudinal sectional views showing respective manufacturing steps up to a predetermined intermediate manufacturing step for explaining the manufacturing method of the solid-state imaging device of FIG. 1. [FIG.
[図 3]本発明の実施形態に係る固体撮像装置の製造方法において、下層絶縁膜で あるシリコン酸化膜と中間層絶縁膜であるシリコン窒化膜との各膜厚を変化させた場 合につ!/、て、入射光の反射率の変化を示すグラフである。  [FIG. 3] In the method for manufacturing a solid-state imaging device according to the embodiment of the present invention, the thicknesses of the silicon oxide film as the lower insulating film and the silicon nitride film as the intermediate insulating film are changed. ! / Is a graph showing a change in reflectance of incident light.
[図 4]従来の固体撮像装置の所定途中製造工程における撮像領域および周辺回路 領域の各要部構成例を示す縦断面図である。  FIG. 4 is a longitudinal sectional view showing a configuration example of main parts of an imaging region and a peripheral circuit region in a predetermined halfway manufacturing process of a conventional solid-state imaging device.
[図 5] (a)および (b)は、図 4の固体撮像装置の製造方法を説明するための所定途中 製造工程までの各製造工程を示す要部縦断面図である。  5 (a) and 5 (b) are longitudinal sectional views of main parts showing respective manufacturing steps up to a predetermined intermediate manufacturing step for explaining the manufacturing method of the solid-state imaging device of FIG.
符号の説明  Explanation of symbols
[0056] 1 半導体基板 [0056] 1 Semiconductor substrate
2 不純物拡散層  2 Impurity diffusion layer
3 ゲート電極  3 Gate electrode
4 シリコン酸化膜 (下層絶縁膜)  4 Silicon oxide film (lower insulating film)
5 シリコン窒化膜(中間層絶縁膜)  5 Silicon nitride film (interlayer insulating film)
6 シリコン酸化膜 (上層絶縁膜)  6 Silicon oxide film (upper insulating film)
7 反射防止膜  7 Anti-reflective coating
8 レジスト膜  8 Resist film
9 サイドウォール 10 固体撮像装置 9 Side wall 10 Solid-state imaging device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0057] 以下に、本発明の固体撮像装置の製造方法の実施形態について、図面を参照し ながら説明する。  Hereinafter, an embodiment of a method for manufacturing a solid-state imaging device of the present invention will be described with reference to the drawings.
[0058] 図 1は、本発明の実施形態に係る固体撮像装置の途中製造工程における撮像領 域および周辺回路領域の各要部構成例を示す縦断面図である。  FIG. 1 is a vertical cross-sectional view showing a configuration example of main parts of an imaging region and a peripheral circuit region in a halfway manufacturing process of the solid-state imaging device according to the embodiment of the present invention.
[0059] 図 1に示すように、撮像素子形成部(撮像領域)の半導体基板 1の表面部にフォトダ ィオードを構成する不純物拡散層 2が複数 2次元状に設けられている。また、撮像領 域の周辺回路領域に、各 MOSトランジスタのゲート電極 3が複数設けられている。こ の場合、周辺回路は、撮像素子を駆動制御するための駆動制御回路と、この撮像素 子から得られ撮像信号を表示信号に変換するための信号処理を行う信号処理回路 の少なくともいずれかである。  As shown in FIG. 1, a plurality of impurity diffusion layers 2 constituting photodiodes are provided in a two-dimensional manner on the surface portion of the semiconductor substrate 1 of the imaging element forming portion (imaging region). In addition, a plurality of gate electrodes 3 of each MOS transistor are provided in the peripheral circuit region of the imaging region. In this case, the peripheral circuit is at least one of a drive control circuit for driving and controlling the image sensor and a signal processing circuit that performs signal processing for converting the image signal obtained from the image sensor into a display signal. is there.
[0060] 各フォトダイオード表面上にそれぞれ、最適な膜厚に形成された 3層の絶縁膜 4〜 6からなる反射防止膜 7が設けられているが、ここでは、反射防止膜 7の反射防止機 能は下層からの 2層で決まるため、この 2層の膜厚で反射防止膜 7の膜厚を設定すれ ばよい。また、そのゲート電極 3の側壁に、最適な膜厚に形成された 3層の絶縁膜 4 〜6からなるサイドウォール 9が設けられている。よって、サイドウォール 9の膜厚はこ の 3層の絶縁膜 4〜6により設定すればよい。  [0060] An antireflection film 7 composed of three layers of insulating films 4 to 6 having an optimum film thickness is provided on each photodiode surface. Here, the antireflection film 7 is provided with an antireflection film. Since the function is determined by two layers from the lower layer, the film thickness of the antireflection film 7 may be set by the film thickness of these two layers. Further, a side wall 9 made of three insulating films 4 to 6 having an optimum film thickness is provided on the side wall of the gate electrode 3. Therefore, the thickness of the side wall 9 may be set by these three insulating films 4-6.
[0061] このように、反射防止膜 ·サイドウォール形成工程によって、フォトダイオード表面に 形成される反射防止膜 7と MOSトランジスタのゲート電極 3の側壁に形成されるサイ ドウオール 9とをそれぞれ、異なる積層数の所望の最適膜厚で同時に形成される。  [0061] Thus, the antireflection film 7 and the sidewall 9 formed on the side wall of the gate electrode 3 of the MOS transistor are laminated in different layers by the antireflection film / sidewall formation process. A plurality of desired optimum film thicknesses are simultaneously formed.
[0062] 以上により、図 1の途中製造工程における縦断面構成を経て、半導体基板 1上に、 入射光を光電変換する複数のフォトダイオードが配列された撮像素子と、 MOSトラン ジスタを有する周辺回路とが混載された本実施形態の固体撮像装置 10が製造され  As described above, the peripheral circuit including the imaging element in which a plurality of photodiodes for photoelectrically converting incident light are arranged on the semiconductor substrate 1 and the MOS transistor through the longitudinal cross-sectional configuration in the intermediate manufacturing process of FIG. Is manufactured, and the solid-state imaging device 10 of this embodiment is manufactured.
[0063] 上記構成の固体撮像装置 10の製造方法について、図 2 (a)〜図 2 (c)を用いて説 明する。 [0063] A method for manufacturing the solid-state imaging device 10 having the above-described configuration will be described with reference to FIGS. 2 (a) to 2 (c).
[0064] 図 2 (a)〜図 2 (c)は、図 1の固体撮像装置の途中製造工程に至る各製造工程を説 明するための要部縦断面図である。 [0064] FIGS. 2 (a) to 2 (c) illustrate each manufacturing process up to an intermediate manufacturing process of the solid-state imaging device of FIG. It is a principal part longitudinal cross-sectional view for clarifying.
