WO2008017436A2 - Nebenaggregatantrieb für ein kraftfahrzeug - Google Patents
Nebenaggregatantrieb für ein kraftfahrzeug Download PDFInfo
- Publication number
- WO2008017436A2 WO2008017436A2 PCT/EP2007/006924 EP2007006924W WO2008017436A2 WO 2008017436 A2 WO2008017436 A2 WO 2008017436A2 EP 2007006924 W EP2007006924 W EP 2007006924W WO 2008017436 A2 WO2008017436 A2 WO 2008017436A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- planetary gear
- electric machine
- drive
- internal combustion
- combustion engine
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B67/00—Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
- F02B67/04—Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K25/00—Auxiliary drives
- B60K25/02—Auxiliary drives directly from an engine shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/383—One-way clutches or freewheel devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
- F16H3/724—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
- F16H3/725—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
- B60K2006/268—Electric drive motor starts the engine, i.e. used as starter motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4833—Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
- B60K2006/4841—Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K25/00—Auxiliary drives
- B60K25/02—Auxiliary drives directly from an engine shaft
- B60K2025/022—Auxiliary drives directly from an engine shaft by a mechanical transmission
- B60K2025/024—Auxiliary drives directly from an engine shaft by a mechanical transmission with variable ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B9/00—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
- F01B9/04—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
- F01B9/042—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the connections comprising gear transmissions
- F01B2009/045—Planetary gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/003—Starting of engines by means of electric motors said electric motor being also used as a drive for auxiliaries, e.g. for driving transmission pumps or fuel pumps during engine stop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2005—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2007—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/203—Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
- F16H2200/2035—Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/203—Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
- F16H2200/2038—Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with three engaging means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the invention relates to an auxiliary drive for a motor vehicle according to the preamble of claim 1.
- ancillaries such as air compressors, fans, LenkheIfpumpen or oil and water pumps, used in motor vehicles in which the ancillaries are driven at a speed proportional to the speed of the engine, they must over a wide speed range, in gasoline engines, for example, from 600 to 6000 Rpm, ie a factor of 10 in the ratio of maximum speed to lowest speed, which meet the requirements placed on it.
- a water pump which has to supply a sufficient coolant flow when the engine is idling promotes an unnecessarily high quantity of coolant at higher engine speeds and thus causes considerable losses.
- Other ancillaries provide marginal performance at idle and are rarely operated in the optimum operating range.
- a freewheel is a device that decouples a portion of a drive train from rotational motion as load ratios change.
- a freewheel can be designed for example as a roller freewheel, multi-disc freewheel or sprag freewheel.
- a sprag freewheel consists of an inner ring, an outer ring and clamp bodies mounted in a cage. In a drive through the inner ring springs press the clamping body slightly between the inner ring and the outer ring, so that the clamping body move depending on their rotation in their receiving spaces.
- Electric machines which are operated both by motor and generator, also have the problem that they require a different ratio in motor operation than in the generator mode. This usually leads to over-dimensioning of the electrical machines. For example, starter generators require a higher gear ratio in starter mode than in generator mode, resulting in an oversized design for starter operation.
- electrical ancillaries are known, which are used in particular in hybrid vehicles, since there is sufficient electrical energy to supply the ancillaries available. These are expensive.
- the object of the invention is to propose an auxiliary drive for a motor vehicle according to the preamble of claim 1, which has a high efficiency both when starting the engine and when driving the vehicle by the first electric machine.
- the auxiliary drive has a first clutch, by means of which the internal combustion engine can be coupled to the first electric machine, and a first freewheel, by which the third element of the planetary gear is rotatable only in one direction of rotation.
- the first electric machine can directly drive the internal combustion engine, whereby the efficiency is increased and the planetary gear is spared, in particular during a warm start of the internal combustion engine.
- the first clutch is closed, the regenerative power of the first electric machine does not depend on the torque requirement of the at least one auxiliary unit.
- the first electric machine can be controlled independently of the auxiliary generator as a generator or motor, and thus a boost operation by an additional drive torque of the first electric machine is possible.
- the switching of the first clutch allows a simple change between a stepless operation and a direct operation.
- the first freewheel through which the third element of the planetary gear, which is at least one auxiliary unit in power exchange, is rotatable only in one direction of rotation, advantageously allows a translation, and thus a torque multiplication when starting the internal combustion engine by the first electric machine, in particular at a cold start.
- a start of the internal combustion engine is advantageously possible, in which the internal combustion engine is accelerated to its idling speed before the injection process begins. This results in reduced exhaust emissions as compared to a conventional engine start as well as a comfort-enhanced starting process, which is particularly advantageous in start / stop operation.
- the planetary gear allows advantageous
- Generator function by generator operation of the first electric machine an alternator of a vehicle with conventional drive is no longer needed
- the ancillary drive has a first brake, by means of which the first element of the planetary gear can be held in relation to a housing part, then it is possible to increase the rotational speed of the at least one ancillary unit. This is special at low engine speeds advantageous, in particular when a vehicle drive train has a further electric machine for generating electrical energy.
- the ancillary drive has a second freewheel, by means of which the second element of the planetary gear can only be rotated in one direction of rotation, then it is possible, even if the internal combustion engine is at a standstill, to drive the third element, which is in exchange of power with at least one ancillary unit ,
- the ancillaries such as air conditioning and power steering, operated such that, for example, during an increased Lenkhelfpumpen amalgamate the performance of the air compressor is reduced.
- the sum of the required power for ancillaries can be limited.
- a second brake by which the fourth element can be held against a housing part, advantageously serve as a starting clutch.
- the internal combustion engine can be started while the auxiliary drive is running by means of a start transmission by means of the first electric machine.
- This engine start is characterized by low vibrations.
- An embodiment of the first clutch, by which the internal combustion engine can be coupled with the first electric machine, as a centrifugal clutch leads to significant cost advantages. Whereby the possibilities of driving the at least one accessory in each operating range steplessly and according to need and also eliminating the limitation of the maximum speed.
- Figure 1 is a schematic representation of an accessory drive according to the invention with a planetary gear, a first clutch for coupling a first electric machine and an internal combustion engine and a first freewheel for determining the direction of rotation of the ring gear.
- FIG. 2 shows an illustration of the rotational speeds of the at least one ancillary unit, the internal combustion engine and the first electric machine in an accessory drive according to FIG. 1;
- Fig. 3 is a tabular representation of four
- Fig. 4 is a schematic representation of the
- FIG. 5 is an illustration of the rotational speeds of the at least one auxiliary unit, of the internal combustion engine and of the first electric machine in an auxiliary drive according to FIG. 4;
- Fig. 6 is a schematic representation of the
- FIG. 7 shows an illustration of the rotational speeds of the at least one ancillary unit, of the internal combustion engine and of the first electric machine in an auxiliary drive according to FIG. 6;
- Fig. 8 is a schematic representation of the
- FIG. 9 is an illustration of the rotational speeds of the at least one ancillary unit, of the internal combustion engine and of the first electric machine in an auxiliary drive according to FIG. 8;
- Figure 1 shows an accessory drive for a motor vehicle with a planetary gear P, a sun gear S, a first set of planet gears PRl, which are mounted with their axes in a planet PT, and a first ring gear Hl includes.
- a first electric machine EMI with the sun gear S
- an internal combustion engine VM with the planet PT
- at least one auxiliary AG with the first ring gear Hl in the power exchange.
- a first clutch KVE for example, a multi-plate clutch
- the engine VM can be coupled to the first electric machine EMI.
- a first freewheel FAG whose one end is connected to the first ring gear Hl and whose other end is connected to a housing part, causes the first ring gear Hl to be rotatable only in one direction, namely the drive direction of the internal combustion engine VM.
- a start-up of the internal combustion engine VM is achieved by the first electric machine EMI when the first clutch KVE is open, ie. the torque at the planet carrier PT increases to about three times.
- a first electric machine EMI which can generate a mechanical power of 3 - 6 kW to drive the at least one auxiliary unit AG, easily start the engine VM.
- the internal combustion engine VM is first brought to normal idling speed, before the injection of fuel is started. This leads compared to a conventional starting process with a starter to lower exhaust emissions and better comfort. As a result, the internal combustion engine VM can go into start / stop operation more frequently, taking into account exhaust gas limit values.
- Figure 2 illustrates the speed ratios of at least one auxiliary unit AG, the internal combustion engine VM and the first electric machine EMI. On the vertical axis, the speeds are plotted in revolutions per minute.
- the distances on the horizontal axis between the at least one accessory AG, the internal combustion engine VM and the first electric machine EMI result from the translations of the planetary gear P so that the rotational speeds associated with a specific operating point can be connected by a straight line.
- two known speeds give the speed of the third element.
- the second shows a state in which the drive of the at least one accessory AG is supported as needed, for example, only with increased power requirements of the power steering pump or the air compressor, by the first electric machine EMI and the engine VM idles (about 600 rpm) located.
- the first EMI electric machine in this boost mode only has to contribute 20-40% of the required power.
