WO2008010375A1 - Dispositif ultrasonographique - Google Patents

Dispositif ultrasonographique Download PDF

Info

Publication number
WO2008010375A1
WO2008010375A1 PCT/JP2007/062291 JP2007062291W WO2008010375A1 WO 2008010375 A1 WO2008010375 A1 WO 2008010375A1 JP 2007062291 W JP2007062291 W JP 2007062291W WO 2008010375 A1 WO2008010375 A1 WO 2008010375A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
processing
image data
ultrasonic
filter
Prior art date
Application number
PCT/JP2007/062291
Other languages
English (en)
French (fr)
Inventor
Takashi Azuma
Hironari Masui
Shin-Ichiro Umemura
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2008525812A priority Critical patent/JP4757307B2/ja
Priority to CN200780027577XA priority patent/CN101489488B/zh
Priority to EP07767165A priority patent/EP2047801A1/en
Priority to US12/373,912 priority patent/US20100022878A1/en
Publication of WO2008010375A1 publication Critical patent/WO2008010375A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52077Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging with means for elimination of unwanted signals, e.g. noise or interference
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • the present invention relates to an ultrasonic imaging method and an ultrasonic imaging apparatus that perform imaging of a living body using ultrasonic waves.
  • An ultrasonic imaging device (B mode) used for medical image diagnosis transmits an ultrasonic wave to a living body, and receives an echo signal that reflects a part force in the living body whose acoustic impedance is spatially changed. In this way, the position of the transmission / reception time difference reflection source is estimated, and the echo signal intensity is converted into luminance for image display.
  • Ultrasound tomograms are known to generate unique artifacts (virtual images) called speckles, and the effect of speckles must be suppressed to improve image quality.
  • speckle patterns are considered to reflect characteristics useful for diagnosis such as density of living tissue, so speckles can be easily seen by the diagnostician (operator) while removing artifacts other than speckles! / It is desirable to display the level.
  • a texture-smoothed image and a structure-enhanced image of in vivo tissue are created, and two pieces of image data are created.
  • a texture-smoothed image is generated by applying a similarity filter that performs weighted average processing based on statistical similarity because the speckle distribution follows the Rayleigh probability density.
  • the structure-enhanced image is created using a high-pass filter such as a differential filter.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-129773
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-163570
  • the noise component emphasized by the structure enhancement processing was powerful enough to be suppressed only by performing weighted addition linear processing.
  • the method exemplified in Patent Document 2> suppresses noise, but does not provide an edge enhancement effect.
  • the method of suppressing noise while emphasizing the edge has the problem that when the edge is mistakenly detected as noise, the edge portion is significantly degraded and the information in the speckle pattern is lost.
  • image data obtained by removing high-frequency noise components, then performing edge enhancement processing, and then removing high-frequency noise components from the data obtained by ultrasonic irradiation is added to the original data and synthesized. Get an image.
  • smoothing processing is performed on the original data to remove high-frequency noise components
  • edge enhancement processing is performed on the smoothed image
  • nonlinear processing is performed sequentially in a procedure that removes noise components again.
  • weighting synthesis processing is performed with the original image.
  • the edge enhancement effect and the noise removal effect can both be achieved by sequentially performing nonlinear processing, and the information of the speckle pattern can be retained by the synthesis of the original image. It becomes possible.
  • FIG. 1 shows a system configuration example of an ultrasonic image processing method.
  • the ultrasonic probe 1 in which ultrasonic elements are arranged one-dimensionally transmits an ultrasonic beam (ultrasonic pulse) to the living body, and is transmitted from the living body. Receive the reflected echo signal (received signal). Under the control of the control system 4, a transmission signal having a delay time adjusted to the transmission focus is output by the transmission beamformer 3 and sent to the ultrasonic probe 1 through the transmission / reception switch 5.
  • the ultrasonic beam reflected or scattered in the living body and returned to the ultrasonic probe 1 is converted into an electric signal by the ultrasonic probe 1 and is received by the receiving beam former 6 via the transmission / reception switch 5. Sent as.
  • the receive beamformer 6 is a complex beamformer that mixes two received signals that are 90 degrees out of phase, and performs dynamic focusing that adjusts the delay time according to the reception timing under the control of the control system 4. , RF signals of real part and imaginary part are output. This RF signal is detected by the envelope detector 7 and then converted to a video signal, which is input to the scan converter 8 and converted to image data (B-mode image data).
  • image data original image obtained based on the ultrasonic signal from the subject output from the scan converter 8 is sent to the processing unit 10 and is subjected to noise removal and edge enhancement by signal processing. It is caloche.
  • the processed image is weighted and synthesized with the original image in the synthesizing unit 12 and sent to the display unit 13 for display.
  • the parameter setting unit 11 sets parameters for signal processing in the processing unit and the synthesis ratio in the synthesis unit. These parameters are input from the user interface 2 by the operator (diagnostic).
  • User interface 2 is a processed image according to the target of diagnosis (structure of blood clot contour in blood vessel, texture pattern of liver cirrhosis progression, both structure and texture pattern of tumor tissue in organ, etc.). And an input knob for setting whether to give priority to the original image.
  • the image display method corresponds to the case where the processed image and the synthesized image are displayed side by side on the display, and the operator changes the input knob (ratio input means) for setting the composition ratio.
  • FIGS. 2A-2F A processing example of the ultrasonic image processing method in the processing unit 10 and the synthesizing unit 12 is shown in FIGS. 2A-2F.
  • noise removal processing is performed on the original image ( Figure 2A) to obtain a noise-removed image ( Figure 2B).
  • edge enhancement is performed to improve the visibility of the structure.
  • the noise components remaining in the noise-removed image (Fig. 2B) are emphasized, and the noise-removal processing is applied to convert the noise component to the noise-removed image (Fig. 2D).
  • This noise-removed image ( Figure 2D) loses the speckle pattern information that the original image had!
  • Figure 2E shows the original image processed with the appropriate addition ratio.
  • the noise removal process may be a smoothing process.
  • Speckle noise that occurs in an ultrasonic tomogram is known to have a probability density function that follows a Rayleigh distribution, as described in, for example, Patent Document 1>.
  • the Rayleigh distribution exhibits characteristics that occur with a small frequency with a specific large noise component. For this reason, complete removal is difficult with a single noise removal process, and the remaining noise components are partially emphasized by the enhancement process. Therefore, it is effective to apply the noise removal process again.
  • speckle patterns contain information useful for diagnosis such as the density of living tissue, so they are not completely erased, but are finally subjected to synthesis processing while suppressing the dynamic range to a level that is easy to see.
  • FIG. 11 shows functional blocks for implementing the processing example of FIGS. 2A-2F.
  • the original image is input by the image input device (8) and processed through the first noise removal processing unit (22), edge enhancement processing unit (23), and second noise removal processing unit (24) in order.
  • the processed image is synthesized with the original image by the synthesis processor (25) and displayed on the image output device (13).
  • the processing parameters in each processing unit are set by the operator in the parameter setting unit (11).
  • FIG. 3 shows the processing procedure of the ultrasonic image processing method.
  • the original image is input (step 51), and then the first noise removal processing is performed (step 52).
  • a filter for noise removal a similarity filter, a weighted average filter, a direction-dependent filter, or a morphology filter is used.
  • a similarity filter is described in, for example, Patent Document 1>.
  • the most common load average filter is a filter that performs a moving average process by setting a fixed load value in the load range, and is capable of high-speed processing although its edge structure retention capability is poor.
  • the direction-dependent filter is a method disclosed in, for example, Japanese Patent Application Laid-Open No.
  • the morphological filter is the method described in ⁇ Patent Document 2>, for example, which has a longer calculation time than the weighted average filter, but has superior edge structure retention capability. It is also effective to select the filter to be used according to the purpose of diagnosis (whether the focus is on the biological structure or texture pattern, or whether real-time characteristics are necessary), or use a combination of multiple filters.
  • edge enhancement processing is performed (step 53).
  • a spatial differential filter for example, described in ⁇ Patent Document 1>, a second-order differential type, or described in Japanese Patent Laid-Open No. 2001-285641. It is desirable to use an unsharp mask type in which the sign of the second derivative type is reversed.
  • an ultrasound image a uniform resolution is guaranteed in the beam irradiation direction. For example, in the case of fan beam irradiation, the radial resolution is not uniform, so interpolation is performed and estimation including errors is performed. It is a value.
  • a filter that has a strong differential effect in the depth direction where ultrasonic waves are irradiated and a weak differential effect in the direction perpendicular to the depth direction an edge-enhanced image with less errors is included.
  • a specific example is a filter with a load set to [–1 3 — l] t (t represents transposition) in the depth direction and [1 1 1] in the radial direction.
  • the effect of this filter corresponds to the second derivative in the depth direction and is simply an averaging process in the radial direction.
  • the filter value and filter length are not limited to the values in this example, but are adjusted according to the target.
  • a second noise removal process is further performed on the edge-enhanced image (step 54).
  • a filter similar to the smooth filter can be used as the processing filter.
  • synthesis processing is performed by adding or multiplying the noise-reduced image and the original image at an appropriate ratio (step 55).
  • a method for determining an appropriate composition ratio using a calibration image will be described. If the calibration image can be processed in advance, for example, a compound imaging method (acquisition of multiple ultrasonic images using different operating frequencies and irradiation angles, and combining the images to preserve the edge components) (Applicable to suppress noise components).
  • Let the calibration image be the luminance of Tij, and subtract the luminance Oij of the original image multiplied by a fixed value a from Tij to obtain the luminance Rij of the reference image.
  • i and j represent pixel numbers in the Cartesian coordinate system.
  • the degree of noise removal is quantitatively expressed using the coefficient of variation, which is the value obtained by dividing the standard deviation by the average, and calculating the standard deviation and average for the pixel luminance distribution in the uniform region.
  • FIG. 5 shows a processing procedure for setting the composition ratio.
  • the average and standard deviation of the uniform region are calculated by changing the composition ratio at a constant step size (step 61).
  • the coefficient of variation is obtained from the calculated average and standard deviation (step 62).
  • the ratio at which the coefficient of variation is the minimum is determined as the ratio used for the composition process (step 63).
  • FIG. 6 shows a procedure for extracting a uniform region.
  • a candidate area Ai is set in advance by subdividing the target image.
  • i represents a candidate number that is subdivided. If the candidate small regions are not uniform but include different structures, the standard deviation of the luminance distribution increases and the variation coefficient increases. That is, if the coefficient of variation is greater than or equal to a certain value, it is determined that the region is not a uniform region. Therefore, a uniform area threshold is set as the first process (step 71). Next, the candidate area number i starts with the first force (steps 72, 73). The judgment process is repeated until at least i exceeds the total number of candidates. The process is performed again by setting the threshold value for the uniform region (step 74).
  • the average m of the Ai region and the standard deviation ⁇ are calculated (step 75), and the magnitude relation between the variation coefficient ⁇ Zm and the threshold is examined (step 76). If it is larger than Zm, it is determined that it is not a uniform region, and the process is repeated after changing to the next i + 1th candidate. If the threshold is smaller than ⁇ Zm, the Ai region is selected and determined as a uniform region, and the process is terminated. (Step 77).
  • FIG. 7 shows a processing procedure of the edge enhancement processing unit shown in FIG.
  • the image after noise removal processing is input as the original image for edge enhancement processing (step 81).
  • a plurality of differential filters having different sizes (lengths) similar to the size of the structure of interest in the original image such as blood vessels and liver are set (step 82).
  • Each differential filter is applied to the original image to create multiple processed images (step 83).
  • the maximum value processing is performed for each pixel of the multiple images, and a composite image consisting of pixels with the maximum luminance is created and the process is terminated.
  • Step 84 Since the size of the structure of interest varies spatially, it is difficult to achieve optimal enhancement with a fixed-size differential filter, and it is adapted by the process of synthesizing the maximum value from the output results of multiple size filters. It is possible to obtain the effect of a typical matched filter. It is also effective to change the filter component value instead of the filter size.
  • the ultrasonic image processing method of FIG. 3 described above is a method of applying nonlinear processing sequentially, but a method of processing in parallel is also possible.
  • Fig. 8 shows the processing procedure of the parallel processing of the present invention.
  • Noise removal processing (92), edge enhancement processing (93), and continuity enhancement processing (94) are applied separately to the original image (91).
  • the noise removal and edge enhancement methods can be the same as those in the ultrasonic image processing method in Fig. 3.
  • the direction-dependent filter used for noise removal processing in Fig. 3 is used in parallel for the continuity enhancement processing. In this way, processing is performed separately according to the three types of characteristics useful for diagnosis, and the processing results are added (or multiplied) at an appropriate ratio (95) to obtain a composite image (96).
  • the synthesized image is combined with the original image in the same way as the processing method in Fig. 3.
  • the difference image obtained by subtracting the original image using the ratio determined by the processing procedure in Fig. 5 with respect to the calibration image is defined as a calibration image Cij in parallel processing.
  • i and j represent pixel numbers in the Cartesian coordinate system, and the image size is MXN.
  • the composite image by parallel processing is obtained by weighting and adding the noise-removed image Dij, the edge-enhanced image Eij, and the continuity-enhanced image Lij with the weighting factors c 1, c2 and c3, respectively.
  • FIG. 10 shows a processing procedure of the composition ratio in the parallel processing. First, cl is varied by a fixed step size, and the evaluation quantity g is calculated according to the above calculation (step 101). Next, cl that minimizes g is determined (step 102). Finally, c2 and c3 are further calculated from cl and the process is terminated.
  • the present invention can be applied to all apparatuses that perform image processing in addition to an ultrasonic image processing apparatus, and an image that can be easily viewed can be synthesized by suppressing noise while enhancing edges.
  • FIG. 1 shows an example of the system configuration of an ultrasonic image processing method of the present invention.
  • FIG. 2A shows a processing example of the ultrasonic image processing method of the present invention.
  • FIG. 2B shows a processing example of the ultrasonic image processing method of the present invention.
  • FIG. 2C shows a processing example of the ultrasonic image processing method of the present invention.
  • FIG. 2D shows a processing example of the ultrasonic image processing method of the present invention.
  • FIG. 2E shows a processing example of the ultrasonic image processing method of the present invention.
  • FIG. 2F shows a processing example of the ultrasonic image processing method of the present invention.
  • FIG. 3 shows a processing procedure of the ultrasonic image processing method of the present invention.
  • FIG. 4 shows an example of setting the composition ratio of the present invention.
  • FIG. 5 shows a processing procedure for setting a composite ratio according to the present invention.
  • FIG. 6 shows a processing procedure for uniform region extraction according to the present invention.
  • FIG. 7 shows a processing procedure for edge enhancement processing according to the present invention.
  • FIG. 8 shows a processing procedure for parallel processing according to the present invention.
  • FIG. 9 shows a setting example of the composition ratio in the parallel processing of the present invention.
  • FIG. 10 shows a processing procedure of the composition ratio in the parallel processing of the present invention.
  • FIG. 11 shows functional blocks of the ultrasonic image processing method of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)

Description

超音波画像処理装置
参照による取り込み
[0001] 本出願は、 2006年 7月 20日に出願された日本特許出願第 2006— 1975645号 の優先権を主張し、その内容を参照することにより本出願に取り込む。
技術分野
[0002] 本発明は,超音波により生体のイメージングを行う超音波撮像方法及び超音波撮 像装置に関する技術である。
背景技術
[0003] 医療画像診断に用いられる超音波撮像装置 (Bモード)は,生体に超音波を送信し て,音響インピーダンスが空間的に変化している生体内の部位力も反射するエコー 信号を受信する事により,送受信の時間差力 反射源の位置を推定し,エコー信号 強度を輝度に変換して画像ィ匕するものである。超音波断層像には,スペックルと呼ば れる固有のアーチファクト (虚像)が発生する事が知られており,画質改善のためにス ペックルの影響を抑制する必要がある。但しスペックルパターンには生体組織の密度 等の診断に有用な特性が反映されて 、ると考えられるので,スペックル以外のアーチ ファクトを除去しつつスペックルは診断者 (オペレータ)が見易!/、レベルで表示する事 が望まれている。
[0004] スペックルを最小化する方法として,従来は例えば <特許文献 1 >に記載されて ヽ るように生体内組織のテクスチャ平滑画像と構造強調画像とを作成し, 2つの画像デ ータを重み付け合成する方法がある。テクスチャ平滑画像は,スペックルの分布がレ イリ一確率密度に従う性質から,統計的類似度に基づき荷重平均処理を行う類似度 フィルタを適用して生成される。また構造強調画像は,微分フィルタ等の高域通過フ ィルタを用いて作成される。
[0005] また例えばく特許文献 2 >に記載されて 、るように,エッジの解像度を劣化させず にノイズを抑制する方法として,平滑画像と元画像との差分を高周波画像とし,それ をダイナミックレンジ圧縮して力も平滑画像あるいは元画像に加算する方法がある。 さらに例えばエッジを強調しつつノイズを抑制する方法として,シャープネス強調画 像と平滑ィ匕画像とエッジ検出画像とを作成してそれらの画像カゝらエッジ部分が除か れたノイズデータを算出し,シャープネス強調画像カゝらノイズデータを減算して合成 画像を生成する方法がある。
[0006] 特許文献 1 :特開 2004— 129773号公報
特許文献 2 :特開 2000— 163570号公報
発明の開示
[0007] 上述した背景技術には次のような未解決の問題が依然としてあった。 <特許文献 1
>として例示した方法では構造強調処理で強調されたノイズ成分が,重み付け加算 の線形処理を行うだけでは充分に抑制できな力つた。またく特許文献 2 >として例示 した方法ではノイズは抑制されるが,エッジの強調効果は得られな力つた。さらにエツ ジを強調しつつノイズを抑制する方法ではエッジがノイズとして誤検出された場合に エッジ部分が著しく劣化し,またスペックルパターンの有する情報が消失するという問 題があった。
[0008] 本発明では,超音波照射によって得たデータにつき,高周波ノイズ成分除去,その 後のエッジ強調処理,さらにその後の高周波ノイズ成分除去を施した画像データを, 元のデータと加算して合成画像を得る。
例えば、元データに対して平滑化処理を施して高周波ノイズ成分を除去し,その平 滑化画像にエッジ強調処理を施してから,再度ノイズ成分を除去する手順で非線形 処理を逐次的に実施する。そして最後に元画像と重み付け合成処理を行う。
[0009] 本発明によれば,非線形処理を逐次的に実施することによってエッジ強調効果とノ ィズ除去効果とが両立し,また元画像の合成によりスペックルパターンの有する情報 を保持することが可能となる。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の 記載から明らかになるであろう。
発明を実施するための最良の形態
[0010] 超音波画像処理方法のシステム構成例を図 1に示す。超音波素子が 1次元に配列 された超音波探触子 1は,生体に超音波ビーム (超音波パルス)を送信し,生体から 反射されたエコー信号 (受波信号)を受信する。制御系 4の制御下で,送波焦点に合 わせた遅延時間をもつ送波信号が送波ビームフォーマ 3により出力され、送受切り替 えスィッチ 5を介して超音波探触子 1に送られる。生体内で反射又は散乱されて超音 波探触子 1に戻った超音波ビームは,超音波探触子 1によって電気信号に変換され 送受切り替えスィッチ 5を介し受波ビームフォーマ 6に受波信号として送られる。受波 ビームフォーマ 6は, 90度位相がずれた 2つの受波信号をミキシングする複素ビーム フォーマであり、制御系 4の制御下で受信タイミングに応じて遅延時間を調整するダ イナミックフォーカスを行って,実部と虚部の RF信号を出力する。この RF信号は包絡 線検波部 7によって検波されてからビデオ信号に変換され,スキャンコンバータ 8に入 力されて画像データ(Bモード画像データ)に変換される。ここで,スキャンコンバータ 8から出力される,被検体からの超音波信号に基づいて得られる画像データ (元画像 )は,処理部 10に送られて信号処理によりノイズ除去とエッジ強調をされた画像にカロ ェされる。加工された画像は合成部 12において元画像と重み付き合成され,表示部 13に送られて表示される。パラメータ設定部 11では,処理部での信号処理のための パラメータや合成部での合成比率の設定を行う。これらのパラメータは,オペレータ( 診断者)によりユーザインタフェース 2から入力される。ユーザインタフェース 2は,診 断目的の対象 (血管中の血栓輪郭の構造,肝臓の肝硬変進行具合のテクスチャバタ ーン,臓器中の腫瘍組織の構造とテクスチャパターンの両方,等)に応じて加工画像 と元画像のどちらを優先するかを設定できる入力つまみを具備している。画像の表示 方法は例えば,加工された画像と合成された画像との 2つの画像データを並べてディ スプレイに表示し,オペレータが合成比率を設定する入力つまみ (比率入力手段)を 変化させたら対応する合成画像を更新して表示する。一方ノイズ除去ある!ヽはエッジ 強調の処理パラメータを設定する入力つまみを変化させたら,対応する加工画像の 表示を更新し,併せてその加工画像から合成した合成画像も同期的に更新して表示 する。
処理部 10及び合成部 12における超音波画像処理方法の処理例を図 2A—2Fに 示す。元画像(図 2A)に対してまずノイズ除去処理を施して,ノイズ除去画像(図 2B) を求める。次に構造の視認性を向上させるためにエッジ強調処理を行 、エッジ強調 画像(図 2C)を得る。そのときノイズ除去画像(図 2B)に残存して ヽたノイズ成分が強 調されてしまうため,さらにノイズ除去処理を適用してノイズ除去画像(図 2D)に変換 する。このノイズ除去画像(図 2D)は元画像が有していたスペックルパターン情報を 喪失して!/、るため,最後に適切な合成比率で元画像を合成 (加算または乗算)して 合成画像(図 2F)を得る。図 2Eは適切な加算比率で処理した元画像を示す。なお, ノイズ除去処理は,平滑ィ匕処理であってもよい。超音波断層像で生じるスペックルノ ィズは,例えばく特許文献 1 >に記載されているように確率密度関数がレイリー分布 に従うことが知られて 、る。電気的ノイズとして一般的なガウス分布型ノイズと比較す ると,レイリー分布は特異的に大きなノイズ成分が少ない頻度ながら発生する特性を 呈する。そのため 1回のノイズ除去処理では完全な除去が困難であり,部分的に残つ たノイズ成分が強調処理で強調されてしまう。そこで,再度ノイズ除去処理を適用す る方法が有効となる。またスペックルパターンは生体組織の密度等の診断に有用な 情報を有するため,完全に消去するのではなく,最終的に見易いレベルにダイナミツ クレンジを抑制して合成処理を施す。
[0012] 図 11に図 2A—2Fの処理例を実施する機能ブロックを示す。元画像は画像入力装 置 (8)により入力され,第 1ノイズ除去処理部(22) ,エッジ強調処理部(23) ,第 2ノィ ズ除去処理部(24)を順番に経て加工される。加工された画像は合成処理部(25)で 元画像と合成されて,画像出力装置(13)に表示される。なお,各処理部における処 理パラメータは,パラメータ設定部(11)においてオペレータにより設定される。
[0013] 超音波画像処理方法の処理手順を図 3に示す。まず元画像を入力し (ステップ 51) ,次に第 1のノイズ除去処理を行う(ステップ 52)。ノイズ除去処理のためのフィルタと しては,類似度フィルタ,荷重平均フィルタ,方向依存型フィルタ,あるいはモフォロ ジーフィルタを使用する。類似度フィルタは例えばく特許文献 1 >に記載されて 、る ものがある。また、最も一般的な荷重平均フィルタは,荷重範囲に固定の荷重値を設 定して移動平均処理を実施するフィルタであり,エッジ構造の保持能力が劣るものの 高速な処理が可能である。方向依存型フィルタは例えば特開 2001 - 14461号公報 に開示されている方式であり,各画素の処理範囲において 1次元方向の濃度変化が 最小の方向を判定し,その方向のみを平滑ィ匕処理するフィルタである。 2次元的なノ ィズ抑制能力は若干劣るが,構造の連結性強調に優れている。モフォロジーフィルタ は例えば <特許文献 2>に記載されている方式であり,荷重平均フィルタよりも計算 時間が長いものの,エッジ構造の保持能力が優る。使用するフィルタは診断目的(生 体構造とテクスチャパターンのどちらに着目するか,またリアルタイム性の要否)に応 じて選択するか,あるいは複数を組合せて使用する事も有効である。
[0014] 第 1のノイズ除去処理の後,エッジ強調処理を施す (ステップ 53)。エッジ強調処理 には性能と演算速度とを勘案して,例えば空間微分フィルタ (例えば <特許文献 1 > に記載されて 、る 2次微分型や,あるいは特開 2001— 285641号公報に記載され ている 2次微分型の符号を反転させたアンシャープマスク型)の使用が望ましい。超 音波画像においてはビーム照射方向に対して一様な分解能が保障されるが,例え ばファンビーム照射の場合には動径方向の分解能は一様でないため補間処理が施 されて誤差を含む推定値となっている。そこで超音波を照射する深さ方向に対しては 強い微分効果を有し,深さ方向と直交する方向に対しては微分効果が弱いフィルタ を適用する事によって,含まれる誤差の少ないエッジ強調画像を得る事が出来る。具 体例としては,深さ方向に対して [—1 3 — l]t(tは転置を表す),動径方向に対し て [1 1 1]の荷重を設定したフィルタが挙げられる。このフィルタの効果は,深さ方 向に対しては 2次微分に該当し,動径方向に対しては単なる平均処理である。尚,フ ィルタ値とフィルタ長とはこの例の値に限定されず対象に応じて調整する。
[0015] エッジ強調画像に対して,更に第 2のノイズ除去処理を施す (ステップ 54)。処理フ ィルタには,平滑ィ匕フィルタと同様なフィルタを使用出来る。最後にノイズ除去画像と 元画像とを適切な比率で加算計算あるいは乗算計算により合成処理を行い,合成画 像を求める(ステップ 55)。
[0016] 適切な合成比率を,較正画像を用いて決定する方法を説明する。較正画像は事前 処理可能であれば,例えばコンパゥンドイメージング法 (異なる使用周波数や照射角 度を用いて複数の超音波画像を取得してそれらから画像を合成する事によりエッジ 成分を保持してノイズ成分を抑制可能)を適用して作成する。較正画像を Tijの輝度 とし, Tijから一定値 a倍した元画像の輝度 Oijを減算して,参照用画像の輝度 Rijが求 まる。ここで iと jは直交座標系での画素の番号を表す。 [0017] [数 1]
Figure imgf000008_0001
参照用画像 Rijを図 2Dのノイズ除去画像の目標とする画像とすれば, Rijにおいて スペックルパターンだけが存在する一様領域に着目すると出来るだけノイズが除去さ れた画質となる事が望ましい。そこでノイズが除去される程度を,一様領域内の画素 輝度分布に関して標準偏差と平均を計算し,標準偏差を平均で除算した値である変 動係数を用いて定量的に表す。変動係数が小さい程,ノイズが除去されて滑らかな 画質である事を表している。比率 aに対する変動係数の変化例を図 4に示す。この例 では,変動係数が最小となる a=0. 67が最適な比率と判断される。
[0018] 合成比率設定の処理手順を図 5に示す。最初に合成比率を一定の刻み幅で変化 させて,一様領域の平均と標準偏差を計算する (ステップ 61)。次に計算した平均と 標準偏差とから変動係数を求める (ステップ 62)。そして比率と変動係数との対応を 鑑みて,変動係数が最小値となる比率を合成処理に用いる比率として決定する (ステ ップ 63)。
[0019] ここで一様領域の抽出手順を図6に示す。予め対象画像を小分割して候補領域 Ai を設定しておく。ここで iは小分割された候補の番号を表す。候補の小領域が一様で はなくて異なる構造を含んで 、る場合には,輝度分布の標準偏差が増大して変動係 数が大きくなる。つまり変動係数がある値以上であれば一様領域ではな 、と判定する 。そこで最初の処理として一様領域の閾値を設定する (ステップ 71)。次に候補領域 の番号 iが 1番目力も始まるようにして (ステップ 72, 73)少なくとも iが全候補数を越え るまで判定処理を繰り返し,もし iが全候補数となっても判定できなければ一様領域の 閾値を再度設定して処理を行う(ステップ 74)。 iが候補数未満での判定処理は, Ai 領域の平均 mと標準偏差 σを計算し (ステップ 75) ,変動係数である σ Zmと閾値と の大小関係を調べ (ステップ 76) ,閾値が σ Zmより大きければ一様領域ではないと 判定して次の i+1番目の候補に変更して処理を繰り返し,閾値が σ Zmより小さけれ ば一様領域として Ai領域を選択決定して処理を終了する (ステップ 77)。
[0020] 次に図 3で示したエッジ強調処理部の処理手順を図 7に示す。ここでは図 3の第 1の ノイズ除去処理後の画像をエッジ強調処理の元画像として入力する (ステップ 81)。 まず元画像の血管や肝臓等の着目したい構造のサイズと同程度の,異なったサイズ (長さ)の微分フィルタを複数設定する (ステップ 82)。そして各微分フィルタを元画像 に適用して,複数の処理画像を作成する (ステップ 83)。最後に複数画像の各画素 に関して最大値処理を行 ヽ,最大値輝度の画素からなる合成画像を作成して処理を 終了する。(ステップ 84)着目する構造のサイズは空間的に変動しているため固定サ ィズの微分フィルタでは最適な強調が困難であり,複数サイズのフィルタによる出力 結果から最大値を合成する処理によって適応的な整合フィルタの効果を得る事が出 来る。なお,フィルタサイズの代わりにフィルタ成分値を変化させる設定も有効である
[0021] 以上説明した図 3の超音波画像処理方法は逐次的に非線形処理を適用する方法 であるが,並列的に処理する方法も可能である。図 8に本発明の並列処理の処理手 順を示す。元画像(91)に対して,ノイズ除去処理(92) ,エッジ強調処理(93) ,及び 連続性強調処理(94)を別々に適用する。ここでノイズ除去処理とエッジ強調処理の 方式は,図 3の超音波画像処理方法での各処理と同様の方式を適用できる。但し図 3でノイズ除去処理に使用した方向性依存型フィルタは,特に連続性強調処理のた めに並列して使用される。このように診断に有用な 3種類の特性に対応させて別々に 処理を施し,処理結果を適切な比率で加算(あるいは乗算)して(95)合成画像 (96) を得る。この合成画像に対して,最後に図 3の処理方法と同様に元画像との合成処 理を施す。
[0022] 並列処理で 3種類の画像を合成する比率の設定方法を以下に説明する。較正画 像に対して図 5の処理手順で決定される比率を用いて元画像を減算した差分画像を ,並列処理での較正画像 Cijとする。ここで iと jは直交座標系での画素の番号を表し, 画像サイズを M X Nとする。一方,並列処理による合成画像は,ノイズ除去画像 Dijと エッジ強調画像 Eijと連続性強調画像 Lijが各々重み係数 c 1 , c2及び c3で重み付け 加算して求められる。このとき較正画像 Cijと並列処理による合成画像との各画素輝 度についての差分の 2乗和が最小となるのが,重み係数の最適な組合せである。そ の評価関数 gを次式で定義する。 [0023] [数 2]
S
Figure imgf000010_0001
…… ( 2 ) ここで, cl, c2及び c3は次式を満足している。
[0024] [数 3] j + 2 +€ - 1 … … V 3 ) gが最小となるのは,各重み係数に関する偏微分が 0となる場合であり, clと c2に着 目すると次式である。尚, c3は式(3)より cl及び c2から定まる係数なので省略した。
[0025] [数 4]
% ■"■ 一 ― Qg ― \ ( Λ ^r. ^ J
d x dc2 式(2)及び式 (4)より, c2と clは次式の関係を満足する事が導出される。
[0026] [数 5]
f : 、
Figure imgf000010_0002
式(5)の c 1と c2の関係に基づ 、て,合成比率 c 1及び c2を設定する例を図 9に示す 。横軸の変数を とすれば, c2は clを式(5)に代入して求められ, c3は求められた c2と式(3)とから決定出来るので,それらの cl〜c3を用いて式(2)から評価量 gを計 算できる。そして clを変化させたときの gを求めて, gが最小となる cl〜c3を設定すれ ば良い。 [0027] 並列処理における合成比率の処理手順を図 10に示す。まず clを一定の刻み幅で 変化させて,上記の計算に従い評価量 gを計算する (ステップ 101)。次に gが最小と なる clを決定する (ステップ 102)。最後に clから c2,更に c3を計算して処理を終了 する。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と 添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業 者に明らかである。
産業上の利用可能性
[0028] 本発明は超音波画像処理装置以外にも,画像処理を実施する装置全般に適用可 能であり,エッジを強調しつつノイズを抑制して視認が容易な画像を合成できる。 図面の簡単な説明
[0029] [図 1]本発明の超音波画像処理方法のシステム構成例を示す。
[図 2A]本発明の超音波画像処理方法の処理例を示す。
[図 2B]本発明の超音波画像処理方法の処理例を示す。
[図 2C]本発明の超音波画像処理方法の処理例を示す。
[図 2D]本発明の超音波画像処理方法の処理例を示す。
[図 2E]本発明の超音波画像処理方法の処理例を示す。
[図 2F]本発明の超音波画像処理方法の処理例を示す。
[図 3]本発明の超音波画像処理方法の処理手順を示す。
[図 4]本発明の合成比率の設定例を示す。
[図 5]本発明の合成比率設定の処理手順を示す。
[図 6]本発明の一様領域抽出の処理手順を示す。
[図 7]本発明のエッジ強調処理の処理手順を示す。
[図 8]本発明の並列処理の処理手順を示す。
[図 9]本発明の並列処理における合成比率の設定例を示す。
[図 10]本発明の並列処理における合成比率の処理手順を示す。
[図 11]本発明の超音波画像処理方法の機能ブロックを示す。

Claims

請求の範囲
[1] 超音波を被検体に照射する照射手段と,
前記被検体からの超音波信号を検出する検出手段と,
前記検出手段の検出結果に基づいて第 1画像データを作成する第 1処理手段と, 前記第 1画像データからノイズ成分を除去し,第 2画像データを作成する第 2処理 手段と,
前記第 2画像データにエッジ強調処理を行 ヽ,第 3画像データを作成する第 3処理 手段と,
前記第 3画像データからノイズ成分を除去し、第 4画像データを作成する第 4処理 手段と,
前記第 1画像データと前記第 4画像データとを加算処理あるいは乗算処理する第 5 処理手段とを有する超音波画像処理装置。
[2] 前記第 5処理手段は,前記第 1画像データと前記第 4画像データとを重み付けして 加算
あるいは乗算して第 5画像データを作成することを特徴とする請求項 1に記載の超音 波画像処理装置。
[3] 前記第 4処理手段は,前記第 3処理手段によって強調されるノイズ成分を除去する ことを特徴とする請求項 1に記載の超音波画像処理装置。
[4] 前記第 5処理手段は,較正画像を作成して前記較正画像内のノイズ領域を設定し 前記ノイズ領域における輝度分布の標準偏差と平均とを求めて,前記標準偏差を 前記平均で除算することにより,前記重み付けの比率での変動係数を算出し, 前記変動係数が最小となる比率を算出し,前記比率を用いて重み付けすることを 特徴とする請求項 2に記載の超音波画像処理装置。
[5] 前記第 2処理手段及び/又は前記第 4処理手段は,類似度フィルタ,荷重平均フィ ルタ
,方向依存型フィルタ,及びモフォロジーフィルタの少なくとも 1つを有することを特徴 とする請求項 1に記載の超音波画像処理装置。
[6] 前記第 3処理手段は,前記第 2画像データに対して異なるフィルタ長あるいは異な るフィルタ成分値の微分フィルタを適用して複数の画像データを作成し,前記複数の 画像データ力 画素位置毎に最大値処理を行 、,最大値輝度の画素データ力 な る合成画像を作成して前記第 3画像データとして作成することを特徴とする請求項 1 に記載の超音波画像処理装置。
[7] 前記第 3処理手段は,前記第 2画像データに対して,前記超音波を照射する深さ 方向に対して強い微分効果を有し,かつ深さ方向と直交する方向に対しては微分効 果が弱 ヽ微分フィルタを適用することを特徴とする請求項 1に記載の超音波画像処 理装置。
[8] 超音波を被検体に照射する照射手段と,
前記被検体からの超音波信号を検出する検出手段と,
前記検出手段の検出結果に基づいて画像データを作成する手段と,
画像データに対してエッジ強調処理と連続性強調処理とノイズ除去処理とを並列 的に行う手段と,
前記エッジ強調処理と連続性強調処理とノイズ除去処理との処理結果として得られ た 3種類の画像を重み付け合成して合成画像を求める手段と,
前記合成画像と前記画像データとを重み付け合成する手段を有することを特徴と する超音波画像処理装置。
[9] 前記重み付け合成する手段は,
較正画像を作成して,前記 3種類の画像から合成比率を変化させて複数の合成画像 を作成し,
前記複数の合成画像の各々と前記較正画像とについて,各画素の輝度について の差分の 2乗和を求め,
前記 2乗和が最小となる前記合成比率を求めて重み付け合成に用いることを特徴 とする請求項 8に記載の超音波画像処理装置。
[10] ディスプレイと前記重み付けの比率入力手段とをさらに有し,前記ディスプレイは前 記第 4画像データと前記第 5画像データの 2つの画像データを並べて表示し,前記 重み付けの比率入力手段は前記重み付けの比率を変更することを特徴とする請求 項 2に記載の超音波画像処理装置。
前記ディスプレイは,前記重み付けの比率入力手段によって変更した前記重み付 けの比率に応じて作成された前記第 5画像データ表示することを特徴とする請求項 1 0に記載の超音波画像処理装置。
PCT/JP2007/062291 2006-07-20 2007-06-19 Dispositif ultrasonographique WO2008010375A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008525812A JP4757307B2 (ja) 2006-07-20 2007-06-19 超音波画像処理装置
CN200780027577XA CN101489488B (zh) 2006-07-20 2007-06-19 超声波图像处理装置
EP07767165A EP2047801A1 (en) 2006-07-20 2007-06-19 Ultrasonographic device
US12/373,912 US20100022878A1 (en) 2006-07-20 2007-06-19 Ultrasonic Image Processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006197564 2006-07-20
JP2006-197564 2006-07-20

Publications (1)

Publication Number Publication Date
WO2008010375A1 true WO2008010375A1 (fr) 2008-01-24

Family

ID=38956710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062291 WO2008010375A1 (fr) 2006-07-20 2007-06-19 Dispositif ultrasonographique

Country Status (5)

Country Link
US (1) US20100022878A1 (ja)
EP (1) EP2047801A1 (ja)
JP (1) JP4757307B2 (ja)
CN (1) CN101489488B (ja)
WO (1) WO2008010375A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153716A (ja) * 2007-12-26 2009-07-16 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
EP2099224A1 (en) * 2008-03-03 2009-09-09 Sony Corporation Signal processing apparatus and method, and program
CN101853489A (zh) * 2009-04-02 2010-10-06 深圳艾科创新微电子有限公司 一种视频图像降噪装置及方法
WO2012060318A1 (ja) * 2010-11-01 2012-05-10 株式会社 東芝 超音波診断装置及び超音波画像処理装置
WO2013099772A1 (ja) * 2011-12-28 2013-07-04 オリンパス株式会社 細胞輪郭線形成装置及びその方法、コンピュータにより処理可能な細胞輪郭線形成プログラムを記憶する記憶媒体
WO2014069374A1 (ja) * 2012-11-01 2014-05-08 日立アロカメディカル株式会社 医用画像診断装置及び医用画像生成方法
JP5774498B2 (ja) * 2010-02-09 2015-09-09 株式会社日立メディコ 超音波診断装置
JP2015229016A (ja) * 2014-06-05 2015-12-21 学校法人上智学院 イメージング装置
JP2017203622A (ja) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 色むら検査方法及び色むら検査装置
JP2019520954A (ja) * 2016-04-25 2019-07-25 中慧医学成像有限公司 脊柱の弯曲角度を測定する方法及びデバイス
US10624612B2 (en) 2014-06-05 2020-04-21 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
CN112513673A (zh) * 2018-07-24 2021-03-16 皇家飞利浦有限公司 具有改进的动态范围控件的超声成像系统
US11125866B2 (en) 2015-06-04 2021-09-21 Chikayoshi Sumi Measurement and imaging instruments and beamforming method
US12020431B2 (en) 2020-09-02 2024-06-25 Canon Medical Systems Corporation Image processing apparatus and ultrasonic diagnostic apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001259075A1 (en) 2000-04-17 2001-10-30 Circadence Corporation System and method for web serving
US20110128972A1 (en) * 2000-04-17 2011-06-02 Randy Thornton Peer to peer dynamic network link acceleration
US8996705B2 (en) 2000-04-17 2015-03-31 Circadence Corporation Optimization of enhanced network links
US8065399B2 (en) 2000-04-17 2011-11-22 Circadence Corporation Automated network infrastructure test and diagnostic system and method therefor
CN102132554A (zh) * 2008-06-20 2011-07-20 惠普开发有限公司 用于高效视频处理的方法和系统
JP5824858B2 (ja) * 2010-05-10 2015-12-02 Jfeスチール株式会社 溶接部の組織形状の画像化方法及びその装置
US20120108973A1 (en) * 2010-11-01 2012-05-03 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus and ultrasonic image processing apparatus
US8849057B2 (en) * 2011-05-19 2014-09-30 Foveon, Inc. Methods for digital image sharpening with noise amplification avoidance
KR20130008858A (ko) * 2011-07-13 2013-01-23 삼성전자주식회사 영상 처리 방법 및 그에 따른 영상 처리 장치
RU2014136714A (ru) 2012-02-10 2016-04-10 Конинклейке Филипс Н.В. Клинически управляемое слияние изображений
CN103034979B (zh) * 2012-11-30 2015-03-25 声泰特(成都)科技有限公司 一种超声图像清晰度提升方法
CN103251428B (zh) * 2013-04-17 2015-05-13 深圳市理邦精密仪器股份有限公司 用于超声扫描系统的隔直滤波模块及方法、超声扫描系统
CN105745639A (zh) * 2013-11-20 2016-07-06 惠普发展公司,有限责任合伙企业 可移动储存器数据散列
JP6179368B2 (ja) * 2013-11-22 2017-08-16 コニカミノルタ株式会社 画像表示装置及び画像表示方法
US10424054B2 (en) * 2015-06-26 2019-09-24 Peking University Shenzhen Graduate School Low-illumination image processing method and device
KR102584526B1 (ko) * 2016-09-26 2023-10-05 한화비전 주식회사 영상 처리 장치 및 방법
CN114066738A (zh) * 2020-07-31 2022-02-18 北京小米移动软件有限公司 图像处理方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280739A (ja) * 1989-03-24 1990-11-16 Philips Gloeilampenfab:Nv 超音波エコーグラフ結像装置
JPH0751270A (ja) * 1993-08-13 1995-02-28 Hitachi Medical Corp 超音波診断装置
JPH11501841A (ja) * 1995-03-10 1999-02-16 アキュソン コーポレイション イメージングシステム用表示プロセッサ
JP2001014461A (ja) 2000-01-01 2001-01-19 Hitachi Ltd 画像処理方法
JP2001285641A (ja) 2000-03-31 2001-10-12 Fuji Photo Film Co Ltd 画像処理方法、画像処理装置および記録媒体
JP2004141514A (ja) * 2002-10-28 2004-05-20 Toshiba Corp 画像処理装置及び超音波診断装置
JP2004267584A (ja) * 2003-03-11 2004-09-30 Aloka Co Ltd 超音波診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005984A (en) * 1991-12-11 1999-12-21 Fujitsu Limited Process and apparatus for extracting and recognizing figure elements using division into receptive fields, polar transformation, application of one-dimensional filter, and correlation between plurality of images
US5718229A (en) * 1996-05-30 1998-02-17 Advanced Technology Laboratories, Inc. Medical ultrasonic power motion imaging
US6246783B1 (en) * 1997-09-17 2001-06-12 General Electric Company Iterative filter framework for medical images
US5971923A (en) * 1997-12-31 1999-10-26 Acuson Corporation Ultrasound system and method for interfacing with peripherals
JP4130114B2 (ja) * 2002-10-09 2008-08-06 株式会社日立メディコ 超音波イメージング装置及び超音波信号処理方法
US20050053305A1 (en) * 2003-09-10 2005-03-10 Yadong Li Systems and methods for implementing a speckle reduction filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280739A (ja) * 1989-03-24 1990-11-16 Philips Gloeilampenfab:Nv 超音波エコーグラフ結像装置
JPH0751270A (ja) * 1993-08-13 1995-02-28 Hitachi Medical Corp 超音波診断装置
JPH11501841A (ja) * 1995-03-10 1999-02-16 アキュソン コーポレイション イメージングシステム用表示プロセッサ
JP2001014461A (ja) 2000-01-01 2001-01-19 Hitachi Ltd 画像処理方法
JP2001285641A (ja) 2000-03-31 2001-10-12 Fuji Photo Film Co Ltd 画像処理方法、画像処理装置および記録媒体
JP2004141514A (ja) * 2002-10-28 2004-05-20 Toshiba Corp 画像処理装置及び超音波診断装置
JP2004267584A (ja) * 2003-03-11 2004-09-30 Aloka Co Ltd 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN L. ET AL.: "Nonlinear wavelet filter for intracoronary ultrasound images", PROCEEDINGS OF COMPUTERS IN CARDIOLOGY, IEEE, September 1996 (1996-09-01), pages 41 - 44, XP010205883 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153716A (ja) * 2007-12-26 2009-07-16 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
EP2099224A1 (en) * 2008-03-03 2009-09-09 Sony Corporation Signal processing apparatus and method, and program
US8238684B2 (en) 2008-03-03 2012-08-07 Sony Corporation Signal processing apparatus and method, and program
CN101853489A (zh) * 2009-04-02 2010-10-06 深圳艾科创新微电子有限公司 一种视频图像降噪装置及方法
JP5774498B2 (ja) * 2010-02-09 2015-09-09 株式会社日立メディコ 超音波診断装置
WO2012060318A1 (ja) * 2010-11-01 2012-05-10 株式会社 東芝 超音波診断装置及び超音波画像処理装置
JP2012095806A (ja) * 2010-11-01 2012-05-24 Toshiba Corp 超音波診断装置及び超音波画像処理装置
WO2013099772A1 (ja) * 2011-12-28 2013-07-04 オリンパス株式会社 細胞輪郭線形成装置及びその方法、コンピュータにより処理可能な細胞輪郭線形成プログラムを記憶する記憶媒体
JP2013137627A (ja) * 2011-12-28 2013-07-11 Olympus Corp 細胞輪郭線形成装置及びその方法、細胞輪郭線形成プログラム
US10168526B2 (en) 2011-12-28 2019-01-01 Olympus Corporation Cell contour formation apparatus and method of the same, and non-transitory computer readable storage medium storing a cell contour formation program
US9569841B2 (en) 2012-11-01 2017-02-14 Hitachi, Ltd. Medical image processing apparatus and medical image generation method
WO2014069374A1 (ja) * 2012-11-01 2014-05-08 日立アロカメディカル株式会社 医用画像診断装置及び医用画像生成方法
JPWO2014069374A1 (ja) * 2012-11-01 2016-09-08 株式会社日立製作所 医用画像診断装置及び医用画像生成方法
JP2015229016A (ja) * 2014-06-05 2015-12-21 学校法人上智学院 イメージング装置
US10624612B2 (en) 2014-06-05 2020-04-21 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
US11965993B2 (en) 2015-06-04 2024-04-23 Chikayoshi Sumi Measurement and imaging instruments and beamforming method
US11125866B2 (en) 2015-06-04 2021-09-21 Chikayoshi Sumi Measurement and imaging instruments and beamforming method
JP2019520954A (ja) * 2016-04-25 2019-07-25 中慧医学成像有限公司 脊柱の弯曲角度を測定する方法及びデバイス
JP2017203622A (ja) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 色むら検査方法及び色むら検査装置
CN112513673A (zh) * 2018-07-24 2021-03-16 皇家飞利浦有限公司 具有改进的动态范围控件的超声成像系统
JP7256258B2 (ja) 2018-07-24 2023-04-11 コーニンクレッカ フィリップス エヌ ヴェ 改善されるダイナミックレンジ制御部を備える超音波映像システム
CN112513673B (zh) * 2018-07-24 2024-01-12 皇家飞利浦有限公司 具有改进的动态范围控件的超声成像系统
JP2021531860A (ja) * 2018-07-24 2021-11-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 改善されるダイナミックレンジ制御部を備える超音波映像システム
US12020431B2 (en) 2020-09-02 2024-06-25 Canon Medical Systems Corporation Image processing apparatus and ultrasonic diagnostic apparatus
JP7536557B2 (ja) 2020-09-02 2024-08-20 キヤノンメディカルシステムズ株式会社 画像処理装置及び超音波診断装置

Also Published As

Publication number Publication date
EP2047801A1 (en) 2009-04-15
CN101489488B (zh) 2011-11-23
JP4757307B2 (ja) 2011-08-24
US20100022878A1 (en) 2010-01-28
CN101489488A (zh) 2009-07-22
JPWO2008010375A1 (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4757307B2 (ja) 超音波画像処理装置
KR101205107B1 (ko) 스페클 감소 필터의 구현 방법, 스페클 감소 필터링 장치 및 초음파 촬상 시스템
US7404797B2 (en) Ultrasonic imaging system and ultrasonic signal processing method
JP6342212B2 (ja) 超音波診断装置
EP2905633B1 (en) Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method
CN105455843B (zh) 在超声成像中的阴影抑制
JP5256210B2 (ja) 超音波画像処理方法および超音波画像処理装置
JP7253496B2 (ja) 改善されたクラッタ抑制を含むパワードップラー・イメージング・システム及び方法
JP2022023982A (ja) 超音波画像を処理するための方法及びシステム
JP6460707B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP6697609B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
JP7171625B2 (ja) 超音波画像を処理するための方法及びシステム
JP7034686B2 (ja) 超音波診断装置、医用画像処理装置及びそのプログラム
JP7282492B2 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP6945427B2 (ja) 超音波診断装置、医用画像処理装置及びそのプログラム
JP2005318921A (ja) 超音波診断装置
KR101610877B1 (ko) 공간 일관성 기초 초음파 신호 처리 모듈 및 그에 의한 초음파 신호 처리 방법
Khodadadi Ultrasound elastography: Direct strain estimation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027577.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525812

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007767165

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12373912

Country of ref document: US