[0065] まず、図 2 (a)に示すように、半導体基板 1の撮像素子形成部(撮像領域)に、フォト ダイオードを構成する不純物拡散層 2を 2次元状に複数配列して形成し、その周辺 回路形成領域 (周辺回路部)にゲート絶縁膜を介して複数の MOSトランジスタのゲ ート電極 3を形成する。撮像素子形成部では、フォトダイオードの不純物拡散層 2を 形成するために、イオン注入工程や熱処理工程を経てゥエル形成などが行われる。 また、周辺回路形成部では、 STIなどによる素子分離形成や、後述するサイドウォー ル形成後に LDD不純物拡散層形成などが行われる。なお、これらの工程の詳細に ついては、従来技術と同様に行うことができるため、ここではその詳細な説明を省略 する。 First, as shown in FIG. 2 (a), a plurality of impurity diffusion layers 2 constituting a photodiode are two-dimensionally arranged and formed in an imaging element formation portion (imaging region) of the semiconductor substrate 1, Gate electrodes 3 of a plurality of MOS transistors are formed in the peripheral circuit formation region (peripheral circuit portion) via a gate insulating film. In the imaging element forming portion, in order to form the impurity diffusion layer 2 of the photodiode, a well is formed through an ion implantation process and a heat treatment process. In the peripheral circuit formation part, element isolation formation by STI or the like, and LDD impurity diffusion layer formation after the sidewall formation described later are performed. Details of these steps can be performed in the same manner as in the prior art, and thus detailed description thereof is omitted here.
[0066] 次に、図 2 (b)に示すように、撮像素子形成部の各フォトダイオードの不純物拡散層  Next, as shown in FIG. 2 (b), an impurity diffusion layer of each photodiode in the image sensor forming portion.
2の表面(フォトダイオード表面)および周辺回路形成部の各ゲート電極 3上を覆うよう に 3層の絶縁膜 4〜6を順次積層する。  Three insulating films 4 to 6 are sequentially laminated so as to cover the surface of 2 (photodiode surface) and each gate electrode 3 of the peripheral circuit formation portion.
[0067] これらの 3層の絶縁膜 4〜6において、フォトダイオード表面に形成される反射防止 膜 7として、下層絶縁膜 4と中間層絶縁膜 5の屈折率が重要になる。 In these three insulating films 4 to 6, the refractive indexes of the lower insulating film 4 and the intermediate insulating film 5 are important as the antireflection film 7 formed on the surface of the photodiode.
[0068] ここで、図 3に、絶縁膜 4〜6のうち、下層絶縁膜である下層シリコン酸化膜と、中間 層絶縁膜である中間層シリコン窒化膜の各膜厚を変化させた場合の入射光の反射 率の変化を示している。 [0068] Here, in FIG. 3, among the insulating films 4 to 6, the thickness of each of the lower silicon oxide film, which is the lower insulating film, and the intermediate silicon nitride film, which is the intermediate insulating film, is changed. It shows the change in reflectance of incident light.
[0069] 図 3の横軸は中間層シリコン窒化膜(中間層絶縁膜 5)の膜厚を示し、図 3の縦軸は 、中間層絶縁膜 5)の膜厚に応じた入射光の反射率を示している。また、黒丸はその 下層シリコン酸化膜 (下層絶縁膜 4)の膜厚を lOnmに設定した場合、黒四角は下層 シリコン酸化膜 (下層絶縁膜 4)の膜厚を 30nmに設定した場合、黒菱形は下層シリコ ン酸化膜 (下層絶縁膜 4)の膜厚を 50nmに設定した場合をそれぞれ示して!/、る。  [0069] The horizontal axis in FIG. 3 represents the film thickness of the intermediate silicon nitride film (interlayer insulating film 5), and the vertical axis in FIG. 3 represents the reflection of incident light in accordance with the film thickness of the intermediate layer insulating film 5). Shows the rate. The black circle indicates a black diamond when the thickness of the lower silicon oxide film (lower insulating film 4) is set to lOnm, and the black square indicates a black diamond when the lower silicon oxide film (lower insulating film 4) is set to 30 nm. Indicates the case where the film thickness of the lower silicon oxide film (lower insulating film 4) is set to 50 nm.
[0070] 図 3に示すように、下層絶縁膜 4と中間層絶縁膜 5の 2層の膜厚構成によって、入射 光の反射率が大きく変動することが分かる。このため、入射光の反射率が低くなるよう な下層絶縁膜 4と中間層絶縁膜 5との膜厚の組合せを選択することによって、良好な 反射防止効果を得ることができる。  As shown in FIG. 3, it can be seen that the reflectance of incident light varies greatly depending on the film thickness of the lower insulating film 4 and the intermediate insulating film 5. Therefore, a good antireflection effect can be obtained by selecting a combination of film thicknesses of the lower insulating film 4 and the intermediate insulating film 5 so that the reflectance of incident light is lowered.
[0071] フォトダイオード(不純物拡散層 2)表面に効率よく光を入射させることは、固体撮像 装置にとっては極めて重要である。なお、図 3では、後述する層間絶縁膜の膜厚を 5 30nm (通常 200nm〜; 1 OOOnmの膜厚範囲;層間絶縁膜の膜厚は反射防止効果に ほとんど影響を与えない)とした場合の一例を示している力 この層間絶縁膜上およ びその中における金属配線の多層化などによって様々な構造が用いられるため、そ れらの構造に応じて反射防止膜の膜種 (屈折率)や膜厚を設定することができる。 本実施形態では、下層絶縁膜 4としてシリコン酸化膜を 10nm、中間層絶縁膜 5とし てシリコン窒化膜の膜厚を 50nm以上 70nm以下、上層絶縁膜 6としてシリコン酸化 膜を 40nm、いずれも減圧 CVD (LP— CVD)装置を用いて積層した。また、下層絶 縁膜 4としてシリコン酸化膜を 30nm、中間層絶縁膜 5としてシリコン窒化膜を 20nm 以上 35nm以下で、上層絶縁膜 6としてシリコン酸化膜を 40nm、いずれも減圧 CVD (LP— CVD)装置を用いて積層した。さらにここでは示していないが、下層絶縁膜 4 としてシリコン酸化膜を 50nm、中間層絶縁膜 5としてシリコン窒化膜を lOnm以上 20 nm以下で、上層絶縁膜 6としてシリコン酸化膜を 40nm、いずれも減圧 CVD (LP— CVD)装置を用いて積層した。これらの場合に、反射防止膜 7では、下層絶縁膜 4 ( シリコン酸化膜)と中間層絶縁膜 5 (シリコン窒化膜)との最適膜厚の組合せによって 最適な反射防止効果 (反射率が略 0パーセント)が得られる。これは屈折率が 2. 0ま たは 2. 0程度の場合である。さらに、シリコン酸化膜 (ここでは下層絶縁膜 4)の膜厚 が 5nm以上 50nm以下の場合に、シリコン窒化膜 (ここでは中間層絶縁膜 5)が 10η m以上 80nm以下に設定すれば、反射率が 0〜5パーセント程度のより良好な反射 防止効果が得られる。より好ましくは、シリコン酸化膜 (ここでは下層絶縁膜 4)の膜厚 力 S lOnm以上 30nm以下の場合に、シリコン窒化膜 (ここでは中間層絶縁膜 5)が 30 nm以上 70nm以下に設定する。ここで、膜厚は薄いほど、工数が少なく他に悪影響 を及ぼしにくいので、最も製造に適した膜厚は、下層絶縁膜 4としてシリコン酸化膜を 10nm、中間層絶縁膜 5としてシリコン窒化膜の膜厚を 50nmである。これを中心値に 考え、その誤差を十分に考慮に入れると、下層絶縁膜 4としてシリコン酸化膜を 10η m± 5nm、中間層絶縁膜 5としてシリコン窒化膜の膜厚を 50nm± lOnmである。な お、当然ながら、以上の絶縁膜の膜厚ほたは膜厚範囲)は、絶縁膜の屈折率をも考 慮して、反射防止機能が最適またはより良好になるように設定される。 [0073] 次に、図 2 (c)に示すように、フォトリソグラフィ一によりフォトダイオード(不純物拡散 層 2)表面上の反射防止膜 7を覆うようにレジスト膜 8を形成し、レジスト膜 8で覆われ てレ、な!/、部分 (周辺回路部を含む部分)の 3層のシリコン酸化膜(下層絶縁膜 4)、シ リコン窒化膜(中間層絶縁膜 5)およびシリコン酸化膜 (上層絶縁膜 6)に異方性ドライ エッチングを行った後、フォトダイオード上方のレジスト膜 8を除去する。 [0071] Efficient incidence of light on the surface of the photodiode (impurity diffusion layer 2) It is extremely important for the device. In FIG. 3, the film thickness of an interlayer insulating film, which will be described later, is 530 nm (usually 200 nm to 1; film thickness range of 1 OOOnm; the film thickness of the interlayer insulating film has little effect on the antireflection effect). As an example, various structures are used on the interlayer insulating film and in multiple layers of metal wiring, and the antireflection film type (refractive index) and The film thickness can be set. In this embodiment, the lower insulating film 4 is a silicon oxide film of 10 nm, the intermediate insulating film 5 is a silicon nitride film with a thickness of 50 nm to 70 nm, and the upper insulating film 6 is a silicon oxide film of 40 nm. Lamination was performed using an (LP-CVD) apparatus. The lower insulating film 4 is a silicon oxide film of 30 nm, the intermediate insulating film 5 is a silicon nitride film of 20 nm to 35 nm, and the upper insulating film 6 is a silicon oxide film of 40 nm, both of which are reduced pressure CVD (LP-CVD) It laminated | stacked using the apparatus. Furthermore, although not shown here, the lower insulating film 4 is a silicon oxide film of 50 nm, the intermediate insulating film 5 is a silicon nitride film of lOnm or more and 20 nm or less, and the upper insulating film 6 is a silicon oxide film of 40 nm. Lamination was performed using a CVD (LP—CVD) apparatus. In these cases, the antireflection film 7 has an optimum antireflection effect (with a reflectance of approximately 0) by combining the optimum film thickness of the lower insulating film 4 (silicon oxide film) and the intermediate insulating film 5 (silicon nitride film). Percent). This is the case when the refractive index is about 2.0 or 2.0. Furthermore, if the thickness of the silicon oxide film (here, the lower insulating film 4) is 5 nm to 50 nm and the silicon nitride film (here, the intermediate insulating film 5) is set to 10 ηm to 80 nm, the reflectivity A better anti-reflection effect of about 0 to 5 percent is obtained. More preferably, the silicon nitride film (here, the intermediate insulating film 5) is set to 30 nm or more and 70 nm or less when the film thickness force S1Onm of the silicon oxide film (here, the lower insulating film 4) is 30 nm or less. Here, the thinner the film thickness, the smaller the man-hours and the less adverse effects, so the most suitable film thickness is 10 nm for the silicon oxide film as the lower insulating film 4 and the silicon nitride film as the intermediate insulating film 5. The film thickness is 50 nm. Considering this as a central value and taking the error into consideration, the silicon oxide film as the lower insulating film 4 is 10 ηm ± 5 nm, and the silicon nitride film as the intermediate insulating film 5 is 50 nm ± lOnm. Of course, the above-mentioned insulating film thickness and film thickness range are set so that the antireflection function is optimal or better in consideration of the refractive index of the insulating film. Next, as shown in FIG. 2C, a resist film 8 is formed by photolithography so as to cover the antireflection film 7 on the surface of the photodiode (impurity diffusion layer 2). 3 layers of silicon oxide film (lower insulating film 4), silicon nitride film (interlayer insulating film 5) and silicon oxide film (upper insulating layer) After the film 6) is subjected to anisotropic dry etching, the resist film 8 above the photodiode is removed.
[0074] これにより、撮像素子形成部では、フォトダイオード表面に撮像素子の感度を向上 させるための反射防止膜 7が残るように形成される。これと同時に、周辺回路形成部 では、異方性エッチングにより絶縁膜 4〜6がエッチングされて、ゲート電極 3の側壁 にトランジスタ特性を向上させる LDD領域形成のためのサイドウォール 9が形成され 、これによつて、工程数の増加を抑制することができる。  Thereby, in the image sensor forming portion, the antireflection film 7 for improving the sensitivity of the image sensor is formed on the surface of the photodiode so as to remain. At the same time, in the peripheral circuit forming portion, the insulating films 4 to 6 are etched by anisotropic etching, and a sidewall 9 for forming an LDD region for improving transistor characteristics is formed on the sidewall of the gate electrode 3. As a result, an increase in the number of steps can be suppressed.
[0075] LDD構造の MOSトランジスタにおいて、この MOSトランジスタのゲート電極 3の側 壁に形成されるサイドウォール 9は、ソース'ドレイン領域をイオン注入により形成する 際に、ゲート電極 3からのオフセット領域(LDD領域)を形成するためのマスクとなる ため、その膜厚が LDD領域になるため重要になる。よって、 3層の絶縁膜 4〜6の総 膜厚を、必要とされる最適なサイドウォール 9の膜厚 (ゲート電極 3からのオフセット幅 ; LDD領域)に設定することができる。  [0075] In the LDD structure MOS transistor, the side wall 9 formed on the side wall of the gate electrode 3 of the MOS transistor has an offset region (from the gate electrode 3) when the source / drain region is formed by ion implantation. It becomes important because the film thickness becomes the LDD region. Therefore, the total film thickness of the three insulating films 4 to 6 can be set to the optimum film thickness of the sidewall 9 (offset width from the gate electrode 3; LDD region).
[0076] また、サイドウォール 9では、下層絶縁膜 4としてのシリコン酸化膜と、中間層絶縁膜 5としてのシリコン窒化膜と、上層絶縁膜 6としてシリコン酸化膜との 3層によって LDD 構造を作製するために必要な膜厚とすることができる。なお、これらの絶縁膜 4〜6は 、減圧 CVD装置に限らず、 CVD装置により堆積することもできる。  [0076] In the sidewall 9, an LDD structure is formed by three layers of a silicon oxide film as the lower insulating film 4, a silicon nitride film as the intermediate insulating film 5, and a silicon oxide film as the upper insulating film 6. Therefore, the film thickness can be made as necessary. These insulating films 4 to 6 can be deposited not only by a low pressure CVD apparatus but also by a CVD apparatus.