- the first clutch KVE is also open.
- the first electric machine EMI is to change from regenerative to engine operation.
- the maximum rotational speed of the drive of the at least one auxiliary unit AG can be limited to a speed of 4500 rpm.
- the first electric machine EMI is operated as a generator, with their power depends on the torque requirement of the drive of at least one auxiliary unit AG. This limited controllability can be compensated for example by another electric machine in the drive train of the motor vehicle in the long term.
- the speed of the drive of the at least one accessory AG can be controlled as needed in this way
- the drive of the at least one accessory AG can be driven not only by the internal combustion engine VM but also by the first electric machine EMI, the internal combustion engine VM no longer has to be designed in such a way that that he can already ensure the functions of all ancillary units at idle.
- the table of Figure 3 shows four examples of design for an accessory drive according to the embodiment of Figure 1 and 2, wherein the idle speed of the engine VM 600 rpm, the maximum speed of the engine VM 6000 rpm and the maximum mechanical power requirement of at least one auxiliary unit AG 6 kW.
- the power component of the electric machine EMI when the engine VM is idle 33%, ie 2 kW mechanical power.
- the second and third columns of the table show a design example with increased lower Speed limit nA_lo or with lower upper speed limit nA_hi.
- a higher ratio of the teeth of the first ring gear Hl to the teeth of the sun gear S of 5.0 also results in a ratio of upper limit nA_hi to lower limit nA_lo of the drive of the at least one accessory AG of 5.0, wherein the (negative) speed
- the electric machine EMI - 2400 rpm and the power share of the electric machine EMI are 40% when the engine VM is idling.
- the rotational speed of the electric machine EMI when starting the internal combustion engine VM is 3000 rpm.
- the upper limit nA hi be further reduced.
- the speed of the engine VM is smaller than the lower limit of the operating range of the drive of the at least one accessory AG, then releases the first clutch KVE and the drive of the at least one accessory AG is supported by the first electric machine EMI.
- the first electric machine EMI operates above the lower limit of the normal operating range of the internal combustion engine VM as a generator and below this speed as a motor, but the torque depends on the power requirement of at least one auxiliary unit AG and the control of the power flows is made difficult. Therefore, this operation is only suitable for short phases or in combination with a second electric machine in the drive train of the motor vehicle.
- the first electric machine EMI, the internal combustion engine VM and the sun gear S of the planetary gear P are arranged coaxially in FIG. However, it is also possible that the first electric machine EMI is arranged outside this axis and by means of a belt, chain or gear drive is connected to the sun gear S of the planetary gear P. This results in further optimization possibilities by choosing the translation of the first electric machine EMI.
- the first clutch KVE by means of which the internal combustion engine VM can be coupled to the first electric machine EMI, is preferably embodied in a form-fitting manner.
- An embodiment of the first clutch KVE as a centrifugal clutch leads to significant cost advantages. Where the possibilities to drive the at least one accessory AG steplessly and demand-driven in each operating range and to limit the maximum speed of the auxiliary unit AG, omitted.
- FIG. 4 shows an accessory drive according to the invention, which has the elements of the accessory drive according to FIG. 1 and additionally a first brake KGE, by means of which the sun gear S • of the planetary gear P can be held in relation to a housing part.
- the speed of the drive of the at least one auxiliary unit AG can be increased compared to the speed of the internal combustion engine VM. This is particularly advantageous at low speeds of the internal combustion engine VM.
- the fact that the first electric machine EMI can not generate electrical energy in this locked-down state can be compensated, for example, by a second electric machine in the drive train of the motor vehicle.
- Figure 6 shows an accessory drive according to the invention with a second freewheel FVG, through which the planet PT relative to a housing part only in one Rotation is rotatable.
- the second freewheel FVG - as represented by the straight line 8 of FIG. 7 - supports the torque of the drive of the at least one auxiliary unit AG.
- the power steering power steering pump must be driven while the vehicle is driving purely electrically.
- the ancillaries such as air conditioning and power steering, operated such that, for example, during an increased Lenkhelfpumpen amalgam the performance of the air compressor is reduced.
- the sum of the simultaneous power requirements of the ancillary units can be limited.
- the second freewheel FVG can also be arranged elsewhere along the output shaft of the internal combustion engine VM (crankshaft), if this is favorable, for example, with regard to the available installation space.
- a solution to this would be to close the first clutch KVE and thus - as straight line 9 of Figure 7 shows - to start the engine VM. In this case, however, no translation would be given at startup, as is the case with straight line 1 of FIG. Furthermore, when the first clutch KVE is closed, the ride comfort may be limited and, in addition, the fatigue strength may be critical.
- Figure 8 shows an accessory drive according to the invention with an extended planetary gear P with two planetary PRl, PR2 and two ring gears Hl, H2, wherein the second ring gear H2 can be held by a second brake BS against a housing part.
- the planets of the two planetary gear sets PR1, PR2 are each mounted with their axes in the planet PT.
- the planets of the first planetary PRl mesh with the sun gear S and the first ring gear Hl and with the planet of the second planetary PR2.
- the planets of the second Planetenradsatzes PR2 also mesh with the second ring gear H2.
- the straight line 8 from FIG. 9 describes the identical state with regard to the rotational speeds of the at least one ancillary unit AG, the internal combustion engine VM and the first electric machine EMI such as straight line 8 from FIG. 7.
- the internal combustion engine VM stands still and the drive of the at least one ancillary unit AG becomes powered by the first electric machine EMI.
- the second brake BS which holds the second ring gear H2
- the second brake BS can be used as a starting clutch. Starting from the state according to line 8 so the second brake BS is closed, whereby the speed line 10 passes through the point BS.
- the second ring gear H2 is therefore still.
- This engine start is characterized by low vibrations.
- FIG 10 shows an accessory drive according to the invention with the elements of the accessory drive of Figure 6, wherein the planet PT and thus the output shaft of the engine VM via a second clutch KVM and preferably a Torsionsschwingungsdämpfer with a transmission input shaft GE a drive gear G is connectable.
- the driving gear G is connected on the output side with an axle drive, not shown, and thus drives wheels of the motor vehicle.
- a drive G preferably a change gear is used. However, it can also serve a continuously variable transmission as a driving gear G.
- the transmission input shaft GE is also a second electric machine EM2 in the power exchange, which can be operated both as a generator and motor.
- the second clutch KVM is open, for example, then the vehicle can be driven solely by the second electric machine EM2.
- the second clutch KVM is closed, a drive torque can be applied by the internal combustion engine VM and / or the first electric machine EMI and / or the second electric machine EM2.
- one or both electric machines EMI, EM2 can be operated as a generator.
- the second clutch KVM is closed, the second electric machine EM2 can be used to start the internal combustion engine VM.
- the elements arranged on the output side of the second clutch KVM could also be combined with elements of the auxiliary drive units according to FIGS. 1, 4 or 8.
- FIG. 11 shows an auxiliary drive according to the invention with the elements of the accessory drive according to FIG. 1, wherein the planet carrier PT and thus the output shaft of the internal combustion engine VM can be connected via a second clutch KVM to a third ring gear TH of a power train planetary gearset TP.
- the Planet carrier PT could also be connectable to another element of the driveline planetary gear TP, but would then give less advantageous gear ratios.
- a second electric machine EM2 is connected to a sun gear TS of the driveline planetary gear TP.
- a planet carrier TPT of the driveline planetary gear TP is connected to the transmission input shaft GE of the drive gear G.
- the planet carrier TPT and thus the transmission input shaft GE can be coupled directly to the sun gear TS and thus to the second electric machine EM2 through a third clutch KEG.
- the third clutch KEG when the third clutch KEG is open and the second clutch KVM is open, it is possible to drive the motor vehicle purely electrically by means of the second electric machine EM2 with a transmission through the driveline planetary gear TP.
- the at least one auxiliary unit AG can be driven by the first electric machine EMI or the internal combustion engine VM.
- open third clutch KEG and closed second clutch KVM it is possible with open third clutch KEG and closed second clutch KVM to drive the motor vehicle with a continuously variable transmission.
- the rotational speed of the transmission input shaft GE by the rotational speeds of the second electric machine EM2 and the Internal combustion engine VM controllable.
- a geared neutral function is also possible, in which the rotational speeds of the internal combustion engine VM and the second electric machine EM2 are set such that the rotational speed of the transmission input shaft GE is zero and the motor vehicle thus stands.
- the transmission input shaft GE, the internal combustion engine VM and the second electric machine EM2 have the same rotational speed, it being possible for the motor vehicle to be driven by the internal combustion engine VM and / or the second electric machine EM2.
