WO2008012871A1 - Nonvolatile semiconductor storage device - Google Patents

Nonvolatile semiconductor storage device Download PDF

Info

Publication number
WO2008012871A1
WO2008012871A1 PCT/JP2006/314649 JP2006314649W WO2008012871A1 WO 2008012871 A1 WO2008012871 A1 WO 2008012871A1 JP 2006314649 W JP2006314649 W JP 2006314649W WO 2008012871 A1 WO2008012871 A1 WO 2008012871A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
resistance
memory element
nonvolatile semiconductor
Prior art date
Application number
PCT/JP2006/314649
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Sato
Hiroshi Iwasa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008526625A priority Critical patent/JP5012802B2/en
Priority to PCT/JP2006/314649 priority patent/WO2008012871A1/en
Publication of WO2008012871A1 publication Critical patent/WO2008012871A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • Nonvolatile semiconductor memory device includes
  • the present invention relates to a nonvolatile semiconductor memory device using a resistance memory element whose resistance state is changed by applying an electrical stimulus.
  • the nonvolatile semiconductor memory device is called a RRAM (Resistance Random Access Memory), and uses a resistance memory element whose resistance state is changed by applying an electrical stimulus from the outside as a memory cell. Then, the high resistance state and the low resistance state of the resistance memory element are associated with, for example, information “0” or “1”.
  • RRAM Resistance Random Access Memory
  • a resistance memory element As a typical example of a resistance memory element, an oxide material containing a transition metal is known.
  • a resistance memory element having the above-described characteristics changes from a high resistance state to a low resistance state.
  • the resistance value changes greatly, and the resistance value changes abruptly. Therefore, in order to prevent the phenomenon that an excessive current flows through the resistance memory element when writing data, the RRAM needs to limit the current (current compliance) at a predetermined timing.
  • Patent Document 1 the voltage value at one end of the resistance memory element is monitored, and the monitored result is input to the sense amplifier circuit.
  • a plurality of resistance elements are used to A reference voltage of the sense amplifier circuit is created, and writing is stopped when the resistance value of the resistance memory element changes to the resistance value of the predetermined reference resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-234707
  • the present invention has been made in view of the above-described problems, and can be surely written in a short time and has a writing circuit having a simple circuit configuration.
  • An object is to provide a storage device.
  • the above problems can be solved by a novel circuit configuration using the characteristic that the resistance state of the resistance memory element changes during writing (not in flash memory or the like).
  • the present invention has been found and the present invention has been made.
  • a high voltage is applied to the resistance memory element to change its resistance state. Then, paying attention to the voltage (within the writing circuit) that changes according to the change in the resistance state, the voltage is received by a monitor circuit having a predetermined threshold, and the resistance change is instantaneously triggered by the change in the voltage.
  • the solution to the problem is realized by limiting the power supply to the device.
  • a nonvolatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by applying a voltage, and supplies power to the resistance memory element. And a voltage applying circuit for generating a first voltage at one end of the resistance memory element, and a predetermined threshold voltage, and detecting that the first voltage has reached the predetermined threshold voltage. There is provided a non-volatile semiconductor memory device having a monitor circuit and a cutoff circuit for restricting power supply from the voltage applying circuit to the resistance memory element based on the detection of the monitor circuit.
  • a high resistance state and a low resistance state by application of a voltage A non-volatile semiconductor memory device having a resistance memory element that is switched between when the resistance memory element is in a high-resistance state, the power source is supplied to the resistance memory element, and a first end of the resistance memory element is A first voltage applying circuit for generating a voltage; and a power supply to the resistance memory element when the resistance memory element is in a low resistance state, and a second voltage lower than the first voltage at one end of the resistance memory element.
  • a second voltage applying circuit for generating the first voltage a first monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached the first threshold voltage; A second monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached the second threshold voltage; and based on the detection of the first monitor circuit.
  • a second cutoff circuit that cuts off the voltage application to the resistance memory element based on the detection of the second monitor circuit.
  • a non-volatile semiconductor memory device is provided.
  • a non-volatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by application of a voltage, and a power source is supplied to the resistance memory element. And a voltage application circuit for generating a first voltage at a predetermined location of a memory cell including the resistance memory element, and a predetermined threshold voltage, the first voltage being a predetermined threshold! /, Value There is provided a non-volatile semiconductor memory device that includes a monitor circuit that detects that the voltage has been reached, and that limits power supply from the voltage application circuit to the resistance memory element based on the detection of the monitor circuit .
  • the present invention at the time of writing, a high voltage is applied to the resistance memory element to change its resistance state. Then, paying attention to the voltage that changes according to the change in the resistance state (in the write circuit), the current supply to the resistance memory element is instantaneously limited by using the predetermined change in the voltage as a trigger, Thus, reliable writing can be performed, and such writing processing can be realized with a simple circuit.
  • FIG. 1 is a graph showing the current-voltage characteristics of a resistance memory element using a unipolar resistance memory material.
  • FIG. 2 is a diagram showing a basic configuration of a memory cell in a nonvolatile semiconductor memory device
  • FIG. 3 is a circuit diagram showing a memory cell array 20 in which memory cells 10 are arranged in a matrix.
  • FIG. 4 is a block diagram illustrating a schematic configuration of a peripheral circuit according to the first embodiment.
  • FIG. 5 is a circuit diagram illustrating an example of a set driver circuit according to the first embodiment.
  • FIG. 6 is a timing chart illustrating a write operation of the set driver circuit according to the first embodiment.
  • FIG. 7 is a circuit diagram illustrating an example of a reset driver circuit according to the first embodiment.
  • FIG. 8 is a timing chart showing a write operation of the reset driver circuit according to the first embodiment.
  • FIG. 9 is a graph showing the relationship between the ratio of the gate width of nMOS to the gate width of pMOS and the threshold voltage of the input section in the input section of the monitor circuit having a CMOS structure.
  • Fig. 1 is a graph showing the current-voltage characteristics of a resistance memory element using a unipolar resistance memory material. This graph shows the case of using TiO, which is a typical example of a unipolar resistive memory material.
  • the initial state of the resistance memory element be point a.
  • the current gradually increases along curve A.
  • the resistance memory element switches (sets) to the low resistance state as well as the high resistance state force. Accordingly, the absolute value of the current increases rapidly, and the current-voltage characteristic transitions from the high resistance state of curve A to the low resistance state shown by curves C and D.
  • the current value from point b to point c is constant at 2mA (straight line B), but this is due to current limitation. That is, the resistance memory element has already transitioned to the low resistance state at the time point b.
  • the current limitation is removed at the time point c. Then, as the voltage is gradually decreased from point c, the current changes along the curve C in the direction of the arrow, and its absolute value gradually decreases. Conversely, when the applied voltage is gradually increased again, the current changes along the curve D in the direction of the arrow, and its absolute value gradually increases.
  • the resistance memory element switches (resets) from the low resistance state to the high resistance state.
  • the absolute value of the current sharply decreases, and the current-voltage characteristics transition from the d point to the e point.
  • the current-voltage characteristics follow curve A in the high resistance state if the applied voltage is lower than the voltage at point b (about 1.5V). Changes linearly and maintains a high resistance state. Similarly, in the low resistance state, if the applied voltage is lower than the voltage at point d (approximately 0.7V), the current-voltage characteristics change along curve C, and the low resistance state is maintained.
  • FIG. 2A is a circuit diagram showing a memory cell in the nonvolatile semiconductor memory device
  • FIG. 2B is a schematic sectional view showing a structure of the memory cell in the nonvolatile semiconductor memory device.
  • FIG. 2 shows a configuration common to the conventional nonvolatile semiconductor memory device and the nonvolatile semiconductor memory device of this embodiment.
  • the memory cell 10 of the nonvolatile semiconductor memory device includes a resistance memory element 12 and a cell selection transistor 14 as shown in FIG.
  • the resistance memory element 12 has one end connected to the bit line BL and the other end connected to the drain D of the cell selection transistor 14.
  • the source S of the cell selection transistor 14 is connected to the source line SL, and the gate G is connected to the word line WL.
  • the resistance memory element 12 has a resistance memory material 12b sandwiched between a pair of electrodes (12a, 12c).
  • the resistance memory material 12b is, for example, a unipolar resistance memory material having a TiO force.
  • the bit line BL extends parallel to the paper surface, and the source line SL and the word line WL extend toward the back, that is, perpendicular to the paper surface.
  • FIG. 3 is an example of a circuit diagram showing a memory cell array 20 in which the memory cells 10 shown in FIG. 2 are arranged in a matrix.
  • the plurality of memory cells 10 are arranged adjacent to each other in the column direction (vertical direction in the drawing) and the row direction (horizontal direction in the drawing).
  • a plurality of word lines WL1, * WL1, WL2, * WL2 ',... are arranged in the row direction, and are connected to the memory cells 10 arranged in the row direction.
  • source lines SL1, SL2,... are arranged and connected to the memory cells 10 arranged in the row direction.
  • the number of source lines equal to or greater than the number of word lines is provided in relation to the amount of power supply noise, etc., in which one source line is provided for every two word lines. It's okay.
  • a plurality of bit lines BL1, BL2, BL3, BL4-... Are arranged in the column direction, and are connected to the memory cells 10 arranged in the column direction.
  • Each bit line BL is provided with a bit line selection transistor 16 having a function as a variable resistance element.
  • FIG. 4 is a block diagram illustrating a schematic configuration of the peripheral circuit according to the first embodiment.
  • the peripheral circuit for the memory cell array 20 described above includes a set driver circuit 30 and a reset driver circuit 40 that write data to the memory cell 10, and data reading from the memory cell 10.
  • the reading circuit 28 for performing the above and the control circuit 26 for controlling these circuits are also configured.
  • the memory cell array 20 includes a word line selector 22 for selecting the word line WL and a bit line selector for selecting the bit line BL. 24 is also included.
  • the memory cell portion in the memory cell array 20 corresponds to, for example, a circuit similar to the circuit shown in FIG. 3 described above. In FIG. 4, for convenience of illustration, this memory cell portion is included in the circuit. The wiring is partially omitted.
  • the memory cell 10 is selected by the word line selector 22 and the bit line selector 24.
  • the word line selector 22 and the bit line selector 24 are also connected to the address line 25. Address setting to the address line 25 is performed by the control circuit 26.
  • the set driver circuit 30 includes a voltage application circuit 32 that applies a predetermined voltage (and current) to the memory cell 10 selected at the time of writing, a monitor circuit 34 that detects the voltage of the bit line, and a monitor circuit 34. In response to this notification, the power supply to the memory cell 10 is cut off.
  • the set driver circuit 30 has a precharge circuit 38 that sets the voltage of the bit line BL to a predetermined value before writing.
  • the precharge circuit 38 avoids a malfunction in the writing process.
  • the reset driver circuit 40 includes a voltage application circuit 42 that applies a predetermined voltage (and current) to the memory cell 10 selected at the time of writing, and a monitor circuit 4 that detects the voltage of the bit line.
  • shut-off circuit 46 which receives the notification from the monitor circuit 44 and shuts off the power supply to the memory cell 10, is also configured.
  • the reset driver circuit 40 includes a precharge circuit 48 that sets the voltage of the bit line BL to a predetermined value before writing.
  • the precharge circuit 48 avoids malfunctions in the write process.
  • the control circuit 26 includes a CPU (Central Processing Unit) 26a, a memory 26b that stores a control program for the CPU 26a, a bus 26c that transmits signals between them, and the like.
  • a CPU Central Processing Unit
  • memory 26b that stores a control program for the CPU 26a
  • bus 26c that transmits signals between them, and the like.
  • the control circuit 26 has the above-described configuration, and controls the write operation in the set driver circuit 30 and the reset driver circuit 40 via (via) the control signals 27a and 27b.
  • the read operation in the read circuit 28 is controlled by the control signal 27c.
  • the control circuit 26 also controls the memory cell array 20 by the control signal 27d.
  • the read circuit 28 includes a sense amplifier (not shown), and the voltage of the bit line BL is measured by the sense amplifier to recognize the storage state of the selected memory cell.
  • FIG. 5 is a circuit diagram illustrating an example of a set driver circuit according to the first embodiment.
  • the memory cell array 20 is arranged between the bit line BL and the reference voltage Vss.
  • the resistance memory element 12 and the cell selection transistor 14 are connected in series. Specifically, one end of the resistance memory element 12 is connected to the bit line BL, and the other end is connected to the drain D of TR11.
  • the source S of TR11 is connected to the reference voltage Vss, and the gate G of TR11 is connected to the word line WL.
  • the resistance value of the resistance memory element 12 is several k ⁇ in the low resistance state, and several ten ⁇ to 1000 kQ in the high resistance state. Unlike a normal resistor, the resistance memory element 12 has a very small area dependency on the resistance value.
  • the cell selection transistors 14 connected in series to the resistance memory element 12 need to be provided in the same number as the resistance memory elements 12, it is desirable that the area be as small as possible.
  • the cell selection transistor 14 having a small area
  • the cell selection transistor 14 having an on-resistance of about 2 k ⁇ .
  • the resistance value in the low resistance state is about 4 k ⁇ (and the maximum current during the reset operation) so that the necessary voltage is applied to the cell selection transistor 14. It is desirable to use a resistance memory element 12 that has a current of about several hundred A.
  • the set voltage application circuit 32 includes a current mirror circuit having TR32 and TR33.
  • the current mirror circuit is a stable power supply connected to the power supply Vdd.
  • the end opposite to the side connected to the power supply Vdd is connected to the drain D of the bit line BL and TR31 as shown in the figure.
  • the cell selection transistor 14 (TR11) in the memory cell 10 is an nMOS, and the transistors (TR32, TR33 constituting the current mirror circuit). ) Is preferably pMOS.
  • TR31 is provided between the set voltage application circuit 32 and a cutoff circuit 36 described later, and enables the operation of the set driver circuit 30 at the time of writing.
  • the drain D of TR31 is connected to the source S of TR32, that is, the node N1, and the source 3 of Ding 1 ⁇ 31 is connected to the cutoff circuit 36 (specifically, the drain D of TR34).
  • TR31 gate G allows write Connected to the set write enable signal SetWE. When performing the writing process, set the SetWE signal in advance to a high level (for example, approximately 1.5 to 1.7 V).
  • the cutoff circuit 36 is provided between the aforementioned TR31 and the reference voltage Vss.
  • the cutoff circuit 36 includes, for example, a transistor TR34 disposed between TR31 and the reference voltage Vss, and its drain D is connected to the source S of TR31.
  • the source S of TR34 is connected to the reference voltage Vss, and the output of the monitor circuit 34 is connected to the gate G of TR34.
  • the reference voltage Vss may be set to a ground (GND) level, for example.
  • the transistor TR 34 has, for example, an nMOS structure.
  • the monitor circuit 34 includes, for example, two inverters IN11 and IN12 connected in series as shown in the drawing.
  • the input of inverter IN11 is connected to bit line BL, and its output is connected to the input of inverter IN12.
  • the output of the inverter IN12 is connected to the gate G of the transistor TR34 constituting the cutoff circuit 36.
  • the threshold voltage (threshold voltage) is set to a value that can be recognized as the transition to the low resistance state. To do.
  • the threshold value of this IN11 is, for example, 1. OV to l. 2V. The optimum value depends on the material of the resistance memory element 12 and the characteristics of the peripheral circuit of the resistance memory element 12. decide. There is no particular limitation on the subsequent inverter IN12.
  • threshold! /, Value voltage and “threshold voltage” are used as synonymous terms.
  • the inverter IN11 has a CMOS structure input section (not shown) in which, for example, a pMOS transistor and an nMOS transistor are also formed.
  • the threshold voltage of this input section becomes the threshold voltage of the monitor circuit 34.
  • FIG. 9 is a graph showing the relationship between the ratio of the nMOS gate width to the pMOS gate width and the threshold voltage of the input section in the input section of the monitor circuit having a CMOS structure. It is fu.
  • the threshold voltage can be controlled by changing the ratio of the gate width of the nMOS and the gate width of the pMOS. Specifically, by setting the ratio of the gate width of the nMOS to the gate width of the pMOS greater than 1, that is, by making the gate width of the pMOS wider than the gate width of the nMOS, the threshold voltage is changed from 1.0 V to 1. It can be 2 V.
  • the threshold voltage should be about 1. IV. Is possible.
  • the precharge circuit 38 is provided between the power supply Vdd and the bit line BL.
  • the precharge circuit 38 is disposed between, for example, the bit line BL and the power supply Vdd, has a transistor TR35 having a pMOS structure, and the drain D of TR35 is connected to the power supply Vdd.
  • the gate G of TR35 is connected to the control signal PrSET from the control circuit 26, and the source S of TR35 is connected to the bit line BL.
  • FIG. 6 is a timing chart illustrating the write operation of the set driver circuit according to the first embodiment.
  • Step 1 First, the bit line BL is precharged.
  • the set precharge signal PrSET is set to Low level to turn on TR35 so that the bit line BL has substantially the same voltage value as the power supply Vdd.
  • the voltage of the power supply Vdd is about 1.8V, for example.
  • the precharge circuit 38 determines one end of the resistance memory element 12 at a predetermined voltage before applying a voltage to the resistance memory element 12.
  • Step 2 Next, the SetWE signal is enabled in this state. That is, the SetWE signal is set to High level to turn on TR31. At this time, already after step 1 precharge Since TR34 is in the on state, when TR31 is turned on, the voltage value of node N1 drops significantly, and a large current easily flows through the path of L1.
  • Step 3 Next, precharge of the bit line BL is stopped.
  • the set precharge signal PrSET is returned to the high level (for example, about 1.5V to 1.8V), and TR35 is turned off.
  • the precharge circuit 38 turns on the internal transistor TR35 to set one end of the resistance memory element 12 to a predetermined voltage, and then turns off the transistor 35 to stop the precharge.
  • Step 4 Next, the memory cell 10 to be written is selected. That is, the control circuit 26 designates an address for the address line 25 and enables the word line WL of the memory cell 10. As a result, the word line WL becomes a high level (for example, 1.5 to 1.7 V), and the cell selection transistor TR11 is turned on. At the same time as TR11 is turned on, a high voltage (for example, about 1.6 V) that can be set to the resistance memory element 12 is applied. The voltage applied to the resistance memory element is shown in the graph “VR” in FIG.
  • Step 5 Next, the resistance memory element 12 is set. That is, when a high voltage that can be set is applied for a predetermined time (several ns to 50 ns), the resistance memory element 12 enters the set state, and the resistance memory element 12 rapidly changes to the low resistance state in addition to the high resistance state force. To do.
  • the voltage application circuit 32 applies a voltage capable of switching the resistance state of the resistance memory element 12 to both ends of the resistance memory element 12, and then (switches the resistance state).
  • the resistance state is switched after a predetermined time has elapsed (after a voltage capable of being applied) is applied.
  • Step 6 Next, the set state is detected by the monitor circuit. That is, resistance memory element When the child 12 transitions to the low resistance state, the voltage of the bit line BL rapidly decreases accordingly. When the voltage value of the bit line BL becomes lower than the threshold voltage of the inverter IN11 in the monitor circuit 34 (for example, about 1. OV to l.2V), the monitor circuit 34 is activated.
  • the threshold voltage of the inverter IN11 in the monitor circuit 34 for example, about 1. OV to l.2V
  • the resistance memory element 12 is in the middle of transition to the low resistance state, that is, after the resistance state starts to be switched. It is desirable to set so that the voltage value of the bit line BL reaches the threshold voltage value of the inverter IN11 before the switching is completed.
  • the monitor circuit 34 changes (inverts) the logic of an internal logic element when the voltage of the bit line BL reaches a predetermined threshold voltage value. In other words, when the voltage value is low level, it changes from low level to high level, and when the voltage value is high level, it changes from high level to low level.
  • Step 7 Next, power supply to the resistance memory element 12 is cut off. That is, the monitor circuit 34 detects the set of the resistance memory element 12, and changes the output signal StatSET power Low level (for example, about 0V to 0.5V) of the monitor circuit. This StatSET can notify the completion of setting to the outside. When the StatSET signal goes low, TR34 in the cutoff circuit 36 turns off and the current in the L1 path is cut off.
  • the monitor circuit 34 detects the set of the resistance memory element 12, and changes the output signal StatSET power Low level (for example, about 0V to 0.5V) of the monitor circuit.
  • This StatSET can notify the completion of setting to the outside.
  • TR34 in the cutoff circuit 36 turns off and the current in the L1 path is cut off.
  • the current mirror circuit in the set voltage application circuit 32 is activated, and the current flowing through the path L2 is interrupted.
  • the time from when the resistance state of the resistance memory element 12 is switched to when the current in the path L1 is cut off is several ns to several tens ns.
  • the cutoff circuit 36 limits the current of the current limiting circuit that limits the amount of current supplied to the resistance memory element.
  • the current limiting circuit is the current mirror circuit
  • the blocking circuit 36 limits the amount of current supplied to the resistance memory element by blocking one current path in the current mirror circuit.
  • the voltage value applied to the resistance memory element 12 is a value at which the resistance state does not change (for example, 0.6 V The following). Therefore, when writing is performed in the steps as described above, the resistance state of the resistance memory element 12 remains unchanged. The set completion is immediately notified to the outside while maintaining the low resistance state.
  • FIG. 7 is a circuit diagram illustrating an example of a set driver circuit according to the first embodiment.
  • the reset voltage application circuit 42 is configured by a current mirror circuit having TR42 and TR43.
  • the current mirror circuit is a stable power supply connected to the power supply Vdd.
  • the end opposite to the side connected to the power supply Vdd is connected to the drain D of the bit line BL and TR41 as shown in the figure.
  • the cell selection transistor 14 (TR11) in the memory cell 10 is an nMOS and the transistors (TR42, TR43) constituting the current mirror circuit. ) Is preferably pMOS.
  • TR41 is provided between the reset voltage application circuit 42 and a cutoff circuit 46 described later, and enables the operation of the reset driver circuit 40 at the time of writing.
  • the drain D of TR41 is connected to the source S of TR42, ie, the node N2, and the source 3 of Ding 1 ⁇ 41 is connected to the cutoff circuit 46 (specifically, the drain D of TR44).
  • the gate G of TR41 is connected to a reset write enable signal ResetWE that permits writing. Write process In this case, this ResetWE signal is set to a high level (for example, about 1.5 to 1.7 V) in advance.
  • the cutoff circuit 46 is provided between the aforementioned TR41 and the reference voltage Vss.
  • the cutoff circuit 46 includes, for example, a transistor TR44 disposed between TR41 and the reference voltage Vss, and its drain D is connected to the source S of TR41.
  • the source S of TR44 is connected to the reference voltage Vss, and the output of the monitor circuit 44 is connected to the gate G of TR44.
  • the transistor TR44 has, for example, an nMOS structure.
  • the monitor circuit 44 has, for example, one inverter IN21 and a flip-flop circuit FF as shown in the figure.
  • the input of inverter IN21 is connected to bit line BL, and its output is connected to one input of flip-flop circuit FF.
  • the inverter IN21 is set to a value at which the threshold voltage can be recognized as having transitioned to the high resistance state.
  • the threshold voltage of IN21 is, for example, 1.0 V to 1.2 V, but the optimum value is determined according to the material constituting the resistance memory element 12 and the characteristics of the peripheral circuit of the resistance memory element 12. To do.
  • the inverter IN21 has, for example, a pMOS structure transistor and an nMOS structure transistor, and a CMOS structure input section (not shown).
  • the threshold voltage voltage monitor circuit 44 threshold of the input section is provided. Become a voltage. Note that. Since the relationship between the CMOS structure form of the inverter IN21 and the threshold voltage is the same as that of the monitor circuit in the set driver circuit, description thereof is omitted here.
  • the flip-flop circuit FF is composed of, for example, two NAND circuits (NA1, NA2). The output of this flip-flop circuit FF is connected to the gate G of TR44 in the cutoff circuit 46. The output of the inverter IN21 is connected to one input of the flip-flop circuit FF, and the X-StartRESET signal is connected to the other input. X—Star tRESET signal sets the output (StatRESET signal) of flip-flop circuit FF to High level.
  • the flip-flop circuit FF has completed the write operation by the reset driver circuit 40. After that, when the voltage of the bit line BL drops, TR44 of the cutoff circuit 46 is turned on again due to the voltage change, and the reset driver circuit 40 is prevented from restarting.
  • the monitor circuit 44 functions as a stable operation circuit that prevents the logic from changing again after the voltage of the bit line BL reaches a predetermined threshold voltage and the internal logic changes. It has a function. Further, the monitor circuit 44 has a function of enabling the unlocking of the logic from the outside as required by the X-StartRESET signal.
  • the precharge circuit 48 is provided between the bit line BL and the reference voltage Vss. It is done.
  • the precharge circuit 48 is disposed between the bit line BL and the reference voltage Vss, and includes a transistor TR45 having an nMOS structure, and the drain D of TR45 is connected to the bit line BL.
  • the TR45 gate G is connected to the control signal PrRES ET from the control circuit 26, and the TR45 source S is connected to the reference voltage Vss.
  • FIG. 8 is a timing chart illustrating the write operation of the reset driver circuit according to the first embodiment.
  • Step 1 First, precharge the bit line BL. That is, the reset precharge signal PrRESET is set to a high level (for example, about 1.5 to 1.8 V) to turn on TR45 so that the bit line BL has substantially the same voltage value as the reference voltage Vss. As described above, the precharge circuit 48 determines one end of the resistance memory element 12 at a predetermined voltage before the voltage is applied to the resistance memory element 12, and prevents malfunction of the circuit.
  • a high level for example, about 1.5 to 1.8 V
  • Step 2 Next, the memory cell 10 to be written is selected. That is, the control circuit 26 designates an address for the address line 25 and enables the word line WL of the memory cell 10. As a result, the word line WL becomes a high level (for example, 1.5 to 1.7 V), and the cell selection transistor TR11 is turned on.
  • the control circuit 26 designates an address for the address line 25 and enables the word line WL of the memory cell 10.
  • the word line WL becomes a high level (for example, 1.5 to 1.7 V), and the cell selection transistor TR11 is turned on.
  • Step 3 Next, the ResetWE signal is enabled. That is, the ResetWE signal for enabling the reset driver circuit 40 is set to a high level (for example, about 1.5 to 1.7 V) to turn on TR41. At this time, the transistor TR45 of the precharge circuit 48, the TR44 of the cutoff circuit 46, and the TR11 of the memory cell 10 are already in the ON state by the processing of Step 1 and Step 2, so that TR41 is turned on. The current mirror circuit is activated and a large current begins to flow through the L4 path.
  • a high level for example, about 1.5 to 1.7 V
  • the transistor TR45 of the precharge circuit 48 is on. Current flows through the precharge circuit 48 side, and almost no current flows through the LO path on the memory cell 10 side. Therefore, at this time, the voltage of the bit line BL is hardly changed, and the voltage value of the bit line BL is maintained substantially the same value (about OV to 0.5 V) as the reference voltage Vss. As a result, no high voltage is applied to the resistance memory element 12, and the resistance memory element 12 maintains a low resistance state.
  • Step 4 Next, precharge of the bit line BL is stopped.
  • the PrRESET signal is returned to the low level, TR45 is turned off, and the precharge is stopped.
  • the precharge is stopped and the X-StartRESET signal is changed from low level to high level.
  • TR11 is turned on, a high voltage (approximately 0.9 V) that can be set to the resistance memory element 12 is applied. The voltage applied to the resistance memory element is shown in the graph “VR J” in FIG.
  • Step 5 Next, the resistance memory element 12 is reset.
  • the resistance memory element 12 is reset, and the resistance memory element 12 rapidly changes from the low resistance state to the high resistance state.
  • the time required for the resistance memory element 12 to reset (the predetermined time) varies depending on conditions, and is usually several hundred ns to several tens of ms, but here, for example, 800 ns as shown in FIG.
  • the voltage application circuit 42 applies a voltage capable of switching the resistance state of the resistance memory element 12 to both ends of the resistance memory element 12, and (the resistance state can be switched). After a predetermined time (after the voltage is applied), the resistance state is switched.
  • Step 6 Next, the reset state is detected by the monitor circuit. That is, when the resistance memory element 12 transitions to the high resistance state, the voltage of the bit line BL rises accordingly. When the voltage value of the bit line BL becomes higher than the threshold voltage of the inverter IN21 in the monitor circuit 44 (for example, about 1. OV to l.2V), the monitor circuit 44 is activated. At this time, the StatRESET signal can be used to notify the outside that the reset has been completed.
  • the threshold voltage of the inverter IN21 in the monitor circuit 44 for example, about 1. OV to l.2V
  • the resistance state starts to switch during the transition of the resistance memory element 12 to the low resistance state. And before the switching is over, the bit line BL It is desirable to set so that the voltage value of reaches the threshold voltage of inverter IN21.
  • the logic of the internal logic element changes (inverts).
  • Step 7 Next, power supply to the resistance memory element 12 is cut off. That is, the monitor circuit 44 detects the reset of the resistance memory element 12, and the output signal StatRESET of the monitor circuit changes from the high level to the low level (for example, about OV to 0.5V). When the StatRESE T signal changes to Low level, TR44 in the cutoff circuit 46 is turned off, and the current in the L3 path is cut off.
  • the current mirror circuit in the voltage application circuit 42 is activated, and the current flowing through the path L4 is interrupted.
  • the time from when the resistance state of the resistance memory element 12 is switched to when the current in the path L4 is cut off is several ns to several tens ns.
  • the cutoff circuit 46 limits the current of the current limiting circuit that limits the amount of current supplied to the resistance memory element.
  • the current limiting circuit is, for example, the current mirror circuit as shown in FIG. 7, and the cutoff circuit 46 cuts off one of the current paths in the current mirror circuit to thereby supply the current amount to the resistance memory element. Limit.
  • the resistance memory element 12 when the resistance memory element 12 is in a high resistance state from the beginning, the voltage of the bit line BL is monitored immediately after applying a high voltage to the resistance memory element 12 in Step 4. It becomes higher than the threshold voltage value of circuit 21. Therefore, it can be realized by adjusting the power supply to the resistance memory element 12 to be instantaneously cut off in a time shorter than the time when the resistance state of the resistance memory element 12 changes (for example, several ns). It is. Also, immediately notify the outside of the reset completion.
  • the write circuit to the resistance memory element is combined with an element mainly composed of a field effect transistor (MOS FET: Metal Oxide Semiconductor Field Effect Transistor). Therefore, it is possible to easily manufacture a non-volatile memory device by using the conventional process for forming CMOS.
  • MOS FET Metal Oxide Semiconductor Field Effect Transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

[PROBLEMS] To provide a nonvolatile semiconductor storage device having a writing circuit of simple circuitry by which writing can be performed surely in a short time. [MEANS FOR SOLVING PROBLEMS] The nonvolatile semiconductor storage device has a resistance storage element in which switching is made between high resistance state and low resistance state by applying a voltage. The nonvolatile semiconductor storage device comprises a voltage application circuit for supplying power to the resistance storage element and generating a first voltage at one end thereof, a monitor circuit having a predetermined threshold voltage and detecting the fact that the first voltage has reached the predetermined threshold voltage, and an interruption circuit for limiting power supply from the voltage application circuit to the resistance storage element based on detection of the monitor circuit.

Description

明 細 書  Specification
不揮発性半導体記憶装置  Nonvolatile semiconductor memory device
技術分野  Technical field
[0001] 本発明は、電気的刺激を与えることにより抵抗状態が変化する抵抗記憶素子を用 V、た不揮発性半導体記憶装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a nonvolatile semiconductor memory device using a resistance memory element whose resistance state is changed by applying an electrical stimulus.
背景技術  Background art
[0002] 前記不揮発性半導体記憶装置は、 RRAM (Resistance Random Access Memory) と呼ばれ、外部から電気的刺激を与えることにより抵抗状態が変化する抵抗記憶素 子をメモリセルに用いる。そして、抵抗記憶素子の高抵抗状態と低抵抗状態とを、例 えば情報の "0"ど' 1 "とに対応づける。  [0002] The nonvolatile semiconductor memory device is called a RRAM (Resistance Random Access Memory), and uses a resistance memory element whose resistance state is changed by applying an electrical stimulus from the outside as a memory cell. Then, the high resistance state and the low resistance state of the resistance memory element are associated with, for example, information “0” or “1”.
[0003] 抵抗記憶素子の代表例としては、遷移金属を含む酸ィ匕物材料が知られているが、 上記のような特性を有する抵抗記憶素子は、一般に、高抵抗状態から低抵抗状態へ 、或いは、低抵抗状態から高抵抗状態へ遷移した場合に、その抵抗値の変化が大き ぐまた、その抵抗値が急激に変化する。そこで、データを書き込む際に、抵抗記憶 素子に過剰な電流が流れてしまうという現象を防止するために、 RRAMには、所定 のタイミングで電流を制限すること (電流コンプライアンス)が必要になる。  [0003] As a typical example of a resistance memory element, an oxide material containing a transition metal is known. In general, a resistance memory element having the above-described characteristics changes from a high resistance state to a low resistance state. Alternatively, when the low resistance state transitions to the high resistance state, the resistance value changes greatly, and the resistance value changes abruptly. Therefore, in order to prevent the phenomenon that an excessive current flows through the resistance memory element when writing data, the RRAM needs to limit the current (current compliance) at a predetermined timing.
[0004] 従来、このような電流コンプライアンスの機能を実現する方法として、電流制限を行 V、ながら、抵抗記憶素子への電源供給をパルス状に行なう方法が提案されて 、るが 、このような方法では、電流制限回路を設ける必要があることに加えて、正しくセット 動作が行なわれた力否かをチェックする、いわゆるべリファイ動作を行なうことが必要 になる。そのため、回路が複雑になり回路規模が大きくなつてしまう上に、書き込み時 間が長くなるという欠点がある。  [0004] Conventionally, as a method for realizing such a function of current compliance, there has been proposed a method of supplying power to the resistance memory element in a pulsed manner while limiting the current to V. However, In the method, in addition to the necessity of providing a current limiting circuit, it is necessary to perform a so-called verify operation that checks whether or not the force is correctly set. As a result, the circuit becomes complicated and the circuit scale becomes large, and the write time becomes long.
[0005] また、上記の書き込み時間に関する欠点を解消するものとして、抵抗記憶素子の抵 抗値の変化を監視し、その監視した状態をフィードバックさせて、抵抗記憶素子への 電源供給を切断すると!ヽぅ方法も提案されて!ヽる (特許文献 1参照)。  [0005] In addition, as a solution to the above-mentioned drawbacks related to the write time, when the resistance value of the resistance memory element is monitored, the monitored state is fed back and the power supply to the resistance memory element is cut off! There is also a suggestion of a method! (See Patent Document 1).
[0006] 特許文献 1によれば、抵抗記憶素子の一端の電圧値を監視し、監視した結果をセ ンスアンプ回路に入力する。一方、複数の抵抗素子(リファレンス抵抗)により前記セ ンスアンプ回路のリファレンス電圧を作成し、抵抗記憶素子の抵抗値が所定のリファ レンス抵抗の抵抗値まで変化したときに、書き込みを停止する。 [0006] According to Patent Document 1, the voltage value at one end of the resistance memory element is monitored, and the monitored result is input to the sense amplifier circuit. On the other hand, a plurality of resistance elements (reference resistors) are used to A reference voltage of the sense amplifier circuit is created, and writing is stopped when the resistance value of the resistance memory element changes to the resistance value of the predetermined reference resistance.
[0007] 特許文献 1:特開 2004— 234707号公報  [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-234707
発明の開示  Disclosure of the invention
[0008] (発明が解決しょうとする課題) [0008] (Problems to be solved by the invention)
[0009] し力しながら、特許文献 1に記載されて 、る方法では、リファレンス抵抗を組み合わ せてリファレンス電圧を作成しているため、センスアンプ回路の他に、リファレンス抵 抗を新たに設ける必要があり、相変わらず、回路が大規模ィ匕するという問題が残る。  However, in the method described in Patent Document 1, a reference voltage is created by combining reference resistances, and therefore a reference resistor must be newly provided in addition to the sense amplifier circuit. As usual, the problem remains that the circuit becomes large-scale.
[0010] 本発明は上記のような問題点に鑑みてなされたものであり、短時間で確実な書き込 みを行なうことができ、且つ、簡易な回路構成からなる書き込み回路を有する不揮発 性半導体記憶装置を提供することを目的とする。  The present invention has been made in view of the above-described problems, and can be surely written in a short time and has a writing circuit having a simple circuit configuration. An object is to provide a storage device.
[0011] (課題を解決するための手段)  [0011] (Means for solving the problem)
上記の課題について、本発明者らは、書き込み中に抵抗記憶素子の抵抗状態が 変化するという(フラッシュメモリ等には無い)特性を利用した、新規な回路構成によつ て解決可能であることを見出し、本発明をなすに至った。  The above problems can be solved by a novel circuit configuration using the characteristic that the resistance state of the resistance memory element changes during writing (not in flash memory or the like). The present invention has been found and the present invention has been made.
[0012] すなわち、書き込みの際に、抵抗記憶素子に高電圧を印加し、その抵抗状態を変 化させる。そして、前記抵抗状態の変化に応じて変化する(書き込み回路内の)電圧 に注目し、当該電圧を所定のしきい値を有するモニタ回路で受け、当該電圧の変化 をトリガとして、瞬時に抵抗記憶素子への電源供給を制限することによって、課題の 解決を実現する。  That is, at the time of writing, a high voltage is applied to the resistance memory element to change its resistance state. Then, paying attention to the voltage (within the writing circuit) that changes according to the change in the resistance state, the voltage is received by a monitor circuit having a predetermined threshold, and the resistance change is instantaneously triggered by the change in the voltage. The solution to the problem is realized by limiting the power supply to the device.
[0013] 本発明の一観点によれば、電圧の印加によって高抵抗状態と低抵抗状態とが切り 替わる抵抗記憶素子を有する不揮発性半導体記憶装置であって、前記抵抗記憶素 子に電源を供給し、前記抵抗記憶素子の一端に第 1の電圧を発生させる電圧印加 回路と、所定のしきい値電圧を有し、前記第 1の電圧が所定のしきい値電圧に達した ことを検出するモニタ回路と、前記モニタ回路の前記検出に基づいて、前記電圧印 加回路から前記抵抗記憶素子への電源供給を制限する遮断回路とを有する不揮発 性半導体記憶装置が提供される。  [0013] According to one aspect of the present invention, there is provided a nonvolatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by applying a voltage, and supplies power to the resistance memory element. And a voltage applying circuit for generating a first voltage at one end of the resistance memory element, and a predetermined threshold voltage, and detecting that the first voltage has reached the predetermined threshold voltage. There is provided a non-volatile semiconductor memory device having a monitor circuit and a cutoff circuit for restricting power supply from the voltage applying circuit to the resistance memory element based on the detection of the monitor circuit.
[0014] また、本発明の他の観点によれば、電圧の印加によって高抵抗状態と低抵抗状態 とが切り替わる抵抗記憶素子を有する不揮発性半導体記憶装置であって、前記抵抗 記憶素子が高抵抗状態のときに、前記抵抗記憶素子に電源を供給し、前記抵抗記 憶素子の一端に第 1の電圧を発生させる第 1の電圧印加回路と、前記抵抗記憶素子 が低抵抗状態のときに、前記抵抗記憶素子に電源を供給し、前記抵抗記憶素子の 一端に前記第 1の電圧より低い第 2の電圧を発生させる第 2の電圧印加回路と、所定 のしきい値電圧を有し、前記第 1の電圧が第 1のしきい値電圧に達したことを検出す る第 1のモニタ回路と、所定のしきい値電圧を有し、前記第 1の電圧が第 2のしきい値 電圧に達したことを検出する第 2のモニタ回路と、前記第 1のモニタ回路の前記検出 に基づいて、前記第 1の電圧印加回路から前記抵抗記憶素子への電流供給を遮断 する第 1の遮断回路と、前記第 2のモニタ回路の前記検出に基づいて、前記第 2の電 圧印加回路力 前記抵抗記憶素子への電圧印加を遮断する第 2の遮断回路とを有 する不揮発性半導体記憶装置が提供される。 [0014] Further, according to another aspect of the present invention, a high resistance state and a low resistance state by application of a voltage A non-volatile semiconductor memory device having a resistance memory element that is switched between when the resistance memory element is in a high-resistance state, the power source is supplied to the resistance memory element, and a first end of the resistance memory element is A first voltage applying circuit for generating a voltage; and a power supply to the resistance memory element when the resistance memory element is in a low resistance state, and a second voltage lower than the first voltage at one end of the resistance memory element. A second voltage applying circuit for generating the first voltage, a first monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached the first threshold voltage; A second monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached the second threshold voltage; and based on the detection of the first monitor circuit. Shuts off the current supply from the first voltage application circuit to the resistance memory element. And a second cutoff circuit that cuts off the voltage application to the resistance memory element based on the detection of the second monitor circuit. A non-volatile semiconductor memory device is provided.
[0015] また、本発明の他の観点によれば、電圧の印加によって高抵抗状態と低抵抗状態 とが切り替わる抵抗記憶素子を有する不揮発性半導体記憶装置であって、前記抵抗 記憶素子に電源を供給し、前記抵抗記憶素子を含むメモリセルの所定箇所に第 1の 電圧を発生させる電圧印加回路と、所定のしきい値電圧を有し、前記第 1の電圧が 所定のしき!/、値電圧に達したことを検出するモニタ回路とを有し、前記モニタ回路の 前記検出に基づいて、前記電圧印加回路から前記抵抗記憶素子への電源供給を 制限する不揮発性半導体記憶装置が提供される。  [0015] According to another aspect of the present invention, there is provided a non-volatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by application of a voltage, and a power source is supplied to the resistance memory element. And a voltage application circuit for generating a first voltage at a predetermined location of a memory cell including the resistance memory element, and a predetermined threshold voltage, the first voltage being a predetermined threshold! /, Value There is provided a non-volatile semiconductor memory device that includes a monitor circuit that detects that the voltage has been reached, and that limits power supply from the voltage application circuit to the resistance memory element based on the detection of the monitor circuit .
[0016] (発明の効果)  [0016] (Effect of the invention)
本発明によれば、書き込みの際に、抵抗記憶素子に高電圧を印加し、その抵抗状 態を変化させる。そして、前記抵抗状態の変化に応じて変化する(書き込み回路内の )電圧に注目し、当該電圧の所定の変化をトリガとして、瞬時に抵抗記憶素子への電 流供給を制限するので、短時間で確実な書き込みを行なうことが可能であり、且つ、 そのような書き込み処理を簡易な回路で実現できる。  According to the present invention, at the time of writing, a high voltage is applied to the resistance memory element to change its resistance state. Then, paying attention to the voltage that changes according to the change in the resistance state (in the write circuit), the current supply to the resistance memory element is instantaneously limited by using the predetermined change in the voltage as a trigger, Thus, reliable writing can be performed, and such writing processing can be realized with a simple circuit.
[0017] また、半導体プロセスにおける汎用の設計ツール及び設計手法を使用し、容易に 回路設計を行なうことも可能である。  [0017] It is also possible to easily design a circuit using a general-purpose design tool and design technique in a semiconductor process.
図面の簡単な説明 [0018] [図 1]は、単極性抵抗記憶材料を用いた抵抗記憶素子の電流 電圧特性を示すグ ラフである。 Brief Description of Drawings [0018] FIG. 1 is a graph showing the current-voltage characteristics of a resistance memory element using a unipolar resistance memory material.
[図 2]は、不揮発性半導体記憶装置におけるメモリセルの基本構成を示した図である  FIG. 2 is a diagram showing a basic configuration of a memory cell in a nonvolatile semiconductor memory device
[図 3]は、メモリセル 10がマトリクス状に配置されたメモリセルアレイ 20を示す回路図 である。 FIG. 3 is a circuit diagram showing a memory cell array 20 in which memory cells 10 are arranged in a matrix.
[図 4]は、実施例 1に係る周辺回路の概略構成を示すブロック図である。  FIG. 4 is a block diagram illustrating a schematic configuration of a peripheral circuit according to the first embodiment.
[図 5]は、実施例 1に係るセットドライバ回路の一例を示す回路図である。  FIG. 5 is a circuit diagram illustrating an example of a set driver circuit according to the first embodiment.
[図 6]は、実施例 1に係るセットドライバ回路の書き込み動作を示すタイミングチャート である。  FIG. 6 is a timing chart illustrating a write operation of the set driver circuit according to the first embodiment.
[図 7]は、実施例 1に係るリセットドライバ回路の一例を示す回路図である。  FIG. 7 is a circuit diagram illustrating an example of a reset driver circuit according to the first embodiment.
[図 8]は、実施例 1に係るリセットドライバ回路の書き込み動作を示すタイミングチヤ一 トである。  FIG. 8 is a timing chart showing a write operation of the reset driver circuit according to the first embodiment.
[図 9]は、 CMOS構造を有するモニタ回路の入力部における、 nMOSのゲート幅と p MOSのゲート幅の比と、前記入力部のスレッシュホールド電圧との関係を示すグラフ である。  FIG. 9 is a graph showing the relationship between the ratio of the gate width of nMOS to the gate width of pMOS and the threshold voltage of the input section in the input section of the monitor circuit having a CMOS structure.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下に、本発明の実施形態に係る詳細を、図面を参照しながら説明する。 Hereinafter, details according to embodiments of the present invention will be described with reference to the drawings.
[0020] (実施例 1) [0020] (Example 1)
抵抗記憶素子の基本動作  Basic operation of resistive memory elements
まず、単極性抵抗記憶材料を用いた抵抗記憶素子の基本動作を、図を用いて説 明する。図 1は、単極性抵抗記憶材料を用いた抵抗記憶素子の電流 電圧特性を 示すグラフである。このグラフは、単極性抵抗記憶材料の典型例である TiOを用い た場合である。  First, the basic operation of a resistance memory element using a unipolar resistance memory material will be described with reference to the drawings. Fig. 1 is a graph showing the current-voltage characteristics of a resistance memory element using a unipolar resistance memory material. This graph shows the case of using TiO, which is a typical example of a unipolar resistive memory material.
[0021] 抵抗記憶素子の初期状態を a点とする。この a点から印加電圧を徐々に増加して 、 くと、電流は曲線 Aに沿って徐々に増加する。印加電圧が更に大きくなり約 1. 5V (図 中の b点)を超えると、抵抗記憶素子が高抵抗状態力ゝら低抵抗状態にスィッチ (セット )する。 [0022] これに伴い、電流の絶対値が急激に増加し、電流—電圧特性は曲線 Aの高抵抗 状態から曲線 C, Dで示した低抵抗状態に遷移する。なお、 b点から c点までの間、電 流値が約 2mAで一定 (直線 B)になるが、これは、電流制限を施しているためである。 すなわち、抵抗記憶素子は、 b点の時点で既に低抵抗状態に遷移している。 [0021] Let the initial state of the resistance memory element be point a. When the applied voltage is gradually increased from point a, the current gradually increases along curve A. When the applied voltage further increases and exceeds approximately 1.5V (point b in the figure), the resistance memory element switches (sets) to the low resistance state as well as the high resistance state force. Accordingly, the absolute value of the current increases rapidly, and the current-voltage characteristic transitions from the high resistance state of curve A to the low resistance state shown by curves C and D. Note that the current value from point b to point c is constant at 2mA (straight line B), but this is due to current limitation. That is, the resistance memory element has already transitioned to the low resistance state at the time point b.
[0023] 従って、仮に電流制限を外した場合には、曲線 Dを、 d点を超えて 1. 5Vまで延長し たときの値の大電流が抵抗記憶素子に流れることになり、抵抗記憶素子が破損する 可能性がある。  [0023] Therefore, if the current limit is removed, a large current of the value obtained when the curve D is extended to 1.5 V beyond the point d will flow to the resistance memory element. May be damaged.
[0024] 次に、 c点の時点で上記電流制限が外される。そして、 c点から徐々に電圧を減少し ていくと、電流は曲線 Cに沿って矢印の方向に変化し、その絶対値は徐々に減少す る。反対に、印加電圧を再度徐々に増加していくと、電流は曲線 Dに沿って矢印の方 向に変化し、その絶対値は徐々に増加する。  Next, the current limitation is removed at the time point c. Then, as the voltage is gradually decreased from point c, the current changes along the curve C in the direction of the arrow, and its absolute value gradually decreases. Conversely, when the applied voltage is gradually increased again, the current changes along the curve D in the direction of the arrow, and its absolute value gradually increases.
[0025] 印加する正電圧を更に大きくし、約 0. 7V(d点)を超えると、抵抗記憶素子が低抵 抗状態から高抵抗状態にスィッチ (リセット)する。これに伴い、曲線 Eに沿って、電流 の絶対値が急激に減少し、電流―電圧特性は d点カゝら e点に遷移する。  [0025] When the applied positive voltage is further increased and exceeds about 0.7 V (d point), the resistance memory element switches (resets) from the low resistance state to the high resistance state. Along with this, along the curve E, the absolute value of the current sharply decreases, and the current-voltage characteristics transition from the d point to the e point.
[0026] e点に遷移後、 e点の状態力 電圧を減少或いは増加していくと、電流は曲線 A沿 つて変化する。電圧が b点を超えない限り、この抵抗記憶素子は、そのまま高抵抗状 態を維持する。  [0026] After the transition to point e, the current changes along curve A as the state force voltage at point e decreases or increases. As long as the voltage does not exceed point b, this resistance memory element remains in a high resistance state.
[0027] 以上のように、抵抗記憶素子として TiOを使用した場合、高抵抗状態では、印加 電圧が b点の電圧 (約 1. 5V)よりも低ければ、電流—電圧特性は曲線 Aに沿って線 形的に変化し、高抵抗状態が維持される。同様に、低抵抗状態では、印加電圧が d 点 (約 0. 7V)の電圧よりも低ければ、電流 電圧特性は曲線 Cに沿って変化し、低 抵抗状態が維持される。  [0027] As described above, when TiO is used as the resistance memory element, the current-voltage characteristics follow curve A in the high resistance state if the applied voltage is lower than the voltage at point b (about 1.5V). Changes linearly and maintains a high resistance state. Similarly, in the low resistance state, if the applied voltage is lower than the voltage at point d (approximately 0.7V), the current-voltage characteristics change along curve C, and the low resistance state is maintained.
[0028] すなわち、抵抗記憶素子の抵抗状態が!/、ずれの状態であっても、抵抗記憶素子へ の印加電圧が所定の電圧 (ここでは、例えば 0. 7V)より低ければ安定であり、電源を 切ってもその時点における抵抗状態が保たれる。  [0028] That is, even if the resistance state of the resistance memory element is! /, It is stable if the applied voltage to the resistance memory element is lower than a predetermined voltage (here, for example, 0.7V), Even if the power is turned off, the current resistance state is maintained.
[0029] なお、上記材料を用いて抵抗記憶素子を形成する場合、素子形成直後の初期状 態では図 1に示すような特性は得られな ヽ。抵抗記憶材料を高抵抗状態と低抵抗状 態との間で可逆的に変化しうる状態にするためには、フォーミングと呼ばれる処理が 必要になるケースもある。フォーミングは、抵抗記憶材料にセット電圧よりも高い電圧 を印加する。一度フォーミングを行った後は、抵抗記憶素子が初期状態に戻ることは ない。 [0029] Note that, when a resistance memory element is formed using the above materials, characteristics as shown in FIG. 1 cannot be obtained in an initial state immediately after the element formation. In order to make a resistance memory material reversibly changeable between a high resistance state and a low resistance state, a process called forming is performed. In some cases it is necessary. In forming, a voltage higher than the set voltage is applied to the resistance memory material. Once the forming is performed, the resistance memory element does not return to the initial state.
[0030] メモリセルの基本構成  [0030] Basic configuration of memory cell
次に、不揮発性半導体記憶装置におけるメモリセルの基本構成を、図 2を使用して 説明する。図 2 (a)は、不揮発性半導体記憶装置におけるメモリセルを示す回路図で あり、図 2 (b)は、不揮発性半導体記憶装置におけるメモリセルの構造を示す概略断 面図である。なお、この図 2は、従来の不揮発性半導体記憶装置および本実施例の 不揮発性半導体記憶装置に共通した構成である。  Next, the basic configuration of the memory cell in the nonvolatile semiconductor memory device will be described with reference to FIG. FIG. 2A is a circuit diagram showing a memory cell in the nonvolatile semiconductor memory device, and FIG. 2B is a schematic sectional view showing a structure of the memory cell in the nonvolatile semiconductor memory device. FIG. 2 shows a configuration common to the conventional nonvolatile semiconductor memory device and the nonvolatile semiconductor memory device of this embodiment.
[0031] 不揮発性半導体記憶装置のメモリセル 10は、図 2 (a)に示すように、抵抗記憶素子 12およびセル選択トランジスタ 14を有している。抵抗記憶素子 12は、その一端がビ ット線 BLに接続され、他端がセル選択トランジスタ 14のドレイン Dに接続されて ヽる。 セル選択トランジスタ 14のソース Sはソース線 SLに接続され、ゲート Gはワード線 WL に接続されている。  The memory cell 10 of the nonvolatile semiconductor memory device includes a resistance memory element 12 and a cell selection transistor 14 as shown in FIG. The resistance memory element 12 has one end connected to the bit line BL and the other end connected to the drain D of the cell selection transistor 14. The source S of the cell selection transistor 14 is connected to the source line SL, and the gate G is connected to the word line WL.
[0032] 抵抗記憶素子 12は、図 2 (b)に示すように、一対の電極(12a, 12c)間に抵抗記憶 材料 12bが狭持されたものである。ここで、抵抗記憶材料 12bは、例えば TiO力ゝらな る単極性抵抗記憶材料である。なお、図 2 (b)において、ビット線 BLは紙面と平行に 伸びており、ソース線 SLおよびワード線 WLは、紙面の表力も裏に向かって、すなわ ち紙面に対して垂直に伸びて 、る。  As shown in FIG. 2 (b), the resistance memory element 12 has a resistance memory material 12b sandwiched between a pair of electrodes (12a, 12c). Here, the resistance memory material 12b is, for example, a unipolar resistance memory material having a TiO force. In FIG. 2 (b), the bit line BL extends parallel to the paper surface, and the source line SL and the word line WL extend toward the back, that is, perpendicular to the paper surface. RU
[0033] 図 3は、図 2に示すメモリセル 10がマトリクス状に配置されたメモリセルアレイ 20を示 す回路図の例である。このように、複数のメモリセル 10が列方向(図面縦方向)及び 行方向(図面横方向)に隣接して配置される。  FIG. 3 is an example of a circuit diagram showing a memory cell array 20 in which the memory cells 10 shown in FIG. 2 are arranged in a matrix. Thus, the plurality of memory cells 10 are arranged adjacent to each other in the column direction (vertical direction in the drawing) and the row direction (horizontal direction in the drawing).
[0034] 行方向には、複数のワード線 WL1, *WL1, WL2, *WL2' · ·が配されており、 行方向に並ぶメモリセル 10にそれぞれ接続されている。同じぐ行方向には、ソース 線 SL1, SL2- · ·が配され、行方向に並ぶメモリセル 10にそれぞれ接続されている。 なお、本図では、ワード線 2本につき 1本の割合でソース線を設けた例を示した力 電 源ノイズの発生量等との関係で、ワード線と同数或いはそれ以上のソース線を設けて も良い。 [0035] 列方向には、複数のビット線 BL1, BL2, BL3, BL4- · ·が配されており、列方向に 並ぶメモリセル 10にそれぞれ接続されている。各ビット線 BLには、可変抵抗素子とし ての機能を有するビット線選択トランジスタ 16が設けられている。 [0034] A plurality of word lines WL1, * WL1, WL2, * WL2 ',... Are arranged in the row direction, and are connected to the memory cells 10 arranged in the row direction. In the same row direction, source lines SL1, SL2,... Are arranged and connected to the memory cells 10 arranged in the row direction. In this figure, the number of source lines equal to or greater than the number of word lines is provided in relation to the amount of power supply noise, etc., in which one source line is provided for every two word lines. It's okay. A plurality of bit lines BL1, BL2, BL3, BL4-... Are arranged in the column direction, and are connected to the memory cells 10 arranged in the column direction. Each bit line BL is provided with a bit line selection transistor 16 having a function as a variable resistance element.
[0036] 一書き込み'読み出し用の周辺回路  [0036] Peripheral circuit for one write 'read'
次に、これまで説明したメモリセルに対して書き込み等の処理を行なう周辺回路に ついて説明する。図 4は、実施例 1に係る周辺回路の概略構成を示すブロック図であ る。  Next, a peripheral circuit that performs processing such as writing to the memory cell described so far will be described. FIG. 4 is a block diagram illustrating a schematic configuration of the peripheral circuit according to the first embodiment.
[0037] 図 4に示すように、上述したメモリセルアレイ 20に対する周辺回路は、メモリセル 10 に対してデータの書き込みを行なうセットドライバ回路 30およびリセットドライバ回路 4 0と、メモリセル 10からデータの読み出しを行なう読み出し回路 28と、これらの回路を 制御するコントロール回路 26等力も構成される。  As shown in FIG. 4, the peripheral circuit for the memory cell array 20 described above includes a set driver circuit 30 and a reset driver circuit 40 that write data to the memory cell 10, and data reading from the memory cell 10. The reading circuit 28 for performing the above and the control circuit 26 for controlling these circuits are also configured.
[0038] なお、メモリセルアレイ 20には、アレイ状に配置されたメモリセル(MSl l〜MSij) の他に、ワード線 WLを選択するワード線セレクタ 22や、ビット線 BLを選択するビット 線セレクタ 24も含まれる。メモリセルアレイ 20におけるメモリセルの部分は、例えば、 前述した図 3で示した回路と同様の回路が対応するが、図 4では、図示の便宜上、こ のメモリセルの部分にっ 、て、回路中の配線を一部省略して記載して 、る。  [0038] In addition to the memory cells (MSll to MSij) arranged in an array, the memory cell array 20 includes a word line selector 22 for selecting the word line WL and a bit line selector for selecting the bit line BL. 24 is also included. The memory cell portion in the memory cell array 20 corresponds to, for example, a circuit similar to the circuit shown in FIG. 3 described above. In FIG. 4, for convenience of illustration, this memory cell portion is included in the circuit. The wiring is partially omitted.
[0039] メモリセル 10の選択は、このワード線セレクタ 22とビット線セレクタ 24によって行な われる。また、ワード線セレクタ 22およびビット線セレクタ 24はアドレス線 25にも接続 される。アドレス線 25へのアドレス設定は、コントロール回路 26により行なわれる。  The memory cell 10 is selected by the word line selector 22 and the bit line selector 24. The word line selector 22 and the bit line selector 24 are also connected to the address line 25. Address setting to the address line 25 is performed by the control circuit 26.
[0040] <セットドライバ回路 >  [0040] <Set driver circuit>
セットドライバ回路 30は、書き込みの際に選択されたメモリセル 10に所定の電圧( および電流)を印加する電圧印加回路 32と、ビット線の電圧を検出するモニタ回路 3 4と、モニタ回路 34からの通知を受けてメモリセル 10への電源供給を遮断する遮断 回路 36等力 構成される。  The set driver circuit 30 includes a voltage application circuit 32 that applies a predetermined voltage (and current) to the memory cell 10 selected at the time of writing, a monitor circuit 34 that detects the voltage of the bit line, and a monitor circuit 34. In response to this notification, the power supply to the memory cell 10 is cut off.
[0041] また、セットドライバ回路 30は、書き込みを行なう前にビット線 BLの電圧を所定の値 にセットするプリチャージ回路 38を有する。プリチャージ回路 38は、書き込み処理に おける誤動作を回避する。  [0041] The set driver circuit 30 has a precharge circuit 38 that sets the voltage of the bit line BL to a predetermined value before writing. The precharge circuit 38 avoids a malfunction in the writing process.
[0042] <リセットドライバ回路 > リセットドライバ回路 40は、書き込みの際に選択されたメモリセル 10に所定の電圧 ( および電流)を印加する電圧印加回路 42と、ビット線の電圧を検出するモニタ回路 4[0042] <Reset driver circuit> The reset driver circuit 40 includes a voltage application circuit 42 that applies a predetermined voltage (and current) to the memory cell 10 selected at the time of writing, and a monitor circuit 4 that detects the voltage of the bit line.
4と、モニタ回路 44からの通知を受けてメモリセル 10への電源供給を遮断する遮断 回路 46等力も構成される。 4 and a shut-off circuit 46, which receives the notification from the monitor circuit 44 and shuts off the power supply to the memory cell 10, is also configured.
[0043] また、リセットドライバ回路 40は、書き込みを行なう前にビット線 BLの電圧を所定の 値にセットするプリチャージ回路 48を有する。プリチャージ回路 48は、書き込み処理 における誤動作を回避する。 In addition, the reset driver circuit 40 includes a precharge circuit 48 that sets the voltage of the bit line BL to a predetermined value before writing. The precharge circuit 48 avoids malfunctions in the write process.
[0044] くコントロール回路 > [0044] Ku control circuit>
コントロール回路 26は、 CPU (Central Processing Unit) 26aや、 CPU26aについ ての制御用プログラムを格納するメモリ 26b、これらの間で信号を伝送するバス 26c 等から構成される。  The control circuit 26 includes a CPU (Central Processing Unit) 26a, a memory 26b that stores a control program for the CPU 26a, a bus 26c that transmits signals between them, and the like.
[0045] コントロール回路 26は、上記のような構成を備えるとともに、制御信号 27a, 27bを 介して (経由して)、セットドライバ回路 30およびリセットドライバ回路 40における書き 込み動作を制御し、また、制御信号 27cにより、読み出し回路 28における読み出し動 作を制御する。その際、コントロール回路 26は、制御信号 27dにより、メモリセルァレ ィ 20についても制御を行なう。  [0045] The control circuit 26 has the above-described configuration, and controls the write operation in the set driver circuit 30 and the reset driver circuit 40 via (via) the control signals 27a and 27b. The read operation in the read circuit 28 is controlled by the control signal 27c. At that time, the control circuit 26 also controls the memory cell array 20 by the control signal 27d.
[0046] <読み出し回路 >  [0046] <Readout circuit>
読み出し回路 28内には、センスアンプ (不図示)を有し、当該センスアンプによりビ ット線 BLの電圧を測定して、選択されたメモリセルの記憶状態を認識する。  The read circuit 28 includes a sense amplifier (not shown), and the voltage of the bit line BL is measured by the sense amplifier to recognize the storage state of the selected memory cell.
[0047] 一セットドライバ回路の回路構成例一  [0047] One example of circuit configuration of one set driver circuit
次に、図 4に示した回路(メモリセルアレイ 20およびその周辺回路)の個々のブロッ クについて、図を用いて説明する。最初に、セットドライバ回路 30について説明する 。図 5は、実施例 1に係るセットドライバ回路の一例を示す回路図である。  Next, individual blocks of the circuit shown in FIG. 4 (memory cell array 20 and its peripheral circuits) will be described with reference to the drawings. First, the set driver circuit 30 will be described. FIG. 5 is a circuit diagram illustrating an example of a set driver circuit according to the first embodiment.
[0048] くメモリセノレアレイ〉  [0048] Memory Memory Array>
メモリセルアレイ 20は、図に示すように、ビット線 BLと基準電圧 Vssの間に配置され る。本図においては、図示の便宜上、メモリセルアレイ 20内に存在する多数のメモリ セルのうち、 1つだけを代表して記載している。他のメモリセルは、図に示したメモリセ ル 10と並列に配置されている。 [0049] メモリセル 10内では、図に示すように、抵抗記憶素子 12とセル選択トランジスタ 14 ( TR11)とが直列に接続されている。具体的には、抵抗記憶素子 12の一方の端はビ ット線 BLに接続され、他方の端が TR11のドレイン Dに接続される。また、 TR11のソ ース Sは基準電圧 Vssに接続され、 TR11のゲート Gはワード線 WLに接続される。 As shown in the figure, the memory cell array 20 is arranged between the bit line BL and the reference voltage Vss. In this figure, for convenience of illustration, only one of the many memory cells existing in the memory cell array 20 is shown as a representative. Other memory cells are arranged in parallel with the memory cell 10 shown in the figure. In the memory cell 10, as shown in the figure, the resistance memory element 12 and the cell selection transistor 14 (TR11) are connected in series. Specifically, one end of the resistance memory element 12 is connected to the bit line BL, and the other end is connected to the drain D of TR11. The source S of TR11 is connected to the reference voltage Vss, and the gate G of TR11 is connected to the word line WL.
[0050] この抵抗記憶素子 12の抵抗値は、低抵抗状態における抵抗値は数 k Ωであり、高 抵抗状態における抵抗値は数 10k〜1000kQになる。抵抗記憶素子 12は、通常の 抵抗体と異なり、抵抗値に対する面積依存性が非常に小さい。  The resistance value of the resistance memory element 12 is several kΩ in the low resistance state, and several ten Ω to 1000 kQ in the high resistance state. Unlike a normal resistor, the resistance memory element 12 has a very small area dependency on the resistance value.
[0051] 抵抗記憶素子 12に直列に接続されるセル選択トランジスタ 14は、抵抗記憶素子 1 2と同数設ける必要があるため、できるだけ小さい面積であることが望ましい。  [0051] Since the cell selection transistors 14 connected in series to the resistance memory element 12 need to be provided in the same number as the resistance memory elements 12, it is desirable that the area be as small as possible.
[0052] 面積が小さいセル選択トランジスタ 14の一例としては、ゲート幅とゲート長の比が 2 . 8 (ゲート幅 =0. 5umZゲート長 =0. 18um)となる構造が考えられる。このような 構造を用いた場合、オン抵抗が 2k Ω程度のセル選択トランジスタ 14を形成すること が可能である。このようなセル選択トランジスタ 14を使用する場合には、セル選択トラ ンジスタ 14に必要な電圧が印加されるように、低抵抗状態における抵抗値が 4k Ω程 度(且つ、リセット動作時の最大電流が数 100 A程度)になるような抵抗記憶素子 1 2を使用することが望ましい。  As an example of the cell selection transistor 14 having a small area, a structure in which the ratio of the gate width to the gate length is 2.8 (gate width = 0.5 umZ gate length = 0.18 um) is conceivable. When such a structure is used, it is possible to form the cell selection transistor 14 having an on-resistance of about 2 kΩ. When such a cell selection transistor 14 is used, the resistance value in the low resistance state is about 4 kΩ (and the maximum current during the reset operation) so that the necessary voltage is applied to the cell selection transistor 14. It is desirable to use a resistance memory element 12 that has a current of about several hundred A.
[0053] <セット電圧印加回路 >  [0053] <Set voltage application circuit>
セット電圧印加回路 32は、図 5に示すように、 TR32と TR33とを有するカレントミラ 一回路により構成される。カレントミラー回路は、電源 Vddに接続される安定電源であ る。カレントミラー回路において、電源 Vddに接続される側と反対側の端は、図に示 すように、ビット線 BLおよび TR31のドレイン Dに接続される。  As shown in FIG. 5, the set voltage application circuit 32 includes a current mirror circuit having TR32 and TR33. The current mirror circuit is a stable power supply connected to the power supply Vdd. In the current mirror circuit, the end opposite to the side connected to the power supply Vdd is connected to the drain D of the bit line BL and TR31 as shown in the figure.
[0054] ここで、不揮発性半導体装置のメモリ容量密度を高めるため、メモリセル 10内のセ ル選択トランジスタ 14 (TR11)を nMOSとするとともに、前記カレントミラー回路を構 成するトランジスタ (TR32, TR33)を pMOSとすることが好適である。  Here, in order to increase the memory capacity density of the nonvolatile semiconductor device, the cell selection transistor 14 (TR11) in the memory cell 10 is an nMOS, and the transistors (TR32, TR33 constituting the current mirror circuit). ) Is preferably pMOS.
[0055] TR31は、セット電圧印加回路 32と後述の遮断回路 36との間に設けられ、書き込 み時におけるセットドライバ回路 30の動作を有効にする。 TR31のドレイン Dは TR32 のソース S、すなわちノード N1に接続され、丁1^31のソース3は遮断回路36 (具体的 には、 TR34のドレイン D)と接続される。また、 TR31のゲート Gは、書き込みを許可 するセットライトイネ一ブル信号 SetWEに接続される。書き込み処理を行なう場合に は、この SetWE信号を、予め Highレベル(例えば、約 1. 5〜1. 7V)にしてから行な TR31 is provided between the set voltage application circuit 32 and a cutoff circuit 36 described later, and enables the operation of the set driver circuit 30 at the time of writing. The drain D of TR31 is connected to the source S of TR32, that is, the node N1, and the source 3 of Ding 1 ^ 31 is connected to the cutoff circuit 36 (specifically, the drain D of TR34). Also, TR31 gate G allows write Connected to the set write enable signal SetWE. When performing the writing process, set the SetWE signal in advance to a high level (for example, approximately 1.5 to 1.7 V).
[0056] <遮断回路 > [0056] <Cutoff circuit>
遮断回路 36は、図に示すように、前述の TR31と基準電圧 Vssとの間に設けられる 。遮断回路 36は、例えば、 TR31と基準電圧 Vssの間に配置されたトランジスタ TR3 4を有し、そのドレイン Dが TR31のソース Sに接続される。また、 TR34のソース Sは 基準電圧 Vssに接続され、 TR34のゲート Gにはモニタ回路 34の出力が接続される。 なお、基準電圧 Vssは、例えば接地(GND)レベルとしても良い。また、トランジスタ T R34は、例えば nMOS構造を有する。  As shown in the figure, the cutoff circuit 36 is provided between the aforementioned TR31 and the reference voltage Vss. The cutoff circuit 36 includes, for example, a transistor TR34 disposed between TR31 and the reference voltage Vss, and its drain D is connected to the source S of TR31. The source S of TR34 is connected to the reference voltage Vss, and the output of the monitor circuit 34 is connected to the gate G of TR34. Note that the reference voltage Vss may be set to a ground (GND) level, for example. The transistor TR 34 has, for example, an nMOS structure.
[0057] <モニタ回路 >  [0057] <Monitor circuit>
モニタ回路 34は、例えば、図に示すように、直列に連結された 2つのインバータ IN 11, IN12から構成される。インバータ IN11の入力はビット線 BLに接続され、その出 力はインバータ IN 12の入力に接続される。インバータ IN12の出力は、前述したよう に、遮断回路 36を構成するトランジスタ TR34のゲート Gに接続される。  The monitor circuit 34 includes, for example, two inverters IN11 and IN12 connected in series as shown in the drawing. The input of inverter IN11 is connected to bit line BL, and its output is connected to the input of inverter IN12. As described above, the output of the inverter IN12 is connected to the gate G of the transistor TR34 constituting the cutoff circuit 36.
[0058] ここで、ビット線 BLに接続されるインバータ INI 1につ!/、ては、そのスレッシュホール ド電圧 (しきい値電圧)を、低抵抗状態に遷移したことが認識できる値に設定する。こ の IN11のスレッシュホールドの値は、例えば、 1. OV〜l. 2Vである力 抵抗記憶素 子 12を構成する材料や、抵抗記憶素子 12の周辺回路の特性に応じて、その最適値 を決定する。後段のインバータ IN12については、特にこのような制限は無い。  [0058] Here, for the inverter INI 1 connected to the bit line BL! /, The threshold voltage (threshold voltage) is set to a value that can be recognized as the transition to the low resistance state. To do. The threshold value of this IN11 is, for example, 1. OV to l. 2V. The optimum value depends on the material of the resistance memory element 12 and the characteristics of the peripheral circuit of the resistance memory element 12. decide. There is no particular limitation on the subsequent inverter IN12.
[0059] なお、本明細書では、「しき!/、値電圧」と「スレッシュホールド電圧」を、同義の用語と して使用する。  In this specification, “threshold! /, Value voltage” and “threshold voltage” are used as synonymous terms.
[0060] インバータ IN11は、例えば、 pMOS構造のトランジスタと nMOS構造のトランジス タカも構成される CMOS構造の入力部(不図示)を有する。そして、この入力部のス レッシュホールド電圧が、モニタ回路 34のスレッシュホールド電圧になる。  The inverter IN11 has a CMOS structure input section (not shown) in which, for example, a pMOS transistor and an nMOS transistor are also formed. The threshold voltage of this input section becomes the threshold voltage of the monitor circuit 34.
[0061] ここで、前記 CMOS構造の形態とスレッシュホールド電圧との関係について説明す る。図 9は、 CMOS構造を有するモニタ回路の入力部における、 nMOSのゲート幅と pMOSのゲート幅の比と、前記入力部のスレッシュホールド電圧との関係を示すグラ フである。 Here, the relationship between the configuration of the CMOS structure and the threshold voltage will be described. FIG. 9 is a graph showing the relationship between the ratio of the nMOS gate width to the pMOS gate width and the threshold voltage of the input section in the input section of the monitor circuit having a CMOS structure. It is fu.
[0062] 図 9に示すように、 nMOSのゲート幅と pMOSのゲート幅の比を変えることによって 、スレッシュホールド電圧を制御することが可能である。具体的には、 nMOSのゲート 幅と pMOSのゲート幅の比を 1より大きくすることにより、すなわち、 pMOSのゲート幅 を nMOSのゲート幅よりも広くすることにより、スレッシュホールド電圧を 1. 0V〜1. 2 Vにすることが可能である。  As shown in FIG. 9, the threshold voltage can be controlled by changing the ratio of the gate width of the nMOS and the gate width of the pMOS. Specifically, by setting the ratio of the gate width of the nMOS to the gate width of the pMOS greater than 1, that is, by making the gate width of the pMOS wider than the gate width of the nMOS, the threshold voltage is changed from 1.0 V to 1. It can be 2 V.
[0063] なお、所定の配線ルール下において、 nMOSのゲート幅を 0. 36 μ m, pMOSの ゲート幅を 7. 2 mとして設計した場合、そのスレッシュホールド電圧を約 1. IVにす ることが可能である。  [0063] When the gate width of the nMOS is 0.36 μm and the gate width of the pMOS is 7.2 m under the predetermined wiring rule, the threshold voltage should be about 1. IV. Is possible.
[0064] なお、本図では、モニタ回路 34を構成するインバータが 2個の例を示した力 タイミ ングを調整するために、 4個以上の偶数のインバータが直列に連結される構成として も良い。  [0064] In this figure, in order to adjust the force timing in which the monitor circuit 34 includes two inverters, an example in which four or more even number inverters may be connected in series. .
[0065] <プリチャージ回路 >  [0065] <Precharge circuit>
プリチャージ回路 38は、図に示すように、電源 Vddとビット線 BLとの間に設けられる 。プリチャージ回路 38は、例えば、ビット線 BLと電源 Vddとの間に配置され、 pMOS 構造からなるトランジスタ TR35を有し、 TR35のドレイン Dが電源 Vddに接続される。 また、 TR35のゲート Gはコントロール回路 26からの制御信号 PrSETに接続され、 T R35のソース Sがビット線 BLに接続される。  As shown in the figure, the precharge circuit 38 is provided between the power supply Vdd and the bit line BL. The precharge circuit 38 is disposed between, for example, the bit line BL and the power supply Vdd, has a transistor TR35 having a pMOS structure, and the drain D of TR35 is connected to the power supply Vdd. The gate G of TR35 is connected to the control signal PrSET from the control circuit 26, and the source S of TR35 is connected to the bit line BL.
[0066] 一セットドライバ回路の書き込み動作一  [0066] Write operation of one set driver circuit
次に、上記セットドライバ回路 30の書き込み動作について説明する。図 6は、実施 例 1に係るセットドライバ回路の書き込み動作を示すタイミングチャートである。  Next, the write operation of the set driver circuit 30 will be described. FIG. 6 is a timing chart illustrating the write operation of the set driver circuit according to the first embodiment.
[0067] ステップ 1:最初に、ビット線 BLをプリチャージする。すなわち、セットプリチャージ信 号 PrSETを Lowレベルにして TR35をオンさせ、ビット線 BLを電源 Vddと略同じ電 圧値になるようにする。なお、電源 Vddの電圧は、例えば約 1. 8Vとする。  [0067] Step 1: First, the bit line BL is precharged. In other words, the set precharge signal PrSET is set to Low level to turn on TR35 so that the bit line BL has substantially the same voltage value as the power supply Vdd. The voltage of the power supply Vdd is about 1.8V, for example.
[0068] このように、プリチャージ回路 38は、抵抗記憶素子 12に電圧を印加する前に、抵抗 記憶素子 12の一端を所定の電圧に確定する。  As described above, the precharge circuit 38 determines one end of the resistance memory element 12 at a predetermined voltage before applying a voltage to the resistance memory element 12.
[0069] ステップ 2:次に、この状態で SetWE信号を有効にする。すなわち、 SetWE信号を Highレベルにして TR31をオンさせる。このとき、既に、ステップ 1のプリチャージ後に TR34がオン状態になっているから、 TR31がオンすることによって、ノード N1の電圧 値が大幅に下がり、 L 1の経路に大電流が流れ易 、状態になる。 [0069] Step 2: Next, the SetWE signal is enabled in this state. That is, the SetWE signal is set to High level to turn on TR31. At this time, already after step 1 precharge Since TR34 is in the on state, when TR31 is turned on, the voltage value of node N1 drops significantly, and a large current easily flows through the path of L1.
[0070] その結果、カレントミラー回路が作動して、 L2の経路にも大電流が流れ易 、状態に なる。但し、この状態では、セル選択トランジスタ 14である TR11がオフの状態になつ ているため、 L2の経路には大電流が流れず、また、抵抗記憶素子 12に高電圧が印 加されない。(すわなち、抵抗記憶素子 12はまだ高抵抗状態を維持している。)なお 、この時点で、ステップ 1のプリチャージにより TR35がオン状態となり、ビット線 BLの 電圧値は、電源 Vddと略同じ値 (約 1. 6V〜1. 8V)になっている。  As a result, the current mirror circuit is activated, and a large current easily flows through the L2 path. However, in this state, since TR11 which is the cell selection transistor 14 is in an OFF state, a large current does not flow through the path L2, and a high voltage is not applied to the resistance memory element 12. (In other words, the resistance memory element 12 is still in a high resistance state.) At this point, TR35 is turned on by the precharge in step 1, and the voltage value of the bit line BL is equal to the power supply Vdd. The values are approximately the same (approximately 1.6 V to 1.8 V).
[0071] ステップ 3 :次に、ビット線 BLのプリチャージを停止する。すなわち、セットプリチヤ一 ジ信号 PrSETを Highレベル(例えば、約 1. 5V〜1. 8V)に戻して、 TR35をオフさ せる。  Step 3: Next, precharge of the bit line BL is stopped. In other words, the set precharge signal PrSET is returned to the high level (for example, about 1.5V to 1.8V), and TR35 is turned off.
[0072] このように、プリチャージ回路 38は、内部のトランジスタ TR35をオンして抵抗記憶 素子 12の一端を所定の電圧とした後、トランジスタ 35をオフしてプリチャージを停止 する。  As described above, the precharge circuit 38 turns on the internal transistor TR35 to set one end of the resistance memory element 12 to a predetermined voltage, and then turns off the transistor 35 to stop the precharge.
[0073] ステップ 4 :次に、書き込みをしたいメモリセル 10を選択する。すなわち、コントロー ル回路 26により、アドレス線 25に対してアドレスを指定し、メモリセル 10のワード線 W Lを有効にする。その結果、ワード線 WLが Highレベル(例えば、 1. 5〜1. 7V)にな り、セル選択トランジスタである TR 11がオンする。そして、 TR11がオンすると同時に 、抵抗記憶素子 12にセット可能な高電圧 (例えば、約 1. 6V)が印加される。なお、抵 抗記憶素子に印加される電圧を、図 6のグラフ「VR」に示す。  Step 4: Next, the memory cell 10 to be written is selected. That is, the control circuit 26 designates an address for the address line 25 and enables the word line WL of the memory cell 10. As a result, the word line WL becomes a high level (for example, 1.5 to 1.7 V), and the cell selection transistor TR11 is turned on. At the same time as TR11 is turned on, a high voltage (for example, about 1.6 V) that can be set to the resistance memory element 12 is applied. The voltage applied to the resistance memory element is shown in the graph “VR” in FIG.
[0074] ステップ 5 :次に、抵抗記憶素子 12がセットする。すなわち、セット可能な高電圧が 所定時間(数 ns〜50ns)印加されることにより、抵抗記憶素子 12がセット状態になり 、抵抗記憶素子 12が高抵抗状態力ゝら低抵抗状態に急激に遷移する。  Step 5: Next, the resistance memory element 12 is set. That is, when a high voltage that can be set is applied for a predetermined time (several ns to 50 ns), the resistance memory element 12 enters the set state, and the resistance memory element 12 rapidly changes to the low resistance state in addition to the high resistance state force. To do.
[0075] このように、電圧印加回路 32により、抵抗記憶素子 12の両端に、抵抗記憶素子 12 の抵抗状態を切り変えることが可能な電圧が印加され、その後、(抵抗状態を切り変 えることが可能な電圧が印加されてから)所定の時間が経過した後に、前記抵抗状 態が切り替わる。  In this way, the voltage application circuit 32 applies a voltage capable of switching the resistance state of the resistance memory element 12 to both ends of the resistance memory element 12, and then (switches the resistance state). The resistance state is switched after a predetermined time has elapsed (after a voltage capable of being applied) is applied.
[0076] ステップ 6 :次に、セット状態がモニタ回路により検出される。すなわち、抵抗記憶素 子 12が低抵抗状態に遷移すると、それに応じて、ビット線 BLの電圧が急激に下降す る。そして、ビット線 BLの電圧値がモニタ回路 34内のインバータ IN11のスレッシュホ 一ルド電圧 (例えば、約 1. OV〜l. 2V)よりも低い値になると、モニタ回路 34が作動 する。 Step 6: Next, the set state is detected by the monitor circuit. That is, resistance memory element When the child 12 transitions to the low resistance state, the voltage of the bit line BL rapidly decreases accordingly. When the voltage value of the bit line BL becomes lower than the threshold voltage of the inverter IN11 in the monitor circuit 34 (for example, about 1. OV to l.2V), the monitor circuit 34 is activated.
[0077] インバータ IN11のスレッシュホールド電圧については、モニタ回路 34の感度を高 めるために、抵抗記憶素子 12が低抵抗状態に遷移する途中で、すなわち、前記抵 抗状態が切り替わり始めた後、切り替わりが終わる前に、前記ビット線 BLの電圧値が インバータ IN11のスレッシュホールド電圧値に達するような設定にすることが望まし い。  [0077] With respect to the threshold voltage of the inverter IN11, in order to increase the sensitivity of the monitor circuit 34, the resistance memory element 12 is in the middle of transition to the low resistance state, that is, after the resistance state starts to be switched. It is desirable to set so that the voltage value of the bit line BL reaches the threshold voltage value of the inverter IN11 before the switching is completed.
[0078] モニタ回路 34は、ビット線 BLの電圧が所定のスレッシュホールド電圧値に達したと きに、内部の論理素子の論理が変化 (反転)する。すなわち、その電圧値が Lowレべ ルの場合には、 Lowレベルから Highレベルへ変化し、その電圧値が Highレベルの 場合には、 Highレベルから Lowレベルへ変化する。  The monitor circuit 34 changes (inverts) the logic of an internal logic element when the voltage of the bit line BL reaches a predetermined threshold voltage value. In other words, when the voltage value is low level, it changes from low level to high level, and when the voltage value is high level, it changes from high level to low level.
[0079] ステップ 7 :次に、抵抗記憶素子 12への電源供給が遮断される。すなわち、モニタ 回路 34が抵抗記憶素子 12のセットを検出し、モニタ回路の出力信号 StatSET力Lo wレベル(例えば、約 0V〜0. 5V)に変ィ匕する。この StatSETによって、外部へセット 完了を通知することができる。 StatSET信号が Lowレベルになることにより、遮断回 路 36内の TR34がオフし、 L1の経路の電流が遮断される。  Step 7: Next, power supply to the resistance memory element 12 is cut off. That is, the monitor circuit 34 detects the set of the resistance memory element 12, and changes the output signal StatSET power Low level (for example, about 0V to 0.5V) of the monitor circuit. This StatSET can notify the completion of setting to the outside. When the StatSET signal goes low, TR34 in the cutoff circuit 36 turns off and the current in the L1 path is cut off.
[0080] そして、セット電圧印加回路 32内のカレントミラー回路が作動し、 L2の経路に流れ る電流が遮断される。なお、セットの場合、抵抗記憶素子 12の抵抗状態が切り替わつ てから、 L1の経路の電流が遮断される迄の時間は、数 ns〜数十 nsである。  Then, the current mirror circuit in the set voltage application circuit 32 is activated, and the current flowing through the path L2 is interrupted. In the case of setting, the time from when the resistance state of the resistance memory element 12 is switched to when the current in the path L1 is cut off is several ns to several tens ns.
[0081] このように、遮断回路 36は、抵抗記憶素子へ供給する電流量を制限する電流制限 回路の電流を制限する。ここで、電流制限回路は、上記カレントミラー回路であり、遮 断回路 36は、このカレントミラー回路における一方の電流経路を遮断することにより、 抵抗記憶素子へ供給する電流量を制限する。  As described above, the cutoff circuit 36 limits the current of the current limiting circuit that limits the amount of current supplied to the resistance memory element. Here, the current limiting circuit is the current mirror circuit, and the blocking circuit 36 limits the amount of current supplied to the resistance memory element by blocking one current path in the current mirror circuit.
[0082] 以上のようなステップにより、抵抗記憶素子 12を低抵抗状態にする(セットする)書 き込みが確実に行なわれる。  By the steps as described above, writing to set (set) the resistance memory element 12 to the low resistance state is surely performed.
[0083] 以上、抵抗記憶素子 12が最初に高抵抗状態の場合の書き込み動作について説 明した。回路を単純ィ匕するために、低抵抗状態の抵抗記憶素子 12に対して上記の ような書き込みを行なった場合には、低抵抗状態が変化せず、低抵抗状態をそのま ま保持して!/ヽることが望ま ヽ。 [0083] The write operation when the resistance memory element 12 is initially in the high resistance state is described above. I am clear. In order to simplify the circuit, when the above-described writing is performed on the resistance memory element 12 in the low resistance state, the low resistance state does not change and the low resistance state is maintained as it is. ! / I want to talk ヽ.
この点については、カレントミラー回路の電流制限機能によって、抵抗記憶素子 12 が低抵抗状態の場合における、当該抵抗記憶素子 12へ印加される電圧値は、抵抗 状態が変化しない値 (例えば 0. 6V以下)になる。したがって、上記のようなステップ で書き込みを行なった場合、抵抗記憶素子 12の抵抗状態は、低抵抗状態のまま変 化しない。そして、その低抵抗状態を保持したまま、すぐに、セット完了が外部に通知 される。  Regarding this point, when the resistance memory element 12 is in the low resistance state by the current limiting function of the current mirror circuit, the voltage value applied to the resistance memory element 12 is a value at which the resistance state does not change (for example, 0.6 V The following). Therefore, when writing is performed in the steps as described above, the resistance state of the resistance memory element 12 remains unchanged. The set completion is immediately notified to the outside while maintaining the low resistance state.
[0084] 一リセットドライバ回路の回路構成例一  One circuit configuration example of one reset driver circuit
次に、リセットドライバ回路 40について説明する。図 7は、実施例 1に係るセットドラ ィバ回路の一例を示す回路図である。  Next, the reset driver circuit 40 will be described. FIG. 7 is a circuit diagram illustrating an example of a set driver circuit according to the first embodiment.
[0085] くメモリセノレアレイ〉  [0085] Memory Memory Array>
メモリセルアレイ 30は、セットドライバ回路の項で既に説明しているため、ここでは説 明を省略する。  Since the memory cell array 30 has already been described in the section of the set driver circuit, its description is omitted here.
[0086] <リセット電圧印加回路 >  [0086] <Reset voltage application circuit>
リセット電圧印加回路 42は、図 7に示すように、 TR42と TR43とを有するカレントミラ 一回路により構成される。カレントミラー回路は、電源 Vddに接続される安定電源であ る。カレントミラー回路において、電源 Vddに接続される側と反対側の端は、図に示 すように、ビット線 BLおよび TR41のドレイン Dに接続される。  As shown in FIG. 7, the reset voltage application circuit 42 is configured by a current mirror circuit having TR42 and TR43. The current mirror circuit is a stable power supply connected to the power supply Vdd. In the current mirror circuit, the end opposite to the side connected to the power supply Vdd is connected to the drain D of the bit line BL and TR41 as shown in the figure.
[0087] ここで、不揮発性半導体装置のメモリ容量密度を高めるため、メモリセル 10内のセ ル選択トランジスタ 14 (TR11)を nMOSとするとともに、前記カレントミラー回路を構 成するトランジスタ (TR42, TR43)を pMOSとすることが好適である。  [0087] Here, in order to increase the memory capacity density of the nonvolatile semiconductor device, the cell selection transistor 14 (TR11) in the memory cell 10 is an nMOS and the transistors (TR42, TR43) constituting the current mirror circuit. ) Is preferably pMOS.
[0088] TR41は、リセット電圧印加回路 42と後述の遮断回路 46との間に設けられ、書き込 み時におけるリセットドライバ回路 40の動作を有効にする。 TR41のドレイン Dは TR4 2のソース S、すなわちノード N2に接続され、丁1^41のソース3は遮断回路46 (具体 的には、 TR44のドレイン D)と接続される。また、 TR41のゲート Gは、書き込みを許 可するリセットライトイネーブル信号 ResetWEに接続される。書き込み処理を行なう 場合には、この ResetWE信号を、予め Highレベル(例えば、約 1. 5〜1. 7V)にし てから行なう。 TR41 is provided between the reset voltage application circuit 42 and a cutoff circuit 46 described later, and enables the operation of the reset driver circuit 40 at the time of writing. The drain D of TR41 is connected to the source S of TR42, ie, the node N2, and the source 3 of Ding 1 ^ 41 is connected to the cutoff circuit 46 (specifically, the drain D of TR44). The gate G of TR41 is connected to a reset write enable signal ResetWE that permits writing. Write process In this case, this ResetWE signal is set to a high level (for example, about 1.5 to 1.7 V) in advance.
[0089] <遮断回路 >  [0089] <Circuit circuit>
遮断回路 46は、図に示すように、前述の TR41と基準電圧 Vssとの間に設けられる 。遮断回路 46は、例えば、 TR41と基準電圧 Vssの間に配置されたトランジスタ TR4 4を有し、そのドレイン Dが TR41のソース Sに接続される。また、 TR44のソース Sは 基準電圧 Vssに接続され、 TR44のゲート Gには、モニタ回路 44の出力が接続される 。また、トランジスタ TR44は、例えば nMOS構造を有する。  As shown in the figure, the cutoff circuit 46 is provided between the aforementioned TR41 and the reference voltage Vss. The cutoff circuit 46 includes, for example, a transistor TR44 disposed between TR41 and the reference voltage Vss, and its drain D is connected to the source S of TR41. The source S of TR44 is connected to the reference voltage Vss, and the output of the monitor circuit 44 is connected to the gate G of TR44. The transistor TR44 has, for example, an nMOS structure.
[0090] <モニタ回路 >  [0090] <Monitor circuit>
モニタ回路 44は、例えば、図に示すように、 1つのインバータ IN21およびフリップフ ロップ回路 FFを有する。インバータ IN21の入力はビット線 BLに接続され、その出力 は、フリップフロップ回路 FFの一方の入力に接続される。  The monitor circuit 44 has, for example, one inverter IN21 and a flip-flop circuit FF as shown in the figure. The input of inverter IN21 is connected to bit line BL, and its output is connected to one input of flip-flop circuit FF.
[0091] ここで、インバータ IN21につ!/、ては、そのスレッシュホールド電圧を、高抵抗状態 に遷移したことが認識できる値に設定する。この IN21のスレッシュホールド電圧は、 例えば、 1. 0V〜1. 2Vであるが、抵抗記憶素子 12を構成する材料や、抵抗記憶素 子 12の周辺回路の特性に応じて、その最適値を決定する。  Here, the inverter IN21 is set to a value at which the threshold voltage can be recognized as having transitioned to the high resistance state. The threshold voltage of IN21 is, for example, 1.0 V to 1.2 V, but the optimum value is determined according to the material constituting the resistance memory element 12 and the characteristics of the peripheral circuit of the resistance memory element 12. To do.
[0092] インバータ IN21は、例えば、 pMOS構造のトランジスタと nMOS構造のトランジス タカ 構成される CMOS構造の入力部(不図示)を有し、この入力部のスレッシュホ 一ルド電圧力 モニタ回路 44のスレッシュホールド電圧になる。なお。インバータ IN2 1における CMOS構造の形態とスレッシュホールド電圧との関係は、セットドライバ回 路内のモニタ回路と同様であるため、ここでは説明を省略する。  The inverter IN21 has, for example, a pMOS structure transistor and an nMOS structure transistor, and a CMOS structure input section (not shown). The threshold voltage voltage monitor circuit 44 threshold of the input section is provided. Become a voltage. Note that. Since the relationship between the CMOS structure form of the inverter IN21 and the threshold voltage is the same as that of the monitor circuit in the set driver circuit, description thereof is omitted here.
[0093] フリップフロップ回路 FFは、例えば、 2つの NAND回路(NA1, NA2)から構成さ れる。遮断回路 46内における TR44のゲート Gには、このフリップフロップ回路 FFの 出力が接続される。フリップフロップ回路 FFの一方の入力には、インバータ IN21の 出力が接続され、他方の入力には、 X— StartRESET信号が接続される。 X— Star tRESET信号は、フリップフロップ回路 FFの出力(StatRESET信号)を Highレべ ルに設定する。  The flip-flop circuit FF is composed of, for example, two NAND circuits (NA1, NA2). The output of this flip-flop circuit FF is connected to the gate G of TR44 in the cutoff circuit 46. The output of the inverter IN21 is connected to one input of the flip-flop circuit FF, and the X-StartRESET signal is connected to the other input. X—Star tRESET signal sets the output (StatRESET signal) of flip-flop circuit FF to High level.
[0094] フリップフロップ回路 FFは、リセットドライバ回路 40による書き込み動作が完了した 後、ビット線 BLの電圧が降下した際に、その電圧変化によって遮断回路 46の TR44 が再度オンして、リセットドライバ回路 40が再起動してしまうことを防止する。 [0094] The flip-flop circuit FF has completed the write operation by the reset driver circuit 40. After that, when the voltage of the bit line BL drops, TR44 of the cutoff circuit 46 is turned on again due to the voltage change, and the reset driver circuit 40 is prevented from restarting.
[0095] ここで、フリップフロップ回路 FFの基本的な動作を説明する。先ず、 X— StartRES ET信号をー且 Lowレベルにしてから Highレベルに戻し、その後、 StatRESET信 号を Highレベルに設定する。次に、書き込み動作によって、ビット線 BLの電圧が上 昇し、ビット線 BLの電圧がインバータ IN21の入力のスレッシュホールド電圧値を超 えると、 StatRESET信号が Highレベルから Lowレベルに変化する。  Here, a basic operation of the flip-flop circuit FF will be described. First, set the X-StartRES ET signal to low level and then back to high level, and then set the StatRESET signal to high level. Next, when the write operation increases the voltage of the bit line BL and the voltage of the bit line BL exceeds the threshold voltage value of the input of the inverter IN21, the StatRESET signal changes from the high level to the low level.
[0096] その後、例えば、ビット線 BLの電圧が下降し、インバータ IN21の入力のスレッシュ ホールド電圧値よりも低下したとしても、 StatRESET信号の電圧レベル力 owレべ ノレになっているため、 NAND回路 NA2の出力が変化せず、フリップフロップ回路 FF の内部の論理は変化しない。すなわち、フリップフロップ回路 FFの出力の論理は変 化せず、 StatRESET信号(TR44のゲート Gへの入力信号)の電圧が Lowレベルに 保持される。  [0096] After that, for example, even if the voltage of the bit line BL falls and falls below the threshold voltage value of the input of the inverter IN21, the voltage level of the StatRESET signal is at the ow level, so the NAND circuit The output of NA2 does not change, and the internal logic of flip-flop circuit FF does not change. In other words, the output logic of the flip-flop circuit FF is not changed, and the voltage of the StatRESET signal (input signal to the gate G of TR44) is held at the low level.
[0097] また、再度書き込み動作を行なう場合には、 X— StartRESET信号を Highレベル から Lowレベルに変化させ、 StatRESET信号を Highレベルに戻してやれば良!、。 StatRESET信号が Highレベルになったら、その後、 X— StartRESET信号を(Lo wレベルから) Highレベルに戻す。このように、 X— StartRESET信号は、フリップフ ロップ回路 FFを初期 (初期待機)の状態にし、再度、動作を可能にするための機能を 有する。  [0097] To perform a write operation again, change the X-StartRESET signal from High to Low and return the StatRESET signal to High. When the StatRESET signal becomes high level, the X—StartRESET signal is returned to high level (from low level). As described above, the X-StartRESET signal has a function for setting the flip-flop circuit FF to the initial state (initial standby) and enabling the operation again.
[0098] このように、モニタ回路 44は、ビット線 BLの電圧が所定のスレッシュホールド電圧に 達して内部の論理が変化した後、前記論理が再び変化をすることを防ぐ安定動作用 回路としての機能を有する。更に、モニタ回路 44は、 X— StartRESET信号により、 必要に応じて、外部から論理の固定を解除可能とする機能を備える。  As described above, the monitor circuit 44 functions as a stable operation circuit that prevents the logic from changing again after the voltage of the bit line BL reaches a predetermined threshold voltage and the internal logic changes. It has a function. Further, the monitor circuit 44 has a function of enabling the unlocking of the logic from the outside as required by the X-StartRESET signal.
[0099] なお、本図では、モニタ回路 34の入力部を構成するインバータが 1個の例を示した 1S タイミングを調整するために、 3個以上の奇数のインバータが直列に連結される 構成としても良い。  [0099] In this figure, three or more odd-numbered inverters are connected in series in order to adjust the 1S timing in which one inverter is included in the monitor circuit 34. Also good.
[0100] <プリチャージ回路 >  [0100] <Precharge circuit>
プリチャージ回路 48は、図に示すように、ビット線 BLと基準電圧 Vssとの間に設け られる。プリチャージ回路 48は、例えば、ビット線 BLと基準電圧 Vssとの間に配置さ れ、 nMOS構造からなるトランジスタ TR45を有し、 TR45のドレイン Dがビット線 BL に接続される。また、 TR45のゲート Gはコントロール回路 26からの制御信号 PrRES ETに接続され、 TR45のソース Sが基準電圧 Vssに接続される。 As shown in the figure, the precharge circuit 48 is provided between the bit line BL and the reference voltage Vss. It is done. For example, the precharge circuit 48 is disposed between the bit line BL and the reference voltage Vss, and includes a transistor TR45 having an nMOS structure, and the drain D of TR45 is connected to the bit line BL. The TR45 gate G is connected to the control signal PrRES ET from the control circuit 26, and the TR45 source S is connected to the reference voltage Vss.
[0101] 一リセットドライバ回路の書き込み動作一  [0101] One reset driver circuit write operation
次に、上記リセットドライバ回路 40の書き込み動作について説明する。図 8は、実施 例 1に係るリセットドライバ回路の書き込み動作を示すタイミングチャートである。  Next, the write operation of the reset driver circuit 40 will be described. FIG. 8 is a timing chart illustrating the write operation of the reset driver circuit according to the first embodiment.
[0102] ステップ 1:最初に、ビット線 BLをプリチャージする。すなわち、リセットプリチャージ 信号 PrRESETを Highレベル(例えば、約 1. 5〜1. 8V)にして TR45をオンさせ、 ビット線 BLを基準電圧 Vssと略同じ電圧値になるようにする。このように、プリチヤ一 ジ回路 48は、抵抗記憶素子 12に電圧を印加する前段階で、抵抗記憶素子 12の一 端を所定の電圧に確定し、回路の誤動作を防止する。  [0102] Step 1: First, precharge the bit line BL. That is, the reset precharge signal PrRESET is set to a high level (for example, about 1.5 to 1.8 V) to turn on TR45 so that the bit line BL has substantially the same voltage value as the reference voltage Vss. As described above, the precharge circuit 48 determines one end of the resistance memory element 12 at a predetermined voltage before the voltage is applied to the resistance memory element 12, and prevents malfunction of the circuit.
[0103] また、このとき、 X—StartRESET信号を Highレベルから Lowレベルに変化させ、 StatRESET信号を Lowレベルから Highレベルに変化させる。  [0103] At this time, the X-StartRESET signal is changed from the High level to the Low level, and the StatRESET signal is changed from the Low level to the High level.
[0104] なお、配線遅延や、トランジスタの特性ばらつき等によって、 PrRESET信号と X— StartRESET信号のどちらか一方の信号力 他の信号よりも早!、タイミングで動作し たとしても、回路は正しく動作する。  [0104] Note that either the PrRESET signal or the X-StartRESET signal will be faster than the other signals because of wiring delays, transistor characteristic variations, etc.! To do.
[0105] ステップ 2 :次に、書き込みをしたいメモリセル 10を選択する。すなわち、コントロー ル回路 26により、アドレス線 25に対してアドレスを指定し、メモリセル 10のワード線 W Lを有効にする。その結果、ワード線 WLが Highレベル(例えば、 1. 5〜1. 7V)にな り、セル選択トランジスタである TR11がオンする。  [0105] Step 2: Next, the memory cell 10 to be written is selected. That is, the control circuit 26 designates an address for the address line 25 and enables the word line WL of the memory cell 10. As a result, the word line WL becomes a high level (for example, 1.5 to 1.7 V), and the cell selection transistor TR11 is turned on.
[0106] ステップ 3 :次に、 ResetWE信号を有効にする。すなわち、リセットドライバ回路 40 を有効にする ResetWE信号を Highレベル(例えば、約 1. 5〜1. 7V)にして TR41 をオンさせる。このとき、既に、ステップ 1およびステップ 2の処理により、プリチャージ 回路 48のトランジスタ TR45、遮断回路 46の TR44、メモリセル 10の TR11がオン状 態になっているから、 TR41がオンすることによって、カレントミラー回路が作動して、 L4の経路に大電流が流れ始める。  [0106] Step 3: Next, the ResetWE signal is enabled. That is, the ResetWE signal for enabling the reset driver circuit 40 is set to a high level (for example, about 1.5 to 1.7 V) to turn on TR41. At this time, the transistor TR45 of the precharge circuit 48, the TR44 of the cutoff circuit 46, and the TR11 of the memory cell 10 are already in the ON state by the processing of Step 1 and Step 2, so that TR41 is turned on. The current mirror circuit is activated and a large current begins to flow through the L4 path.
[0107] 但し、この状態では、プリチャージ回路 48のトランジスタ TR45がオンしているため、 プリチャージ回路 48側に電流が流れ、メモリセル 10側の LOの経路には、殆ど電流が 流れていない。そのため、この時点で、ビット線 BLの電圧も殆ど変わらず、ビット線 B Lの電圧値は、基準電圧 Vssと略同じ値 (約 OV〜0. 5V)を維持している。その結果 、抵抗記憶素子 12に高電圧が印加されず、抵抗記憶素子 12は低抵抗状態を維持 している。 [0107] However, in this state, the transistor TR45 of the precharge circuit 48 is on. Current flows through the precharge circuit 48 side, and almost no current flows through the LO path on the memory cell 10 side. Therefore, at this time, the voltage of the bit line BL is hardly changed, and the voltage value of the bit line BL is maintained substantially the same value (about OV to 0.5 V) as the reference voltage Vss. As a result, no high voltage is applied to the resistance memory element 12, and the resistance memory element 12 maintains a low resistance state.
[0108] ステップ 4:次に、ビット線 BLのプリチャージを停止する。すなわち、 PrRESET信号 を Lowレベルに戻して TR45をオフし、プリチャージを停止する。また、プリチャージ を停止するとともに、 X—StartRESET信号を Lowレベルから Highレベルから変化 させる。そして、 TR11がオンすると同時に、抵抗記憶素子 12にセット可能な高電圧( 約 0. 9V)が印加される。なお、抵抗記憶素子に印加される電圧を、図 8のグラフ「VR Jに示す。  [0108] Step 4: Next, precharge of the bit line BL is stopped. In other words, the PrRESET signal is returned to the low level, TR45 is turned off, and the precharge is stopped. In addition, the precharge is stopped and the X-StartRESET signal is changed from low level to high level. At the same time as TR11 is turned on, a high voltage (approximately 0.9 V) that can be set to the resistance memory element 12 is applied. The voltage applied to the resistance memory element is shown in the graph “VR J” in FIG.
[0109] ステップ 5 :次に、抵抗記憶素子 12がリセットする。リセット可能な高電圧が所定時 間印加されることにより、抵抗記憶素子 12がリセット状態になり、抵抗記憶素子 12が 低抵抗状態から高抵抗状態に急激に遷移する。抵抗記憶素子 12がリセットするため に必要な時間(前記所定時間)は条件によって異なり、通常、数 100ns〜数 10msで あるが、ここでは、図 8に示すように、例えば 800nsである。  Step 5: Next, the resistance memory element 12 is reset. When the resettable high voltage is applied for a predetermined time, the resistance memory element 12 is reset, and the resistance memory element 12 rapidly changes from the low resistance state to the high resistance state. The time required for the resistance memory element 12 to reset (the predetermined time) varies depending on conditions, and is usually several hundred ns to several tens of ms, but here, for example, 800 ns as shown in FIG.
[0110] このように、電圧印加回路 42により、抵抗記憶素子 12の両端に、抵抗記憶素子 12 の抵抗状態を切り変えることが可能な電圧が印加され、(抵抗状態を切り変えることが 可能な電圧が印加されてから)所定の時間経過後に、前記抵抗状態が切り替わる。  In this way, the voltage application circuit 42 applies a voltage capable of switching the resistance state of the resistance memory element 12 to both ends of the resistance memory element 12, and (the resistance state can be switched). After a predetermined time (after the voltage is applied), the resistance state is switched.
[0111] ステップ 6 :次に、リセット状態がモニタ回路により検出される。すなわち、抵抗記憶 素子 12が高抵抗状態に遷移すると、それに応じて、ビット線 BLの電圧が急激に上昇 する。そして、ビット線 BLの電圧値がモニタ回路 44内のインバータ IN21のスレッシュ ホールド電圧 (例えば、約 1. OV〜l. 2V)よりも高い値になると、モニタ回路 44が作 動する。このとき、 StatRESET信号によって、外部へリセットが完了したことを通知す ることがでさる。  [0111] Step 6: Next, the reset state is detected by the monitor circuit. That is, when the resistance memory element 12 transitions to the high resistance state, the voltage of the bit line BL rises accordingly. When the voltage value of the bit line BL becomes higher than the threshold voltage of the inverter IN21 in the monitor circuit 44 (for example, about 1. OV to l.2V), the monitor circuit 44 is activated. At this time, the StatRESET signal can be used to notify the outside that the reset has been completed.
[0112] このように、インバータ IN21のスレッシュホールド電圧については、モニタ回路 44 の感度を高めるために、抵抗記憶素子 12が低抵抗状態に遷移する途中で、すなわ ち、前記抵抗状態が切り替わり始めた後、切り替わりが終わる前に、前記ビット線 BL の電圧値がインバータ IN21のスレッシュホールド電圧に達するような設定にすること が望ましい。 [0112] In this way, with respect to the threshold voltage of the inverter IN21, in order to increase the sensitivity of the monitor circuit 44, the resistance state starts to switch during the transition of the resistance memory element 12 to the low resistance state. And before the switching is over, the bit line BL It is desirable to set so that the voltage value of reaches the threshold voltage of inverter IN21.
[0113] モニタ回路 44は、ビット線 BLの電圧が Lowレベルから Highレベルに変化し、所定 のスレッシュホールド電圧値に達したときに、内部の論理素子の論理が変化 (反転) する。  In the monitor circuit 44, when the voltage of the bit line BL changes from low level to high level and reaches a predetermined threshold voltage value, the logic of the internal logic element changes (inverts).
[0114] ステップ 7 :次に、抵抗記憶素子 12への電源供給が遮断される。すなわち、モニタ 回路 44が抵抗記憶素子 12のリセットを検出し、モニタ回路の出力信号 StatRESET が Highレベルから Lowレベル(例えば、約 OV〜0. 5V)に変化させる。 StatRESE T信号が Lowレベルに変化することにより、遮断回路 46内の TR44がオフし、 L3の 経路の電流が遮断される。  Step 7: Next, power supply to the resistance memory element 12 is cut off. That is, the monitor circuit 44 detects the reset of the resistance memory element 12, and the output signal StatRESET of the monitor circuit changes from the high level to the low level (for example, about OV to 0.5V). When the StatRESE T signal changes to Low level, TR44 in the cutoff circuit 46 is turned off, and the current in the L3 path is cut off.
[0115] そして、電圧印加回路 42内のカレントミラー回路が作動し、 L4の経路に流れる電 流が遮断される。なお、リセットの場合、抵抗記憶素子 12の抵抗状態が切り替わって から、 L4の経路の電流が遮断される迄の時間は、数 ns〜数十 nsである。  [0115] Then, the current mirror circuit in the voltage application circuit 42 is activated, and the current flowing through the path L4 is interrupted. In the case of reset, the time from when the resistance state of the resistance memory element 12 is switched to when the current in the path L4 is cut off is several ns to several tens ns.
[0116] このように、遮断回路 46は、抵抗記憶素子へ供給する電流量を制限する電流制限 回路の電流を制限する。電流制限回路は、例えば、図 7に示すように上記カレントミラ 一回路であり、遮断回路 46は、このカレントミラー回路における一方の電流経路を遮 断することにより、抵抗記憶素子へ供給する電流量を制限する。  As described above, the cutoff circuit 46 limits the current of the current limiting circuit that limits the amount of current supplied to the resistance memory element. The current limiting circuit is, for example, the current mirror circuit as shown in FIG. 7, and the cutoff circuit 46 cuts off one of the current paths in the current mirror circuit to thereby supply the current amount to the resistance memory element. Limit.
[0117] その後、 L3の経路の電流が遮断されたことにより、上昇していたビット線 BLの電圧 レベルが下降し、インバータ IN21のスレッシュホールド電圧値よりも低下するが、 Sta tRESET信号の電圧レベルが Lowレベルになっているため、 NAND回路 NA2の出 力が変化せず、フリップフロップ回路 FFの内部の論理は変化しない。すなわち、フリ ップフロップ回路 FFの出力の論理は変化せず、 StatRESET信号 (TR44のゲート Gへの入力信号)の電圧力 owレベルに保持される。  [0117] After that, when the current in the L3 path is cut off, the voltage level of the bit line BL, which has been rising, decreases and falls below the threshold voltage value of the inverter IN21. Because of the low level, the output of the NAND circuit NA2 does not change, and the logic inside the flip-flop circuit FF does not change. That is, the logic of the output of the flip-flop circuit FF does not change and is held at the voltage power ow level of the StatRESET signal (input signal to the gate G of TR44).
[0118] 以上のようなステップにより、抵抗記憶素子 12を高抵抗状態にする(リセットする)書 き込みが確実に行なわれる。  [0118] By the steps as described above, writing to reset (reset) the resistance memory element 12 is performed reliably.
[0119] 以上、抵抗記憶素子 12が最初に低抵抗状態の場合の書き込み動作について説 明した。回路を単純ィ匕するために、高抵抗状態の抵抗記憶素子 12に対して上記の ような書き込みを行なった場合には、高抵抗状態が変化せず、高抵抗状態をそのま ま保持して!/ヽることが望ま ヽ。 [0119] The write operation when the resistance memory element 12 is initially in the low resistance state has been described above. In order to simplify the circuit, when writing as described above to the resistance memory element 12 in the high resistance state, the high resistance state does not change, and the high resistance state remains unchanged. Please hold it!
[0120] この点については、例えば、抵抗記憶素子 12が最初から高抵抗状態の場合には、 ステップ 4において、抵抗記憶素子 12に高電圧を印加した直後に、ビット線 BLの電 圧がモニタ回路 21のスレッシュホールド電圧値よりも高くなる。このことから、抵抗記 憶素子 12の抵抗状態が変化する時間よりも短い時間(例えば数 ns)で、抵抗記憶素 子 12への電源供給を瞬時に遮断するように調整することにより、実現可能である。ま た、すぐに外部へリセット完了を通知する。  [0120] Regarding this point, for example, when the resistance memory element 12 is in a high resistance state from the beginning, the voltage of the bit line BL is monitored immediately after applying a high voltage to the resistance memory element 12 in Step 4. It becomes higher than the threshold voltage value of circuit 21. Therefore, it can be realized by adjusting the power supply to the resistance memory element 12 to be instantaneously cut off in a time shorter than the time when the resistance state of the resistance memory element 12 changes (for example, several ns). It is. Also, immediately notify the outside of the reset completion.
[0121] 以上のように、本実施例によれば、抵抗記憶素子への書き込み回路を、主に、電界 効果型トランジスタ(MOS FET: Metal Oxide Semiconductor Field Effect Transisto r)から構成される素子を組み合わせた回路によって構成しているため、従来の CMO S形成用プロセスを流用して、不揮発性記憶装置を簡易に製造することが可能となる  [0121] As described above, according to the present embodiment, the write circuit to the resistance memory element is combined with an element mainly composed of a field effect transistor (MOS FET: Metal Oxide Semiconductor Field Effect Transistor). Therefore, it is possible to easily manufacture a non-volatile memory device by using the conventional process for forming CMOS.
[0122] また、リファレンス抵抗として、抵抗値に応じた所定の大きさを必要とする拡散抵抗 やポリシリコン抵抗を設ける必要が無い。そのため、回路の大規模ィ匕が回避でき、大 容量メモリの用途として好適である。 [0122] Further, it is not necessary to provide a diffused resistor or a polysilicon resistor that requires a predetermined size according to the resistance value as the reference resistor. Therefore, a large scale circuit can be avoided, which is suitable for use as a large-capacity memory.
[0123] 更には、抵抗記憶素子 12に大電流が流れる前に、瞬時に電流供給源を遮断する ようにしたため、簡易な回路で済むと!、うメリットがある。 [0123] Furthermore, since the current supply source is instantaneously cut off before a large current flows through the resistance memory element 12, there is an advantage that a simple circuit is sufficient!
符号の説明  Explanation of symbols
[0124] 10· · ·メモリセル [0124] 10 · · · Memory cells
12· · ·抵抗記憶素子  12 · · · Resistance memory element
12a, 12c 対の電極  12a, 12c pairs of electrodes
12b…抵抗記憶材料  12b ... Resistance memory material
14…セル選択トランジスタ  14 ... cell selection transistor
16· · ·ビット線選択トランジスタ  16 bit line selection transistor
20…メモリセルアレイ  20 ... Memory cell array
22…ワード線セレクタ 2 2 ... Word line selector
24· · ·ビット線セレクタ 24 bit line selector
25· · ·アドレス線 ···コントロール回路25 ... Address line .... Control circuit
a---CPUa --- CPU
b…メモリb ... Memory
c…ノ スc ... Nos
a, 27b、 27c、 27d…制御信号 …読み出し回路 a, 27b, 27c, 27d ... Control signal ... Readout circuit
…セットドライバ回路 ... Set driver circuit
、 42…電圧印加回路 , 42 ... Voltage application circuit
、 44···モニタ回路 44 Monitor circuit
、 46…遮断回路 , 46 ... Shut-off circuit
、 48···プリチャージ回路···リセットドライバ回路 48 ... Precharge circuit ... Reset driver circuit

Claims

請求の範囲 The scope of the claims
[1] 電圧の印加によって高抵抗状態と低抵抗状態とが切り替わる抵抗記憶素子を有す る不揮発性半導体記憶装置にお 、て、  [1] In a nonvolatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by application of a voltage,
前記抵抗記憶素子に電源を供給し、前記抵抗記憶素子の一端に第 1の電圧を発 生させる電圧印加回路と、  A voltage application circuit that supplies power to the resistance memory element and generates a first voltage at one end of the resistance memory element;
所定のしきい値電圧を有し、前記第 1の電圧が所定のしきい値電圧に達したことを 検出するモニタ回路と、  A monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached a predetermined threshold voltage;
前記モニタ回路の前記検出に基づいて、前記電圧印加回路から前記抵抗記憶素 子への電源供給を制限する遮断回路とを有する  And a cutoff circuit that restricts power supply from the voltage application circuit to the resistance memory element based on the detection of the monitor circuit.
ことを特徴とする不揮発性半導体記憶装置。  A non-volatile semiconductor memory device.
[2] 前記遮断回路は、前記モニタ回路の前記検出に基づいて、前記電圧印加回路か ら前記抵抗記憶素子への電流供給を遮断する  [2] The cut-off circuit cuts off the current supply from the voltage application circuit to the resistance memory element based on the detection of the monitor circuit.
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[3] 前記遮断回路は、前記モニタ回路の前記検出に基づいて、前記電圧印加回路か ら前記抵抗記憶素子への電圧印加を遮断する  [3] The cutoff circuit cuts off voltage application from the voltage application circuit to the resistance memory element based on the detection of the monitor circuit.
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[4] 前記モニタ回路は CMOS構造を有する入力部を有し、前記しき!、値電圧が前記 入力部のしき!/、値電圧である  [4] The monitor circuit has an input unit having a CMOS structure, and the threshold voltage is the threshold voltage of the input unit! /, The value voltage.
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[5] 前記入力部は pMOS構造と nMOS構造とを備え、 pMOSのゲート幅力 MOSの ゲート幅よりも広い [5] The input section has a pMOS structure and an nMOS structure, and the gate width force of the pMOS is wider than the MOS gate width.
ことを特徴とする請求項 2に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 2, wherein:
[6] 前記モニタ回路は、前記第 1の電圧が所定のしきい値電圧に達したときに、内部の 論理が変化する [6] The monitor circuit changes its internal logic when the first voltage reaches a predetermined threshold voltage.
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[7] 前記抵抗記憶素子に電圧を印加する前に、前記抵抗記憶素子の一端を所定の電 圧に確定するプリチャージ回路を有する [7] having a precharge circuit that determines one end of the resistance memory element at a predetermined voltage before applying a voltage to the resistance memory element
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。 The nonvolatile semiconductor memory device according to claim 1, wherein:
[8] 前記プリチャージ回路は、前記抵抗記憶素子に前記第 1の電圧を印加する前に、 その内部のトランジスタをオンして前記抵抗記憶素子の一端を所定の電圧とした後、 前記内部のトランジスタをオフする [8] Before applying the first voltage to the resistance memory element, the precharge circuit turns on an internal transistor to set one end of the resistance memory element to a predetermined voltage. Turn off the transistor
ことを特徴とする請求項 7に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 7, wherein:
[9] 前記電圧印加回路はカレントミラー回路を有し、前記カレントミラー回路により、前 記抵抗記憶素子へ電源を供給する [9] The voltage application circuit includes a current mirror circuit, and supplies power to the resistance memory element by the current mirror circuit.
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[10] 前記遮断回路は、前記カレントミラー回路の一方の電流経路を遮断する [10] The interrupting circuit interrupts one current path of the current mirror circuit.
ことを特徴とする請求項 7に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 7, wherein:
[11] 前記抵抗記憶素子と基準電圧 Vssとの間に、前記抵抗記憶素子が複数配置された メモリ素子アレイの中力 前記抵抗記憶素子を選択するセル選択トランジスタを備え 前記セル選択トランジスタは nMOSからなり、前記カレントミラー回路を構成するトラ ンジスタは pMOSである [11] A memory element array in which a plurality of the resistance storage elements are arranged between the resistance storage element and a reference voltage Vss. The cell selection transistor includes a cell selection transistor that selects the resistance storage element. The transistor that constitutes the current mirror circuit is a pMOS.
ことを特徴とする請求項 8に記載の不揮発性半導体記憶装置。  9. The nonvolatile semiconductor memory device according to claim 8, wherein
[12] 前記電圧印加回路により、前記抵抗記憶素子の両端に、前記抵抗状態を切り変え ることが可能な電圧が印加され、 [12] A voltage capable of switching the resistance state is applied to both ends of the resistance memory element by the voltage application circuit,
前記抵抗状態を切り変えることが可能な電圧が印加された後、前記抵抗記憶素子 の抵抗状態の最初の切り替わりの際に、前記電圧印加回路から前記抵抗記憶素子 への電源供給を制限する  After the voltage capable of switching the resistance state is applied, the power supply from the voltage application circuit to the resistance memory element is limited at the first switching of the resistance state of the resistance memory element
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[13] 前記電圧印加回路により、前記抵抗記憶素子の両端に、前記抵抗状態を切り変え ることが可能な電圧が印加され、 [13] A voltage capable of switching the resistance state is applied to both ends of the resistance memory element by the voltage application circuit,
前記抵抗状態を切り変えることが可能な電圧が印加されてから、所定時間経過後 に、前記抵抗状態が切り替わる  The resistance state is switched after a predetermined time has elapsed since a voltage capable of switching the resistance state is applied.
ことを特徴とする請求項 1に記載の不揮発性半導体記憶装置。  The nonvolatile semiconductor memory device according to claim 1, wherein:
[14] 前記所定の時間経過後に、前記抵抗状態が切り替わり始めた後、切り替わりが終 わる前に、前記第 1の電圧が前記しきい値に達する ことを特徴とする請求項 13に記載の不揮発性半導体記憶装置。 [14] After the predetermined time has elapsed, the first voltage reaches the threshold value after the resistance state starts to switch and before the switching ends. The nonvolatile semiconductor memory device according to claim 13.
[15] 電圧の印加によって高抵抗状態と低抵抗状態とが切り替わる抵抗記憶素子を有す る不揮発性半導体記憶装置にお 、て、 [15] In a nonvolatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by application of a voltage,
前記抵抗記憶素子が高抵抗状態のときに、前記抵抗記憶素子に電源を供給し、前 記抵抗記憶素子の一端に第 1の電圧を発生させる第 1の電圧印加回路と、  A first voltage application circuit that supplies power to the resistance memory element when the resistance memory element is in a high resistance state, and generates a first voltage at one end of the resistance memory element;
前記抵抗記憶素子が低抵抗状態のときに、前記抵抗記憶素子に電源を供給し、前 記抵抗記憶素子の一端に前記第 1の電圧より低い第 2の電圧を発生させる第 2の電 圧印加回路と、  When the resistance memory element is in a low resistance state, a second voltage is applied to supply power to the resistance memory element and generate a second voltage lower than the first voltage at one end of the resistance memory element. Circuit,
所定のしきい値電圧を有し、前記第 1の電圧が第 1のしきい値電圧に達したことを 検出する第 1のモニタ回路と、  A first monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached the first threshold voltage;
所定のしきい値電圧を有し、前記第 1の電圧が第 2のしきい値電圧に達したことを 検出する第 2のモニタ回路と、  A second monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached a second threshold voltage;
前記第 1のモニタ回路の前記検出に基づいて、前記第 1の電圧印加回路から前記 抵抗記憶素子への電流供給を遮断する第 1の遮断回路と、  A first cutoff circuit that shuts off a current supply from the first voltage application circuit to the resistance memory element based on the detection of the first monitor circuit;
前記第 2のモニタ回路の前記検出に基づいて、前記第 2の電圧印加回路から前記 抵抗記憶素子への電圧印加を遮断する第 2の遮断回路とを有する  And a second cutoff circuit that cuts off voltage application from the second voltage application circuit to the resistance memory element based on the detection of the second monitor circuit.
ことを特徴とする不揮発性半導体記憶装置。  A non-volatile semiconductor memory device.
[16] 前記第 2のモニタ回路は、前記第 2の電圧が前記所定のしきい値電圧に達して内 部の論理が変化した後、前記第 2の電圧が前記所定のしきい値より下降した場合に、 前記変化後の論理を維持する [16] In the second monitor circuit, after the second voltage reaches the predetermined threshold voltage and the internal logic changes, the second voltage drops below the predetermined threshold. The logic after the change is maintained.
ことを特徴とする請求項 15に記載の不揮発性半導体記憶装置。  16. The nonvolatile semiconductor memory device according to claim 15, wherein
[17] 前記第 2のモニタ回路は、更に、前記論理が変化しない状態に保持された後、前記 保持された状態を外部から解除する機能を有する [17] The second monitor circuit further has a function of releasing the held state from the outside after being held in a state where the logic does not change.
ことを特徴とする請求項 16に記載の不揮発性半導体記憶装置。  17. The nonvolatile semiconductor memory device according to claim 16, wherein:
[18] 前記安定動作用回路は、 2つの NAND回路を組み合わせたフリップフロップ回路 を有し、 [18] The circuit for stable operation has a flip-flop circuit that combines two NAND circuits,
前記フリップフロップ回路により、前記第 2の電圧が前記所定のしきい値電圧に達し て内部の論理が変化した後、前記第 2の電圧が前記所定のしきい値より下降した場 合に、前記変化後の論理を維持する After the second voltage reaches the predetermined threshold voltage and the internal logic changes by the flip-flop circuit, the second voltage falls below the predetermined threshold. Maintain the post-change logic
ことを特徴とする請求項 16に記載の不揮発性半導体記憶装置。 17. The nonvolatile semiconductor memory device according to claim 16, wherein:
電圧の印加によって高抵抗状態と低抵抗状態とが切り替わる抵抗記憶素子を有す る不揮発性半導体記憶装置にお 、て、  In a nonvolatile semiconductor memory device having a resistance memory element that switches between a high resistance state and a low resistance state by application of a voltage,
前記抵抗記憶素子に電源を供給し、前記抵抗記憶素子を含むメモリセルの所定箇 所に第 1の電圧を発生させる電圧印加回路と、  A voltage applying circuit that supplies power to the resistance memory element and generates a first voltage at a predetermined location of a memory cell including the resistance memory element;
所定のしきい値電圧を有し、前記第 1の電圧が所定のしきい値電圧に達したことを 検出するモニタ回路とを有し、  A monitor circuit having a predetermined threshold voltage and detecting that the first voltage has reached a predetermined threshold voltage;
前記モニタ回路の前記検出に基づいて、前記電圧印加回路から前記抵抗記憶素 子への電源供給を制限する  Based on the detection of the monitor circuit, the power supply from the voltage application circuit to the resistance memory element is limited.
ことを特徴とする不揮発性半導体記憶装置。 A non-volatile semiconductor memory device.
PCT/JP2006/314649 2006-07-25 2006-07-25 Nonvolatile semiconductor storage device WO2008012871A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008526625A JP5012802B2 (en) 2006-07-25 2006-07-25 Nonvolatile semiconductor memory device
PCT/JP2006/314649 WO2008012871A1 (en) 2006-07-25 2006-07-25 Nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314649 WO2008012871A1 (en) 2006-07-25 2006-07-25 Nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
WO2008012871A1 true WO2008012871A1 (en) 2008-01-31

Family

ID=38981186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314649 WO2008012871A1 (en) 2006-07-25 2006-07-25 Nonvolatile semiconductor storage device

Country Status (2)

Country Link
JP (1) JP5012802B2 (en)
WO (1) WO2008012871A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105155A1 (en) * 2007-02-23 2008-09-04 Panasonic Corporation Nonvolatile memory device and method for writing data in nonvolatile memory device
JP2009157982A (en) * 2007-12-26 2009-07-16 Toshiba Corp Nonvolatile semiconductor memory
JP2010033683A (en) * 2008-07-31 2010-02-12 Toshiba Corp Nonvolatile semiconductor memory
JP2010092568A (en) * 2008-10-10 2010-04-22 Toshiba Corp Semiconductor storage device
JP2010140529A (en) * 2008-12-09 2010-06-24 Sony Corp Semiconductor device
CN101833991A (en) * 2009-03-12 2010-09-15 株式会社东芝 Semiconductor storage
WO2010119671A1 (en) * 2009-04-15 2010-10-21 パナソニック株式会社 Resistance-change non-volatile memory device
JP2011054223A (en) * 2009-08-31 2011-03-17 Toshiba Corp Non-volatile semiconductor memory device
WO2011045886A1 (en) * 2009-10-15 2011-04-21 パナソニック株式会社 Resistance-change-type non-volatile storage device
JP2011526400A (en) * 2008-06-27 2011-10-06 サンディスク スリーディー,エルエルシー Reverse set using current limitation of non-volatile memory
JP2011526401A (en) * 2008-06-27 2011-10-06 サンディスク スリーディー,エルエルシー Simultaneous writing and verification in non-volatile memory
JP2011253596A (en) * 2010-06-03 2011-12-15 Toshiba Corp Nonvolatile semiconductor memory device
JP2012069196A (en) * 2010-09-22 2012-04-05 Toshiba Corp Nonvolatile semiconductor storage device
US8223529B2 (en) 2009-02-20 2012-07-17 Samsung Electronics Co., Ltd. Resistive memory devices, memory systems and methods of controlling input and output operations of the same
CN102831928A (en) * 2011-06-14 2012-12-19 索尼公司 Resistance-change memory device and method of operating the same
JP2013137850A (en) * 2011-12-28 2013-07-11 Toshiba Corp Semiconductor storage device
US8559207B2 (en) 2010-02-10 2013-10-15 Samsung Electronics Co., Ltd. Variable resistance memory device with trigger circuit for set/reset write operations
WO2015147016A1 (en) * 2014-03-24 2015-10-01 国立大学法人東北大学 Data-write device for resistance-change memory element
WO2016151874A1 (en) * 2015-03-20 2016-09-29 株式会社 東芝 Nonvolatile semiconductor memory
US9601176B2 (en) 2015-03-20 2017-03-21 Kabushiki Kaisha Toshiba Nonvolatile memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508121A (en) * 1993-05-11 1995-09-07 富士通株式会社 Non-volatile memory device, non-volatile memory cell, and method for adjusting the threshold of each of the non-volatile memory cell and a plurality of transistors
JPH08335400A (en) * 1995-03-21 1996-12-17 Hyundai Electron Ind Co Ltd Automatic verification circuit of limiting voltage of nonvolatile memory cell and confirmation method of program and erasure state of nonvolatile memory cell utilizing it
JP2004234707A (en) * 2002-12-04 2004-08-19 Sharp Corp Semiconductor memory device and method for writing and erasing for memory cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540352B2 (en) * 2003-09-12 2010-09-08 ルネサスエレクトロニクス株式会社 Storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508121A (en) * 1993-05-11 1995-09-07 富士通株式会社 Non-volatile memory device, non-volatile memory cell, and method for adjusting the threshold of each of the non-volatile memory cell and a plurality of transistors
JPH08335400A (en) * 1995-03-21 1996-12-17 Hyundai Electron Ind Co Ltd Automatic verification circuit of limiting voltage of nonvolatile memory cell and confirmation method of program and erasure state of nonvolatile memory cell utilizing it
JP2004234707A (en) * 2002-12-04 2004-08-19 Sharp Corp Semiconductor memory device and method for writing and erasing for memory cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEAK I.G. ET AL.: "Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses", IEDM, 2004, pages 587 - 590, XP002992100, DOI: doi:10.1109/IEDM.2004.1419228 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7916516B2 (en) 2007-02-23 2011-03-29 Panasonic Corporation Nonvolatile memory apparatus and method for writing data in nonvolatile memory apparatus
WO2008105155A1 (en) * 2007-02-23 2008-09-04 Panasonic Corporation Nonvolatile memory device and method for writing data in nonvolatile memory device
JP2009157982A (en) * 2007-12-26 2009-07-16 Toshiba Corp Nonvolatile semiconductor memory
US8456887B2 (en) 2007-12-26 2013-06-04 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JP2011526401A (en) * 2008-06-27 2011-10-06 サンディスク スリーディー,エルエルシー Simultaneous writing and verification in non-volatile memory
JP2011526400A (en) * 2008-06-27 2011-10-06 サンディスク スリーディー,エルエルシー Reverse set using current limitation of non-volatile memory
JP2010033683A (en) * 2008-07-31 2010-02-12 Toshiba Corp Nonvolatile semiconductor memory
US9324427B2 (en) 2008-07-31 2016-04-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US8842481B2 (en) 2008-07-31 2014-09-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US8391082B2 (en) 2008-07-31 2013-03-05 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JP2010092568A (en) * 2008-10-10 2010-04-22 Toshiba Corp Semiconductor storage device
JP2010140529A (en) * 2008-12-09 2010-06-24 Sony Corp Semiconductor device
US8223529B2 (en) 2009-02-20 2012-07-17 Samsung Electronics Co., Ltd. Resistive memory devices, memory systems and methods of controlling input and output operations of the same
US8582346B2 (en) 2009-03-12 2013-11-12 Kabushiki Kaisha Toshiba Semiconductor storage device
CN101833991A (en) * 2009-03-12 2010-09-15 株式会社东芝 Semiconductor storage
US8139394B2 (en) 2009-03-12 2012-03-20 Kabushiki Kaisha Toshiba Semiconductor storage device
JP2010211898A (en) * 2009-03-12 2010-09-24 Toshiba Corp Semiconductor memory device
CN102119424A (en) * 2009-04-15 2011-07-06 松下电器产业株式会社 Resistance-change non-volatile memory device
JP4643767B2 (en) * 2009-04-15 2011-03-02 パナソニック株式会社 Variable resistance nonvolatile memory device
US8441837B2 (en) 2009-04-15 2013-05-14 Panasonic Corporation Variable resistance nonvolatile memory device
WO2010119671A1 (en) * 2009-04-15 2010-10-21 パナソニック株式会社 Resistance-change non-volatile memory device
US8228712B2 (en) 2009-08-31 2012-07-24 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JP2011054223A (en) * 2009-08-31 2011-03-17 Toshiba Corp Non-volatile semiconductor memory device
CN102197434A (en) * 2009-10-15 2011-09-21 松下电器产业株式会社 Resistance-change-type non-volatile storage device
WO2011045886A1 (en) * 2009-10-15 2011-04-21 パナソニック株式会社 Resistance-change-type non-volatile storage device
US8625328B2 (en) 2009-10-15 2014-01-07 Panasonic Corporation Variable resistance nonvolatile storage device
US9135996B2 (en) 2010-02-10 2015-09-15 Samsung Electronics Co., Ltd. Variable resistance memory device and related method of operation
US8559207B2 (en) 2010-02-10 2013-10-15 Samsung Electronics Co., Ltd. Variable resistance memory device with trigger circuit for set/reset write operations
JP2011253596A (en) * 2010-06-03 2011-12-15 Toshiba Corp Nonvolatile semiconductor memory device
US8861252B2 (en) 2010-09-22 2014-10-14 Kabushiki Kaisha Toshiba Reset circuit for resistive memory device
JP2012069196A (en) * 2010-09-22 2012-04-05 Toshiba Corp Nonvolatile semiconductor storage device
CN102831928B (en) * 2011-06-14 2016-11-23 索尼半导体解决方案公司 Resistance-variable storage device and the operational approach of resistance-variable storage device
CN102831928A (en) * 2011-06-14 2012-12-19 索尼公司 Resistance-change memory device and method of operating the same
JP2013137850A (en) * 2011-12-28 2013-07-11 Toshiba Corp Semiconductor storage device
US9135991B2 (en) 2011-12-28 2015-09-15 Kabushiki Kaisha Toshiba Semiconductor memory device
WO2015147016A1 (en) * 2014-03-24 2015-10-01 国立大学法人東北大学 Data-write device for resistance-change memory element
JPWO2015147016A1 (en) * 2014-03-24 2017-04-13 国立大学法人東北大学 Data writing device for resistance change type memory element
US9928906B2 (en) 2014-03-24 2018-03-27 Tohoku University Data-write device for resistance-change memory element
JP2016177853A (en) * 2015-03-20 2016-10-06 株式会社東芝 Nonvolatile semiconductor memory
WO2016151874A1 (en) * 2015-03-20 2016-09-29 株式会社 東芝 Nonvolatile semiconductor memory
US9601176B2 (en) 2015-03-20 2017-03-21 Kabushiki Kaisha Toshiba Nonvolatile memory
CN106796815A (en) * 2015-03-20 2017-05-31 株式会社东芝 Nonvolatile semiconductor memory

Also Published As

Publication number Publication date
JPWO2008012871A1 (en) 2009-12-17
JP5012802B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2008012871A1 (en) Nonvolatile semiconductor storage device
US8379430B2 (en) Memory device and method of reading memory device
JP4524455B2 (en) Semiconductor device
TWI480873B (en) Non-volatile semiconductor memory device
JP4524684B2 (en) Memory reading circuit and method
US8008745B2 (en) Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US10755780B2 (en) Memory sense amplifier with precharge
US8891295B2 (en) Semiconductor device
US8498164B1 (en) Variable impedance memory device biasing circuits and methods
KR101001147B1 (en) Phase change memory device
US9236123B2 (en) Semiconductor device and write method
JP6038741B2 (en) Semiconductor memory device
US9666276B2 (en) Non-volatile memory using bi-directional resistive elements
JP5713942B2 (en) Variable resistance nonvolatile semiconductor memory device
US8780623B2 (en) Semiconductor memory device and control method thereof
US7586788B2 (en) Nonvolatile semiconductor memory having voltage adjusting circuit
JP2010067332A (en) Complementary phase-change memory cell and memory circuit
JP2011198445A (en) Semiconductor memory
US9153316B1 (en) Circuits and read methods of RRAM
JP2011023046A (en) Resistance change memory device
JP2015230736A (en) Resistance change type nonvolatile storage and its writing method
CN106887251B (en) Memory device including decoder for program pulses and related methods
KR101004679B1 (en) Phase change memory device and verification method of programming current for it
KR101762920B1 (en) One-time programmable memory apparatus
US8264871B2 (en) Phase change memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526625

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06781561

Country of ref document: EP

Kind code of ref document: A1