[0077] 以上のように、フォトダイオード(不純物拡散層 2)表面に設けられる反射防止膜 7と して必要な屈折率および膜厚を下層絶縁膜 4と中間層絶縁膜 5の 2層により、また、 その周辺回路部を構成する各 MOSトランジスタのゲート電極 3の側壁に設けられる サイドウォール 9として必要な膜厚を下層絶縁膜 4、中間層絶縁膜 5および上層絶縁 膜 6の 3層により、それぞれ独立して良好な膜厚に制御することが可能となる。  [0077] As described above, the refractive index and film thickness required for the antireflection film 7 provided on the surface of the photodiode (impurity diffusion layer 2) are reduced by the two layers of the lower insulating film 4 and the intermediate insulating film 5. In addition, the film thickness required for the side wall 9 provided on the side wall of the gate electrode 3 of each MOS transistor constituting the peripheral circuit portion is made up of three layers of the lower insulating film 4, the intermediate insulating film 5 and the upper insulating film 6. It becomes possible to control each independently to a good film thickness.
[0078] したがって、本実施形態によれば、撮像領域の複数のフォトダイオード(不純物拡 散層 2)とその周辺回路領域の各 MOSトランジスタが混載された固体撮像装置 10に おいて、フォトダイオード表面の反射防止膜 7と、 MOSトランジスタのゲート電極 3の 側壁に設けられるサイドウォール 9とを、 3層の絶縁膜 4〜6を積層してフォトリソグラフ ィ一とドライエッチングにより同時に同一工程で形成する。具体的には、反射防止膜 7 は、反射防止効果が高くなるように下層絶縁膜 3と中間層絶縁膜 4の屈折率および膜 厚を最適に制御し、かつ、サイドウォール 9は、 LDD領域を精度良く形成できるように 下層絶縁膜 4、中間層絶縁膜 5および上層絶縁膜 6の膜厚を最適に制御すればよ!/ヽ 。これによつて、各フォトダイオード表面に設けられる反射防止膜 7を、反射防止効果 が高い屈折率および膜厚に設定することによって、高感度のフォトダイオードを形成 できる。また、周辺回路を構成する各 MOSトランジスタのゲート電極 3の側壁に設け られるサイドウォール 9を、適切な膜厚に設定して、高性能なトランジスタを形成するこ とができる。このように、製造工程を増加させることなぐフォトダイオード表面の反射 防止膜 7と MOSトランジスタのゲート電極のサイドウォール 9との膜厚を適正に制御 することにより、感度が良好な撮像素子と、動作特性に優れた周辺回路とを兼ね備え た固体撮像装置 10を、同一半導体基板 1 (同一チップ)上に低コストで容易かつ良 好に実現することができる。 Therefore, according to the present embodiment, in the solid-state imaging device 10 in which a plurality of photodiodes (impurity diffusion layers 2) in the imaging region and each MOS transistor in the peripheral circuit region are mounted together, the surface of the photodiode Of the antireflection film 7 and the gate electrode 3 of the MOS transistor A side wall 9 provided on the side wall is formed by laminating three layers of insulating films 4 to 6 at the same time in the same process by photolithography and dry etching. Specifically, the antireflection film 7 optimally controls the refractive index and film thickness of the lower insulating film 3 and the intermediate insulating film 4 so that the antireflection effect is enhanced, and the sidewall 9 is formed in the LDD region. The film thickness of the lower insulating film 4, the intermediate insulating film 5, and the upper insulating film 6 should be optimally controlled so that the film can be formed accurately! Accordingly, a high-sensitivity photodiode can be formed by setting the antireflection film 7 provided on the surface of each photodiode to a refractive index and a film thickness having a high antireflection effect. Further, a high performance transistor can be formed by setting the side wall 9 provided on the side wall of the gate electrode 3 of each MOS transistor constituting the peripheral circuit to an appropriate film thickness. In this way, by appropriately controlling the film thickness of the antireflection film 7 on the photodiode surface 7 and the side wall 9 of the gate electrode of the MOS transistor without increasing the number of manufacturing processes, an image sensor with good sensitivity and operation The solid-state imaging device 10 having a peripheral circuit with excellent characteristics can be easily and well realized at low cost on the same semiconductor substrate 1 (same chip).
[0079] なお、上記実施形態では、特に説明しなかった力、ここで用いるドライエッチングは 、 RIE装置などを用いて行うことができ、例えば C4Fガスや CH Fガスなどを用いる [0079] In the above-described embodiment, force not specifically described, dry etching used here can be performed using an RIE apparatus, for example, using C4F gas, CHF gas, or the like.
8 2 2  8 2 2
ことにより、上層絶縁膜 6、中間層絶縁膜 5および下層絶縁膜 4のそれぞれを選択的 に除去することができるため、サイドウォール 9を均一に形成することが可能である。  Thus, each of the upper insulating film 6, the intermediate insulating film 5, and the lower insulating film 4 can be selectively removed, so that the sidewalls 9 can be formed uniformly.
[0080] また、上記実施形態では、特に説明しなかったが、フォトダイオード上のレジスト膜 8 は、フォトダイオード表面のみを覆い、撮像素子形成部(撮像領域)の他の部分は露 出させておくことが好ましい。これは、半導体基板 1上で発生する界面準位を低減さ せるために行われる Hシンターをより効果的に実施することができるからである。半 [0080] Although not specifically described in the above embodiment, the resist film 8 on the photodiode covers only the surface of the photodiode, and the other part of the imaging element formation portion (imaging region) is exposed. It is preferable to keep it. This is because the H sintering performed to reduce the interface state generated on the semiconductor substrate 1 can be carried out more effectively. Half
2  2
導体基板 1上の界面準位は、撮像素子においてリーク電流(喑電流)が発生する原 因の一つであり、撮像素子形成部全面をシリコン窒化膜により被覆すると、 Hシンタ  The interface state on the conductor substrate 1 is one of the causes of the leakage current (喑 current) in the image sensor. If the entire surface of the image sensor formation part is covered with a silicon nitride film, the H
2 一時に水素イオンを遮蔽してしまうからである。  2 Because it shields hydrogen ions at a time.
[0081] さらに、上記実施形態では、特に説明しなかったが、本実施形態の反射防止膜 'サ イドウォール形成工程後に、撮像素子および周辺回路の MOSトランジスタを形成す るためのイオン注入工程や注入拡散工程を行い、その上に層間絶縁膜を形成して 層間絶縁膜にコンタクトホールを形成するコンタクトホール形成工程や、このコンタク トホールを介した撮像素子と周辺回路とを接続する金属配線を形成する金属配線形 成工程などを行う。上記 Hシンター工程は、この金属配線形成工程後などに行われ Further, although not particularly described in the above embodiment, an ion implantation step for forming the imaging element and the MOS transistor of the peripheral circuit after the antireflection film side wall forming step of the present embodiment, Perform an implantation diffusion process and form an interlayer insulation film on it A contact hole forming process for forming a contact hole in the interlayer insulating film and a metal wiring forming process for forming a metal wiring for connecting the image pickup device and the peripheral circuit through the contact hole are performed. The H sintering process is performed after this metal wiring formation process.
2  2
る。さらに、周辺回路の動作を高速化するために、コバルトなどの高融点金属を用い たサリサイドプロセスを用いてもよい。  The Further, a salicide process using a refractory metal such as cobalt may be used to speed up the operation of the peripheral circuit.
