WO2008018137A1 - Optical device and optical device manufacturing method - Google Patents

Optical device and optical device manufacturing method Download PDF

Info

Publication number
WO2008018137A1
WO2008018137A1 PCT/JP2006/315848 JP2006315848W WO2008018137A1 WO 2008018137 A1 WO2008018137 A1 WO 2008018137A1 JP 2006315848 W JP2006315848 W JP 2006315848W WO 2008018137 A1 WO2008018137 A1 WO 2008018137A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
optical device
organic
upper electrode
Prior art date
Application number
PCT/JP2006/315848
Other languages
French (fr)
Japanese (ja)
Inventor
Michio Menda
Ryuichi Satoh
Masashi Fukuzaki
Original Assignee
Pioneer Corporation
Tohoku Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation, Tohoku Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008528696A priority Critical patent/JP4652451B2/en
Priority to PCT/JP2006/315848 priority patent/WO2008018137A1/en
Publication of WO2008018137A1 publication Critical patent/WO2008018137A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to an optical device and a method for manufacturing an optical device.
  • Optical devices are, for example, cell phones, in-vehicle monitors, home appliance monitors, personal computer display devices, information display devices that perform dot matrix display such as television receivers, watches, and advertisements. It is used in various devices such as fixed display devices such as panels, lighting devices such as light sources for scanners and printers, lighting, and liquid crystal backlights, and optical communication devices that use photoelectric conversion functions.
  • This optical device is generally formed by a plurality of pixels, and displays desired information by performing display driving or non-display driving for each pixel.
  • a pixel that employs a self-luminous element is known as a pixel forming the optical device.
  • Self-emitting elements have the advantage of low power and no need for a backlight.
  • organic EL elements As typical self-luminous elements, inorganic EL elements, organic EL (electric aperture luminescence) elements, FED (Field Emission Display) elements, light emitting diodes, and the like are known.
  • the organic EL element is also called, for example, an organic EL (OEL) device, an organic light emitting diode (OLED) device, a self-emitting element, or an electroluminescent light source.
  • OEL organic EL
  • OLED organic light emitting diode
  • an organic EL element has a structure in which an organic layer (light emitting layer) is sandwiched between an anode (corresponding to an anode and a hole injection electrode) and a force sword (corresponding to a cathode and an electron injection layer).
  • the organic layer has a structure in which a plurality of functional layers are laminated, for example, a structure in which a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and the like are sequentially laminated.
  • Each layer consists of a single layer that also has a single organic material force, a mixed layer that combines multiple materials, and a polymer binder.
  • a layer in which a functional material such as an organic material or an inorganic material (charge transport function, light emission function, charge blocking function, optical function, etc.) is dispersed can be employed.
  • each layer has a buffer function so that the organic layer is not damaged when the upper electrode is formed by sputtering, or an organic EL element that has a flattening function to prevent unevenness due to the film formation process. Is also known.
  • the organic EL element having the above-described configuration, by applying a voltage to both electrodes, holes injected and transported from the anode into the organic layer and electrons injected and transported from the force sword into the organic layer are generated. Recombination occurs in the organic layer, and due to this recombination, the electronic state of organic molecules in the organic layer changes from the ground state to the excited state, and light is emitted when the excited state changes to the ground state.
  • FIG. 1 is a cross-sectional view showing an optical device provided with a general organic EL (electric mouth luminescence) element.
  • FIG. 2 is a front view for explaining the deterioration of the organic EL element of the optical device.
  • a general optical device 1J uses an organic EL element as one pixel 11.
  • the optical device 1J shown in FIG. 1 is a bottom emission type, and a first electrode (also called a lower electrode) made of a transparent conductive material such as ITO (Indium Tin Oxide) on a glass substrate 2J.
  • Organic light-emitting functional layer (may be plural or singular) 3J is deposited 'and a light emitting layer is formed on top of it. 5J is deposited, and a second electrode (such as A1) is formed on top of it. 6J is filmed 'patterning.
  • a lead wire 3a is formed at the end of the first electrode 3J.
  • the organic EL element 100 is manufactured on the substrate 2J by the above manufacturing process.
  • As the substrate 2J for example, an active drive substrate using TFT (Thin Film Transistor) or the like, or a passive drive substrate on which stripe electrodes are formed can be employed.
  • TFT Thin Film Transistor
  • the organic EL element 100 is sealed and bonded by a sealing substrate 91J such as glass.
  • a sealing substrate 91J such as glass.
  • Various methods such as hermetic sealing, membrane sealing, and solid sealing are known as sealing and joining methods for the optical device 1J.
  • the element-side substrate 2J and the sealing substrate 91 are sealed through an adhesive 92J such as epoxy resin. At this time, apply adhesive 92J to the entire surface on which the organic EL element is formed. And seal.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2005-63928
  • Such an intrusion phenomenon of the deterioration factor (hi) deteriorates the organic EL element 100 in the manufacturing process of the optical device 1J using the organic EL element 100 as one pixel.
  • the deterioration factor (hi) enters the interface 56J between the layers, for example as shown in FIGS.
  • a non-light-emitting portion is generated in the peripheral portion of the pixel 11
  • the width (w) of the non-light-emitting portion gradually increases, and the light-emitting defective portion of the optical device 1J is enlarged.
  • An object of the present invention is to deal with such a problem. That is, in an optical device having a self-luminous element in which an organic light emitting functional layer including a light emitting layer is sandwiched between a lower electrode and an upper electrode, water, oxygen, organic gas, etc. are present at the interface between the upper electrode and the organic light emitting functional layer. It is an object of the present invention to reduce light emitting defects caused by the intrusion of deterioration factors, and to reduce display defects of optical devices due to light emitting defects of self-luminous elements such as organic EL elements.
  • one of the objects is to solve the above-mentioned problems!
  • a single light-emitting element in which an organic light-emitting functional layer including a light-emitting layer is sandwiched between a lower electrode and an upper electrode is used as one pixel, and one or a plurality of the pixels are formed on a substrate.
  • An optical device formed directly or via another layer, the organic material layer formed on the upper electrode of the self-luminous element, the lower electrode and the upper electrode,
  • the organic material layer has an inorganic layer formed on the organic material layer, and a sealing portion that seals the light-emitting element formed on the substrate with a sealing material.
  • the end of the region where the layer and the inorganic layer overlap is separated from the end of the region where the organic light emitting functional layer and the upper electrode overlap from the end of the sealing portion via the organic material layer. It is characterized by being formed.
  • the invention according to claim 12 is an optical device using an organic EL element having at least a light emitting layer sandwiched between a pair of electrodes as one pixel, and directly or indirectly on the substrate and the substrate.
  • a first insulating film patterned on the substrate and Z or the lower electrode to form a pixel region, and a light emitting layer formed in the pixel region by the first insulating film.
  • the invention according to claim 13 is characterized in that a single light-emitting element in which an organic light-emitting functional layer including at least a light-emitting layer is sandwiched between a pair of electrodes is used as one pixel, and one or a plurality of the pixels are formed.
  • a method for manufacturing an optical device comprising: forming a lower electrode directly on a substrate or via another layer; and forming the organic light emitting functional layer including the light emitting layer on the lower electrode.
  • the end of the region where the organic material layer and the inorganic layer overlap is sealed from the end of the region where the organic light emitting functional layer and the upper electrode overlap.
  • the invention according to claim 16 is characterized in that a single light-emitting element in which an organic light-emitting functional layer including at least a light-emitting layer is sandwiched between a pair of electrodes is used as one pixel, and one or a plurality of the pixels are formed.
  • a method of manufacturing an optical device comprising: a lower electrode forming step of forming a lower electrode directly on a substrate or via another layer; and a pattern of a first insulating film on the substrate and Z or the lower electrode.
  • FIG. 1 is a cross-sectional view showing an optical device including a general organic EL (electrical mouth luminescence) element.
  • FIG. 2 is a front view for explaining the deterioration of the organic EL element of the optical device.
  • FIG. 3 is a cross-sectional view for explaining the optical device 1 according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a specific example of a temporal change in the width of a non-light emitting portion generated at an end portion of a pixel for explaining the effect of the optical device according to the present invention.
  • FIG. 5 is a diagram for explaining the effect of the optical device according to the first example of the present invention.
  • FIG. 6 is a diagram for explaining the effect of the optical device according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view for explaining an optical device according to a second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining an optical device 1 according to a third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view around the region A shown in (A).
  • FIG. 9 is a view for explaining a lower electrode forming step of the optical device manufacturing method according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view in the vicinity of the region A shown in (A).
  • FIG. 10 is a view for explaining a pixel region forming step (first insulating film forming step) of the method for manufacturing an optical device 1 according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view in the vicinity of the region A shown in (A).
  • FIG. 11 is a view for explaining a first charge transport layer forming step of the optical device manufacturing method according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view near the region A shown in (A).
  • FIG. 12 is a view for explaining a light emitting layer forming step of the optical device manufacturing method according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view in the vicinity of the region A shown in (A).
  • FIG. 13 is a view for explaining a second charge transport layer forming step of the method for manufacturing an optical device according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view near the region A shown in (A).
  • FIG. 14 is a view for explaining an upper electrode forming step of the optical device manufacturing method according to the third embodiment of the invention.
  • (A) is a top view
  • (B) is a cross-sectional view near the region A shown in (A).
  • FIG. 15 is a view for explaining an organic material layer forming step of the optical device manufacturing method according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view in the vicinity of region A shown in (A).
  • FIG. 16 is a diagram for explaining an inorganic layer forming step of the optical device manufacturing method according to the third embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view in the vicinity of the region A shown in (A).
  • FIG. 17 is a cross-sectional view for explaining an optical device 1B according to a fourth embodiment of the present invention.
  • FIG. 18 is a diagram for explaining an optical device 1C according to a fifth embodiment of the present invention.
  • (A) is a top view
  • (B) is a cross-sectional view around the region A shown in (A).
  • An optical device includes a self-luminous element in which an organic light-emitting functional layer including a light-emitting layer is sandwiched between a lower electrode and an upper electrode as one pixel, one or a plurality of pixels, a substrate
  • An optical device formed directly on or through another layer The organic material layer formed on the upper electrode of the optical element, the inorganic layer formed on the organic material layer in a state in which insulation between the lower electrode and the upper electrode is ensured, and the self-light emission formed on the substrate
  • a sealing portion that seals the element with a sealing material, and the end of the region where the organic material layer and the inorganic layer overlap is located outside the pixel from the end of the region where the organic light emitting functional layer and the upper electrode overlap.
  • it is characterized in that it is formed on the outer end portion side of the sealing portion, with an organic material layer interposed therebetween.
  • the organic material layer includes at least one organic material constituting the organic light emitting functional layer.
  • the inorganic layer is made of the same material as that of the upper electrode.
  • an organic material layer is formed on a self-luminous element in which an organic light emitting functional layer is sandwiched between a lower electrode and an upper electrode, and an inorganic layer is formed on the organic material layer. Therefore, for example, deterioration factors such as an uncured component of the adhesive, a solvent, water and oxygen from the external atmosphere, and the like enter the interface between the upper electrode and the organic light emitting functional layer can be reduced.
  • the degradation factor is preferentially captured at the edge force interface between the organic material layer and the inorganic layer, so that the degradation factor is interfaced between the upper electrode and the organic light emitting functional layer. It is possible to reduce the amount of intrusion.
  • the optical device has a structure in which, for example, the end portion of the interface between the organic light emitting functional layer and the upper electrode is in contact with the organic material layer, and therefore, a degradation factor to the interface between the organic light emitting functional layer and the upper electrode Intrusion can be reduced.
  • the optical device since the optical device has a structure in which, for example, the end portion of the interface between the organic light emitting functional layer and the upper electrode is in contact with the first insulating film, the degradation factor enters the interface between the organic light emitting functional layer and the upper electrode. Can be reduced.
  • the organic material layer contains at least one organic material constituting the organic light emitting functional layer, for example, the organic material prepared at the time of forming the organic light emitting layer without preparing a new organic material at the time of forming the organic material layer.
  • An organic material layer can be easily formed using a material.
  • the optical device uses an organic material layer for the edge of the interface between the organic light emitting functional layer and the upper electrode.
  • the inorganic layer having a relatively high thermal conductivity is provided on the self-luminous element, there is an effect of radiating heat generated when the optical device performs display driving.
  • the organic material layer and the inorganic layer are sequentially formed on the upper electrode. Can be prevented from expanding.
  • the method for manufacturing an optical device includes a self-luminous element in which an organic light-emitting functional layer including at least a light-emitting layer is sandwiched between a pair of electrodes as one pixel.
  • a method of manufacturing an optical device in which one or a plurality of optical devices are formed, wherein a lower electrode is formed on a substrate directly or via another layer, and an organic light emitting device including a light emitting layer on the lower electrode.
  • the end of the region where the organic material layer and the inorganic layer overlap is placed closer to the outer end of the sealing portion than the end of the region where the organic light emitting functional layer and the upper electrode overlap. It is characterized in that they are formed apart via each other.
  • an optical device having the above configuration can be easily manufactured.
  • the organic light emitting functional layer, the upper electrode, the organic material layer, and the inorganic layer are formed by a vacuum deposition method, for example, a sputtering method.
  • a vacuum deposition method for example, a sputtering method.
  • the optical device is directly or directly on the substrate.
  • the lower electrode formation process that forms the lower electrode through another layer, and the organic light emitting functional layer formation that forms the organic light emitting functional layer that functions as a pixel by light emission and Z or non-light emission on the lower electrode by vacuum deposition A step of forming an upper electrode by vacuum deposition so that a part of a region where the organic light emitting functional layer is formed is exposed on the organic light emitting functional layer; and the organic light emitting functional layer is exposed.
  • An organic material layer forming step of forming an organic material layer containing at least one material constituting the organic light emitting functional layer in a region where the organic light emitting functional layer is exposed by vacuum deposition; and an upper surface of the organic material layer and the exposed region In this range, the inorganic layer forming step of forming the inorganic layer by vacuum vapor deposition is included, so that the optical device having the above configuration according to the present invention can be easily produced.
  • FIG. 3 is a cross-sectional view for explaining the optical device 1 according to the first embodiment of the present invention.
  • the optical device 1 according to the first embodiment of the present invention has one pixel 11 or a plurality of pixels 11.
  • a plurality of pixels 11 are formed on the substrate 2 in a grid pattern.
  • the formation region of the pixel 11 corresponds to an embodiment of the pixel region according to the present invention.
  • the self-luminous element 100 corresponding to one pixel displays various information by light emission Z non-light emission of the light emitting layer formed between the electrodes.
  • an organic EL (electric mouth luminescence) element can be adopted.
  • the optical device 1 for example, an active matrix driving type or a passive matrix driving type is adopted. be able to.
  • an example of a bottom emission type passive matrix drive organic EL panel employing an optical device according to an embodiment of the present invention will be described in detail.
  • the optical device 1 includes a substrate 2, a lower electrode (first electrode) 3, an organic light emitting functional layer 5 including a light emitting layer, and an upper electrode (second electrode) 6.
  • the substrate 2 corresponds to one embodiment of the substrate according to the present invention
  • the lower electrode 3 corresponds to one embodiment of the lower electrode according to the present invention
  • the organic light emitting functional layer 5 corresponds to the organic light emitting according to the present invention. This corresponds to an embodiment of the functional layer.
  • the upper electrode 6 corresponds to an embodiment of the upper electrode according to the present invention
  • the organic material layer 7 corresponds to an embodiment of the organic material layer according to the present invention.
  • the inorganic layer 8 corresponds to one embodiment of the inorganic layer according to the present invention
  • the sealing member 9 corresponds to one embodiment of the sealing portion according to the present invention.
  • the material for which the substrate 2 is preferably a flat plate or a film, for example, glass or plastic can be used.
  • the substrate 2 is formed from a transparent material.
  • the lower electrode (first electrode) 3 is made of a conductive material, and is formed on the substrate 2 directly or via another layer (for example, a moisture-impermeable layer).
  • a material for forming the lower electrode 3 for example, a transparent conductive material such as ITO is adopted.
  • the organic light emitting functional layer 5 including the light emitting layer is formed on the lower electrode 3 directly or via another layer (for example, a charge transport layer).
  • the organic light emitting functional layer 5 has a laminated structure such as a charge transport layer and a light emitting layer (also referred to as a light emitting layer).
  • the organic light emitting functional layer 5 is formed by, for example, a vacuum evaporation method. Alternatively, it may be formed by a coating, printing method or laser transfer method.
  • the upper electrode (second electrode) 6 is made of a conductive material and is formed on the organic light emitting functional layer 5. Specifically, as shown in FIG. 3, the upper electrode 6 is formed in a narrow range on the organic light emitting functional layer 5 so that the end 6a is located on the inner side of the end 5 of the organic light emitting functional layer 5. ing. Specifically, as shown in FIG. 3, the upper electrode 6 is formed by vacuum deposition of the second electrode so that a part of the region where the organic light emitting functional layer 5 is formed is exposed.
  • the self-light emitting element 100 is formed by the lower electrode 3, the organic light emitting functional layer 5, and the upper electrode 6. Since the self-luminous element 100 is significantly deteriorated by deterioration factors such as moisture, the sealing member 9 Thus, the self-luminous element 100 is sealed to prevent deterioration of the element.
  • the organic material layer 7 and the inorganic layer 8 are formed on the upper electrode 6, and a sealing material 92 such as an adhesive is applied thereon to seal the sealing substrate 91. Thus, the self-luminous element 100 is sealed.
  • the light emitting layer of the organic light emitting functional layer 5 is substantially effective. It corresponds to the light emitting area.
  • the organic material layer 7 is formed on the upper electrode 6 on the organic EL element 100 as shown in FIG. Specifically, the organic material layer 7 is formed on the upper electrode 6 in a range wider than the film formation region of the upper electrode 6, and the organic light emitting functional layer 5 and the interface 57 are formed.
  • the organic material layer 7 preferably includes at least one material constituting the organic light emitting functional layer 5, for example.
  • Various organic materials can be used as the material of the organic material layer 7 depending on the external environment of the optical device 1 and the driving conditions.
  • an aluminum complex Alq or copper phthalocyanine (CuPc) can be used as the organic material layer 7.
  • the inorganic layer 8 is formed on the organic material layer in a state in which insulation from the lower electrode and the upper electrode is ensured.
  • the inorganic layer 8 is formed by vacuum deposition of a conductive layer containing a conductive material, for example, in a range on the upper surface of the organic material layer 7 and the exposed region.
  • This inorganic layer 8 is electrically insulated from, for example, an external circuit that drives and controls the organic EL element when the conductive material is formed by vacuum deposition.
  • Various materials can be adopted as the material for forming the inorganic layer 8 depending on the external conditions, driving conditions, and the like of the optical device 1.
  • the inorganic layer 8 can employ various metals such as aluminum and conductive materials such as metal oxides.
  • the inorganic layer 8 is preferably made of the same material as the upper electrode 6.
  • the inorganic layer 8 is formed in a range narrower than the region where the organic material layer 7 is formed, and is formed in a range wider than the region where the upper electrode 6 is formed.
  • the inorganic layer 8 is formed by vacuum deposition.
  • the organic light emitting functional layer 5, the upper electrode 6, the organic material layer 7, and the inorganic layer 8 are formed by a vacuum deposition method, thereby simplifying the manufacturing process. .
  • the sealing member 9 seals the organic EL element 100 formed on the substrate 2 with a sealing material.
  • Various methods such as hermetic sealing, membrane sealing, and solid sealing can be employed as the sealing and joining method of the optical device 1J. In this embodiment, as shown in FIG.
  • sealing between an element-side substrate 2 and a sealing substrate 91 made of various materials such as glass and metal materials is performed using an adhesive such as epoxy resin. Seal through material 92. At this time, an adhesive is applied and sealed on the entire surface on which the organic EL element is formed. Further, a sealing substrate 91 having a recess at a position corresponding to the organic EL element is bonded and sealed to the substrate 2 with an adhesive. At this time, film sealing may be performed using a sealing material 92 that can form a drying member in the recess as a sealing film. That is, the sealing material 92 corresponds to an embodiment of the sealing portion according to the present invention.
  • the end portion 8a of the region where the organic material layer 7 and the inorganic layer 8 overlap (interface between the organic material layer 7 and the inorganic layer 8) 78 has the organic light emitting functional layer 5 and the upper electrode 6 Area (interface between the organic light emitting functional layer 5 and the upper electrode 6) is formed on the outer end portion 901a side of the sealing portion 9 from the end portion 6a of the 56, with the organic material layer 7 interposed therebetween. Yes.
  • the end portion 6 a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with the organic material layer 7.
  • this trapping part utilizes the characteristics that the deterioration factor easily enters the interface between the organic material layer 7 and the inorganic layer 8, for example.
  • the self-light-emitting element 100 of the optical device 1 having the above-described configuration is such that electrons are applied from the cathode side formed on one of the lower electrode 3 and the upper electrode 6 by applying a voltage between the lower electrode 3 and the upper electrode 6. Then, holes are injected from the anode side formed on the other of the lower electrode 3 and the upper electrode 6, and they are recombined in the light emitting layer 52. By this recombination, organic molecules in the light emitting layer 52 are injected. Emits light when its electronic state transitions from the ground state to the excited state and from the excited state to the ground state.
  • the organic material layer 7 is formed on the self-luminous element 100 in which the organic light emitting functional layer 5 is sandwiched between the lower electrode 3 and the upper electrode 6, and the organic material Since the inorganic layer 8 is formed on the layer 7, for example, an uncured component of the sealing member 92, a solvent, It is possible to reduce deterioration factors such as water and oxygen having an external atmosphere force from entering the interface 56 between the upper electrode 6 and the organic light emitting functional layer 5.
  • the degradation factor is captured at the interface 78 between the organic material layer 7 and the inorganic layer 8, and the degradation of the organic light emitting functional layer 5 due to the degradation factor can be reduced. it can .
  • the amount of degradation factors entering the interface 56 between the upper electrode 6 and the organic light emitting functional layer 5 can be reduced. That is, the light emission failure of the optical device 1 can be reduced.
  • the end portion 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is formed in a structure covered with, for example, an organic material layer 7 having a prescribed thickness. Further, it is possible to reduce the intrusion of deterioration factors into the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6.
  • the optical device 1 having the above configuration includes the inorganic layer 8 having a relatively high thermal conductivity via the organic material layer 7 on the self-luminous element 100, so that the optical device 1 is driven to emit light. It has the effect of dissipating the generated heat.
  • the organic material layer 7 and the inorganic layer 8 are sequentially formed on the upper electrode 6, so that the defect is eliminated. It is possible to prevent the expansion of dark spots as a factor.
  • FIG. 4 is a diagram showing a specific example of the change over time of the width of the non-light-emitting portion generated at the end portion of the pixel, for explaining the effect of the optical device according to the present invention.
  • the vertical axis represents the width (w) of the non-light-emitting portion generated at the end of the pixel 11
  • the horizontal axis represents the storage time (t) in a high-temperature and high-humidity environment.
  • the progress of the non-light emitting portion is not observed before a predetermined time (tl).
  • a predetermined time (tl) an increase in the non-light-emitting portion is observed at a constant rate (evaluated by the width (w) of the non-light-emitting portion).
  • the deterioration factor that has entered the adhesive 92J from the outer end 901a of the sealing portion 9 takes the organic light emitting functional layer 5J and the upper electrode over a predetermined time (tl). It is thought that it reached the interface 56J of 6J and entered further.
  • the optical device 1 according to the present invention shown in FIG. 3 for example, as shown in the graph P1 shown in FIG. Time (t 1) The progress of the non-emission part is not observed after (within the observation time). For example, as shown in FIG. 3, this is considered to be an effect obtained by capturing a deterioration factor at the interface 78 between the organic material layer 7 and the inorganic layer 8 of the optical device 1 according to the present invention.
  • the end portion 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with an organic material layer 7 having a predetermined thickness, Since the material layer 7 has a structure formed on the organic light emitting functional layer 5, the organic EL element 100 has an effect of further reducing intrusion into the deterioration factor.
  • An anode made of ITO is formed as a lower electrode 3 on a glass substrate 2, and an organic light emitting functional layer 5 made of a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer is formed thereon. And an organic EL element 100 in which a cathode made of A1 is formed as the upper electrode 7 thereon.
  • LiF lithium fluoride
  • A1 aluminum
  • the organic material layer 7 is formed by vacuum vapor deposition
  • a film is formed so as to cover the interface 56 between the electroluminescent functional layer 5 and the upper electrode 6.
  • A1 of the same material as the upper electrode 6 was formed as an inorganic layer 8 on the organic material layer 7 by lOOnm.
  • the inorganic layer 8 is formed by vacuum deposition, and the end 8a of the interface 78 between the organic material layer 7 and the inorganic layer 8 is located outside the sealing portion more than the end 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6.
  • the film is formed so as to be formed on the end 90 la side.
  • the prepared organic EL device is sealed with epoxy resin 9
  • the glass sealing substrate 91 and the substrate 2 were sealed so as not to form a space, and the optical device according to the first example was completed.
  • an optical device according to the second example was fabricated.
  • the description of the same configuration as that of the optical device according to the first embodiment is omitted.
  • the organic material layer 7 was fabricated in the same manner as the optical device fabricated in the previous example 1, except that 60 nm of CuPc, which is the same material as the hole injection layer, which is one of the organic light emitting functions, was formed. did.
  • the element was sealed without forming the organic material layer 7 and the inorganic layer 8, and an optical device according to a comparative example was produced. Since other configurations are the same as those of the first and second embodiments, the description thereof is omitted.
  • FIG. 5 and FIG. 6 are diagrams for explaining the effect of the optical device according to the example of the present invention.
  • FIG. 5 shows that the optical device according to the first embodiment of the present invention and the optical device according to the comparative example are stored in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a humidity of 90%.
  • FIG. 6 is a diagram showing the width (w) (vertical unit; zm) of a non-light-emitting portion generated at the end of the pixel 11 with respect to the elapsed time t (horizontal unit time (h)) as shown in FIG.
  • FIG. 6 shows a similar experiment in which the optical device according to the second embodiment of the present invention and the optical device according to the comparative example were stored in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a humidity of 90%. It is a figure which shows the result of having performed.
  • the progress of the non-light-emitting portion was not observed about 240 hours ago, and further, after about 240 hours had elapsed. However, the progress of the non-light emitting part was not observed (within the observation time).