- the elements disposed on the output side of the second clutch KVM could also be combined with elements of the auxiliary drive according to FIGS. 4, 6 or 8.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Structure Of Transmissions (AREA)
- Retarders (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Die Erfindung betrifft einen Nebenaggregatantrieb für ein Kraftfahrzeug mit einem Planetengetriebe, wobei ein erstes Element (S) des Planetengetriebes (P) mit einer ersten Elektromaschine (EM1), ein zweites Element (PT) mit einem Verbrennungsmotor (VM) und ein drittes Element (H1) mit mindestens einem Nebenaggregat (AG) im Leistungsaustausch stehen. Um sowohl beim Starten des Verbrennungsmotors als auch beim Antreiben des Fahrzeuges durch die erste Elektromaschine (EM1) einen hohen Wirkungsgrad aufzuweisen, weist der Nebenaggregatantrieb eine erste Kupplung (KVE), durch die der Verbrennungsmotor (VM) mit der ersten Elektromaschine (EM1) koppelbar ist, und einen ersten Freilauf (FAG) auf, durch den das dritte Element (H1) des Planetengetriebes (P) nur in eine Drehrichtung drehbar ist.
Description
DaimlerChrysler AG
Nebenaggregatantrieb für ein Kraftfahrzeug
Die Erfindung betrifft einen Nebenaggregatantrieb für ein Kraftfahrzeug gemäß dem Oberbegriff des Anspruchs 1.
Werden Nebenaggregate, wie beispielsweise Klimakompressoren, Lüfter, LenkheIfpumpen oder Öl- und Wasserpumpen, in Kraftfahrzeugen verwendet, bei denen die Nebenaggregate mit einer Drehzahl proportional zur Drehzahl des Verbrennungsmotors angetrieben werden, so müssen diese über einen breiten Drehzahlbereich, bei Ottomotoren beispielsweise von 600 bis 6000 U/min, also ein Faktor 10 beim Verhältnis von Höchstdrehzahl zu Niedrigstdrehzahl, die an sie gestellten Anforderungen erfüllen. Dies führt dazu, dass beispielsweise eine Wasserpumpe, die einen ausreichenden Kühlmittelfluss im Leerlauf des Verbrennungsmotors liefern muss, bei höheren Verbrennungsmotordrehzahlen eine unnötig hohe Kühlmittelmenge fördert und damit erhebliche Verluste verursacht. Andere Nebenaggregate wiederum bringen beim Leerlauf marginale Leistung und werden selten im optimalen Betriebsbereich betrieben.
Um Nebenaggregate bei Stillstand des Verbrennungsmotors antreiben zu können, ist bekannt, einen separaten Elektromotor vorzusehen, der den Nebenabtrieb des Verbrennungsmotors über einen Freilauf antreibt.
Ein Freilauf ist eine Vorrichtung, die einen Teil eines Antriebsstranges von der Drehbewegung entkoppelt, wenn sich die Lastverhältnisse ändern. Ein Freilauf kann beispielsweise als Rollenfreilauf, Lamellenfreilauf oder Klemmkörperfreilauf ausgeführt sein. Ein Klemmkörperfreilauf besteht aus einem Innenring, einem Außenring und aus in einem Käfig gelagerten Klemmkörpern. Bei einem Antrieb durch den Innenring drücken Federn die Klemmkörper leicht zwischen den Innenring und den Außenring, so dass sich die Klemmkörper abhängig von deren Drehung in ihren Aufnahmeräumen verschieben. Weil sich die Aufnahmeräume der Klemmkörper von den Federn weg verjüngen, ist das übertragene Drehmoment größer, je weiter der Innenring gegenüber dem Außenring verdreht wird. Durch passende Auswahl des Anstellwinkels des sich ausbildenden Klemmkeiles ist die Ausführung auch bei bester Schmierung
- physikalisch bedingt - absolut rutschsicher, es herrscht der Zustand der Selbsthemmung. Der Verjüngungswinkel muss dazu so gewählt werden, dass er kleiner oder gleich dem Arcustangens der Gleitreibungszahl μ ist. Dreht sich die Drehrichtung um oder ist die äußere Drehzahl größer als die innere Drehzahl, rollen die Klemmkörper in Richtung der Feder, die Klemmung wird aufgehoben.
Elektromaschinen, die sowohl motorisch als auch generatorisch betrieben werden, weisen ebenfalls die Problematik auf, dass sie im motorischen Betrieb eine andere Übersetzung als im Generatormodus benötigen. Dies führt zumeist zu einer ϋberdimensionierung der Elektromaschinen. Beispielsweise benötigen Starter-Generatoren im Starter-Modus eine höhere Übersetzung als im Generatormodus, was zu einer überdimensionierten Auslegung für den Starterbetrieb führt.
Ebenso sind elektrische Nebenaggregate bekannt, die insbesondere bei Hybridfahrzeugen verwendet werden, da hier ausreichend elektrische Energie zur Versorgung der Nebenaggregate vorhanden ist. Diese sind jedoch teuer.
Aus der DE 43 33 907 C2 ist ein Nebenaggregateantrieb für ein Kraftfahrzeug mit einem Überlagerungsgetriebe mit einer Eingangsbasis und zwei Ausgangsbasen bekannt, wobei die Eingangsbasis mit einem Verbrennungsmotor, die erste Ausgangsbasis mit einem Nebenaggregatverbund und die zweite Ausgangsbasis mit einer als Generator betriebenen Induktionsmaschine in Drehverbindung steht. Die Drehzahl des Nebenaggregatverbunds ist durch das Überlagerungsgetriebe derart stufenlos steuerbar, dass sie sich in einem gleichmäßigen und möglichst idealen Bereich befindet. Allerdings ist im stufenlosen Betrieb die generatorische Leistung der Induktionsmaschine wegen der Abhängigkeit von dem Drehmomentbedarf des Nebenaggregatverbunds nur eingeschränkt steuerbar. Um von einem Betrieb mit stufenloser Übersetzung in einen Betrieb mit direkter Übersetzung zu gelangen, müssen nachteilig mehrere Kupplungen geschaltet werden.
Aufgabe der Erfindung ist es, einen Nebenaggregatantrieb für ein Kraftfahrzeug gemäß dem Oberbegriff des Anspruchs 1 vorzuschlagen, der sowohl beim Starten des Verbrennungsmotors als auch beim Antreiben des Fahrzeuges durch die erste Elektromaschine einen hohen Wirkungsgrad aufweist.
Diese Aufgabe wird durch einen Nebenaggregatantrieb für ein Kraftfahrzeug mit den Merkmalen des Anspruchs 1 gelöst. Demgemäß weist der Nebenaggregatantrieb eine erste Kupplung, durch die der Verbrennungsmotor mit der ersten Elektromaschine koppelbar ist, und einen ersten Freilauf auf,
durch den das dritte Element des Planetengetriebes nur in eine Drehrichtung drehbar ist.
Bei der Verwendung einer ersten Kupplung, durch die der Verbrennungsmotor mit der ersten Elektromaschine koppelbar ist, kann die erste Elektromaschine den Verbrennungsmotor direkt antreiben, wodurch der Wirkungsgrad erhöht wird und das Planetengetriebe, insbesondere bei einem Warmstart des Verbrennungsmotors, geschont wird. Ebenso ist hierdurch bei geschlossener erster Kupplung die generatorische Leistung der ersten Elektromaschine nicht von dem Drehmomentbedarf des mindestens einen Nebenaggregats abhängig. Dies führt zu dem Vorteil, dass die erste Elektromaschine unabhängig von dem Nebenaggregat generatorisch oder motorisch steuerbar ist, und somit ein Boostbetrieb durch ein zusätzliches Antriebsmoment der ersten Elektromaschine möglich ist. Des Weiteren ermöglicht das Schalten der ersten Kupplung einen einfachen Wechsel zwischen einem stufenlosen Betrieb und einem direkten Betrieb.
Der erste Freilauf, durch den das dritte Element des Planetengetriebes, das mit mindestens einem Nebenaggregat im Leistungsaustausch steht, nur in eine Drehrichtung drehbar ist, ermöglicht vorteilhaft eine Übersetzung, und damit eine Drehmomentmultiplikation, beim Starten des Verbrennungsmotors durch die erste Elektromaschine, insbesondere bei einem Kaltstart. Hierdurch ist vorteilhaft ein Start des Verbrennungsmotors möglich, bei dem der Verbrennungsmotor auf seine Leerlaufdrehzahl beschleunigt wird bevor der Einspritzvorgang beginnt. Dies führt gegenüber einem konventionellen Verbrennungsmotorstart zu verringerten Abgasemissionen sowie zu einem bezüglich des Komforts verbesserten Startvorgang, was insbesondere bei einem Start/Stopp-Betrieb von großem Vorteil ist.
Das Planetengetriebe ermöglicht vorteilhaft
- ein höheres Drehmoment beim Starten des Verbrennungsmotors durch die erste Elektromaschine bei geöffneter erster Kupplung, insbesondere beim Kaltstart,
- eine Drehmomentverteilung zwischen Verbrennungsmotor und erster Elektromaschine beim Antrieb des mindestens einen Nebenaggregats, insbesondere wenn sich der Verbrennungsmotor im Leerlauf befindet, und
- eine stufenlose Steuerung des Nebenaggregatantriebs, wodurch der Betriebsbereich des mindestens einen Nebenaggregats in Bezug auf sein Drehzahlspektrum reduziert werden kann.
