WO2008013318A1 - Appareil de refroidissement et procédé de refroidissement de bande d'acier laminé à chaud - Google Patents

Appareil de refroidissement et procédé de refroidissement de bande d'acier laminé à chaud Download PDF

Info

Publication number
WO2008013318A1
WO2008013318A1 PCT/JP2007/065119 JP2007065119W WO2008013318A1 WO 2008013318 A1 WO2008013318 A1 WO 2008013318A1 JP 2007065119 W JP2007065119 W JP 2007065119W WO 2008013318 A1 WO2008013318 A1 WO 2008013318A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
steel strip
cooling water
hot
rod
Prior art date
Application number
PCT/JP2007/065119
Other languages
English (en)
French (fr)
Inventor
Satoshi Ueoka
Akio Fujibayashi
Naoki Nakata
Takashi Kuroki
Shougo Tomita
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38981624&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008013318(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2007152367A external-priority patent/JP4518107B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CN200780015849.4A priority Critical patent/CN101437631B/zh
Priority to US12/226,371 priority patent/US8353191B2/en
Priority to BRPI0711142A priority patent/BRPI0711142B1/pt
Priority to EP07791799.5A priority patent/EP2025423B1/en
Priority to KR1020087026824A priority patent/KR101052453B1/ko
Publication of WO2008013318A1 publication Critical patent/WO2008013318A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the present invention relates to a cooling device and a cooling method for cooling a hot-rolled high-temperature steel strip.
  • a slab is heated to a predetermined temperature in a heating furnace, and the heated slab is rolled to a predetermined thickness with a roughing mill to form a rough bar.
  • a continuous hot finishing rolling mill comprising a rolling stand, a steel strip having a predetermined thickness is formed. Then, this hot-rolled steel strip is cooled by a cooling device on a run-out table, and then wound by a winder.
  • the steel strip transport nozzle is fed from a circular laminar cooling nozzle to cool the top surface of the steel strip.
  • a plurality of lamina cooling water is poured on the bull roller in a straight line over the width direction.
  • a spray nozzle is provided between the table rollers, and the cooling water is sprayed from here.
  • the cooling water poured into the upper surface side of the copper strip stays on the upper surface of the steel strip after cooling and causes overcooling of the upper surface side.
  • the supercooled state was not uniform in the longitudinal direction of the copper strip, and thus the cooling stop temperature in this direction varied.
  • the cooling water from the circular tube laminar nozzle used for cooling the upper surface of the steel strip is a free fall flow, so if there is a water film on the upper surface of the steel strip, the cooling water will reach the copper strip.
  • the cooling capacity differs depending on whether or not there is stagnant water on the upper surface of the copper strip, and the cooling water that falls on the copper strip freely spreads from front to back and left and right.
  • cooling capacity is not stable. As a result of such fluctuations in cooling capacity, the material of the steel strip tends to become uneven.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 1 1 4 1 3 2 2
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-1 6 60 23
  • Patent Document 3 Japanese Patent Application Laid-Open No. 59-144 45 13 Disclosure of the Invention
  • the cooling water flow is a seamless slit.
  • the distance between the nozzle and the steel strip cannot be increased. Since a partition plate is provided near the nozzle tip to fill the cooling water, the distance between the steel strip and the nozzle and partition plate must be reduced, and the steel strip may collide with the nozzle or the cutting plate. High nature. In particular, in a corrugated steel strip having a poor shape, contact with nozzles and partition plates is inevitable, and the steel strip is scratched. Therefore, it is difficult to apply to actual operation. Thus, in the method described in Patent Documents 1 to 3, a high cooling capacity and stable:.. It ⁇ 3 ⁇ 4 capacity 'can not be obtained properly forces.
  • the surface temperature may be, for example, 5500 ° C. or less in the region close to the run-up table scraper, and there are the following problems.
  • the steel strip and the cooling water come into direct contact and boil from the heat transfer state in which a vapor film exists between the steel strip and the cooling water mainly composed of film boiling.
  • the so-called nucleate boiling shifts to the main area.
  • This boiling phenomenon in which the boiling state transitions is called transition boiling, and cooling is accelerated rapidly.
  • the surface layer of the steel strip may be rapidly cooled, resulting in the formation of a structure different from the target. For example, when the vicinity of the surface layer temperature is 400 ° C or less, the structure becomes martensite, and then the surface layer looks like tempered martensite even if the surface temperature is reheated and the winding ends at 500 ° C. Different yarns and weaves may be formed.
  • the cooling water is attached to the steel strip, so the cooling water remains in the air cooling zone after exiting the cooling device (zone), so-called draining. Tends to be in a bad state. Such a part is overcooled and the quality of the steel strip varies.
  • the present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to appropriately provide a high cooling capacity and a stable cooling region when cooling a hot-rolled steel strip with cooling water.
  • the present invention has the following features.
  • a cooling device for a hot-rolled steel strip for cooling a hot-rolled steel strip after finish rolling conveyed on a run-out table
  • a heat nozzle characterized in that a cooling nozzle for injecting rod-shaped cooling water inclined toward the downstream side and the upstream side with respect to the traveling direction of the steel strip is arranged on the upper surface side of the steel strip so as to face each other.
  • the cooling nozzles inclined toward the downstream side and the cooling nozzles inclined toward the upstream side are arranged in a plurality of rows in the traveling direction of the steel strip, respectively.
  • hot-rolled copper strip according to any one of claims 1 to 3 wherein the hot-rolled steel strip cooling device according to any one of 1 to 3 is a single cooling device unit, and a plurality of the cooling device units are arranged in the traveling direction of the steel strip. Belt cooling device.
  • a cooling device for a hot-rolled steel strip for cooling the hot-rolled copper strip after finish rolling conveyed on the run-out table
  • the cooling nozzle that injects the rod-shaped cooling water and the downstream side of the table mouth hole toward the top of the table roll 6.
  • the cooling nozzles on the upper and lower sides of the steel strip are arranged so that the cooling amount by the cooling water on the upper surface side of the steel strip is equal to the cooling amount by the cooling water on the lower surface side of the copper strip. 6.
  • a cooling device for a hot-rolled steel strip for cooling the hot-rolled copper strip after finish rolling conveyed on the run-out table
  • a lower surface cooling nozzle that injects cooling water from between the table rolls to the lower surface of the steel strip is arranged on the lower surface side of the steel strip,
  • a cooling nozzle that injects rod-shaped cooling water inclined from the upstream side toward the position directly above the position where the cooling water sprayed from the lower surface cooling nozzle collides with the copper band on the upper surface side of the steel strip, and a lower surface cooling nozzle The injected cooling water is inclined from the downstream side toward the position directly above the position where it collides with the steel strip. 6.
  • the amount of cooling by the cooling water on the upper surface side of the steel strip is equal to the amount of cooling by the cooling water on the lower surface side of the steel strip, and the fluid pressure received by the steel strip from the cooling water on the upper surface side of the steel strip and the steel strip.
  • the counter-injection of the inclined rod-shaped cooling water is performed at a plurality of locations at intervals in the traveling direction of the copper strip, thereby performing intermittent cooling that repeats water cooling and air cooling. 5.
  • Cooling method of hot-rolled steel strip after finish rolling, which is transported on a run-out table, on the upper surface side of the steel strip from the upstream side of the table mouth to the top of the table mouth In the preceding paragraphs 1 2 to 1 6 characterized in that the rod-shaped cooling water inclined and the rod-shaped cooling water inclined from the downstream side of the table mouthpiece to the position immediately above the table mouthpiece are jetted opposite to each other.
  • a method for cooling a hot-rolled steel strip after finish rolling conveyed on a run-out table in which cooling water is sprayed from between the table rolls to the lower surface of the steel strip on the lower surface side of the copper strip, A slanted rod-shaped cooling water jetted from the upstream side toward the position where the cooling water on the lower surface collides with the steel strip on the upper surface side of the belt, and a position where the cooling water on the lower surface collides with the steel strip.
  • the amount of cooling by the cooling water on the upper surface side of the steel strip is equal to the amount of cooling by the cooling water on the lower surface side of the steel strip, and the fluid pressure and the steel strip received by the cooling water on the upper surface side of the steel strip
  • the hot-rolled steel strip according to the preceding item 20 is characterized in that the cooling water on the upper surface side and the lower surface side of the steel strip is injected so as to be equal to the fluid pressure received by the copper strip from the coolant on the lower surface side; Cooling method.
  • FIG. 1 is a schematic configuration diagram of the rolling equipment in the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the cooling device in the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of the cooling device in the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of the cooling device in the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of the cooling device in the second embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of the cooling device in the third embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a cooling device according to another embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of a cooling device according to another embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a cooling device according to another embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a cooling device according to another embodiment of the present invention.
  • FIG. 11A and FIG. 11B are explanatory diagrams of the prior art. The meanings of the symbols in each figure are as follows. ''
  • FIG. 1 shows a production facility for hot-rolled steel strip in one embodiment of the present invention.
  • the rough bar 2 rolled by the rough rolling mill 1 is transported on the table roller 3, and continuously rolled to a predetermined thickness by seven continuous finish rolling mill groups 4, it becomes a steel strip 1 2
  • the runout table 5 constituting the steel strip conveying path behind the final finishing mill 4 E.
  • This runout table 5 has a total length of about 100 m, and a cooling device is provided in part or almost most of the runout table 5.
  • a conventional cooling device 7 and a cooling device 11 of the present invention are arranged in this order as a cooling device for cooling the steel strip upper surface provided on the run-out table 5.
  • the conventional cooling device 7 includes a plurality of circular laminar nozzles 8 that are arranged at a predetermined pitch on the upper surface side of the run-out table 5 and supply M as a free fall flow to the steel strip.
  • a plurality of spray nozzles 10 are arranged in a row in the width direction between the table rollers 9 for transporting the steel strip. These spray nozzles 10 can adjust the jet pressure and water density.
  • cooling device 11 of the present invention An example of the cooling device 11 of the present invention will be described based on the partially enlarged view shown in FIG.
  • a rotating table roller 9 having a diameter of about 30 mm and a diameter of 30 mm is arranged at a pitch of about 400 mm. Will progress. .
  • the bar-shaped cooling water inclined toward the downstream side and the upstream side in the traveling direction of the copper strip 12 is opposed to the upper surface side of the steel strip 12.
  • a plurality of upper surface cooling units 17 to be sprayed are provided at predetermined intervals.
  • the cooling device on the lower surface side in this region is not particularly limited, and spray cooling or rod-shaped cooling water employed as the upper surface cooling method of the present invention may be employed.
  • the spray nozzle 10 similar to the region of the conventional cooling device 7 described above is used.
  • Each upper surface cooling unit 17 is divided into an upstream side and a downstream side in the traveling direction of the steel strip, and is provided with cooling nozzle headers 13 of a predetermined number of rows (in this case, 4 rows each).
  • Each cooling nozzle header 1 3 is connected to a supply pipe 15, and each supply pipe 15 can be independently turned on and off by a valve 16, and each cooling nozzle header 1 3
  • the circular tube nozzles 14 having a predetermined injection angle ⁇ (for example, 50 °) with respect to the copper strip traveling direction are arranged in a line at a predetermined pitch in the width direction.
  • These circular tube nozzles 14 are straight tube nozzles having an inner diameter of 3 to 10 mm and a smooth inner surface, and the cooling water sprayed from the circular tube nozzles 14 is a rod-shaped cooling water.
  • the rod-shaped cooling water forms a predetermined angle ⁇ with the steel strip 12 in a certain direction, that is, in the traveling direction of the steel strip 12.
  • it may be parallel to the steel strip 12, but in order to allow the injected cooling water to quickly flow outward from both width end portions of the steel strip 12, It is desirable that the steel strip 12 be inclined outward from the center in the width direction by about 1 ° to 30 °, preferably about 5 ° to 15 °.
  • the height of the outlet of the circular tube nozzle 14 is set to a predetermined height (for example, 1) from the upper surface of the steel strip 1 2 so that it does not contact the circular tube nozzle 14 even if the copper strip 1 2 moves up and down. 0 0 O mm)
  • the rod-shaped cooling water in the present invention is cooling water that is injected in a state of being pressurized to some extent from a circular nozzle (including an ellipse or polygonal shape), and from the nozzle outlet Cooling water injection speed is 7 m / s or more, and the water flow from the nozzle outlet to the steel strip is maintained in a circular shape with a continuous and straight water flow. . In other words, it is different from a free fall flow from a circular tube lamina nozzle or sprayed in a droplet state like a spray.
  • the circular pipe nozzles 14 are arranged for each column so that the collision position of the next row of rod-shaped cooling water comes approximately in the middle of the collision position of the rod-shaped cooling water of the previous row. It is preferable that the positions in the width direction are shifted. As a result, the rod-shaped cooling water in the next row collides with a portion where the cooling becomes weak between the rod-shaped cooling waters adjacent in the width direction, and the cooling is supplemented to achieve uniform cooling in the width direction.
  • the rod-shaped cooling water flow group flows intermittently as each rod-shaped cooling water runs in parallel, but flows in a pseudo-planar shape.
  • each of the four rows of circular tube nozzles 14 is jetting from the upstream and downstream sides in the direction of travel of the steel strip, so the cooling waters that collide with the steel strip 1 2 are dammed together. Since the steel strips 12 flow outward from both ends of the steel strip 12 at the collision position, the cooling water is prevented from flowing out on the steel strip upstream and downstream.
  • the cooling water may flow upstream and downstream on the steel strip. It is preferable to set it to be below. If the injection angle 0 is set to 60 ° or less, the cooling water does not flow upstream and downstream on the steel strip regardless of the speed of the copper strip 12. More preferably, the injection angle ⁇ is 50 ° or less. However, if the injection angle 0 is smaller than 45 °, the height of the circular tube nozzle 14 from the steel strip 1 2 is set to a desired value (in order to avoid collision between the steel strip 1 2 and the circular tube nozzle 14).
  • the injection angle 0 is preferably set to 45 to 60 °, and more preferably about 45 to 50 °.
  • the circular pipe nozzle 14 that forms rod-shaped cooling water is used as the cooling water nozzle on the upper surface of the steel strip 1 2 for the following reason.
  • a circular nozzle 14 (which may be an ellipse or a polygon) may be used, and the cooling water injection speed from the nozzle outlet is 7 m / s or more.
  • the cross section of the water flow until it collides with the belt is sprayed with stick-like cooling water that has a continuity and straightness.
  • the stagnant water on the upper surface of the steel strip can be stably stabilized even when the cooling water is injected with an inclination. This is because it can break through the water film.
  • the cooling water that collided with the copper strip 1 2 in the first row forms a layer and prevents the cooling water from colliding with the 2 ⁇ U and later cooling capacity.
  • There are problems such as falling or a difference in cooling capacity in the width direction.
  • the lamellar staying water is partially pushed away, and the rod-shaped cooling water reaches the steel strip 12.
  • the pushed-off cooling water flows through the intermittently broken rod-shaped cooling water, so that the remaining cooling water after cooling is not likely to hinder the subsequent cooling.