  • the progress of the non-light-emitting portion was not observed about 240 hours ago, and after about 240 hours had passed. However, the progress of the non-light emitting part was not observed (within the observation time).
  • FIG. 7 is a cross-sectional view for explaining an optical device according to the second embodiment of the present invention. A description of the same configurations and functions as those in the above embodiment will be omitted.
  • a lower electrode 3 is patterned on an upper part of a substrate 2, and a pixel (region) is formed on the upper part by a first insulating film 4 such as SiO 2 or polyimide.
  • Area 11 is formed.
  • One or a plurality of the pixels 11 are formed, and a current flows in the organic light emitting functional layer 5 by applying a voltage to the lower electrode 3 and the upper electrode 6, whereby display Z non-display of the pixel 11 is selected.
  • the optical device displays the desired information by the display Z non-display of the pixel 11.
  • An organic light emitting functional layer 5 and an upper electrode 6 are formed on the pixel 11 and the first insulating film 4.
  • an interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is formed on the first insulating film 4 formed at the end of the pixel 11 closest to the outer end 901a.
  • a second insulating film 41 is formed so as to cover the self light emitting element.
  • a second insulating film 41 is formed on the upper electrode 6 so as to cover the interface 56.
  • the second insulating film 41 is formed so as to cover the entire region where the first insulating film 4 is formed.
  • the second insulating film 41 is made of MoO (acid molybdenum)
  • a metal oxide such as SnO (tin oxide) is formed by vacuum deposition.
  • the organic material layer 7 is formed in a range covering the interface 56 on the second insulating film 41, and the inorganic layer 8 is formed thereon.
  • the film is formed so that the end portion of the interface 78 between the organic material layer 7 and the inorganic layer 8 is formed closer to the outer end portion 901a side of the sealing portion 9 than the end portion of the interface 56 below the second insulating film 41.
  • the pixel region 11 is formed by the patterned first insulating film 4, the self-emitting element 100 is formed in the pixel region 11, and the organic light emitting functional layer 5 and the upper electrode are formed. Since the end portion of the interface 56 with 6 is formed on the first insulating film 4 and covered with the second insulating film 41, the organic light emitting functional layer 5 and It is possible to reduce deterioration factors from entering the interface 56 of the upper electrode 6.
  • FIG. 8 is a view for explaining an optical device 1 according to the third embodiment of the present invention.
  • 8A is a top view
  • FIG. 8B is a cross-sectional view in the vicinity of the region A shown in FIG. 8A.
  • a description of the same configurations and functions as those in the first embodiment is omitted.
  • a plurality of self-luminous elements (organic EL elements) 100 are formed on the substrate 2 in a substantially lattice shape.
  • the This optical device 1 has at least one pixel 11, in the present embodiment, a plurality of pixels 11 in a matrix form, and the organic EL element 100 forming this pixel is interposed between the lower electrode 3 and the upper electrode 6, An organic light emitting functional layer 5 including the light emitting layer 52 is sandwiched.
  • the optical device 1 according to the present embodiment emits light from each self-luminous element by an input signal from an external circuit such as a power supply circuit or a controller IC (Integrated circuit). Z Non-light emission is controlled.
  • the optical device 1 displays various kinds of information by the light emission Z non-light emission of each self-luminous element.
  • an organic EL panel using an organic EL element which is a self-luminous element will be described.
  • the optical device 1 includes a substrate 2, a lower electrode (first electrode) 3, a first insulating film 4, a light emitting functional layer 5, and an upper electrode (second electrode). 6. It has an organic material layer 7, an inorganic layer 8, and a sealing member 9.
  • the organic light emitting functional layer 5 includes a first charge transport layer 51, a light emitting layer 52, and a second charge transport layer 53.
  • a transparent electrode such as ITO is formed as a lower electrode 3 on a substrate 2 such as glass to form one pixel 11.
  • the opening of the first insulating film 4 such as 2 or polyimide is formed and patterned.
  • a first charge transport layer is formed of a hole transport layer such as NPD on the surface of the lower electrode 3 in the opening.
  • the first charge transport layer 51 is formed in the opening and above the first insulating film 4 forming the opening and to the top of the first insulating film 4 formed on the outermost part.
  • a light emitting layer 52 is formed on the first charge transport layer 51.
  • the light emitting material of the light emitting layer 52 may be appropriately selected according to the design items of the optical device, for example, single color display, full color display, dot matrix, icon display, and segment display.
  • DCM1 (disyanomethylene) 2-methyl 6- (4,1 dimethylaminostyryl) 4H-pyran) and other materials that emit red light, and blue light such as distyryl derivatives and triazole derivatives.
  • a material, a phosphorescent material using Ir (iridium) complex, or the like may be used.
  • a second charge transport layer 53 is formed on the light emitting layer 52.
  • the second charge transport layer 53 is made of various materials such as aluminum complex (Alq).
  • An electron transport layer is formed. Similar to the first charge transport layer 51, the light emitting layer 52 and the second charge transport layer 53 are formed up to the top of the first insulating film 4 forming the opening and the top of the first insulating film 4 formed on the outermost part. .
  • the upper electrode 6 is formed on the organic light emitting functional layer 5 including the first charge transport layer 51, the light emitting layer 52, and the second charge transport layer 53.
  • various metal materials such as A1 can be employed.
  • the upper electrode 6 is formed up to the upper part of the first insulating film 4 forming the opening and the upper part of the first insulating film 4 formed on the outermost part, but as shown in FIG. It is preferable that the light emitting functional layer 5 is formed in a film forming range narrower than the film forming range.
  • the organic material layer 7 is formed in a wider range than the film formation range of the upper electrode 6.
  • the organic material layer 7 is preferably selected from the same materials among the organic materials constituting the organic light emitting functional layer 5.
  • Alq which is a material for forming the second charge transport layer 53, has an aluminum (A1) force.
  • the film forming range of the organic material layer 7 is formed in a wider range than the upper electrode 6.
  • the organic light emitting functional layer 5 and the organic material layer 7 are formed so as to overlap each other outside the pixel from the end 6a of the upper electrode 6.
  • the degradation factor of the organic EL element 100 is reduced by eliminating the interface between the organic light emitting functional layer 5 and the organic material layer 7. Intrusion into the interface of the organic EL element 100 can be reduced, and the light emitting failure of the organic EL element 100 caused by the reduction can be reduced.
  • an inorganic layer 8 is formed on the organic material layer 7 with a conductive material.
  • This inorganic layer 8 is electrically insulated from the lower electrode 3 and the upper electrode 6 of the organic EL element 100, and an external circuit 85 (851 for driving the organic EL element 100 of the optical device 1). , 852), the first electrode side flexible substrate 801 (80) and the second electrode side flexible substrate 802 (80), electrical insulation is ensured.
  • the organic material layer 7 and the inorganic layer 8 are not involved in the light emitting Z non-light emission of the organic EL element 100.
  • a sealing substrate 91 is bonded to the upper portion of the inorganic layer 8 by a sealing material (adhesive) 92.
  • a sealing material for example, an organic resin such as a thermosetting resin or a photo-curing resin can be employed.
  • the sealing substrate 91 is preferably formed of a flat glass material, a metal substrate, a plastic material, or the like and having a function of blocking moisture.
  • the end of the region where the organic material layer 7 and the inorganic layer 8 overlap (the interface between the organic material layer 7 and the inorganic layer 8) 78 is the organic light emitting functional layer 5 and the upper electrode 6 Is formed on the outer end portion 901a side of the sealing portion 9 from the end portion 6a of the organic light emitting functional layer 5 and the upper electrode 6 through the organic material layer 7.
  • the manufacturing method of the optical device 1 according to the present embodiment includes, for example, a lower electrode forming step, a first insulating film forming step, an organic light emitting functional layer forming step (first transport layer forming step, light emitting layer forming step, second transport layer). Forming step), upper electrode forming step, organic material layer forming step, inorganic layer forming step, sealing step, and post-processing step.
  • a lower electrode forming step for manufacturing the optical device 1 according to the present embodiment includes, for example, a lower electrode forming step, a first insulating film forming step, an organic light emitting functional layer forming step (first transport layer forming step, light emitting layer forming step, second transport layer). Forming step), upper electrode forming step, organic material layer forming step, inorganic layer forming step, sealing step, and post-processing step.
  • FIG. 9 is a view for explaining a lower electrode forming step of the optical device manufacturing method according to the embodiment of the present invention.
  • 9A is a top view
  • FIG. 9B is a cross-sectional view in the vicinity of the region A shown in FIG. 9A.
  • a transparent electrode such as ITO or IZO (Indium Zinc Oxide) is used as a lower electrode (first electrode) 3 by various film forming methods such as a sputter film forming method to form a substantially constant film on the entire surface. Thick film is formed.
  • the lower electrode 3 is described as a hole injection electrode, but conversely, it may be formed as an electron injection electrode.
  • the lower electrode 3 which is a part of the organic EL element, the lower electrode bow I input wiring 3a and the upper electrode (second electrode) for inputting the light emission Z non-emission control signal of the organic EL element 100 from the external circuit ) Pattern I put out wiring 3b.
  • FIG. 10 is a view for explaining a pixel region forming step (first insulating film forming step) in the method for manufacturing the optical device 1 according to the embodiment of the present invention.
  • FIG. 10A is a top view
  • FIG. 10B is a cross-sectional view in the vicinity of the region A shown in FIG. 10A.
  • one organic EL device 100 is used as one pixel 11 for one organic EL display to display information.
  • An organic EL display having a plurality of pixels 11 is shown, and a light emitting region of the pixels 11 is formed in the opening of the first insulating film 4.
  • the first insulating film 4 is formed on the entire surface of the lower electrode patterning side of the substrate 2 with, for example, an organic material polyimide, an inorganic material silicon oxide, or the like.
  • a first insulating film material such as a polyimide precursor, novolac resin, silicon oxide or the like is formed on the entire surface of the first electrode formation side on the substrate 2 by a manufacturing method such as spin coating or sputtering. To do. Thereafter, as shown in FIGS. 10A and 10B, the first insulating film is patterned in a lattice pattern. More specifically, the first insulating film 4 is patterned in a plurality of stripes so as to form a lattice pattern between the lower electrode lines 3A and in a direction perpendicular to the lower electrode lines 3A. Patting with one. After patterning, a curing process is performed as necessary.
  • FIG. 10A and 10B the first insulating film material is patterned in a lattice pattern. More specifically, the first insulating film 4 is patterned in a plurality of stripes so as to form a lattice pattern between the lower electrode lines 3A and in a direction perpendicular to the lower electrode lines 3A. Patting
  • FIG. 10B shows that there are a plurality of first insulating films 4 at both ends of the lower electrode 3, the first insulating film 4 according to this embodiment is shown in FIG.
  • the first insulating film 4 formed by one film formation is patterned into a prescribed shape.
  • the first insulating film 4 may be formed by performing a plurality of film formation and patterning of an insulating material. It is only necessary to form the optical device 1 according to the present invention. Further, in the pixel region forming process (first insulating film forming process), the partition wall having an overhang for patterning the upper electrode 6 and the coating mask are not in contact with the organic light emitting functional layer 5. A mask support layer may be formed to do this.
  • FIG. 11 is a diagram for explaining a first charge transport layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention.
  • FIG. 11 (A) is a top view
  • FIG. 11 (B) is a cross-sectional view in the vicinity of the region A shown in FIG. 11 (A).
  • the substrate 2 on which the first electrode, the first insulating film 4, etc. are formed Apply processing steps.
  • a cleaning process using a surfactant or pure water, and various cleaning processes such as UV (Ultraviolet) irradiation Z ozone cleaning and plasma cleaning can be adopted.
  • a vacuum 1 X 10- 4 Pa (not shown) in, for example, formed of an organic material by various manufacturing methods such as resistance heating vapor deposition method Do the membrane.
  • the resistance heating vapor deposition method the substrate 2 is placed in the film formation chamber, and the film formation source filled with the film formation material is heated by calorie. A film is formed inside.
  • a film forming method using a vacuum vapor deposition method will be described.
  • a film forming layer is formed by a polymer material coating method, a film forming method using a printing method, a film forming method using a laser thermal transfer method, or the like. Also good.
  • NPB N, N-di (naphtalence) -N, N-dipheneyl-benzidene
  • the first charge transport layer 51 has a function of transporting holes (or electrons) injected from the lower electrode 3 to the light emitting layer 52.
  • the first charge transport layer 51 may be a single layer or a stack of two or more layers.
  • the first charge transport layer 51 has a high charge transport capability that allows a single layer to be formed of a plurality of materials rather than a single material, and provides a host material with a charge donating (accepting) property. High!
  • the guest material may be doped.
  • the first charge transport layer 51 is formed in the opening, to the top of the first insulating film 4 that forms the opening, and to the top of the first insulating film 4 formed on the outermost part.
  • a hole injection layer such as copper phthalocyanine (CuPc) may be formed between the first charge transport layer 51 and the lower electrode 3.
  • the organic light emitting functional layer 5 can use a general material used as a hole transport layer.
  • the organic light-emitting functional layer 5 is not limited to the above embodiment, and the material, film thickness, film forming method, etc. are designed according to various conditions such as the situation and environment in which the optical device 1 according to the present invention is used. A little.
  • FIG. 12 is a diagram for explaining a light emitting layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention.
  • FIG. 12A is a top view
  • FIG. 12B is a cross-sectional view in the vicinity of the region A shown in FIG.
  • the light emitting layer 52 is formed on the first charge transport layer 51.
  • the red (R), green (G), and blue (B) light emitting layers are formed in the respective film formation regions using a coating mask by resistance heating vapor deposition.
  • Red (R) is an organic material that emits red light, such as styryl dyes such as DCM1.
  • Green (G), such as Alq is emitted.
  • Blue (B) is an organic material that emits blue light, such as a distyryl derivative or a triazole derivative.
  • the light emission form which may be a host-guest layer structure may be a fluorescent light emitting material or a phosphorescent light emitting material.
  • the light emitting layer 52 is formed in the opening, to the top of the first insulating film 4 forming the opening and to the top of the first insulating film 4 formed on the outermost part.
  • FIG. 13 is a diagram for explaining a second charge transport layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention.
  • FIG. 13A is a top view
  • FIG. 13B is a cross-sectional view in the vicinity of region A shown in FIG. 13A.
  • various materials such as a resistance heating vapor deposition method, for example, various materials such as aluminum complex (Alq) are used as the second charge transport layer 53 as the light emitting layer. 52 top
  • the film is formed.
  • the second charge transport layer 53 has a function of transporting electrons injected from the upper electrode 6 to the light emitting layer 52.
  • the second charge transport layer 53 may have a multilayer structure in which only one layer is stacked or two or more layers are stacked.
  • the second charge transport layer 53 has a high charge donating (accepting) property to a host material having a high charge transport ability, which may be formed by a plurality of materials rather than a single material film. Can be formed by doping guest material.
  • the upper electrode 6 according to the present embodiment corresponds to an electron injection electrode, the second charge transport layer 53 can use a general material used as an electron transport layer.
  • the second charge transport layer 53 is not limited to the above embodiment, and the material, film thickness, and film formation method may be designed according to various conditions such as the situation and environment in which the optical device 1 is used.
  • the second charge transport layer 53 is formed in the opening, to the top of the first insulating film 4 that forms the opening, and to the top of the first insulating film 4 formed on the outermost part.
  • FIG. 14 shows an upper electrode forming step of the optical device manufacturing method according to the embodiment of the present invention. It is a figure for demonstrating.
  • FIG. 14 (A) is a top view
  • FIG. 14 (B) is a cross-sectional view in the vicinity of region A shown in FIG. 14 (A).
  • the upper electrode 6 is formed on the second charge transport layer 53. More specifically, a material for forming the upper electrode 6 is formed and patterned on the second charge transport layer 53 along the direction perpendicular to the upper electrode (first electrode) line 3 A to form the upper electrode 6. Form. As shown in FIG. 14A, the upper electrode 6 formed in a line shape is referred to as an upper electrode (second electrode) line.
  • This patterning method may be a patterning method using a film-forming mask or a patterning method using partition walls provided in a direction parallel to the upper electrode line.
  • the upper electrode line is formed so as to be electrically connected to the upper electrode 6 in which the opening of the first insulating film 4 is formed and the upper electrode lead wiring 3b formed in the lower electrode forming step.
  • the upper electrode 6 uses a material having a lower work function than the hole injection electrode so as to function as an electron injection electrode.
  • the upper electrode 6 preferably uses, for example, aluminum (A1) or a magnesium alloy (Mg—Ag). However, since A1 has a low electron injection capability, it is preferable to provide an electron injection layer such as LiF between A1 and the second charge transport layer 53.
  • the film formation range of the upper electrode 6 is formed in a region narrower than the film formation range of the organic light emitting functional layer 5.
  • paint using a vapor deposition mask is formed so that the end region 50 la of the organic light emitting functional layer 5 is exposed.
  • FIG. 15 is a diagram for explaining an organic material layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention.
  • FIG. 15 (A) is a top view
  • FIG. 15 (B) is a cross-sectional view in the vicinity of the region A shown in FIG. 15 (A).
  • the organic light emitting functional layer 5 including the first charge transport layer 51, the light emitting layer 52, and the second charge transport layer 53 on the upper electrode 6 is provided.
  • the organic material layer 7 is formed and patterned using the same material as any one of the organic layers.
  • the organic material layer 7 is formed by the same vacuum deposition from the second charge transport layer 53, for example.
  • the organic material layer 7 is, for example, an end of the organic light emitting functional layer 5 as shown in FIGS. 15 (A) and 15 (B).
  • a film is formed so as to cover the partial region 501a.
  • the interface 57 between the organic material layer 7 and the organic light emitting functional layer 5 has a relatively large affinity between the layers, so that there is substantially no interface.
  • FIG. 16 is a diagram for explaining an inorganic layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention.
  • FIG. 16 (A) is a top view
  • FIG. 16 (B) is a cross-sectional view around the region A shown in FIG. 16 (A).
  • an inorganic layer is formed on the organic material layer 7 using various metal materials such as aluminum (A1).
  • the inorganic layer 8 is formed with a smaller area than the organic material layer 7.
  • the inorganic layer 8 is formed by the same vacuum deposition from the first charge transport layer forming step.
  • the end portion 8a of the region 78 where the organic material layer 7 and the inorganic layer 8 overlap is formed.
  • the organic light emitting functional layer 5 and the upper electrode 6 are formed on the outer side of the pixel from the end portion 6a of the region 56, with the organic material layer 7 interposed therebetween.
  • the organic material layer 7 and the inorganic layer 8 are formed so that the end portion of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with the organic material layer 7. .
  • the sealing member 9 is formed by a sealing substrate 91 made of various materials such as glass and a sealing material 92 such as an adhesive. Specifically, the sealing material is filled with an epoxy resin or the like in a sealing space between the substrate 2 and the sealing substrate 91 and solidified. In addition, even if concave processed glass, flat glass, etc. are used as a sealing member and bonded via an adhesive, a solid drying member is disposed in the space even if the space formed is filled with a liquid such as silicone oil. You may do it. To reduce the thickness of the organic EL display, the sealing member 9 is made of silicon nitride, silicon nitride oxide, MoO (molybdenum oxide), SnO (molybdenum oxide), SnO (molybdenum oxide), SnO (molybdenum oxide), SnO (molybdenum oxide), SnO (molybdenum oxide), SnO (molybdenum oxide), SnO (molybdenum oxide), SnO (
  • the sealing film may be formed of a sealing film made of a metal oxide such as (3 2 tin oxide).
  • the sealing film is an organic material. It is formed so as to cover the entire surface of the material layer and the inorganic layer.
  • the sealing film may be formed by vacuum deposition or by CVD or coating.
  • the optical device can be sealed by applying a solid sealing with a sealing substrate and a sealing material to an optical device that can be sealed only by film sealing using a sealing film.
  • the optical device may be formed by hermetically sealing with a sealing substrate.
  • the lower electrode lead formed on the substrate 2 is connected to the substrate 2 on which the above components are formed to connect the organic EL element 100 and the external circuit 85 (851, 852).
  • a wiring board such as the flexible board 80 (801, 802) is pressure-bonded to the positions of the wiring 3a and the upper electrode lead-out wiring 3b.
  • a force driving circuit in which the external circuit 85 is connected to the upper electrode and the lower electrode by the flexible substrate 80 is formed on the substrate.
  • COG Chip on glass
  • the driving circuit is formed on the flexible substrate 80.
  • Various mounting technologies such as FOG (Flip Chip on Glass) may be adopted.
  • the optical device 1 is completed after the inspection process and the aging process are performed after the external circuit 85 and the pressure bonding are completed.
  • the first charge transport layer forming step, the light emitting layer forming step, the second charge transport layer forming step, the upper electrode forming step, the organic material layer forming step, the inorganic layer Simplification of the manufacturing process can be achieved by performing the formation process by vacuum deposition.
  • the organic material layer 7 and the inorganic layer 8 are formed on the organic EL element 100, so that deterioration factors invade between the organic light emitting functional layer 5 and the upper electrode 6. It is possible to reduce light emission defects due to turning on.
  • the optical device 1 according to the present invention is not limited to the force that is a noisy matrix drive type.
  • the optical device according to the present invention is applied to an active drive type organic EL panel provided with (Thin Film Transistor). You can apply 1! /.
  • the optical device 1 having the above-described configuration can be easily manufactured by the method for manufacturing the optical device 1.
  • FIG. 17 is a cross-sectional view for explaining an optical device 1B according to the fourth embodiment of the present invention. About the same configuration and function as the first embodiment and the second embodiment, Description is omitted.
  • the optical device 1B As shown in FIG. 17, insulation between the organic material layer 7 formed on the upper electrode 6 of the self-luminous element 100 and the lower electrode 3 and the upper electrode 6 is ensured. And an inorganic layer 8 formed on the organic material layer 7.
  • the optical device 1B has a structure in which the end portion 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with the first insulating film 4, as shown in FIG.
  • the end 6a of the upper electrode 6, the end 7a of the organic material layer 7 and the end 8a of the inorganic layer 8 are formed on the first insulating film 4 formed on the substrate 2 and / or the lower electrode 3.
  • the optical device 1B has a region where the organic material layer 7 and the inorganic layer 8 overlap (the interface between the organic material layer 7 and the inorganic layer 8) as shown in FIG. )) 78 is the region where the organic light emitting functional layer 5 and the upper electrode 6 overlap (interface between the organic light emitting functional layer 5 and the upper electrode 6) From the end of 56, the outer end 901a of the sealing part 9 It is formed on the side with an organic material layer 7 therebetween.
  • a capture unit that captures the degradation factor and reduces the degradation of the organic light emitting functional layer due to the degradation factor is formed. ing.
  • the organic light emitting functional layer 5 is formed in a structure in which the end portions of the layers are in contact with the first insulating film 4
  • the optical device 1B having the above-described configuration for example, even if a deterioration factor enters through the interface between the inorganic layer 8 and the first insulating film 4, it is formed at the interface between the organic material layer 7 and the inorganic layer 8. ! Since the deterioration factor is trapped in the capturing part, it is possible to further reduce the deterioration factor from entering between the organic light emitting functional layer 5 and the upper electrode 6.
  • FIG. 18 is a view for explaining an optical device 1C according to the fifth embodiment of the present invention.
  • 18A is a top view
  • FIG. 18B is a cross-sectional view in the vicinity of region A shown in FIG. 18A.
  • the optical device 1C according to the present embodiment is of an active matrix drive type, and in detail, as shown in FIGS. 18 (A) and 18 (B), a substrate on which a TFT for controlling the drive of the organic EL element 100 is formed. 2
  • the organic EL element 100 is formed on the (TFT substrate).
  • the optical device 1C has a region where the organic material layer 7 and the inorganic layer 8 overlap (interface between the organic material layer 7 and the inorganic layer 8).
  • the edge of the area where the organic light emitting functional layer 5 and the upper electrode 6 overlap (interface between the organic light emitting functional layer 5 and the upper electrode 6) 56 is closer to the outer end 901a side of the sealing part 9
  • the organic material layer 7 is spaced apart.
  • the TFT is electrically connected to the lower electrode 3. This TFT may be formed adjacent to the lower electrode 3 as shown in FIG. 18 (B), or a flattening layer (not shown) is formed on the substrate 2 and the flattening is performed. It may be formed in the chemical layer.
  • the present invention may be applied to the active matrix drive type optical device 1C.
  • the organic light emitting functional layer 5 may be formed of various organic materials that are not limited to the above-described embodiments.
  • the optical device 1 includes a self-emitting element (organic EL element) 100 in which the organic light emitting functional layer 5 including the light emitting layer 52 is sandwiched between the lower electrode 3 and the upper electrode 6.
  • a self-emitting element organic EL element 100 in which the organic light emitting functional layer 5 including the light emitting layer 52 is sandwiched between the lower electrode 3 and the upper electrode 6.
  • One pixel 11 or two or more pixels 11 are formed on the substrate 2 directly or via another layer, and an organic material layer 7 formed on the upper electrode 6 of the organic EL element 100.
  • the organic light emitting functional layer 5 and the upper electrode 6 overlap at the end of the region where the organic material layer 7 and the inorganic layer 8 overlap (interface 78).
  • the organic material layer 7 is spaced apart from the end of the region (interface 56) on the outer end (901a) side of the sealing portion 9, the upper electrode 6 and Degradation factor between aircraft light-emitting functional layer 5 can be reduced from entering. Further, it is possible to reduce the light emission failure caused by the penetration of the deterioration factor.
  • the end portion of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is the organic material layer 7 or the first electrode. Since it has a structure covered with the insulating film 4, it is possible to reduce deterioration factors from entering between the upper electrode 6 and the organic light emitting functional layer 5.
  • the organic material layer 7 is formed on the upper electrode 6 in a range wider than the film formation region of the upper electrode 6, and the inorganic layer 8 is formed on the organic material layer 7. It is formed in a narrower range than the film formation area. Accordingly, the organic material layer 7 is formed so as to form the interface 57 on a part of the organic light emitting functional layer 5.
  • the organic material layer 7 includes at least one organic material constituting the organic light emitting functional layer, so that the interface 57 between the organic light emitting functional layer 5 and the organic material layer 7 has substantially no interface. It is possible to reduce the intrusion of deterioration factors between the upper electrode 6 and the organic light emitting functional layer 5.
  • the first insulating film 4 formed on the substrate 2 and / or the lower electrode 3 is in contact with the end of the upper electrode 6, the end of the organic material layer 7, and the end of the inorganic layer 8.
  • the edge of the region where the organic material layer 7 and the inorganic layer 8 overlap is organic outside the end of the region where the organic light emitting functional layer 5 and the upper electrode 6 overlap (interface 56). Since they are formed so as to be separated from each other via the material layer 7, it is possible to further reduce deterioration factors from entering between the upper electrode 6 and the organic light emitting functional layer 5.
  • the organic light emitting functional layer 5, the upper electrode 6, the organic material layer 7, and the inorganic layer 8 by a vacuum deposition method, for example, compared with the case where the upper electrode 6 is formed by a sputtering method, Damage to the light emitting functional layer 5 can be reduced, and an optical device having a configuration according to the present invention can be formed by a simple manufacturing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an optical device having a self light emitting element wherein an organic light emitting functional layer including a light emitting layer is sandwiched between a pair of electrodes. Light emission failures due to entry of deteriorating factors are reduced in a region where an upper electrode overlaps the organic light emitting functional layer. In a self light emitting element (organic EL element)(100) as one pixel (11), an organic light emitting functional layer (5) including a light emitting layer (52) is sandwiched between a lower electrode (3) and an upper electrode (6). In an optical device (1), one or a plurality of pixels(11) are formed directly or through other layers on a substrate (2). The optical device is provided with an organic material layer (7) formed on the upper electrode (6); an inorganic layer (8) formed on the organic material layer (7), in a status where insulation between the lower electrode (3) and the upper electrode (6) is ensured; and a sealing section (9) for sealing the self light emitting element formed on the substrate with a sealing material. An end portion of a region (interface (78)), in which the organic material layer (7) overlaps the inorganic layer (8), is separately formed by having the organic material layer (7) in between, on an outer end side of the sealing section (9) outside the end portion of a region (interface (56)) wherein the organic light emitting functional layer (5) overlaps the upper electrode (6).