Durch den erfindungsgemäßen Nebenaggregatantrieb können vorteilhaft die folgenden Funktionalitäten eines Hybridantriebsstranges realisiert werden:
- Generatorfunktion durch generatorischen Betrieb der ersten Elektromaschine (eine Lichtmaschine eines Fahrzeuges mit konventionellen Antrieb wird nicht mehr benötigt) ,
- Start/Stopp-Funktionalität durch Starten des Verbrennungsmotors mittels der ersten Elektromaschine,
- Boostfunktion durch zusätzliches Antriebsmoment der ersten Elektromaschine und
- Antrieb des mindestens einen Nebenaggregats durch die erste Elektromaschine bei Stillstand des Verbrennungsmotors .
Weist der Nebenaggregatantrieb eine erste Bremse auf, durch die das erste Element des Planetengetriebes gegenüber einem Gehäuseteil festgehalten werden kann, so ist es möglich, die Drehzahl des mindestens einen Nebenaggregats zu erhöhen. Dies ist bei niedrigen Verbrennungsmotordrehzahlen besonders
vorteilhaft, insbesondere wenn ein Fahrzeugtriebstrang eine weitere Elektromaschine zur Erzeugung von elektrischer Energie aufweist.
Weist der Nebenaggregatantrieb einen zweiten Freilauf auf, durch den das zweite Element des Planetengetriebes nur in eine Drehrichtung drehbar ist, so ist es möglich, auch wenn sich der Verbrennungsmotor im Stillstand befindet, das dritte Element, das mit mindestens einem Nebenaggregat im Leistungsaustausch steht, anzutreiben. Dies ist insbesondere bei Fahrzeugen, die rein elektrisch angetrieben werden können, von Vorteil, da hier beispielsweise die Lenkhelfpumpe der Servolenkung angetrieben werden muss . In bevorzugter Weise werden hierbei die Nebenaggregate, wie beispielsweise Klimaanlage und Servolenkung, derart betrieben, dass beispielsweise während einer erhöhten Lenkhelfpumpenleistung die Leistung des Klimakompressors reduziert wird. Hierdurch kann die Summe der erforderlichen Leistung für Nebenaggregate begrenzt werden.
Weist der Nebenaggregatantrieb ein erweitertes Planetengetriebe mit zwei Planetenradsätzen und zwei Hohlrädern auf, wobei nur der erste Planetenradsatz mit dem ersten Element des Planetengetriebes sowie dem dritten Element kämmt und der zweite Planetenradsatz mit dem ersten Planetenradsatz und dem vierten Element kämmt, so kann eine zweite Bremse, durch die das vierte Element gegenüber einem Gehäuseteil festgehalten werden kann, vorteilhaft als Startkupplung dienen. Hierbei kann bei laufendem Nebenaggregatantrieb durch eine Startübersetzung mittels der ersten Elektromaschine der Verbrennungsmotor gestartet werden. Dieser Verbrennungsmotorstart zeichnet sich durch geringe Vibrationen aus .
Eine Ausführung der ersten Kupplung, durch die der Verbrennungsmotor mit der ersten Elektromaschine koppelbar ist, als Fliehkraftkupplung führt zu deutlichen Kostenvorteilen. Wobei die Möglichkeiten, in jedem Betriebsbereich das mindestens eine Nebenaggregat stufenlos und bedarfsgerecht anzutreiben und auch die Begrenzung der Höchstdrehzahl entfallen.
Weitere Vorteile der Erfindung gehen aus der Beschreibung und der Zeichnung hervor. Konkrete Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen
Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Nebenaggregatantriebs mit einem Planetengetriebe, einer ersten Kupplung zur Kopplung einer ersten Elektromaschine und eines Verbrennungsmotors und einem ersten Freilauf zur Bestimmung der Drehrichtung des Hohlrads;
Fig. 2 eine Darstellung der Drehzahlen des mindestens einen Nebenaggregats, des Verbrennungsmotors und der ersten Elektromaschine bei einem Nebenaggregatantrieb gemäß Figur 1 ;
Fig. 3 eine tabellarische Darstellung von vier
Auslegungsbeispielen für einen Nebenaggregatantrieb gemäß Figur 1 und 2 ;
Fig. 4 eine schematische Darstellung des
Nebenaggregatantriebs nach Figur 1 mit einer zusätzlichen ersten Bremse zum Festhalten des Sonnenrades ;
Fig. 5 eine Darstellung der Drehzahlen des mindestens einen Nebenaggregats, des Verbrennungsmotors und der ersten Elektromaschine bei einem Nebenaggregatantrieb gemäß Figur 4 ;
Fig. 6 eine schematische Darstellung des
Nebenaggregatantriebs nach Figur 1 mit einem zusätzlichen Freilauf zur Bestimmung der Drehrichtung des Planetenradträgers ;
Fig. 7 eine Darstellung der Drehzahlen des mindestens einen Nebenaggregats, des Verbrennungsmotors und der ersten Elektromaschine bei einem Nebenaggregatantrieb gemäß Figur 6 ;
Fig. 8 eine schematische Darstellung des
Nebenaggregatantriebs nach Figur 6 mit einem erweiterten Planetengetriebe mit zwei Planetenradsätzen und zwei Hohlrädern, wobei das zweite Hohlrad durch eine zweite Bremse festgehalten werden kann;
Fig. 9 eine Darstellung der Drehzahlen des mindestens einen Nebenaggregats, des Verbrennungsmotors und der ersten Elektromaschine bei einem Nebenaggregatantrieb gemäß Figur 8 ;
Fig. 10 eine schematische Darstellung des
Nebenaggregatantriebs nach Figur 6, wobei der Planetenradträger über eine zweite Kupplung mit einer Eingangswelle eines Fahrgetriebes verbindbar ist, die zudem mit einer zweiten Elektromaschine im Leistungsaustausch steht; und
Fig. 11 eine schematische Darstellung des
Nebenaggregatantriebs nach Figur 1, wobei der Planetenradträger über eine zweite Kupplung mit einem dritten Hohlrad eines Triebstrangplanetengetriebes verbindbar ist.
Figur 1 zeigt einen Nebenaggregatantrieb für ein Kraftfahrzeug mit einem Planetengetriebe P, das ein Sonnenrad S, einen ersten Satz von Planetenrädern PRl, die mit ihren Achsen in einem Planetenradträger PT gelagert sind, und ein
erstes Hohlrad Hl umfasst. Hierbei stehen eine erste Elektromaschine EMI mit dem Sonnenrad S, ein Verbrennungsmotor VM mit dem Planetenradträger PT und mindestens ein Nebenaggregat AG mit dem ersten Hohlrad Hl im Leistungsaustausch. Durch eine erste Kupplung KVE, beispielsweise eine Lamellenkupplung, kann der Verbrennungsmotor VM mit der ersten Elektromaschine EMI gekoppelt werden. Ein erster Freilauf FAG, dessen eines Ende mit dem ersten Hohlrad Hl und dessen anderes Ende mit einem Gehäuseteil verbunden ist, bewirkt, dass das erste Hohlrad Hl nur in eine Richtung, nämlich der Antriebsrichtung des Verbrennungsmotors VM, drehbar ist.
Hierdurch ergibt sich, wie die Gerade 1 der Figur 2 zeigt, zum Starten des Verbrennungsmotors VM durch die erste Elektromaschine EMI bei geöffneter erster Kupplung KVE eine Hebelwirkung, d.h. das Drehmoment am Planetenradträger PT steigt auf etwa das Dreifache an. Durch diese Übersetzung kann eine erste Elektromaschine EMI, die zum Antrieb des mindestens einen Nebenaggregats AG eine mechanische Leistung von 3 - 6 kW erzeugen kann, den Verbrennungsmotor VM problemlos starten.
Beim Startvorgang, der besonders bevorzugt bei einem Kaltstart angewandt wird, wird der Verbrennungsmotor VM zunächst auf normale Leerlaufdrehzahl gebracht, bevor mit der Einspritzung von Kraftstoff begonnen wird. Dies führt gegenüber einem konventionellen Startvorgang mit einem Anlasser zu geringeren Abgasemissionen und zu einem besseren Komfort . Hierdurch kann der Verbrennungsmotor VM unter Berücksichtigung von Abgasgrenzwerten häufiger in den Start/Stopp-Betrieb gehen.
Figur 2 verdeutlicht die Drehzahlverhältnisse des mindestens einen Nebenaggregats AG, des Verbrennungsmotors VM und der ersten Elektromaschine EMI. Auf der vertikalen Achse sind die Drehzahlen in Umdrehungen pro Minute aufgetragen. Die Abstände auf der horizontalen Achse zwischen dem mindestens einen Nebenaggregat AG, dem Verbrennungsmotor VM und der ersten Elektromaschine EMI ergeben sich aus den Übersetzungen des Planetengetriebes P so, dass sich die zu einem bestimmten Betriebspunkt gehörenden Drehzahlen durch eine Gerade verbinden lassen. Somit ergeben zwei bekannte Drehzahlen die Drehzahl des dritten Elements.