  • the cooling device 11 of the present invention since a plurality of cooling units 17 are arranged at a predetermined interval, a so-called intermittent cooling system in which an air cooling zone is provided between the cooling units 17 is provided. It becomes cold ⁇ ]. Therefore, even when the surface of the steel strip is cooled, especially when the surface is cooled and a hard layer such as martensite is likely to form, even if the surface temperature decreases; Therefore, it has the effect of suppressing supercooling of the surface layer and reducing not only temperature variations, but also micro-structure variations in the steel strip thickness direction.
  • the cooling device 11 of the present invention installed on the upper surface is installed on the lower surface. Since the cooling capacity is higher than that of the conventional spray nozzle, the upper surface cooling interval is set so that the upper surface cooling and the lower surface cooling are balanced, and the pressure and flow rate of the cooling water on the lower surface side are increased. Is preferable.
  • the air spray nozzle 22 is provided to drain water so that the cooling water does not flow out downstream of the cooling unit 17.
  • a draining method a draining method in which water is jetted is generally used.
  • the air injection nozzle 22 is preferably provided on the downstream side of all the cooling units 17, but may be provided on the downstream side of at least the most downstream cooling unit 17.
  • the cooling control is performed as follows.
  • the length of the cooling zone on the upper surface to be sprayed is determined from the speed of the steel strip, the measured temperature, and the cooling amount to the target cooling stop temperature. Then, the number of cooling units 17 that cover the obtained cooling zone length and the number of rows of cooling nozzle headers 13 to be injected in the cooling unit 17 are determined, and the corresponding injection valves 16 are opened. After that, the number of cooling units 17 and the number of cooling nozzles to be sprayed to change the cooling zone length while taking into account the changes in the steel plate speed (acceleration / deceleration) by looking at the results of the thermometer after cooling 1 Adjust the number of columns in 3.
  • the row that is jetted from the upstream side to the downstream side It is desirable to adjust the number and the number of rows injected from the downstream side to the upstream side so that the fluid pressure of the cooling water is balanced between the upstream side and the downstream side of the steel strip. For example, it is desirable to turn the upstream and downstream cooling nozzle headers on and off in pairs.
  • the steel strip can be uniformly cooled from the tip to the tail, and the quality of the steel strip is stabilized. Along with this, the yield becomes higher as the copper strip is less cut away.
  • the upper jet cooling opposing injection position is on the table roller, which is preferable from the viewpoint of plate feeding stability.
  • the present invention is not limited to this.
  • the opposing cooling position (collision position) for the upper surface cooling may be between the table rollers.
  • the steel strip is pressed down by the rod-shaped cooling water from the top surface cooling device, so that the steel strip may bend between the table rollers and the plate may become unstable.
  • the upper surface cooling unit 17 is divided into an upstream side and a downstream side in the direction of travel of the steel strip, and includes four rows of cooling nozzle headers 13 in FIG. 2 and eight rows in FIG.
  • the number of columns is not limited, and an appropriate number of columns may be installed. However, as the number of rows increases, the range that collides with the steel strip in the rod-shaped cooling water becomes longer in the traveling direction of the steel strip, so the rod-shaped cooling water must collide with the steel strip only above the table roller. However, in that case, the rod-shaped cooling water may be made to collide with the steel strip over the table roller and between the table rollers. That is, for example, as shown in Fig.
  • the range of collision with the steel strip of rod-shaped cooling water is the table roller mounting pitch. In this case, it is possible to straddle both directly above the table roller and between the table rollers.
  • the conventional cooling device 7 and the cooling device 11 of the present invention are arranged in that order as the cooling device for cooling the steel strip upper surface provided on the run-out table 5, but the present invention is not limited to this.
  • the cooling device provided in the run-out table 5 may be partly or entirely constituted by the cooling device 11 of the present invention.
  • transition boiling in the region close to the scraper
  • the cooling device 11 of the present invention It is possible to avoid the transition boiling region where the entire surface becomes nucleate boiling and the cooling becomes unstable. Accordingly, stable cooling is possible regardless of the winding temperature, and the winding temperature can be controlled with high accuracy.
  • the cooling device 11 of the present invention can be disposed at least immediately before the winder. preferable. With this arrangement, unstable cooling can be achieved even at coiling temperatures of low temperatures (below 500 ° C). There is little temperature variation. As a result, the steel strip quality, such as strength and elongation, is uniform over the entire length of the steel plate.
  • FIG. 5 shows a hot-rolled steel strip manufacturing facility in the second embodiment of the present invention.
  • the cooling device 11 of the present invention is located upstream of the conventional cooling device 7. It is arranged.
  • the upper surface cooling header unit having 16 rows of cooling nozzle headers as shown in FIG. .
  • the runout table 5 is provided with a table roller 9 for conveying a rotating steel strip having a diameter of about 30 mm and a pitch of about 40 mm in the longitudinal direction.
  • the steel strips 12 proceed on these table rollers 9.
  • the cooling device on the lower surface side in this region is not particularly limited, and here, the same spray nozzle 10 as in the region of the conventional cooling device 7 described above is used.
  • the cooling device 11 of the present invention collides the rod-shaped cooling water between the table rollers, the copper belt is pressed from above into the copper belt passing plate and is easily bent.
  • the amount of cooling water from the spray nozzle 10 used in the cooling device on the lower side and the water pressure are increased so that the vertical force is balanced.
  • each cooling nozzle header 13 is connected to a supply pipe 15, and each supply pipe 15 can be independently controlled on and off by a valve 16.
  • circular tube nozzles 14 having a predetermined injection angle 0 (for example, 45 °) with respect to the steel strip traveling direction are arranged in a row at a predetermined pitch in the width direction. They are arranged side by side.
  • These circular pipe nozzles 14 are straight pipe nozzles having an inner diameter of 3 to 1 ⁇ and a smooth inner surface, as in the first embodiment, and the cooling water to be injected is rod-shaped cooling water.
  • the rod-shaped cooling water makes a predetermined angle 0 with the steel strip 12 in a certain direction, that is, the traveling direction of the steel strip 12.
  • the structure of the mounting pitch in the width direction of the steel strips 12 for rod-shaped cooling water and the structure of rod-shaped cooling water may be basically the same as in the first embodiment.
  • the draining method performed in the first embodiment may be performed so that the cooling water does not flow out downstream of the cooling unit 17.
  • the steel strip can be uniformly cooled from the tip to the tail, and the quality of the steel strip is stabilized. Along with this, the net band cut-off cost is reduced and the yield is increased.
  • the cooling device 11 of the present invention is disposed on the downstream side of the conventional cooling device 7 as the cooling device for cooling the steel strip upper surface provided in the run-out table 5, and the second embodiment Then, the force by which the cooling device 11 of the present invention is arranged upstream of the conventional cooling device 7 is not limited to this.
  • a conventional cooling device 7 is disposed on the downstream side of the cooling device 11 of the present invention, and the cooling device 11 of the present invention is further disposed on the downstream side thereof. It may be arranged.
  • the cooling device 11 of the present invention on the upstream side (cooling device closer to the finish rolling mill 4) is used as the cooling nozzle header shown in FIG.
  • the cooling device closer to the take-up machine 6 ') may be the cooling nozzle header shown in Fig. 2 or vice versa.
  • cooling device 11 of the present invention may be arranged. 'At that time, the cooling nozzle headers shown in Fig. 2 to Fig. 4 may be mixed. In other words, a part or all of the cooling device provided on the run-out table 5 should be constituted by the cooling device 11 of the present invention.
  • cooling may be in an unstable state called transition boiling in a region close to the scraper, but according to the cooling device 11 of the present invention, The transition boiling region where the entire surface becomes nucleate boiling and the cooling becomes unstable can be avoided. If it is necessary to lower the scraping temperature (for example, below 5.0 ° C), close the winder
  • the cooling device 11 of the invention may be installed.
  • the cooling of the present invention is applied to both the front stage and the rear stage of the runout table as in the third embodiment shown in FIG. Device 1 1 should be installed.
  • the embodiment described above does not limit the opposed injection position of the upper surface cooling (the collision position with the steel strip of the rod-shaped cooling water) and the lower surface cooling method. However, the following embodiment may be used. .
  • the cooling device 11 of the present invention will be described based on a partially enlarged view shown in FIG.
  • a table roller 9 for conveying a rotating steel strip having a diameter of about 30 O mm at a pitch of about 40 O mm in the longitudinal direction is arranged, and a copper strip is placed on the table roller 9. 1 2 goes on.
  • the bar-shaped cooling water inclined to the upper side of the same table roll 9 from the upstream side and downstream side of the same table roll 9 is opposed to the upper surface side of the steel strip 12.
  • the upper surface cooling unit 17 to be sprayed is provided in multiple units in the traveling direction of the steel strip.
  • the first to third implementations are performed except that the circular tube nozzle 1 ′ 4 for injecting the rod-shaped cooling water is disposed to face directly above the same table roll 9. It is the same as the form.
  • the cooling nozzle on the lower surface side of the steel strip is not particularly limited, but in this embodiment, water can be easily installed in a narrow space such as between table mouths.
  • Each cooling nozzle header 18 is connected to a supply pipe 20, and each supply pipe 20 can be controlled on and off independently by an injection valve 21.
  • each supply pipe 20 can be controlled on and off independently by an injection valve 21.
  • the amount of cooling by the cooling water on the upper surface side of the steel strip (rod-shaped cooling water from the circular tube nozzle ⁇ 4) and the amount of cooling by the cooling water on the lower surface side of the steel strip (rod-shaped cooling water from the circular tube nozzle 19) are It is preferable to adjust the arrangement of the cooling nozzles on the upper surface side and the lower surface side of the steel strip 12, the water density of the cooling water, the arrival speed, etc. so as to be equal.
  • the rod-shaped cooling water inclined from the upper surface cooling unit 17 to the position directly above the same table roll 9 is jetted oppositely. 1 2 is pushed against the table roll 9 by the rod-shaped cooling water and proceeds on the run-out table 5, and even in a non-tension state until the tip of the steel strip 1 2 is scraped off by the winder 6.
  • the plate of the steel strip 1 2 is stable.
  • a steel strip is provided on the downstream side of the cooling unit 17.
  • the air injection nozzle 22 is provided so as to drain water so that the cooling water on the upper surface does not flow out. is doing.
  • the cooling control is performed as follows. First, the length of the cooling zone on the upper and lower surfaces to be sprayed is determined from the speed of the copper strip, the measured temperature, and the cooling amount up to the target cooling stop temperature. Then, the number of cooling units 17 covering the obtained cooling zone length of the upper surface and the number of cooling nozzle headers 13 to be injected in the cooling unit 17 are determined, and the corresponding injection valves 16 are opened. Determine the number of cooling nozzle headers 1 8 that cover the calculated cooling zone length of the bottom surface, and open the corresponding injection valve 2 1. At that time, it is desirable that the cooling amount by the cooling water on the upper surface side of the steel strip is equal to the cooling amount by the cooling water on the lower surface side of the steel strip.
  • the number of cooling units 17 on the upper surface and the number of cooling units to be injected are changed to change the cooling zone length while taking into account the changes in the steel plate speed (acceleration / deceleration). Adjust the number of rows of the sluice headers 1 3 and the number of cooling nozzle headers 1 8 sprayed on the lower surface.
  • it is injected from the upstream side to the downstream side as much as possible.
  • the steel strip can be uniformly cooled from the tip to the tail, and the quality of the steel strip is stabilized. Along with this, the yield becomes higher as the steel strip is cut off less.
  • rod-shaped cooling water inclined on the upper surface side of the steel strip from the upstream side and the downstream side of the same table roll toward the table roll ⁇ respectively.
  • jetting is performed in opposition
  • the present invention is not limited to this.
  • the cooling water sprayed on the upper surface of the steel strip should flow down from both width ends of the steel strip to the outside. It is better to spray oppositely.
  • a table roller 9 for conveying a rotating steel strip having a pitch of about 400 mm in the longitudinal direction and a diameter of 3 3 O mm is disposed on the runout table 5, for example, a table roller 9 for conveying a rotating steel strip having a pitch of about 400 mm in the longitudinal direction and a diameter of 3 3 O mm is disposed. Zone 1 2 progresses.
  • a lower surface cooling nozzle 19 for injecting rod-shaped cooling water from between the table rolls 9 toward the lower surface of the steel strip is disposed on the lower surface side of the steel strip 12 and On the upper surface side of belt 1 2, rod-shaped cooling water sprayed from bottom surface cooling nozzle 19 is tilted from the upstream side and downstream side directly above the position where it collides with copper strip 1 2.
  • a plurality of cooling units 17 arranged so as to oppose cooling nozzles 14 for injecting cooling water are provided in the traveling direction of the steel strip. Then, for the cooling unit on the upper surface side of the cooling unit 17, the circular tube nozzle 14 that injects the rod-shaped cooling water is injected into the copper strip 12 by the rod-shaped cooling water injected from the lower surface cooling nozzle 19. It is the same as in the first to third embodiments except that it is arranged to face directly above the collision position.
  • a cooling nozzle header 18 is arranged between the table rollers 9 on the lower side of the copper strip of each cooling unit 17, and each cooling nozzle header 18 is a circular pipe that injects rod-shaped cooling water.
  • the nozzles 19 are arranged in a predetermined pitch in the width direction with a predetermined number of rows (here, 3 rows).
  • Each cooling nozzle header 18 is connected to a supply pipe 20, and each supply pipe 20 can be turned on and off independently by an injection valve 21.
  • the amount of cooling by the cooling water on the upper surface side of the steel strip (bar-shaped cooling water from the circular tube nozzle 14) and the amount of cooling by the cooling water on the lower surface side of the steel strip (bar-shaped cooling water from the circular tube nozzle 19) differ.
  • the upper and lower sides of the steel strip 12 are equal so that the fluid pressure received by the steel strip from the cooling water on the upper surface side of the steel strip is equal to the fluid pressure received by the steel strip from the cooling water on the lower surface side of the steel strip. Adjust the cooling nozzle arrangement, cooling water volume density and speed.
  • the steel strip 12 is run-out while being sandwiched by the same water pressure from above and below by the cooling water on the steel strip upper surface side and the cooling water on the steel strip lower surface side.
  • the plate passes through the table 5 and the plate of the steel strip 12 is stabilized even in a non-tensioned state until the tip of the steel strip 12 is scraped off by the scraper 6.
  • the cooling positions of the upper and lower surfaces of the steel strip 12 are the same, the thermal history, particularly the thermal history near the surface layer, is almost the same, and the product quality is the same up and down. .
  • the air injection nozzle 22 is provided to drain water so that the cooling water on the upper surface of the steel strip does not flow out downstream of the cooling unit 17. Yes.
  • the cooling control is performed as follows.
  • the length of the cooling zone to be injected is determined from the speed of the steel strip, the measured temperature, and the cooling amount to the target cooling stop temperature. Then, the number of cooling units 17 that cover the obtained cooling zone length, the number of cooling nozzle headers 13 that are injected in the cooling unit 17, and the number of lower cooling nozzle headers 18 are determined. Open the injection valves 1 6 and 2 1 to open. At that time, the cooling amount by the cooling water on the upper surface side of the steel strip and the cooling amount by the cooling water on the lower surface side of the steel strip become equal, and the fluid pressure received by the steel strip from the cooling water on the upper surface side of the steel strip and the lower surface of the steel strip The fluid pressure received by the steel strip from the side cooling water should be equal.