Description

明 細 書  Specification
光デバイス、および光デバイスの製造方法  Optical device and method for manufacturing optical device
技術分野  Technical field
[0001] 本発明は、光デバイス、および光デバイスの製造方法に関するものである。  The present invention relates to an optical device and a method for manufacturing an optical device.
背景技術  Background art
[0002] 光デバイスは、例えば携帯電話、車載用モニタ、家庭用電ィ匕製品のモニタ、パーソ ナルコンピュータの表示装置やテレビジョン受像装置等のドットマトリックス表示を行う 情報表示装置や、時計や宣伝用パネル等の固定表示装置、スキャナやプリンタの光 源、照明、液晶のバックライト等の照明装置、光電変換機能を利用した光通信装置 等の各種デバイスに採用されている。この光デバイスは、一般的に複数の画素により 形成されており、各画素に対して表示駆動や非表示駆動を行うことにより所望の情報 を表示する。この光デバイスを形成する画素に、自発光素子を採用したものが知られ ている。自発光素子は、低電力且つバックライトが不要であるという利点を有し、この 自発光素子を複数個ドットマトリックス状に配置した光パネルや、アイコン部(固定表 示部)を形成した表示部、平面状や球面状等の照明器具などの光デバイスにも採用 されており、その光デバイスの大きさも小型用力 大型スクリーンなど様々なものが知 られている。  Optical devices are, for example, cell phones, in-vehicle monitors, home appliance monitors, personal computer display devices, information display devices that perform dot matrix display such as television receivers, watches, and advertisements. It is used in various devices such as fixed display devices such as panels, lighting devices such as light sources for scanners and printers, lighting, and liquid crystal backlights, and optical communication devices that use photoelectric conversion functions. This optical device is generally formed by a plurality of pixels, and displays desired information by performing display driving or non-display driving for each pixel. A pixel that employs a self-luminous element is known as a pixel forming the optical device. Self-emitting elements have the advantage of low power and no need for a backlight. A light panel in which a plurality of self-emitting elements are arranged in a dot matrix, or a display unit in which an icon unit (fixed display unit) is formed. They are also used in optical devices such as flat and spherical lighting fixtures, and various sizes of optical devices are known, such as small screens and large screens.
[0003] 自発光素子の代表的なものとしては、無機 EL素子、有機 EL (エレクト口ルミネッセ ンス)素子、 FED (Field Emission Display)素子、発光ダイオード、等が知られている 。有機 EL素子は、例えば有機 EL (OEL : Organic electroluminescence)デバイス、有 機発光ダイオード(OLED : Organic light emitting diode)デバイス、自発光素子、電 場発光光源とも呼ばれている。一般的に有機 EL素子は、アノード(陽極、正孔注入 電極に相当する)と、力ソード(陰極、電子注入層に相当する)との間に有機層(発光 層)を挟み込んだ構造を有する (例えば、特許文献 1参照)。一般的に有機層は、複 数の機能層が積層した構造を有し、例えば正孔注入層、正孔輸送層、有機発光層、 電子輸送層、および電子注入層等が順に積層された構造を有する。この各層は、単 一の有機材料力もなる単層、複数の材料を混ぜ合わせた混合層、高分子バインダの 中に有機材料や無機材料の機能材料 (電荷輸送機能、発光機能、電荷ブロッキング 機能、光学機能等)を分散させた層、等を採用することができる。また各層に、上部電 極をスパッタ法により形成する際に有機層がダメージを受けないようにバッファ機能を 設けたものや、成膜プロセスによる凹凸を防ぐために平坦化機能を設けた有機 EL素 子も知られている。 [0003] As typical self-luminous elements, inorganic EL elements, organic EL (electric aperture luminescence) elements, FED (Field Emission Display) elements, light emitting diodes, and the like are known. The organic EL element is also called, for example, an organic EL (OEL) device, an organic light emitting diode (OLED) device, a self-emitting element, or an electroluminescent light source. In general, an organic EL element has a structure in which an organic layer (light emitting layer) is sandwiched between an anode (corresponding to an anode and a hole injection electrode) and a force sword (corresponding to a cathode and an electron injection layer). (For example, see Patent Document 1). In general, the organic layer has a structure in which a plurality of functional layers are laminated, for example, a structure in which a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and the like are sequentially laminated. Have Each layer consists of a single layer that also has a single organic material force, a mixed layer that combines multiple materials, and a polymer binder. A layer in which a functional material such as an organic material or an inorganic material (charge transport function, light emission function, charge blocking function, optical function, etc.) is dispersed can be employed. In addition, each layer has a buffer function so that the organic layer is not damaged when the upper electrode is formed by sputtering, or an organic EL element that has a flattening function to prevent unevenness due to the film formation process. Is also known.
上記構成の有機 EL素子では、両電極に電圧を印加することにより、アノードから有 機層内に注入および輸送された正孔と、力ソードから有機層内に注入および輸送さ れた電子とが有機層内で再結合し、この再結合により有機層内の有機分子の電子状 態が基底状態から励起状態に遷移し、励起状態から基底状態に遷移する際に発光 する。  In the organic EL element having the above-described configuration, by applying a voltage to both electrodes, holes injected and transported from the anode into the organic layer and electrons injected and transported from the force sword into the organic layer are generated. Recombination occurs in the organic layer, and due to this recombination, the electronic state of organic molecules in the organic layer changes from the ground state to the excited state, and light is emitted when the excited state changes to the ground state.
[0004] 図 1は、一般的な有機 EL (エレクト口ルミネッセンス)素子を備える光デバイスを示す 断面図である。図 2は、光デバイスの有機 EL素子の劣化を説明するための正面図で ある。  FIG. 1 is a cross-sectional view showing an optical device provided with a general organic EL (electric mouth luminescence) element. FIG. 2 is a front view for explaining the deterioration of the organic EL element of the optical device.
図 1に示すように、一般的な光デバイス 1Jは、有機 EL素子を一つの画素 11として 利用している。図 1に示した光デバイス 1Jは、ボトムェミッション型であり、ガラス製の 基板 2Jの上に、 ITO (Indium Tin Oxide)等の透明導電材料カゝらなる第 1電極(下部 電極とも呼ぶ) 3Jが成膜'パターユングされ、その上部に発光層を含む有機発光機能 層(複数でも単数でも良い) 5Jが成膜'パターユングされ、その上部に A1等の第 2電 極 (上部電極とも呼ぶ) 6Jが成膜'パターユングされている。第 1電極 3Jの端部には引 出配線 3aが形成されている。上記製造工程により基板 2J上に有機 EL素子 100が作 製される。上記基板 2Jとしては、例えば TFT (Thin Film Transistor)等を用いたァクテ イブ駆動用基板や、ストライプ状の電極を形成したパッシブ駆動用基板を採用するこ とがでさる。  As shown in Fig. 1, a general optical device 1J uses an organic EL element as one pixel 11. The optical device 1J shown in FIG. 1 is a bottom emission type, and a first electrode (also called a lower electrode) made of a transparent conductive material such as ITO (Indium Tin Oxide) on a glass substrate 2J. Organic light-emitting functional layer (may be plural or singular) 3J is deposited 'and a light emitting layer is formed on top of it. 5J is deposited, and a second electrode (such as A1) is formed on top of it. 6J is filmed 'patterning. A lead wire 3a is formed at the end of the first electrode 3J. The organic EL element 100 is manufactured on the substrate 2J by the above manufacturing process. As the substrate 2J, for example, an active drive substrate using TFT (Thin Film Transistor) or the like, or a passive drive substrate on which stripe electrodes are formed can be employed.
[0005] また、図 1に示した光デバイス 1Jでは、有機 EL素子 100がガラス等の封止基板 91J により封止接合されている。光デバイス 1Jの封止接合方法としては、気密封止、膜封 止、固体封止などの各種方法が知られている。例えば固体封止の場合、図 1に示す ように、素子側の基板 2Jと封止基板 91との間をエポキシ榭脂等の接着剤 92Jを介し て封止を行う。この際、接着剤 92Jを、有機 EL素子が形成された面側の全面に塗布 して封止する。 In the optical device 1J shown in FIG. 1, the organic EL element 100 is sealed and bonded by a sealing substrate 91J such as glass. Various methods such as hermetic sealing, membrane sealing, and solid sealing are known as sealing and joining methods for the optical device 1J. For example, in the case of solid sealing, as shown in FIG. 1, the element-side substrate 2J and the sealing substrate 91 are sealed through an adhesive 92J such as epoxy resin. At this time, apply adhesive 92J to the entire surface on which the organic EL element is formed. And seal.
[0006] 特許文献 1 :特開 2005— 63928号公報  [0006] Patent Document 1: Japanese Unexamined Patent Application Publication No. 2005-63928
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかし、上記封止時に、例えば熱硬化性榭脂ゃ UV (Ultraviolet)硬化榭脂等の接 着剤 92Jを用いて封止する場合、硬化中又は硬化後の樹脂に内在する未硬化成分 、溶剤、添加剤、あるいは外部雰囲気力 の水分、酸素等のガス等の劣化因子 (hi) が有機 EL素子 100に侵入する虞がある。この劣化因子 (hi)は、例えば図 1,図 2に 示すように、有機発光機能層 5Jと上部電極 6J間の界面 56Jの端部(56Ja)から、その 界面 56J内に侵入すると考えられる。このような劣化因子 (hi)の侵入現象は、有機 E L素子 100を一つの画素として利用する光デバイス 1Jの製造プロセス段階で有機 EL 素子を 100を劣化させる。また、光デバイス 1Jがユーザ (市場等)に渡って駆動する 場合など所定時間経過すると、上記層間の界面 56Jへの劣化因子 (hi)の侵入が進 行して、例えば図 1, 2に示すように画素 11の周辺部に非発光部分が生じて、徐々に 非発光部分の幅 (w)が大きくなり、光デバイス 1Jの発光不良部分が拡大するという問 題点がある。 [0007] However, at the time of sealing, when sealing is performed using an adhesive 92J such as a thermosetting resin UV (Ultraviolet) cured resin, uncured inherent in the resin during or after curing. There is a risk that deterioration factors (hi) such as components, solvents, additives, moisture of external atmospheric force, gases such as oxygen, etc. may enter the organic EL element 100. For example, as shown in FIGS. 1 and 2, this degradation factor (hi) is considered to enter the interface 56J from the end portion (56Ja) of the interface 56J between the organic light emitting functional layer 5J and the upper electrode 6J. Such an intrusion phenomenon of the deterioration factor (hi) deteriorates the organic EL element 100 in the manufacturing process of the optical device 1J using the organic EL element 100 as one pixel. In addition, when a predetermined time elapses, such as when the optical device 1J is driven across users (markets, etc.), the deterioration factor (hi) enters the interface 56J between the layers, for example as shown in FIGS. Thus, there is a problem in that a non-light-emitting portion is generated in the peripheral portion of the pixel 11, the width (w) of the non-light-emitting portion gradually increases, and the light-emitting defective portion of the optical device 1J is enlarged.
[0008] 本発明は、このような問題に対処することを課題の一例とするものである。すなわち 、下部電極及び上部電極間に発光層を含む有機発光機能層が挟持された自発光 素子を有する光デバイスにおいて、上部電極と有機発光機能層との界面に、水、酸 素、有機ガス等の劣化因子が侵入することに起因する発光不良を低減すること、有 機 EL素子等の自発光素子の発光不良による光デバイスの表示不良を低減すること 、等が本発明の目的である。  [0008] An object of the present invention is to deal with such a problem. That is, in an optical device having a self-luminous element in which an organic light emitting functional layer including a light emitting layer is sandwiched between a lower electrode and an upper electrode, water, oxygen, organic gas, etc. are present at the interface between the upper electrode and the organic light emitting functional layer. It is an object of the present invention to reduce light emitting defects caused by the intrusion of deterioration factors, and to reduce display defects of optical devices due to light emitting defects of self-luminous elements such as organic EL elements.
課題を解決するための手段  Means for solving the problem
[0009] 本発明では、上述した課題を解決することを目的の一つとして!/、る。 In the present invention, one of the objects is to solve the above-mentioned problems!
請求項 1に記載の発明は、下部電極及び上部電極間に発光層を含む有機発光機 能層が挟持された自発光素子を一つの画素として、前記画素が一つ又は複数個、 基板上に直接又は他の層を介して形成された光デバイスであって、前記自発光素子 の前記上部電極上に形成された有機材料層と、前記下部電極及び前記上部電極と の絶縁が確保された状態で、前記有機材料層上に形成された無機層と、基板上に 形成された自発光素子を封止材料により封止する封止部とを有し、前記有機材料層 と前記無機層が重なる領域の端部が、前記有機発光機能層と前記上部電極が重な る領域の端部より前記封止部の外端部側に、前記有機材料層を介して離間して形成 されていることを特徴とする。 According to the first aspect of the present invention, a single light-emitting element in which an organic light-emitting functional layer including a light-emitting layer is sandwiched between a lower electrode and an upper electrode is used as one pixel, and one or a plurality of the pixels are formed on a substrate. An optical device formed directly or via another layer, the organic material layer formed on the upper electrode of the self-luminous element, the lower electrode and the upper electrode, The organic material layer has an inorganic layer formed on the organic material layer, and a sealing portion that seals the light-emitting element formed on the substrate with a sealing material. The end of the region where the layer and the inorganic layer overlap is separated from the end of the region where the organic light emitting functional layer and the upper electrode overlap from the end of the sealing portion via the organic material layer. It is characterized by being formed.
[0010] 請求項 12に記載の発明は、一対の電極間に少なくとも発光層を挟持した有機 EL 素子を一つの画素として利用した光デバイスであって、基板と、前記基板上に直接 又は間接的に形成された下部電極と、前記基板および Zまたは前記下部電極上に パターニングされて画素領域を形成する第 1絶縁膜と、前記第 1絶縁膜による画素領 域内に形成された、発光層を含む有機発光機能層と、前記有機発光機能層上に形 成された上部電極と、前記上部電極の成膜領域よりも広い範囲に有機発光機能層を 構成する少なくとも一つの材料で形成した有機材料層と、前記有機材料層上に、該 有機材料層の成膜領域よりも狭い範囲に上部電極と同じ材料で形成された無機層と 、少なくとも前記無機層上全面を覆う前記有機 EL素子の封止膜とを有することを特 徴とする。  The invention according to claim 12 is an optical device using an organic EL element having at least a light emitting layer sandwiched between a pair of electrodes as one pixel, and directly or indirectly on the substrate and the substrate. A first insulating film patterned on the substrate and Z or the lower electrode to form a pixel region, and a light emitting layer formed in the pixel region by the first insulating film. An organic light emitting functional layer, an upper electrode formed on the organic light emitting functional layer, and an organic material layer formed of at least one material constituting the organic light emitting functional layer in a range wider than a film formation region of the upper electrode And an inorganic layer formed of the same material as the upper electrode in a range narrower than the film formation region of the organic material layer on the organic material layer, and sealing the organic EL element covering at least the entire surface of the inorganic layer Having a membrane And butterflies.
[0011] 請求項 13に記載の発明は、一対の電極間に少なくとも発光層を含む有機発光機 能層が挟持された自発光素子を一つの画素として、前記画素が一つ又は複数個形 成された光デバイスの製造方法であって、基板上に直接又は他の層を介して下部電 極を形成する下部電極形成工程と、前記下部電極上に前記発光層を含む前記有機 発光機能層を形成する有機発光機能層形成工程と、前記有機発光機能層上に上 部電極を形成する上部電極形成工程と、前記上部電極上に有機材料層を形成する 有機材料層形成工程と、前記有機材料層上に、前記下部電極及び前記上部電極と の絶縁が確保された状態で無機層を形成する無機層形成工程と、前記基板上に形 成された前記自発光素子を封止材料により封止して封止部を形成する封止工程とを 有し、前記有機材料層形成工程および前記無機層形成工程時に、前記有機材料層 と前記無機層が重なる領域の端部を、前記有機発光機能層と前記上部電極が重な る領域の端部より前記封止部の外端部側に、前記有機材料層を介して離間して形成 することを特徴とする。 [0012] 請求項 16に記載の発明は、一対の電極間に少なくとも発光層を含む有機発光機 能層が挟持された自発光素子を一つの画素として、前記画素が一つ又は複数個形 成された光デバイスの製造方法であって、基板上に直接又は他の層を介して下部電 極を形成する下部電極形成工程と、前記基板および Zまたは前記下部電極上に第 1絶縁膜のパターユングにより画素領域を形成する画素領域形成工程と、前記下部 電極上に発光および Zまたは非発光により画素として機能する有機発光機能層を真 空蒸着により形成する有機発光機能層形成工程と、前記有機発光機能層上に、該 有機発光機能層の形成された領域の一部が露出するように上部電極を真空蒸着に より形成する上部電極形成工程と、前記有機発光機能層が露出した領域に前記有 機発光機能層を構成する少なくとも一つの材料を含む有機材料層を真空蒸着により 形成する有機材料層形成工程と、前記有機材料層の上面と前記露出領域上の範囲 に無機層を真空蒸着により形成する無機層形成工程と、前記基板上に形成された自 発光素子を封止材料により封止する封止工程とを有することを特徴とする。 [0011] The invention according to claim 13 is characterized in that a single light-emitting element in which an organic light-emitting functional layer including at least a light-emitting layer is sandwiched between a pair of electrodes is used as one pixel, and one or a plurality of the pixels are formed. A method for manufacturing an optical device, comprising: forming a lower electrode directly on a substrate or via another layer; and forming the organic light emitting functional layer including the light emitting layer on the lower electrode. An organic light emitting functional layer forming step, an upper electrode forming step of forming an upper electrode on the organic light emitting functional layer, an organic material layer forming step of forming an organic material layer on the upper electrode, and the organic material An inorganic layer forming step of forming an inorganic layer on the layer in a state in which insulation between the lower electrode and the upper electrode is ensured; and sealing the self-luminous element formed on the substrate with a sealing material And a sealing step for forming a sealing portion. In the organic material layer forming step and the inorganic layer forming step, the end of the region where the organic material layer and the inorganic layer overlap is sealed from the end of the region where the organic light emitting functional layer and the upper electrode overlap. It is characterized in that it is formed on the outer end side of the stop portion with a space through the organic material layer. [0012] The invention according to claim 16 is characterized in that a single light-emitting element in which an organic light-emitting functional layer including at least a light-emitting layer is sandwiched between a pair of electrodes is used as one pixel, and one or a plurality of the pixels are formed. A method of manufacturing an optical device comprising: a lower electrode forming step of forming a lower electrode directly on a substrate or via another layer; and a pattern of a first insulating film on the substrate and Z or the lower electrode. A pixel region forming step of forming a pixel region by Jung, an organic light emitting functional layer forming step of forming an organic light emitting functional layer functioning as a pixel by light emission and Z or non-light emission on the lower electrode, and the organic light emitting layer An upper electrode forming step of forming an upper electrode by vacuum deposition so that a part of the region where the organic light emitting functional layer is formed is exposed on the light emitting functional layer; and the region where the organic light emitting functional layer is exposed Organic light emission An organic material layer forming step for forming an organic material layer including at least one material constituting the active layer by vacuum deposition; and an inorganic layer for forming an inorganic layer by vacuum deposition on an upper surface of the organic material layer and a range on the exposed region. It has a layer formation process and the sealing process which seals the self-light-emitting element formed on the said board | substrate with a sealing material, It is characterized by the above-mentioned.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]一般的な有機 EL (エレクト口ルミネッセンス)素子を備える光デバイスを示す断 面図である。  [0013] FIG. 1 is a cross-sectional view showing an optical device including a general organic EL (electrical mouth luminescence) element.
[図 2]光デバイスの有機 EL素子の劣化を説明するための正面図である。  FIG. 2 is a front view for explaining the deterioration of the organic EL element of the optical device.
[図 3]本発明の第 1実施形態に係る光デバイス 1を説明するための断面図である。  FIG. 3 is a cross-sectional view for explaining the optical device 1 according to the first embodiment of the present invention.
[図 4]本発明に係る光デバイスの効果を説明するための、画素の端部に生じる非発 光部分の幅の時間変化の一具体例を示す図である。  FIG. 4 is a diagram showing a specific example of a temporal change in the width of a non-light emitting portion generated at an end portion of a pixel for explaining the effect of the optical device according to the present invention.
[図 5]本発明の第 1実施例に係る光デバイスの効果を説明するための図である。  FIG. 5 is a diagram for explaining the effect of the optical device according to the first example of the present invention.
[図 6]本発明の第 2実施例に係る光デバイスの効果を説明するための図である。  FIG. 6 is a diagram for explaining the effect of the optical device according to the second embodiment of the present invention.
[図 7]本発明の第 2実施形態に係る光デバイスを説明するための断面図である。  FIG. 7 is a cross-sectional view for explaining an optical device according to a second embodiment of the present invention.
[図 8]本発明の第 3実施形態に係る光デバイス 1を説明するための図である。 (A)は 上面図であり、 (B)は (A)に示した領域 A付近の断面図である。  FIG. 8 is a diagram for explaining an optical device 1 according to a third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view around the region A shown in (A).
[図 9]本発明の第 3実施形態に係る光デバイスの製造方法の下部電極形成工程を説 明するための図である。(A)は上面図であり、 (B)は (A)に示した領域 A付近の断面 図である。 [図 10]本発明の第 3実施形態に係る光デバイス 1の製造方法の画素領域形成工程( 第 1絶縁膜形成工程)を説明するための図である。(A)は上面図であり、(B)は (A) に示した領域 A付近の断面図である。 FIG. 9 is a view for explaining a lower electrode forming step of the optical device manufacturing method according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view in the vicinity of the region A shown in (A). FIG. 10 is a view for explaining a pixel region forming step (first insulating film forming step) of the method for manufacturing an optical device 1 according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view in the vicinity of the region A shown in (A).
[図 11]本発明の第 3実施形態に係る光デバイスの製造方法の第 1電荷輸送層形成 工程を説明するための図である。 (A)は上面図であり、 (B)は (A)に示した領域 A付 近の断面図である。  FIG. 11 is a view for explaining a first charge transport layer forming step of the optical device manufacturing method according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view near the region A shown in (A).
[図 12]本発明の第 3実施形態に係る光デバイスの製造方法の発光層形成工程を説 明するための図である。(A)は上面図であり、 (B)は (A)に示した領域 A付近の断面 図である。  FIG. 12 is a view for explaining a light emitting layer forming step of the optical device manufacturing method according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view in the vicinity of the region A shown in (A).
[図 13]本発明の第 3実施形態に係る光デバイスの製造方法の第 2電荷輸送層形成 工程を説明するための図である。 (A)は上面図であり、 (B)は (A)に示した領域 A付 近の断面図である。  FIG. 13 is a view for explaining a second charge transport layer forming step of the method for manufacturing an optical device according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view near the region A shown in (A).
[図 14]本発明の第 3実施形態に係る光デバイスの製造方法の上部電極形成工程を 説明するための図である。 (A)は上面図であり、 (B)は (A)に示した領域 A付近の断 面図である。  FIG. 14 is a view for explaining an upper electrode forming step of the optical device manufacturing method according to the third embodiment of the invention. (A) is a top view, and (B) is a cross-sectional view near the region A shown in (A).
[図 15]本発明の第 3実施形態に係る光デバイスの製造方法の有機材料層形成工程 を説明するための図である。 (A)は上面図であり、 (B)は (A)に示した領域 A付近の 断面図である。  FIG. 15 is a view for explaining an organic material layer forming step of the optical device manufacturing method according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view in the vicinity of region A shown in (A).
[図 16]本発明の第 3実施形態に係る光デバイスの製造方法の無機層形成工程を説 明するための図である。(A)は上面図であり、 (B)は (A)に示した領域 A付近の断面 図である。  FIG. 16 is a diagram for explaining an inorganic layer forming step of the optical device manufacturing method according to the third embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view in the vicinity of the region A shown in (A).
[図 17]本発明の第 4実施形態に係る光デバイス 1Bを説明するための断面図である。  FIG. 17 is a cross-sectional view for explaining an optical device 1B according to a fourth embodiment of the present invention.
[図 18]本発明の第 5実施形態に係る光デバイス 1Cを説明するための図である。 (A) は上面図であり、 (B)は (A)に示した領域 A付近の断面図である。 FIG. 18 is a diagram for explaining an optical device 1C according to a fifth embodiment of the present invention. (A) is a top view, and (B) is a cross-sectional view around the region A shown in (A).