[0082] 上記コンタクトホール形成工程において、層間絶縁膜下にエッチングストッパーとし てシリコン窒化膜 (SiN膜)を形成することがある。この場合、上記フォトダイオード表 面の反射防止膜形成後に、最上層の絶縁膜であるシリコン酸化膜 (上層絶縁膜 6)を 除去することが好ましい。このように、シリコン酸化膜(上層絶縁膜 6)を除去する目的 は、フォトダイオード上の反射防止膜 7上に屈折率が異なる多種類の膜が積層される と、反射防止効果が低下することがあるためである。  In the contact hole forming step, a silicon nitride film (SiN film) may be formed as an etching stopper under the interlayer insulating film. In this case, it is preferable to remove the silicon oxide film (upper insulating film 6), which is the uppermost insulating film, after forming the antireflection film on the photodiode surface. Thus, the purpose of removing the silicon oxide film (upper insulating film 6) is to reduce the antireflection effect when multiple types of films having different refractive indexes are laminated on the antireflection film 7 on the photodiode. Because there is.
[0083] このシリコン酸化膜(上層絶縁膜 6)を除去する方法としては、ドライエッチングゃゥ エツトエッチングを用いることができる。この際に、フォトダイオード表面に設けられた 反射防止膜 7や、その周辺回路部の各 MOSトランジスタのゲート電極 3の側壁に設 けられたサイドウォール 9に必要な特性が損なわれないように、シリコン窒化膜(中間 層絶縁膜 5)の膜減りを防ぐために、ドライエッチング条件やウエットエッチングの薬液 などの各種エッチング条件を適切に選択する。反射防止膜 7の必要特性としては透 過率および屈折率であり、サイドウォール 9の必要特性は MOSトランジスタの動作特 性に悪影響を与えない特性である。さらに、エッチングストッパーとして用いられる膜 の屈折率や膜厚を考慮して、下層絶縁膜 4、中間層絶縁膜 5および上層絶縁膜 6の 屈折率や膜厚を設定する必要があることは言うまでもない。なお、この絶縁膜の種類 は、シリコン酸化膜とシリコン窒化膜の組み合わせ以外にも可能である力 ここでは、 固体撮像装置の製造方法で用いられる絶縁膜の種類として、シリコン酸化膜、シリコ ン窒化膜およびシリコン酸化膜の 3層を、下層からこの順に積層している。  [0083] As a method of removing the silicon oxide film (upper insulating film 6), dry etching or wet etching can be used. At this time, the necessary characteristics of the antireflection film 7 provided on the photodiode surface and the side wall 9 provided on the side wall of the gate electrode 3 of each MOS transistor in the peripheral circuit portion are not impaired. In order to prevent the silicon nitride film (interlayer insulating film 5) from being reduced, various etching conditions such as dry etching conditions and wet etching chemicals are appropriately selected. The necessary characteristics of the antireflection film 7 are transmittance and refractive index, and the necessary characteristics of the sidewall 9 are characteristics that do not adversely affect the operation characteristics of the MOS transistor. Furthermore, it is needless to say that the refractive index and film thickness of the lower insulating film 4, the intermediate insulating film 5 and the upper insulating film 6 need to be set in consideration of the refractive index and film thickness of the film used as an etching stopper. . Note that this type of insulating film can be used other than the combination of a silicon oxide film and a silicon nitride film. Here, the types of insulating films used in the method of manufacturing the solid-state imaging device include silicon oxide films and silicon nitride films. Three layers of film and silicon oxide film are stacked in this order from the bottom layer.
[0084] さらに、上記実施形態では、特に説明しなかったが、本実施形態の反射防止膜 'サ イドウォール形成工程において、フォトダイオード(不純物拡散層 2)表面に形成され る反射防止膜 7と MOSトランジスタのゲート電極側壁に形成されるサイドウォール 9と をそれぞれ、異なる積層数の所望の最適膜厚で同時に形成する。これによつて、製 造工程を増加させることなぐフォトダイオード表面に設けられた反射防止膜 7の膜厚 および MOSトランジスタのゲート電極側壁に設けられたサイドウォール 9の厚さを適 正に制御して、高性能な固体撮像装置を作製することができる本発明の目的を達成 できる。この場合、反射防止膜 7の屈折率および膜厚は、反射率を最適または良好 にするように、 3層の絶縁膜 4〜6のうち、下層絶縁膜 4と中間層絶縁膜 5の 2層の屈 折率および膜厚を制御することにより適正な屈折率および膜厚に設定することができ るが、反射防止膜 7として、下層絶縁膜 4と中間層絶縁膜 5の 2層であっても、下層絶 縁膜 4、中間層絶縁膜 5および上層絶縁膜 6の 3層であってもよい。また、サイドゥォ ール 9の膜厚は、下層絶縁膜 4、中間層絶縁膜 5および上層絶縁膜 5の 3層の膜厚を 制御することにより適正な膜厚に設定することができる。したがって、反射防止膜 7を 2層または 3層で構成でき、サイドウォール 9を反射防止膜 7の下層からの 2層を含む 3層で構成することができる。要するに、その具体例として、例えば反射防止膜として 3層、サイドウォールとして同じ 3層であってもよぐ互いに異なる積層数の 2層の反射 防止膜と 3層のサイドウォールに限定されない。要するに、反射防止膜 7とサイドゥォ ール 9の形成時に、反射防止膜 7は 2層を考慮して形成でき、サイドウォール 9の膜厚 は 3層により形成できるというだけのことである。 Further, although not particularly described in the above embodiment, the antireflection film 7 formed on the surface of the photodiode (impurity diffusion layer 2) in the antireflection film side wall forming step of the present embodiment and The side walls 9 formed on the side walls of the gate electrode of the MOS transistor are simultaneously formed with a desired optimum film thickness with a different number of layers. This makes it High performance solid state by properly controlling the thickness of the antireflection film 7 provided on the photodiode surface and the thickness of the side wall 9 provided on the side wall of the gate electrode of the MOS transistor without increasing the manufacturing process. The object of the present invention capable of manufacturing an imaging device can be achieved. In this case, the refractive index and film thickness of the antireflection film 7 are two layers of the lower insulating film 4 and the intermediate insulating film 5 among the three insulating films 4 to 6 so that the reflectance is optimal or good. The refractive index and film thickness can be set appropriately by controlling the refractive index and film thickness, but the antireflection film 7 is composed of two layers, a lower insulating film 4 and an intermediate insulating film 5. Alternatively, three layers of a lower insulating film 4, an intermediate insulating film 5, and an upper insulating film 6 may be used. The thickness of the side 9 can be set to an appropriate thickness by controlling the thickness of the three layers of the lower insulating film 4, the intermediate insulating film 5, and the upper insulating film 5. Therefore, the antireflection film 7 can be composed of two or three layers, and the sidewall 9 can be composed of three layers including two layers from the lower layer of the antireflection film 7. In short, specific examples thereof are not limited to, for example, two layers of antireflection films and three layers of sidewalls having different numbers of layers, which may be three layers as antireflection films and the same three layers as sidewalls. In short, when the antireflection film 7 and the side wall 9 are formed, the antireflection film 7 can be formed in consideration of two layers, and the sidewall 9 can be formed of three layers.