  • the number of cooling units 17 and the number of cooling nozzles to be sprayed were changed to change the cooling zone length while taking into account the changes in the steel plate speed (acceleration / deceleration) by looking at the results of the thermometer after cooling. Adjust the number of columns in headers 1 3 and 1 8 Cooling
  • the number of rows to be injected from the upstream side to the downstream side is minimized. It is desirable to adjust the number of rows injected from the downstream side to the upstream side so that the fluid pressure of the cooling water is balanced between the upstream side and the downstream side of the steel strip. For example, it is desirable to turn on and off a pair of upstream and downstream cooling nozzle headers.
  • the steel strip can be uniformly cooled from the tip to the tail, and the quality of the copper strip is stabilized. Along with this, the yield is increased as the steel strip is cut off less.
  • the rod-shaped cooling water sprayed from the lower surface cooling nozzle is directed immediately above the same position where it collides with the steel strip.
  • the present invention is not limited to this.
  • an inclined rod-like cooling rim that is jetted from the upstream side toward the position directly above the position where the rod-like cooling water on the lower surface side collides with the eaves band, and the lower surface located on the downstream side
  • the inclined rod-shaped cooling water sprayed from the downstream side toward the position directly above the position where the rod-shaped cooling water on the side collides with the steel strip may be jetted oppositely.
  • the cooling water sprayed on the upper surface of the steel strip is allowed to flow down rapidly from both ends of the steel strip, and for the stability of the plate, the rod-shaped cooling water sprayed from the lower surface cooling nozzle is used. It is preferable to spray oppositely toward the top of the same position where it hits the steel strip.
  • the conventional cooling device 7 and the cooling device 11 of the present invention are used as the cooling device for cooling the steel strip upper surface provided in the runout table 5.
  • the present invention is not limited to this, and it is only necessary that a part or all of the cooling device provided in the run-out table 5 is constituted by the cooling device 11 of the present invention.
  • cooling may be in an unstable state called transition boiling in a region close to the winder. According to 1 1, it is possible to avoid transition boiling regions where nucleate boiling occurs and cooling becomes unstable. Therefore, stable cooling is possible regardless of the winding temperature, and the winding temperature can be accurately controlled. Therefore, the cooling device of the present invention is provided at least immediately before the winding machine.
  • Example 1 a steel strip having a finished plate thickness of 2.8 mm was manufactured using the cooling nozzle header device shown in FIG. 2 with the equipment layout shown in FIG. 1 based on the first embodiment described above.
  • the cooling device 11 of the present invention 6 units of cooling units each having four rows of cooling nozzle headers on the upstream side and the downstream side were installed.
  • the steel strip speed at the finish rolling mill 4 is 70 Ompm at the tip of the copper strip, and after the tip of the copper strip reaches the scraper 6, the speed is gradually increased to a maximum of 100 Omp. Increased to m.
  • the temperature at the exit side of the steel strip finisher is 85, which is cooled to approximately 60 ° C using the conventional cooling device 10 and then up to the target scraping temperature of 400 ° C.
  • the cooling water injection angle 0 from the cooling device 1 1 is set to 50 °, and the velocity of the cooling water in the longitudinal direction of the copper strip at the time of collision with the copper strip exceeds the maximum speed of the steel strip.
  • the injection speed of the cooling water was set to 3 OmZ s.
  • the flow velocity in the longitudinal direction of the copper strip is 30 m / s X cos 50 0 ° 1 1 5 2 mpm.
  • the cooling control was performed as follows. The length of the upper and lower cooling zones for injecting cooling water is determined from the speed of the copper strip, the measured temperature, and the cooling amount up to the target cooling stop temperature.
  • the number of cooling units 17 and the cooling unit 17 are injected for the upper surface cooling.
  • the number of cooling water units and the number of cooling nozzle headers to be injected are changed so as to change the cooling zone length while taking into account the changes in the steel plate speed (acceleration / deceleration) based on the results of the thermometer after cooling. The number was adjusted.
  • the upstream and downstream cooling nozzle headers were turned on and off in pairs.
  • the zone length of the cooling unit 17 is adjusted so that the upper surface of the copper strip does not become martensite on the exit side of each cooling unit 17, and further heat recovery from the inside is performed in the next air cooling zone.
  • the air-cooling zone length was determined to complete the process, and the usage conditions for subsequent cooling units 17 were determined.
  • the steel used here produces a martensite structure at 350 ° C or lower, so the cooling was controlled so that the surface did not drop below 350 ° C.
  • the steel strip temperature in the winder 6 was within 400 ° C. ⁇ 10 ° C. over the entire length, and very uniform cooling could be realized. There was also no tempered martensite structure on the upper surface of the steel strip. As a result, a stable quality copper strip could be obtained.
  • Example 2 a steel strip having a finished sheet thickness of 2.4 mm was manufactured based on the first embodiment described above, using the cooling nozzle header device shown in FIG. 3 with the equipment arrangement shown in FIG. Note that • In the cooling device 11 of the present invention, three cooling units having eight rows of cooling nozzle headers on the upstream and downstream sides were installed.
  • the steel strip speed at the finish rolling mill 4 is 75 Ompm at the end of the steel strip, and after the end of the steel strip reaches the scraper 6, the speed is gradually increased to a maximum of 100 Ompm. Increased speed.
  • the temperature on the exit side of the steel strip finisher is 860. Then, it was cooled to about 650 ° C.
  • the injection angle 0 of the cooling water from the cooling device 1 1 is set to 45 °, and the flow velocity in the longitudinal direction of the cooling water at the time of collision with the steel strip exceeds the maximum speed of the steel strip.
  • the jet speed of the cooling water was set to 35 m / s.
  • the flow velocity in the longitudinal direction of the steel strip is 30 / s X cos 45 ° 1484mpm.
  • each cooling unit 1 7 By changing the number of rows of cooling nozzle headers to be injected by unit 17, the cooling zone length of each cooling unit 17 was adjusted to determine the usage conditions of the cooling unit.
  • the copper used here generates a martensite structure at 350 ° C or lower, so the cooling was controlled so that the surface would not be lower than 350 ° C.
  • Example 2 the steel strip temperature in the scraper 6 is 45% over the entire length. Within 0 ° C ⁇ 8, extremely uniform cooling was achieved. In addition, there was no tempered martensite structure on the upper surface of the steel strip. As a result, a stable quality steel strip could be obtained.
  • Example 3 based on the second embodiment described above, a copper strip having a finished plate thickness of 3.6 mm was manufactured using the cooling nozzle header device shown in FIG. 4 with the equipment arrangement shown in FIG.
  • the cooling device 11 of the present invention five cooling units each having 16 rows of cooling nozzle headers were installed on the upstream side and the downstream side.
  • the steel strip speed on the exit side of the finish rolling mill 4 was 600 mpm at the end of the steel strip, and after the end of the steel strip reached the winder 6, the speed was gradually increased to a maximum of 80 Ompm.
  • the temperature at the exit side of the steel strip finisher is 840 ° C, and it is cooled to approximately 650 ° C using the cooling device 11 of the present invention. Cooled using cooling device 7.
  • the injection angle 0 of the cooling water from the cooling device 11 is set to 55 ° so that the flow velocity in the longitudinal direction of the cooling water at the time of collision with the copper strip exceeds the maximum speed of the copper strip.
  • the injection speed of cooling water was set to 3 Om / s.
  • the flow velocity in the longitudinal direction of the steel strip is 30 m / s X cos 5 5 ° 1 032 mpm.
  • the copper used here needs to have a high cooling rate during cooling from 800 ° C to 600 ° C in order to make the entire plate thickness uniform. Since it was formed, the cooling was controlled so that the surface did not become 35 mm or less. In other words, the distance between the air-cooled part and the water-cooled part was adjusted so as to increase the cooling rate and prevent the surface from becoming 350 ° C or lower. As a result, in Example 3, the steel strip temperature in the scraper 6 was within 50 Ot ⁇ 12 ° C over the entire length, and very uniform cooling was realized. In addition, because the cooling rate was high and stable, a uniform vanite structure could be generated in the thickness direction of the steel strip, and a high-strength material could be manufactured.
  • Example 4 based on the above-described third embodiment, the cooling nozzle header device shown in FIG. 4 is used for the front stage of the runout table, and the cooling stage shown in FIG. 2 is used for the subsequent stage of the runout table. Manufacturing a steel strip with a finished plate thickness of 4.0 mm using a nozzle header device did.
  • the cooling device 11 of the present invention in the preceding stage 5 units of cooling units each having 16 rows of cooling nozzle headers are installed on the upstream side and the downstream side, and in the cooling device 11 of the present invention in the subsequent stage. Three units of cooling units with four rows of cooling nozzle headers were installed on the upstream and downstream sides.
  • the steel strip speed on the exit side of the finish rolling mill 4 is 500 mpm at the steel strip tip, and after the steel strip tip reaches the winder 6, the speed is gradually increased to a maximum of 55 Ompm. did.
  • the temperature at the exit side of the steel strip finisher is 85 ° C., and is cooled to about 65 using the cooling device 11 of the present invention in the previous stage, and then the conventional cooling device 7 is not used. To the target scraping temperature of 400 ° C., cooling was performed using the cooling device 11 of the present invention in the preceding stage.
  • the injection angle 0 of the cooling water from each of the cooling devices 11 at the front and rear stages is set to 45 °, and the flow velocity in the longitudinal direction of the cooling water at the time of collision with the steel strip is the highest in the steel strip.
  • the injection speed of cooling water was 3 OmZ s so that the speed would be higher.
  • the number of cooling water units and the number of cooling nozzle headers to be injected were adjusted in order to change the cooling control, that is, the cooling zone length.
  • the steel used here needs to have a high cooling rate during cooling from 800 ° C to 60 ° C because it wants to make the entire plate thickness uniform. As a result, a cooling was controlled so that the surface did not become 35 or less. In other words, the distance between the air-cooled portion and the water-cooled portion was adjusted in each of the cooling devices 11 at the front and rear stages so that the cooling rate was increased and the surface was not below 350 ° C.
  • the copper strip temperature in the scraper 6 was within 400 °: ⁇ 11 ° C. over the entire length, and extremely uniform cooling was realized.
  • the cooling rate was high and stable, a uniform vanite structure could be generated in the thickness direction of the copper strip, and a high-strength material could be manufactured.
  • Example 5 a steel strip having a finished sheet thickness of 2.8 mm was manufactured based on the above embodiment using the equipment shown in FIGS. Finishing mill 4
  • the steel strip speed at the delivery side is 70 Ompm at the tip of the steel strip, and after the tip of the steel strip reaches the scraper 6, the speed is gradually increased to a maximum of 100 Ompm. did.
  • the temperature at the exit side of the copper strip finisher is 85 ° C., which is cooled to approximately 65 ° C. using a conventional cooling device 10 and then the target scraping temperature is 40 °. Up to ° C, the cooling device 11 of the present invention was used for cooling.
  • the cooling from the cooling device 1 1 The jet angle of cooling water is set to 50 °, and the jet speed of cooling water is 3 O mZ so that the longitudinal flow velocity of the cooling water at the time of collision with the copper strip exceeds the maximum speed of the steel strip. s.
  • the flow velocity in the longitudinal direction of the steel strip is 30 m / s X cos 50 ° 1 1 5 2 mpm.
  • cooling control was performed as follows. First, the length of the upper and lower cooling zones from which cooling water was injected was determined from the speed of the steel strip, the measured temperature, and the cooling amount up to the cooling stop temperature of the thickness target.
  • thermometer after cooling were taken into account, and the change in the steel plate speed ('acceleration / deceleration) was taken into account, and the number of cooling units 17 on the top surface was changed to change the cooling zone length.
  • the number of cooling nozzle headers 13 to be sprayed and the number of cooling nozzle headers 18 to be sprayed on the bottom surface were adjusted.
  • the number of rows to be injected from the upstream side and the number of rows to be injected from the downstream side should be set according to the fluid pressure of the cooling water upstream and downstream of the steel strip.
  • the upstream and downstream cooling nozzle headers were turned on and off in pairs so as to balance each other.
  • zone length of the cooling unit 17 is adjusted so that the steel strip upper surface does not become martensite on the exit side of each cooling unit 17, and the heat diffusion from the inside in the next air cooling zone sufficiently restores it.
  • the length of the air cooling zone was determined so that the heat was completed, and the subsequent use conditions of the cooling unit 17 were determined.
  • the steel used here produces a martensite structure at 35 ° or less, so the cooling was controlled so that the surface would not go below 35 ° C.
  • the steel strip temperature in the scraper 6 was within 400 ⁇ 1 over the entire length, and very uniform cooling was realized.
  • a steel strip of stable quality could be obtained.
  • Example 6 a steel strip having a finished sheet thickness of 2.8 mm was manufactured based on the above embodiment using the equipment shown in FIGS. Finishing rolling mill 4
  • the steel strip speed at the delivery side is 70 O mpm at the tip of the steel strip, and after the tip of the copper strip reaches the winder 6, the speed is gradually increased to a maximum of 100 O mpm. It was fast.
  • the temperature at the exit side of the steel strip finisher is 85 ° C. Then, it was cooled to approximately 65 ° C. using the apparatus 10, and thereafter, it was cooled using the cooling apparatus 11 of the present invention to the target scraping temperature of 400 ° C.
  • the cooling water injection angle 0 from the cooling device 1 1 is set to 50 °, and the velocity of the cooling water in the longitudinal direction of the steel strip at the time of collision with the steel strip exceeds the maximum speed of the steel strip.
  • the injection speed of the cooling water was set to 3 O mZ s.
  • the flow velocity in the longitudinal direction of the copper strip is 30 m / s X cos 50 ° 1 1 5 2 ⁇ ⁇ ⁇ .
  • the cooling control was performed as follows. First, the length of the cooling zone that injects cooling water was determined from the speed of the steel strip, the measured temperature, and the amount of cooling up to the cooling stop temperature of the plate thickness target. Then, determine the number of cooling units 1 7 and the upper and lower cooling nozzle headers 1 3 and 1 to be injected in the cooling unit 1 7 by obtaining the upper surface cooling condition and the lower surface cooling condition that cover the obtained cooling zone length. The number of rows in 8 was determined and the corresponding injection valve was opened.
  • the cooling amount by the cooling water on the upper surface side of the copper strip and the cooling amount by the cooling water on the lower surface side of the steel strip become equal, and the fluid pressure received by the steel strip from the cooling water on the upper surface side of the steel strip and the lower surface side of the copper strip
  • the fluid pressure received by the steel strip from the cooling water was made equal.
  • the upstream and downstream cooling nozzle headers were turned on and off in pairs.
  • zone length of the cooling unit 17 is adjusted so that the steel strip upper surface does not become martensite on the exit side of each cooling unit 17, and sufficient heat recovery is achieved by diffusion of heat from the inside in the next air cooling zone.
  • the air-cooling zone length was determined so that the process could be completed, and the subsequent use conditions of the cooling unit 17 were determined.
  • the copper used here produces a martensite structure below 35, so the cooling was controlled so that the surface would not be below 35.
  • the steel strip temperature in the winder 6 was within 400 ° C. ⁇ 10 ° C. over the entire length, and very uniform cooling could be realized.
  • Example 2 In order to compare the effect of rapid cooling immediately after finish rolling by the cooling device 11 of the present invention shown in Examples 3 and 4 above, as Comparative Example 2, the same equipment as that of Invention Example 1 was used. The rejection device 11 was not used, and the conventional cooling device 7 (the upper circular tube lamina nozzle 8 and the lower spray nozzle 10) was used to cool to the target winding temperature of 50. Others were the same as in Example 3.

Description

明細書 熱延銅帯の冷却装置および冷却方法 技術分野
本発明は、 熱間圧延された高温鋼帯を冷却するための冷却装置および冷却方法に関す る。 ' . 技術
一般に、 熱延鋼帯を製造するには、 加熱炉においてスラブを所定温度に加熱し、 加熱 されたスラブを粗圧延機で所定厚みに圧延して粗バーとなし、 ついでこの粗バーを複数 基の圧延スタンドからなる連続熱間仕上圧延機において所定の厚みの鋼帯となす。 そし て、 この熱延鋼帯をランナウトテーブル上の冷却装置によって冷却した後、 卷き取り機 で巻き取ることにより製造される。
その際、 熱間圧延された高温の鋼帯を連続的に冷却するランナウトテーブルの冷却装 置では、 鋼帯の上面冷却をなすため、 円管状のラミナ一冷却ノズルから鋼帯搬送用のテ 一ブルローラ上に、この幅方向に亘つて直線状に複数のラミナ一冷却水を注水している。 一方、 銅帯の下面冷却をなすため、 テーブルローラ間にそれぞれスプレーノズルが設け られ、 ここから冷却水を噴射する方法が一般的である。
しかし、 このような従来の冷却装置では、 銅帯の上面側に注水された冷却水は、 冷却 後、 鋼帯の上面に滞留し、 上面側の過冷却を引き起こす。 過冷却状態は、 銅帯の長手方 向において一様とはならず、 したがつてこの方向における冷却停止温度にばらつきが生 じていた。 さらに、 鋼帯の上面冷却に使われている円管ラミナ一ノズルからの冷却水は 自由落下流であるので、 鋼帯の上面に滞留水の水膜があると銅帯まで冷却水が到達しに く く、 銅帯の上面に滞留水がある場合とない場合で冷却能力に違いが生じるという問題 や、 銅帯上に落下した冷却水が自由に前後左右に広がるので冷却領域 (冷却ゾーン) が 変化し、冷却能力が安定しないという問題等がある。このような冷却能力の変動の結果、 鋼帯の材質が不均一になりやすくなつていた。
そこで、 鋼帯上の冷却水 (滞留水) の水切りを行なって、 安定した冷却能力を得るた めに、 銅帯上面を横切るように流体を斜め方向に噴射して滞留水を排出する方法 (例え ば、 特許文献 1参照) や、 鋼帯の上下動を拘束するための拘束ロールを水切り口 Γ·''Λ'' して滞留水を堰き止めることで冷却領域を一定にする方法 (例えば、 特許文献 2参照) が提案されている。 また、 冷却水を鋼帯上に閉じ込めることで冷却領域を一定にする冷 却方式として、 図 1 1 Α、 図 1 1 Βに示すような、 スリッ ト状のノズルを傾斜させて互 いに向き合う方向に対向させて冷却水を噴射する方式 (例えば、 特許文献 3参照) が提 案されている。
特許文献 1 : 特開平 9一 1 4 1 3 2 2号公報
特許文献 2 : 特開平 1 0— 1 6 6 0 2 3号公報
特許文献 3 : 特開昭 5 9— 1 4 4 5 1 3号公報 発明の開示
しかしながら、 特許文献 1に記載の方法によると、'下流に行くに従って鋼帯上に大量 の冷却水が滞留していくので、 下流側になるほど水切り効果がきかなくなる。
また、 特許文献 2に記載の方法においては.、 圧延機を出てから卷き取り機に至るまで の鋼帯先端部は拘束ロールによる拘束が無い状態で搬送されるので、 拘束ロール (水切. りロール) による水切り効果が得られない。 しかも、 鋼帯先端部が上下動しながら波を 打ったような状態でランナウトテーブル上を通過するので、 この鋼帯先端部の上面に冷 却水を供給すると.、 上下に波を打つ底の部分に選択的に冷却水が滞留しやすく、 銅帯先 端が卷き取り機で巻き取られて張力が働き、銅帯が張られて上下波が解消されるまでは、 冷却温度のハンチング現象が生じる。 この冷却温度のハンチング現象も鋼帯の機械的性 質のバラツキを生じさせていた。
一方、 特許文献 3に記載のスリット状のノズルを傾斜させて互いに向き合う方向に対 向させて冷却水を噴射して冷却水を鋼帯上に閉じ込める冷却方式では、 冷却水流が切れ 目のないスリッ ト状の冷却水 ないと冷却水を堰き止めることができないが、 冷却水流 を切れ目がないスリッ ト状に保っためには、 ノズルと鋼帯の距離を離すことができない 上に、 同方法では、 冷却水を充満させるためにノズル先端部近傍に仕切板を設けている ことから、 鋼帯とノズルおよび仕切板との距離が近づかざるを得ず、 鋼帯がノズルや仕 切板に衝突する危険性が高い。 特に、 形状が悪い波板状の鋼帯では、 ノズルや仕切板と の接触が避けられずに、 鋼帯にキズが発生してしまう。 したがって、 実操業に適用する ことは困難である。 このように、 特許文献 1〜3に記載された方法では、 高い冷却能力と安定し :だ^ ¾能.'. 力を適切に得ることができない。
また、熱延鋼帯の製造においては、ランナウ卜テーブルの卷き取り機に近い領域では'、 表面の温度が例えば 5 5 0 °C以下となる場合があり、 以下のような問題もある。
すなわち、 このような領域では、 冷却が膜沸縢を主体とした鋼帯と冷却水との間に蒸 気膜が存在するような伝熱状態から、 鋼帯と冷却水が直接接触して沸騰するいわゆる核 沸騰が主体の領域に移行する。この沸騰状態が遷移する沸縢現象は、遷移沸縢と呼ばれ、 急激に冷却が促進される。 そのように冷却が促進される結果として、 鋼帯の表層のみが 急冷されて、 目標と違う組織が形成されることがある。 例えば、 表層極近傍が 4 0 0 °C 以下となると組織がマルテンサイ トとなり、 その後、 表層温度が復熱して、 巻き取りが 5 0 0 °Cで終わったとしても表層は焼き戻しマルテンサイ トのような内部と異なった糸且 織が形成されることがある。
さらに、 遷移沸騰から核沸騰領域においては、 冷却水が鋼帯に付着したような状態と なるので、 冷却装置 (ゾーン) から出た後の空冷ゾーンにおいて、 冷却水が残存し、 い わゆる水切りが不良の状態となりやすい。 このような部分では過冷却となって鋼帯の品 質にばらつきが生じる。
また、 従来、 材質の観点から冷却速度を速くする場合に、 単純に円管状のラミナ一冷却 水の水量を多く して対応しているが、 鋼帯に対して垂直に大水量を噴射すると特許文献
1や特許文献 2に記載されている手法では水を堰き止めることができず、 鋼帯上に大量 の滞留水が発生した結果、 極めて酷い温度ムラが発生していた。
本発明は、 上記の事情を考慮してなされたものであり、 その目的とするところは、 熱 間圧延された鋼帯を冷却水で冷却する際に、 高い冷却能力と安定した冷却領域を適切に 実現することにより、 鋼帯の先端から尾端まで均一に冷却を施すことができる熱延鋼帯 の冷却装置および冷却方法を提供しようとするものである。
上記課題を解決するために、 本発明は以下の特徴を有する。
1 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯を冷却する熱延鋼帯の 冷却装置であって、
鋼帯の上面側に、 鋼帯の進行方向に対してそれぞれ下流側と上流側とに向けて傾斜さ せた棒状冷却水を噴射する冷却ノズルを対向するように配置したことを特徴とする熱延 鋼帯の冷却装置。 2 . 前記冷却ノズルは銅帯幅方向に複数個配置されるとともに、 前記冷却ノ ルによ. :· り噴射される棒状冷却水と鋼帯との成す角度が 6 0 ° 以下であることを特徴とする前項 1に記載の熱延鋼帯の冷却装置。
3 . 前記下流側に向けて傾斜させた冷却ノズルと前記上流側に向けて傾斜させた冷 却ノズルは、 それぞれ鋼帯の進行方向に複数列配置されることを特徴とする前項 1また は 2に記載の熱延鋼帯の冷却装置。
4 . 前項 1から 3のいずれかに記載の熱延鋼帯の冷却装置を 1つの冷却装置ュニット とし、 該冷却装置ュニッ トを鋼帯の進行方向に複数配置したことを特徴とする熱延銅帯 の冷却装置。
5 . 前記冷却装置ュニットの下流側に、 鋼帯上面の冷却水の水切りを行う水切り手段 を配置したことを特徴とする前項 4に記載の熱延鋼帯の冷却装置。
6 . ランナウトテーブル上を搬送される仕上圧延後の熱延銅帯を冷却する熱延鋼帯の 冷却装置であって、
'鋼帯の上面側に、 テーブルロールの上流側から該テーブルロール直上へ向けて傾斜さ' せた棒状冷却水を噴射する冷却ノズルとテーブル口ールの下流側から該テーブルロール 直上へ向けて傾斜させた棒状冷却水を噴射する冷 ノ ルとを対向するように配置した ことを特徴とする前項 1から 5のいずれかに記載の熱延鋼帯の冷却装置。
7 . 鋼帯上面側の冷却水による冷却量と銅帯下面側の冷却水による冷却量とが等しく なるように、 鋼帯の上面側および下面側の冷却ノズルを配置することを特徴とする前項 6に記載の熱延鋼帯の冷却装置。
8 . 鋼帯の下面側に、 テーブルロール間から鋼帯下面へ向けて棒状冷却水を噴射する 冷却ノズルを配置したことを特徴とする前項 7に記載の熱延銅帯の冷却装置。
9 . ランナウトテーブル上を搬送される仕上圧延後の熱延銅帯を冷却する熱延鋼帯の 冷却装置であって、
鋼帯の下面側に、 テーブルロール間から鋼帯下面へ向けて冷却水を噴射する下面冷却 ノズルを配置するとともに、
鋼帯の上面側に、 下面冷却ノズルから噴射された冷却水が銅帯に衝突する位置の直上 へ向けてその上流側から傾斜させた棒状冷却水を噴射する冷却ノズルと、 下面冷却ノズ ルから噴射された冷却水が鋼帯に衝突する位置の直上へ向けてその下流側から傾斜させ た棒状冷却水を噴射する冷却ノズルとを、 対向するように配置したことを特徴とする前 項 1から 5のいずれかに記載の熱延鋼帯の冷却装置。
1 0 . 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水による冷却量とが等し くなり、 かつ、 鋼帯上面側の冷却水から鋼帯が受ける流体圧と鋼帯下面側の冷却水から 鋼帯が受ける流体圧とが等しくなるように、 前記上面冷却ノズルおょぴ前記下面冷却ノ ズルを配置することを特徴とする前項 9に記載の熱延鋼帯の冷却装置。
1 1 . 前記下面冷却ノズルを棒状冷却水を噴射するノズルとすることを特徴とする前項 1 0に記載の熱延銅帯の冷却装置。 '
1 2 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯の冷却方法であって、 鋼帯の上面側に、 銅帯の進行方向下流側に向けて傾斜させた棒状冷却水と銅帯の進行方 向上流側に向けて傾斜させた棒状冷却水とを対向させて噴射することを特徴とする熱延 鋼帯の冷却方法。
1 3 . 前記棒状冷却水と鋼帯との成す角度が 6 0 ° 以下であることを特徴とする前項 1 2に記載の熱延鋼帯の冷却方法。
1 4 . 前記下流側に向けて傾斜させた棒状冷却水と前記上流側に向けて傾斜させた棒 状冷却水を、 それぞれ鋼帯の進行方向に複数列噴射することを特徴とする前項 1 2また は 1 3に記載の熱延鋼帯の冷却方法。
1 5 . 前記傾斜させた棒状冷却水の対向噴射を、 銅帯の進行方向に間隔を空けて複数 箇所で行なうことにより、 水冷と空冷とを繰り,返す間欠的な冷却を行うことを特徴とす る前項' 1 2から 1 4のいずれかに記載の熱延鋼帯の冷却方法。
1 6 . 前記傾斜させた棒状冷却水を対向噴射する位置よりも下流側に設けられた水切 り手段により、 冷却水の水切りを行うことを特徴とする前項 1 5に記載の熱延銅帯の冷 却方法。
1 7 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯の冷却方法であって、 鋼帯の上面側に、 テーブル口ールの上流側から該テ一ブル口一ル直上へ向けて傾斜させ た棒状冷却水とテーブル口ールの下流側から該テーブル口ール直上へ向けて傾斜させた 棒状冷却水とを対向させて噴射することを特徴とする前項 1 2から 1 6のいずれかに記 載の熱延鋼帯の冷却方法。 1 8 . 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水による冷却量とが. し くなるように、 鋼帯の上面側および下面側へ冷却水を噴射することを特徴とする前項 1 7に記載の熱延鋼帯の冷却方法。
1 9 . 銅帯の下面側に、 テーブルロール間から鋼帯下面へ向けて棒状冷却水を噴射す ることを特徴とする前項 1 8に記載の熱延鋼帯の冷却方法。
2 0 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯の冷却方法であって、 銅帯の下面側に、 テーブルロール間から鋼帯下面へ向けて冷却水を噴射するとともに、 鋼帯の上面側に、 下面側の冷却水が鋼帯に衝突する位置め直上へ向けてその上流側から 噴射される傾斜させた棒状冷却水と、 下面側の冷却水が鋼帯に衝突する位置の直上へ向 けてその下流側から噴射される傾斜させた棒状冷却水とを、 対向させて噴射することを 特徴とする前項 1 2から 1 6のいずれかに記載の熱延鋼帯の冷却方法。
2 1 . 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水による冷却量とが等し くなり、 かつ、 鋼帯上面側の冷却水から鋼帯が受ける流体圧と鋼帯下面側の冷却水から 銅帯が受ける流体圧と;^等しくなるように、 鋼帯の上面側および下面側の冷却水を噴射 することを特徴とする前項 2 0に記載の熱延鋼帯の冷却方法。
2 2 .鋼帯下面側の冷却水を棒状冷却水とすることを特徴とする前項 2 1に記載の熱延 鋼帯の冷却方法。. 図面の簡単な説明
図 1は、 本発明の第一の実施形態における圧延設備の概略の構成図である。
図 2は、 本発明の第一の実施形態における冷却装置の説明図である。
図 3は、 本発明の第一の実施形態における冷却装置の説明図である。
図 4は、 本発明の第一の実施形態における冷却装置の説明図である。
図 5は、 本発明の第二の実施形態における冷却装置の説明図である。
図 6は、 本発明の第三の実施形態における冷却装置の説明図である。
図 7は、 本発明の他の実施形態における冷却装置の説明図である。
図 8は、 本発明の他の実施形態における冷却装置の説明図である。
図 9は、 本発明の他の実施形態における冷却装置の説明図である。
図 1 0は、 本発明の他の実施形態における冷却装置の説明図である。
図 1 1 A、 図 1 1 Bは、 従来技術の説明図である。 各図中の符号の意味は以下の通りである。 ' '
1 :粗圧延機、 2 :粗バー、 3 : テーブルローラ、 4 :連続仕上げ圧延機群、 4 E :最 終仕上げ圧延機、 5 : ランナウトテーブル、 6 :卷き取り機、 7 :従来型の冷却装置、
8 : 円管ラミナ一ノズル、 9 :テーブルローラ、 1 0 : スプレーノズル、 1 1 :本発明 の冷却装置、 1 2 :鋼帯、 1 3 :冷却ノズルヘッダ、 1 4 :円,管ノズル、 1 5 :供給管、
1 6 :噴射弁、 1 7 :冷却ュニッ ト、 1 8 :冷却ノズルヘッダ、 1 9 : 円管ノズル、 2
0 :供給管、 2 1 :噴射弁、 2 2 :空気噴射ノズル 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。
図 1は、 本発明の一実施形態における熱延鋼帯の製造設備を示すものである。 粗圧延 機 1で圧延された粗バー 2はテーブル'ローラ 3上を搬送されて、 連続的に 7つの連続仕 上げ圧延機群 4で所定の厚みまで圧延されて鋼帯 1 2となった後、 最終仕上圧延機 4 E の後方の鋼帯搬送路を構成するランナウトテーブル 5に導かれる。 このランナウトテー ブル 5は全長約 1 0 0 mあり、 その一部またはほとんど大部分に冷却装置が設けられて いて、 鋼帯 1 2がこ二で冷却されたあと、 '下流側の巻き取り機 6で巻き取られて熱延コ ィルとな ¾。
そして、 この実施形態においては、 一例として、 ランナウトテーブル 5に設けられる 鋼帯上面冷却の冷却装置として、 従来型の冷却装置 7と本発明の冷却装置 1 1がその順 に配置されている。
従来型の冷却装置 7は、 ランナウトテーブル 5の上面側に所定ピッチで配置され、 鋼 帯に Mして冷却水を自由落下流として供給する複数の円管ラミナ一ノズル 8を備えてい る。
また、 鋼帯下面冷却用の冷却装置としては、 鋼帯搬送用のテーブルローラ 9間に複数 のスプレーノズル 1 0が幅方向に列状に配置されている。 これらのスプレーノズル 1 0 は、 その噴出圧力や水量密度が調整できるようになつている。
そして、 本発明の冷却装置 1 1の一例を、 図 2に示す部分拡大図に基づいて述べる。 ランナウトテーブル 5には、 例えば長手方向に約 4 0 0 mmピッチで、 直径 3 3 0 mm の回転する銅帯搬送用のテーブルローラ 9が配置されており、 これらテーブルローラ 9 上を鋼帯 1 2が進行していく。 . 本発明の冷却装置 1 1においては、 その鋼帯 1 2の上面側に、 銅帯 1 2の進行方向のそ れぞれ下流側と上流側とに向けて傾斜させた棒状冷却水を対向して噴射する上面冷却ュ ニット 1 7が所定の間隔をおいて複数ュニット設けられている。
なお、 この領域における下面側の冷却装置は特に限定するものではなく、 スプレー冷 却か、 本発明の上面冷却方式として採用している棒状冷却水などを採用してもかまわな い。
本実施形態では前述した従来型の冷却装置 7の領域と同様のスプレーノズル 1 0を用 いている。
それぞれの上面冷却ユニット 1 7は、 鋼帯進行方向の上流側と下流側に分かれて、 所 定列数 (こ^では各 4列) の冷却ノズルヘッダ 1 3を備えている。 各冷却ノズルヘッダ 1 3には、 供給管 1 5がつながれていて、 それぞれの供給管 1 5は弁 1 6によって独立 にオン一オフ制御が可能になってレ るとともに、 各冷却ノズルヘッダ 1 3には、 銅帯進 行方向に対して所定の噴射角度 Θ (例えば、 5 0 ° ) を有する円管ノズル 1 4が、 幅方 向に所定のピッチで 1列に並んで配置されている。
これらの円管ノズル 1 4は、 内径が 3〜1 0 m m φで内面が滑らかな直管ノズルであ り、 円管ノズル 1 4から噴射される冷却水は棒状冷却水である。 この棒状冷却水は、 一 定の方向、 すなわち、 鋼帯 1 2の進行方向には、 鋼帯 1 2と所定角度 Θをなすようにな 'る。 また、 鋼帯 1 2の幅方向にば、 鋼帯 1 2と平行にしてもよいが、 噴射された冷却水 を速やかに鋼帯 1 2の両幅端部から外側に流下させるためには、 鋼帯 1 2の幅方向中心 から 1 ° 〜3 0 ° 、 好ましくは 5 ° 〜1 5 ° 程度外側へ向けて傾斜させることが望まし い。 また、 円管ノズル 1 4の出口の高さ位置は、 銅帯 1 2が上下動しても円管ノズル 1 4に接触しないように、 鋼帯 1 2上面から所定の高さ (例えば、 1 0 0 O mm) 離すよ うにしている。
ここで、 本発明における棒状冷却水とは、 円形状 (楕円や多角の形状も含む) のノズ ル噴出口からある程度加圧された状態で噴射される冷却水であって、 ノズル噴出口から の冷却水の噴射速度が 7 m/ s以上であり、ノズル噴出口から鋼帯に衝突するまでの水流 の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。 すなわ ち、 円管ラミナ一ノズルからの自由落下流や、 スプレーのような液滴状態で噴射される ものとは異なる。 さらに、 円管ノズル 1 4の配置については、 前の列の棒状冷却水の衝突位置のほぼ中 間に次の列の棒状冷却水の衝突位置が来るように、 列ごとに円管ノズル 1 4の幅方向位 置をずらして配置することが好ましい。 これによつて、 幅方向に隣り合う棒状冷却水の 間で冷却が弱くなる部分に次の列の棒状冷却水が衝突し、 冷却が補完されて幅方向に均 一な冷却がなされる。
そして、 各 4列の円管ノズル 1 4から、 鋼帯 1 2の略同一位置に向けて (例えば同一 のテーブルローラ 9に向けて) 、 鋼帯進行方向の上流側と下流側から対向して冷却水が 噴射される。
このように、 1列に並んだ円管ノズル 1 4から棒状冷却水を噴射すると、 棒状冷却水 流群は各棒状冷却水が並走して断続的ではあるが擬似平面状に流れる。 その上で、 各 4 列の円管ノズル 1 4が鋼帯の進行方向上流側と下流側から対向して噴射しているために、 鋼帯 1 2に衝突した冷却水は互いに堰き止め合って、 衝突した位置で鋼帯 1 2の両幅端 部から外側に流下するようになるので、 冷却水が鋼帯上を上流側および下流側に流出す ることが抑止される。
その際、 噴射角度 Θが 6 0 ° を越えると、 鋼帯 1 2の速度によっては、 鋼帯上を冷却 水が上流側および下流側に流出する可能性があるので、 噴射角度 0は 6 0 ° 以下とする のが好ましい。 噴射角度 0を 6 0 ° 以下にすれば、 銅帯 1 2の速度によらず、 鋼帯上を 冷却水が上流側および下流側に流出することはない。 より好ましくは噴射角度 Θは 5 0 ° 以下である。 ただし、 噴射角度 0を 4 5 ° より小さくすると、 鋼帯 1 2と円管ノズ ル 1 4の衝突を回避するために鋼帯 1 2からの円管ノズル 1 4の高さを所望の値 (例え ば、 1 0 0 0 mm) にしようとすると、 円管ノズル 1 4から噴射された棒状冷却水が鋼 帯 1 2に衝突するまでの距離が離れすぎてしまい、 途中で棒状冷却水が分散して、 冷却. 特性が落ちる危険性がある。 したがって、 噴射角度 0を 4 5 ° 〜6 0 ° とするのが好ま しく、 さらには 4 5 ° 〜5 0 ° 程度とするのが一層好ましい。
ちなみに、 本発明の冷却装置 1 1において、 鋼帯 1 2上面の冷却水ノズルとして棒状 冷却水を形成する円管ノズル 1 4を採用しているのは、 次の理由による。
すなわち、 冷却を確実に行なうには、 鋼帯 1 2まで冷却水を確実に到達させ、 衝突さ せる必要がある。 そのためには、 銅帯 1 2上面の滞留水の水膜を破って鋼帯 1 2まで新 鮮な冷却水を到達させなければならず、 スプレーノズルから噴射された液滴群のような 貫通力が弱い冷却水滴流ではなく、 連続性と直進性のある高い貫通力を持つた水流とな る棒状冷却水である必要がある。 さらに、 従来使われている円管ラミナ一ノズルによる ラミナ一流は、 自由落下流であるので、 滞留水膜があると鋼帯 1 2まで冷却水が到達し にくい上に、 滞留水がある場合とない場合で冷却能力に違いが生じることや、 銅帯 1 .2 上に落下した水が前 左右に広がるので鋼帯の速度が変化した場合に冷却能力が変化す る等の問題がある。
したがって、本発明では、 円管ノズル 1 4 (楕円や多角の形状であってもよい) を用い、 ノズル噴出口からの冷却水の噴射速度が 7 m/ s以上であり、 ノズル噴出口から鋼帯に 衝突するまでの水流の断面がほぼ円形に保たれる連続性と直進性のある棒状冷却水を噴 射するようにしている。 ノズル噴出口からの冷却水の噴射速度が 7 m/ s以上である棒 状冷却水によれば、 冷却水を傾斜させて噴射した場合であっても安定的に鋼帯上面の滞 留水の水膜を突き破ることができるからである。
また、 棒状冷却水群の代わりに連続的なカーテン状のラミナ一流を採用することが考 えられるが、 ノズルが目詰まりしない程度のギャップ (現実的には 3 mm以上必要) を 持つスリ ット状ノズルとした場合、 円管ノズル 1 5を幅方向に間隔を空けて設置した場 合と比較してノズル断面積が極めて大きくなる。 そのため、 滞留水膜への貫通力を持た せるためにノズル噴出口からの噴射速度 7 mZ s以上で冷却水を噴射しようとすると、 極めて多い水量が必要となり、 設備コストが甚大となって実現困難である。 さらに、 力 一テン状のラミナ一流では 1列目で銅帯 1 2に衝突した冷却水が層状になって 2歹 U目以 降の冷却水の衝突を妨げるので、 2列目以降の冷却能力が落ちるあるいは幅方向に冷却 能力に差が生じるなどの問題がある。 これに対して、 棒状冷却水であれば層状の滞留水 を部分的に押しのけて棒状冷却水は鋼帯 1 2に到達する。. 押しのけられた冷却水は断続 的に途切れた棒状冷却水の間をかいく ぐって流れるので冷却後の滞留冷却水が後の冷却 の妨げとなりにくレ、。
なお、 本発明の冷却装置 1 1においては、 複数の冷却ュニット 1 7を所定の間隔をお いて配置しているので、 それぞれの冷却ュニット 1 7での冷却の間に空冷ゾーンを設け るいわゆる間欠冷^]となる。 したがって、 特に、 表面が過冷却されてマルテンサイ ドの ような硬質層が生成しやすい鋼帯の冷却め場合に、 表層の温度が下がっても; その次の 空冷ゾーンで内部からの熱によって復熱するので、 表層の過冷却を抑制し、 温度バラッ キだけでなく ミクロな組織の鋼帯厚み方向のバラツキを少なぐする効果がある。ここ,で、 本実施形態では、 上面に設置されている本発明の冷却装置 1 1が、 下面に設置されてい る従来型であるスプレーノズル 1 0よりも冷却能力が高いため、 上面冷却と下面冷却と がバランスするように上面冷却の間隔を設定したり、 下面側の冷却水の圧力や流量を多 く したりすることが好ましい。
また、 本発明の冷却装置 1 1においては、 冷却ュニッ ト 1 7の下流側に、 冷却水が流 出しないように、空気嘖射ノズル 2 2が設けて水切りを行なうようにしている。その際、 水切り手法としては、 水を噴射する水切り手法が一般的に用いられるが、 鋼帯表面温度 が 5 5 0 °C以下の場合には水による水切りは鋼板の表面に冷却水が張り付き、 水切りを 不完全とし、 局所的な過冷却を引き起こすおそれがあるので、 その場合は空気を噴射す る水切りが望ましい。 なお、 空気噴射ノズル 2 2は、 全ての冷却ユニット 1 7の下流側 に設けることが望ましいが、 少なく とも最下流側の冷却ユニット 1 7の下流側に設けれ ばよい。
そして、 上記のように構成された冷却装置 1 1を用いる際には、 冷却の制御は次のよ うにして行なう。
まず、 鋼帯の速度、 計測した温度、 板厚目標の冷却停止温度までの冷却量から、 噴射 する上面の冷却ゾーンの長さを求める。 そして、 求めた冷却ゾーン長をカバーする冷却 ュニット 1 7の数と、 その冷却ュニッ ト 1 7において噴射する冷却ノズルヘッダ 1 3の 列数を決定し、対応する噴射弁 1 6を開く。それ以降は、冷却後の温度計の実績をみて、 鋼板速度の変更 (加速 ·減速) を勘案しながら、 冷却ゾーン長さを変更すべく、 冷却ュ ニット 1 7の数と噴射する冷却ノズルヘッダ 1 3の列数を調整する。 冷却ノズルヘッダ 1 3の列数を変更する際は、 冷却水が銅帯上の非冷却ゾーン (空冷ゾーン) に流出する ことを極力防止するために、 上流側から下流側へ向けて噴射する列数と下流側から上流 側へ向けて噴射する列数を、 冷却水の流体圧力が鋼帯の上流側と下流側でバランスする ように調整することが望ましい。 例えば、 上流側と下流側の冷却ノズルヘッダを対にし てオン一オフさせることが望ましい。
以上のようにして、 この実施形態においては、 以下に述べるような効果を得ることが できる。
( 1 ) 鋼帯の先端から尾端まで均一に冷却を施すことができ、 鋼帯の品質が安定する。 それにともなって銅帯の切り捨て代が少なくなつて歩留まりが高くなる。
( 2 ) 間欠的な冷却を行なうことで、 特に 5 0 0 °C以下の低温度域まで冷却する場合に 鋼帯の表層の組織異常 (例えばマルテンサイ ト生成) がなく、 目標とする組織が鋼帯断 面全面 (表層から板厚中心部まで) .に得られる。
'なお、 上記の第一の実施形態の図 2では、 上面冷却の対向噴射位置 (衝突位置) を テーブルローラ上としているが、 これは通板安定性の点から好ましいからである。 しかし、 それに限定されるものではなく、 例えば、 図 3のように、 上面冷却の対向噴 射位置 (衝突位置) がテーブルローラとテーブルローラの間になるようにしてもかまわ ない。 その際に、 上面冷却装置からの棒状冷却水により鋼帯が押さえ付けられることに より、 テーブルローラ間で鋼帯に撓みが発生し、 通板が不安定になる.可能性があること から、 これを防止するために、 下面冷却は上面冷却の押し付け力とほぼ同等の押し上げ 力を持つように、 従来型の冷却装置に比べて高圧力で大水量の冷却水を噴射することが 望ましい。
また、 上面冷却ユニット 1 7は、 鋼帯進行方向の上流側と下流側に分かれて、 図 2で は各 4列、 図 3では各 8列の冷却ノズルヘッダ 1 3を備えているが、 その列数は限定さ れるものではなく、 適切な列数を設置するようにすればよい。 ただし、 列数が増えてく ると、 棒状冷却水の鋼帯に衝突する範囲が鋼帯進行方向に長くなつてぐるため、 必ずし もテーブルローラ直上のみで棒状冷却水を鋼帯に衝突させることができなくなるが、 そ の際には、 テーブルローラ直上とテーブルローラ間の両者にまたがって棒状冷却水を鋼 帯に衝突させればよい。 すなわち、 例えば、 図 4のように、 鋼帯進行方向の上流側と下 流側にノズルヘッダを 1 6列ずつ設置した場合は、 棒状冷却水の鋼帯に衝突する範囲が テーブルローラの取り付けピッチより長くなる場合もあるので、 この場合は、 テーブル ローラ直上とテーブルローラ間の両者にまたがつていてもかまわない。
また、 上記実施形態では、 ランナウトテーブル 5に設けられる鋼帯上面冷却の冷却装 置として、 従来型の冷却装置 7と本発明の冷却装置 1 1がその順に配置されているが、 これに限定されるものではなく、 ランナウトテーブル 5に設けられる冷却装置の一部ま たは全部が本発明の冷却装置 1 1により構成されていればよい。 ただし、 前述したよう に、 .卷き取り温度によっては卷き取り機に近い領域で冷却が遷移沸騰とよばれる不安定 な状態となる場合があるが、 本発明の冷却装置 1 1によれば、 全面核沸騰となり、 冷却 が不安定となる遷移沸騰領域を回避することができる。従って、巻き取り温度によらず、 安定した冷却が可能となり、 巻き取り温度を精度よく制御することができるため、 少な く とも巻き取り機の直前に本発明の冷却装置 1 1を配置することが好ましい。 このよう な配置とすることで、 低温 (5 0 0 °C以下) の巻き取り温度においても不安定な冷却が なく、 温度ばらつきが小さい。 その結果、 強度や伸びといった鋼帯の品質が鋼带全長に わたって均質となる。
次に、'図 5は、 本発明の第二の実施形態における熱延鋼帯の製造設備を示すものであ る。
粗圧延から卷き取りまでの製造工程は第一の実施形態と同じであるが、 この第二の実 施形態においては、 本発明の冷却装置 1 1が従来型の冷却装置 7の上流側に配置されて いる。 ちなみに、 ここでは、 本発明の冷却装置 1 1には、 図 4に示したような各 1 6列 の冷却ノズルヘッダを備えた上面冷却ヘッダュニットが鋼帯進行方向に 3ュニッ ト取り 付けられている。 そして、 第一の実施形態と同じく、 ランナウトテーブル 5には、 例え ば長手方向に約 4 0 O m mピッチで、 直径 3 3 0 mmの回転する鋼帯搬送用のテーブル ローラ 9が配置されており、 これらテーブルローラ 9上を鋼帯 1 2が進行していく。 な お、 この領域における下面側の冷却装置は特に限定するものではなく、 ここでは、 前述 した従来型の冷却装置 7の領域と同様のスプレーノズル 1 0を用いている。 ただし、 本 発明の冷却装置 1 1がテーブルローラ間にも棒状冷却水を衝突させていることから、 銅 帯通板中に銅帯が上から押し付けられて撓みやすいので、 これを矯正するために、 下面 側の冷却装置に採用しているスプレーノズル 1 0からの冷却水の水量と水圧を大きく し て、 上下の力がバランスするようにしている。
そして、 図 4に示したように、 各冷却ノズルヘッダ 1 3には、 供給管 1 5がつながれ ていて、 それぞれの供給管 1 5は弁 1 6によって独立にオン一オフ制御が可能になって いるとともに、 各冷却ノズルヘッダ 1 3には、 鋼帯進行方向に対して所定の噴射角度 0 (例えば、 4 5 ° ) を有する円管ノズル 1 4が、 幅方向に所定のピッチで 1列に並んで 配置されている。
これらの円管ノズル 1 4は、 第一の実施形態と同じく、 内径が 3〜1 Ο πιπι φで内面 が滑らかな直管ノズルであり、 噴射される冷却水は棒状冷却水である。 棒状冷却水は一 定の方向、 すなわち、 鋼帯 1 2の進行方向には、 鋼帯 1 2と所定角度 0をなすようにな る。 また、.棒状冷却水の鋼帯 1 2の幅方向の取り付けピッチや棒状冷却水などの構造は 基本的に第一の実施形態と同じようにすればよい。
さらに、 ここでも、 冷却ユニット 1 7の下流側に、 冷却水が流出しないように、 第一 の実施形態で行った水切り方法を実施すればよい。
そして、 冷却ノズルヘッダの注水順番などは第一の実施形態で説明したようにすれば よい。 ,; . -'. ' 以上のようにして、 '本実施形態でも基本的に第一の実施形態と同じ (1 ) 、 (2 ) の 効果を得ることができる力 加えて (3 ) のような効果も得ることができる。すなわち、
( 1 ) 鋼帯の先端から尾端まで均一に冷却を施すことができ、 鋼帯の品質が安定する。 それにともなって網帯の切り捨て代が少なくなって歩留まりが高くなる。
( 2 ) 間欠的な冷却を行うことで、 特に低温度域まで冷却する場合に鋼帯の表層の組織 異常 (例えばマルテンサイ ト生成) がなく、 目標とする組織が銅帯断面全面 (表層から 板厚中心部まで) に得られる。
( 3 ) 各冷却ユニッ トのノズル列数を増やし、 且つ冷却ユニッ ト間の空冷帯を短めにす ることにより、 冷却速度を比較的速くでき、 且つ板厚方向に冷却速度差があまり付かな いので、 鋼帯の全体にべ一ナイ ト等の硬質層を生成させることができるため、 高強度な 材料を製造することが可能となる。
なお、 第一の実施形態では、 ランナウトテーブル 5に設けられる鋼帯上面冷却の冷却 装置として、 従来型の冷却装置 7の下流側に本発明の冷却装置 1 1が配置され、 第二の 実施形態では、.従来型の冷却装置 7の上流側に本発明の冷却装置 1 1が配置されている 力 これに限定されるものではない。
例えば、 第三の実施形態として、 図 6に示すように、 本発明の冷却装置 1 1の下流側 に従来型の冷却装置 7を配置し、 さらにその下流側に本発明の冷却装置 1 1を配置する ようにしてもよい。 その際に、 上流側の本発明の冷却装置 1 1 (仕上げ圧延機 4に近い 方の冷却装置) を図 4に示した冷却ノズルヘッダとし、 下流側の本発明の冷却装置 1 1 (卷き取り機 6'に近い方の冷却装置) を図 2に示した冷却ノズルヘッダとしたり、 また その逆の構成にしたりしてもかまわない。
また、 その他の実施形態として、 本発明の冷却装置 1 1のみを配置するようにしても よい。' その際に、 図 2〜図 4に示した冷却ノズルヘッダが混在していてもかまわない。 つまり、 ランナウトテーブル 5に設けられる冷却装置の一部または全部が本発明の冷 - 却装置 1 1により構成されていればよレ、。
ちなみに、 前述したように、 卷き取り温度によっては卷き取り機に近い領域で冷却が 遷移沸騰とよばれる不安定な状態となる場合があるが、本発明の冷却装置 1 1によれば、 全面核沸騰となり、 冷却が不安定となる遷移沸騰領域を回避することができる。 卷き取 り温度を低く (例えば 5. 0 0 °C以下) する必要がある場合には、 巻き取り装置近傍に本 発明の冷却装置 1 1を設置すればよい。 また、 板厚全体にわたってベーナイ トやマルテ ンサイ トなどの硬質層を出すことにより高強度材料を製造する場合には、 仕上げ圧延後 速やかに急速冷却するのが好ましいため、 空冷帯長さがなるべく短くなるように冷却ュ ニットを配置し、 且つ仕上げ圧延機近くに設置することが好ましい。 無論、 低温卷き取 りをして且つ高強度材を製造する場合には、 図 6に示した第三の実施形態のように、 ラ ンナウトテーブルの前段と後段の両方に本発明の冷却装置 1 1を設置すればよい。 なお、 以上説明した実施形態は、 上面冷却の対向噴射位置 (棒状冷却水の鋼帯との衝 突位置) および下面冷却方式を限定するものではないが、 以下の実施形態のようにして もよい。
その他の実施形態として、 本発明の冷却装置 1 1の一例を、 図 7に示す部分拡大図に 基づいて述べる。ランナウトテ一ブル 5には、例えば長手方向に約 4 0 O mmピッチで、 直径 3 3 0 mmの回転する鋼帯搬送用のテーブルローラ 9が配置されており、 これらテ 一ブルローラ 9上を銅帯 1 2が進行していく。 本実施形態の冷却装置 1 1においては、 その鋼帯 1 2の上面側に、 同一のテーブルロール 9の上流側と下流側とからそれぞれ該 テーブルロール直上へ向けて傾斜させた棒状冷却水を対向して噴射する上面冷却ュニッ ト 1 7が鋼帯の進行方向に複数ユニッ ト設けられている。 そして、 この上面冷却ュニッ ト 1 7については、 棒状冷却水を噴射する円管ノズル 1 ' 4が、 同一のテーブルロール 9 の直上へ向けて対向配置される以外は、 第 1〜第 3の実施形態と同様である。
一方、 本実施形態の冷却装置 1 1においては、 鋼帯下面側の冷却ノズルを特に限定する ものではないが、 本実施形態ではテーブル口ール間などの狭いスぺースに水設置が容易 で且つ大水量噴射するときに液膜を貫通する能力の高い棒状冷却を噴射する円管ノズル を用いるのが好ましい。 すなわち、 本実施形態では、 隣り合うテープ'ルローラの間にそ れぞれ冷却ノズルヘッダ 1 8が配置され、 各冷却ノズルヘッダ 1 8には、 棒状冷却水を 噴射する円管ノズル 1 9が幅方向に所定のピッチで所定列数 (ここでは 2列) 配置され ている。 また、 各冷却ノズルヘッダ 1 8には、 供給管 2 0がつながれていて、 それぞれ の供給管 2 0は噴射弁 2 1によって独立にオン一オフ制御が可能になっている。 このよ うに、 鋼帯下面側の冷却ノズルとして、 冷却能力が高い棒状冷却水を噴射する円管ノズ ルを用いることによって、 冷却ゾーン長を短く して、 コンパク トな装置とすることがで きる。 その際、 鋼帯上面側の冷却水 (円管ノズル Γ 4からの棒状冷却水) による冷却量と鋼 帯下面側の冷却水 (円管ノズル 1 9からの棒状冷却水) による冷却量とが等しくなるよ うに、 鋼帯 1 2の上面側および下面側の冷却ノズルの配置や、 冷却水の水量密度や到達 速度等を調整するのが好ましい。
そして、 本実施形態の冷却装置 1 1においては、 上面冷却ユニット 1 7から同一のテ 一ブルロール 9の直上へ向けて傾斜させた棒状冷却水を対向して噴射するようにしてい るので、 銅帯 1 2が棒状冷却水によってテーブルロール 9に押付けられながらランァゥ トテ一ブル 5上を進行するようになり、 鋼帯 1 2の先端が巻き取り機 6で卷き取られる までの無張力状態においても、 鋼帯 1 2の通板が安定する。
―、 さらに、 本実施形態の冷却装置 1 1においても、 冷却ユニット 1 7の下流側に、 鋼帯. 上面の冷却水が流出しないように、 空気噴射ノズル 2 2を設けて水切りを行なうように している。
そして、 上記のように構成された冷却装置 1 1を用いる際には、 冷却の制御は次のよ うにして行なう。 まず、 銅帯の速度、 計測した温度、 板厚目標の冷却停止温度までの冷 却量から、 噴射する上面および下面の冷却ゾーンの長さを求める。 そして、 求めた上面 の冷却ゾーン長をカバーする冷却ュニット 1 7の数と、 その冷却ュニッ ト 1 7において 噴射する冷却ノズルヘッダ 1 3の列数を決定し、 対応する噴射弁 1 6を開くとともに、 求めた下面の冷却ゾーン長をカバーする冷却ノズルヘッダ 1 8の数を決定し、 対応する 噴射弁 2 1を開く。 その際に、 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水 による冷却量どが等しくなるようにすることが望ましい。
それ以降は、 冷却後の温度計の実績をみて、 鋼板速度の変更 (加速 ·減速) を勘案し ながら、 冷却ゾーン長さを変更すべく、 上面の冷却ユニット 1 7の数と噴射する冷却ノ ズルヘッダ 1 3の列数および下面の噴射する冷却ノズルヘッダ 1 8の数を調整する。 冷 却ノズルヘッダ 1 3の列数を変更する際は、 冷却水が銅帯上の非冷却ゾーン (空冷ゾー ン) に流出することを極力防止するために、 上流側から下流側へ向けて噴射する列数と 下流側から上流側へ向けて噴射する列数を、 冷却水の流体圧力が鋼帯の上流側と下流側 でバランスするように調整することが望ましい。 例えば、 上流側と下流側の冷却ノズル ヘッダを対にしてオン一オフさせることが望ましい。 .
以上のようにして、 この実施形態においては、 以下に述べるような効果を得ることが できる。 ( 1 ) 鋼帯の先端から尾端まで均一に冷却を施すことができ、 鋼帯の品質が安定する。 それにともなって鋼帯の切り捨て代が少なくなつて歩留まりが高ぐなる。
( 2 ) 鋼帯が棒状冷却水によってテーブルロールに押付けられながらランァゥトテープ ル上を進行するので、 鋼帯の先端が卷き取られるまでの無張力状態においても、 鋼帯の 通板が安定する。 それにより、 鋼帯の詰りや操業停止など トラブルの発生が少なくて すむ。
なお、 上記実施形態では、 図 7に示すように、 鋼帯の上面側に、 同一のテーブルロー ルの上流側と下流側とからそれぞれ該テーブルロール直上^^向けて傾斜させた棒状冷却 水を対向して噴射しているが、 本発明はこれに限定されるものではない。 例えば、 図 8 に示すように、 テーブルロールの上流側から該テーブルロール直上へ向けて傾斜させた 棒状冷却水と、 その下流側に配置されたテーブルロールの下流側から該テーブルロール 直上へ向けて傾斜させた棒状冷却水とを対向させて噴射するものであってもよい。 ただ し、鋼帯上面に噴射された冷却水を速やかに鋼帯の両幅端部から外側に流下させるため、 また、 通板安定性のためには、 同一のテーブル口一ノレ直上へ向けて対向噴射する方が望 ましい。
その他の別の実施形態として、 本発明の冷却装置 1 1の一例を、 図 9に示す部分拡大 図に基づいて述べる。 ランナウトテーブル 5には、 例えば長手方向に約 4 0 0 mmピッ チで、 直径 3 3 O mmの回転する鋼帯搬送用のテーブルローラ 9が配置されており、 こ れらテーブルローラ 9上を鋼帯 1 2が進行していく。 本実施形態の冷却装置 1 1におい ては、 その鋼帯 1 2の下面側に、 テーブルロール 9間から鋼帯下面へ向けて棒状冷却水 を噴射する下面冷却ノズル 1 9を配置するとともに、 鋼帯 1 2の上面側に、 下面冷却ノ ズル 1 9から噴射された棒状冷却水が銅帯 1 2に衝突する位置の直上へ向けて、 その上 流側と下流側とからそれぞれ傾斜させた棒状冷却水を噴射する冷却ノズ 1 4を対向す るように配置した冷却ュニット 1 7が鋼帯の進行方向に複数ュニット設けられている。 そして、 この冷却ュニット 1 7の内の上面側の冷却ュニットについては、 棒状冷却水を '噴射する円管ノズル 1 4が、 下面冷却ノズル 1 9から噴射された棒状冷却水が銅帯 1 2 に衝突する位置の直上へ向けて対向配置される以外は、 第 1〜第 3の実施形態と同様で ある。
一方、 それぞれの冷却ュニット 1 7の銅帯下面側は、 テーブルローラ 9の間に冷却ノ ズルヘッダ 1 8が配置され、 各冷却ノズルヘッダ 1 8には、 棒状冷却水を噴射する円管 ノズル 1 9が幅方向に所定のピッチで所定列数(ここでは 3列)配置されている。また、 各冷却ノズルヘッダ 1 8には、 供給管 2 0がつながれていて、 それぞれの供給管 2 0は 噴射弁 2 1によって独立にオン一オフ制御が可能になっている。 このように、 鋼帯下面 側の冷却ノズルとして、 冷却能力が高い棒状冷却水を噴射する円管ノズルを用いること によって、 冷却ゾーン長を短く して、 コンパク トな装置とすることができる。
その際、 鋼帯上面側の冷却水 (円管ノズル 1 4からの棒状冷却水) による冷却量と鋼 帯下面側の冷却水 (円管ノズル 1 9からの棒状冷却水) による冷却量とが等しくなると ともに、 鋼帯上面側の冷却水から鋼帯が受ける流体圧と鋼帯下面側の冷却水から鋼帯が 受ける流体圧とが等しくなるように、 鋼帯 1 2の上面側および下面側の冷却ノズルの配 置や、 冷却水の水量密度や到達速度等を調整する。
これによゥて、 本発明の冷却装置 1 1においては、 鋼帯 1 2が鋼帯上面側の冷却水と 鋼帯下面側の冷却水によつて上下から同じ流体圧で挟圧されながらランアウトテーブル 5上を進行するようになり、 鋼帯 1 2の先端が卷き取り機 6で卷き取られるまでの無張 力状態においても、 鋼帯 1 2の通板が安定する。 しかも、 鋼帯 1 2の上面と下面の冷却 位置が同じであるので、 熱赓歴、 特に、 表層近傍の熱履歴がほぼ同じになり、 製品の品 質が上下同じになる。 .
さらに、 本実施形態の冷却装置 1 1においても、 冷却ユニッ ト 1 7の下流側に、 鋼帯 上面の冷却水が流出しないように、 空気噴射ノズル 2 2を設けて水切りを行なうように している。
そして、 上記のように構成された冷却装置 1 1を用いる際には、 冷却の制御は次のよ う して行なう。
まず、 鋼帯の速度、 計測した温度、 板厚目標の冷却停止温度までの冷却量から、 噴射 する冷却ゾーンの長さを求める。 そして、 求めた冷却ゾーン長をカバーする冷却ュニッ ト 1 7の数と、 その冷却ュニット 1 7において噴射する冷却ノズルヘッダ 1 3の列数と 下面冷却ノズルヘッダ 1 8の列数を決定し、 対 する噴射弁 1 6、 2 1を開く。 その際 に、 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水による冷却量とが等しくな るとともに、 鋼帯上面側の冷却水から鋼帯が受ける流体圧と鋼帯下面側の冷却水から鋼 帯が受ける流体圧とが等しくなるようにする。 それ以降は、 冷却後の温度計の実績をみ て、 鋼板速度の変更 (加速 ·減速) を勘案しながら、 冷却ゾーン長さを変更すべく、 冷 却ユニット 1 7の数と噴射する冷却ノズルヘッダ 1 3、 1 8の列数を調整する。 冷却ノ ズルヘッダ 1 3の列数を変更する際は、 冷却水が鋼帯上の非冷却ゾーン (空冷ゾーン) に流出することを極力防止するために、 上流側から下流側へ向けて噴射する列数と下流 側から上流側へ向けて噴射する列数を、 冷却水の流体圧力が鋼帯の上流側と下流側でバ ランスするように調整することが望ましい。 例えば、 上流側と下流側の冷却ノズルへッ ダを対にしてオン一オフさせることが望ましい。
以上のようにして、 この実施形態においては、 以下に述べるような効果を得ることが できる。
( 1 ) 鋼帯の先端から尾端まで均一に冷却を施すことができ、 銅帯の品質が安定する。 それにともなって鋼帯の切り捨て代が少なくなつて歩留まりが高くなる。
( 2 ) 鋼帯が上下の棒状冷却水によって挟圧されながらランァゥトテーブル上を進行す るので、 鋼帯の先端が巻き取られるまでの無張力状態においても、 銅帯の通板が安定す る。 それにより、 鋼帯の詰りや操業停止などのトラブルの発生が少なくてすむ。
( 3 ) 鋼帯の上面と下面の冷却履歴がほぼ同じになるので、 鋼帯の上面と下面の品質が 均一になる。
なお、 上記実施形態では、 図 9に示すように、 銅帯の上面側に、 下面冷却ノズルから 噴射された棒状冷却水が鋼帯に衝突する同一位置の直上へ向けて、 その上流側と下流側 とからそれぞれ傾斜させた棒状冷却水を対向して噴射しているが、 本発明はこれに限定 される.ものではない。 例えば、 図 1 0に示すように、 下面側の棒状冷却水が銷帯に衝突 する位置の直上へ向けてその上流側から噴射される傾斜させた棒状冷却永と、 その下流 側に位置する下面側の棒状冷却水が鋼帯に衝突する位置の直上へ向けてその下流側から 噴射される傾斜させた棒状冷却水とを、 対向させて噴射するものであってもよい。 ただ し、鋼帯上面に噴射された冷却水を速やかに鋼帯の両幅端部から外側に流下させるため、 また、 通板安定性のためには、 下面冷却ノズルから噴射された棒状冷却水が鋼帯に衝突 する同一位置の直上へ向けて対向噴射する.方が望ましい。
なお、 そ'の他の実施形態として説明した上記 2つの実施形態では、 ランナウトテープ ル 5に設けられる鋼帯上面冷却の冷却装置として、 従来型の冷却装置 7と本発明の冷却 装置 1 1がその順に配置されているが、 これに限定されるものではなく、 ランナウトテ 一ブル 5に設けられる冷却装置の一部または全部が本発明の冷却装置 1 1により構成さ れていればよい。 ただし、 前述したように、 巻き取り温度によっては卷き取り機に近い 領域で冷却が遷移沸騰とよばれる不安定な状態となる場合があるが、 本発明の冷却装置 1 1によれば、 全面核沸騰となり、 冷却が不安定となる遷移沸騰領域を回避することが できる。 従って、 巻き取り温度によらず、 安定した冷却が可能となり、 巻き取り温度を 精度よく制御することができるため、 少なく とも巻き取り機の直前に本発明の冷却装置
1 1を配置することが好ましい。 このような配置とすることで、 低温 (5 00°C以下) の卷き取り温度においても不安定な冷却がなく、 温度ばらつきが小さい。 その結果、 強 度や伸びといった銅帯の品質が鋼帯全長にわたって均質となる。 実施例 ·
実施例 1
実施例 1 として、 上記の第一の実施形態に基づいて、 図 1に示す設備配置で、 図 2に 示す冷却ノズルヘッダ装置を使って、 仕上げ板厚 2. 8 mmの鋼帯を製造した。 なお、 本発明の冷却装置 1 1では、 上流側及び下流側に各 4列の冷却ノズルヘッダを備えた冷 却ユニットを 6ュニッ 'ト設置した。 そして、 仕上げ圧延機 4出側での鋼帯速度は銅帯先 端部で 7 0 Ompm、 銅帯先端部が卷き取り機 6に到達して以降は順次速度を上げて最 高 1 00 Omp mまで増速した。 鋼帯の仕上げ圧延機出側の温度は 8 5 で、 従来の 冷却装置 1 0を使 ておよそ 6 0 0°Cまで冷却し、 以降目標の卷き取り温度である 40 0°Cまでは本発明の冷却装置 1 1を使って冷却した。 なお、 ここでは、 冷却装置 1 1か らの冷却水の噴射角度 0を 5 0° とし、 銅帯と衝突した時点での冷却水の銅帯長手方向 の流速が鋼帯の最高速度以上となるように、 冷却水の噴射速度を 3 OmZ sとした。 こ れにより、'銅帯長手方向の流速は 3 0 m/ s X c o s 5 0° 1 1 5 2mpmとなる。 そして、 冷却の制御は次のように行った。 銅帯の速度、 計測した温度、 板厚目標の冷 却停止温度までの冷却量から冷却水を噴射する上面と下面の冷却ゾーンの長さを求める。 求めた冷却ゾーン長をカバーする上面冷却条件と下面冷却条件をもとめ、 下面冷却分を 除いた上で、 上面冷却に関して、 冷却ユニッ ト 1 7の数と、 その冷却ユニット 1 7にお いて噴射する冷却ノズルヘッダ 1 3.の列数を決定し、 対応する噴射弁 1 6を開く。 それ 以降は、冷却後の温度計の実績をみて、鋼板速度の変更 (加速 ·減速) を勘案しながら、 冷却ゾーン長さを変更すべく、 冷却水ュニットの数と噴射する冷却ノズルヘッダの列数 を調整した。 ただし、 噴射する冷却ノズルヘッダの列数を変更する際は、 上流側から噴 射する列数と下流側から噴射する列数を、 冷却水の流体圧力が鋼帯の上流側と下流側で バランスするように、上流側と下流側の冷却ノズルへッダを対にしてオン一オフさせた。 さらに、各冷却ユニット 1 7出側で銅帯上面表面がマルテンサイ トにならないように、 冷却ユニット 1 7のゾーン長さを調整し、 さらに次の空冷ゾーンで内部からの熱の拡散 で十分復熱が完了するように空冷ゾーン長さを決定し、 以降の冷却ュニット 1 7の使用 条件を決定した。 ちなみに、 ここで用いた鋼は、 350°C以下でマルテンサイ ト組織が 生成するので、 表面が 350°C以下にならないように冷却を制御した。
その結果、 本発明例においでは、 巻き取り機 6における鋼帯温度が全長に渡って 40 0°C± 1 0°C以内となり、 非常に均一な冷却が実現できた。 また、 鋼帯上面表層に焼き 戻されたマルテンサイ ト組織が存在することもなかった。 これによつて、 安定した品質 の銅帯を得ることができた。 ' 実施例 2 '
実施例 2として、 上記の第一の実施形態に基づいて、 図 1に示す設備配置で、 図 3に 示す冷却ノズルヘッダ装置を使って、 仕上げ板厚 2. 4 mmの鋼帯を製造した。 なお、 •本発 _明の冷却装置 1 1では、 上流側及ぴ下流側に各 8列の冷却ノズルヘッダを備えた冷 却ユニットを' 3ユニット設置した。 そして、 仕上げ圧延機 4出側での鋼帯速度は鋼帯先 端部で 75 Ompm、 鋼帯先端部が卷き取り機 6に到達して以降は順次速度を上げて最 高 1 00 Ompmまで增速した。 鋼帯の仕上げ圧延機出側の温度は 860。じで、 従来の 冷却装置 1 0を使っておよそ 6 50°Cまで冷却し、 以降目標の巻き取り温度である 45 0¾までは本発明の冷却装置 1 1を使って冷却した。 なお、 ここでは、 冷却装置 1 1か らの冷却水の噴射角度 0を 4 5° とし、 鋼帯と衝突した時点での冷却水の鋼帯長手方向 の流速が鋼帯の最高速度以上となるように、 冷却水の噴射速度を 3 5m/ sとした。 こ れにより、 鋼帯長手方向の流速は 30 / s X c o s 45° 1484mpmとなる。 そして、 上記の本発明例 1 と同様に、 冷却の制御、 すなわち冷却ゾーン長さを変更す ベく、 冷却水ュニットの数と噴射する冷却ノズルヘッダの列数を調整した。
さらに、各冷却ユニッ ト 1 7出側で鋼帯上面表面がマルテンサイ トにならないように、 水冷と空冷を繰り返す冷却 (間欠冷却) をするために、 3個の冷却ユニット 1 7におい て、 各冷却ユニット 1 7で噴射する冷却ノズルヘッダの列数を変化させることにより、 それぞれの冷却ュニット 1 7の冷却ゾーン長さを調整して、 冷却ュニッ トの使用条件を 決定した。 ちなみに、 ここで用いた銅は、 350°C以下でマルテンサイ ト組織が生成す るので、 表面が 3 50°C以下にならないように冷却を制御した。
その結果、 実施例 2においては、 卷き取り機 6における鋼帯温度が全長に渡って 45 0°C±8で以内となり、 非常に均一な冷却が実現できた。 また、 鋼帯上面表層に焼き戻 されたマルテンサイ ト組織が存在することもなかった。 これによつて、 安定した品質の 鋼帯を得ることができた。
実施例 3
実施例 3として、 上記の第二の実施形態に基づいて、 図 5に示す設備配置で、 図 4に 示す冷却ノズルヘッダ装置を使って、 仕上げ板厚 3. 6 mmの銅帯を製造した。 なお、 本発明の冷却装置 1 1では、 上流側及び下流側に各 1 6列の冷却ノズルヘッダを備えた 冷却ユニットを 5ユニット設置した。 そして、 仕上げ圧延機 4出側での鋼帯速度は鋼帯 先端部で 600mpm、 鋼帯先端部が巻き取り機 6に到達して以降は順次速度を上げて 最高 80 Ompmまで増速した。 鋼帯の仕上げ圧延機出側の温度は 840 °Cで、 本発明 の冷却装置 1 1を使っておよそ 6 50°Cまで冷却し、 以降目標の巻き取り温度である 5 0 までは従来型の冷却装置 7を使って冷却した。 なお、 ここでは、 冷却装置 1 1か らの冷却水の噴射角度 0を 55° とし、 銅帯と衝突した時点での冷却水の鋼帯長手方向 の流速が銅帯の最高速度以上となるように、 冷却水の噴射速度を 3 Om/s と'した。 こ れにより、鋼帯長手方向の流速は 30 m/ s X c o s 5 5° 1 032mpmとなる。 そして、 上記の本発明例 1と同様に、 冷却の制御、 すなわち冷却ゾーン長さを変更す ベく、 冷却水ュニッ トの数と噴射する冷却ノズルヘッダめ列数を調整した。.
ちなみに、 ここで用いた銅は、 板厚全体をべ一ナイ ト化したいため、 800°Cから 6 00°Cまでの冷却中に高い冷却速度が必要であるが、 350°C以下になるとマルテンサ イ ト組織が生成するので、 表面が 35 以卞にならないように冷却を制御した。 すな わち、 .冷却速度を高め、 且つ表面が 350°C以下とならないように、 空冷部分と水冷部 分の距離を調整しておいた。 . その結果、 実施例 3においては、 卷き取り機 6における鋼帯温度が全長に渡って 50 Ot± 1 2°C以内となり、 非常に均一な冷却が実現できた。 また、 冷却速度が高くかつ 安定していたため、 鋼帯板厚方向に均一なベーナイ ト組織が生成でき、 高強度材を製造 することができた。
実施例 4 .
実施例 4として、 上記の第三の実施形態に基づいて、 図 6に示す設備配置で、 ランナ ゥトテーブルの前段は図 4に示す冷却ノズルヘッダ装置を使い、 ランナウトテーブルの 後段は図 2に示す冷却ノズルヘッダ装置を使って、 仕上げ板厚 4. 0 mmの鋼帯を製造 した。 なお、 前段の本発明の冷却装置 1 1では、 上流側及び下流側に各 1 6列の冷却ノ ズルヘッダを備えた冷却ュニッ トを 5ュニット設置し、 後段の本発明の冷却装置 1 1で は、 上流側及び下流側に各 4列の冷却ノズルヘッダを備えた冷却ュニットを 3ュニッ ト 設置した。 そして、 仕上げ圧延機 4出側での鋼帯速度は鋼帯先端部で 5 0 0mpm、 鋼 帯先端部が巻き取り機 6に到達して以降は順次速度を上げて最高 5 5 Ompmまで増速 した。 鋼帯の仕上げ圧延機出側の温度は 8 5 0°Cで、 前段の本発明の冷却装置 1 1を使 つておよそ 6 5 まで冷却し、 その後、 従来型の冷却装置 7は使わずに、 目標の卷き 取り温度である 40 0°Cまでは、前段の本発明の冷却装置 1 1を使って冷却した。なお、 ここでは、 前段および後段の各冷却装置 1 1からの冷却水の噴射角度 0を 4 5° とし、 鋼帯と衝突した時点での冷却水の鋼帯長手方向の流速が鋼帯の最高速度以上となるよう に、 冷却水の噴射速度を 3 OmZ sとした。 これにより、 鋼帯長手方向の流速は 3 Om Ζ5 Χ。 θ 3 4 5° = 1 2 7 2ιηρπιとなる。
そして、 上記の本発明例 1ど同様に、 冷却の制御、 すなわち冷却ゾーン長さを変更す ベく、 冷却水ュニッ トの数と噴射する冷却ノズルヘッダの列数を調整した。
ちなみに、 ここで用いた鋼は、 板厚全体をべ一ナイ ト化したいため、 800°Cから 6 0 までの冷却中に高い冷却速度が必要であるが、 3 5 0°C以下になるとマルテンサ ィ ト組織が生成するので、 表面が 3 5 以下にならないように冷却を制御した。 すな わち、 冷却速度を高め、 且つ表面が 3 5 0°C以下とならないように、 前段と後段の各冷 却装置 1 1において、 空冷部分と水冷部分の距離を調整しておいた。
その結果、 本発明例においては、 卷き取り機 6における銅帯温度が全長に渡って 40 0¾:± 1 1°C以内となり、.非常に均一な冷却が実現できた。 また、 冷却速度が高くかつ 安定していたため、 銅帯板厚方向に均一なベーナイ ト組織が生成でき、 高強度材を製造 することができた。
実施例 5
実施例 5として、 図 1、 図 7に示す設備を使って、 上記の実施形態に基づいて、 仕上 げ板厚 2. 8 mmの鋼帯を製造した。 仕上げ圧延機 4出側での鋼帯速度は鋼帯先端部で 7 0 Ompm, 鋼帯先端部が卷き取り機 6に到達して以降は順次速度を上げて最高 1 0 0 Ompmまで増速した。 銅帯の仕上げ圧延機出側の温度は 8 5 0°Cで、 従来の冷却装 置 1 0を使っておよそ 6 5 0°Cまで冷却し、 以降目標の卷き取り温度である 4 0 0°Cま では本発明の冷却装置 1 1を使って冷却した。 なお、 ここでは、 冷却装置 1 1からの冷 却水の噴射角度 0を 5 0 ° とし、 銅帯と衝突した時点での冷却水の鋼帯長手方向の流速 が鋼帯の最高速度以上となるように、 冷却水の噴射速度を 3 O mZ s とした。 これによ り、 鋼帯長手方向の流速は 3 0 m/ s X c o s 5 0 ° 1 1 5 2 m p mとなる。 . そして、 冷却の制御は次のように行った。 まず、 鋼帯の速度、 計測した温度、 板厚目 標の冷却停止温度までの冷却量から冷却水を噴射する上面と下面の冷却ゾーンの長さを 求めた。 そして、 求めた上面の冷却ゾーン長をカバーする冷却ユニッ ト 1 7の数と、 そ の冷却ュニット 1 7において噴射する冷却ノズルヘッダ 1 3の列数を決定し、 対応する 噴射弁 1 6を開くとともに、 求めた下面の冷却ゾーン長をカバーする冷却ノズルヘッダ 1 8の数を決定し、 対応する噴射弁 2 1を開いた。 その際に、 鋼帯上面側の冷却水によ る冷却量と銅帯下面側の冷却水による冷却量とが等しくなるようにした。 それ以降は、 冷却後の温度計の実績をみて、 鋼板速度の変更 ('加速 ·減速) を勘案しながち、 冷却ゾ ーン長さを変更すべく、 上面の冷却ュニット 1 7の数と噴射する冷却ノズルヘッダ 1 3 の列数および下面の噴射する冷却ノズルヘッダ 1 8の数を調整した。 ただし、 噴射する 冷却ノズルへッダの列数を変更する際は、 上流側から噴射する列数と下流側から噴射す る列数を、 冷却水の流体圧力が鋼帯の上流側と下流側でバランスするように、 上流側と 下流側の冷却ノズルヘッダを対にしてオン一オフさせた。
さらに、各冷却ュニット 1 7出側で鋼帯上面表面がマルテンサイ トにならないように、 冷却ユニッ ト 1 7のゾーン長さを調整し、 さらに次の空冷ゾーンで内部からの熱の拡散 で十分復熱が完了するように空冷ゾーン長さを決定し、 以降の冷却ユニット 1 7の使用 条件を決定した。 ちなみに、 ここで用いた鋼は、 3 5 以下でマルテンサイ ト組織が 生成するので、 表面が 3 5 0 °C以下にならないように冷却を制御した。
その結果、 本発明例においては、 卷き取り機 6における鋼帯温度が全長に渡って 4 0 0 ± 1 以内となり、 非常に均一な冷却が実現できた。 また、 鋼帯上面表層に焼き 戻された.マルテンサイ ト組織が存在することもなかった。 これによつて、 安定した品質 の鋼帯を得ることができた。
実施例 6
実施例 6として、 図 1、 図 9に示す設備を使って、 上記の実施形態に基づいて、 仕上 げ板厚 2 . 8 m mの鋼帯を製造した。 仕上げ圧延機 4出側での鋼帯速度は鋼帯先端部で 7 0 O m p m、 銅帯先端部が巻き取り機 6に到達して以降は順次速度を上げて最高 1 0 0 O m p mまで増速した。 鋼帯の仕上げ圧延機出側の温度は 8 5 0 °Cで、 従来の冷却装 置 1 0を使っておよそ 6 5 0 °Cまで冷却し、 以降目標の卷き取り温度である 4 0 0 °Cま では本発明の冷却装置 1 1を使って冷却した。 なお、 ここでは、 冷却装置 1 1からの冷 却水の噴射角度 0を 5 0 ° とし、 鋼帯と衝突した時点での冷却水の鋼帯長手方向の流速 が鋼帯の最高速度以上となるように、 冷却水の噴射速度を 3 O mZ s とした。 これによ り、 銅帯長手方向の流速は 3 0 m/ s X c o s 5 0 ° 1 1 5 2 πι ρ ιηとなる。
そして、 冷却の制御は次のように行った。 まず、 鋼帯の速度、 計測した温度、 板厚目 標の冷却停止温度までの冷却量から冷却水を噴射する冷却ゾーンの長さを求めた。 そし て、 求めた冷却ゾーン長をカバーする上面冷却条件と下面冷却条件をもとめ、 冷却ュニ ット 1 7の数と、その冷却ュニッ ト 1 7において噴射する上下の冷却ノズルヘッダ 1 3、 1 8の列数を決定し、 対応する噴射弁を開いた。 その際に、 銅帯上面側の冷却水による 冷却量と鋼帯下面側の冷却水による冷却量とが等しくなるとともに、 鋼帯上面側の冷却 水から鋼帯が受ける流体圧と銅帯下面側の冷却水から鋼帯が受ける流体圧とが等しくな るようにした。 それ以降は、 冷却後の温度計の実績をみて、 鋼板速度の変更 (加速 ·減 速) を勘案しながら、 冷却ゾーン長さを変更すべく、 冷却水ユニッ トの数と噴射する冷 却ノズルヘッダ 1 3、 1 8の列数を調整した。 ただし、 冷却ノズルヘッダ 1 3の列数を 変更する際は、 上流側から噴射する列数と下流側から噴射する列数を、 冷却水の流体圧 力が銅帯の上流側と下流側でバランスするように、 上流側と下流側の冷却ノズルヘッダ を対にしてオン一オフさせた。
さらに、各冷却ユニット 1 7出側で鋼帯上面表面がマルテンサイ トにならないように、 冷却ユニット 1 7のゾーン長さを調整し、 さらに次の空冷ゾーンで内部からの熱の拡散 で十分復熱が完了するように空冷ゾーン長さを決定し、 以降の冷却ユニット 1 7の使用 条件を決定した。 ちなみに、 ここで用いた銅は、 3 5 以下でマルテンサイ ト組織が 生成するので、 表面が 3 5 以下にならないように冷却を制御した。
その結果、 本発明例においては、 巻き取り機 6における鋼帯温度が全長に渡って 4 0 0 °C ± 1 0 °C以内となり、 非常に均一な冷却が実現できた。 また、 鋼帯上面表層に焼き 戻されたマルテンサイ ト組織が存在することもなく、 鋼帯上面と下面とで均一な組織が 得られた。 これによつて、 安定した品質の鋼帯を得ることができた。
比較例 1
上記の本発明例 1、 2、 4で示した 5 0 0 °C未満の低温巻き取りにおける本発明の効 果と比較するために、 比較例 1 として、 上記の本発明例と同じ設備において、 .本発明の 冷却装置 1 1は使用せずに、 従来の冷却装置 7 (上面の円管ラミナ一ノズル 8と下面の スプレーノズル 1 0 ) だけで目標の券き取り温度である 4 0 0 °Cまで冷却した。 その他 は、 本発明例と同様にした。
'その結果、 比較例においては、 円管ラミナ一ノズル 8によるラミナ一流が自由落下流 であるので、 滞留水膜があると鋼帯 1 2まで冷却水が到達しにくい上に、 滞留水がある 場合とない場合で冷却能力に違いが生じ、鋼帯長手方向に温度のハンチングが見られた。 特に、 巻き取り機 6での巻き取りが開始して銅帯に張力が掛かるまでの間に、 鋼帯先端 部で凹状になった部分に滞留水が滞留し、 それによつて鋼帯長手方向に温度のムラが生 じた。 したがって、 鋼帯内の温度のばらつきが大きく、 巻き取り機 6での狙いの温度 4 0 0 Cに対して 2 5 0 °C〜4 5 0 °Cと大きくばらついた。 そのために、 鋼帯内の強度の ばらつきが大きかった。
比較例 2
上記の実施例 3、 4で示した本発明の冷却装置 1 1による仕上圧延直後の急速冷却の 効果と比較するために、 比較例 2として、 本発明例 1 と同じ設備において、 本発明の冷 却装置 1 1は使用せずに、 従来の冷却装置 7 (上面の円管ラミナ一ノズル 8と下面のス プレーノズル 1 0 )だけで目標の巻き取り温度である 5 0 まで冷却した。その他は、 実施例 3と同様にした。
その結果、 比較例 2においては、 円管ラミナ一ノズル 8によるラミナ一流が自由落下 流であるので、 滞留水膜があると鋼帯 1 2まで冷却水が到達しにくい上に、 滞留水があ る場合とない場合で冷却能力に違いが生じ、 鋼帯長手方向,に温度のハンチングが見られ た。 特に、 巻き取り機 6での巻き取りが開始して銅帯に張力が掛かるまでの間に、 銅帯 先端部で凹状になった部分に滞留水が滞留し、 それによつて鋼帯長手方向に温度のムラ が生じた。 したがって、 銅帯内の温度のばらつきが大きく、 卷き取り機 6での狙いの温 度 5 0 0 °Cに対して 4 0 0 °C〜5 0 0 °Cと大きくばらついた。 そのために、 鋼帯内の強 度のばらつきが大きかった。 また、 実施例 3、 4に比べて冷却速度が遅いため、 局所的 にフェライ トゃパーライ トなどの軟質層が生成し、 目的とする強度を得ることができな かった。 -

Claims

請求の範囲
1 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯を冷却する熱延鋼帯の 冷却装置であって、 - 鋼帯の上面側に、 鋼帯の進行方向に対してそれぞれ下流側と上流側とに向けて傾斜さ せた棒状冷却水を噴射する冷却ノズルを対向するように配置したことを特徴とする熱延 銅帯の冷却装置。
2 . 前記冷却ノズルは鋼帯幅方向に複数個配置されるとともに 、.前記冷却ノズルによ り噴射される棒状冷却水と鋼帯との成す角度が 6 0 ° 以下であることを特徴とする請求 項 1に記載の熱延鋼帯の冷却装置。
3 . 前記下流側に向けて傾斜させた冷却ノズルと前記上流側に向けて傾斜させた冷 却ノズルは、 それぞれ鋼帯の進行方向に複数列配置されることを特徴とする請求項 1ま たは 2に記載の熱延鋼帯の冷却装置。
4 . 請求項 1から 3のいずれかに記載の熱延鋼帯の冷却装置を 1つの冷却装置ュニッ トとし、 該冷却装置ュニットを鋼帯の進行方向に複数配置したことを特徴とする熱延鋼 帯の冷却装置。
5 . 前記冷却装置ユニッ トの下流側に、 鋼帯上面の冷却水の水切りを行う水切り手段 を配置したことを特徴とする請求項 4に記載の熱延鋼帯の冷却装置。
6 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯を冷却する熱延鋼帯の 冷却装置であって、
銅帯の上面側に、 テーブル口ールの上流側から該テーブル口ール直上へ向けて傾斜さ せた棒状冷却水を噴射する冷却ノズルとテーブル口ールの下流側から該テーブルロール 直上へ向けて傾斜させた棒状冷却水を噴 ¾する冷却ノズルとを対向するように配置した ことを特徴とする請求項 1から 5のいずれかに記載の熱延鋼帯の冷却装置。
7 .; 鋼帯上面側の冷却水による冷却量と銅帯下面側の冷却水による冷却量とが等しく なるように、 鋼帯の上面側およぴ下面側の冷却ノズルを配置することを特徴とする請求 項6に記載の熱延銅帯の冷却装置。
8 . 鋼帯の下面側に、 テーブルロール間から鋼帯下面へ向けて棒状冷却水を噴射する 冷却ノズルを配置したことを特徴とする請求項 7に記載の熱延鋼帯の冷却装置。
9 . ランナウトテーブル上を搬送される仕上圧延後の熱延銅帯を冷却する熱延鋼帯の 冷却装置であって、
鋼帯の下面側に、 テーブルロール間から鋼帯下面へ向けて冷却水を噴射する下面冷却 ノズルを配置するとともに、
-銅帯の上面側に、 下面冷却ノズルから噴射された冷却永 鋼帯に衝突する位置の直上 へ向けてその上流側から傾斜させた棒状冷却水を噴射する冷却ノズルと、 下面冷却ノズ ルから噴射された冷却水が鋼帯に衝突する位霄の直上へ向けてその下流側から傾斜させ た棒状冷却水を噴射する冷却ノズルとを、 対向するように配置したことを特徴とする請 求項 1から 5のいずれかに記載の熱延鋼帯の冷却装置。
1 0 . 鋼帯上面側の冷却水に'よる冷却量と鋼帯下面側の冷却水による冷却量とが等し くなり、 かつ、 鋼帯上面側の冷却水から鋼帯が受ける流体圧と鋼帯下面側の冷却水から 銅帯が受ける流体圧とが等しくなるように、 前記上面冷却ノズルおよび前記下面冷却ノ ズルを配置することを特徴とする請求項 9に記載の熱延銅帯の冷却装置。
1 1 . 前記下面冷却ノズルを棒状冷却水を噴射するノズルとすることを特徴とする請求 項 1 0に記載の熱延銅帯の冷却装置。
1 2 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯の冷却方法であって、 鋼帯の上面側に、 鋼帯の進行方向下流側に向けて傾斜させた棒状冷却水と銅帯の進行方 向上流側に向けて傾斜させた棒状冷却水とを対向させて噴射することを特徴とする熱延 鋼帯の冷却方法。
1 3 . 前記棒状冷却水と鋼帯との成す角度が 6 0 ° 以下であることを特徴とする請求 項 1 2に記載の熱延鋼帯の冷却方法。
1 4 . 前記下流側に向けて傾斜させた棒状冷却水と前記上流側に向けて傾斜させた棒 状冷却水を、 それぞれ鋼帯の進行方向に複数列噴射することを特徴とする請求項 1 2ま たは 1 3に記載の熱延銅帯の冷却方法。
1 5 . 前記傾斜させた棒状冷却水の対向噴射を、 銅帯の進行方向に間隔を空けて複数 箇所で行なうことにより、 水冷と空冷とを繰り返す間欠的な冷却を行うことを特徴とす る請求項 1 2から 1 4のいずれかに記載の熱延鋼帯の冷却方法。
1 6 . 前記傾斜させた棒状冷却水を対向噴射する位置よりも下流側に設けられた水切 り手段により、 冷却水の水切りを行うことを特徴とする請求項 1 5に記載の熱延銅帯の 冷却方法。
1 7 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯の冷却方法であって、 鋼帯の上面側に、 テーブルロールの上流側から該テーブルロール直上へ向けて傾斜させ た棒状冷却水とテーブルロールの下流側から該テーブルロール直上へ向けて傾斜させた 棒状冷却水とを対向させて噴射することを特徴とする請求項 1 2から 1 6のいずれかに 記載の熱延鋼帯の冷却方法。
1 8 . 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水による冷却量とが等し くなるように、 鋼帯の上面側および下面側へ冷却水を噴射することを特徴とする請求項 1 7に記載の熱延鋼帯の冷却方法。
1 9 . 銅帯の下面側に、 テーブルロール間から鋼帯下面へ向けて棒状冷却水を噴射す ることを特徴とする請求項 1 8に記載の熱延鋼帯の冷却方法。
2 0 . ランナウトテーブル上を搬送される仕上圧延後の熱延鋼帯の冷却方法であって、 鋼帯の下面側に、 テーブルロール間から鋼帯下面へ向けて冷却水を噴射するとともに、 鋼帯の上面側に、 下面側の冷却水が鋼帯に衝突する位置の直上へ向けてその上流側から 噴射される傾斜させた棒状冷却水と、 下面側の冷却水が鋼帯に衝突する位置の直上へ向 けてその下流側から噴射される傾斜させた棒状冷却水とを、 対向させて噴射することを 特徴とする請求項 1 2から 1 6のいずれかに記載の熱延銅帯の冷却方法。
2 1 . 鋼帯上面側の冷却水による冷却量と鋼帯下面側の冷却水による冷却量とが等し くなり、 かつ、 鋼帯上面側の冷却水から鋼帯が受ける流体圧と銅帯下面側の冷却水から 鋼帯が受ける流体圧とが等しくなるように、 鋼帯の上面側および下面側の冷却水を噴射 することを特徴とする請求項 2 0に記載の熱延鋼帯の冷却方法。
2 2 .鋼帯下面側の冷却水を棒状冷却水とすることを特徴とする請求項 2 1に記載の熱 延鋼帯の冷却方法。
PCT/JP2007/065119 2006-07-27 2007-07-26 Appareil de refroidissement et procédé de refroidissement de bande d'acier laminé à chaud WO2008013318A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200780015849.4A CN101437631B (zh) 2006-07-27 2007-07-26 热轧钢带的冷却装置及冷却方法
US12/226,371 US8353191B2 (en) 2006-07-27 2007-07-26 Cooling device and cooling method for hot strip
BRPI0711142A BRPI0711142B1 (pt) 2006-07-27 2007-07-26 dispositivo de resfriamento e método de resfriamento para tira quente
EP07791799.5A EP2025423B1 (en) 2006-07-27 2007-07-26 Cooler and cooling method of hot rolled steel band
KR1020087026824A KR101052453B1 (ko) 2006-07-27 2007-07-26 열연강대의 냉각 장치 및 냉각 방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006204051 2006-07-27
JP2006-204051 2006-07-27
JP2006223977 2006-08-21
JP2006223978 2006-08-21
JP2006-223978 2006-08-21
JP2006-223977 2006-08-21
JP2007152367A JP4518107B2 (ja) 2006-07-27 2007-06-08 熱延鋼帯の冷却装置および冷却方法
JP2007-152367 2007-06-08

Publications (1)

Publication Number Publication Date
WO2008013318A1 true WO2008013318A1 (fr) 2008-01-31

Family

ID=38981624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065119 WO2008013318A1 (fr) 2006-07-27 2007-07-26 Appareil de refroidissement et procédé de refroidissement de bande d'acier laminé à chaud

Country Status (7)

Country Link
US (1) US8353191B2 (ja)
EP (1) EP2025423B1 (ja)
KR (1) KR101052453B1 (ja)
CN (1) CN101437631B (ja)
BR (1) BRPI0711142B1 (ja)
TW (1) TWI317305B (ja)
WO (1) WO2008013318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110107776A1 (en) * 2008-04-07 2011-05-12 Andrew Mallison Method and apparatus for controlled cooling

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172650B (zh) * 2011-01-28 2012-11-21 吉林恒联精密铸造科技有限公司 轧钢生产系统
JP5878446B2 (ja) * 2012-09-12 2016-03-08 新日鐵住金株式会社 ノズルヘッダ、冷却装置、熱延鋼板の製造装置、および熱延鋼板の製造方法
JP5825250B2 (ja) * 2012-12-25 2015-12-02 Jfeスチール株式会社 熱延鋼帯の冷却方法および冷却装置
EP2792428A1 (de) * 2013-04-15 2014-10-22 Siemens VAI Metals Technologies GmbH Kühleinrichtung mit breitenabhängiger Kühlwirkung
WO2017115110A1 (en) 2015-12-30 2017-07-06 Arcelormittal Process and device for cooling a metal substrate
TWI690375B (zh) * 2017-04-17 2020-04-11 日商日本製鐵股份有限公司 熱軋鋼板之冷卻裝置以及熱軋鋼板之冷卻方法
CN108687134B (zh) * 2018-06-21 2020-10-09 攀钢集团攀枝花钢铁研究院有限公司 降低轧辊氧化膜热应力剥落的方法
CN110257596A (zh) * 2019-07-17 2019-09-20 艾伯纳工业炉(太仓)有限公司 一种回火炉
CN110358907A (zh) * 2019-07-19 2019-10-22 武汉山力板带技术工程有限公司 一种板带冷却装置、系统及方法
CN114472548A (zh) * 2020-10-23 2022-05-13 宝山钢铁股份有限公司 一种减小超长板轧制过程中头尾温差的系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144513A (ja) 1983-02-09 1984-08-18 Mitsubishi Heavy Ind Ltd 鋼板冷却装置
JPS62260022A (ja) * 1986-05-01 1987-11-12 Ishikawajima Harima Heavy Ind Co Ltd 鋼板の冷却装置
JPH09141322A (ja) 1995-11-21 1997-06-03 Sumitomo Metal Ind Ltd 鋼帯上冷却水の除去方法および装置
JPH10166023A (ja) 1996-12-10 1998-06-23 Nkk Corp 高温鋼板の冷却装置
JP2001286925A (ja) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd 鋼板の水冷装置とその水冷方法
JP2003211205A (ja) * 2002-01-18 2003-07-29 Jfe Engineering Kk 熱延鋼帯の製造設備及び熱延鋼帯の製造方法
JP2007203369A (ja) * 2005-08-30 2007-08-16 Jfe Steel Kk 鋼板の冷却設備および冷却方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930416A (ja) * 1982-08-10 1984-02-18 Kawasaki Steel Corp 熱鋼材冷却装置の冷却むら防止装置
CN1049303A (zh) * 1989-09-15 1991-02-20 沃洛格达综合技术学院 冷却热轧板材的方法
CN2261898Y (zh) * 1996-07-05 1997-09-10 鞍山钢铁公司 中厚板控制冷却装置
JP2003099459A (ja) * 2001-09-20 2003-04-04 Nippon Telegr & Teleph Corp <Ntt> メディア再生履歴情報を利用したサービス提供システム、サービス提供方法、メディア再生端末、サービスの享受方法、メディア再生端末のプログラム、サービス選定サーバ、サービスの選定方法、サービス選定サーバのプログラム、コンピュータ読み取り可能な記憶媒体
JP4059115B2 (ja) * 2003-03-19 2008-03-12 株式会社デンソー バックアップコンデンサの容量算出回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144513A (ja) 1983-02-09 1984-08-18 Mitsubishi Heavy Ind Ltd 鋼板冷却装置
JPS62260022A (ja) * 1986-05-01 1987-11-12 Ishikawajima Harima Heavy Ind Co Ltd 鋼板の冷却装置
JPH09141322A (ja) 1995-11-21 1997-06-03 Sumitomo Metal Ind Ltd 鋼帯上冷却水の除去方法および装置
JPH10166023A (ja) 1996-12-10 1998-06-23 Nkk Corp 高温鋼板の冷却装置
JP2001286925A (ja) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd 鋼板の水冷装置とその水冷方法
JP2003211205A (ja) * 2002-01-18 2003-07-29 Jfe Engineering Kk 熱延鋼帯の製造設備及び熱延鋼帯の製造方法
JP2007203369A (ja) * 2005-08-30 2007-08-16 Jfe Steel Kk 鋼板の冷却設備および冷却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2025423A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110107776A1 (en) * 2008-04-07 2011-05-12 Andrew Mallison Method and apparatus for controlled cooling

Also Published As

Publication number Publication date
CN101437631A (zh) 2009-05-20
US8353191B2 (en) 2013-01-15
EP2025423A1 (en) 2009-02-18
TWI317305B (en) 2009-11-21
BRPI0711142A2 (pt) 2011-08-23
KR101052453B1 (ko) 2011-07-28
CN101437631B (zh) 2014-03-19
EP2025423A4 (en) 2012-11-14
TW200824807A (en) 2008-06-16
US20090126439A1 (en) 2009-05-21
EP2025423B1 (en) 2013-11-20
KR20080108333A (ko) 2008-12-12
BRPI0711142B1 (pt) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2008013318A1 (fr) Appareil de refroidissement et procédé de refroidissement de bande d&#39;acier laminé à chaud
TWI460031B (zh) 熱軋鋼板之冷卻裝置
JP4449991B2 (ja) 熱延鋼帯の冷却装置及び方法
KR101005455B1 (ko) 열연 강대의 냉각 장치 및 냉각 방법
US8444909B2 (en) Hot-strip cooling device
KR101026972B1 (ko) 열연강대의 냉각 방법
JP3770216B2 (ja) 熱延鋼帯の冷却装置および熱延鋼帯の製造方法ならびに熱延鋼帯製造ライン
JP4544234B2 (ja) 熱延鋼帯の冷却装置および冷却方法
JP4518107B2 (ja) 熱延鋼帯の冷却装置および冷却方法
JP4518117B2 (ja) 熱延鋼帯の冷却装置および冷却方法
JP4544235B2 (ja) 熱延鋼帯の冷却装置および冷却方法
JP4518116B2 (ja) 熱延鋼帯の冷却装置および冷却方法
JP2009202184A (ja) 熱延鋼帯の下面冷却方法および下面冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007791799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12226371

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780015849.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 5088/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0711142

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081031