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施形態に係る光デバイスは、下部電極及び上部電極間に発光層を 含む有機発光機能層が挟持された自発光素子を一つの画素として、画素が一つ又 は複数個、基板上に直接又は他の層を介して形成された光デバイスであって、自発 光素子の上部電極上に形成された有機材料層と、下部電極及び上部電極との絶縁 が確保された状態で、有機材料層上に形成された無機層と、基板上に形成された自 発光素子を封止材料により封止する封止部とを有し、有機材料層と無機層が重なる 領域の端部が、有機発光機能層と上部電極が重なる領域の端部よりも画素より外側 に、詳細には、封止部の外端部側に、有機材料層を介して離間して形成されている ことを特徴とする。 An optical device according to an embodiment of the present invention includes a self-luminous element in which an organic light-emitting functional layer including a light-emitting layer is sandwiched between a lower electrode and an upper electrode as one pixel, one or a plurality of pixels, a substrate An optical device formed directly on or through another layer, The organic material layer formed on the upper electrode of the optical element, the inorganic layer formed on the organic material layer in a state in which insulation between the lower electrode and the upper electrode is ensured, and the self-light emission formed on the substrate A sealing portion that seals the element with a sealing material, and the end of the region where the organic material layer and the inorganic layer overlap is located outside the pixel from the end of the region where the organic light emitting functional layer and the upper electrode overlap. Specifically, it is characterized in that it is formed on the outer end portion side of the sealing portion, with an organic material layer interposed therebetween.
[0015] 好適には、有機材料層と無機層との界面領域 (重なる領域)に、劣化因子を捕捉し て該劣化因子による有機発光機能層の劣化を低減させる捕捉部が形成されているこ とを特徴とする。また、好適には、有機材料層は、有機発光機能層を構成する少なく とも一つの有機材料を含むことを特徴とする。また、好適には、無機層は上部電極と 同一材料であることを特徴とする。  [0015] Preferably, in the interface region (overlapping region) between the organic material layer and the inorganic layer, a capturing part that captures the deterioration factor and reduces the deterioration of the organic light emitting functional layer due to the deterioration factor is formed. And features. Preferably, the organic material layer includes at least one organic material constituting the organic light emitting functional layer. Preferably, the inorganic layer is made of the same material as that of the upper electrode.
[0016] 上記構成の光デバイスでは、下部電極及び上部電極間に有機発光機能層が挟持 された自発光素子上に、有機材料層が形成され、その有機材料層上に無機層が形 成されているので、例えば接着剤の未硬化成分、溶剤、外部雰囲気からの水や酸素 などの劣化因子が、上部電極と有機発光機能層間の界面へ侵入することを低減する ことができる。  In the optical device having the above configuration, an organic material layer is formed on a self-luminous element in which an organic light emitting functional layer is sandwiched between a lower electrode and an upper electrode, and an inorganic layer is formed on the organic material layer. Therefore, for example, deterioration factors such as an uncured component of the adhesive, a solvent, water and oxygen from the external atmosphere, and the like enter the interface between the upper electrode and the organic light emitting functional layer can be reduced.
[0017] また、上記構成の光デバイスでは、劣化因子を、有機材料層と無機層の界面の端 部力 界面に優先的に捕捉することで、劣化因子が上部電極と有機発光機能層間 の界面へ侵入する量を低減することができる。  [0017] Further, in the optical device having the above-described configuration, the degradation factor is preferentially captured at the edge force interface between the organic material layer and the inorganic layer, so that the degradation factor is interfaced between the upper electrode and the organic light emitting functional layer. It is possible to reduce the amount of intrusion.
[0018] また、上記光デバイスでは、有機発光機能層と上部電極との界面の端部を、例えば 有機材料層に接する構造を有するので、有機発光機能層と上部電極との界面への 劣化因子の侵入を低減することができる。また上記光デバイスでは、有機発光機能 層と上部電極との界面の端部を、例えば第 1絶縁膜に接する構造を有するので、有 機発光機能層と上部電極との界面への劣化因子の侵入を低減することができる。  [0018] In addition, the optical device has a structure in which, for example, the end portion of the interface between the organic light emitting functional layer and the upper electrode is in contact with the organic material layer, and therefore, a degradation factor to the interface between the organic light emitting functional layer and the upper electrode Intrusion can be reduced. In addition, since the optical device has a structure in which, for example, the end portion of the interface between the organic light emitting functional layer and the upper electrode is in contact with the first insulating film, the degradation factor enters the interface between the organic light emitting functional layer and the upper electrode. Can be reduced.
[0019] また、有機材料層は、有機発光機能層を構成する少なくとも一つの有機材料を含 むので、例えば有機材料層形成時に新たな有機材料を準備することなぐ有機発光 層形成時に準備した有機材料を用いて容易に有機材料層を形成することができる。 また、光デバイスが、有機発光機能層と上部電極との界面の端部を有機材料層によ り覆う構造を有する場合には、上記構成の有機材料層を用いることにより、有機材料 層と有機発光機能層の間の結合力が比較的大きいので、劣化因子の侵入をさらに 低減することができる。 [0019] Further, since the organic material layer contains at least one organic material constituting the organic light emitting functional layer, for example, the organic material prepared at the time of forming the organic light emitting layer without preparing a new organic material at the time of forming the organic material layer. An organic material layer can be easily formed using a material. In addition, the optical device uses an organic material layer for the edge of the interface between the organic light emitting functional layer and the upper electrode. When the organic material layer having the above structure is used, since the bonding force between the organic material layer and the organic light emitting functional layer is relatively large, the intrusion of the deterioration factor can be further reduced. .
[0020] また、上記構成の光デバイスでは、自発光素子上に、比較的高い熱伝導度の無機 層を設けたので、光デバイスが表示駆動する際に発生する熱を放熱する効果がある  [0020] Further, in the optical device having the above configuration, since the inorganic layer having a relatively high thermal conductivity is provided on the self-luminous element, there is an effect of radiating heat generated when the optical device performs display driving.
[0021] また、例えば上部電極にピンホール等の欠陥がある場合であっても、その上部電極 上に有機材料層、および無機層が順に形成されているので、その欠陥を要因とする ダークスポットの拡大を防止することができる。 [0021] Further, for example, even when the upper electrode has a defect such as a pinhole, the organic material layer and the inorganic layer are sequentially formed on the upper electrode. Can be prevented from expanding.
[0022] また、本発明の一実施形態に係る光デバイスの製造方法は、一対の電極間に少な くとも発光層を含む有機発光機能層が挟持された自発光素子を一つの画素として、 画素が一つ又は複数個形成された光デバイスの製造方法であって、基板上に直接 又は他の層を介して下部電極を形成する下部電極形成工程と、下部電極上に発光 層を含む有機発光機能層を形成する有機発光機能層形成工程と、有機発光機能層 上に上部電極を形成する上部電極形成工程と、上部電極上に有機材料層を形成す る有機材料層形成工程と、有機材料層上に、下部電極及び上部電極との絶縁が確 保された状態で無機層を形成する無機層形成工程と、基板上に形成された自発光 素子を封止材料により封止して封止部を形成する封止工程とを有し、有機材料層形 成工程および無機層形成工程時に、有機材料層と無機層が重なる領域の端部を、 有機発光機能層と上部電極が重なる領域の端部より封止部の外端部側に、有機材 料層を介して離間して形成することを特徴とする。  In addition, the method for manufacturing an optical device according to an embodiment of the present invention includes a self-luminous element in which an organic light-emitting functional layer including at least a light-emitting layer is sandwiched between a pair of electrodes as one pixel. Is a method of manufacturing an optical device in which one or a plurality of optical devices are formed, wherein a lower electrode is formed on a substrate directly or via another layer, and an organic light emitting device including a light emitting layer on the lower electrode. Organic light emitting functional layer forming step for forming functional layer, upper electrode forming step for forming upper electrode on organic light emitting functional layer, organic material layer forming step for forming organic material layer on upper electrode, and organic material An inorganic layer forming step for forming an inorganic layer on the layer in a state where insulation from the lower electrode and the upper electrode is ensured, and a self-luminous element formed on the substrate is sealed with a sealing material And forming an organic material layer. In the step of forming the inorganic layer, the end of the region where the organic material layer and the inorganic layer overlap is placed closer to the outer end of the sealing portion than the end of the region where the organic light emitting functional layer and the upper electrode overlap. It is characterized in that they are formed apart via each other.
上記光デバイスの製造方法により、上記構成の光デバイスを簡単に作製することが できる。  By the method for manufacturing an optical device, an optical device having the above configuration can be easily manufactured.
[0023] また、好適には、本発明に係る光デバイスの製造方法では、有機発光機能層、上 部電極、有機材料層、および無機層を真空蒸着法により形成することで、例えばスパ ッタ法により上部電極上に無機層を形成する従来の製造方法と比べて、製造プロセ スの簡略化、およびスパッタ法による膜応力による歪発生の防止等の効果がある。  [0023] Further, preferably, in the method for manufacturing an optical device according to the present invention, the organic light emitting functional layer, the upper electrode, the organic material layer, and the inorganic layer are formed by a vacuum deposition method, for example, a sputtering method. Compared to the conventional manufacturing method in which the inorganic layer is formed on the upper electrode by the method, there are effects such as simplification of the manufacturing process and prevention of distortion due to film stress by the sputtering method.
[0024] また、本発明の他の実施形態に係る光デバイスの製造方法では、基板上に直接又 は他の層を介して下部電極を形成する下部電極形成工程と、下部電極上に発光お よび Zまたは非発光により画素として機能する有機発光機能層を真空蒸着により形 成する有機発光機能層形成工程と、有機発光機能層上に、該有機発光機能層の形 成された領域の一部が露出するように上部電極を真空蒸着により形成する上部電極 形成工程と、有機発光機能層が露出した領域に有機発光機能層を構成する少なくと も一つの材料を含む有機材料層を真空蒸着により形成する有機材料層形成工程と、 有機材料層の上面と露出領域上の範囲に無機層を真空蒸着により形成する無機層 形成工程と、基板上に形成された自発光素子を封止材料により封止する封止工程と を有する。 [0024] In addition, in the method of manufacturing an optical device according to another embodiment of the present invention, the optical device is directly or directly on the substrate. The lower electrode formation process that forms the lower electrode through another layer, and the organic light emitting functional layer formation that forms the organic light emitting functional layer that functions as a pixel by light emission and Z or non-light emission on the lower electrode by vacuum deposition A step of forming an upper electrode by vacuum deposition so that a part of a region where the organic light emitting functional layer is formed is exposed on the organic light emitting functional layer; and the organic light emitting functional layer is exposed. An organic material layer forming step of forming an organic material layer containing at least one material constituting the organic light emitting functional layer in the region by vacuum deposition, and an inorganic layer vacuum-depositing in a range above the upper surface of the organic material layer and the exposed region An inorganic layer forming step formed by the step of sealing a self-luminous element formed on the substrate with a sealing material.
[0025] 上記光デバイスの製造方法では、有機発光機能層上に、該有機発光機能層の形 成された領域の一部が露出するように上部電極を真空蒸着により形成する上部電極 形成工程と、有機発光機能層が露出した領域に有機発光機能層を構成する少なくと も一つの材料を含む有機材料層を真空蒸着により形成する有機材料層形成工程と、 有機材料層の上面と露出領域上の範囲に無機層を真空蒸着により形成する無機層 形成工程とを有するので、簡単に本発明に係る上記構成の光デバイスを作製するこ とがでさる。  [0025] In the above optical device manufacturing method, an upper electrode forming step of forming an upper electrode on the organic light emitting functional layer by vacuum deposition so that a part of a region where the organic light emitting functional layer is formed is exposed; An organic material layer forming step of forming an organic material layer containing at least one material constituting the organic light emitting functional layer in a region where the organic light emitting functional layer is exposed by vacuum deposition; and an upper surface of the organic material layer and the exposed region In this range, the inorganic layer forming step of forming the inorganic layer by vacuum vapor deposition is included, so that the optical device having the above configuration according to the present invention can be easily produced.
[0026] 以下、図面を参照しながら、本発明の一実施形態に係る光デバイス、および光デバ イスの製造方法を説明する。  Hereinafter, an optical device and a method for manufacturing the optical device according to an embodiment of the present invention will be described with reference to the drawings.
[0027] [第 1実施形態]  [0027] [First embodiment]
図 3は、本発明の第 1実施形態に係る光デバイス 1を説明するための断面図である 。図 1に示した従来の光デバイスと同じ構成や動作については説明を省略する。 図 3に示すように、本発明の第 1実施形態に係る光デバイス 1は、一つの画素 11又 は複数の画素 11を有している。本実施形態では、複数の画素 11が基板 2上に格子 状に形成されて ヽる。画素 11の形成領域は本発明に係る画素領域の一実施形態に 相当する。また、光デバイス 1では、一画素に対応する自発光素子 100が、電極間に 形成された発光層の発光 Z非発光により、各種情報表示を行う。自発光素子 100と しては、有機 EL (エレクト口ルミネッセンス)素子を採用することができる。光デバイス 1 としては、例えばアクティブマトリクス駆動型又はパッシブマトリクス駆動型を採用する ことができる。以下、本発明の一実施形態に係る光デバイスを採用したボトムエミッシ ヨンタイプのパッシブマトリクス駆動型有機 ELパネルの一例を詳細に説明する。 FIG. 3 is a cross-sectional view for explaining the optical device 1 according to the first embodiment of the present invention. The description of the same configuration and operation as those of the conventional optical device shown in FIG. 1 is omitted. As shown in FIG. 3, the optical device 1 according to the first embodiment of the present invention has one pixel 11 or a plurality of pixels 11. In the present embodiment, a plurality of pixels 11 are formed on the substrate 2 in a grid pattern. The formation region of the pixel 11 corresponds to an embodiment of the pixel region according to the present invention. In the optical device 1, the self-luminous element 100 corresponding to one pixel displays various information by light emission Z non-light emission of the light emitting layer formed between the electrodes. As the self-luminous element 100, an organic EL (electric mouth luminescence) element can be adopted. As the optical device 1, for example, an active matrix driving type or a passive matrix driving type is adopted. be able to. Hereinafter, an example of a bottom emission type passive matrix drive organic EL panel employing an optical device according to an embodiment of the present invention will be described in detail.
[0028] 本実施形態に係る光デバイス 1は、図 3に示すように、基板 2、下部電極 (第 1電極) 3、発光層を備える有機発光機能層 5、上部電極 (第 2電極) 6、有機材料層 7、無機 層 8、および封止部材 9を有する。  As shown in FIG. 3, the optical device 1 according to this embodiment includes a substrate 2, a lower electrode (first electrode) 3, an organic light emitting functional layer 5 including a light emitting layer, and an upper electrode (second electrode) 6. The organic material layer 7, the inorganic layer 8, and the sealing member 9.
[0029] 基板 2は、本発明に係る基板の一実施形態に相当し、下部電極 3は本発明に係る 下部電極の一実施形態に相当し、有機発光機能層 5は本発明に係る有機発光機能 層の一実施形態に相当する。上部電極 6は本発明に係る上部電極の一実施形態に 相当し、有機材料層 7は本発明に係る有機材料層の一実施形態に相当する。無機 層 8は本発明に係る無機層の一実施形態に相当し、封止部材 9は本発明に係る封 止部の一実施形態に相当する。  [0029] The substrate 2 corresponds to one embodiment of the substrate according to the present invention, the lower electrode 3 corresponds to one embodiment of the lower electrode according to the present invention, and the organic light emitting functional layer 5 corresponds to the organic light emitting according to the present invention. This corresponds to an embodiment of the functional layer. The upper electrode 6 corresponds to an embodiment of the upper electrode according to the present invention, and the organic material layer 7 corresponds to an embodiment of the organic material layer according to the present invention. The inorganic layer 8 corresponds to one embodiment of the inorganic layer according to the present invention, and the sealing member 9 corresponds to one embodiment of the sealing portion according to the present invention.
[0030] 基板 2は、例えば平板状、フィルム状のものが好ましぐ材質としてはガラス又はブラ スチックを用いることができる。例えばボトムェミッション型の光デバイス 1では、透明 性を有する材料により基板 2を形成する。  [0030] As the material for which the substrate 2 is preferably a flat plate or a film, for example, glass or plastic can be used. For example, in the bottom emission type optical device 1, the substrate 2 is formed from a transparent material.
[0031] 下部電極 (第 1電極) 3は、導電材料からなり、基板 2上に直接又は他の層(例えば 非透湿性層等)を介して形成されている。下部電極 3の形成材料としては、例えば IT Oなどの透明導電材料を採用する。  [0031] The lower electrode (first electrode) 3 is made of a conductive material, and is formed on the substrate 2 directly or via another layer (for example, a moisture-impermeable layer). As a material for forming the lower electrode 3, for example, a transparent conductive material such as ITO is adopted.
[0032] 発光層を備える有機発光機能層 5は、下部電極 3上に直接又は他の層(例えば電 荷輸送層等)介して形成される。有機発光機能層 5は、例えば電荷輸送層、発光層( 発光層ともいう)等の積層構造を有する。この有機発光機能層 5は、例えば真空蒸着 法により形成される。他にも塗布、印刷法やレーザ転写法により形成されてもよい。  [0032] The organic light emitting functional layer 5 including the light emitting layer is formed on the lower electrode 3 directly or via another layer (for example, a charge transport layer). The organic light emitting functional layer 5 has a laminated structure such as a charge transport layer and a light emitting layer (also referred to as a light emitting layer). The organic light emitting functional layer 5 is formed by, for example, a vacuum evaporation method. Alternatively, it may be formed by a coating, printing method or laser transfer method.
[0033] 上部電極 (第 2電極) 6は、導電性材料カゝらなり、有機発光機能層 5上に形成されて いる。詳細には、上部電極 6は、図 3に示すように、有機発光機能層 5の端部 5より内 側に端部 6aが位置するように、有機発光機能層 5上に狭い範囲に形成されている。 具体的には、上部電極 6は、図 3に示すように、有機発光機能層 5の形成された領域 の一部が露出するように、第 2電極を真空蒸着により形成される。  The upper electrode (second electrode) 6 is made of a conductive material and is formed on the organic light emitting functional layer 5. Specifically, as shown in FIG. 3, the upper electrode 6 is formed in a narrow range on the organic light emitting functional layer 5 so that the end 6a is located on the inner side of the end 5 of the organic light emitting functional layer 5. ing. Specifically, as shown in FIG. 3, the upper electrode 6 is formed by vacuum deposition of the second electrode so that a part of the region where the organic light emitting functional layer 5 is formed is exposed.
[0034] 自発光素子 100は、下部電極 3、有機発光機能層 5、上部電極 6により形成されて いる。自発光素子 100は、湿気等の劣化因子により著しく劣化するので、封止部材 9 により自発光素子 100を封止して、素子の劣化を防止する。また、本実施形態に係る 光デバイス 1では、上部電極 6上に有機材料層 7、無機層 8を形成し、その上に、接 着剤などの封止材料 92を塗布して封止基板 91により、自発光素子 100を封止して いる。 The self-light emitting element 100 is formed by the lower electrode 3, the organic light emitting functional layer 5, and the upper electrode 6. Since the self-luminous element 100 is significantly deteriorated by deterioration factors such as moisture, the sealing member 9 Thus, the self-luminous element 100 is sealed to prevent deterioration of the element. In the optical device 1 according to the present embodiment, the organic material layer 7 and the inorganic layer 8 are formed on the upper electrode 6, and a sealing material 92 such as an adhesive is applied thereon to seal the sealing substrate 91. Thus, the self-luminous element 100 is sealed.
一つの画素 11は、例えば図 3に示すように、有機発光機能層 5が下部電極 3、上部 電極 6間に挟持された領域のうち、有機発光機能層 5の発光層が実質的に有効に発 光する領域に相当する。  In one pixel 11, for example, as shown in FIG. 3, in the region where the organic light emitting functional layer 5 is sandwiched between the lower electrode 3 and the upper electrode 6, the light emitting layer of the organic light emitting functional layer 5 is substantially effective. It corresponds to the light emitting area.
[0035] 有機材料層 7は、図 3に示すように、有機 EL素子 100上の上部電極 6上に形成さ れている。詳細には有機材料層 7は、上部電極 6上に、上部電極 6の成膜領域より広 い範囲に形成され、有機発光機能層 5と界面 57が形成されている。 The organic material layer 7 is formed on the upper electrode 6 on the organic EL element 100 as shown in FIG. Specifically, the organic material layer 7 is formed on the upper electrode 6 in a range wider than the film formation region of the upper electrode 6, and the organic light emitting functional layer 5 and the interface 57 are formed.
この有機材料層 7は、例えば有機発光機能層 5を構成する少なくとも一つの材料を 含むことが好ましい。有機材料層 7の材料としては、光デバイス 1の外的環境、駆動 条件などにより、各種有機材料を採用することができる。具体的には有機材料層 7と しては、アルミ錯体 Alq や銅フタロシアニン (CuPc)を採用することができる。  The organic material layer 7 preferably includes at least one material constituting the organic light emitting functional layer 5, for example. Various organic materials can be used as the material of the organic material layer 7 depending on the external environment of the optical device 1 and the driving conditions. Specifically, an aluminum complex Alq or copper phthalocyanine (CuPc) can be used as the organic material layer 7.
3  Three
[0036] 無機層 8は、下部電極及び上部電極との絶縁が確保された状態で、有機材料層上 に形成されている。また、無機層 8は、有機材料層 7の上面と、露出領域上の範囲に 例えば、導電材料を含む、導電層を真空蒸着により形成されている。  [0036] The inorganic layer 8 is formed on the organic material layer in a state in which insulation from the lower electrode and the upper electrode is ensured. In addition, the inorganic layer 8 is formed by vacuum deposition of a conductive layer containing a conductive material, for example, in a range on the upper surface of the organic material layer 7 and the exposed region.
この無機層 8は、導電材料を真空蒸着により成膜した場合、例えば有機 EL素子を 駆動制御する外部回路とは電気的に絶縁されている。また、無機層 8の形成材料は 、光デバイス 1の外的条件、駆動条件などにより各種材料を採用することができる。具 体的には、無機層 8は、アルミニウムなどの各種金属、金属酸化物等の導電材料を 採用することができる。また、無機層 8は、上部電極 6と同一材料により形成されてい ることが好ましい。  This inorganic layer 8 is electrically insulated from, for example, an external circuit that drives and controls the organic EL element when the conductive material is formed by vacuum deposition. Various materials can be adopted as the material for forming the inorganic layer 8 depending on the external conditions, driving conditions, and the like of the optical device 1. Specifically, the inorganic layer 8 can employ various metals such as aluminum and conductive materials such as metal oxides. The inorganic layer 8 is preferably made of the same material as the upper electrode 6.
無機層 8は、例えば図 3に示すように、有機材料層 7の形成領域より狭い範囲に形 成するとともに、上部電極 6の形成領域より広い範囲に形成する。また、無機層 8は真 空蒸着により形成される。上述したように本実施形態では有機発光機能層 5、上部電 極 6、有機材料層 7、無機層 8を真空蒸着法により形成することで、製造プロセスの簡 略ィ匕を実現することができる。 [0037] 封止部材 9は、基板 2上に形成された有機 EL素子 100を封止材料により封止する 。光デバイス 1Jの封止接合方法としては、気密封止、膜封止、固体封止などの各種 方法を採用することができる。本実施形態では図 3に示すように、素子側の基板 2と、 例えばガラスや金属材料等の各種材料カゝらなる封止基板 91との間をエポキシ榭脂 等の接着剤などの封止材料 92を介して封止を行う。この際、接着剤を、有機 EL素子 が形成された面側の全面に塗布して封止する。また、有機 EL素子に対応する位置 に凹部とする封止基板 91を接着剤を介して基板 2と貼合封止する。この際、凹部に 乾燥部材を形成しても良ぐ封止材料 92を封止膜として用いた膜封止を行っても構 わない。つまり、封止材料 92は本発明に係る封止部の一実施形態に相当する。 As shown in FIG. 3, for example, the inorganic layer 8 is formed in a range narrower than the region where the organic material layer 7 is formed, and is formed in a range wider than the region where the upper electrode 6 is formed. The inorganic layer 8 is formed by vacuum deposition. As described above, in this embodiment, the organic light emitting functional layer 5, the upper electrode 6, the organic material layer 7, and the inorganic layer 8 are formed by a vacuum deposition method, thereby simplifying the manufacturing process. . [0037] The sealing member 9 seals the organic EL element 100 formed on the substrate 2 with a sealing material. Various methods such as hermetic sealing, membrane sealing, and solid sealing can be employed as the sealing and joining method of the optical device 1J. In this embodiment, as shown in FIG. 3, sealing between an element-side substrate 2 and a sealing substrate 91 made of various materials such as glass and metal materials is performed using an adhesive such as epoxy resin. Seal through material 92. At this time, an adhesive is applied and sealed on the entire surface on which the organic EL element is formed. Further, a sealing substrate 91 having a recess at a position corresponding to the organic EL element is bonded and sealed to the substrate 2 with an adhesive. At this time, film sealing may be performed using a sealing material 92 that can form a drying member in the recess as a sealing film. That is, the sealing material 92 corresponds to an embodiment of the sealing portion according to the present invention.