[0085] さらに、上記実施形態では、特に説明しなかったが、上記実施形態の固体撮像装 ジタルカメラや、画像入力カメラ、スキャナ、ファクシミリ、カメラ付き携帯電話装置など の画像入力デバイスを有した電子情報機器について説明する。本発明の電子情報 機器は、本発明の上記実施形態の固体撮像装置 10を撮像部に用いて得た高品位 な画像データを記録用に所定の信号処理した後にデータ記録する記録メディアなど のメモリ部と、この画像データを表示用に所定の信号処理した後に液晶表示画面な どの表示画面上に表示する液晶表示装置などの表示手段と、この画像データを通信 用に所定の信号処理をした後に通信処理する送受信装置などの通信手段と、この画 像データを印刷(印字)して出力(プリントアウト)する画像出力手段とのうちの少なくと もいずれかを有している。 [0085] Further, although not specifically described in the above embodiment, an electronic device having the image input device such as the solid-state imaging device digital camera of the above embodiment, an image input camera, a scanner, a facsimile, or a camera-equipped mobile phone device. Information devices will be described. The electronic information device of the present invention is a memory such as a recording medium for recording data after performing predetermined signal processing for recording high-quality image data obtained by using the solid-state imaging device 10 of the above-described embodiment of the present invention as an imaging unit. And a display means such as a liquid crystal display device for displaying the image data on a display screen such as a liquid crystal display screen after performing predetermined signal processing for display of the image data, and after performing predetermined signal processing of the image data for communication It has at least one of communication means such as a transmission / reception device for performing communication processing and image output means for printing (printing) and outputting (printing out) the image data.
[0086] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力、本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。 [0086] As described above, the power that has been exemplified by the present invention using the preferred embodiments of the present invention, the present invention. The description should not be construed as limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications and literature references cited in this specification should be incorporated by reference as if the contents themselves were specifically described in the present specification. Is understood.
産業上の利用可能性 Industrial applicability
本発明は、半導体基板上にフォトダイオードと MOSトランジスタとが混載された CM OS型イメージセンサや CCD型イメージセンサなどの固体撮像装置およびその製造 方法、この製造方法により作製された固体撮像装置を、画像入力デバイスとして撮像 カメラや、画像入力カメラ、スキャナ、ファクシミリ、カメラ付き携帯電話装置などの電 子情報機器の分野にぉレ、て、フォトダイオード表面の反射防止効果が高!、反射防止 膜と、周辺回路の高性能なトランジスタとを、工程増加を抑制しながら形成することが できる。これにより、感度が良好な撮像素子と、動作特性に優れた周辺回路とを兼ね 備えた固体撮像装置を低コストで容易かつ良好に実現することができる。  The present invention relates to a solid-state imaging device such as a CMOS type image sensor or a CCD type image sensor in which a photodiode and a MOS transistor are mixedly mounted on a semiconductor substrate, a manufacturing method thereof, and a solid-state imaging device manufactured by this manufacturing method. In the field of electronic information equipment such as imaging cameras, image input cameras, scanners, facsimiles, and camera-equipped mobile phone devices as image input devices, the anti-reflection effect on the photodiode surface is high! Thus, a high-performance transistor in a peripheral circuit can be formed while suppressing an increase in the number of steps. As a result, a solid-state imaging device having both an imaging element with good sensitivity and a peripheral circuit with excellent operating characteristics can be realized easily and satisfactorily at low cost.

Claims

請求の範囲 The scope of the claims
[1] フォトダイオード表面に形成される反射防止膜と MOSトランジスタのゲート電極側 壁に形成されるサイドウォールとをそれぞれ、異なる積層数の所望の最適膜厚で同 時に形成する反射防止膜'サイドウォール形成工程を有する固体撮像装置の製造方 法。  [1] Antireflection film that forms the antireflection film on the photodiode surface and the side wall that is formed on the side wall of the gate electrode of the MOS transistor at the same optimum thickness with different number of layers. A method of manufacturing a solid-state imaging device having a wall forming process.
[2] 半導体基板上に、入射光を光電変換する複数のフォトダイオードが配列された撮 像素子と、 MOSトランジスタを有する周辺回路とが混載された固体撮像装置の製造 方法において、  [2] In a method of manufacturing a solid-state imaging device in which an imaging element in which a plurality of photodiodes that photoelectrically convert incident light are arranged on a semiconductor substrate and a peripheral circuit having a MOS transistor are mounted together.
撮像素子形成部および周辺回路形成部に、該フォトダイオード表面に形成される 反射防止膜と該 MOSトランジスタのゲート電極側壁に形成されるサイドウォールとの 各膜厚がそれぞれ最適な膜厚になるように絶縁膜を 3層積層し、該 3層から、該反射 防止膜および該サイドウォールを形成する反射防止膜 ·サイドウォール形成工程を有 する固体撮像装置の製造方法。  Each film thickness of the antireflection film formed on the surface of the photodiode and the side wall formed on the side wall of the gate electrode of the MOS transistor is optimized in the imaging element forming portion and the peripheral circuit forming portion. A method of manufacturing a solid-state imaging device, comprising: three layers of insulating films stacked on each other, and an antireflection film / sidewall forming step for forming the antireflection film and the sidewall from the three layers.
[3] 前記反射防止膜は 2層または 3層で構成され、前記サイドウォールは下層からの該 2層を含む 3層で構成されている請求項 1または 2に記載の固体撮像装置の製造方 法。 [3] The method of manufacturing a solid-state imaging device according to [1] or [2], wherein the antireflection film is composed of two or three layers, and the sidewall is composed of three layers including the two layers from the lower layer. Law.
[4] 前記反射防止膜 ·サイドウォール形成工程は、前記フォトダイオード上の 3層の絶縁 膜を覆うようにフォトリソグラフィ一によりレジスト膜を所定パターンに形成し、異方性ド ライエッチングにより該レジスト膜で被覆された領域以外の 3層の絶縁膜を除去するこ とにより前記反射防止膜および前記サイドウォールを形成する請求項 1〜3のいずれ かに記載の固体撮像装置の製造方法。  [4] In the antireflection film / sidewall forming step, a resist film is formed in a predetermined pattern by photolithography so as to cover the three insulating films on the photodiode, and the resist is formed by anisotropic dry etching. 4. The method for manufacturing a solid-state imaging device according to claim 1, wherein the antireflection film and the sidewall are formed by removing three insulating films other than the region covered with the film.
[5] 前記 3層のうち、下層絶縁膜および中間層絶縁膜の 2層の屈折率および膜厚を制 御することにより前記反射防止膜の屈折率および膜厚を制御すると共に、該下層絶 縁膜および該中間層絶縁膜、上層絶縁膜の 3層の膜厚を制御することにより前記サ イドウォールの膜厚を制御する請求項 2〜4のいずれかに記載の固体撮像装置の製 造方法。  [5] Of the three layers, the refractive index and film thickness of the antireflection film are controlled by controlling the refractive index and film thickness of the two layers of the lower insulating film and the intermediate insulating film. 5. The manufacturing of the solid-state imaging device according to claim 2, wherein the thickness of the sidewall is controlled by controlling the thickness of the three layers of the edge film, the intermediate insulating film, and the upper insulating film. Method.