Gerade 2 zeigt einen Zustand, bei dem der Antrieb des mindestens einen Nebenaggregats AG bedarfsgerecht, beispielsweise erst bei erhöhtem Leistungsbedarf der Lenkhelfpumpe oder des Klimakompressors, durch die erste Elektromaschine EMI unterstützt wird und sich der Verbrennungsmotor VM im Leerlauf (ca. 600 U/min) befindet. Je nach Konfiguration und Betriebszustand muss die erste Elektromaschine EMI in diesem Boostbetrieb lediglich 20-40% zur geforderten Leistung beitragen. Hierbei ist die erste Kupplung KVE ebenfalls geöffnet.
Unterschreitet die Drehzahl des Verbrennungsmotors VM die Leerlaufdrehzahl, beispielsweise wenn das Fahrzeug zum Stehen kommt, so soll die erste Elektromaschine EMI vom generatorischen in den motorischen Betrieb wechseln.
Gemäß dem Ausführungsbeispiel nach Figur 1 bzw. Figur 2 ergibt sich bei einer Drehzahl an der unteren Grenze des Normalbetriebs des Verbrennungsmotors VM von 900 U/min und einer stillstehenden ersten Elektromaschine EMI für den Antrieb des mindestens einen Nebenaggregats AG eine Drehzahl von 1200 U/min (Gerade 5) .
Oberhalb dieser Drehzahl des Antriebs des mindestens einen Nebenaggregats AG, dargestellt durch die Gerade 3, kann die erste Kupplung KVE geschlossen werden, um so einen unabhängigen Generator- bzw. Boostbetrieb zu ermöglichen.
Unterhalb dieser Drehzahl öffnet sich bei einem Leistungsbedarf des mindestens einen Nebenaggregats AG die erste Kupplung KEV und die Drehzahl des Antriebs des mindestens einen Nebenaggregats AG wird über die erste Elektromaschine EMI so gesteuert, dass sie 1200 U/min nicht unterschreitet. So wird der Betriebsdrehzahlbereich für die Nebenaggregate nach unten hin beschränkt .
Durch diese stufenlose Steuerung des Antriebs des mindestens einen Nebenaggregats AG lässt sich ebenso die Höchstdrehzahl des Antriebs des mindestens einen Nebenaggregats AG, wie beispielsweise Gerade 4 zeigt, auf eine Drehzahl von 4500 U/min begrenzen. Hierbei wird die erste Elektromaschine EMI generatorisch betrieben, wobei ihre Leistung vom Drehmomentbedarf des Antriebs des mindestens einen Nebenaggregats AG abhängt. Diese eingeschränkte Steuerbarkeit kann beispielsweise durch eine weitere Elektromaschine im Antriebsstrang des Kraftfahrzeuges auf Dauer ausgeglichen werden.
Zudem lässt sich auf diese Art und Weise die Drehzahl des Antriebs des mindestens einen Nebenaggregats AG bedarfsgerecht steuern
Dadurch dass der Antrieb des mindestens einen Nebenaggregats AG nicht nur durch den Verbrennungsmotor VM, sondern auch durch die erste Elektromaschine EMI angetrieben werden kann, muss der Verbrennungsmotor VM nicht mehr so ausgelegt werden,
dass er die Funktionen aller Nebenaggregate bereits im Leerlauf gewährleisten kann.
Die Tabelle aus Figur 3 zeigt vier Auslegungsbeispiele für einen erfindungsgemäßen Nebenaggregatantrieb gemäß dem Ausführungsbeispiel nach Figur 1 und 2, wobei die Leerlaufdrehzahl des Verbrennungsmotors VM 600 U/min, die Höchstdrehzahl des Verbrennungsmotors VM 6000 U/min und der maximale mechanische Leistungsbedarf des mindestens einen Nebenaggregats AG 6 kW betragen.
In einer Basis-Auslegung gemäß Spalte 1 der Tabelle beträgt
- das Verhältnis der Zähne des ersten Hohlrades Hl zu den Zähnen des Sonnenrades S : 3 , 0
- die untere Grenze des normalen Betriebsbereiches des Verbrennungsmotors VM: 900 U/min
- die daraus resultierende untere Grenze des Betriebsbereiches des Antriebs des mindestens einen Nebenaggregats AG: 1200 U/min
- die obere Grenze des Betriebsbereiches des Antriebs des mindestens einen Nebenaggregats AG: 6000 U/min
- hieraus ein Verhältnis von oberer Grenze nA_hi zu unterer Grenze nA_lo des Antriebs des mindestens einen Nebenaggregats AG : 5,0
- die (negative) Drehzahl der Elektromaschine EMI, wenn sich der Verbrennungsmotor VM im Leerlauf befindet: - 1200 U/min
- die Drehzahl der Elektromaschine EMI beim Starten des Verbrennungsmotors VM: 1800 U/min
- die Höchstdrehzahl der Elektromaschine EMI: 6000 U/min
- der Leistungsanteil der Elektromaschine EMI, wenn sich der Verbrennungsmotor VM im Leerlauf befindet: 33%, also 2 kW mechanische Leistung.
Um den Drehzahlbereich des Antriebs des mindestens einen Nebenaggregats AG, also das Verhältnis von oberer Grenze nA_hi zu unterer Grenze nA_lo noch weiter zu reduzieren und so den Wirkungsgrad der Nebenaggregate weiter zu verbessern, zeigen die zweite bzw. dritte Spalte der Tabelle ein Auslegungsbeispiel mit erhöhter unterer Drehzahlgrenze nA_lo bzw. mit niedrigerer oberer Drehzahlgrenze nA_hi . Hieraus ergibt sich bei der erhöhten unteren Drehzahlgrenze nA_lo von 1333 U/min ein Verhältnis von oberer Grenze nA_hi zu unterer Grenze nA__lo von 4,5 bei einem erhöhten Leistungsanteil der Elektromaschine EMI, wenn sich der Verbrennungsmotor VM im Leerlauf befindet, von 40%. Bei der niedrigerer oberer Drehzahlgrenze nA_hi von 4500 U/min ergibt sich ein noch geringeres Verhältnis von oberer Grenze nA_hi zu unterer Grenze nA_lo von 3,75, wobei die Höchstdrehzahl der Elektromaschine EMI 10500 U/min beträgt .
Ein höheres Verhältnis der Zähne des ersten Hohlrades Hl zu den Zähnen des Sonnenrades S von 5,0 führt ebenfalls zu einem Verhältnis von oberer Grenze nA_hi zu unterer Grenze nA_lo des Antriebs des mindestens einen Nebenaggregats AG von 5,0, wobei die (negative) Drehzahl der Elektromaschine EMI - 2400 U/min und der Leistungsanteil der Elektromaschine EMI 40% betragen, wenn sich der Verbrennungsmotor VM im Leerlauf befindet. Die Drehzahl der Elektromaschine EMI beim Starten des Verbrennungsmotors VM beträgt 3000 U/min.
Zur weiteren Reduzierung des Drehzahlbereichs des Antriebs des mindestens einen Nebenaggregats AG könnte
1) die untere Grenze nA_lo weiter angehoben, oder
2) die obere Grenze nA hi weiter reduziert werden.
Zu 1) : Wenn die Drehzahl des Verbrennungsmotors VM kleiner ist als die untere Grenze des Betriebsbereiches des Antriebs des mindestens einen Nebenaggregats AG, dann löst sich die erste Kupplung KVE und der Antrieb des mindestens einen Nebenaggregats AG wird von der ersten Elektromaschine EMI unterstützt. Dabei arbeitet die erste Elektromaschine EMI oberhalb der unteren Grenze des normalen Betriebsbereiches des Verbrennungsmotors VM als Generator und unterhalb dieser Drehzahl als Motor, wobei das Drehmoment jedoch von dem Leistungsbedarf des mindestens einen Nebenaggregats AG abhängt und die Steuerung der Leistungsflüsse dadurch erschwert wird. Deswegen eignet sich dieser Betrieb nur für kurze Phasen oder im Verbund mit einer zweiten Elektromaschine im Antriebsstrang des Kraftfahrzeuges .
Zu 2) : Bei der Begrenzung der oberen Drehzahl nA__hi des Antriebs des mindestens einen Nebenaggregats AG ist zu beachten, dass die erste Elektromaschine EMI in diesem Bereich generatorisch betrieben wird und somit die Steuerung der generatorischen Leistung für das Bordnetz durch die Abhängigkeit vom Leistungsbedarf des mindestens einen Nebenaggregats AG erschwert wird. Ebenso ist hierbei die Höchstdrehzahl der ersten Elektromaschine EMI zu berücksichtigen .
Grundsätzlich ist festzustellen, dass bei der unteren Grenze nA_lo mehr Spielraum ist, da die Start/Stopp-Funktionalität die Leerlaufphasen verkürzt.