[0038] また、光デバイス 1は、有機材料層 7と無機層 8が重なる領域 (有機材料層 7と無機 層 8の界面) 78の端部 8aが、有機発光機能層 5と上部電極 6とが重なる領域 (有機発 光機能層 5と上部電極 6との界面) 56の端部 6aより封止部 9の外端部 901a側に、有 機材料層 7を介して離間して形成されている。  [0038] Further, in the optical device 1, the end portion 8a of the region where the organic material layer 7 and the inorganic layer 8 overlap (interface between the organic material layer 7 and the inorganic layer 8) 78 has the organic light emitting functional layer 5 and the upper electrode 6 Area (interface between the organic light emitting functional layer 5 and the upper electrode 6) is formed on the outer end portion 901a side of the sealing portion 9 from the end portion 6a of the 56, with the organic material layer 7 interposed therebetween. Yes.
また、有機発光機能層 5と上部電極 6との界面 56の端部 6aが、有機材料層 7により 覆われた構造を有する。  Further, the end portion 6 a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with the organic material layer 7.
また、有機材料層 7と無機層 8との界面 78の端部近傍領域に、劣化因子を捕捉し て該劣化因子による有機発光機能層 5の劣化を低減させる捕捉部が形成されている 。詳細には、この捕捉部は、劣化因子が例えば有機材料層 7と無機層 8の界面に侵 入しやす 、と 、う特性を利用して 、る。  In addition, in the vicinity of the end portion of the interface 78 between the organic material layer 7 and the inorganic layer 8, a capturing portion that captures a deterioration factor and reduces deterioration of the organic light emitting functional layer 5 due to the deterioration factor is formed. In detail, this trapping part utilizes the characteristics that the deterioration factor easily enters the interface between the organic material layer 7 and the inorganic layer 8, for example.
[0039] 上記構成の光デバイス 1の自発光素子 100は、下部電極 3,上部電極 6間に電圧 を印加することによって、下部電極 3及び上部電極 6の一方に形成される陰極側から 電子が注入され、下部電極 3及び上部電極 6の他方に形成される陽極側カゝら正孔が 注入されて、それらが発光層 52で再結合し、この再結合により発光層 52内の有機分 子の電子状態が基底状態から、励起状態に遷移し、励起状態から基底状態に遷移 する際に発光する。  [0039] The self-light-emitting element 100 of the optical device 1 having the above-described configuration is such that electrons are applied from the cathode side formed on one of the lower electrode 3 and the upper electrode 6 by applying a voltage between the lower electrode 3 and the upper electrode 6. Then, holes are injected from the anode side formed on the other of the lower electrode 3 and the upper electrode 6, and they are recombined in the light emitting layer 52. By this recombination, organic molecules in the light emitting layer 52 are injected. Emits light when its electronic state transitions from the ground state to the excited state and from the excited state to the ground state.
[0040] また、上記構成の光デバイス 1では、下部電極 3及び上部電極 6間に有機発光機 能層 5が挟持された自発光素子 100上に、有機材料層 7が形成され、その有機材料 層 7上に無機層 8が形成されているので、例えば封止部材 92の未硬化成分、溶剤、 外部雰囲気力もの水や酸素などの劣化因子が、上部電極 6と有機発光機能層 5間の 界面 56へ侵入することを低減することができる。 [0040] Further, in the optical device 1 configured as described above, the organic material layer 7 is formed on the self-luminous element 100 in which the organic light emitting functional layer 5 is sandwiched between the lower electrode 3 and the upper electrode 6, and the organic material Since the inorganic layer 8 is formed on the layer 7, for example, an uncured component of the sealing member 92, a solvent, It is possible to reduce deterioration factors such as water and oxygen having an external atmosphere force from entering the interface 56 between the upper electrode 6 and the organic light emitting functional layer 5.
[0041] また、上記構成の光デバイス 1では、有機材料層 7と無機層 8の界面 78に、劣化因 子を捕捉して、その劣化因子による有機発光機能層 5の劣化を低減することができる 。また劣化因子が上部電極 6と有機発光機能層 5間の界面 56へ侵入する量を低減 することができる。つまり光デバイス 1の発光不良を低減することができる。  [0041] Further, in the optical device 1 having the above-described configuration, the degradation factor is captured at the interface 78 between the organic material layer 7 and the inorganic layer 8, and the degradation of the organic light emitting functional layer 5 due to the degradation factor can be reduced. it can . In addition, the amount of degradation factors entering the interface 56 between the upper electrode 6 and the organic light emitting functional layer 5 can be reduced. That is, the light emission failure of the optical device 1 can be reduced.
[0042] また、上記光デバイス 1では、有機発光機能層 5と上部電極 6との界面 56の端部 6a を、例えば規定の厚みの有機材料層 7により覆われた構造に形成されているので、 有機発光機能層 5と上部電極 6との界面 56への劣化因子の侵入を低減することがで きる。  [0042] In the optical device 1, the end portion 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is formed in a structure covered with, for example, an organic material layer 7 having a prescribed thickness. Further, it is possible to reduce the intrusion of deterioration factors into the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6.
[0043] また、上記構成の光デバイス 1では、自発光素子 100上に有機材料層 7を介して比 較的高い熱伝導度の無機層 8を備えるので、光デバイス 1が発光駆動する際に発生 する熱を放熱する効果がある。  [0043] In addition, the optical device 1 having the above configuration includes the inorganic layer 8 having a relatively high thermal conductivity via the organic material layer 7 on the self-luminous element 100, so that the optical device 1 is driven to emit light. It has the effect of dissipating the generated heat.
[0044] また、例えば上部電極 6にピンホール等の欠陥がある場合であっても、その上部電 極 6上に有機材料層 7、および無機層 8が順に形成されているので、その欠陥を要因 とするダークスポットの拡大を防止することができる。 [0044] Further, for example, even when the upper electrode 6 has a defect such as a pinhole, the organic material layer 7 and the inorganic layer 8 are sequentially formed on the upper electrode 6, so that the defect is eliminated. It is possible to prevent the expansion of dark spots as a factor.
[0045] 図 4は、本発明に係る光デバイスの効果を説明するための、画素の端部に生じる非 発光部分の幅の時間変化の一具体例を示す図である。縦軸は例えば図 2に示すよう に、画素 11の端部に生じる非発光部分の幅 (w)を示し、横軸は高温高湿環境下で の保管時間 (t)を示す。 FIG. 4 is a diagram showing a specific example of the change over time of the width of the non-light-emitting portion generated at the end portion of the pixel, for explaining the effect of the optical device according to the present invention. For example, as shown in FIG. 2, the vertical axis represents the width (w) of the non-light-emitting portion generated at the end of the pixel 11, and the horizontal axis represents the storage time (t) in a high-temperature and high-humidity environment.
[0046] 例えば図 1に示した一般的な構造の光デバイス 1Jでは、図 4に示したグラフ J 1のよう に、所定時間 (tl)前には、非発光部分の進行が観測されないが、所定時間後 (tl) は一定の速度で非発光部分の増加が観測される (非発光部分の幅 (w)で評価)。こ れは、例えば図 1に示すように、封止部 9の外端部 901aから接着剤 92J内に侵入し た劣化因子が、所定時間 (tl)をかけて有機発光機能層 5Jと上部電極 6Jの界面 56J に到達し、更に侵入したと考えられる。  For example, in the optical device 1J having the general structure shown in FIG. 1, as shown in the graph J 1 shown in FIG. 4, the progress of the non-light emitting portion is not observed before a predetermined time (tl). After a predetermined time (tl), an increase in the non-light-emitting portion is observed at a constant rate (evaluated by the width (w) of the non-light-emitting portion). This is because, for example, as shown in FIG. 1, the deterioration factor that has entered the adhesive 92J from the outer end 901a of the sealing portion 9 takes the organic light emitting functional layer 5J and the upper electrode over a predetermined time (tl). It is thought that it reached the interface 56J of 6J and entered further.
[0047] 一方、例えば図 3に示した本発明に係る光デバイス 1では、図 4に示したグラフ P1 のように、所定時間 (tl)前において、非発光部分の進行が観測されず、所定時間 (t 1)後においても非発光部分の進行が観測されない (観測時間内)。これは、例えば 図 3に示すように、本発明に係る光デバイス 1の有機材料層 7と無機層 8の界面 78に 、劣化因子を捕捉することによる効果であると考えられる。 [0047] On the other hand, in the optical device 1 according to the present invention shown in FIG. 3, for example, as shown in the graph P1 shown in FIG. Time (t 1) The progress of the non-emission part is not observed after (within the observation time). For example, as shown in FIG. 3, this is considered to be an effect obtained by capturing a deterioration factor at the interface 78 between the organic material layer 7 and the inorganic layer 8 of the optical device 1 according to the present invention.
また、図 3に示すように、本発明に係る光デバイス 1では、有機発光機能層 5と上部 電極 6との界面 56の端部 6aが、所定の厚みの有機材料層 7により覆われ、有機材料 層 7が有機発光機能層 5上に成膜された構造を有するので、有機 EL素子 100に劣 化因子への侵入をさらに低減する効果がある。  Also, as shown in FIG. 3, in the optical device 1 according to the present invention, the end portion 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with an organic material layer 7 having a predetermined thickness, Since the material layer 7 has a structure formed on the organic light emitting functional layer 5, the organic EL element 100 has an effect of further reducing intrusion into the deterioration factor.
[第 1実施例]  [First Example]
次に、本発明の第 1実施例に係る光デバイスを説明する。  Next, an optical device according to the first embodiment of the present invention will be described.
ガラス製の基板 2上に、下部電極 3として ITOカゝらなる陽極を形成し、その上に正孔 注入層,正孔輸送層,発光層,電子注入層カゝらなる有機発光機能層 5を形成し、そ の上に上部電極 7として A1からなる陰極を形成した有機 EL素子 100とする。  An anode made of ITO is formed as a lower electrode 3 on a glass substrate 2, and an organic light emitting functional layer 5 made of a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer is formed thereon. And an organic EL element 100 in which a cathode made of A1 is formed as the upper electrode 7 thereon.
膜厚 1 lOnmの ITO (インジウム錫酸ィ匕物)力もなる陽極が形成されたガラス製の基 板 2上に、真空度 5. 0 X 10— 4Paの各成膜室内で真空蒸着法によって成膜層を成膜 した。この際、先ず、 ITO上に正孔注入層として CuPc (銅フタロシアニン)を 25nmの 膜厚で成膜し、次いで、正孔注入層上に正孔輸送層として、 NPD (N, N'—ジフエ -ル一 N, N,一ビス(1—ナフチル)一 1, 1,一ビフエ-ルー 4, 4,一ジァミン)を 45η mの膜厚で成膜した。正孔輸送層層上に発光層及び電子輸送層として Alqを膜厚 6 Film thickness 1 LOnm of ITO (indium Suzusani匕物) force also on a glass base plate 2 with the anode formed consisting, by vacuum evaporation in the film formation chamber of the vacuum 5. 0 X 10- 4 Pa A film formation layer was formed. At this time, first, CuPc (copper phthalocyanine) was deposited on ITO as a hole injection layer with a film thickness of 25 nm, and then NPD (N, N′-diphenyl) was formed on the hole injection layer as a hole transport layer. -N, N, 1bis (1-naphthyl) 1,1,1, biferro-4,4,1diamin) with a film thickness of 45ηm. Film thickness of Alq on the hole transport layer as the light emitting layer and electron transport layer 6
3 Three
Onm成膜した。次いで、発光層上に電子注入層として LiF (フッ化リチウム)を 0. 5n mの厚さに成膜した。そして、電子注入層上に上部電極 6として A1 (アルミニウム)を 1 OOnmの厚さで成膜した。 Onm film was formed. Next, LiF (lithium fluoride) was deposited to a thickness of 0.5 nm as an electron injection layer on the light emitting layer. Then, A1 (aluminum) was deposited as an upper electrode 6 on the electron injection layer to a thickness of 1 OOnm.
次いで、上部電極 6上に有機材料層 7として有機発光機能の一つである電子輸送 層と同じ材料の Alq を 60nm成膜した。有機材料層 7は真空蒸着により形成し、有  Next, 60 nm of Alq, which is the same material as the electron transport layer, which is one of the organic light emitting functions, was formed on the upper electrode 6 as the organic material layer 7. The organic material layer 7 is formed by vacuum vapor deposition
3  Three
機発光機能層 5と上部電極 6との界面 56を覆うように成膜する。 A film is formed so as to cover the interface 56 between the electroluminescent functional layer 5 and the upper electrode 6.
その後、有機材料層 7上に無機層 8として上部電極 6と同じ材料の A1を lOOnm成 膜した。無機層 8は真空蒸着により形成し、有機材料層 7と無機層 8の界面 78の端部 8aが有機発光機能層 5と上部電極 6との界面 56の端部 6aよりも封止部の外端部 90 la側に形成するように成膜する。作製した有機 EL素子をエポキシ榭脂を封止材料 9 2とし、ガラス製の封止基板 91と基板 2とを空間を形成しないように封止して第 1実施 例に係る光デバイスを完成させた。 Thereafter, A1 of the same material as the upper electrode 6 was formed as an inorganic layer 8 on the organic material layer 7 by lOOnm. The inorganic layer 8 is formed by vacuum deposition, and the end 8a of the interface 78 between the organic material layer 7 and the inorganic layer 8 is located outside the sealing portion more than the end 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6. The film is formed so as to be formed on the end 90 la side. The prepared organic EL device is sealed with epoxy resin 9 The glass sealing substrate 91 and the substrate 2 were sealed so as not to form a space, and the optical device according to the first example was completed.
[0049] [第 2実施例] [0049] [Second Example]
次に、第 2実施例に係る光デバイスを作製した。第 1実施例に係る光デバイスと同 様な構成については説明を省略する。第 2実施例では、有機材料層 7を有機発光機 能の一つである正孔注入層と同じ材料の CuPcを 60nm成膜した以外は前述の実施 例 1で作製した光デバイスと同様に作製した。  Next, an optical device according to the second example was fabricated. The description of the same configuration as that of the optical device according to the first embodiment is omitted. In the second example, the organic material layer 7 was fabricated in the same manner as the optical device fabricated in the previous example 1, except that 60 nm of CuPc, which is the same material as the hole injection layer, which is one of the organic light emitting functions, was formed. did.
[0050] [比較例] [0050] [Comparative Example]
次に、本発明に係る光デバイスの効果を確認するために、有機材料層 7および無 機層 8を形成せずに素子を封止して、比較例に係る光デバイスを作製した。その他の 構成は、第 1実施例及び第 2実施例と同様であるので説明を省略する。  Next, in order to confirm the effect of the optical device according to the present invention, the element was sealed without forming the organic material layer 7 and the inorganic layer 8, and an optical device according to a comparative example was produced. Since other configurations are the same as those of the first and second embodiments, the description thereof is omitted.
[0051] 図 5,図 6は、本発明の実施例に係る光デバイスの効果を説明するための図である 。詳細には、図 5は、本発明の第 1実施例に係る光デバイスと、比較例に係る光デバ イスとを温度 60°C、湿度 90%の高温高湿環境下で保存し、図 4に示したように経過 時間 t (横軸単位時間 (h) )に対する画素 11の端部に生じる非発光部分の幅 (w) (縦 軸単位; z m)を示す図である。図 6は、本発明の第 2実施例に係る光デバイスと、比 較例に係る光デバイスとを温度 60°C、湿度 90%の高温高湿環境下で保存して、同 様な実験を行った結果を示す図である。  FIG. 5 and FIG. 6 are diagrams for explaining the effect of the optical device according to the example of the present invention. Specifically, FIG. 5 shows that the optical device according to the first embodiment of the present invention and the optical device according to the comparative example are stored in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a humidity of 90%. FIG. 6 is a diagram showing the width (w) (vertical unit; zm) of a non-light-emitting portion generated at the end of the pixel 11 with respect to the elapsed time t (horizontal unit time (h)) as shown in FIG. FIG. 6 shows a similar experiment in which the optical device according to the second embodiment of the present invention and the optical device according to the comparative example were stored in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a humidity of 90%. It is a figure which shows the result of having performed.
[0052] 比較例に係る光デバイスでは、図 5,図 6のグラフ J2に示すように、約 240時間前に は、非発光部分の進行が観測されないが、約 240時間経過後力も一定の速度で非 発光部分の増加が観測された (非発光部分の幅 (w)で評価)。  [0052] In the optical device according to the comparative example, as shown in the graph J2 in FIGS. 5 and 6, the progress of the non-emission portion is not observed about 240 hours ago, but the force is constant at a constant speed after about 240 hours. An increase in the non-light-emitting part was observed at (evaluated by the width (w) of the non-light-emitting part).
[0053] 一方、第 1実施例に係る光デバイスでは、図 5のグラフ P11に示すように、約 240時 間前に非発光部分の進行が観測されず、更には約 240時間経過後であっても非発 光部分の進行が観測されな力つた (観測時間内)。  On the other hand, in the optical device according to the first example, as shown in the graph P11 of FIG. 5, the progress of the non-light-emitting portion was not observed about 240 hours ago, and further, after about 240 hours had elapsed. However, the progress of the non-light emitting part was not observed (within the observation time).
[0054] また、第 2実施例に係る光デバイスでは、図 6のグラフ P12に示すように、約 240時 間前に非発光部分の進行が観測されず、更には約 240時間経過後であっても非発 光部分の進行が観測されな力つた (観測時間内)。  [0054] Further, in the optical device according to the second example, as shown in the graph P12 of FIG. 6, the progress of the non-light-emitting portion was not observed about 240 hours ago, and after about 240 hours had passed. However, the progress of the non-light emitting part was not observed (within the observation time).
[0055] [第 2実施形態] 図 7は、本発明の第 2実施形態に係る光デバイスを説明するための断面図である。 上記実施形態と同様な構成や機能については説明を省略する。 [0055] [Second Embodiment] FIG. 7 is a cross-sectional view for explaining an optical device according to the second embodiment of the present invention. A description of the same configurations and functions as those in the above embodiment will be omitted.
本実施形態に係る光デバイス 1Sでは、図 7に示すように、基板 2の上部に下部電 極 3がパターン形成され、その上部に SiO 、ポリイミド等の第 1絶縁膜 4により画素 (領  In the optical device 1S according to the present embodiment, as shown in FIG. 7, a lower electrode 3 is patterned on an upper part of a substrate 2, and a pixel (region) is formed on the upper part by a first insulating film 4 such as SiO 2 or polyimide.
2  2
域) 11が形成される。この画素 11がーつ又は複数形成され、下部電極 3および上部 電極 6への電圧印加により有機発光機能層 5内に電流が流れることにより画素 11の 表示 Z非表示が選択される。この画素 11の表示 Z非表示により光デバイスが所望の 情報を表示している。  Area) 11 is formed. One or a plurality of the pixels 11 are formed, and a current flows in the organic light emitting functional layer 5 by applying a voltage to the lower electrode 3 and the upper electrode 6, whereby display Z non-display of the pixel 11 is selected. The optical device displays the desired information by the display Z non-display of the pixel 11.
この画素 11および第 1絶縁膜 4の上部に有機発光機能層 5および上部電極 6が形 成される。例えば図 2に示すように、外端部 901aに最も近い画素 11の端部に形成さ れる第 1絶縁膜 4上に有機発光機能層 5および上部電極 6の界面 56が形成される。 そして、自発光素子を覆うように第 2絶縁膜 41を形成する。更に界面 56を覆うように 上部電極 6上に第 2絶縁膜 41を形成する。好ましくは第 2絶縁膜 41は第 1絶縁膜 4を 形成した領域を全て覆うように成膜する。第 2絶縁膜 41は、 MoO (酸ィ匕モリブデン)  An organic light emitting functional layer 5 and an upper electrode 6 are formed on the pixel 11 and the first insulating film 4. For example, as shown in FIG. 2, an interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is formed on the first insulating film 4 formed at the end of the pixel 11 closest to the outer end 901a. Then, a second insulating film 41 is formed so as to cover the self light emitting element. Further, a second insulating film 41 is formed on the upper electrode 6 so as to cover the interface 56. Preferably, the second insulating film 41 is formed so as to cover the entire region where the first insulating film 4 is formed. The second insulating film 41 is made of MoO (acid molybdenum)
3  Three
、 SnO (酸化スズ)等の金属酸化物を真空蒸着により形成する。  A metal oxide such as SnO (tin oxide) is formed by vacuum deposition.
2  2
次に、この第 2絶縁膜 41上の界面 56を覆う範囲に有機材料層 7、その上部に無機 層 8を成膜する。有機材料層 7と無機層 8の界面 78の端部が第 2絶縁膜 41下の界面 56の端部よりも封止部 9の外端部 901a側に形成されるように成膜する。  Next, the organic material layer 7 is formed in a range covering the interface 56 on the second insulating film 41, and the inorganic layer 8 is formed thereon. The film is formed so that the end portion of the interface 78 between the organic material layer 7 and the inorganic layer 8 is formed closer to the outer end portion 901a side of the sealing portion 9 than the end portion of the interface 56 below the second insulating film 41.
[0056] 上記構成の光デバイスでは、パターユングされた第 1絶縁膜 4により画素領域 11が 形成され、該画素領域 11内に自発光素子 100が形成され、有機発光機能層 5と上 部電極 6との界面 56の端部が、第 1絶縁膜 4上に形成されるとともに第 2絶縁膜 41に より覆われた構造を有するので、第 1実施形態と比べて更に有機発光機能層 5と上 部電極 6の界面 56に劣化因子が侵入することを低減することができる。  In the optical device having the above configuration, the pixel region 11 is formed by the patterned first insulating film 4, the self-emitting element 100 is formed in the pixel region 11, and the organic light emitting functional layer 5 and the upper electrode are formed. Since the end portion of the interface 56 with 6 is formed on the first insulating film 4 and covered with the second insulating film 41, the organic light emitting functional layer 5 and It is possible to reduce deterioration factors from entering the interface 56 of the upper electrode 6.
[0057] [第 3実施形態]  [0057] [Third embodiment]
図 8は、本発明の第 3実施形態に係る光デバイス 1を説明するための図である。図 8 (A)は上面図であり、図 8 (B)は図 8 (A)に示した領域 A付近の断面図である。第 1実 施形態と同じ構成や機能については説明を省略する。本実施形態に係る光デバイス 1は、複数の自発光素子 (有機 EL素子) 100が基板 2上に略格子状に形成されてい る。この光デバイス 1は、少なくとも一つの画素 11、本実施形態ではマトリックス状の 複数個の画素 11を有しており、この画素を形成する有機 EL素子 100が下部電極 3と 上部電極 6間に、発光層 52を含む有機発光機能層 5が挟持されている。本実施形態 に係る光デバイス 1は、図 8 (A) , 8 (B)に示すように、例えば電源回路、コントローラ I C (Integrated circuit)等の外部回路からの入力信号により、各自発光素子の発光 Z 非発光が制御される。光デバイス 1は、この各自発光素子の発光 Z非発光により各 種情報を表示する。以下、光デバイス 1として、自発光素子である有機 EL素子を利 用した有機 ELパネルを説明する。 FIG. 8 is a view for explaining an optical device 1 according to the third embodiment of the present invention. 8A is a top view, and FIG. 8B is a cross-sectional view in the vicinity of the region A shown in FIG. 8A. A description of the same configurations and functions as those in the first embodiment is omitted. In the optical device 1 according to this embodiment, a plurality of self-luminous elements (organic EL elements) 100 are formed on the substrate 2 in a substantially lattice shape. The This optical device 1 has at least one pixel 11, in the present embodiment, a plurality of pixels 11 in a matrix form, and the organic EL element 100 forming this pixel is interposed between the lower electrode 3 and the upper electrode 6, An organic light emitting functional layer 5 including the light emitting layer 52 is sandwiched. As shown in FIGS. 8 (A) and 8 (B), the optical device 1 according to the present embodiment emits light from each self-luminous element by an input signal from an external circuit such as a power supply circuit or a controller IC (Integrated circuit). Z Non-light emission is controlled. The optical device 1 displays various kinds of information by the light emission Z non-light emission of each self-luminous element. Hereinafter, as an optical device 1, an organic EL panel using an organic EL element which is a self-luminous element will be described.
図 8 (A) , 8 (B)に示すように、光デバイス 1は、基板 2、下部電極 (第 1電極) 3、第 1 絶縁膜 4、発光機能層 5、上部電極 (第 2電極) 6、有機材料層 7、無機層 8、および封 止部材 9を有する。有機発光機能層 5は、第 1電荷輸送層 51、発光層 52、および第 2電荷輸送層 53を有する。  As shown in FIGS. 8A and 8B, the optical device 1 includes a substrate 2, a lower electrode (first electrode) 3, a first insulating film 4, a light emitting functional layer 5, and an upper electrode (second electrode). 6. It has an organic material layer 7, an inorganic layer 8, and a sealing member 9. The organic light emitting functional layer 5 includes a first charge transport layer 51, a light emitting layer 52, and a second charge transport layer 53.
詳細には、図 8 (A) , 8 (B)に示す光デバイス 1では、ガラス等の基板 2上に ITOの ような透明電極が下部電極 3として形成され、一つの画素 11を形成するように SiO  Specifically, in the optical device 1 shown in FIGS. 8A and 8B, a transparent electrode such as ITO is formed as a lower electrode 3 on a substrate 2 such as glass to form one pixel 11. In SiO