[6] 前記反射防止膜を、前記フォトダイオードへの入射光の反射を抑制可能な屈折率 および膜厚構成に設定する請求項 1、 2、 4および 5のいずれかに記載の固体撮像装 置の製造方法。 6. The solid-state imaging device according to any one of claims 1, 2, 4 and 5, wherein the antireflection film is set to have a refractive index and a film thickness configuration capable of suppressing reflection of incident light to the photodiode. Manufacturing method.
[7] 前記サイドウォールを、前記 MOSトランジスタの LDD構造形成に最適な膜厚に設 定する請求項 1、 2、 4および 5のいずれかに記載の固体撮像装置の製造方法。  7. The method for manufacturing a solid-state imaging device according to any one of claims 1, 2, 4, and 5, wherein the sidewall is set to an optimum film thickness for forming an LDD structure of the MOS transistor.
[8] 前記 3層として、シリコン酸化膜、シリコン窒化膜およびシリコン酸化膜を下層からこ の順に積層する請求項 2〜5のいずれかに記載の固体撮像装置の製造方法。 8. The method for manufacturing a solid-state imaging device according to any one of claims 2 to 5, wherein a silicon oxide film, a silicon nitride film, and a silicon oxide film are stacked in this order from the lower layer as the three layers.
[9] 前記 3層を、プラズマ CVD装置または減圧 CVD装置を用いて堆積する請求項 2〜[9] The three layers are deposited using a plasma CVD apparatus or a low pressure CVD apparatus.
5および 8のいずれかに記載の固体撮像装置の製造方法。 9. A method for producing a solid-state imaging device according to any one of 5 and 8.
[10] 前記反射防止膜を、前記フォトダイオードが配列された撮像素子形成部の全面で はなくその一部であって、少なくとも該フォトダイオードの表面を覆うように形成する請 求項;!〜 6のいずれかに記載の固体撮像装置の製造方法。 [10] Claims for forming the antireflection film so as to cover at least the surface of the photodiode, which is not the entire surface of the imaging element forming portion in which the photodiodes are arranged, but a part thereof. 6. A method for producing a solid-state imaging device according to any one of 6 above.
[11] 前記反射防止膜 ·サイドウォール形成工程後に、前記 3層のうち、最上層絶縁膜を エッチングにより除去する請求項 2、 4、 5および 8のいずれかに記載の固体撮像装置 の製造方法。 [11] The method of manufacturing a solid-state imaging device according to any one of claims 2, 4, 5, and 8, wherein after the antireflection film / sidewall forming step, the uppermost insulating film of the three layers is removed by etching. .
[12] 前記エッチングを行う際に、前記反射防止膜および前記サイドウォールの必要特性 を損なわないように、かつ、前記 3層のうち、中間層絶縁膜の膜減りが生じないように 、ドライエッチング条件またはウエットエッチングの薬液を選択する請求項 4または 11 に記載の固体撮像装置の製造方法。  [12] When performing the etching, dry etching is performed so as not to impair the necessary characteristics of the antireflection film and the sidewall and to prevent the interlayer insulating film from being reduced among the three layers. 12. The method for manufacturing a solid-state imaging device according to claim 4, wherein a condition or a chemical solution for wet etching is selected.
[13] 前記反射防止膜 ·サイドウォール形成工程後に、前記フォトダイオード上および前 記 MOSトランジスタ上に層間絶縁膜を形成し、該層間絶縁膜に設けられたコンタクト ホールを介して前記撮像素子と前記周辺回路とを電気的に接続する金属配線を形 成する請求項 2に記載の固体撮像装置の製造方法。  [13] After the step of forming the antireflection film / sidewall, an interlayer insulating film is formed on the photodiode and the MOS transistor, and the imaging element and the above-described film are connected via a contact hole provided in the interlayer insulating film. 3. The method for manufacturing a solid-state imaging device according to claim 2, wherein metal wiring for electrically connecting the peripheral circuit is formed.
[14] 前記層間絶縁膜下に、前記コンタクトホール形成時のエッチングストッパーとして、 前記 3層の最上層絶縁膜、または該最上層絶縁膜上に該最上層絶縁膜とは異なる 材料からなる絶縁膜を形成する請求項 13に記載の固体撮像装置の製造方法。  [14] The three-layer uppermost insulating film or an insulating film made of a material different from the uppermost insulating film on the uppermost insulating film as an etching stopper when forming the contact hole under the interlayer insulating film The method for manufacturing a solid-state imaging device according to claim 13, wherein:
[15] 前記エッチングストッパーとして機能する絶縁膜の屈折率および膜厚を考慮して、 反射防止機能が最適になるように前記 3層の屈折率および膜厚を設定する請求項 1 4に記載の固体撮像装置の製造方法。  [15] The refractive index and film thickness of the three layers are set so as to optimize the antireflection function in consideration of the refractive index and film thickness of the insulating film functioning as the etching stopper. Manufacturing method of solid-state imaging device.
[16] 前記シリコン酸化膜の膜厚が 10nmの場合に、前記シリコン窒化膜が 50nm以上 7 Onm以下の最適膜厚に設定する請求項 8に記載の固体撮像装置の製造方法。 [16] When the thickness of the silicon oxide film is 10 nm, the silicon nitride film has a thickness of 50 nm or more. 9. The method for manufacturing a solid-state imaging device according to claim 8, wherein the film thickness is set to an optimum film thickness of Onm or less.
[17] 前記シリコン酸化膜の膜厚が 30nmの場合に、前記シリコン窒化膜が 20nm以上 3[17] When the silicon oxide film has a thickness of 30 nm, the silicon nitride film has a thickness of 20 nm or more.
5nm以下の最適膜厚に設定する請求項 8に記載の固体撮像装置の製造方法。 9. The method of manufacturing a solid-state imaging device according to claim 8, wherein the optimum film thickness is set to 5 nm or less.
[18] 前記シリコン酸化膜の膜厚が 50nmの場合に、前記シリコン窒化膜が lOnm以上 2[18] When the thickness of the silicon oxide film is 50 nm, the silicon nitride film is not less than lOnm 2
Onm以下の最適膜厚に設定する請求項 8に記載の固体撮像装置の製造方法。 9. The method for manufacturing a solid-state imaging device according to claim 8, wherein the film thickness is set to an optimum film thickness of Onm or less.
[19] 前記シリコン酸化膜の膜厚が 5nm以上 50nm以下の場合に、前記シリコン窒化膜 力 S lOnm以上 80nm以下に設定する請求項 8に記載の固体撮像装置の製造方法。 19. The method for manufacturing a solid-state imaging device according to claim 8, wherein when the film thickness of the silicon oxide film is 5 nm or more and 50 nm or less, the silicon nitride film force is set to SlOnm or more and 80 nm or less.
[20] 前記シリコン酸化膜の膜厚が 1 Onm ± 5nmの場合に、前記シリコン窒化膜が 50η m± lOnmに設定する請求項 8に記載の固体撮像装置の製造方法。 20. The method for manufacturing a solid-state imaging device according to claim 8, wherein when the film thickness of the silicon oxide film is 1 Onm ± 5 nm, the silicon nitride film is set to 50 ηm ± lOnm.
[21] 前記フォトダイオード上および前記 MOSトランジスタ上に層間絶縁膜を形成し、該 層間絶縁膜の膜厚を 300nm〜1000nmに設定する請求項 16〜20のいずれかに 記載の固体撮像装置の製造方法。 21. The manufacturing of a solid-state imaging device according to claim 16, wherein an interlayer insulating film is formed on the photodiode and the MOS transistor, and the film thickness of the interlayer insulating film is set to 300 nm to 1000 nm. Method.
[22] 前記反射防止膜の必要特性は透過率および屈折率であり、前記サイドウォールの 必要特性は前記 MOSトランジスタの動作特性に悪影響を与えない特性である請求 項 12に記載の固体撮像装置の製造方法。 [22] The solid-state imaging device according to [12], wherein the necessary characteristics of the antireflection film are transmittance and refractive index, and the necessary characteristics of the sidewall are characteristics that do not adversely affect the operating characteristics of the MOS transistor. Production method.
[23] 前記周辺回路は、前記撮像素子を駆動制御するための駆動制御回路と、前記撮 像素子からの撮像信号を表示信号に変換するための信号処理を行う信号処理回路 の少なくともいずれかである請求項 2または 13に記載の固体撮像装置の製造方法。 [23] The peripheral circuit is at least one of a drive control circuit for driving and controlling the imaging device and a signal processing circuit for performing signal processing for converting an imaging signal from the imaging device into a display signal. 14. The method for manufacturing a solid-state imaging device according to claim 2 or 13.
[24] 請求項;!〜 23のいずれかに記載の固体撮像装置の製造方法により製造された固 体撮像装置。 [24] A solid-state imaging device manufactured by the method for manufacturing a solid-state imaging device according to any one of claims;
[25] 請求項;!〜 23のいずれかに記載の固体撮像装置の製造方法により製造された固 体撮像装置を撮像部に用いた電子情報機器。  [25] An electronic information device using the solid-state imaging device manufactured by the method for manufacturing a solid-state imaging device according to any one of claims! To 23 as an imaging unit.
PCT/JP2007/065022 2006-08-07 2007-07-31 Solid-state imaging apparatus and method for manufacturing same, and electronic information apparatus WO2008018329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-214788 2006-08-07
JP2006214788A JP2008041958A (en) 2006-08-07 2006-08-07 Solid-state imaging apparatus, its manufacturing method and electronic information equipment

Publications (1)

Publication Number Publication Date
WO2008018329A1 true WO2008018329A1 (en) 2008-02-14

Family

ID=39032863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065022 WO2008018329A1 (en) 2006-08-07 2007-07-31 Solid-state imaging apparatus and method for manufacturing same, and electronic information apparatus

Country Status (3)

Country Link
JP (1) JP2008041958A (en)
TW (1) TW200828578A (en)
WO (1) WO2008018329A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118411A (en) * 2008-11-11 2010-05-27 Sharp Corp Solid-state image sensor and method of manufacturing the same, and electronic information apparatus
WO2010122657A1 (en) 2009-04-24 2010-10-28 ルネサスエレクトロニクス株式会社 Solid-state imaging device and method for manufacturing the same
JP6093368B2 (en) 2012-10-29 2017-03-08 ルネサスエレクトロニクス株式会社 Imaging device manufacturing method and imaging device
JP2017130693A (en) * 2017-04-13 2017-07-27 ルネサスエレクトロニクス株式会社 Image pickup device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396421A (en) * 1989-09-11 1991-04-22 Matsushita Electric Ind Co Ltd Water-proof structure of automotive blower
JP2001245439A (en) * 1999-12-31 2001-09-07 Nokia Mobile Phones Ltd Battery-protection circuit and protecting method
JP2004335588A (en) * 2003-05-01 2004-11-25 Renesas Technology Corp Solid state imaging apparatus and its manufacturing method
JP2005340475A (en) * 2004-05-26 2005-12-08 Sony Corp Solid state imaging device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3782297B2 (en) * 2000-03-28 2006-06-07 株式会社東芝 Solid-state imaging device and manufacturing method thereof
WO2003096421A1 (en) * 2002-05-14 2003-11-20 Sony Corporation Semiconductor device and its manufacturing method, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396421A (en) * 1989-09-11 1991-04-22 Matsushita Electric Ind Co Ltd Water-proof structure of automotive blower
JP2001245439A (en) * 1999-12-31 2001-09-07 Nokia Mobile Phones Ltd Battery-protection circuit and protecting method
JP2004335588A (en) * 2003-05-01 2004-11-25 Renesas Technology Corp Solid state imaging apparatus and its manufacturing method
JP2005340475A (en) * 2004-05-26 2005-12-08 Sony Corp Solid state imaging device

Also Published As

Publication number Publication date
JP2008041958A (en) 2008-02-21
TW200828578A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
KR101333903B1 (en) Method for producing solid-state imaging device
US9099365B2 (en) Method for manufacturing solid-state imaging device
WO2011077580A1 (en) Solid-state imaging device and imaging system
JP2007324248A (en) Photographic device
US20100285630A1 (en) Method of manufacturing an image sensor having improved anti-reflective layer
JP4075797B2 (en) Solid-state image sensor
JP5343124B2 (en) Solid-state imaging device and manufacturing method thereof
US20100062559A1 (en) Methods of manufacturing image sensors having shielding members
JP4486043B2 (en) CMOS image sensor and manufacturing method thereof
US20200035740A1 (en) Method of manufacturing solid-state image sensor, solid-state image sensor, and camera
WO2008018329A1 (en) Solid-state imaging apparatus and method for manufacturing same, and electronic information apparatus
JP2007165864A (en) Photoelectric converter, manufacturing method thereof, and imaging system
TWI556423B (en) Image sensor device and semiconductor structure
WO2020189472A1 (en) Semiconductor device and semiconductor device manufacturing method
JP5019934B2 (en) Manufacturing method of solid-state imaging device
JP2008147409A (en) Solid-state image pickup device, its manufacturing method, and electronic information device
JP2010056245A (en) Semiconductor image pickup element, manufacturing method thereof and electronic apparatus
JP2004055669A (en) Solid-state imaging element and method manufacturing the same
JP2005191480A (en) Manufacturing method of solid-state imaging device
JP2010129786A (en) Method of manufacturing solid-state imaging apparatus, and electronic information apparatus
JP2009129931A (en) Solid-state image sensor and method of manufacturing the same, and electronic information device
KR20050106932A (en) Image sensor and fabricating method thereof
JP2004363473A (en) Solid imaging device and its manufacturing method
JP2009239058A (en) Solid-state imaging element, manufacturing method therefor, and electronic information apparatus
CN118471992A (en) Image sensor manufacturing method and image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791706

Country of ref document: EP

Kind code of ref document: A1