Die erste Elektromaschine EMI, der Verbrennungsmotor VM sowie das Sonnenrad S des Planetengetriebes P sind in Figur 1 koaxial angeordnet. Es ist jedoch ebenfalls möglich, dass die erste Elektromaschine EMI außerhalb dieser Achse angeordnet ist und mittels eines Riemen-, Ketten- oder Zahnradantriebes
mit dem Sonnenrad S des Planetengetriebes P verbunden ist. Hierbei entstehen weitere Optimierungsmöglichkeiten durch die Wahl der Übersetzung der ersten Elektromaschine EMI.
Die erste Kupplung KVE, durch die der Verbrennungsmotor VM mit der ersten Elektromaschine EMI koppelbar ist, ist vorzugsweise formschlüssig ausgeführt. Eine Ausführung der ersten Kupplung KVE als Fliehkraftkupplung führt zu deutlichen Kostenvorteilen. Wobei die Möglichkeiten, in jedem Betriebsbereich das mindestens eine Nebenaggregat AG stufenlos und bedarfsgerecht anzutreiben und auch die Höchstdrehzahl des Nebenaggregats AG zu begrenzen, entfallen.
Figur 4 zeigt einen erfindungsgemäßen Nebenaggregatantrieb, der die Elemente des Nebenaggregatantriebs nach Figur 1 und zusätzlich eine erste Bremse KGE, durch die das Sonnenrad S • des Planetengetriebes P gegenüber einem Gehäuseteil festgehalten werden kann, aufweist.
Wie die Geraden 6 und 7 aus Figur 5 deutlich machen, kann bei durch die erste Bremse KGE festgehaltenem Sonnenrad S und damit festgehaltener erster Elektromaschine EMI die Drehzahl des Antriebs des mindestens einen Nebenaggregats AG gegenüber der Drehzahl des Verbrennungsmotors VM erhöht werden. Dies ist insbesondere bei niederen Drehzahlen des Verbrennungsmotors VM von Vorteil. Dass die erste Elektromaschine EMI in diesem festgebremsten Zustand keine elektrische Energie erzeugen kann, kann beispielsweise durch eine zweite Elektromaschine im Antriebsstrang des Kraftfahrzeuges kompensiert werden.
Figur 6 zeigt einen erfindungsgemäßen Nebenaggregatantrieb mit einem zweiten Freilauf FVG, durch den der Planetenradträger PT gegenüber einem Gehäuseteil nur in eine
Drehrichtung drehbar ist. Dadurch ist es möglich, auch wenn sich der Verbrennungsmotor VM im Stillstand befindet, den Antrieb des mindestens einen Nebenaggregats AG durch die erste Elektromaschine EMI anzutreiben. Hierbei stützt der zweite Freilauf FVG - wie durch die Gerade 8 der Figur 7 dargestellt - das Moment des Antriebs des mindestens einen Nebenaggregats AG ab.
Dies ist insbesondere bei Fahrzeugen, die rein elektrisch angetrieben werden können, also so genannten Vollhybrid-Fahrzeugen, von Vorteil, da hier beispielsweise die Lenkhelfpumpe der Servolenkung angetrieben werden muss während das Fahrzeug rein elektrisch fährt. In bevorzugter Weise werden hierbei die Nebenaggregate, wie beispielsweise Klimaanlage und Servolenkung, derart betrieben, dass beispielsweise während einer erhöhten Lenkhelfpumpenleistung die Leistung des Klimakompressors reduziert wird. Hierdurch kann die Summe der gleichzeitigen Leistungsbedarfe der Nebenaggregate begrenzt werden.
Der zweite Freilauf FVG kann auch an anderer Stelle entlang der Abtriebswelle des Verbrennungsmotors VM (Kurbelwelle) angeordnet sein, wenn dies beispielsweise bezüglich des zur Verfügung stehenden Bauraums günstig ist.
Weitere Vorteile durch die Abstützung des Planetenradträgers PT mittels des zweiten Freilaufs FVG ergeben sich auch bei einem Fahrzeug, das rein elektrisch angetrieben wird.
Soll von einem Betriebszustand aus, wie ihn Gerade 8 der Figur 7 zeigt, wo also der Antrieb des mindestens einen Nebenaggregats AG durch die erste Elektromaschine EMI angetrieben wird, der Verbrennungsmotor VM gestartet werden, so ist dies, wie durch Gerade 1 der Figur 2 gezeigt, möglich.
Hierbei müsste allerdings der Antrieb des mindestens einen Nebenaggregats AG während des Startvorgangs stehen. Eventuelle Probleme hieraus, beispielsweise für die Servolenkung können durch einen Druckspeicher für die Servolenkung ausgeglichen werden. Dies gilt ebenso bei einem erfindungsgemäßen Nebenaggregatantrieb nach Figur 1.
Vorteilhaft wäre es, den Verbrennungsmotor VM vom Betriebszustand, wie ihn Gerade 8 der Figur 7 zeigt, aus bei laufendem Antrieb des mindestens einen Nebenaggregats AG zu starten.
Eine Lösung hierfür wäre es, die erste Kupplung KVE zu schließen und so - wie Gerade 9 der Figur 7 zeigt - den Verbrennungsmotor VM zu starten. Hierbei wäre allerdings keine Übersetzung beim Starten, wie sie bei Gerade 1 der Figur 2 vorliegt, gegeben. Des Weiteren kann es beim Schließen der ersten Kupplung KVE zu Einschränkungen bezüglich des Fahrkomforts kommen, wobei zudem die Betriebsfestigkeit durch die hohe Beanspruchung kritisch sein könnte .
Figur 8 zeigt einen erfindungsgemäßen Nebenaggregatantrieb mit einem erweiterten Planetengetriebe P mit zwei Planetenradsätzen PRl, PR2 und zwei Hohlrädern Hl, H2, wobei das zweite Hohlrad H2 durch eine zweite Bremse BS gegenüber einem Gehäuseteil festgehalten werden kann.
Die Planeten der beiden Planetenradsätze PRl, PR2 sind mit ihren Achsen jeweils im Planetenradträger PT gelagert. Die Planeten des ersten Planetenradsatzes PRl kämmen mit dem Sonnenrad S und dem ersten Hohlrad Hl sowie mit den Planeten des zweiten Planetenradsatzes PR2. Die Planeten des zweiten
Planetenradsatzes PR2 kämmen zudem mit dem zweiten Hohlrad H2.
Dem Ausführυngsbeispiel gemäß Figur 6 entsprechende Elemente sind mit identischen Bezugszeichen versehen. Zur Anordnung und Wirkungsweise wird auf die Beschreibung zu Figur 6 verwiesen.
Die Gerade 8 aus Figur 9 beschreibt den identischen Zustand bezüglich der Drehzahlen des mindestens einen Nebenaggregats AG, des Verbrennungsmotors VM und der ersten Elektromaschine EMI wie Gerade 8 aus Figur 7. Hierbei steht der Verbrennungsmotor VM also still und der Antrieb des mindestens einen Nebenaggregats AG wird durch die erste Elektromaschine EMI angetrieben. Um den Verbrennungsmotor VM nun zu starten, ohne dass der Antrieb des mindestens einen Nebenaggregats AG gestoppt werden muss, kann die zweite Bremse BS, die das zweite Hohlrad H2 festhält, als Startkupplung verwendet werden. Ausgehend vom Zustand gemäß Gerade 8 wird also die zweite Bremse BS geschlossen, wodurch die Drehzahllinie 10 durch den Punkt BS geht. Das zweite Hohlrad H2 steht also still. Dies führt im Gegensatz zu einer direkten Kopplung des Verbrennungsmotors VM mit der ersten Elektromaschine EMI durch die erste Kupplung KVE zu einer Startübersetzung. Dieser Verbrennungsmotorstart zeichnet sich durch geringe Vibrationen aus.
Figur 10 zeigt einen erfindungsgemäßen Nebenaggregatantrieb mit den Elementen des Nebenaggregatantriebs nach Figur 6, wobei der Planetenradträger PT und somit die Abtriebswelle des Verbrennungsmotors VM über eine zweite Kupplung KVM und vorzugsweise einen Torsionsschwingungsdämpfer mit einer Getriebeeingangswelle GE eines Fahrgetriebes G verbindbar ist.
Das Fahrgetriebe G ist abtriebsseitig mit einem nicht dargestellten Achsgetriebe verbunden und treibt so Räder des Kraftfahrzeuges an. Als Fahrgetriebe G wird vorzugsweise ein Wechselgetriebe verwendet. Es kann jedoch auch ein stufenloses Getriebe als Fahrgetriebe G dienen.