2 やポリイミド等の第 1絶縁膜 4の開口部が成膜 'パター-ングされている。開口部内の 下部電極 3表面上に第 1電荷輸送層を NPDのような正孔輸送層で形成する。第 1電 荷輸送層 51は開口部内と開口部を形成する第 1絶縁膜 4の上部及び最外部に形成 した第 1絶縁膜 4の上部まで成膜する。その第 1電荷輸送層 51上に発光層 52が形 成されている。発光層 52の発光材料としては光デバイスの設計事項、例えば単色表 示やフルカラー表示、ドットマトリックスやアイコン表示、セグメント表示により適宜選択 してよい。例えば、 DCM1 (4— (ジシァノメチレン) 2—メチル 6— (4,一ジメチル アミノスチリル) 4H—ピラン)等のスチリル色素等の赤色を発光する材料やジスチリ ル誘導体、トリァゾール誘導体等の青色を発光する材料、 Ir (イリジウム)錯体を利用 したリン光材料等を採用してもよい。発光層 52の上部には第 2電荷輸送層 53が形成 されている。第 2電荷輸送層 53は例えばアルミニウム錯体 (Alq )等の各種材料によ  The opening of the first insulating film 4 such as 2 or polyimide is formed and patterned. A first charge transport layer is formed of a hole transport layer such as NPD on the surface of the lower electrode 3 in the opening. The first charge transport layer 51 is formed in the opening and above the first insulating film 4 forming the opening and to the top of the first insulating film 4 formed on the outermost part. A light emitting layer 52 is formed on the first charge transport layer 51. The light emitting material of the light emitting layer 52 may be appropriately selected according to the design items of the optical device, for example, single color display, full color display, dot matrix, icon display, and segment display. For example, DCM1 (4- (disyanomethylene) 2-methyl 6- (4,1 dimethylaminostyryl) 4H-pyran) and other materials that emit red light, and blue light such as distyryl derivatives and triazole derivatives. A material, a phosphorescent material using Ir (iridium) complex, or the like may be used. A second charge transport layer 53 is formed on the light emitting layer 52. The second charge transport layer 53 is made of various materials such as aluminum complex (Alq).
3  Three
り電子輸送層が形成されている。発光層 52および第 2電荷輸送層 53は第 1電荷輸 送層 51と同様に開口部を形成する第 1絶縁膜 4の上部及び最外部に形成した第 1 絶縁膜 4の上部まで成膜する。 [0059] 第 1電荷輸送層 51、発光層 52、及び第 2電荷輸送層 53を備える有機発光機能層 5を成膜した上部に、上部電極 6が成膜されている。上部電極 6の形成材料としては 、例えば A1等の各種金属材料を採用することができる。この上部電極 6は開口部を 形成する第 1絶縁膜 4の上部及び最外部に形成された第 1絶縁膜 4の上部まで成膜 されているが、図 8 (B)に示すように、有機発光機能層 5の成膜範囲よりも狭い成膜 範囲に形成されて ヽることが好ま 、。 An electron transport layer is formed. Similar to the first charge transport layer 51, the light emitting layer 52 and the second charge transport layer 53 are formed up to the top of the first insulating film 4 forming the opening and the top of the first insulating film 4 formed on the outermost part. . The upper electrode 6 is formed on the organic light emitting functional layer 5 including the first charge transport layer 51, the light emitting layer 52, and the second charge transport layer 53. As a material for forming the upper electrode 6, for example, various metal materials such as A1 can be employed. The upper electrode 6 is formed up to the upper part of the first insulating film 4 forming the opening and the upper part of the first insulating film 4 formed on the outermost part, but as shown in FIG. It is preferable that the light emitting functional layer 5 is formed in a film forming range narrower than the film forming range.
上部電極 6の上部には、上部電極 6の成膜範囲よりも広 ヽ範囲に有機材料層 7が 成膜されている。例えば有機材料層 7は、有機発光機能層 5を構成する有機材料の 中で同じ材料のものを選択することが好ましい。詳細には、有機材料層 7を形成する 際に、例えば第 2電荷輸送層 53の形成材料である Alq を、アルミニウム (A1)力もな  On top of the upper electrode 6, the organic material layer 7 is formed in a wider range than the film formation range of the upper electrode 6. For example, the organic material layer 7 is preferably selected from the same materials among the organic materials constituting the organic light emitting functional layer 5. Specifically, when forming the organic material layer 7, for example, Alq, which is a material for forming the second charge transport layer 53, has an aluminum (A1) force.
3  Three
る上部電極 6の上部に成膜'パターユングする。この際、図 8 (B)に示すように、有機 材料層 7の成膜範囲は、上部電極 6より広い範囲に成膜する。詳細には、図 8 (B)に 示すように、上部電極 6の端部 6aより画素の外側に、有機発光機能層 5と有機材料 層 7とが重なりあうように成膜する。本実施形態に係る光デバイス 1では、有機発光機 能層 5と有機材料層 7との界面をなくすことにより、有機 EL素子 100の劣化因子が、 有機発光機能層 5と上部電極 6の界面 56の界面に侵入することを低減して、それを 要因とする有機 EL素子 100の発光不良を低減することができる。  A film is formed on the upper electrode 6. At this time, as shown in FIG. 8B, the film forming range of the organic material layer 7 is formed in a wider range than the upper electrode 6. Specifically, as shown in FIG. 8B, the organic light emitting functional layer 5 and the organic material layer 7 are formed so as to overlap each other outside the pixel from the end 6a of the upper electrode 6. In the optical device 1 according to the present embodiment, the degradation factor of the organic EL element 100 is reduced by eliminating the interface between the organic light emitting functional layer 5 and the organic material layer 7. Intrusion into the interface of the organic EL element 100 can be reduced, and the light emitting failure of the organic EL element 100 caused by the reduction can be reduced.
[0060] また、図 8 (B)に示すように、有機材料層 7の上部に導電材料により無機層 8を成膜 する。この無機層 8は、有機 EL素子 100の下部電極 3、上部電極 6と電気的に絶縁 状態が確保されており、さらに光デバイス 1の有機 EL素子 100を駆動するための外 部回路 85 (851, 852)や第 1電極側フレキシブル基板 801 (80)や第 2電極側フレキ シブル基板 802 (80)とも、電気的な絶縁状態が確保されている。つまりこの有機材 料層 7、無機層 8は、有機 EL素子 100の発光 Z非発光には関与していない。  [0060] Further, as shown in FIG. 8B, an inorganic layer 8 is formed on the organic material layer 7 with a conductive material. This inorganic layer 8 is electrically insulated from the lower electrode 3 and the upper electrode 6 of the organic EL element 100, and an external circuit 85 (851 for driving the organic EL element 100 of the optical device 1). , 852), the first electrode side flexible substrate 801 (80) and the second electrode side flexible substrate 802 (80), electrical insulation is ensured. In other words, the organic material layer 7 and the inorganic layer 8 are not involved in the light emitting Z non-light emission of the organic EL element 100.
[0061] また、図 8 (B)に示すように、無機層 8の上部には、封止材料 (接着剤) 92により封 止基板 91が接合されている。封止材料 92としては、例えば熱硬化榭脂ゃ光硬化榭 脂等の有機榭脂を採用することができる。封止基板 91は、例えば平板状のガラス材 料、金属基板やプラスチック材等力 なり、水分をバリアする機能を有するもので形 成されることが好ましい。また、図 8 (A) , 8 (B)には図示していないが、封止基板 91と 基板 2の外周部をシール材等で封止してもょ 、。 Further, as shown in FIG. 8B, a sealing substrate 91 is bonded to the upper portion of the inorganic layer 8 by a sealing material (adhesive) 92. As the sealing material 92, for example, an organic resin such as a thermosetting resin or a photo-curing resin can be employed. The sealing substrate 91 is preferably formed of a flat glass material, a metal substrate, a plastic material, or the like and having a function of blocking moisture. Although not shown in FIGS. 8 (A) and 8 (B), the sealing substrate 91 and Seal the outer periphery of the substrate 2 with a sealing material.
また、図 8 (B)に示すように、有機材料層 7と無機層 8が重なる領域 (有機材料層 7と 無機層 8の界面) 78の端部が、有機発光機能層 5と上部電極 6が重なる領域 (有機 発光機能層 5と上部電極 6の界面) 56の端部 6aより封止部 9の外端部 901a側に、有 機材料層 7を介して離間して形成されている。  Further, as shown in FIG. 8B, the end of the region where the organic material layer 7 and the inorganic layer 8 overlap (the interface between the organic material layer 7 and the inorganic layer 8) 78 is the organic light emitting functional layer 5 and the upper electrode 6 Is formed on the outer end portion 901a side of the sealing portion 9 from the end portion 6a of the organic light emitting functional layer 5 and the upper electrode 6 through the organic material layer 7.
[0062] 光デバイス 1の製造方法の一例を説明する。本実施形態に係る光デバイス 1の製造 方法は、例えば、下部電極形成工程、第 1絶縁膜形成工程、有機発光機能層形成 工程 (第 1輸送層形成工程、発光層形成工程、第 2輸送層形成工程)、上部電極形 成工程、有機材料層形成工程、無機層形成工程、封止工程、及び後処理工程を有 する。以下、図 8〜図 16を参照しながら、本実施形態に係る光デバイス 1の製造方法 を詳細に説明する。 An example of a method for manufacturing the optical device 1 will be described. The manufacturing method of the optical device 1 according to the present embodiment includes, for example, a lower electrode forming step, a first insulating film forming step, an organic light emitting functional layer forming step (first transport layer forming step, light emitting layer forming step, second transport layer). Forming step), upper electrode forming step, organic material layer forming step, inorganic layer forming step, sealing step, and post-processing step. Hereinafter, the method for manufacturing the optical device 1 according to the present embodiment will be described in detail with reference to FIGS.
[0063] [下部電極 (第 1電極)形成工程] [0063] [Lower electrode (first electrode) formation process]
図 9は、本発明の一実施形態に係る光デバイスの製造方法の下部電極形成工程を 説明するための図である。図 9 (A)は上面図であり、図 9 (B)は図 9 (A)に示した領域 A付近の断面図である。  FIG. 9 is a view for explaining a lower electrode forming step of the optical device manufacturing method according to the embodiment of the present invention. 9A is a top view, and FIG. 9B is a cross-sectional view in the vicinity of the region A shown in FIG. 9A.
先ず、例えばガラス等の基板 2上に ITO、 IZO (Indium Zinc Oxide)等の透明電極 を下部電極 (第 1電極) 3としてスパッタ成膜法等の各種成膜法により、全面に略一定 の膜厚に成膜する。本例では、下部電極 3を正孔注入電極として説明するが、逆に 電子注入電極として形成しても良い。その後、有機 EL素子の一部である下部電極 3 、有機 EL素子 100の発光 Z非発光の制御信号を外部回路から入力するための下 部電極用弓 I出配線 3aと上部電極 (第 2電極)用弓 I出配線 3bをパターユングする。 詳細には、図 9 (A) , 9 (B)に示すように、下部電極 3と下部電極用引出配線 3aを 形作る複数の下部電極 (第 1電極)ライン 3Aと複数の上部電極用引出配線 3bを、フ オトリソグラフィ法でストライプ状にパターユングする。このとき、第 1電極の表面を平滑 にするために、上記基板 2上に成膜された導電材料もしくは成膜後にパターユングさ れた導電材料に対して、研磨やエッチング等の表面処理を施してもよい。また、下部 電極用引出配線 3aや上部電極用引出配線 3bの上部に、銀 (Ag)、アルミニウム (A1 )、クロム (Cr)等の低抵抗金属やその合金を積層してパターユングしてもよ!/、。 [0064] [画素領域形成工程 (第 1絶縁膜形成工程) ] First, on a substrate 2 such as glass, a transparent electrode such as ITO or IZO (Indium Zinc Oxide) is used as a lower electrode (first electrode) 3 by various film forming methods such as a sputter film forming method to form a substantially constant film on the entire surface. Thick film is formed. In this example, the lower electrode 3 is described as a hole injection electrode, but conversely, it may be formed as an electron injection electrode. After that, the lower electrode 3 which is a part of the organic EL element, the lower electrode bow I input wiring 3a and the upper electrode (second electrode) for inputting the light emission Z non-emission control signal of the organic EL element 100 from the external circuit ) Pattern I put out wiring 3b. Specifically, as shown in FIGS. 9 (A) and 9 (B), a plurality of lower electrode (first electrode) lines 3A and a plurality of upper electrode lead wires forming the lower electrode 3 and the lower electrode lead wire 3a. Pattern 3b into stripes by photolithography. At this time, in order to smooth the surface of the first electrode, a surface treatment such as polishing or etching is applied to the conductive material formed on the substrate 2 or the conductive material patterned after the film formation. May be. Alternatively, a low resistance metal such as silver (Ag), aluminum (A1), chromium (Cr) or an alloy thereof may be laminated on the upper part of the lower electrode lead wire 3a or the upper electrode lead wire 3b and patterned. Yo! / [0064] [Pixel region forming step (first insulating film forming step)]
図 10は、本発明の一実施形態に係る光デバイス 1の製造方法の画素領域形成ェ 程 (第 1絶縁膜形成工程)を説明するための図である。図 10 (A)は上面図であり、図 10 (B)は図 10 (A)に示した領域 A付近の断面図である。  FIG. 10 is a view for explaining a pixel region forming step (first insulating film forming step) in the method for manufacturing the optical device 1 according to the embodiment of the present invention. FIG. 10A is a top view, and FIG. 10B is a cross-sectional view in the vicinity of the region A shown in FIG. 10A.
上述したように、一つの有機 ELディスプレイが情報表示を行うために、一つの有機 EL素子 100を一つの画素 11として利用して 、る。この複数の画素 11を有する有機 ELディスプレイを示しており、この画素 11の発光領域を第 1絶縁膜 4の開口部にて 形成している。第 1絶縁膜 4は、例えば有機材料のポリイミド、無機材料の酸化珪素 等を基板 2の下部電極パターユング側の全面に成膜する。  As described above, one organic EL device 100 is used as one pixel 11 for one organic EL display to display information. An organic EL display having a plurality of pixels 11 is shown, and a light emitting region of the pixels 11 is formed in the opening of the first insulating film 4. The first insulating film 4 is formed on the entire surface of the lower electrode patterning side of the substrate 2 with, for example, an organic material polyimide, an inorganic material silicon oxide, or the like.
先ず、例えばポリイミド前駆体、ノボラック榭脂、酸化珪素等の第 1絶縁膜用材料を 、基板 2上の第 1電極形成側の全面に、スピンコートゃスパッタ法等の製造方法によ り成膜する。その後、図 10 (A) , 10 (B)に示すように、その第 1絶縁膜を格子状にパ ターニングする。詳細には、第 1絶縁膜 4を、ストライプ状に複数並んでパターユング されて 、る下部電極ライン 3A間と、その下部電極ライン 3Aに対して直交する方向に 格子状になるようにフォトリソグラフィ一によりパターユングする。パターユング後、必 要に応じてキュア工程を実施する。図 10 (B)には、下部電極 3の両端に複数第 1絶 縁膜 4が存在するように示したが、本実施形態に係る第 1絶縁膜 4は、図 10 (A)に示 すように、 1回の成膜で形成された一層の第 1絶縁膜 4を規定形状にパターニングし て作製される。なお、第 1絶縁膜 4は、絶縁材料の成膜およびパターユングを複数行 うこと〖こより作製してもよい。本発明のに係る光デバイス 1を形成できればよい。また画 素領域形成工程 (第 1絶縁膜形成工程)において、上部電極 6をパターユングするた めのオーバーハングを有する隔壁や、塗分け用マスクが有機発光機能層 5と接触し な 、ようにするためにマスク支持層を形成してもよ 、。  First, for example, a first insulating film material such as a polyimide precursor, novolac resin, silicon oxide or the like is formed on the entire surface of the first electrode formation side on the substrate 2 by a manufacturing method such as spin coating or sputtering. To do. Thereafter, as shown in FIGS. 10A and 10B, the first insulating film is patterned in a lattice pattern. More specifically, the first insulating film 4 is patterned in a plurality of stripes so as to form a lattice pattern between the lower electrode lines 3A and in a direction perpendicular to the lower electrode lines 3A. Patting with one. After patterning, a curing process is performed as necessary. Although FIG. 10B shows that there are a plurality of first insulating films 4 at both ends of the lower electrode 3, the first insulating film 4 according to this embodiment is shown in FIG. As described above, the first insulating film 4 formed by one film formation is patterned into a prescribed shape. The first insulating film 4 may be formed by performing a plurality of film formation and patterning of an insulating material. It is only necessary to form the optical device 1 according to the present invention. Further, in the pixel region forming process (first insulating film forming process), the partition wall having an overhang for patterning the upper electrode 6 and the coating mask are not in contact with the organic light emitting functional layer 5. A mask support layer may be formed to do this.
[0065] [第 1輸送層形成工程] [0065] [First transport layer forming step]
図 11は、本発明の一実施形態に係る光デバイスの製造方法の第 1電荷輸送層形 成工程を説明するための図である。図 11 (A)は上面図であり、図 11 (B)は図 11 (A) に示した領域 A付近の断面図である。  FIG. 11 is a diagram for explaining a first charge transport layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention. FIG. 11 (A) is a top view, and FIG. 11 (B) is a cross-sectional view in the vicinity of the region A shown in FIG. 11 (A).
[0066] 上記画素領域形成工程後、第 1電極や第 1絶縁膜 4等が形成された基板 2に、前 処理工程を施す。前処理工程としては、例えば界面活性剤や純水等による洗浄工程 や、 UV (Ultraviolet)照射 Zオゾン洗浄やプラズマ洗浄等の各種洗浄工程を採用す ることがでさる。 [0066] After the pixel region forming step, the substrate 2 on which the first electrode, the first insulating film 4, etc. are formed Apply processing steps. As the pretreatment process, for example, a cleaning process using a surfactant or pure water, and various cleaning processes such as UV (Ultraviolet) irradiation Z ozone cleaning and plasma cleaning can be adopted.
次に、前処理工程後、その基板 2を真空度 1 X 10— 4Paに設定した成膜室 (不図示) 内に搬送し、例えば抵抗加熱蒸着法等の各種製造方法により有機材料の成膜を行 う。抵抗加熱蒸着法は、成膜室に基板 2を設置し、成膜材料を充填した成膜源をカロ 熱することにより、蒸発や昇華する成膜材料を第 1絶縁膜 4により区画された開口部 内に成膜する。本実施形態では真空蒸着法による成膜方法の説明を行うが、その他 にも高分子材料を塗布法、印刷法による成膜法、レーザ熱転写法等による成膜方法 により成膜層を形成しても良い。 Next, before or after step, conveying the substrate 2 into the deposition chamber set at a vacuum 1 X 10- 4 Pa (not shown) in, for example, formed of an organic material by various manufacturing methods such as resistance heating vapor deposition method Do the membrane. In the resistance heating vapor deposition method, the substrate 2 is placed in the film formation chamber, and the film formation source filled with the film formation material is heated by calorie. A film is formed inside. In this embodiment, a film forming method using a vacuum vapor deposition method will be described. In addition, a film forming layer is formed by a polymer material coating method, a film forming method using a printing method, a film forming method using a laser thermal transfer method, or the like. Also good.
[0067] 例えば、 NPB (N,N-di(naphtalence)-N,N-dipheneyl-benzidene)を第 1電荷輸送層 51として成膜する。第 1電荷輸送層 51は、下部電極 3から注入される正孔 (若しくは 電子)を発光層 52に輸送する機能を有する。この第 1電荷輸送層 51は、 1層だけ積 層したものでも 2層以上積層したものであってもよい。また第 1電荷輸送層 51は、単 一の材料による成膜ではなぐ複数の材料により一つの層を形成しても良ぐ電荷輸 送能力の高!、ホスト材料に電荷供与 (受容)性の高!、ゲスト材料をドーピングしてもよ い。また、第 1電荷輸送層 51は、開口部内、開口部を形成する第 1絶縁膜 4の上部 及び最外部に形成した第 1絶縁膜 4の上部まで成膜する。また第 1電荷輸送層 51と 下部電極 3間に銅フタロシアニン (CuPc)等の正孔注入層を形成してもよい。 For example, NPB (N, N-di (naphtalence) -N, N-dipheneyl-benzidene) is formed as the first charge transport layer 51. The first charge transport layer 51 has a function of transporting holes (or electrons) injected from the lower electrode 3 to the light emitting layer 52. The first charge transport layer 51 may be a single layer or a stack of two or more layers. In addition, the first charge transport layer 51 has a high charge transport capability that allows a single layer to be formed of a plurality of materials rather than a single material, and provides a host material with a charge donating (accepting) property. High! The guest material may be doped. The first charge transport layer 51 is formed in the opening, to the top of the first insulating film 4 that forms the opening, and to the top of the first insulating film 4 formed on the outermost part. A hole injection layer such as copper phthalocyanine (CuPc) may be formed between the first charge transport layer 51 and the lower electrode 3.
本実施形態に係る下部電極 3は、正孔注入電極に相当するので、有機発光機能層 5は正孔輸送層として用いられている一般的な材料を利用することができる。また有 機発光機能層 5は、上記実施形態に限られるものではなぐ本発明に係る光デバイス 1を利用する状況、環境など各種条件に応じて材料、膜厚、成膜方法などを設計して ちょい。  Since the lower electrode 3 according to the present embodiment corresponds to a hole injection electrode, the organic light emitting functional layer 5 can use a general material used as a hole transport layer. The organic light-emitting functional layer 5 is not limited to the above embodiment, and the material, film thickness, film forming method, etc. are designed according to various conditions such as the situation and environment in which the optical device 1 according to the present invention is used. A little.
[0068] [発光層形成工程]  [0068] [Light emitting layer forming step]
図 12は、本発明の一実施形態に係る光デバイスの製造方法の発光層形成工程を 説明するための図である。図 12 (A)は上面図であり、図 12 (B)は図 12 (A)に示した 領域 A付近の断面図である。 次に、図 12 (A) , 12 (B)に示すように、第 1電荷輸送層 51の上部に発光層 52を成 膜する。本例では、抵抗加熱蒸着法により、赤 (R)、緑 (G)、青 (B)の発光層を塗分 け用マスクを利用してそれぞれの成膜領域に成膜する。赤 (R)として DCM1等のス チリル色素等の赤色を発光する有機材料を用いる。緑 (G)として Alq 等の緑色を発 FIG. 12 is a diagram for explaining a light emitting layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention. FIG. 12A is a top view, and FIG. 12B is a cross-sectional view in the vicinity of the region A shown in FIG. Next, as shown in FIGS. 12A and 12B, the light emitting layer 52 is formed on the first charge transport layer 51. In this example, the red (R), green (G), and blue (B) light emitting layers are formed in the respective film formation regions using a coating mask by resistance heating vapor deposition. Red (R) is an organic material that emits red light, such as styryl dyes such as DCM1. Green (G), such as Alq, is emitted.
3  Three
光する有機材料を用いる。青 (B)としてジスチリル誘導体、トリァゾール誘導体等の 青色を発光する有機材料を用いる。勿論、他の材料でも、ホスト-ゲスト系の層構成で も良ぐ発光形態も蛍光発光材料を用いてもりん光発光材料を用いたものであっても よい。発光層 52は、開口部内、開口部を形成する第 1絶縁膜 4の上部及び最外部に 形成した第 1絶縁膜 4の上部まで成膜する。  Use a light-emitting organic material. Blue (B) is an organic material that emits blue light, such as a distyryl derivative or a triazole derivative. Of course, other materials may be used, and the light emission form which may be a host-guest layer structure may be a fluorescent light emitting material or a phosphorescent light emitting material. The light emitting layer 52 is formed in the opening, to the top of the first insulating film 4 forming the opening and to the top of the first insulating film 4 formed on the outermost part.
[0069] [第 2電荷輸送層形成工程] [0069] [Second charge transport layer forming step]
図 13は、本発明の一実施形態に係る光デバイスの製造方法の第 2電荷輸送層形 成工程を説明するための図である。図 13 (A)は上面図であり、図 13 (B)は図 13 (A) に示した領域 A付近の断面図である。  FIG. 13 is a diagram for explaining a second charge transport layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention. FIG. 13A is a top view, and FIG. 13B is a cross-sectional view in the vicinity of region A shown in FIG. 13A.
次に、図 13 (A) , (B)に示すように、抵抗加熱蒸着法等の各種成膜方法により、例 えばアルミニウム錯体 (Alq )等の各種材料を第 2電荷輸送層 53として発光層 52上  Next, as shown in FIGS. 13 (A) and 13 (B), various materials such as a resistance heating vapor deposition method, for example, various materials such as aluminum complex (Alq) are used as the second charge transport layer 53 as the light emitting layer. 52 top
3  Three
に成膜する。第 2電荷輸送層 53は、上部電極 6から注入される電子を発光層 52に輸 送する機能を有する。この第 2電荷輸送層 53は、 1層だけ積層したものでも 2層以上 積層した多層構造を有してもよい。また、第 2電荷輸送層 53は、単一の材料による成 膜ではなぐ複数の材料により一つの層を形成しても良ぐ電荷輸送能力の高いホス ト材料に電荷供与 (受容)性の高 、ゲスト材料をドーピングしても形成してもよ 、。 また、本実施形態に係る上部電極 6は、電子注入電極に相当するので、第 2電荷 輸送層 53は電子輸送層として用いられる一般的な材料を利用することができる。な お第 2電荷輸送層 53は、上記実施形態に限られるものではなぐ光デバイス 1を利用 する状況、環境など各種条件に応じてに材料、膜厚、成膜方法を設計してもよい。ま た、第 2電荷輸送層 53は、開口部内、開口部を形成する第 1絶縁膜 4の上部及び最 外部に形成した第 1絶縁膜 4の上部まで成膜する。  The film is formed. The second charge transport layer 53 has a function of transporting electrons injected from the upper electrode 6 to the light emitting layer 52. The second charge transport layer 53 may have a multilayer structure in which only one layer is stacked or two or more layers are stacked. In addition, the second charge transport layer 53 has a high charge donating (accepting) property to a host material having a high charge transport ability, which may be formed by a plurality of materials rather than a single material film. Can be formed by doping guest material. In addition, since the upper electrode 6 according to the present embodiment corresponds to an electron injection electrode, the second charge transport layer 53 can use a general material used as an electron transport layer. The second charge transport layer 53 is not limited to the above embodiment, and the material, film thickness, and film formation method may be designed according to various conditions such as the situation and environment in which the optical device 1 is used. The second charge transport layer 53 is formed in the opening, to the top of the first insulating film 4 that forms the opening, and to the top of the first insulating film 4 formed on the outermost part.
[0070] [上部電極 (第 2電極)形成工程] [0070] [Upper electrode (second electrode) formation process]
図 14は、本発明の一実施形態に係る光デバイスの製造方法の上部電極形成工程 を説明するための図である。図 14 (A)は上面図であり、図 14 (B)は図 14 (A)に示し た領域 A付近の断面図である。 FIG. 14 shows an upper electrode forming step of the optical device manufacturing method according to the embodiment of the present invention. It is a figure for demonstrating. FIG. 14 (A) is a top view, and FIG. 14 (B) is a cross-sectional view in the vicinity of region A shown in FIG. 14 (A).
次に、図 14 (A) , 14 (B)に示すように、第 2電荷輸送層 53の上部に上部電極 6を 形成する。詳細には第 2電荷輸送層 53の上部に、上部電極 (第 1電極)ライン 3 Aと直 交する方向に沿って上部電極 6の形成材料を成膜およびパターユングして、上部電 極 6を形成する。図 14 (A)に示すように、ライン状に形成された上部電極 6を上部電 極 (第 2電極)ラインという。  Next, as shown in FIGS. 14A and 14B, the upper electrode 6 is formed on the second charge transport layer 53. More specifically, a material for forming the upper electrode 6 is formed and patterned on the second charge transport layer 53 along the direction perpendicular to the upper electrode (first electrode) line 3 A to form the upper electrode 6. Form. As shown in FIG. 14A, the upper electrode 6 formed in a line shape is referred to as an upper electrode (second electrode) line.
このパター-ング方法は、成膜用マスクを利用したパター-ング方法でも、上部電 極ラインと平行な方向に設けた隔壁によるパター-ング方法でもよ 、。上部電極ライ ンは、第 1絶縁膜 4の開口部が形成されている上部電極 6と下部電極形成工程中に 形成した上部電極用引出配線 3bと電気的に接続するように成膜する。上部電極 6は 、電子注入電極として機能するように正孔注入電極より仕事関数の低 ヽ材料を用い る。本実施形態に係る上部電極 6は、例えばアルミニウム (A1)やマグネシウム合金( Mg-Ag)を利用するのが好ましい。但し、 A1は電子注入能力が低いために A1と第 2 電荷輸送層 53との間に LiFのような電子注入層を設けることが好ましい。  This patterning method may be a patterning method using a film-forming mask or a patterning method using partition walls provided in a direction parallel to the upper electrode line. The upper electrode line is formed so as to be electrically connected to the upper electrode 6 in which the opening of the first insulating film 4 is formed and the upper electrode lead wiring 3b formed in the lower electrode forming step. The upper electrode 6 uses a material having a lower work function than the hole injection electrode so as to function as an electron injection electrode. The upper electrode 6 according to the present embodiment preferably uses, for example, aluminum (A1) or a magnesium alloy (Mg—Ag). However, since A1 has a low electron injection capability, it is preferable to provide an electron injection layer such as LiF between A1 and the second charge transport layer 53.
この上部電極 6の成膜範囲は、図 14 (A) , 14 (B)に示すように、有機発光機能層 5 の成膜範囲よりも狭い領域に成膜する。このときは蒸着マスクを利用して塗分けを行 う。詳細には上部電極 6は、図 14 (A) , 14 (B)に示すように、有機発光機能層 5の端 部領域 50 laが露出するように成膜する。  As shown in FIGS. 14A and 14B, the film formation range of the upper electrode 6 is formed in a region narrower than the film formation range of the organic light emitting functional layer 5. In this case, paint using a vapor deposition mask. Specifically, as shown in FIGS. 14A and 14B, the upper electrode 6 is formed so that the end region 50 la of the organic light emitting functional layer 5 is exposed.
[有機材料層形成工程]  [Organic material layer formation process]
図 15は、本発明の一実施形態に係る光デバイスの製造方法の有機材料層形成ェ 程を説明するための図である。図 15 (A)は上面図であり、図 15 (B)は図 15 (A)に示 した領域 A付近の断面図である。  FIG. 15 is a diagram for explaining an organic material layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention. FIG. 15 (A) is a top view, and FIG. 15 (B) is a cross-sectional view in the vicinity of the region A shown in FIG. 15 (A).
次に、図 15 (A) , (B)に示すように、上部電極 6の上部に、上記第 1電荷輸送層 51 、発光層 52、第 2電荷輸送層 53を備える有機発光機能層 5のいずれか一つの有機 層と同じ材料で、有機材料層 7を成膜およびパターユングする。  Next, as shown in FIGS. 15A and 15B, the organic light emitting functional layer 5 including the first charge transport layer 51, the light emitting layer 52, and the second charge transport layer 53 on the upper electrode 6 is provided. The organic material layer 7 is formed and patterned using the same material as any one of the organic layers.
有機材料層 7の成膜は、例えば第 2電荷輸送層 53から同じ真空蒸着によって行う。 有機材料層 7は、例えば、図 15 (A) , 15 (B)に示すように、有機発光機能層 5の端 部領域 501aを覆うように成膜する。この際、有機材料層 7と有機発光機能層 5の界面 57では、層間の親和性が比較的大きいので、実質的に界面がないような状態である The organic material layer 7 is formed by the same vacuum deposition from the second charge transport layer 53, for example. The organic material layer 7 is, for example, an end of the organic light emitting functional layer 5 as shown in FIGS. 15 (A) and 15 (B). A film is formed so as to cover the partial region 501a. At this time, the interface 57 between the organic material layer 7 and the organic light emitting functional layer 5 has a relatively large affinity between the layers, so that there is substantially no interface.
[0072] [無機層形成工程] [0072] [Inorganic layer forming step]
図 16は、本発明の一実施形態に係る光デバイスの製造方法の無機層形成工程を 説明するための図である。図 16 (A)は上面図であり、図 16 (B)は図 16 (A)に示した 領域 A付近の断面図である。  FIG. 16 is a diagram for explaining an inorganic layer forming step of the method for manufacturing an optical device according to an embodiment of the present invention. FIG. 16 (A) is a top view, and FIG. 16 (B) is a cross-sectional view around the region A shown in FIG. 16 (A).
次に、有機材料層 7の上部に、アルミニウム (A1)等の各種金属材料により無機層を 成膜する。この際、図 16 (A) , 16 (B)に示すように、無機層 8を有機材料層 7より、面 積を狭くして成膜する。無機層 8の成膜は、第 1電荷輸送層形成工程から同じ真空蒸 着によって行う。  Next, an inorganic layer is formed on the organic material layer 7 using various metal materials such as aluminum (A1). At this time, as shown in FIGS. 16A and 16B, the inorganic layer 8 is formed with a smaller area than the organic material layer 7. The inorganic layer 8 is formed by the same vacuum deposition from the first charge transport layer forming step.
[0073] また、上記有機材料層形成工程および無機層形成工程時に、図 16 (A) , 16 (B) に示すように、有機材料層 7と無機層 8が重なる領域 78の端部 8aを、有機発光機能 層 5と上部電極 6とが重なる領域 56の端部 6aより画素の外側に、有機材料層 7を介し て離間して形成する。  [0073] Further, at the time of the organic material layer forming step and the inorganic layer forming step, as shown in FIGS. 16 (A) and 16 (B), the end portion 8a of the region 78 where the organic material layer 7 and the inorganic layer 8 overlap is formed. The organic light emitting functional layer 5 and the upper electrode 6 are formed on the outer side of the pixel from the end portion 6a of the region 56, with the organic material layer 7 interposed therebetween.
また、上記有機材料層形成工程時には、有機材料層 7と無機層8が重なる有機発 光機能層 5と上部電極 6との界面 56の端部が、有機材料層 7より覆われるように形成 する。 Further, at the time of the organic material layer forming step, the organic material layer 7 and the inorganic layer 8 are formed so that the end portion of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with the organic material layer 7. .
[0074] [封止工程、後処理工程]  [0074] [Sealing process, post-treatment process]
次に、図 8 (A) , 8 (B)に示すように、無機層 8の成膜パターユング終了後に封止部 材 9を用いた封止工程を行う。本実施形態では封止部材 9をガラス等の各種材料か らなる封止基板 91と、接着剤などの封止材料 92により形成されている。詳細には、 封止材料を、基板 2と封止基板 91との封止空間にエポキシ榭脂等を気密に充填して 、固化させる。また、凹状加工ガラス、平板ガラス等を封止部材として接着剤を介して 貼合せ、形成される空間内にシリコーンオイル等の液体を充填しても、前記空間内に 固形の乾燥部材を配設しても良い。また、有機 ELディスプレイの薄型化を図るため に、封止部材 9を窒化シリコンゃ窒化酸化シリコン、 MoO (酸化モリブデン)、 SnO (  Next, as shown in FIGS. 8A and 8B, a sealing step using the sealing member 9 is performed after the patterning of the inorganic layer 8 is completed. In this embodiment, the sealing member 9 is formed by a sealing substrate 91 made of various materials such as glass and a sealing material 92 such as an adhesive. Specifically, the sealing material is filled with an epoxy resin or the like in a sealing space between the substrate 2 and the sealing substrate 91 and solidified. In addition, even if concave processed glass, flat glass, etc. are used as a sealing member and bonded via an adhesive, a solid drying member is disposed in the space even if the space formed is filled with a liquid such as silicone oil. You may do it. To reduce the thickness of the organic EL display, the sealing member 9 is made of silicon nitride, silicon nitride oxide, MoO (molybdenum oxide), SnO (
3 2 酸化スズ)等の金属酸化物等の封止膜で形成してもよい。このとき、封止膜は有機材 料層と無機層上全面を覆うように形成する。封止膜は真空蒸着で形成しても CVD法 や塗布等で形成しても構わない。また、封止膜を利用した膜封止のみで光デバイス を封止してもよぐ封止膜を施したものに封止基板と封止材料とで固体封止を施して 光デバイスを封止しても、封止基板により気密封止を施して光デバイスを形成しても よい。 It may be formed of a sealing film made of a metal oxide such as (3 2 tin oxide). At this time, the sealing film is an organic material. It is formed so as to cover the entire surface of the material layer and the inorganic layer. The sealing film may be formed by vacuum deposition or by CVD or coating. In addition, the optical device can be sealed by applying a solid sealing with a sealing substrate and a sealing material to an optical device that can be sealed only by film sealing using a sealing film. Alternatively, the optical device may be formed by hermetically sealing with a sealing substrate.
[0075] 上記封止工程後に、上記構成要素が形成された基板 2を有機 EL素子 100と外部 回路 85 (851, 852)とを接続するために基板 2上に形成してある下部電極用引出配 線 3aおよび上部電極用引出配線 3bの位置にフレキシブル基板 80 (801, 802)など の配線基板を圧着する。本実施形態では、外部回路 85と上部電極及び下部電極と の接続をフレキシブル基板 80により行った力 駆動回路を基板上に形成する COG ( Chip on glass)、フレキシブル基板 80上に駆動回路を形成した FOG (Flip Chip on G lass)等の各種実装技術を採用してもよい。外部回路 85と圧着接合終了後に検査ェ 程やエージング工程等を施した後、光デバイス 1が完成する。  [0075] After the sealing step, the lower electrode lead formed on the substrate 2 is connected to the substrate 2 on which the above components are formed to connect the organic EL element 100 and the external circuit 85 (851, 852). A wiring board such as the flexible board 80 (801, 802) is pressure-bonded to the positions of the wiring 3a and the upper electrode lead-out wiring 3b. In the present embodiment, a force driving circuit in which the external circuit 85 is connected to the upper electrode and the lower electrode by the flexible substrate 80 is formed on the substrate. COG (Chip on glass) is formed on the substrate, and the driving circuit is formed on the flexible substrate 80. Various mounting technologies such as FOG (Flip Chip on Glass) may be adopted. The optical device 1 is completed after the inspection process and the aging process are performed after the external circuit 85 and the pressure bonding are completed.
[0076] 本実施形態に係る光デバイス 1の製造方法では、第 1電荷輸送層形成工程、発光 層形成工程、第 2電荷輸送層形成工程、上部電極形成工程、有機材料層形成工程 、無機層形成工程を、真空蒸着法により行うことで、製造プロセスの簡略化を実現す ることがでさる。  In the method for manufacturing the optical device 1 according to the present embodiment, the first charge transport layer forming step, the light emitting layer forming step, the second charge transport layer forming step, the upper electrode forming step, the organic material layer forming step, the inorganic layer Simplification of the manufacturing process can be achieved by performing the formation process by vacuum deposition.
また、上記構成の光デバイス 1では、有機 EL素子 100の上部に有機材料層 7と無 機層 8が成膜されているので、有機発光機能層 5と上部電極 6間への劣化因子の侵 入による発光不良を低減することができる。  Further, in the optical device 1 having the above-described configuration, the organic material layer 7 and the inorganic layer 8 are formed on the organic EL element 100, so that deterioration factors invade between the organic light emitting functional layer 5 and the upper electrode 6. It is possible to reduce light emission defects due to turning on.
また、本発明に係る光デバイス 1は、ノッシブマトリクス駆動型である力 この形態に 限られるものではなぐ例えば (Thin Film Transistor)を設けたアクティブ駆動型有機 ELパネルに、本発明に係る光デバイス 1を適用してもよ!/、。  Further, the optical device 1 according to the present invention is not limited to the force that is a noisy matrix drive type. For example, the optical device according to the present invention is applied to an active drive type organic EL panel provided with (Thin Film Transistor). You can apply 1! /.
[0077] 以上説明したように、上記光デバイス 1の製造方法により、簡単に上記構成の光デ バイス 1を作製することができる。 [0077] As described above, the optical device 1 having the above-described configuration can be easily manufactured by the method for manufacturing the optical device 1.
[0078] [第 4実施形態] [0078] [Fourth Embodiment]
図 17は、本発明の第 4実施形態に係る光デバイス 1Bを説明するための断面図で ある。上記第 1実施形態および第 2実施形態と同じ構成、および機能等については 説明を省略する。 FIG. 17 is a cross-sectional view for explaining an optical device 1B according to the fourth embodiment of the present invention. About the same configuration and function as the first embodiment and the second embodiment, Description is omitted.
本実施形態に係る光デバイス 1Bでは、図 17に示すように、自発光素子 100の上部 電極 6上に形成された有機材料層 7と、下部電極 3及び上部電極 6との絶縁が確保さ れた状態で、有機材料層 7上に形成された無機層 8とを有する。また、光デバイス 1B では、図 17に示すように、有機発光機能層 5と上部電極 6との界面 56の端部 6aが、 第 1絶縁膜 4により覆われた構造を有する。光デバイス 1Bでは、基板 2および/また は下部電極 3上に形成された第 1絶縁膜 4に、上部電極 6の端部 6a、有機材料層 7 の端部 7a、無機層 8の端部 8aが接する構造を有する。  In the optical device 1B according to the present embodiment, as shown in FIG. 17, insulation between the organic material layer 7 formed on the upper electrode 6 of the self-luminous element 100 and the lower electrode 3 and the upper electrode 6 is ensured. And an inorganic layer 8 formed on the organic material layer 7. In addition, the optical device 1B has a structure in which the end portion 6a of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is covered with the first insulating film 4, as shown in FIG. In the optical device 1B, the end 6a of the upper electrode 6, the end 7a of the organic material layer 7 and the end 8a of the inorganic layer 8 are formed on the first insulating film 4 formed on the substrate 2 and / or the lower electrode 3. Has a structure in contact with.
また、光デバイス 1Bは、第 1実施形態及び第 2実施形態と同様に、図 17に示すよう に、有機材料層 7と無機層 8とが重なる領域 (有機材料層 7と無機層 8の界面)) 78の 端部が、有機発光機能層 5と上部電極 6とが重なる領域 (有機発光機能層 5と上部電 極 6の界面) 56の端部より、封止部 9の外端部 901a側に、有機材料層 7を介して離 間して形成されている。  Further, as in the first embodiment and the second embodiment, the optical device 1B has a region where the organic material layer 7 and the inorganic layer 8 overlap (the interface between the organic material layer 7 and the inorganic layer 8) as shown in FIG. )) 78 is the region where the organic light emitting functional layer 5 and the upper electrode 6 overlap (interface between the organic light emitting functional layer 5 and the upper electrode 6) From the end of 56, the outer end 901a of the sealing part 9 It is formed on the side with an organic material layer 7 therebetween.
また、光デバイス 1Bでは、有機材料層 7と無機層 8との界面 78の端部近傍領域に、 劣化因子を捕捉して該劣化因子による有機発光機能層の劣化を低減させる捕捉部 が形成されている。  Further, in the optical device 1B, in the region near the end of the interface 78 between the organic material layer 7 and the inorganic layer 8, a capture unit that captures the degradation factor and reduces the degradation of the organic light emitting functional layer due to the degradation factor is formed. ing.
[0079] 上記構成の光デバイス 1Bの製造方法は、第 1実施形態〜第 3実施形態と略同様な 点については説明を省略する。本実施形態に係る光デバイス 1Bの製造方法では、 有機発光機能層 5以上の各層の端部が第 1絶縁膜 4に接するような構造に形成する  [0079] The description of the manufacturing method of the optical device 1B having the above-described configuration will be omitted for the points substantially similar to those of the first to third embodiments. In the manufacturing method of the optical device 1B according to the present embodiment, the organic light emitting functional layer 5 is formed in a structure in which the end portions of the layers are in contact with the first insulating film 4
[0080] 上記構成の光デバイス 1Bでは、例えば劣化因子が無機層 8と第 1絶縁膜 4との界 面を通って侵入したとしても、有機材料層 7と無機層 8の界面に形成されて!ヽる捕捉 部に劣化因子が捕捉されるので、有機発光機能層 5と上部電極 6間に劣化因子が侵 入することを更に低減することができる。 [0080] In the optical device 1B having the above-described configuration, for example, even if a deterioration factor enters through the interface between the inorganic layer 8 and the first insulating film 4, it is formed at the interface between the organic material layer 7 and the inorganic layer 8. ! Since the deterioration factor is trapped in the capturing part, it is possible to further reduce the deterioration factor from entering between the organic light emitting functional layer 5 and the upper electrode 6.
[0081] [第 5実施形態]  [0081] [Fifth Embodiment]
図 18は、本発明の第 5実施形態に係る光デバイス 1Cを説明するための図である。 図 18 (A)は上面図であり、図 18 (B)は図 18 (A)に示した領域 A付近の断面図であ る。第 1〜第 4実施形態と同様な構成、および機能については説明を省略する。 本実施形態に係る光デバイス 1Cは、アクティブマトリクス駆動型であり、詳細には図 18 (A) , 18 (B)に示すように、有機 EL素子 100の駆動を制御する TFTが形成され た基板 2 (TFT基板)上に、有機 EL素子 100が形成されて 、る。 FIG. 18 is a view for explaining an optical device 1C according to the fifth embodiment of the present invention. 18A is a top view, and FIG. 18B is a cross-sectional view in the vicinity of region A shown in FIG. 18A. A description of the same configurations and functions as those in the first to fourth embodiments will be omitted. The optical device 1C according to the present embodiment is of an active matrix drive type, and in detail, as shown in FIGS. 18 (A) and 18 (B), a substrate on which a TFT for controlling the drive of the organic EL element 100 is formed. 2 The organic EL element 100 is formed on the (TFT substrate).
より詳細には、光デバイス 1Cは、図 18 (A) , 18 (B)に示すように、有機材料層 7と 無機層 8が重なる領域 (有機材料層 7と無機層 8の界面)) 78の端部が、有機発光機 能層 5と上部電極 6とが重なる領域 (有機発光機能層 5と上部電極 6の界面) 56の端 部より、封止部 9の外端部 901a側に、有機材料層 7を介して離間して形成されている 。また、 TFTが下部電極 3に電気的に接続されている。この TFTは、図 18 (B)に示 すように、下部電極 3に隣接して形成されていてもよいし、基板 2上に平坦化層(不図 示)を形成しておき、その平坦化層内に形成されて 、てもよ 、。  More specifically, as shown in FIGS. 18 (A) and 18 (B), the optical device 1C has a region where the organic material layer 7 and the inorganic layer 8 overlap (interface between the organic material layer 7 and the inorganic layer 8). The edge of the area where the organic light emitting functional layer 5 and the upper electrode 6 overlap (interface between the organic light emitting functional layer 5 and the upper electrode 6) 56 is closer to the outer end 901a side of the sealing part 9 The organic material layer 7 is spaced apart. The TFT is electrically connected to the lower electrode 3. This TFT may be formed adjacent to the lower electrode 3 as shown in FIG. 18 (B), or a flattening layer (not shown) is formed on the substrate 2 and the flattening is performed. It may be formed in the chemical layer.
以上説明したように、本発明をアクティブマトリクス駆動型の光デバイス 1Cに適用し てもよい。  As described above, the present invention may be applied to the active matrix drive type optical device 1C.
[0082] なお、本発明は上述した実施形態に限られるものではない。例えば上記実施形態 を組み合わせて実施してもよ ヽ。  Note that the present invention is not limited to the above-described embodiment. For example, the above embodiments may be combined.
また、上記有機発光機能層 5は、上述した実施形態に限られるものではなぐ各種 有機材料により形成してもよい。  The organic light emitting functional layer 5 may be formed of various organic materials that are not limited to the above-described embodiments.
[0083] 以上説明したように、本発明に係る光デバイス 1は、下部電極 3及び上部電極 6間 に発光層 52を含む有機発光機能層 5が挟持された自発光素子 (有機 EL素子) 100 を一つの画素 11として、画素 11がーつ又は複数個、基板 2上に直接又は他の層を 介して形成されており、有機 EL素子 100の上部電極 6上に形成された有機材料層 7 と、下部電極 3及び上部電極 6との絶縁が確保された状態で、有機材料層 7上に形 成された無機層 8と、基板上に形成された自発光素子 (有機 EL素子) 100を封止材 料 92により封止する封止部 9とを有し、有機材料層 7と無機層 8が重なる領域 (界面 7 8)の端部が、有機発光機能層 5と上部電極 6が重なる領域 (界面 56)の端部より封止 部 9の外端部(901a)側に、有機材料層 7を介して離間して形成されているので、上 部電極 6と有機発光機能層 5間に劣化因子が侵入することを低減することができる。 また、その劣化因子の侵入を要因とする発光不良を低減することができる。  As described above, the optical device 1 according to the present invention includes a self-emitting element (organic EL element) 100 in which the organic light emitting functional layer 5 including the light emitting layer 52 is sandwiched between the lower electrode 3 and the upper electrode 6. One pixel 11 or two or more pixels 11 are formed on the substrate 2 directly or via another layer, and an organic material layer 7 formed on the upper electrode 6 of the organic EL element 100. And an inorganic layer 8 formed on the organic material layer 7 and a self-luminous element (organic EL element) 100 formed on the substrate with insulation from the lower electrode 3 and the upper electrode 6 secured. The organic light emitting functional layer 5 and the upper electrode 6 overlap at the end of the region where the organic material layer 7 and the inorganic layer 8 overlap (interface 78). Since the organic material layer 7 is spaced apart from the end of the region (interface 56) on the outer end (901a) side of the sealing portion 9, the upper electrode 6 and Degradation factor between aircraft light-emitting functional layer 5 can be reduced from entering. Further, it is possible to reduce the light emission failure caused by the penetration of the deterioration factor.
[0084] また、有機発光機能層 5と上部電極 6との界面 56の端部が、有機材料層 7又は第 1 絶縁膜 4により覆われた構造を有するので、上部電極 6と有機発光機能層 5間に劣化 因子が侵入することを低減することができる。 In addition, the end portion of the interface 56 between the organic light emitting functional layer 5 and the upper electrode 6 is the organic material layer 7 or the first electrode. Since it has a structure covered with the insulating film 4, it is possible to reduce deterioration factors from entering between the upper electrode 6 and the organic light emitting functional layer 5.
[0085] つまり、有機材料層 7と無機層 8との界面 78の端部近傍領域に、劣化因子を捕捉し て該劣化因子による有機発光機能層 5の劣化を低減させる捕捉部が形成されている ので、上部電極 6と有機発光機能層 5間に劣化因子が侵入することを低減することが できる。 That is, in the region in the vicinity of the end of the interface 78 between the organic material layer 7 and the inorganic layer 8, a capturing part that captures the deterioration factor and reduces the deterioration of the organic light emitting functional layer 5 due to the deterioration factor is formed. Therefore, it is possible to reduce deterioration factors from entering between the upper electrode 6 and the organic light emitting functional layer 5.
[0086] また、有機材料層 7は、上部電極 6上に、その上部電極 6の成膜領域より広い範囲 に形成され、無機層 8は、有機材料層 7上に、該有機材料層 7の成膜領域より狭い範 囲に形成されている。したがって、有機発光機能層 5上の一部に有機材料層 7が界 面 57を形成するように成膜される。好ましくは有機材料層 7としては、有機発光機能 層を構成する少なくとも一つの有機材料を含むので、有機発光機能層 5と有機材料 層 7の間の界面 57が、実質的に界面がないような状態に形成することができ、上部 電極 6と有機発光機能層 5間に劣化因子が侵入することを低減することができる。  Further, the organic material layer 7 is formed on the upper electrode 6 in a range wider than the film formation region of the upper electrode 6, and the inorganic layer 8 is formed on the organic material layer 7. It is formed in a narrower range than the film formation area. Accordingly, the organic material layer 7 is formed so as to form the interface 57 on a part of the organic light emitting functional layer 5. Preferably, the organic material layer 7 includes at least one organic material constituting the organic light emitting functional layer, so that the interface 57 between the organic light emitting functional layer 5 and the organic material layer 7 has substantially no interface. It is possible to reduce the intrusion of deterioration factors between the upper electrode 6 and the organic light emitting functional layer 5.
[0087] また、基板 2および/または下部電極 3上に形成された第 1絶縁膜 4に、上部電極 6 の端部、有機材料層 7の端部、および無機層 8の端部が接する構造を有し、有機材 料層 7と無機層 8とが重なる領域 (界面 78)の端部が、有機発光機能層 5と上部電極 6とが重なる領域 (界面 56)の端部より外側に有機材料層 7を介して離間して形成さ れているので、さらに上部電極 6と有機発光機能層 5間に劣化因子が侵入することを 低減することができる。  [0087] Further, the first insulating film 4 formed on the substrate 2 and / or the lower electrode 3 is in contact with the end of the upper electrode 6, the end of the organic material layer 7, and the end of the inorganic layer 8. The edge of the region where the organic material layer 7 and the inorganic layer 8 overlap (interface 78) is organic outside the end of the region where the organic light emitting functional layer 5 and the upper electrode 6 overlap (interface 56). Since they are formed so as to be separated from each other via the material layer 7, it is possible to further reduce deterioration factors from entering between the upper electrode 6 and the organic light emitting functional layer 5.
[0088] また、上記有機発光機能層 5、上部電極 6、有機材料層 7、無機層 8を真空蒸着法 により形成することで、例えば上部電極 6をスパッタ法により形成する場合と比べて、 有機発光機能層 5に与えるダメージを低減することができ、簡単な製造工程により本 発明に係る構成の光デバイスを形成することができる。  [0088] Further, by forming the organic light emitting functional layer 5, the upper electrode 6, the organic material layer 7, and the inorganic layer 8 by a vacuum deposition method, for example, compared with the case where the upper electrode 6 is formed by a sputtering method, Damage to the light emitting functional layer 5 can be reduced, and an optical device having a configuration according to the present invention can be formed by a simple manufacturing process.

Claims

請求の範囲 The scope of the claims
[1] 下部電極及び上部電極間に発光層を含む有機発光機能層が挟持された自発光 素子を一つの画素として、前記画素が一つ又は複数個、基板上に直接又は他の層 を介して形成された光デバイスであって、  [1] A self-luminous element in which an organic light-emitting functional layer including a light-emitting layer is sandwiched between a lower electrode and an upper electrode is used as one pixel, and one or a plurality of the pixels are formed directly on the substrate or through another layer. An optical device formed by
前記自発光素子の前記上部電極上に形成された有機材料層と、  An organic material layer formed on the upper electrode of the self-luminous element;
前記下部電極及び前記上部電極との絶縁が確保された状態で、前記有機材料層 上に形成された無機層と、  An inorganic layer formed on the organic material layer with insulation from the lower electrode and the upper electrode secured;
基板上に形成された自発光素子を封止材料により封止する封止部と、を有し、 前記有機材料層と前記無機層が重なる領域の端部が、前記有機発光機能層と前 記上部電極が重なる領域の端部より前記封止部の外端部側に、前記有機材料層を 介して離間して形成されていることを特徴とする光デバイス。  A sealing portion that seals the self-luminous element formed on the substrate with a sealing material, and an end portion of a region where the organic material layer and the inorganic layer overlap is formed with the organic light emitting functional layer. An optical device, wherein the optical device is formed on the outer end side of the sealing portion from the end portion of the region where the upper electrode overlaps, with the organic material layer interposed therebetween.
[2] パターユングされた第 1絶縁膜により画素領域が形成され、該画素領域内に前記 自発光素子が形成され、かつ、該自発光素子上に第 2絶縁膜が形成され、 前記有機発光機能層と前記上部電極との重なる領域の端部が、前記第 1絶縁膜上 に形成されるとともに前記第 2絶縁膜により覆われた構造を有することを特徴とする請 求項 1に記載の光デバイス。  [2] A pixel region is formed by the patterned first insulating film, the self-luminous element is formed in the pixel region, and a second insulating film is formed on the self-luminous element, and the organic light-emitting element is formed. 2. The structure according to claim 1, wherein an end portion of a region where the functional layer and the upper electrode overlap is formed on the first insulating film and covered with the second insulating film. Optical device.
[3] 前記有機材料層と前記無機層との重なる領域に、劣化因子を捕捉して該劣化因子 による有機発光機能層の劣化を低減させる捕捉部が形成されていることを特徴とす る請求項 1又は請求項 2に記載の光デバイス。 [3] The capture portion for capturing a degradation factor and reducing degradation of the organic light emitting functional layer due to the degradation factor is formed in a region where the organic material layer and the inorganic layer overlap. Item 3. The optical device according to Item 1 or Item 2.
[4] 前記上部電極は、前記有機発光機能層上に、該有機発光機能層より狭い範囲に 形成され、前記有機材料層は、前記上部電極上に、該上部電極の成膜領域より広[4] The upper electrode is formed on the organic light emitting functional layer in a range narrower than the organic light emitting functional layer, and the organic material layer is wider on the upper electrode than the film formation region of the upper electrode.
Vヽ範囲に形成され、前記有機発光機能層と前記有機材料層とは界面を形成し、 前記無機層は、前記有機材料層上に、該有機材料層の成膜領域より狭い範囲に 形成されて ヽることを特徴とする請求項 1に記載の光デバイス。 The organic light emitting functional layer and the organic material layer form an interface, and the inorganic layer is formed on the organic material layer in a range narrower than the film formation region of the organic material layer. The optical device according to claim 1, wherein:
[5] 前記有機材料層は、前記上部電極上に、該上部電極の成膜領域より広い範囲に 形成され、 [5] The organic material layer is formed on the upper electrode in a range wider than a film formation region of the upper electrode,
前記無機層は、前記有機材料層上に、該有機材料層の成膜領域より狭い範囲に 形成されて ヽることを特徴とする請求項 1に記載の光デバイス。 2. The optical device according to claim 1, wherein the inorganic layer is formed on the organic material layer in a range narrower than a film formation region of the organic material layer.
[6] 前記有機材料層は、前記有機発光機能層を構成する少なくとも一つの有機材料を 含むことを特徴とする請求項 1に記載の光デバイス。 6. The optical device according to claim 1, wherein the organic material layer includes at least one organic material constituting the organic light emitting functional layer.
[7] 前記無機層は、上部電極と同一材料であることを特徴とする請求項 1に記載の光デ バイス。 7. The optical device according to claim 1, wherein the inorganic layer is made of the same material as that of the upper electrode.
[8] 前記基板および Zまたは前記下部電極上にパターン形成された第 1絶縁膜に、前 記上部電極の端部、前記有機材料層の端部、および前記無機層の端部が接する構 造を有し、  [8] A structure in which the end of the upper electrode, the end of the organic material layer, and the end of the inorganic layer are in contact with the first insulating film patterned on the substrate and Z or the lower electrode. Have
前記有機材料層と前記無機層が重なる領域の端部が、前記有機発光機能層と前 記上部電極が重なる領域の端部より前記封止部の外端部側に前記有機材料層を介 して離間して形成されて ヽることを特徴とする請求項 1に記載の光デバイス。  The end portion of the region where the organic material layer and the inorganic layer overlap is interposed between the end portion of the region where the organic light emitting functional layer and the upper electrode overlap with the outer end portion side of the sealing portion via the organic material layer. 2. The optical device according to claim 1, wherein the optical device is formed so as to be spaced apart from each other.
[9] 前記封止部は、前記有機材料層と無機層上全面を覆う封止膜を有することを特徴 とする請求項 1に記載の光デバイス。  [9] The optical device according to [1], wherein the sealing portion includes a sealing film that covers the entire surface of the organic material layer and the inorganic layer.
[10] 前記自発光素子が有機 EL素子であることを特徴とする請求項 1に記載の光デバイ ス。  10. The optical device according to claim 1, wherein the self-luminous element is an organic EL element.
[11] アクティブマトリクス駆動型又はパッシブマトリクス駆動型であることを特徴とする請 求項 1に記載の光デバイス。  [11] The optical device according to claim 1, wherein the optical device is an active matrix drive type or a passive matrix drive type.
[12] 一対の電極間に少なくとも発光層を挟持した有機 EL素子を一つの画素として利用 した光デバイスであって、 [12] An optical device using an organic EL element having at least a light emitting layer sandwiched between a pair of electrodes as one pixel,
基板と、  A substrate,
前記基板上に直接又は間接的に形成された下部電極と、  A lower electrode formed directly or indirectly on the substrate;
前記基板および Zまたは前記下部電極上にパターユングされて画素領域を形成 する第 1絶縁膜と、  A first insulating film patterned on the substrate and Z or the lower electrode to form a pixel region;
前記第 1絶縁膜による画素領域内に形成された、発光層を含む有機発光機能層と 前記有機発光機能層上に形成された上部電極と、  An organic light emitting functional layer including a light emitting layer formed in the pixel region by the first insulating film; and an upper electrode formed on the organic light emitting functional layer;
前記上部電極の成膜領域よりも広い範囲に有機発光機能層を構成する少なくとも 一つの材料で形成した有機材料層と、  An organic material layer formed of at least one material constituting the organic light emitting functional layer in a wider range than the film formation region of the upper electrode;
前記有機材料層上に、該有機材料層の成膜領域よりも狭い範囲に上部電極と同じ 材料で形成された無機層と、 Same as the upper electrode on the organic material layer in a range narrower than the film formation region of the organic material layer An inorganic layer formed of a material;
少なくとも前記無機層上全面を覆う前記有機 EL素子の封止膜と、  A sealing film of the organic EL element covering at least the entire surface of the inorganic layer;
を有することを特徴とする光デバイス。  An optical device comprising:
[13] 一対の電極間に少なくとも発光層を含む有機発光機能層が挟持された自発光素 子を一つの画素として、前記画素が一つ又は複数個形成された光デバイスの製造方 法であって、 [13] A method of manufacturing an optical device in which one or more self-luminous elements each having an organic light-emitting functional layer including a light-emitting layer sandwiched between a pair of electrodes are used as one pixel. And
基板上に直接又は他の層を介して下部電極を形成する下部電極形成工程と、 前記下部電極上に前記発光層を含む前記有機発光機能層を形成する有機発光 機能層形成工程と、  A lower electrode forming step of forming a lower electrode directly on the substrate or via another layer; an organic light emitting functional layer forming step of forming the organic light emitting functional layer including the light emitting layer on the lower electrode;
前記有機発光機能層上に上部電極を形成する上部電極形成工程と、 前記上部電極上に有機材料層を形成する有機材料層形成工程と、  An upper electrode forming step of forming an upper electrode on the organic light emitting functional layer; an organic material layer forming step of forming an organic material layer on the upper electrode;
前記有機材料層上に、前記下部電極及び前記上部電極との絶縁が確保された状 態で無機層を形成する無機層形成工程と、  Forming an inorganic layer on the organic material layer in a state in which insulation from the lower electrode and the upper electrode is ensured; and
前記基板上に形成された前記自発光素子を封止材料により封止して封止部を形 成する封止工程と、を有し、  Sealing the self-luminous element formed on the substrate with a sealing material to form a sealing portion,
前記有機材料層形成工程および前記無機層形成工程時に、前記有機材料層と前 記無機層が重なる領域の端部を、前記有機発光機能層と前記上部電極が重なる領 域の端部より前記封止部の外端部側に、前記有機材料層を介して離間して形成する ことを特徴とする光デバイスの製造方法。  In the organic material layer forming step and the inorganic layer forming step, the end of the region where the organic material layer and the inorganic layer overlap is sealed from the end of the region where the organic light emitting functional layer and the upper electrode overlap. A method for manufacturing an optical device, wherein the optical device is formed on the outer end side of the stop portion with the organic material layer interposed therebetween.
[14] 前記基板および Zまたは前記下部電極上に第 1絶縁膜のパターユングにより画素 領域を形成する画素領域形成工程を含み、 [14] including a pixel region forming step of forming a pixel region on the substrate and Z or the lower electrode by patterning a first insulating film,
前記有機発光機能層と前記上部電極との重なる領域の端部が、前記有機材料層 により覆われ、上部電極の端部、前記有機材料層の端部、および前記無機層の端部 が第 1絶縁膜に接する構造に形成することを特徴とする請求項 13に記載の光デバイ スの製造方法。  The edge of the region where the organic light emitting functional layer and the upper electrode overlap is covered with the organic material layer, and the edge of the upper electrode, the edge of the organic material layer, and the edge of the inorganic layer are first. 14. The method of manufacturing an optical device according to claim 13, wherein the optical device is formed in a structure in contact with an insulating film.
[15] 前記有機発光機能層、前記上部電極、前記有機材料層、および前記無機層を真 空蒸着法により形成することを特徴とする請求項 13に記載の光デバイスの製造方法 15. The method of manufacturing an optical device according to claim 13, wherein the organic light emitting functional layer, the upper electrode, the organic material layer, and the inorganic layer are formed by vacuum evaporation.
[16] 一対の電極間に少なくとも発光層を含む有機発光機能層が挟持された自発光素 子を一つの画素として、前記画素が一つ又は複数個形成された光デバイスの製造方 法であって、 [16] A method for manufacturing an optical device in which one or more self-luminous elements each having an organic light-emitting functional layer including a light-emitting layer sandwiched between a pair of electrodes are used as one pixel. And
基板上に直接又は他の層を介して下部電極を形成する下部電極形成工程と、 前記基板および Zまたは前記下部電極上に第 1絶縁膜のパターユングにより画素 領域を形成する画素領域形成工程と、  A lower electrode forming step of forming a lower electrode directly on the substrate or via another layer; and a pixel region forming step of forming a pixel region on the substrate and Z or the lower electrode by patterning a first insulating film; ,
前記下部電極上に発光および Zまたは非発光により画素として機能する有機発光 機能層を真空蒸着により形成する有機発光機能層形成工程と、  An organic light emitting functional layer forming step of forming an organic light emitting functional layer functioning as a pixel by light emission and Z or non-light emission on the lower electrode by vacuum deposition;
前記有機発光機能層上に、該有機発光機能層の形成された領域の一部が露出す るように上部電極を真空蒸着により形成する上部電極形成工程と、  An upper electrode forming step of forming an upper electrode by vacuum deposition on the organic light emitting functional layer so that a part of a region where the organic light emitting functional layer is formed is exposed;
前記有機発光機能層が露出した領域に前記有機発光機能層を構成する少なくとも 一つの材料を含む有機材料層を真空蒸着により形成する有機材料層形成工程と、 前記有機材料層の上面と前記露出領域上の範囲に無機層を真空蒸着により形成 する無機層形成工程と、  An organic material layer forming step of forming, by vacuum deposition, an organic material layer containing at least one material constituting the organic light emitting functional layer in a region where the organic light emitting functional layer is exposed; an upper surface of the organic material layer; and the exposed region An inorganic layer forming step of forming an inorganic layer in the upper range by vacuum deposition;
前記基板上に形成された自発光素子を封止材料により封止する封止工程と、 を有することを特徴とする光デバイスの製造方法。  And a sealing step of sealing the self-luminous element formed on the substrate with a sealing material.
[17] 前記有機発光機能層と前記上部電極との重なる領域の端部が、前記第 1絶縁膜上 に形成されるとともに第 2絶縁膜により覆われるように該第 2絶縁膜を前記自発光素 子上に真空蒸着により形成する工程を有することを特徴とする請求項 16に記載の光 デバイスの製造方法。  [17] The second insulating film is self-luminous so that an end portion of a region where the organic light emitting functional layer and the upper electrode overlap is formed on the first insulating film and covered with the second insulating film. 17. The method of manufacturing an optical device according to claim 16, further comprising a step of forming the device by vacuum deposition on the element.
[18] 前記封止工程において、前記有機材料層と前記無機層上全面を覆う封止膜を真 空蒸着法により形成することを特徴とする請求項 16に記載の光デバイスの製造方法  18. The method for manufacturing an optical device according to claim 16, wherein, in the sealing step, a sealing film covering the organic material layer and the entire surface of the inorganic layer is formed by a vacuum evaporation method.
[19] 前記自発光素子が有機 EL素子であることを特徴とする請求項 16に記載の光デバ イスの製造方法。 19. The method for manufacturing an optical device according to claim 16, wherein the self-luminous element is an organic EL element.
[20] アクティブマトリクス駆動型又はパッシブマトリクス駆動型であることを特徴とする請 求項 16に記載の光デバイスの製造方法。  [20] The method for manufacturing an optical device according to claim 16, wherein the method is an active matrix drive type or a passive matrix drive type.
PCT/JP2006/315848 2006-08-10 2006-08-10 Optical device and optical device manufacturing method WO2008018137A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008528696A JP4652451B2 (en) 2006-08-10 2006-08-10 Optical device and method for manufacturing optical device
PCT/JP2006/315848 WO2008018137A1 (en) 2006-08-10 2006-08-10 Optical device and optical device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315848 WO2008018137A1 (en) 2006-08-10 2006-08-10 Optical device and optical device manufacturing method

Publications (1)

Publication Number Publication Date
WO2008018137A1 true WO2008018137A1 (en) 2008-02-14

Family

ID=39032682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315848 WO2008018137A1 (en) 2006-08-10 2006-08-10 Optical device and optical device manufacturing method

Country Status (2)

Country Link
JP (1) JP4652451B2 (en)
WO (1) WO2008018137A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027502A (en) * 2008-07-23 2010-02-04 Tdk Corp Organic el display
JP2012517091A (en) * 2009-02-05 2012-07-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sealed electroluminescent device
EP2608288A1 (en) * 2011-12-22 2013-06-26 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
JP2021007111A (en) * 2009-01-08 2021-01-21 株式会社半導体エネルギー研究所 Light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231881A (en) * 1993-02-08 1994-08-19 Fuji Electric Co Ltd Organic thin film luminous element
JPH07169567A (en) * 1993-12-16 1995-07-04 Idemitsu Kosan Co Ltd Organic el element
JPH11111466A (en) * 1997-10-06 1999-04-23 Tdk Corp Electrode of organic el element
JP2004342515A (en) * 2003-05-16 2004-12-02 Casio Comput Co Ltd Sealing structure
JP2005011760A (en) * 2003-06-20 2005-01-13 Casio Comput Co Ltd Method for sealing and structure therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231881A (en) * 1993-02-08 1994-08-19 Fuji Electric Co Ltd Organic thin film luminous element
JPH07169567A (en) * 1993-12-16 1995-07-04 Idemitsu Kosan Co Ltd Organic el element
JPH11111466A (en) * 1997-10-06 1999-04-23 Tdk Corp Electrode of organic el element
JP2004342515A (en) * 2003-05-16 2004-12-02 Casio Comput Co Ltd Sealing structure
JP2005011760A (en) * 2003-06-20 2005-01-13 Casio Comput Co Ltd Method for sealing and structure therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027502A (en) * 2008-07-23 2010-02-04 Tdk Corp Organic el display
JP2021007111A (en) * 2009-01-08 2021-01-21 株式会社半導体エネルギー研究所 Light-emitting device
JP7048699B2 (en) 2009-01-08 2022-04-05 株式会社半導体エネルギー研究所 Light emitting device
JP2012517091A (en) * 2009-02-05 2012-07-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sealed electroluminescent device
EP2608288A1 (en) * 2011-12-22 2013-06-26 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US8952360B2 (en) 2011-12-22 2015-02-10 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
JP4652451B2 (en) 2011-03-16
JPWO2008018137A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US7951620B2 (en) Water-barrier encapsulation method
US9224791B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
TWI245251B (en) Display device
JP5114215B2 (en) Optical device and method for manufacturing optical device
US9570702B2 (en) Display apparatus with a seal including a gas hole adjacent to a display portion and method of manufacturing the same
US20070194303A1 (en) Method for manufacturing organic light-emitting element, organic light-emitting device and organic EL panel
US8029684B2 (en) Self-emission panel and method of manufacturing the same
US9502681B2 (en) System and method for a flexible display encapsulation
JP2014154450A (en) Organic semiconductor element, and method of manufacturing organic semiconductor element
WO2014034051A1 (en) Manufacturing method for organic el display device, and organic el display device manufactured by such method
US7942716B2 (en) Frit sealing system and method of manufacturing organic light emitting display device
KR102373609B1 (en) Display apparatus and fabricating method of the same
JP2006049057A (en) Organic el display device
JP4652451B2 (en) Optical device and method for manufacturing optical device
KR20060033554A (en) Laser induced thermal imaging apparatus and method of fabricating electroluminescence display device using the same
JP2007234332A (en) Method of manufacturing self-luminous panel and self-luminous panel
JP2006172837A (en) Sealing member, selfluminous panel and manufacturing method for selfluminous panel
JP2004095251A (en) El device and its manufacturing method
KR20120042435A (en) Organic electroluminescent device and method of fabricating the same
JP2007250329A (en) Self light-emitting element, self light-emitting panel, manufacturing method of self light-emitting element, and manufacturing method of self light-emitting panel
WO2013128621A1 (en) Organic el device and manufacturing method therefor
JP2010049986A (en) Organic electroluminescent display
US9312515B2 (en) Organic EL device and method for manufacturing organic EL device
JP2004152595A (en) Display apparatus
JP2013115019A (en) Display device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528696

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06796339

Country of ref document: EP

Kind code of ref document: A1