Mit der Getriebeeingangswelle GE steht zudem eine zweite Elektromaschine EM2 im Leistungsaustausch, die sowohl generatorisch als auch motorisch betrieben werden kann. Ist die zweite Kupplung KVM beispielsweise geöffnet, so kann das Fahrzeug allein durch die zweite Elektromaschine EM2 angetrieben werden. Bei geschlossener zweiter Kupplung KVM kann ein Antriebsmoment vom Verbrennungsmotor VM und/oder der ersten Elektromaschine EMI und/oder der zweiten Elektromaschine EM2 aufgebracht werden. Wobei hierbei auch eine oder beide Elektromaschinen EMI, EM2 generatorisch betrieben werden können. Ebenso kann bei geschlossener zweiter Kupplung KVM die zweite Elektromaschine EM2 zum Starten des Verbrennungsmotors VM dienen.
Anstatt mit den Elementen des Nebenaggregatantriebs nach Figur 6 könnten die abtriebsseitig von der zweiten Kupplung KVM angeordneten Elemente auch mit Elementen der Neben- aggregatantriebe nach den Figuren 1, 4 oder 8 kombiniert werden .
In Figur 11 ist ein erfindungsgemäßer Nebenaggregatantrieb mit den Elementen des Nebenaggregatantriebs nach Figur 1 dargestellt, wobei der Planetenradträger PT und somit die Abtriebswelle des Verbrennungsmotors VM über eine zweite Kupplung KVM mit einem dritten Hohlrad TH eines Triebstrangplanetengetriebes TP verbindbar ist. Der
Planetenradträger PT könnte auch mit einem anderen Element des Triebstrangplanetengetriebes TP verbindbar sein, jedoch würden sich dann weniger vorteilhafte Übersetzungsverhältnisse ergeben.
Durch einen dritten Freilauf FV2, der mit dem dritten Hohlrad TH verbunden ist, ist eine Drehung des dritten Hohlrads TH gegenüber einem Gehäuseteil nur in eine Drehrichtung möglich.
Eine zweite Elektromaschine EM2 ist mit einem Sonnenrad TS des Triebstrangplanetengetriebes TP verbunden. Ein Planetenradträger TPT des Triebstrangplanetengetriebes TP ist mit der Getriebeeingangswelle GE des Fahrgetriebes G verbunden .
Des Weiteren ist der Planetenradträger TPT und damit die Getriebeeingangswelle GE durch eine dritte Kupplung KEG direkt mit dem Sonnenrad TS und damit mit der zweiten Elektromaschine EM2 koppelbar.
Somit ergibt sich bei geöffneter dritter Kupplung KEG und geöffneter zweiter Kupplung KVM die Möglichkeit, das Kraftfahrzeug rein elektrisch mittels der zweiten Elektromaschine EM2 mit einer Übersetzung durch das Triebstrangplanetengetriebe TP anzutreiben. Wobei hierbei das mindestens eine Nebenaggregat AG durch die erste Elektromaschine EMI oder den Verbrennungsmotor VM angetrieben werden kann.
Ebenso ist es bei geöffneter dritter Kupplung KEG und geschlossener zweiter Kupplung KVM möglich, das Kraftfahrzeug mit einer stufenlosen Übersetzung anzutreiben. Hierbei ist die Drehzahl der Getriebeeingangswelle GE durch die Drehzahlen der zweiten Elektromaschine EM2 und des
Verbrennungsmotors VM steuerbar. In diesem Modus ist ebenfalls eine Geared Neutral Funktion möglich, bei der die Drehzahlen des Verbrennungsmotors VM und der zweiten Elektromaschine EM2 derart eingestellt werden, dass die Drehzahl der Getriebeeingangswelle GE Null ist und das Kraftfahrzeug somit steht.
Bei geschlossener dritter Kupplung KEG und geöffneter zweiter Kupplung KVM kann das Kraftfahrzeug rein elektrisch mittels der zweiten Elektromaschine EM2 ohne Übersetzung angetrieben werden.
Bei geschlossener dritter Kupplung KEG und geschlossener zweiter Kupplung KVM weisen die Getriebeeingangswelle GE, der Verbrennungsmotor VM und die zweite Elektromaschine EM2 die gleiche Drehzahl auf, wobei ein Antrieb des Kraftfahrzeuges durch den Verbrennungsmotor VM und/oder die zweite Elektromaschine EM2 möglich ist.
Bei sämtlichen zuvor beschriebenen Antriebsmodi ist es auch möglich, eine oder beide Elektromaschinen EMI, EM2 generatorisch zu betreiben.
Anstatt mit den Elementen des Nebenaggregatantriebs nach Figur 1 könnten die abtriebsseitig von der zweiten Kupplung KVM angeordneten Elemente auch mit Elementen der Nebenaggregatantriebe nach den Figuren 4 , 6 oder 8 kombiniert werden .
Claims
1. Nebenaggregatantrieb für ein Kraftfahrzeug mit einem Planetengetriebe (P) , wobei
- ein erstes Element (S) des Planetengetriebes (P) mit einer ersten Elektromaschine (EMI) ,
- ein zweites Element (PT) mit einem Verbrennungsmotor (VM) und
- ein drittes Element (Hl) mit mindestens einem Nebenaggregat (AG) im Leistungsaustausch stehen, gekennzeichnet durch
- eine erste Kupplung (KVE) , durch die der Verbrennungsmotor (VM) mit der ersten Elektromaschine
(EMI) koppelbar ist, und
- einen ersten Freilauf (FAG) , durch den das dritte Element (Hl) des Planetengetriebes (P) nur in eine Drehrichtung drehbar ist .
2. Nebenaggregatantrieb nach Anspruch 1, dadurch gekennzeichnet, dass
- das erste Element (S) ein Sonnenrad des Planetengetriebes (P) ,
- das zweite Element (PT) ein Planetenradträger und
- das dritte Element (Hl) ein erstes Hohlrad sind.
3. Nebenaggregatantrieb nach einem der vorhergehenden Ansprüche , gekennzeichnet durch eine erste Bremse (KGE) , durch die das erste Element (S) des Planetengetriebes (P) gegenüber einem Gehäuseteil festgehalten werden kann.
4. Nebenaggregatantrieb nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen zweiten Freilauf (FVG) , durch den das zweite Element (PT) des Planetengetriebes (P) nur in eine Drehrichtung drehbar ist.
5. Nebenaggregatantrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Planetengetriebe zwei Planetenradsätze (PRl, PR2) sowie des weiteren ein viertes Element (H2) , das durch eine zweite Bremse (BS) gegenüber einem Gehäuseteil festgehalten werden kann, aufweist, wobei der erste Planetenradsatz (PRl) mit dem dritten Element (Hl) des Planetengetriebes (P) und der zweite Planetenradsatz (PR2) mit dem vierten Element (H2) kämmen.
6. Nebenaggregatantrieb nach Anspruch 5 , dadurch gekennzeichnet, dass der erste und der zweite Planetenradsatz (PRl7 PR2) derart angeordnet sind, dass der erste Planetenradsatz (PRl) zudem mit dem ersten Element (S) und der zweite Planetenradsatz (PR2) zudem mit dem ersten Planetenradsatz (PRl) kämmen.
7. Nebenaggregatantrieb nach Anspruch 5 oder 6 , dadurch gekennzeichnet, dass das vierte Element (H2) ein zweites Hohlrad ist.
8. Nebenaggregatantrieb nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass das zweite Element (PT) des Planetengetriebes (P) über eine zweite Kupplung (KVM) mit einer
Getriebeeingangswelle (GE) eines Fahrgetriebes (G) verbindbar ist, wobei eine zweite Elektromaschine (EM2) mit der Getriebeeingangswelle (GE) im Leistungsaustausch steht.
9. Nebenaggregatantrieb nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass das zweite Element (PT) des Planetengetriebes (P) über eine zweite Kupplung (KVM) mit einem Element (TH) eines Triebstrangplanetengetriebes (TP) verbindbar ist, wobei das Element (TH) des Triebstrangplanetengetriebes (TP) durch einen dritten Freilauf (FV2) nur in eine Drehrichtung drehbar ist.
10. Nebenaggregatantrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Kupplung (KVE) eine Fliehkraftkupplung ist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009523188A JP2010500205A (ja) | 2006-08-11 | 2007-08-06 | 自動車用の補助集合装置の駆動装置 |
EP07801519A EP2061669A2 (de) | 2006-08-11 | 2007-08-06 | Nebenaggregatantrieb für ein kraftfahrzeug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006037577.7 | 2006-08-11 | ||
DE102006037577A DE102006037577A1 (de) | 2006-08-11 | 2006-08-11 | Nebenaggregatantrieb für ein Kraftfahrzeug |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008017436A2 true WO2008017436A2 (de) | 2008-02-14 |
WO2008017436A3 WO2008017436A3 (de) | 2008-03-27 |
Family
ID=38922071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/006924 WO2008017436A2 (de) | 2006-08-11 | 2007-08-06 | Nebenaggregatantrieb für ein kraftfahrzeug |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2061669A2 (de) |
JP (1) | JP2010500205A (de) |
DE (1) | DE102006037577A1 (de) |
WO (1) | WO2008017436A2 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021120487A1 (de) | 2021-08-06 | 2023-02-09 | Schaeffler Technologies AG & Co. KG | Nebenaggregatantriebsvorrichtung und Antriebsstrang |
US20230311635A1 (en) * | 2020-06-17 | 2023-10-05 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Parallel hybrid drive for a motor vehicle, motor vehicle, and method for operating a parallel hybrid drive |
US12122239B2 (en) * | 2020-06-17 | 2024-10-22 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Parallel hybrid drive for a motor vehicle, motor vehicle, and method for operating a parallel hybrid drive |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2968608B1 (fr) * | 2010-12-14 | 2013-06-28 | Solution F | Vehicule hybride integrant un groupe motopropulseur hybride transversal. |
FR2968607B1 (fr) * | 2010-12-14 | 2013-06-28 | Solution F | Vehicule integrant un groupe motopropulseur hybride transversal |
JP5988998B2 (ja) * | 2010-12-24 | 2016-09-07 | シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG | パワートレーンの一ベルトプーリ平面内に設けられた切換可能なプラネタリギヤを制御する方法 |
DE102011010093A1 (de) | 2011-02-01 | 2012-08-02 | Audi Ag | Anordnung mit Verbrennungskraftmaschine, elektrischer Maschine und Planetengetriebe zwischen selbigen, sowie Verfahren zum Ändern einer Betriebsart in einer solchen Anordnung |
JP5466201B2 (ja) | 2011-06-08 | 2014-04-09 | トヨタ自動車株式会社 | 電気自動車 |
DE102013203009B4 (de) | 2013-02-25 | 2021-09-16 | Bayerische Motoren Werke Aktiengesellschaft | Riementriebvorrichtung für einen Starter-Generator |
DE102015221779A1 (de) | 2015-11-06 | 2017-05-11 | Bayerische Motoren Werke Aktiengesellschaft | Hybridantrieb für ein Hybridfahrzeug |
DE102016107966A1 (de) * | 2016-04-06 | 2017-10-12 | Volkswagen Aktiengesellschaft | Bedarfsgerechte Hochdruckpumpe mit variabler Drehzahl |
DE102016219618A1 (de) | 2016-10-10 | 2018-04-12 | Audi Ag | Antriebseinrichtung für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Antriebseinrichtung |
DE102016219617B4 (de) * | 2016-10-10 | 2022-01-05 | Audi Ag | Antriebseinrichtung für ein Kraftfahrzeug |
CN106394227B (zh) * | 2016-12-01 | 2018-10-23 | 重庆青山工业有限责任公司 | 一种混合动力汽车传动系统 |
DE102017202484B4 (de) * | 2017-02-16 | 2020-10-01 | Audi Ag | Antriebseinrichtung für ein Kraftfahrzeug mit einem über ein mittels eines Fliehkraftstellers angesteuerten Gangwechselgetriebe antreibbaren Nebentrieb sowie Verfahren zum Betreiben einer solchen Antriebseinrichtung |
JP7011754B2 (ja) * | 2018-09-04 | 2022-01-27 | 寧波上中下自動変速器有限公司 | ハイブリッド車輛用トランスミッション及びパワーシステム |
CN111923717B (zh) * | 2020-07-03 | 2021-05-18 | 北方汤臣传动科技有限公司 | 矿用卡车可变速比混合动力驱动系统 |
DE102021105862A1 (de) | 2021-03-10 | 2022-09-15 | Schaeffler Technologies AG & Co. KG | Fahrzeuginnenraum-Klimatisierungssystem und Hybridmodul |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2156016A (en) * | 1984-03-12 | 1985-10-02 | Honda Motor Co Ltd | Epicyclic reduction gear with an electromagnetic clutch |
US5330393A (en) * | 1991-06-07 | 1994-07-19 | Fichtel & Sachs Ag | Gear unit for combination with an auxiliary power consuming unit of a motor-vehicle |
EP0645271A2 (de) * | 1993-09-23 | 1995-03-29 | General Motors Corporation | Antriebsstrang und Getriebe dafür |
US5903061A (en) * | 1995-08-15 | 1999-05-11 | Aisin Aw Co., Ltd. | Control system for vehicular drive unit |
US6878092B1 (en) * | 1999-02-01 | 2005-04-12 | Robert Bosch Gmbh | Drive arrangement for at least one secondary aggregate of a motor vehicle and method for operating the drive arrangement |
-
2006
- 2006-08-11 DE DE102006037577A patent/DE102006037577A1/de not_active Withdrawn
-
2007
- 2007-08-06 EP EP07801519A patent/EP2061669A2/de not_active Withdrawn
- 2007-08-06 JP JP2009523188A patent/JP2010500205A/ja not_active Abandoned
- 2007-08-06 WO PCT/EP2007/006924 patent/WO2008017436A2/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2156016A (en) * | 1984-03-12 | 1985-10-02 | Honda Motor Co Ltd | Epicyclic reduction gear with an electromagnetic clutch |
US5330393A (en) * | 1991-06-07 | 1994-07-19 | Fichtel & Sachs Ag | Gear unit for combination with an auxiliary power consuming unit of a motor-vehicle |
EP0645271A2 (de) * | 1993-09-23 | 1995-03-29 | General Motors Corporation | Antriebsstrang und Getriebe dafür |
US5903061A (en) * | 1995-08-15 | 1999-05-11 | Aisin Aw Co., Ltd. | Control system for vehicular drive unit |
US6878092B1 (en) * | 1999-02-01 | 2005-04-12 | Robert Bosch Gmbh | Drive arrangement for at least one secondary aggregate of a motor vehicle and method for operating the drive arrangement |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230311635A1 (en) * | 2020-06-17 | 2023-10-05 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Parallel hybrid drive for a motor vehicle, motor vehicle, and method for operating a parallel hybrid drive |
US12122239B2 (en) * | 2020-06-17 | 2024-10-22 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Parallel hybrid drive for a motor vehicle, motor vehicle, and method for operating a parallel hybrid drive |
DE102021120487A1 (de) | 2021-08-06 | 2023-02-09 | Schaeffler Technologies AG & Co. KG | Nebenaggregatantriebsvorrichtung und Antriebsstrang |
Also Published As
Publication number | Publication date |
---|---|
WO2008017436A3 (de) | 2008-03-27 |
EP2061669A2 (de) | 2009-05-27 |
JP2010500205A (ja) | 2010-01-07 |
DE102006037577A1 (de) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2049781A1 (de) | Nebenaggregatantrieb für ein kraftfahrzeug | |
WO2008017436A2 (de) | Nebenaggregatantrieb für ein kraftfahrzeug | |
DE102013105026B4 (de) | Antriebsstrang für ein Hybridkraftfahrzeug | |
AT520075B1 (de) | Drehmomentübertragungsvorrichtung sowie Verfahren zu deren Betrieb | |
AT520337B1 (de) | Drehmomentübertragungsvorrichtung sowie Verfahren zu deren Betrieb | |
EP1409282B1 (de) | Verfahren zum betrieb eines von einem verbrennungsmotor und zwei elektromaschinen angetriebenen kraftfahrzeugs | |
EP2886383B1 (de) | Hybrid-Antriebsstrang für ein Kraftfahrzeug | |
EP2370285B1 (de) | Hybrid-antriebseinheit und verfahren zu deren betrieb | |
DE102011088647B4 (de) | Elektromechanische Antriebseinrichtung für ein Kraftfahrzeug | |
EP2222495B1 (de) | Hybridgetriebe | |
AT512443B1 (de) | Antriebstrang | |
EP2558746A1 (de) | Stufenlose getriebevorrichtung mit leistungsverzweigung | |
DE19606771A1 (de) | Hybridantrieb, insbesondere für Kraftfahrzeuge | |
DE102005035403A1 (de) | Antriebsstrang mit einem System zur Trennung vom Antrieb und zum Antreiben von Nebenaggregaten für ein elektrisch verstellbares Getriebe | |
DE102005022011A1 (de) | Antriebsstrang für ein Kraftfahrzeug mit einer Brennkraftmaschine und einem elektrischen Antriebsaggregat | |
DE102018125082A1 (de) | Dediziertes Hybridgetriebe, insbesondere als Teil eines Antriebsstrangs und Betriebsweise eines solchen Antriebsstrangs | |
WO2020177904A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
DE102018118597A1 (de) | Überbrückungskupplung für leistungsverzweigungshybridgetriebe | |
DE102011004191A1 (de) | Elektromechanische Fahrzeugantriebseinrichtung | |
DE102007058974B4 (de) | Hybridgetriebe | |
DE102011115078A1 (de) | Hybridgetriebe | |
DE102015222594A1 (de) | Drehmomentübertragungsvorrichtung sowie Verfahren zu deren Betrieb | |
DE102022204738A1 (de) | Antriebsvorrichtung für eine Arbeitsmaschine | |
DE102015014976A1 (de) | Hybridgetriebe | |
DE102021211236B4 (de) | Kompaktes Hybridgetriebe in Planetenbauweise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07801519 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007801519 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009523188 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |