WO2008004480A1 - Process for producing alkali-free glass substrate - Google Patents

Process for producing alkali-free glass substrate Download PDF

Info

Publication number
WO2008004480A1
WO2008004480A1 PCT/JP2007/062913 JP2007062913W WO2008004480A1 WO 2008004480 A1 WO2008004480 A1 WO 2008004480A1 JP 2007062913 W JP2007062913 W JP 2007062913W WO 2008004480 A1 WO2008004480 A1 WO 2008004480A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
alkali
free glass
producing
supply step
Prior art date
Application number
PCT/JP2007/062913
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Takeda
Shirou Tanii
Seiji Higashi
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to CN200780025869XA priority Critical patent/CN101489946B/en
Priority to JP2008523658A priority patent/JP5239859B2/en
Priority to KR1020097000251A priority patent/KR101107369B1/en
Publication of WO2008004480A1 publication Critical patent/WO2008004480A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/007Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/14Changing the surface of the glass ribbon, e.g. roughening
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/283Borides, phosphides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing an alkali-free glass substrate.
  • Many glass substrates including a glass substrate for display are manufactured by a float process or a fusion process. Unlike the fusion method, the float method is superior in that it can efficiently produce large-area glass substrates.
  • This float method generally includes a molding step for forming molten glass on a glass substrate on molten tin in a molten tin bath, and a slow cooling step for gradually cooling the glass substrate formed by the molding step. It is a life.
  • the glass substrate molded by this molding process is transported by the roller after leaving the molten tin bath, so the back surface (the surface that hits the roller) is damaged during transportation! Teshima! There was a problem that the quality of the glass substrate deteriorated.
  • SO gas sulfurous acid gas
  • Patent Document 1 and Non-Patent Document 1 See) o
  • Patent Document 1 International Publication No. 2002Z051767 Pamphlet
  • Non-Patent Document 1 U. Senturk etc, J. Non— Cryst. Solids, No. 222, p. 160 (199 7)
  • non-alkali glass when manufacturing a glass substrate composed of glass that does not substantially contain an alkali metal (hereinafter also referred to as “non-alkali glass”), depending on the method of blowing sulfurous acid gas, sodium sulfate may be used. It is not formed, and salts such as calcium sulfate and strontium sulfate, which are reaction products with alkaline earth metals, are formed on the glass substrate. Although these salts derived from alkaline earth metals act as protective films to prevent scratches on the glass substrate, their production efficiency is significantly lower than that of sodium sulfate, so their effects may not be sufficient. there were. Moreover, since it is a hardly water-soluble salt even if it is produced, there is a problem that it is extremely difficult to remove in a subsequent washing step.
  • non-alkali glass is required to have a high-quality surface such as a flat panel display, and if there is a scratch on the glass substrate, it will cause defects such as poor disconnection, so that scratches smaller than those for window glass and automotive glass are also a problem. .
  • the present invention is a method for producing a glass substrate made of alkali-free glass (hereinafter also referred to as “alkali-free glass substrate”) used in a liquid crystal display, and is easily removed in a cleaning process.
  • An object is to provide an alkali-free glass substrate obtained by the above.
  • an inorganic substance containing an alkali metal is in contact with the molten tin of the glass substrate in the production process by the float process. Blow the surface to supply alkali metal, then blow SO gas to the surface.
  • the present invention provides the following (1) to (14).
  • a non-alkali glass substrate manufacturing method comprising: a second supplying step.
  • the glass substrate is a mass percentage display based on oxide
  • Alkali metal component 0.5% or less
  • Alkali metal component 0.5% or less
  • a protective coating that can be easily removed in a cleaning process is efficiently generated, and the amount of sulfurous acid gas used is reduced while reducing the amount of sulfur dioxide used.
  • a method for producing an alkali-free glass substrate that suppresses the generation of scratches and an alkali-free glass substrate obtained by the production method can be provided.
  • FIG. 1 is a conceptual diagram showing an example of a glass production line by a float process.
  • FIG. 2 is a cross-sectional view of the large tubular furnace used in the examples.
  • FIG. 3 is an explanatory view showing a portion (wear portion) hit by a wear ring and a site for measuring the number of scratches (measurement portion) of the Taber experimental machine used for evaluation of scratch resistance.
  • the method for producing an alkali-free glass substrate according to the first aspect of the present invention is a method for producing an alkali-free glass substrate for producing an alkali-free glass substrate by a float process.
  • an inorganic substance containing an alkali metal (hereinafter also referred to as “alkali metal-containing inorganic substance”) is sprayed on the surface of the glass substrate that contacts the molten tin (hereinafter also referred to as “bottom surface”).
  • the surface of the glass substrate on the side in contact with the molten tin, that is, the bottom surface on which the inorganic substance is sprayed is SO.
  • a method for producing an alkali-free glass substrate comprising a second supply step of blowing gas.
  • the manufacturing method of the present invention further includes a cleaning step for removing the protective film.
  • the forming step is a step of forming molten glass on a glass substrate on molten tin in a molten tin bath, and is a conventionally known step in a general float method.
  • FIG. 1 is a conceptual diagram showing an example of a glass production line by a float process.
  • molten glass 4 flows continuously from the melting furnace 3 to form a glass ribbon.
  • the glass ribbon is advanced along the bath surface of the molten tin bath 2 while being buoyant, so that the glass ribbon is formed into a plate shape as the temperature decreases.
  • the glass substrate thus produced is drawn out by the drawing roll 5 and is conveyed to the slow cooling furnace 6 in a continuous state in the longitudinal direction.
  • the forming step is a step until the molten glass 4 is formed into a plate shape through a glass ribbon.
  • the molten tin bath 2 is composed of a tin bath furnace and a ceiling wall lined with a special refractory on the inside of a metal case, and tin oxide is used. To prevent this, use a sealed structure.
  • a mixed gas composed of hydrogen and nitrogen hydrogen content: 2 to 10% by volume
  • the temperature condition in the molten tin bath in the molding step is 600 to 1050 ° C., that is, the temperature of the molten glass flowing into the molten tin bath is 900 to 1050 ° C. Therefore, it is possible to achieve a force S of 600-800 ° C on the downstream side. Note that this temperature is normally maintained by the amount of heat of the molten glass. A heater or cooler may be used to adjust the temperature.
  • an alkali-free glass substrate is formed on molten tin by the above-described forming step.
  • the non-crisp glass is glass that does not substantially contain an alkali metal as described above.
  • the alkali-free glass is represented by a mass percentage display based on an oxide,
  • alkali metal component refers to an alkali metal component inevitably contained regardless of the first supply step described later.
  • the slow cooling step is a step of slowly cooling the glass substrate formed by the forming step.
  • the glass substrate that has been made is pulled out by the pulling roll 5 and then transferred to the slow cooling furnace 6 in a continuous state in the longitudinal direction until it is gradually cooled. It is this process.
  • the slow cooling furnace may be the same as that used in a general float method, and a heater or the like may be provided for temperature control.
  • the annealing conditions in the annealing furnace in the annealing process can be set to temperatures of 550 to 750 ° C at the inlet of the annealing furnace and 200 to 300 ° C at the outlet, as in the general float method. Yes, the speed of temperature drop can be 90 ° C ⁇ 10 ° C / m.
  • the first supply step is a step of spraying an alkali metal-containing inorganic substance onto the bottom surface of the glass substrate to supply the alkali metal to the bottom surface.
  • the alkali metal-containing inorganic substance means an inorganic substance containing an alkali metal as described above, and includes, for example, lithium (Li), sodium (Na), potassium (K), cesium (Cs) and the like. This applies to inorganic substances.
  • an alkali metal is supplied to the bottom surface of the glass substrate, and then SO gas is blown to form an alkali sulfate salt.
  • a protective coating can be produced efficiently.
  • this protective film can be easily removed by a cleaning process. Furthermore, the same protective effect can be obtained even if the amount of SO gas is reduced.
  • alkali metal-containing inorganic substance It reacts preferentially with the alkali metal generated, and it is a water-insoluble solution that exists even in alkali-free glass. This is thought to be because the reaction with alkaline earth metals (Ca, Sr, etc.) is suppressed.
  • alkali metal source called an alkali metal-containing inorganic substance
  • the same protective effect can be achieved with a small amount of SO gas compared to the amount of SO gas used to obtain reactive organisms (calcium sulfate, strontium sulfate, etc.) as a protective coating.
  • inorganic substance containing Na include, for example, NaOH, Na S, NaCl, N
  • Na and the like can be mentioned, and these may be used alone or in combination of two or more.
  • inorganic substances containing K include, for example, KOH, KC1, KF, KBr, KI, KCN, KCO, potassium gnoleconate, KHF, KNO, KBO-4H O (tetraboric acid Cali
  • the inorganic substance containing Cs include CsOH, CsCl, CsF, CsBr, Csl, cesium acetylethylacetonate, HCO Cs, and CsNO.
  • Species may be used alone or in combination of two or more.
  • the alkali metal-containing inorganic substance is an inorganic substance containing Na
  • the production efficiency of the protective film (sodium sulfate) formed in the second supply step, which will be described later, is further improved and easy to remove with water. Preferred because it becomes.
  • the alkali metal-containing inorganic material strength Na and boron-containing inorganic material are alkali-free glass substrate strength obtained by the production method of the present invention, and further have wear resistance even after the cleaning step described later. Therefore, it is more preferable.
  • Na B sodium B
  • Na B O is preferred Na B O—10H O is more preferred
  • a high level of scratch resistance can be satisfied by utilizing this diffusion of boron to a glass substrate for a black chip / biochip.
  • the first supply step is a force for supplying alkali metal to the bottom surface by spraying such an alkali metal-containing inorganic substance onto the bottom surface of the glass substrate.
  • the spraying method the following modes are suitably exemplified.
  • the timing of spraying the alkali metal-containing inorganic substance is not particularly limited as long as it is before the second supply step described later. Specifically, even at the same time as the molding step described above, the timing is gradually decreased. Although it may be simultaneous with the cooling step, it is preferable that it is between the molding step and the slow cooling step because the occurrence of scratches on the back surface of the glass substrate can be further suppressed.
  • “simultaneously with the molding process” means a stage immediately after forming the glass substrate in the molding process and included in the molding process, for example, a forming furnace, a molten tin bath (float bath), and the entire furnace.
  • an exit portion shield rare
  • “simultaneously with the slow cooling step” means that the spraying may be performed near the inlet of the slow cooling furnace or upstream of the slow cooling furnace.
  • between the forming step and the slow cooling step means that the glass substrate may be sprayed between the forming furnace and the slow cooling furnace.
  • the method of spraying the alkali metal-containing inorganic substance is, for example, a method of heating and vaporizing the alkali metal-containing inorganic substance and spraying the vaporized substance onto the bottom surface of the glass substrate using a nozzle;
  • a method of heating and vaporizing an alkali metal-containing inorganic substance by heating, infrared lamp heating, laser heating, etc. is preferred.
  • the vaporizing substance is sprayed at a temperature in the range of the glass transition temperature of the glass substrate ⁇ 100 ° C.
  • the glass transition point of the glass substrate is preferably in the range of 30 ° C to glass transition point + 100 ° C. This is because if the spraying is performed within this temperature range, the glass becomes soft at the glass transition point, so that a film can be formed in that region, thereby preventing damage more effectively.
  • the force applied at 600-800 ° C vaporizes the substance efficiently, and the glass This is preferable in that the substrate temperature does not drop abruptly when sprayed onto the substrate surface.
  • spraying of the vaporized material 0. 2:
  • the LOLZm that is 2 to is preferred instrument 0. 2 ⁇ 3L / m 2 is more preferred instrument 0. 2 ⁇ lL / m 2 Is particularly preferred.
  • the spraying amount is within this range, the bottom surface of the glass substrate is suppressed while suppressing the amount of SO gas spraying.
  • the supply amount of the alkali metal to be supplied becomes sufficient, and the production efficiency of the protective film formed by reacting with the SO gas sprayed in the second supply step described later is further improved.
  • sodium tetraborate decahydrate When sodium tetraborate decahydrate is used as the alkali metal-containing inorganic substance, it is 850 ° in a furnace other than a glass substrate forming furnace and a slow cooling furnace (for example, a large tube furnace used in the examples). After vaporizing sodium tetraborate at a temperature of about C, the vaporized material is about 700 ° C. using a nozzle, and the glass substrate transported between these forming furnaces or slow cooling furnaces or between these furnaces is used. A method of spraying on the bottom surface is a preferred embodiment.
  • the alkali metal is supplied to the bottom surface of the glass substrate.
  • the presence of alkali metal on the bottom surface of the glass substrate can be confirmed by X-ray photoelectron spectroscopy (XPS) or fluorescent X-ray analysis of the bottom surface of the glass substrate.
  • XPS X-ray photoelectron spectroscopy
  • This second supply step is different from a conventionally known step in a general float method in that a protective film is formed on the bottom surface of the glass substrate supplied with the alkali metal.
  • the alkali metal and the SO gas are sprayed by blowing SO gas onto the bottom surface of the glass substrate to which the alkali metal has been supplied in the first supply step.
  • alkali sulfate eg, sodium sulfate
  • Timing (timing) and spraying of SO gas in the second supply step About the method, the aspect shown below is illustrated suitably.
  • the timing of blowing the SO gas is not particularly limited as long as it is after the first supply step.
  • a method of blowing SO gas is a conventionally known method in a general float method.
  • the same protective effect is ensured as compared with the conventional example using a sulfate (eg, calcium sulfate) derived from an alkaline earth metal as a protective coating on the alkali-free glass substrate.
  • a sulfate eg, calcium sulfate
  • SO gas SO gas
  • the amount of spray can be reduced. As described above, this is because the SO gas sprayed in the second supply process was supplied to the bottom surface.
  • alkali metals (Ca, Sr, etc.), which reacts preferentially with alkali metals and is less reactive than alkali-free glasses, is suppressed.
  • SO particularly 0.05 to 0.3.
  • LZm 2 can be reduced.
  • the SO gas is sprayed at a temperature in the range of ⁇ 100 ° C of the glass transition point of the glass substrate.
  • the so 2 gas spraying is more preferably performed at 600 to 800 ° C.
  • a protective coating made of sulfate that can be easily removed in the cleaning process is generated more efficiently, and the occurrence of scratches on the back surface of the glass substrate is further suppressed. It is the power that can be.
  • the cleaning step performed as desired is a step of cleaning and removing the protective film formed in the second supply step, and is a conventionally known step in a general float method.
  • the timing (timing) of the cleaning step and the cleaning method the following modes are preferably exemplified.
  • the timing of the cleaning step is not particularly limited as long as it is after the second supply step, but the protective coating is made against a scratch on the surface (bottom surface) of the glass substrate that occurs during roller conveyance. Therefore, the final stage of the slow cooling step or immediately after the slow cooling step is preferable.
  • the cleaning method in the above-described cleaning step is an easy method because a protective film made of a sulfate derived from alkali metal (for example, a water-soluble salt such as sodium sulfate) is formed in the present invention. For example, it can be removed by washing with water. If the first supply process is not performed and SO gas is sprayed, the glass substrate
  • the protective coating formed on the tom surface becomes a sulfate derived from an alkaline earth metal (for example, a poorly water-soluble salt such as calcium sulfate), which makes it difficult to clean easily.
  • an alkaline earth metal for example, a poorly water-soluble salt such as calcium sulfate
  • the smoothness of the obtained alkali-free glass substrate is improved, and the distortion, undulation, microcorrugation, scratches and foreign matter defects of the glass substrate are reduced, and the uniformity is high.
  • a polishing step may be provided as necessary after the cleaning step.
  • This polishing process is a conventionally known process in a general float process. Specifically, the polishing process is a glass substrate placed on urethane foam using an acid-cerium-based abrasive. The method of polishing is mentioned.
  • a method for producing an alkali-free glass substrate according to the second aspect of the present invention is a method for producing an alkali-free glass substrate by a float method, wherein the molten glass is glass on molten tin.
  • a molding process for molding on a substrate is a method for producing an alkali-free glass substrate by a float method, wherein the molten glass is glass on molten tin.
  • 2 is a method for producing an alkali-free glass substrate, comprising a second supplying step.
  • the forming step in the second aspect of the present invention is the same as that described in the first aspect of the present invention, and the temperature is set to 600 for the first supply step and the second supply step. Except for the range of ⁇ 800 ° C., the same as described in the first embodiment of the present invention. Also in the second aspect of the present invention, it is preferable to include the above-described cleaning step, and it is possible to further include the above-described polishing step.
  • the present invention can be obtained by the production method of the present invention when an inorganic substance containing Na and boron is used in the production method of the present invention (including the second aspect, the same shall apply hereinafter).
  • the present invention also provides a non-alkali glass substrate.
  • an alkali-free glass substrate is provided by spraying an inorganic substance containing Na and boron onto the bottom surface of the glass substrate in the first supply step, and then performing the cleaning step as necessary. be able to.
  • the alkali-free glass substrate of the present invention preferably has the following composition.
  • the glass substrate is expressed in terms of mass percentage based on oxide
  • Alkali metal component 0.5% or less
  • the average boron concentration of the bottom surface of the glass substrate is 4 to: L0 atomic%, and the diffusion depth of boron into the glass substrate is 5 nm or more.
  • the SiO content (expressed in terms of mass percentage based on oxide) is 50 to 80%.
  • the content of Al 2 O (expressed in terms of mass percentage based on oxide) is preferably 0 to 30%.
  • 3-22% is more preferred 3-20% is more preferred 15-20 % Is particularly preferred, with 15-19% being most preferred.
  • the content of B 2 O (expressed in terms of mass percentage based on oxide) is preferably 0 to 30%.
  • the content of MgO (expressed in terms of mass percentage based on oxide) is preferably 0 to 20%, more preferably 0 to 8%, and even more preferably 0 to 6%. .
  • the content of CaO (expressed in terms of mass percentage based on oxide) is preferably 0 to 20%, more preferably 0 to 9%, and even more preferably 0 to 8%. .
  • the SrO content (expressed as a percentage by mass on the oxide basis) is preferably 0 to 20%, more preferably 0 to 12.5%, and 3 to 12.5%. Is more preferable. Further, the BaO content (expressed in terms of mass percentage based on oxide) is preferably 0 to 20%, more preferably 0% or more and less than 2%.
  • the content of alkali metal component (expressed in terms of mass percentage based on oxide) is preferably 0.5% or less, more preferably 0.2% or less, and more preferably 0.1% or less. More preferably.
  • the content of the alkali metal component is in the range of the composition of the alkali-free glass used for the alkali-free glass substrate.
  • the average boron concentration on the bottom surface of the glass substrate can be obtained as an average value when arbitrarily measured at five points by X-ray photoelectron spectroscopy.
  • X-ray photoelectron spectroscopy an XPS spectrometer (5500 type, manufactured by PHI) was used, and X-rays ⁇ rays monochromatized with a monochromator were used as the X-ray source.
  • the X-ray photoelectron detection angle was 75 °, and measurement was performed by irradiating an electron shower to correct charging.
  • the diffusion depth of boron into the glass substrate is estimated from the depth at which the secondary ion intensity reaches the same level as the background by secondary ion mass spectrometry (SIMS). Is pretty.
  • the diffusion depth was measured at five points on each of the five points on the glass substrate using a secondary ion mass spectrometer (ADEPT1010, ULVAC “Phine”), and the average value was obtained.
  • the primary ion is an oxygen ion beam
  • the acceleration voltage is 5 keV
  • the beam current is 400 ⁇
  • the incident angle of the primary ion is 45 degrees with respect to the normal of the sample surface
  • the beam scanning range is 400 X 400 ⁇ m 2 Measured with
  • the average boron concentration of the bottom surface of the glass substrate is 4 to: L0 atomic%, and the diffusion depth of boron into the glass substrate is 5 nm or more and 80 nm.
  • the thickness is preferably 50 nm or less, the strength of the glass substrate itself is improved, the wear resistance is excellent, and the transportation and processing steps after the protective coating is removed! Even if it is, it will be excellent in scratch resistance.
  • the reason why boron has a bottom surface force also diffuses into the glass substrate and remains on the surface of the glass substrate, so that the wear resistance and the scratch resistance are improved is because the glass network structure is strengthened. Conceivable.
  • the alkali-free glass substrate of the present invention is not limited to the glass substrate because boron remains on the surface layer of the glass substrate not only before the cleaning step but also after the cleaning step if necessary. Since it is possible to continue to suppress the occurrence of scratches on the back surface, it is preferable.
  • the present invention represents the oxide-based mass percentage
  • Alkali metal component 0.5% or less
  • an alkali-free glass substrate having an average boron concentration of at least one surface of 4 to 10 atomic% and a surface force of boron diffusion depth of 5 nm or more inside. Togashi.
  • FIG. 2 is a cross-sectional view of the large tubular furnace used in the examples.
  • a quartz tube 12 is installed in a large-sized tubular furnace 11 whose temperature can be adjusted, and a non-alkali glass substrate 13 (10 cm square) having a thickness of 0.7 mm is placed in the quartz tube 12, and the large tubular furnace 11 is placed.
  • ⁇ Non-alkali glass substrate '' is expressed in terms of mass percentage based on oxide, 68% ⁇ SiO ⁇ 80%, 0% ⁇ A1 O ⁇ 12%, 0% ⁇ B O ⁇ 7
  • the sodium tetraborate decahydrate reagent 15 placed in the alumina boat 14 is locally heated to about 850 ° C to vaporize the vaporized material, and the end force of the quartz tube also moves in the direction indicated by the arrow 16.
  • sodium which is an alkali metal
  • the spray amount of sodium tetraborate decahydrate at this time was 0.4 L / m 2 , and the temperature of the alkali-free glass substrate 13 was 700 ° C.
  • SO gas was sprayed from the direction indicated by the arrow 17 to form a protective coating so that the amount of spraying on the surface of the alkali-free glass substrate 13 was 0.1 lZm 2 .
  • An alkali-free glass substrate was produced.
  • the temperature of the alkali-free glass substrate 13 at this time was 700 ° C.
  • the conditions are the same as those in which an alkali metal-containing inorganic substance was sprayed between the molding step and the slow cooling step and so gas was sprayed immediately thereafter.
  • the protective coating was applied in the same manner as in Example 1 except that the amount of SO gas sprayed was 0.4 LZm 2.
  • the protective coating was applied in the same manner as in Example 1 except that the amount of SO gas sprayed was 1. OLZm 2.
  • a non-alkali glass substrate with a film was produced.
  • Example 2 The same as Example 1 except that sodium tetraborate was not used and only SO gas was sprayed.
  • the alkali-free glass substrate with a protective film was manufactured by the method.
  • Example 2 Same as Example 2 except that sodium tetraborate was not used and only SO gas was sprayed.
  • the alkali-free glass substrate with a protective film was manufactured by the method.
  • Example 3 Same as Example 3 except that sodium tetraborate was not used and only SO gas was sprayed.
  • the alkali-free glass substrate with a protective film was manufactured by the method.
  • a non-alkali glass substrate was produced in the same manner as in Example 1 except that.
  • Example 2 Same as Example 1 except that sodium tetraborate was not used and SO gas was also applied.
  • An alkali-free glass substrate was produced by the method described above.
  • the obtained protective coating of each alkali-free glass substrate with protective coating was dissolved in pure water, sulfur was quantified using ICP emission analysis, and sodium was quantified using atomic absorption spectrometry.
  • the amount of sodium sulfate adhering was calculated as the amount of protective coating adhered. I put it out.
  • the adhesion amount was determined as an average value calculated from 10 sheets of the obtained alkali-free glass substrate.
  • the scratch resistance was evaluated by a Taber test according to JIS R3221 (1990).
  • the Taber test was conducted using a Taber tester (Tdedyne Taber Model 503), with the wear wheel fixed to CS-10F, the load fixed to 250 g, and the wear frequency fixed to 3 times. Thereafter, in order to remove the protective coating of each alkali-free glass substrate with a protective coating used as a test specimen, the substrate was washed with a shower for 30 seconds under flowing pure water (3 liters Z) at 20 ° C.
  • the surface of the glass substrate obtained by removing the protective film was observed with a microscope, and the number of scratches (number of scratches) with a length of 0.2 mm or more in the long axis direction existing within 1 cm ⁇ 1 cm square was measured. .
  • the measurement part was the central part of the part subjected to the Taber test (see Fig. 3). In FIG. 3, a wear part 19 due to a wear ring is formed on a specimen (non-alkali glass substrate) 18, but the measurement part 20 is the central part of the wear part 19.
  • the number of scratches was measured for 10 arbitrary points on each glass substrate, and the average value was obtained. Furthermore, the number of scratches was determined as an average value obtained by calculating the 10-sheet force of the obtained glass substrate.
  • the primary ions are measured under the conditions of an oxygen ion beam, acceleration voltage is 5 keV, beam current is 400 nA, the incident angle of primary ions is 45 degrees with respect to the normal of the sample surface, and the beam scanning range is 400 X 400 IX m 2. did.
  • Abrasion resistance was determined by examining the rate of change in the haze rate before and after the Taber test (rate of change in haze).
  • the haze ratio of each obtained alkali-free glass substrate was measured with a haze meter.
  • the obtained alkali-free glass substrate was subjected to a Taber test according to JIS R3221 (1990). The Taber test was conducted using a Taber tester (Tdedyne Taber Model 503), with the wear wheel fixed to CS-10F and the load fixed to 500 g.
  • the haze value is defined by the scattered light (Td) and the transmitted light (Tt) as follows.
  • the non-alkali glass substrates of Examples 1 to 3 had a clean surface after the protective coating formed on the surface of the glass substrate was removed after normal water washing.
  • the protective coating formed on the surface of the glass substrate could not be removed even after ordinary water washing, and remained. Further, when the components of the remaining film were measured, they were calcium sulfate and strontium sulfate.
  • the alkali-free glass substrates of Examples 1 to 3 have a reduced haze change rate and improved wear resistance compared to the alkali-free glass substrates of Comparative Examples 1 to 5 due to diffusion of boron. It was a component.
  • a non-alkali which efficiently generates a protective film that can be easily removed in a cleaning process, and suppresses the occurrence of scratches on the back surface of the glass substrate while reducing the amount of sulfurous acid gas used.
  • a method for producing a glass substrate and an alkali-free glass substrate obtained by the production method can be provided.
  • the alkali-free glass substrate of the present invention can be suitably used for high-quality displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

A process for producing an alkali-free glass substrate in which a protective coating film capable of being easily removed in a cleaning step is efficiently formed and the back side of the glass substrate is inhibited from being marred while reducing the amount of sulfur dioxide to be used; and an alkali-free glass substrate obtained by the process. The process for alkali-free glass substrate production produces an alkali-free glass substrate by the float method. It comprises a forming step in which a molten glass is formed on molten tin into a glass substrate and an annealing step in which the glass substrate formed in the forming step is annealed. The process further comprises a first supply step in which an inorganic substance containing an alkali metal is blown against that surface of the glass substrate which was in contact with the molten tin and a second supply step in which after the first supply step, SO2 gas is blown against that surface of the glass substrate which was in contact with the molten tin.

Description

明 細 書  Specification
無アルカリガラス基板の製造方法  Method for producing alkali-free glass substrate
技術分野  Technical field
[0001] 本発明は、無アルカリガラス基板の製造方法に関する。  [0001] The present invention relates to a method for producing an alkali-free glass substrate.
背景技術  Background art
[0002] ディスプレイ用ガラス基板をはじめとするガラス基板の多くは、フロート法またはフユ 一ジョン法により製造されている。フロート法はフュージョン法と異なり、大面積のガラ ス基板を効率よく製造できる点で優れた製法である。  [0002] Many glass substrates including a glass substrate for display are manufactured by a float process or a fusion process. Unlike the fusion method, the float method is superior in that it can efficiently produce large-area glass substrates.
このフロート法は、一般的に、溶融ガラスを溶融スズ浴中の溶融スズ上でガラス基 板に成形する成形工程と、成形工程により成形されたガラス基板を徐冷する徐冷ェ 程とを具備するちのである。  This float method generally includes a molding step for forming molten glass on a glass substrate on molten tin in a molten tin bath, and a slow cooling step for gradually cooling the glass substrate formed by the molding step. It is a life.
しカゝしながら、この成形工程により成形されたガラス基板は、溶融スズ浴を出た後に ローラーにより搬送されるため、搬送中にガラス基板の裏面 (ローラーに当たる面)に 傷が付!、てしま!ヽ、ガラス基板の品質を低下させてしまう t 、う問題があった。  However, the glass substrate molded by this molding process is transported by the roller after leaving the molten tin bath, so the back surface (the surface that hits the roller) is damaged during transportation! Teshima! There was a problem that the quality of the glass substrate deteriorated.
[0003] そこで、この搬送中に発生するガラス基板裏面の傷を防止するため、ガラス基板裏 面に亜硫酸ガス(SOガス)を吹き付け、ガラス中に存在するアルカリ金属(例えば、 [0003] Therefore, in order to prevent scratches on the back surface of the glass substrate that occur during the conveyance, sulfurous acid gas (SO gas) is sprayed on the back surface of the glass substrate, and alkali metals (for example,
2  2
ナトリウム等)と反応させ、ガラス基板の裏面に硫酸ナトリウムを形成し、それを保護膜 として働力せることにより傷防止がなされる方法が知られている(例えば、特許文献 1 および非特許文献 1等参照。 ) o  There is known a method for preventing scratches by reacting with sodium, etc., forming sodium sulfate on the back surface of the glass substrate, and acting as a protective film (for example, Patent Document 1 and Non-Patent Document 1) See) o
[0004] 特許文献 1:国際公開第 2002Z051767号パンフレット [0004] Patent Document 1: International Publication No. 2002Z051767 Pamphlet
非特許文献 1 :U. Senturk etc, J. Non— Cryst. Solids,第 222卷, p. 160 (199 7)  Non-Patent Document 1: U. Senturk etc, J. Non— Cryst. Solids, No. 222, p. 160 (199 7)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、近年の高品質ディスプレイに要求される高い傷防止能を実現させるために は、より保護膜の厚みを厚くする必要があり、そのためには、亜硫酸ガスを大量に使 用する必要があるため、環境負荷や作業環境の悪化の問題があった。また、亜硫酸 ガスは腐食性の高いガスであるため、周辺炉材を腐食し、炉材の寿命が短くなるとい う問題もあった。 [0005] However, in order to realize the high scratch-preventing ability required for high-quality displays in recent years, it is necessary to increase the thickness of the protective film, and for that purpose, it is necessary to use a large amount of sulfurous acid gas. Therefore, there was a problem of environmental load and work environment deterioration. Also, sulfurous acid Since the gas is highly corrosive, there was a problem that the furnace material was corroded and the life of the furnace material was shortened.
[0006] 特に、アルカリ金属を実質的に含有しないガラス(以下、「無アルカリガラス」ともいう 。)で構成されるガラス基板を製造する場合においては、亜硫酸ガスを吹き付ける方 法によっては硫酸ナトリウムが生成せず、アルカリ土類金属との反応生成物である硫 酸カルシウムや硫酸ストロンチウムなどの塩がガラス基板に生成する。アルカリ土類 金属を由来とするこれらの塩は、ガラス基板の傷を防止する保護被膜としては作用す るものの、その生成効率は硫酸ナトリウムに比べると著しく低いため、その作用は十 分でない場合があった。また、生成しても難水溶性塩であるため、後の洗浄工程で除 去することが極めて困難であるという問題があった。  [0006] In particular, when manufacturing a glass substrate composed of glass that does not substantially contain an alkali metal (hereinafter also referred to as “non-alkali glass”), depending on the method of blowing sulfurous acid gas, sodium sulfate may be used. It is not formed, and salts such as calcium sulfate and strontium sulfate, which are reaction products with alkaline earth metals, are formed on the glass substrate. Although these salts derived from alkaline earth metals act as protective films to prevent scratches on the glass substrate, their production efficiency is significantly lower than that of sodium sulfate, so their effects may not be sufficient. there were. Moreover, since it is a hardly water-soluble salt even if it is produced, there is a problem that it is extremely difficult to remove in a subsequent washing step.
また、これらの塩は、研磨により除去することは可能であるものの、平滑性の高いガ ラス基板を得るには、力なりの厚さを研磨しなければならず、製造時間、製造コストが 増大する問題があった。  In addition, although these salts can be removed by polishing, in order to obtain a glass substrate with high smoothness, it is necessary to polish a forceful thickness, which increases manufacturing time and manufacturing cost. There was a problem to do.
更に、無アルカリガラスはフラットパネルディスプレイ等の高品質な表面が要求され 、ガラス基板上に傷が存在すると断線不良などの不具合を引き起こすため、窓ガラス や自動車ガラスの用途以上により小さい傷も問題となる。  Furthermore, non-alkali glass is required to have a high-quality surface such as a flat panel display, and if there is a scratch on the glass substrate, it will cause defects such as poor disconnection, so that scratches smaller than those for window glass and automotive glass are also a problem. .
[0007] そこで、本発明は、液晶ディスプレイに用いられる無アルカリガラスで構成されるガ ラス基板 (以下、「無アルカリガラス基板」ともいう。)の製造方法であって、洗浄工程で 容易に除去することが可能な保護被膜を効率良く生成し、亜硫酸ガスの使用量の低 減を図りつつガラス基板の裏面の傷の発生を抑制することが可能な無アルカリガラス 基板の製造方法および該製造方法により得られる無アルカリガラス基板を提供するこ とを目的とする。  Therefore, the present invention is a method for producing a glass substrate made of alkali-free glass (hereinafter also referred to as “alkali-free glass substrate”) used in a liquid crystal display, and is easily removed in a cleaning process. A method for producing an alkali-free glass substrate capable of efficiently generating a protective coating that can be used and suppressing the occurrence of scratches on the back surface of the glass substrate while reducing the amount of sulfurous acid used, and the method for producing the same An object is to provide an alkali-free glass substrate obtained by the above.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者は、上記目的を達成するため鋭意検討した結果、フロート法による製造ェ 程にお 、て、アルカリ金属を含有する無機物質をガラス基板の溶融スズに接触して いた側の表面に吹きつけてアルカリ金属を供給し、次いで該表面に SOガスを吹き [0008] As a result of intensive investigations to achieve the above object, the present inventor has found that an inorganic substance containing an alkali metal is in contact with the molten tin of the glass substrate in the production process by the float process. Blow the surface to supply alkali metal, then blow SO gas to the surface.
2  2
付けることにより、洗浄工程で容易に除去することが可能な保護被膜を効率良く生成 し、亜硫酸ガスの使用量の低減を図りつつガラス基板の裏面の傷の発生を抑制でき ることを見出し、本発明を完成させた。 As a result, a protective coating that can be easily removed in the cleaning process can be efficiently generated, and the amount of sulfurous acid gas used can be reduced while preventing scratches on the back side of the glass substrate. The present invention has been completed.
[0009] 即ち、本発明は、以下の(1)〜(14)を提供する。  That is, the present invention provides the following (1) to (14).
(1)フロート法により無アルカリガラス基板を製造する無アルカリガラス基板の製造 方法であって、  (1) A method for producing an alkali-free glass substrate by producing an alkali-free glass substrate by a float process,
溶融ガラスを溶融スズ上でガラス基板に成形する成形工程と、上記成形工程により 成形された上記ガラス基板を徐冷する徐冷工程とを具備し、  A forming step of forming molten glass on a molten tin on a glass substrate, and a slow cooling step of gradually cooling the glass substrate formed by the forming step,
上記ガラス基板の上記溶融スズに接触する側の表面にアルカリ金属を含有する無 機物質を吹き付ける第 1供給工程と、上記第 1供給工程の後に、上記ガラス基板の 上記溶融スズに接触する側の表面に SOガスを吹き付ける第 2供給工程とを具備す  A first supply step of spraying an inorganic substance containing an alkali metal on a surface of the glass substrate that contacts the molten tin; and after the first supply step, a side of the glass substrate that contacts the molten tin. A second supply step of blowing SO gas on the surface
2  2
る、無アルカリガラス基板の製造方法。  A method for producing an alkali-free glass substrate.
[0010] (2)上記第 1供給工程が、上記成形工程と上記徐冷工程との間に施される上記(1 )に記載の無アルカリガラス基板の製造方法。 [0010] (2) The method for producing an alkali-free glass substrate according to (1), wherein the first supply step is performed between the forming step and the slow cooling step.
(3)上記第 1供給工程が、上記ガラス基板のガラス転移点 ± 100°Cの範囲の温度 で施される上記(1)に記載の無アルカリガラス基板の製造方法。  (3) The method for producing an alkali-free glass substrate according to (1), wherein the first supply step is performed at a temperature in the range of the glass transition point of the glass substrate ± 100 ° C.
(4)上記第 1供給工程が、 600〜800°Cで施される上記(1)に記載の無アルカリガ ラス基板の製造方法。  (4) The method for producing an alkali-free glass substrate according to (1), wherein the first supply step is performed at 600 to 800 ° C.
(5)上記第 2供給工程が、上記成形工程と上記徐冷工程との間に施される上記(1 )〜 (4)の 、ずれかに記載の無アルカリガラス基板の製造方法。  (5) The method for producing an alkali-free glass substrate according to any one of (1) to (4), wherein the second supply step is performed between the molding step and the slow cooling step.
(6)上記第 2供給工程が、上記ガラス基板のガラス転移点 ± 100°Cの範囲の温度 で施される上記(1)〜 (4)の 、ずれかに記載の無アルカリガラス基板の製造方法。  (6) The production of the alkali-free glass substrate according to any one of (1) to (4), wherein the second supply step is performed at a temperature in the range of glass transition point ± 100 ° C of the glass substrate. Method.
(7)上記第 2供給工程が、 600〜800°Cで施される上記(1)〜 (4)の 、ずれかに記 載の無アルカリガラス基板の製造方法。  (7) The method for producing an alkali-free glass substrate according to any one of (1) to (4), wherein the second supply step is performed at 600 to 800 ° C.
[0011] (8)フロート法により無アルカリガラス基板を製造する無アルカリガラス基板の製造 方法であって、  [0011] (8) A method for producing an alkali-free glass substrate for producing an alkali-free glass substrate by a float method,
溶融ガラスを溶融スズ上でガラス基板に成形する成形工程を具備し、  Comprising a molding step of forming molten glass on a molten tin on a glass substrate;
600〜800°Cで上記ガラス基板の上記溶融スズに接触する側の表面にアルカリ金 属を含有する無機物質を吹き付ける第 1供給工程と、上記第 1供給工程の後に、 60 0〜800°Cで上記ガラス基板の上記溶融スズに接触する側の表面に SOガスを吹き 付ける第 2供給工程とを具備する、無アルカリガラス基板の製造方法。 After the first supply step of spraying an inorganic substance containing an alkali metal on the surface of the glass substrate in contact with the molten tin at 600 to 800 ° C., and after the first supply step, 600 to 800 ° C. Blow SO gas on the surface of the glass substrate that contacts the molten tin. A non-alkali glass substrate manufacturing method, comprising: a second supplying step.
[0012] (9)更に、上記保護膜を除去する洗浄工程を具備する、上記(1)〜(8)のいずれか に記載の無アルカリガラス基板の製造方法。 [0012] (9) The method for producing an alkali-free glass substrate according to any one of (1) to (8), further comprising a cleaning step of removing the protective film.
(10)上記アルカリ金属を含有する無機物質が、ナトリウムおよびホウ素を含有する 上記(1)〜(9)の 、ずれかに記載の無アルカリガラス基板の製造方法。  (10) The method for producing an alkali-free glass substrate according to any one of (1) to (9), wherein the inorganic substance containing an alkali metal contains sodium and boron.
(11)上記アルカリ金属を含有する無機物質が、四ホウ酸ナトリウムである上記(10) に記載の無アルカリガラス基板の製造方法。  (11) The method for producing an alkali-free glass substrate according to the above (10), wherein the inorganic substance containing the alkali metal is sodium tetraborate.
[0013] (12)上記(10)または(11)に記載の製造方法により製造される無アルカリガラス基 板。  [0013] (12) An alkali-free glass substrate produced by the production method described in (10) or (11) above.
[0014] (13)上記(10)または(11)に記載の製造方法により製造される無アルカリガラス基 板であって、  (13) An alkali-free glass substrate produced by the production method according to (10) or (11) above,
上記ガラス基板が、酸化物基準の質量百分率表示で、  The glass substrate is a mass percentage display based on oxide,
SiO : 30  SiO: 30
2 〜85%、  2 to 85%,
AI O : 0  AI O: 0
2 3 〜35%、  2 3 ~ 35%,
B O : 0  B O: 0
2 3 〜35%、  2 3 ~ 35%,
MgO:。〜 35%、  MgO :. ~ 35%,
CaO:。〜 35%、  CaO: ~ 35%,
SrO:。〜 35%、  SrO :. ~ 35%,
BaO:。〜 35%、  BaO :. ~ 35%,
アルカリ金属成分: 0. 5%以下  Alkali metal component: 0.5% or less
を含有し、  Containing
上記ガラス基板の上記溶融スズに接触していた側の表面の平均ホウ素濃度が 4〜 10原子%であり、上記ガラス基板の内部へのホウ素の拡散深さが 5nm以上である無 アルカリガラス基板。  An alkali-free glass substrate in which the average boron concentration on the surface of the glass substrate that has been in contact with the molten tin is 4 to 10 atomic% and the diffusion depth of boron into the glass substrate is 5 nm or more.
[0015] (14)酸化物基準の質量百分率表示で、 [14] (14) Oxide-based mass percentage display,
SiO : 30〜85%、  SiO: 30 to 85%
2  2
AI O : 0〜35%、  AI O: 0-35%
2 3  twenty three
B O : 0〜35%、 MgO:。〜 35%、 BO: 0-35% MgO :. ~ 35%,
CaO:。〜 35%、  CaO: ~ 35%,
SrO:。〜 35%、  SrO :. ~ 35%,
BaO:。〜 35%、  BaO :. ~ 35%,
アルカリ金属成分: 0. 5%以下  Alkali metal component: 0.5% or less
を含有し、  Containing
少なくともいずれか一方の表面の平均ホウ素濃度が 4〜 10原子%であり、該表面 力 内部へのホウ素の拡散深さが 5nm以上である無アルカリガラス基板。  An alkali-free glass substrate in which the average boron concentration on at least one surface is 4 to 10 atomic% and the diffusion depth of boron into the surface force is 5 nm or more.
発明の効果  The invention's effect
[0016] 以下に示すように、本発明によれば、洗浄工程で容易に除去することが可能な保 護被膜を効率良く生成し、亜硫酸ガスの使用量の低減を図りつつガラス基板の裏面 の傷の発生を抑制する無アルカリガラス基板の製造方法および該製造方法により得 られる無アルカリガラス基板を提供することができる。  [0016] As described below, according to the present invention, a protective coating that can be easily removed in a cleaning process is efficiently generated, and the amount of sulfurous acid gas used is reduced while reducing the amount of sulfur dioxide used. A method for producing an alkali-free glass substrate that suppresses the generation of scratches and an alkali-free glass substrate obtained by the production method can be provided.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、フロート法によるガラス製造ラインの 1例を示す概念図である。 [0017] FIG. 1 is a conceptual diagram showing an example of a glass production line by a float process.
[図 2]図 2は、実施例で用いた大型管状炉の断面図である。  FIG. 2 is a cross-sectional view of the large tubular furnace used in the examples.
[図 3]図 3は、耐傷付き性の評価に用いたテーバー実験機の摩耗輪があたった部分 ( 摩耗部)と、キズの数測定部位 (測定部)を示す説明図である。  [FIG. 3] FIG. 3 is an explanatory view showing a portion (wear portion) hit by a wear ring and a site for measuring the number of scratches (measurement portion) of the Taber experimental machine used for evaluation of scratch resistance.
符号の説明  Explanation of symbols
[0018] 1 溶融スズ [0018] 1 Molten tin
2 溶融スズ浴  2 Molten tin bath
3 溶融窯  3 Melting kiln
4 溶融ガラス  4 Molten glass
5 引出しロール  5 Drawer roll
6 徐冷炉  6 Slow cooling furnace
11 大型管状炉  11 Large tubular furnace
12 石英チューブ  12 Quartz tube
13 無アルカリガラス基板 14 アルミナボート 13 Alkali-free glass substrate 14 Alumina boat
15 試薬  15 Reagents
16、 17 矢印  16, 17 arrows
18 試験体  18 Specimen
19 摩耗部  19 Wear part
20 測定部  20 Measuring unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下に、本発明を詳細に説明する。 [0019] The present invention is described in detail below.
本発明の第 1の態様に係る無アルカリガラス基板の製造方法 (以下、「本発明の製 造方法」ともいう。)は、フロート法により無アルカリガラス基板を製造する無アルカリガ ラス基板の製造方法であって、  The method for producing an alkali-free glass substrate according to the first aspect of the present invention (hereinafter also referred to as “the production method of the present invention”) is a method for producing an alkali-free glass substrate for producing an alkali-free glass substrate by a float process. Because
溶融ガラスを溶融スズ上でガラス基板に成形する成形工程と、上記成形工程により 成形された上記ガラス基板を徐冷する徐冷工程とを具備し、  A forming step of forming molten glass on a molten tin on a glass substrate, and a slow cooling step of gradually cooling the glass substrate formed by the forming step,
上記ガラス基板の上記溶融スズに接触する側の表面(以下、「ボトム面」ともいう。 ) にアルカリ金属を含有する無機物質 (以下、「アルカリ金属含有無機物質」ともいう。 ) を吹き付ける第 1供給工程と、上記第 1供給工程の後に、上記ガラス基板の上記溶 融スズに接触する側の表面、即ち、上記無機物質が吹き付けられたボトム面に SO  First, an inorganic substance containing an alkali metal (hereinafter also referred to as “alkali metal-containing inorganic substance”) is sprayed on the surface of the glass substrate that contacts the molten tin (hereinafter also referred to as “bottom surface”). After the supplying step and the first supplying step, the surface of the glass substrate on the side in contact with the molten tin, that is, the bottom surface on which the inorganic substance is sprayed is SO.
2 ガスを吹き付ける第 2供給工程とを具備する、無アルカリガラス基板の製造方法であ る。  2 A method for producing an alkali-free glass substrate, comprising a second supply step of blowing gas.
また、本発明の製造方法は、更に上記保護膜を除去する洗浄工程を具備するのが 好ましい。  Moreover, it is preferable that the manufacturing method of the present invention further includes a cleaning step for removing the protective film.
次に、本発明の製造方法における成形工程、徐冷工程、第 1供給工程および第 2 供給工程ならびに所望により具備する洗浄工程について詳述する。  Next, the molding step, the slow cooling step, the first supply step and the second supply step, and the cleaning step provided as desired in the production method of the present invention will be described in detail.
[0020] [成形工程] [0020] [Molding process]
上記成形工程は、溶融ガラスを溶融スズ浴中の溶融スズ上でガラス基板に成形す る工程であり、一般的なフロート法における従来公知の工程である。  The forming step is a step of forming molten glass on a glass substrate on molten tin in a molten tin bath, and is a conventionally known step in a general float method.
[0021] 図 1は、フロート法によるガラス製造ラインの 1例を示す概念図である。 FIG. 1 is a conceptual diagram showing an example of a glass production line by a float process.
図 1に示すように、フロート法においては、まず、溶融スズ 1を満たした溶融スズ浴 2 の浴面上に、溶融窯 3から溶融ガラス 4が連続的に流入され、ガラスリボンが形成され る。次に、このガラスリボンを溶融スズ浴 2の浴面に沿って浮力しながら前進させること で、温度低下とともにガラスリボンが板状に成形される。その後、製板されたガラス基 板が引出しロール 5によって引き出され、長手方向に連続した状態で徐冷炉 6に運ば れる。 As shown in Fig. 1, in the float process, first a molten tin bath 2 filled with molten tin 1 On the surface of the bath, molten glass 4 flows continuously from the melting furnace 3 to form a glass ribbon. Next, the glass ribbon is advanced along the bath surface of the molten tin bath 2 while being buoyant, so that the glass ribbon is formed into a plate shape as the temperature decreases. Thereafter, the glass substrate thus produced is drawn out by the drawing roll 5 and is conveyed to the slow cooling furnace 6 in a continuous state in the longitudinal direction.
[0022] ここで、図 1にお 、て、上記成形工程は、溶融ガラス 4をガラスリボンを経て板状に 成形するまでの工程である。  Here, in FIG. 1, the forming step is a step until the molten glass 4 is formed into a plate shape through a glass ribbon.
本発明においては、一般的なフロート法と同様、溶融スズ浴 2としては、金属のケー スの内側を特殊耐火物で内張りしたスズ浴炉および天井カゝら構成され、スズの酸ィ匕 を防止するため密閉構造のものを用いる。溶融スズ浴内の雰囲気ガスとしては、水素 と窒素とからなる混合ガス (水素の含有量が 2〜10体積%)を用いることができる。 また、上記成形工程の溶融スズ浴における温度条件は、一般的なフロート法と同様 、 600〜1050°C、即ち、溶融スズ浴内に流入する溶融ガラスの温度が上流側で 900 〜1050°Cであり、下流側で 600〜800°Cとすること力 Sできる。なお、この温度は、通 常は溶融ガラスの熱量によって維持される力 温度調節のためにヒーターやクーラー を使用してもよい。  In the present invention, similar to the general float process, the molten tin bath 2 is composed of a tin bath furnace and a ceiling wall lined with a special refractory on the inside of a metal case, and tin oxide is used. To prevent this, use a sealed structure. As the atmospheric gas in the molten tin bath, a mixed gas composed of hydrogen and nitrogen (hydrogen content: 2 to 10% by volume) can be used. Further, the temperature condition in the molten tin bath in the molding step is 600 to 1050 ° C., that is, the temperature of the molten glass flowing into the molten tin bath is 900 to 1050 ° C. Therefore, it is possible to achieve a force S of 600-800 ° C on the downstream side. Note that this temperature is normally maintained by the amount of heat of the molten glass. A heater or cooler may be used to adjust the temperature.
[0023] 本発明の製造方法においては、上記成形工程により、無アルカリガラスのガラス基 板が溶融スズ上に成形される。  In the production method of the present invention, an alkali-free glass substrate is formed on molten tin by the above-described forming step.
ここで、無アリカリガラスとは、上述したようにアルカリ金属を実質的に含有しないガ ラスである。具体的には、無アルカリガラスは、本発明において、酸化物基準の質量 百分率表示で、  Here, the non-crisp glass is glass that does not substantially contain an alkali metal as described above. Specifically, in the present invention, the alkali-free glass is represented by a mass percentage display based on an oxide,
SiO : 30〜85%、  SiO: 30 to 85%
2  2
AI O : 0〜35%、  AI O: 0-35%
2 3  twenty three
B O : 0〜35%、  B O: 0-35%
2 3  twenty three
MgO:。〜 35%、  MgO :. ~ 35%,
CaO:。〜 35%、  CaO: ~ 35%,
SrO:。〜 35%、  SrO :. ~ 35%,
BaO : 0〜35%、 アルカリ金属成分: 0. 5%以下 BaO: 0-35%, Alkali metal component: 0.5% or less
を含有する。なお、「アルカリ金属成分」とは、後述する第 1供給工程によらず不可 避的に含有するアルカリ金属成分のことをいう。  Containing. The “alkali metal component” refers to an alkali metal component inevitably contained regardless of the first supply step described later.
[0024] [徐冷工程] [0024] [Slow cooling step]
上記徐冷工程は、上記成形工程により成形された上記ガラス基板を徐冷する工程 である。  The slow cooling step is a step of slowly cooling the glass substrate formed by the forming step.
[0025] ここで、図 1において、上記徐冷工程は、製板されたガラス基板を引出しロール 5に よって引き出してから、長手方向に連続した状態で徐冷炉 6に運ばれて徐冷するま での工程である。  Here, in FIG. 1, in the slow cooling step, the glass substrate that has been made is pulled out by the pulling roll 5 and then transferred to the slow cooling furnace 6 in a continuous state in the longitudinal direction until it is gradually cooled. It is this process.
本発明においては、徐冷炉としては、一般的なフロート法で用いられるものと同様 のものを用いることができ、温度コントロールのためヒーター等を設けてもよい。  In the present invention, the slow cooling furnace may be the same as that used in a general float method, and a heater or the like may be provided for temperature control.
また、上記徐冷工程の徐冷炉における徐冷条件は、一般的なフロート法と同様、徐 冷炉の入口で 550〜750°C、出口で 200〜300°Cまでの温度とすることが可能であ り、温度の降下のスピードは 90°C± 10°C/mとすることができる。  In addition, the annealing conditions in the annealing furnace in the annealing process can be set to temperatures of 550 to 750 ° C at the inlet of the annealing furnace and 200 to 300 ° C at the outlet, as in the general float method. Yes, the speed of temperature drop can be 90 ° C ± 10 ° C / m.
[0026] [第 1供給工程] [0026] [First supply step]
上記第 1供給工程は、上記ガラス基板のボトム面にアルカリ金属含有無機物質を吹 き付けて該ボトム面にアルカリ金属を供給する工程である。  The first supply step is a step of spraying an alkali metal-containing inorganic substance onto the bottom surface of the glass substrate to supply the alkali metal to the bottom surface.
ここで、アルカリ金属含有無機物質とは、上述したように、アルカリ金属を含有する 無機物質をいい、例えば、リチウム (Li)、ナトリウム (Na)、カリウム (K)、セシウム(Cs )等を含有する無機物質が該当する。  Here, the alkali metal-containing inorganic substance means an inorganic substance containing an alkali metal as described above, and includes, for example, lithium (Li), sodium (Na), potassium (K), cesium (Cs) and the like. This applies to inorganic substances.
このようなアルカリ金属含有無機物質を用いて上記ガラス基板のボトム面にアルカリ 金属を供給し、その後に SOガスを吹き付けることにより、硫酸アルカリの塩からなる  Using such an alkali metal-containing inorganic substance, an alkali metal is supplied to the bottom surface of the glass substrate, and then SO gas is blown to form an alkali sulfate salt.
2  2
保護被膜を効率良く生成できる。また、この保護被膜は洗浄工程で容易に除去する ことが可能である。更に、 SOガスの量を少なくしても同様の保護効果が得られるため  A protective coating can be produced efficiently. In addition, this protective film can be easily removed by a cleaning process. Furthermore, the same protective effect can be obtained even if the amount of SO gas is reduced.
2  2
、亜硫酸ガスの使用量の低減を図りつつガラス基板の裏面の傷の発生を抑制するこ とがでさる。  In addition, it is possible to suppress the occurrence of scratches on the back surface of the glass substrate while reducing the amount of sulfurous acid gas used.
これは、後述する第 2供給工程により吹き付けられる SOガスが、ボトム面に供給さ  This is because the SO gas sprayed in the second supply step described later is supplied to the bottom surface.
2  2
れたアルカリ金属と優先的に反応し、無アルカリガラスにお 、ても存する難水溶性の アルカリ土類金属(Ca、 Sr等)との反応が抑制されるためと考えられる。また、アルカリ 金属含有無機物質というアルカリ金属源を外力も吹き付けることで、 SOガスとアル力 It reacts preferentially with the alkali metal generated, and it is a water-insoluble solution that exists even in alkali-free glass. This is thought to be because the reaction with alkaline earth metals (Ca, Sr, etc.) is suppressed. In addition, by blowing an external force from an alkali metal source called an alkali metal-containing inorganic substance,
2  2
リ土類金属との反応性生物 (硫酸カルシウム、硫酸ストロンチウム等)を保護被膜とし て得るために使用していた SOガス量よりも、少ない SOガス量で同等の保護効果を  The same protective effect can be achieved with a small amount of SO gas compared to the amount of SO gas used to obtain reactive organisms (calcium sulfate, strontium sulfate, etc.) as a protective coating.
2 2  twenty two
得ることができるのである。  You can get it.
[0027] Naを含有する無機物質としては、具体的には、例えば、 NaOH、 Na S、 NaCl、 N  [0027] Specific examples of the inorganic substance containing Na include, for example, NaOH, Na S, NaCl, N
2  2
aF、 NaBr、 Nal、ソーダ灰、 NaNH、ナトリウムベンジルォキシド、 NaBH、 NaCN  aF, NaBr, Nal, soda ash, NaNH, sodium benzyloxide, NaBH, NaCN
2 4 twenty four
、 NaNO、 Na B O— 10H O (四ホウ酸ナトリウム 10水和物)、 Na B O、(C H ) B , NaNO, Na B O— 10H O (sodium tetraborate decahydrate), Na B O, (C H) B
3 2 4 7 2 2 4 7 2 5 4 3 2 4 7 2 2 4 7 2 5 4
Na等が挙げられ、これらを 1種単独で用いてもよぐ 2種以上を併用してもよい。 Na and the like can be mentioned, and these may be used alone or in combination of two or more.
[0028] Kを含有する無機物質としては、具体的には、例えば、 KOH、 KC1、 KF、 KBr、 KI 、 KCN、 K CO、グノレコン酸カリウム、 KHF、 KNO、 K B O— 4H O (四ホウ酸カリ [0028] Specific examples of inorganic substances containing K include, for example, KOH, KC1, KF, KBr, KI, KCN, KCO, potassium gnoleconate, KHF, KNO, KBO-4H O (tetraboric acid Cali
2 3 2 3 2 4 7 2  2 3 2 3 2 4 7 2
ゥム 4水和物)、 K B O、 KBF等が挙げられ、これらを 1種単独で用いてもよぐ 2種  Um tetrahydrate), K B O, KBF, etc. These may be used alone or in combination of two
2 4 7 4  2 4 7 4
以上を併用してもよい。  You may use the above together.
[0029] Csを含有する無機物質としては、具体的には、例えば、 CsOH、 CsCl、 CsF、 CsB r、 Csl、セシウムァセチルァセトネート、 HCO Cs、 CsNO等が挙げられ、これらを 1  [0029] Specific examples of the inorganic substance containing Cs include CsOH, CsCl, CsF, CsBr, Csl, cesium acetylethylacetonate, HCO Cs, and CsNO.
2 3  twenty three
種単独で用いてもよぐ 2種以上を併用してもよい。  Species may be used alone or in combination of two or more.
[0030] アルカリ金属含有無機物質は、 Naを含有する無機物質であるのが、後述する第 2 供給工程で形成される保護被膜 (硫酸ナトリウム)の生成効率がより向上し、水洗除 去が容易となるため好ま 、。 [0030] Although the alkali metal-containing inorganic substance is an inorganic substance containing Na, the production efficiency of the protective film (sodium sulfate) formed in the second supply step, which will be described later, is further improved and easy to remove with water. Preferred because it becomes.
[0031] 中でも、アルカリ金属含有無機物質力Naおよびホウ素を含有する無機物質である のが、本発明の製造方法により得られる無アルカリガラス基板力 後述する洗浄工程 後においても耐摩耗性を更に有することになるためより好ましい。具体的には、 Na B [0031] Among them, the alkali metal-containing inorganic material strength Na and boron-containing inorganic material are alkali-free glass substrate strength obtained by the production method of the present invention, and further have wear resistance even after the cleaning step described later. Therefore, it is more preferable. Specifically, Na B
2 2
O - 10H 0、 Na B Oであるのが好ましぐ Na B O—10H Oであるのがより好まO-10H 0, Na B O is preferred Na B O—10H O is more preferred
4 7 2 2 4 7 2 4 7 2 4 7 2 2 4 7 2 4 7 2
しい。  That's right.
Naおよびホウ素を含有する無機物質の吹き付けにより、 Naのみならずホウ素も供 給された結果、ホウ素がボトム面から上記ガラス基板の内部に拡散し、上記ガラス基 板自体の強度が向上する。  As a result of supplying not only Na but also boron by spraying an inorganic substance containing Na and boron, boron diffuses from the bottom surface into the glass substrate, and the strength of the glass substrate itself is improved.
そのため、無アルカリガラス基板以外にも、例えば、 DNAチップ用ガラス基板、マイ クロチップ ·バイオチップ用ガラス基板等に対し、このホウ素の拡散を利用することに より、高 、レベルの耐擦傷性を満足させることができる。 Therefore, in addition to alkali-free glass substrates, for example, glass substrates for DNA chips, A high level of scratch resistance can be satisfied by utilizing this diffusion of boron to a glass substrate for a black chip / biochip.
[0032] 上記第 1供給工程は、このようなアルカリ金属含有無機物質を上記ガラス基板のボ トム面に吹き付けることにより該ボトム面にアルカリ金属を供給するものである力 この 吹き付けの時期(タイミング)および吹き付け方法については、以下に示す態様が好 適に例示される。  [0032] The first supply step is a force for supplying alkali metal to the bottom surface by spraying such an alkali metal-containing inorganic substance onto the bottom surface of the glass substrate. As for the spraying method, the following modes are suitably exemplified.
[0033] 上記アルカリ金属含有無機物質を吹き付ける時期は、後述する第 2供給工程よりも 前であれば特に限定されず、具体的には、上記成形工程と同時であっても、後述す る徐冷工程と同時であってもよいが、上記成形工程と上記徐冷工程との間であるの がガラス基板の裏面の傷の発生をより抑制することができ好ましい。  [0033] The timing of spraying the alkali metal-containing inorganic substance is not particularly limited as long as it is before the second supply step described later. Specifically, even at the same time as the molding step described above, the timing is gradually decreased. Although it may be simultaneous with the cooling step, it is preferable that it is between the molding step and the slow cooling step because the occurrence of scratches on the back surface of the glass substrate can be further suppressed.
ここで、「成形工程と同時」とは、上記成形工程でガラス基板を形成した直後であつ て上記成形工程に含まれる段階、例えば、形成炉に、溶融スズ浴 (フロートバス)と炉 全体の出口部分 (シールドレア)とが設けられているような場合においては、シールド レアにおいて吹き付けてもよいことを意味するものである。また、「徐冷工程と同時」と は、徐冷炉の入口付近または徐冷炉上流側において吹き付けてもよいことを意味す るものである。更に、「上記成形工程と上記徐冷工程との間」とは、形成炉と徐冷炉と の間をガラス基板を搬送する間に吹き付けてもよいことを意味するものである。  Here, “simultaneously with the molding process” means a stage immediately after forming the glass substrate in the molding process and included in the molding process, for example, a forming furnace, a molten tin bath (float bath), and the entire furnace. In the case where an exit portion (shield rare) is provided, it means that the spray rare may be sprayed. Further, “simultaneously with the slow cooling step” means that the spraying may be performed near the inlet of the slow cooling furnace or upstream of the slow cooling furnace. Furthermore, “between the forming step and the slow cooling step” means that the glass substrate may be sprayed between the forming furnace and the slow cooling furnace.
[0034] 一方、上記アルカリ金属含有無機物質を吹き付ける方法は、例えば、上記アルカリ 金属含有無機物質を加熱して気化させ、その気化物質をノズルを用いて上記ガラス 基板のボトム面に吹き付ける方法;ヒーター加熱、赤外線ランプ加熱、レーザー加熱 などによりアルカリ金属含有無機物質を加熱気化させる方法;等が好適に挙げられる また、気化物質の吹き付けは、ガラス基板のガラス転移点 ± 100°Cの範囲の温度 で施されるのが好ましい。特に、ガラス基板のガラス転移点— 30°C〜ガラス転移点 + 100°Cの範囲であるのが好ましい。吹き付けがこの温度範囲で施されると、ガラス転 移点でガラスが柔らかくなるため、その領域で膜を形成することで、傷付きがより効果 的に防止できるからである。  [0034] On the other hand, the method of spraying the alkali metal-containing inorganic substance is, for example, a method of heating and vaporizing the alkali metal-containing inorganic substance and spraying the vaporized substance onto the bottom surface of the glass substrate using a nozzle; A method of heating and vaporizing an alkali metal-containing inorganic substance by heating, infrared lamp heating, laser heating, etc. is preferred. The vaporizing substance is sprayed at a temperature in the range of the glass transition temperature of the glass substrate ± 100 ° C. Preferably it is applied. In particular, the glass transition point of the glass substrate is preferably in the range of 30 ° C to glass transition point + 100 ° C. This is because if the spraying is performed within this temperature range, the glass becomes soft at the glass transition point, so that a film can be formed in that region, thereby preventing damage more effectively.
具体的には、 600〜800°Cで施されるの力 気化物質が効率良く気化し、かつガラ ス基板表面に吹き付けた際に基板温度が急激に低下することがない点で好ましい。 更に、気化物質の吹き付け量は、 0. 2〜: LOLZm2であるのが好ましぐ 0. 2〜3L /m2であるのがより好ましぐ 0. 2〜lL/m2であるのが特に好ましい。吹き付け量が この範囲であると、 SOガスの吹き付け量を抑えつつ、上記ガラス基板のボトム面に Specifically, the force applied at 600-800 ° C vaporizes the substance efficiently, and the glass This is preferable in that the substrate temperature does not drop abruptly when sprayed onto the substrate surface. Moreover, spraying of the vaporized material, 0. 2: The LOLZm that is 2 to is preferred instrument 0. 2~3L / m 2 is more preferred instrument 0. 2~lL / m 2 Is particularly preferred. When the spraying amount is within this range, the bottom surface of the glass substrate is suppressed while suppressing the amount of SO gas spraying.
2  2
供給されるアルカリ金属の供給量が十分となり、後述する第 2供給工程において吹き 付けられる SOガスと反応して形成される保護被膜の生成効率がより向上する。  The supply amount of the alkali metal to be supplied becomes sufficient, and the production efficiency of the protective film formed by reacting with the SO gas sprayed in the second supply step described later is further improved.
2  2
[0035] 上記アルカリ金属含有無機物質として四ホウ酸ナトリウム 10水和物を用いる場合は 、ガラス基板の形成炉および徐冷炉以外の炉 (例えば、実施例で用いた大型管上炉 等)において 850°C程度の温度で四ホウ酸ナトリウムを気化させた後に、その気化物 質をノズルを用いて、 700°C程度となって 、る形成炉もしくは徐冷炉またはこれらの 炉間を搬送されるガラス基板のボトム面に吹き付ける方法等が好適な実施態様として 挙げられる。  [0035] When sodium tetraborate decahydrate is used as the alkali metal-containing inorganic substance, it is 850 ° in a furnace other than a glass substrate forming furnace and a slow cooling furnace (for example, a large tube furnace used in the examples). After vaporizing sodium tetraborate at a temperature of about C, the vaporized material is about 700 ° C. using a nozzle, and the glass substrate transported between these forming furnaces or slow cooling furnaces or between these furnaces is used. A method of spraying on the bottom surface is a preferred embodiment.
[0036] このような方法により上記アルカリ金属含有無機物質を吹き付けることにより、上記 ガラス基板のボトム面にアルカリ金属が供給される。ガラス基板のボトム面におけるァ ルカリ金属の存在は、ガラス基板のボトム面を X線光電子分光分析装置 (XPS :X-ra y photoelectron spectroscopy)または蛍光 X線分析することにより確認できる。  [0036] By spraying the alkali metal-containing inorganic substance by such a method, the alkali metal is supplied to the bottom surface of the glass substrate. The presence of alkali metal on the bottom surface of the glass substrate can be confirmed by X-ray photoelectron spectroscopy (XPS) or fluorescent X-ray analysis of the bottom surface of the glass substrate.
[0037] [第 2供給工程]  [0037] [Second supply step]
上記第 2供給工程は、上記第 1供給工程の後に、上記アルカリ金属が供給された 上記ガラス基板のボトム面に SOガスを吹き付けて該ボトム面に保護被膜を形成する  In the second supply step, after the first supply step, SO gas is sprayed on the bottom surface of the glass substrate to which the alkali metal has been supplied to form a protective film on the bottom surface.
2  2
工程である。  It is a process.
この第 2供給工程は、上記アルカリ金属が供給された上記ガラス基板のボトム面に 保護被膜を形成する点において、一般的なフロート法における従来公知の工程と異 なるものである。  This second supply step is different from a conventionally known step in a general float method in that a protective film is formed on the bottom surface of the glass substrate supplied with the alkali metal.
即ち、上記第 2供給工程は、上記第 1供給工程によりアルカリ金属が供給された上 記ガラス基板のボトム面に SOガスを吹き付けることにより、アルカリ金属と SOガスと  That is, in the second supply step, the alkali metal and the SO gas are sprayed by blowing SO gas onto the bottom surface of the glass substrate to which the alkali metal has been supplied in the first supply step.
2 2 を反応させ、上記ガラス基板のボトム面に硫酸アルカリ塩 (例えば、硫酸ナトリウム等) カゝらなる保護被膜を形成する工程である。  This is a step of reacting 2 2 to form a protective film made of alkali sulfate (eg, sodium sulfate) on the bottom surface of the glass substrate.
[0038] 上記第 2供給工程における SOガスの吹き付けの時期(タイミング)および吹き付け 方法については、以下に示す態様が好適に例示される。 [0038] Timing (timing) and spraying of SO gas in the second supply step About the method, the aspect shown below is illustrated suitably.
[0039] SOガスを吹き付ける時期は、上記第 1供給工程よりも後であれば特に限定されな  [0039] The timing of blowing the SO gas is not particularly limited as long as it is after the first supply step.
2  2
いが、搬送中のガラス基板の表面の傷を防ぐ観点から、上記第 1供給工程の直後で あるのが好ましぐ上記成形工程と上記徐冷工程との間であるのがより好ましい。なお 、各々のガスを同時に吹き付けることは、各々のガスが反応し、被膜の形成が困難と なるため好ましくない。  However, from the viewpoint of preventing scratches on the surface of the glass substrate being transported, it is more preferably between the molding step and the slow cooling step that is preferably immediately after the first supply step. Note that it is not preferable to spray each gas simultaneously because each gas reacts and it becomes difficult to form a film.
[0040] 一方、 SOガスを吹き付ける方法は、一般的なフロート法における従来公知の方法  [0040] On the other hand, a method of blowing SO gas is a conventionally known method in a general float method.
2  2
と同様の方法で行うことがでる。具体的には、例えば、ガラス基板の幅方向にガラス 基板の下方に設置したノズル力 吹付ける方法 (例えば、上記特許文献 1の請求項 1 2に記載の方法等)で実施できる。  Can be done in the same way. Specifically, for example, it can be carried out by a method of spraying a nozzle force installed below the glass substrate in the width direction of the glass substrate (for example, the method described in claim 12 of Patent Document 1).
しカゝしながら、本発明においては、無アルカリガラス基板の保護被膜としてアルカリ 土類金属由来の硫酸塩 (例えば、硫酸カルシウム等)を利用する従来例と比べ、同等 の保護効果を確保しつつ、 SOガスの  However, in the present invention, the same protective effect is ensured as compared with the conventional example using a sulfate (eg, calcium sulfate) derived from an alkaline earth metal as a protective coating on the alkali-free glass substrate. Of SO gas
2 吹き付け量を減らすことができる。これは、上 述したように、第 2供給工程により吹き付けられる SOガスが、ボトム面に供給された  2 The amount of spray can be reduced. As described above, this is because the SO gas sprayed in the second supply process was supplied to the bottom surface.
2  2
アルカリ金属と優先的に反応し、無アルカリガラスにおいても存する反応性に低いァ ルカリ土類金属(Ca、 Sr等)との反応が抑制されるためと考えられる。具体的には、本 発明においては、 SO 特に 0. 05〜0. 3
Figure imgf000014_0001
This is presumably because the reaction with alkali metals (Ca, Sr, etc.), which reacts preferentially with alkali metals and is less reactive than alkali-free glasses, is suppressed. Specifically, in the present invention, SO, particularly 0.05 to 0.3.
Figure imgf000014_0001
LZm2と少なくすることができる。 LZm 2 can be reduced.
また、 SOガスの吹き付けは、ガラス基板のガラス転移点 ± 100°Cの範囲の温度で  Also, the SO gas is sprayed at a temperature in the range of ± 100 ° C of the glass transition point of the glass substrate.
2  2
施されるのが好ましい。ガラス転移点でガラスが柔らかくなるため、その領域で保護被 膜を形成することで、傷付きがより効果的に防止できる力もである。具体的には、 so 2 ガスの吹き付けは、 600〜800°Cで施されるのがより好ましい。吹き付けがこの温度 で施されると、洗浄工程で容易に除去することが可能な硫酸塩カゝらなる保護被膜をよ り効率良く生成し、ガラス基板の裏面の傷の発生をより抑制することができる力 であ る。  Preferably it is applied. Since glass becomes soft at the glass transition point, forming a protective film in that region also has the ability to more effectively prevent scratches. Specifically, the so 2 gas spraying is more preferably performed at 600 to 800 ° C. When spraying is performed at this temperature, a protective coating made of sulfate that can be easily removed in the cleaning process is generated more efficiently, and the occurrence of scratches on the back surface of the glass substrate is further suppressed. It is the power that can be.
[0041] [洗浄工程]  [0041] [Washing process]
所望により施す上記洗浄工程は、上記第 2供給工程により形成された保護被膜を 洗浄し、除去する工程であり、一般的なフロート法における従来公知の工程である。 [0042] 上記洗浄工程の時期(タイミング)および洗浄方法につ!ヽては、以下に示す態様が 好適に例示される。 The cleaning step performed as desired is a step of cleaning and removing the protective film formed in the second supply step, and is a conventionally known step in a general float method. [0042] As for the timing (timing) of the cleaning step and the cleaning method, the following modes are preferably exemplified.
[0043] 上記洗浄工程の時期は、上記第 2供給工程よりも後であれば特に限定されないが 、保護被膜がローラー搬送中に発生するガラス基板の表面 (ボトム面)への傷に対し てなされたものであるから、上記徐冷工程の最終段階または上記徐冷工程の直後で あるのが好ましい。  [0043] The timing of the cleaning step is not particularly limited as long as it is after the second supply step, but the protective coating is made against a scratch on the surface (bottom surface) of the glass substrate that occurs during roller conveyance. Therefore, the final stage of the slow cooling step or immediately after the slow cooling step is preferable.
[0044] 一方、上記洗浄工程における洗浄の方法は、本発明においてはアルカリ金属由来 の硫酸塩 (例えば、硫酸ナトリウム等の水溶性塩)からなる保護被膜が形成されるた め、容易な方法により除去することでき、例えば、水洗処理により除去することができ る。なお、上記第 1供給工程を施さず、 SOガスを吹き付けた場合は、ガラス基板のボ  [0044] On the other hand, the cleaning method in the above-described cleaning step is an easy method because a protective film made of a sulfate derived from alkali metal (for example, a water-soluble salt such as sodium sulfate) is formed in the present invention. For example, it can be removed by washing with water. If the first supply process is not performed and SO gas is sprayed, the glass substrate
2  2
トム面に形成される保護被膜がアルカリ土類金属由来の硫酸塩 (例えば、硫酸カル シゥム等の難水溶性塩)となり、容易に洗浄することが困難となる。  The protective coating formed on the tom surface becomes a sulfate derived from an alkaline earth metal (for example, a poorly water-soluble salt such as calcium sulfate), which makes it difficult to clean easily.
[0045] 本発明の製造方法においては、得られる無アルカリガラス基板の平滑性を向上さ せ、ガラス基板の歪み、うねり、マイクロコルゲーシヨンおよび、傷や異物欠点を低減 し、均一性が高い表面品質を得るために、上記洗浄工程の後に、必要に応じて研磨 工程を具備していてもよい。  [0045] In the production method of the present invention, the smoothness of the obtained alkali-free glass substrate is improved, and the distortion, undulation, microcorrugation, scratches and foreign matter defects of the glass substrate are reduced, and the uniformity is high. In order to obtain the surface quality, a polishing step may be provided as necessary after the cleaning step.
この研磨工程は、一般的なフロート法における従来公知の工程であり、その研磨方 法としては、具体的には、酸ィ匕セリウム系の研磨剤を用いて発泡ウレタン上に置かれ たガラス基板を磨く方法が挙げられる。  This polishing process is a conventionally known process in a general float process. Specifically, the polishing process is a glass substrate placed on urethane foam using an acid-cerium-based abrasive. The method of polishing is mentioned.
[0046] 本発明の第 2の態様に係る無アルカリガラス基板の製造方法は、フロート法により 無アルカリガラス基板を製造する無アルカリガラス基板の製造方法であって、 溶融ガラスを溶融スズ上でガラス基板に成形する成形工程を具備し、 [0046] A method for producing an alkali-free glass substrate according to the second aspect of the present invention is a method for producing an alkali-free glass substrate by a float method, wherein the molten glass is glass on molten tin. A molding process for molding on a substrate,
600〜800°Cで上記ガラス基板の上記溶融スズに接触する側の表面にアルカリ金 属を含有する無機物質を吹き付ける第 1供給工程と、上記第 1供給工程の後に、 60 0〜800°Cで上記ガラス基板の上記溶融スズに接触する側の表面に SOガスを吹き  After the first supply step of spraying an inorganic substance containing an alkali metal on the surface of the glass substrate in contact with the molten tin at 600 to 800 ° C., and after the first supply step, 600 to 800 ° C. Blow SO gas on the surface of the glass substrate that contacts the molten tin.
2 付ける第 2供給工程とを具備する、無アルカリガラス基板の製造方法である。  2 is a method for producing an alkali-free glass substrate, comprising a second supplying step.
[0047] ここで、本発明の第 2の態様における成形工程は、本発明の第 1の態様において説 明したものと同様であり、第 1供給工程および第 2供給工程についても、温度を 600 〜800°Cに規定した以外は、本発明の第 1の態様において説明したものと同様であ る。また、本発明の第 2の態様においても、上記洗浄工程を具備するのが好ましぐ 更に上記研磨工程を具備してもよ ヽ。 [0047] Here, the forming step in the second aspect of the present invention is the same as that described in the first aspect of the present invention, and the temperature is set to 600 for the first supply step and the second supply step. Except for the range of ˜800 ° C., the same as described in the first embodiment of the present invention. Also in the second aspect of the present invention, it is preferable to include the above-described cleaning step, and it is possible to further include the above-described polishing step.
[0048] 本発明は、本発明の製造方法 (第 2の態様も含む。以下、同様。 )において Naおよ びホウ素を含有する無機物質を用いた場合においては、本発明の製造方法により得 られる無アルカリガラス基板を提供するものでもある。 [0048] The present invention can be obtained by the production method of the present invention when an inorganic substance containing Na and boron is used in the production method of the present invention (including the second aspect, the same shall apply hereinafter). The present invention also provides a non-alkali glass substrate.
具体的には、 Naおよびホウ素を含有する無機物質を上記第 1供給工程においてガ ラス基板のボトム面に吹き付け、その後に必要に応じて上記洗浄工程を施すことで、 無アルカリガラス基板を提供することができる。  Specifically, an alkali-free glass substrate is provided by spraying an inorganic substance containing Na and boron onto the bottom surface of the glass substrate in the first supply step, and then performing the cleaning step as necessary. be able to.
[0049] 本発明の無アルカリガラス基板は以下の組成であるのが好ま U、。 [0049] The alkali-free glass substrate of the present invention preferably has the following composition.
即ち、本発明の無アルカリガラス基板は、上記ガラス基板が、酸化物基準の質量百 分率表示で、  That is, in the alkali-free glass substrate of the present invention, the glass substrate is expressed in terms of mass percentage based on oxide,
SiO : 30〜85%、  SiO: 30 to 85%
2  2
AI O : 0〜35%、  AI O: 0-35%
2 3  twenty three
B O : 0〜35%、  B O: 0-35%
2 3  twenty three
MgO:。〜 35%、  MgO :. ~ 35%,
CaO:。〜 35%、  CaO: ~ 35%,
SrO:。〜 35%、  SrO :. ~ 35%,
BaO:。〜 35%、  BaO :. ~ 35%,
アルカリ金属成分: 0. 5%以下  Alkali metal component: 0.5% or less
を含有するものであって、かつ、  Containing, and
上記ガラス基板の上記ボトム面の平均ホウ素濃度が 4〜: L0原子%であり、上記ガラ ス基板の内部へのホウ素の拡散深さが 5nm以上となるものである。  The average boron concentration of the bottom surface of the glass substrate is 4 to: L0 atomic%, and the diffusion depth of boron into the glass substrate is 5 nm or more.
[0050] ここで、 SiOの含有率 (酸化物基準の質量百分率表示)は、 50〜80%であるのが [0050] Here, the SiO content (expressed in terms of mass percentage based on oxide) is 50 to 80%.
2  2
好ましぐ 50〜70%であるのがより好ましぐ 56〜66%であるのが更に好ましぐ 58 〜60%であるのが特に好ましい。  It is particularly preferred that it is 58-60%, more preferably 56-66%, more preferably 50-70%.
また、 Al Oの含有率 (酸化物基準の質量百分率表示)は、 0〜30%であるのが好 In addition, the content of Al 2 O (expressed in terms of mass percentage based on oxide) is preferably 0 to 30%.
2 3 twenty three
ましぐ 3〜22%であるのがより好ましぐ 3〜20%であるのが更に好ましぐ 15〜20 %であるのが特に好ましく、 15〜 19%であるのが最も好まし 、。 3-22% is more preferred 3-20% is more preferred 15-20 % Is particularly preferred, with 15-19% being most preferred.
また、 B Oの含有率 (酸化物基準の質量百分率表示)は、 0〜30%であるのが好ま In addition, the content of B 2 O (expressed in terms of mass percentage based on oxide) is preferably 0 to 30%.
2 3 twenty three
しぐ 0〜15%であるのがより好ましぐ 5〜12%であるのが更に好ましい。  It is more preferably 5 to 12%, more preferably 0 to 15%.
また、 MgOの含有率 (酸化物基準の質量百分率表示)は、 0〜20%であるのが好 ましぐ 0〜8%であるのがより好ましぐ 0〜6%であるのが更に好ましい。  Further, the content of MgO (expressed in terms of mass percentage based on oxide) is preferably 0 to 20%, more preferably 0 to 8%, and even more preferably 0 to 6%. .
また、 CaOの含有率 (酸化物基準の質量百分率表示)は、 0〜20%であるのが好ま しぐ 0〜9%であるのがより好ましぐ 0〜8%であるのが更に好ましい。  Further, the content of CaO (expressed in terms of mass percentage based on oxide) is preferably 0 to 20%, more preferably 0 to 9%, and even more preferably 0 to 8%. .
また、 SrOの含有率 (酸化物基準の質量百分率表示)は、 0〜20%であるのが好ま しく、 0〜12. 5%であるのがより好ましぐ 3〜12. 5%であるのが更に好ましい。 また、 BaOの含有率 (酸化物基準の質量百分率表示)は、 0〜20%であるのが好ま しぐ 0%以上 2%未満であるのがより好ましい。  The SrO content (expressed as a percentage by mass on the oxide basis) is preferably 0 to 20%, more preferably 0 to 12.5%, and 3 to 12.5%. Is more preferable. Further, the BaO content (expressed in terms of mass percentage based on oxide) is preferably 0 to 20%, more preferably 0% or more and less than 2%.
また、アルカリ金属成分の含有率 (酸化物基準の質量百分率表示)は、 0. 5%以下 であるのが好ましぐ 0. 2%以下であるのがより好ましぐ 0. 1%以下であるのが更に 好ましい。  In addition, the content of alkali metal component (expressed in terms of mass percentage based on oxide) is preferably 0.5% or less, more preferably 0.2% or less, and more preferably 0.1% or less. More preferably.
[0051] ここで、上記ガラス基板の SiO、 Al O、 B O、 MgO、 CaO、 SrO、 BaOおよびァ  [0051] Here, SiO, Al 2 O, B 2 O, MgO, CaO, SrO, BaO and A
2 2 3 2 3  2 2 3 2 3
ルカリ金属成分の含有量は、上述したように、無アルカリガラス基板に用いられる無ァ ルカリガラスの組成の範囲のものである。  As described above, the content of the alkali metal component is in the range of the composition of the alkali-free glass used for the alkali-free glass substrate.
[0052] 本発明にお 、ては、上記ガラス基板の上記ボトム面の平均ホウ素濃度は、 X線光電 子分光法にて任意に 5点測定した際の平均値として求めることが可能である。なお、 X線光電子分光法においては、 XPS分光装置(5500型、 PHI社製)を用い、モノクロ メータで単色化した X線 ΑΙΚ α線を X線源とした。また、 X線光電子の検出角は 75° であり、帯電補正のため電子シャワーを照射して測定を実施した。  In the present invention, the average boron concentration on the bottom surface of the glass substrate can be obtained as an average value when arbitrarily measured at five points by X-ray photoelectron spectroscopy. In X-ray photoelectron spectroscopy, an XPS spectrometer (5500 type, manufactured by PHI) was used, and X-rays α rays monochromatized with a monochromator were used as the X-ray source. The X-ray photoelectron detection angle was 75 °, and measurement was performed by irradiating an electron shower to correct charging.
[0053] また、本発明においては、ホウ素のガラス基板の内部への拡散深さは、 2次イオン 質量分析法 (SIMS)にてバックグラウンドと同レベル 2次イオン強度に達する深さより 見積ちることが可會である。  [0053] In the present invention, the diffusion depth of boron into the glass substrate is estimated from the depth at which the secondary ion intensity reaches the same level as the background by secondary ion mass spectrometry (SIMS). Is pretty.
具体的には、 2次イオン質量分析装置 (ADEPT1010、アルバック 'ファイネ土製)に よりガラス基板上の 5点において拡散深さを各々 5点測定し、その平均値を求めた。 ここで、スバッタ時間のスバッタ深さへの換算は、 SiO換算(4nm= lmin)にて行 つた。なお、一次イオンは酸素イオンビーム、加速電圧は 5keV、ビーム電流は 400η Α、一次イオンの入射角度は試料面の法線に対して 45度、ビーム走査範囲 400 X 4 00 μ m2の条件下で測定した。 Specifically, the diffusion depth was measured at five points on each of the five points on the glass substrate using a secondary ion mass spectrometer (ADEPT1010, ULVAC “Phine”), and the average value was obtained. Here, the conversion of the splatter time to the splatter depth is performed using SiO conversion (4 nm = lmin). I got it. The primary ion is an oxygen ion beam, the acceleration voltage is 5 keV, the beam current is 400 ηΑ, the incident angle of the primary ion is 45 degrees with respect to the normal of the sample surface, and the beam scanning range is 400 X 400 μm 2 Measured with
[0054] 本発明の無アルカリガラス基板は、上記ガラス基板の上記ボトム面の平均ホウ素濃 度が 4〜: L0原子%であり、上記ガラス基板の内部へのホウ素の拡散深さが 5nm以上 80nm以下、好ましくは 50nm以下となるため、ガラス基板自体の強度が向上し、耐 摩耗性に優れ、保護被膜が除去された後の輸送や加工工程にお!ヽても耐傷付き性 に優れたものとなる。ホウ素がボトム面力もガラス基板の内部に拡散してガラス基板の 表層に残存することで、耐摩耗性ゃ耐傷付き性が向上する理由は、ガラスのネットヮ ーク構造が強固になるためであると考えられる。  [0054] In the alkali-free glass substrate of the present invention, the average boron concentration of the bottom surface of the glass substrate is 4 to: L0 atomic%, and the diffusion depth of boron into the glass substrate is 5 nm or more and 80 nm. In the following, since the thickness is preferably 50 nm or less, the strength of the glass substrate itself is improved, the wear resistance is excellent, and the transportation and processing steps after the protective coating is removed! Even if it is, it will be excellent in scratch resistance. The reason why boron has a bottom surface force also diffuses into the glass substrate and remains on the surface of the glass substrate, so that the wear resistance and the scratch resistance are improved is because the glass network structure is strengthened. Conceivable.
[0055] 本発明の無アルカリガラス基板は、上記洗浄工程を施す前はもとより、必要に応じ て上記洗浄工程を施した後であっても、ガラス基板の表層にホウ素が残存するため、 ガラス基板の裏面の傷の発生を抑制し続けることができるため好ましい。  [0055] The alkali-free glass substrate of the present invention is not limited to the glass substrate because boron remains on the surface layer of the glass substrate not only before the cleaning step but also after the cleaning step if necessary. Since it is possible to continue to suppress the occurrence of scratches on the back surface, it is preferable.
なお、本発明の無アルカリガラス基板お ヽてホウ素がガラス基板の表層に残存する のは、上記第 1供給工程によれば、ホウ素がガラス基板の内部に入り込みやすぐか つ、ガラス基板の表層に残存しやす!/、と!/、う理由からと推測して 、る。  Note that boron remains in the surface layer of the non-alkali glass substrate of the present invention and the surface layer of the glass substrate according to the first supply step as described above. I guess it's easy to survive! /, And! /
[0056] したがって、本発明は、酸化物基準の質量百分率表示で、  [0056] Therefore, the present invention represents the oxide-based mass percentage,
SiO : 30〜85%、  SiO: 30 to 85%
2  2
AI O : 0〜35%、  AI O: 0-35%
2 3  twenty three
B O : 0〜35%、  B O: 0-35%
2 3  twenty three
MgO:。〜 35%、  MgO :. ~ 35%,
CaO:。〜 35%、  CaO: ~ 35%,
SrO:。〜 35%、  SrO :. ~ 35%,
BaO:。〜 35%、  BaO :. ~ 35%,
アルカリ金属成分: 0. 5%以下  Alkali metal component: 0.5% or less
を含有し、  Containing
少なくともいずれか一方の表面の平均ホウ素濃度が 4〜 10原子%であり、該表面 力も内部へのホウ素の拡散深さが 5nm以上である無アルカリガラス基板も提供するこ とがでさる。 It is also possible to provide an alkali-free glass substrate having an average boron concentration of at least one surface of 4 to 10 atomic% and a surface force of boron diffusion depth of 5 nm or more inside. Togashi.
実施例  Example
[0057] 以下に、実施例を用いて本発明を具体的に説明するが、本発明はこれに限定され るものではない。  [0057] The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
[0058] (実施例 1) [Example 1]
図 2に示す実験装置を用いた。図 2は、実施例で用いた大型管状炉の断面図であ る。  The experimental apparatus shown in Fig. 2 was used. FIG. 2 is a cross-sectional view of the large tubular furnace used in the examples.
具体的には、温度を調節できる大型管状炉 11の中に石英チューブ 12を設置し、 石英チューブ 12中に厚み 0. 7mmの無アルカリガラス基板 13 (10cm角)を置き、大 型管状炉 11を 700°Cに加熱した。ここで、「無アルカリガラス基板」には、酸化物基準 の質量百分率表示で、 68%≤SiO≤80%, 0%≤A1 O < 12%、 0%< B O < 7  Specifically, a quartz tube 12 is installed in a large-sized tubular furnace 11 whose temperature can be adjusted, and a non-alkali glass substrate 13 (10 cm square) having a thickness of 0.7 mm is placed in the quartz tube 12, and the large tubular furnace 11 is placed. Was heated to 700 ° C. Here, `` Non-alkali glass substrate '' is expressed in terms of mass percentage based on oxide, 68% ≤ SiO ≤ 80%, 0% ≤ A1 O <12%, 0% <B O <7
2 2 3 2 3 2 2 3 2 3
%、 0%≤MgO≤12%、 0%≤CaO≤15%、 0%≤SrO≤4%、 0%≤BaO≤l% 、アルカリ成分の含有率が 0. 05質量%以下となる組成の無アルカリガラスを用いた 。なお、上記ガラスのガラス転移点は 700°Cであった。 %, 0% ≤MgO≤12%, 0% ≤CaO≤15%, 0% ≤SrO≤4%, 0% ≤BaO≤l% An alkali-free glass was used. The glass transition point of the glass was 700 ° C.
次に、アルミナボート 14に入れた四ホウ酸ナトリウム 10水和物の試薬 15を局所的 に約 850°Cに加熱して気化させ、その気化物質を石英チューブの端力も矢印 16の 示す方向に吹きつけることにより、アルカリ金属であるナトリウムを無アルカリガラス基 板 13の表面に供給した。このときの四ホウ酸ナトリウム 10水和物の吹き付け量は 0. 4 L/m2とであり、無アルカリガラス基板 13の温度は 700°Cであつた。 Next, the sodium tetraborate decahydrate reagent 15 placed in the alumina boat 14 is locally heated to about 850 ° C to vaporize the vaporized material, and the end force of the quartz tube also moves in the direction indicated by the arrow 16. By spraying, sodium, which is an alkali metal, was supplied to the surface of the alkali-free glass substrate 13. The spray amount of sodium tetraborate decahydrate at this time was 0.4 L / m 2 , and the temperature of the alkali-free glass substrate 13 was 700 ° C.
次に、無アルカリガラス基板 13の表面に対する吹き付け量力 0. lLZm2となるよう に、矢印 17の示す方向から SOガスを吹き付け、保護被膜を形成させ、保護被膜付 Next, SO gas was sprayed from the direction indicated by the arrow 17 to form a protective coating so that the amount of spraying on the surface of the alkali-free glass substrate 13 was 0.1 lZm 2 .
2  2
無アルカリガラス基板を製造した。このときの無アルカリガラス基板 13の温度は 700 °Cであった。  An alkali-free glass substrate was produced. The temperature of the alkali-free glass substrate 13 at this time was 700 ° C.
なお、本実施例は、上記成形工程と上記徐冷工程との間にアルカリ金属含有無機 物質を吹き付け、直後に soガスを吹き付けたのと同様の条件となる。  In this example, the conditions are the same as those in which an alkali metal-containing inorganic substance was sprayed between the molding step and the slow cooling step and so gas was sprayed immediately thereafter.
2  2
[0059] (実施例 2)  [Example 2]
SOガスの吹き付け量を 0. 4LZm2とした以外は、実施例 1と同様の方法で保護被The protective coating was applied in the same manner as in Example 1 except that the amount of SO gas sprayed was 0.4 LZm 2.
2 2
膜付無アルカリガラス基板を製造した。 [0060] (実施例 3) A non-alkali glass substrate with a film was produced. [0060] (Example 3)
SOガスの吹き付け量を 1. OLZm2とした以外は、実施例 1と同様の方法で保護被The protective coating was applied in the same manner as in Example 1 except that the amount of SO gas sprayed was 1. OLZm 2.
2 2
膜付無アルカリガラス基板を製造した。  A non-alkali glass substrate with a film was produced.
[0061] (比較例 1) [0061] (Comparative Example 1)
四ホウ酸ナトリウムを用いず、 SOガスのみを吹き付けた以外は、実施例 1と同様の  The same as Example 1 except that sodium tetraborate was not used and only SO gas was sprayed.
2  2
方法で保護被膜付無アルカリガラス基板を製造した。  The alkali-free glass substrate with a protective film was manufactured by the method.
[0062] (比較例 2) [0062] (Comparative Example 2)
四ホウ酸ナトリウムを用いず、 SOガスのみを吹き付けた以外は、実施例 2と同様の  Same as Example 2 except that sodium tetraborate was not used and only SO gas was sprayed.
2  2
方法で保護被膜付無アルカリガラス基板を製造した。  The alkali-free glass substrate with a protective film was manufactured by the method.
[0063] (比較例 3) [0063] (Comparative Example 3)
四ホウ酸ナトリウムを用いず、 SOガスのみを吹き付けた以外は、実施例 3と同様の  Same as Example 3 except that sodium tetraborate was not used and only SO gas was sprayed.
2  2
方法で保護被膜付無アルカリガラス基板を製造した。  The alkali-free glass substrate with a protective film was manufactured by the method.
[0064] (比較例 4) [0064] (Comparative Example 4)
四ホウ酸ナトリウムを用いず、 SOガスも吹き付けず、単に 700°Cで 15分間加熱し  Without using sodium tetraborate and without blowing SO gas, simply heat at 700 ° C for 15 minutes.
2  2
た以外は、実施例 1と同様の方法で無アルカリガラス基板を製造した。  A non-alkali glass substrate was produced in the same manner as in Example 1 except that.
[0065] (比較例 5) [0065] (Comparative Example 5)
四ホウ酸ナトリウムを用いず、 SOガスも吹き付けな力つた以外は、実施例 1と同様  Same as Example 1 except that sodium tetraborate was not used and SO gas was also applied.
2  2
の方法で無アルカリガラス基板を製造した。  An alkali-free glass substrate was produced by the method described above.
[0066] 実施例 1〜3および比較例 1〜3で得られた各保護被膜付無アルカリガラス基板に ついて、保護被膜の付着量、耐傷付き性、平均ホウ素濃度 ·拡散深さおよび耐摩耗 性を以下に示す方法により測定し、評価した。その結果を下記表 1に示す。 [0066] For each non-alkali glass substrate with a protective coating obtained in Examples 1 to 3 and Comparative Examples 1 to 3, the amount of protective coating deposited, scratch resistance, average boron concentration, diffusion depth, and wear resistance Were measured and evaluated by the methods shown below. The results are shown in Table 1 below.
なお、比較例 4および 5で得られた各フラットパネルガラス用ガラス基板にっ 、ては 、 SOガスを吹き付けず、保護被膜を形成させていないため、耐摩耗性のみを以下 In addition, since each of the glass substrates for flat panel glass obtained in Comparative Examples 4 and 5 was not sprayed with SO gas and a protective film was not formed, only the wear resistance was as follows.
2 2
に示す方法により測定した。その結果を下記表 1に示す。  It measured by the method shown in. The results are shown in Table 1 below.
[0067] <保護被膜付着量 > [0067] <Amount of protective coating>
得られた各保護被膜付無アルカリガラス基板の保護被膜を純水に溶かし、 ICP発 光分析法を用いて硫黄を定量し、原子吸光法を用いてナトリウムを定量した。  The obtained protective coating of each alkali-free glass substrate with protective coating was dissolved in pure water, sulfur was quantified using ICP emission analysis, and sodium was quantified using atomic absorption spectrometry.
これらの定量値から、付着して 、た硫酸ナトリウム量を保護被膜の付着量として算 出した。なお、この付着量は、得られた無アルカリガラス基板の 10枚カゝら算出した平 均値として求めた。 From these quantitative values, the amount of sodium sulfate adhering was calculated as the amount of protective coating adhered. I put it out. The adhesion amount was determined as an average value calculated from 10 sheets of the obtained alkali-free glass substrate.
[0068] <耐傷付き性 >  [0068] <Scratch resistance>
耐傷付き性の評価は、 JIS R3221 (1990年)に準じたテーバー試験により行った 。なお、テーバー試験は、テーバー試験機(Tdedyne Taber Model503)を用い、 摩耗輪は CS— 10Fに固定し、荷重は 250g、摩耗回数は 3回に固定して実施した。 その後、試験体として用いた各保護被膜付無アルカリガラス基板の保護被膜を除 去するため、 20°Cの純水の流水下(3リットル Z分)で 30秒間シャワーで基板を水洗 した。  The scratch resistance was evaluated by a Taber test according to JIS R3221 (1990). The Taber test was conducted using a Taber tester (Tdedyne Taber Model 503), with the wear wheel fixed to CS-10F, the load fixed to 250 g, and the wear frequency fixed to 3 times. Thereafter, in order to remove the protective coating of each alkali-free glass substrate with a protective coating used as a test specimen, the substrate was washed with a shower for 30 seconds under flowing pure water (3 liters Z) at 20 ° C.
保護被膜を除去して得られたガラス基板の表面を顕微鏡で観察し、 1cm X 1cm角 内に存在する長軸方向の長さが 0. 2mm以上の傷の数 (傷発生個数)を測定した。 測定部は、テーバー試験に供した部位の中央部とした (図 3参照)。図 3において、試 験体 (無アルカリガラス基板) 18に摩耗輪による摩耗部 19が形成されるが、測定部 2 0は摩耗部 19の中央部となる。  The surface of the glass substrate obtained by removing the protective film was observed with a microscope, and the number of scratches (number of scratches) with a length of 0.2 mm or more in the long axis direction existing within 1 cm × 1 cm square was measured. . The measurement part was the central part of the part subjected to the Taber test (see Fig. 3). In FIG. 3, a wear part 19 due to a wear ring is formed on a specimen (non-alkali glass substrate) 18, but the measurement part 20 is the central part of the wear part 19.
なお、傷発生個数の測定は、各ガラス基板 1枚につき任意の 10点について実施し 、その平均値を求めた。更に、傷発生個数は、得られたガラス基板の 10枚力も算出 した平均値として求めた。  The number of scratches was measured for 10 arbitrary points on each glass substrate, and the average value was obtained. Furthermore, the number of scratches was determined as an average value obtained by calculating the 10-sheet force of the obtained glass substrate.
[0069] <平均ホウ素濃度 ·拡散深さ > [0069] <Average boron concentration and diffusion depth>
(1)得られた各保護被膜付無アルカリガラス基板を、 20°Cの純水 (流速: 3リットル Z分)が流れ落ちる場所で水洗し、保護膜を除去した。その後、洗浄後のガラス基板 の表面の平均ホウ素濃度を X線光電子分光法にて 5点測定した際の平均値として求 めた。なお、 X線光電子分光法においては、 XPS分光装置(5500型、 PHI社製)を 用い、モノクロメータで単色化した X線 ΑΙΚ α線を X線源とした。また、 X線光電子の 検出角は 75° であり、帯電補正のため電子シャワーを照射して測定を実施した。  (1) Each of the obtained alkali-free glass substrates with a protective coating was washed with water in a place where pure water (flow rate: 3 liters Z) at 20 ° C flows down to remove the protective coating. After that, the average boron concentration on the surface of the cleaned glass substrate was determined as the average value when five points were measured by X-ray photoelectron spectroscopy. In the X-ray photoelectron spectroscopy, an XPS spectrometer (5500, manufactured by PHI) was used, and X-rays α rays monochromatized with a monochromator were used as the X-ray source. The X-ray photoelectron detection angle was 75 °, and measurement was performed by irradiating an electron shower to correct the charge.
[0070] (2)ホウ素のガラス基板の内部への拡散深さは、 2次イオン質量分析法 (SIMS)に てバックグラウンドと同レベル 2次イオン強度に達する深さより見積もった。 [0070] (2) The diffusion depth of boron into the glass substrate was estimated from the depth at which the secondary ion intensity reached the same level as the background by secondary ion mass spectrometry (SIMS).
具体的には、 2次イオン質量分析装置 (ADEPT1010、アルバック 'ファイネ土製)に より洗浄後のガラス基板上の 5点において拡散深さを各々 5点測定し、その平均値を 求めた。ここで、スバッタ時間のスバッタ深さへの換算は、 SiO換算(4nm= lmin) Specifically, using a secondary ion mass spectrometer (ADEPT1010, ULVAC “Phine”), measured the diffusion depth at 5 points on the glass substrate after cleaning, and calculated the average value. Asked. Here, the conversion of the splatter time to the splatter depth is SiO conversion (4nm = lmin)
2  2
にて行った。  I went there.
なお、一次イオンは酸素イオンビーム、加速電圧は 5keV、ビーム電流は 400nA、 一次イオンの入射角度は試料面の法線に対して 45度、ビーム走査範囲 400 X 400 IX m2の条件下で測定した。 The primary ions are measured under the conditions of an oxygen ion beam, acceleration voltage is 5 keV, beam current is 400 nA, the incident angle of primary ions is 45 degrees with respect to the normal of the sample surface, and the beam scanning range is 400 X 400 IX m 2. did.
下記表 1中、比較例 1〜3の拡散深さの欄が「-」となっているが、これは、拡散が確 認できな力つたことを示す。  In Table 1 below, the diffusion depth column of Comparative Examples 1 to 3 is “-”, which indicates that the diffusion was not confirmed.
[0071] <耐摩耗性 > [0071] <Abrasion resistance>
耐摩耗性は、テーバー試験前後のヘイズ率の変化率 (ヘイズ変化率)を調べること により行った。  Abrasion resistance was determined by examining the rate of change in the haze rate before and after the Taber test (rate of change in haze).
まず、得られた各無アルカリガラス基板のヘイズ率をヘイズメーターで測定した。 次いで、得られた各無アルカリガラス基板について、 JIS R3221 (1990年)に準じ たテーバー試験を行った。なお、テーバー試験は、テーバー試験機 (Tdedyne Tab er Model503)を用い、摩耗輪は CS— 10Fに固定し、荷重は 500gに固定して行つ た。  First, the haze ratio of each obtained alkali-free glass substrate was measured with a haze meter. Next, the obtained alkali-free glass substrate was subjected to a Taber test according to JIS R3221 (1990). The Taber test was conducted using a Taber tester (Tdedyne Taber Model 503), with the wear wheel fixed to CS-10F and the load fixed to 500 g.
次いで、 1000回テーバー摩耗後のヘイズ率をヘイズメーターにて測定し、テーバ 一試験前のヘイズ率力 その変化率を求めた。  Next, the haze rate after 1000 times Taber abrasion was measured with a haze meter, and the haze rate power before the Taber test was determined.
ここで、ヘイズ値は、散乱光 (Td)および透過光 (Tt)により下記式のように定義され る。  Here, the haze value is defined by the scattered light (Td) and the transmitted light (Tt) as follows.
ヘイズ率 = (Td/Tt) X 100%  Haze rate = (Td / Tt) X 100%
また、ヘイズ率 (H)の変化率( Δ H)は、下記式で表される。  Further, the change rate (ΔH) of the haze ratio (H) is represented by the following formula.
Δ Η=摩耗回数 1000回後のヘイズ率 H—テーバー試験前のヘイズ率 H [0072] [表 1] 表 1 Δ Η = Haze rate after 1000 wears H—Haze rate before Taber test H [0072] [Table 1] table 1
Figure imgf000023_0001
Figure imgf000023_0001
[0073] 表 1に示す結果から、四ホウ酸ナトリウムを用いて得られた実施例 1〜3の無アル力 リガラス基板の方が、比較例:!〜 3に比べて同等以下の SOガス吹き付け量であって [0073] From the results shown in Table 1, the non-alloyed glass substrate of Examples 1 to 3 obtained using sodium tetraborate was sprayed with SO gas equal to or less than that of Comparative Example:! To 3 Amount
2  2
も、効率良く保護被膜を形成してレ、ることが分力 た。また、ホウ素濃度も高くなり、耐 傷付き性も格段に良好となることが分力つた。  However, it was important to form a protective coating efficiently. In addition, the boron concentration increased and the scratch resistance was remarkably improved.
なお、比較例 1〜3において、硫酸ナトリウムの量が同量であるにもかかわらず、 SO ガス吹き付け量の増大とともに傷カウントが減少している理由は、アルカリ土類金属 由来の硫酸塩 (硫酸カルシウム、硫酸ストロンチウム等)が生成し、それらが保護被膜 として機能して 、るためである。  In Comparative Examples 1 to 3, even though the amount of sodium sulfate was the same, the reason why the scratch count decreased with the increase in the amount of SO gas sprayed was that the sulfate (sulfuric acid derived from alkaline earth metal) This is because calcium, strontium sulfate, etc.) are produced and function as a protective coating.
また、実施例 1〜3の無アルカリガラス基板は、通常の水洗の後、ガラス基板の表面 に形成された保護被膜が除去され、清浄な表面が現れたことを確認した。これに対し 、比較例 1〜3の無アルカリガラス基板では、通常の水洗を行ってもガラス基板の表 面に形成された保護被膜が除去できず、残存していた。また、残存していた膜の成 分を測定すると、硫酸カルシウムや硫酸ストロンチウムであった。  In addition, it was confirmed that the non-alkali glass substrates of Examples 1 to 3 had a clean surface after the protective coating formed on the surface of the glass substrate was removed after normal water washing. On the other hand, in the non-alkali glass substrates of Comparative Examples 1 to 3, the protective coating formed on the surface of the glass substrate could not be removed even after ordinary water washing, and remained. Further, when the components of the remaining film were measured, they were calcium sulfate and strontium sulfate.
更に、実施例 1〜3の無アルカリガラス基板は、ホウ素が拡散することにより、比較例 1〜5の無アルカリガラス基板に比べてヘイズ変化率が低減し、耐摩耗性も向上して レヽることが分力 た。  Furthermore, the alkali-free glass substrates of Examples 1 to 3 have a reduced haze change rate and improved wear resistance compared to the alkali-free glass substrates of Comparative Examples 1 to 5 due to diffusion of boron. It was a component.
[0074] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 本出願は、 2006年 7月 7日出願の日本特許出願 (特願 2006— 187727)に基づくもの であり、その内容はここに参照として取り込まれる。 [0074] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there. This application is based on a Japanese patent application filed on July 7, 2006 (Japanese Patent Application No. 2006-187727), the contents of which are incorporated herein by reference.
産業上の利用可能性 Industrial applicability
本発明によれば、洗浄工程で容易に除去することが可能な保護被膜を効率良く生 成し、亜硫酸ガスの使用量の低減を図りつつガラス基板の裏面の傷の発生を抑制す る無アルカリガラス基板の製造方法および該製造方法により得られる無アルカリガラ ス基板を提供することができる。本発明の無アルカリガラス基板は高品質ディスプレイ に好適に使用することができる。  According to the present invention, a non-alkali which efficiently generates a protective film that can be easily removed in a cleaning process, and suppresses the occurrence of scratches on the back surface of the glass substrate while reducing the amount of sulfurous acid gas used. A method for producing a glass substrate and an alkali-free glass substrate obtained by the production method can be provided. The alkali-free glass substrate of the present invention can be suitably used for high-quality displays.

Claims

請求の範囲 The scope of the claims
[1] フロート法により無アルカリガラス基板を製造する無アルカリガラス基板の製造方法 であって、  [1] A method for producing an alkali-free glass substrate by producing an alkali-free glass substrate by a float process,
溶融ガラスを溶融スズ上でガラス基板に成形する成形工程と、前記成形工程により 成形された前記ガラス基板を徐冷する徐冷工程とを具備し、  A forming step of forming molten glass on a molten tin on a glass substrate; and a slow cooling step of gradually cooling the glass substrate formed by the forming step,
前記ガラス基板の前記溶融スズに接触する側の表面にアルカリ金属を含有する無 機物質を吹き付ける第 1供給工程と、前記第 1供給工程の後に、前記ガラス基板の 前記溶融スズに接触する側の表面に SOガスを吹き付ける第 2供給工程とを具備す  A first supply step of spraying an inorganic substance containing an alkali metal on a surface of the glass substrate in contact with the molten tin; and after the first supply step, on the side of the glass substrate in contact with the molten tin A second supply step of blowing SO gas on the surface
2  2
る、無アルカリガラス基板の製造方法。  A method for producing an alkali-free glass substrate.
[2] 前記第 1供給工程が、前記成形工程と前記徐冷工程との間に施される請求項 1に 記載の無アルカリガラス基板の製造方法。 [2] The method for producing an alkali-free glass substrate according to [1], wherein the first supply step is performed between the forming step and the slow cooling step.
[3] 前記第 1供給工程が、前記ガラス基板のガラス転移点 ± 100°Cの範囲の温度で施 される請求項 1に記載の無アルカリガラス基板の製造方法。 [3] The method for producing an alkali-free glass substrate according to [1], wherein the first supply step is performed at a temperature in a range of a glass transition point of the glass substrate ± 100 ° C.
[4] 前記第 1供給工程が、 600〜800°Cで施される請求項 1に記載の無アルカリガラス 基板の製造方法。 [4] The method for producing an alkali-free glass substrate according to claim 1, wherein the first supply step is performed at 600 to 800 ° C.
[5] 前記第 2供給工程が、前記成形工程と前記徐冷工程との間に施される請求項 1〜 [5] The first supply step is performed between the molding step and the slow cooling step.
4のいずれかに記載の無アルカリガラス基板の製造方法。 5. A method for producing an alkali-free glass substrate according to any one of 4 above.
[6] 前記第 2供給工程が、前記ガラス基板のガラス転移点士 100°Cの範囲の温度で施 される請求項 1〜4のいずれか〖こ記載の無アルカリガラス基板の製造方法。 [6] The method for producing an alkali-free glass substrate according to any one of [1] to [4], wherein the second supply step is performed at a temperature in the range of 100 ° C. of the glass transition point of the glass substrate.
[7] 前記第 2供給工程が、 600〜800°Cで施される請求項 1〜4のいずれかに記載の 無アルカリガラス基板の製造方法。 [7] The method for producing an alkali-free glass substrate according to any one of [1] to [4], wherein the second supply step is performed at 600 to 800 ° C.
[8] フロート法により無アルカリガラス基板を製造する無アルカリガラス基板の製造方法 であって、 [8] A method for producing an alkali-free glass substrate by producing an alkali-free glass substrate by a float process,
溶融ガラスを溶融スズ上でガラス基板に成形する成形工程を具備し、  Comprising a molding step of forming molten glass on a molten tin on a glass substrate;
600〜800°Cで前記ガラス基板の前記溶融スズに接触する側の表面にアルカリ金 属を含有する無機物質を吹き付ける第 1供給工程と、前記第 1供給工程の後に、 60 0〜800°Cで前記ガラス基板の前記溶融スズに接触する側の表面に SOガスを吹き  A first supply step of spraying an inorganic substance containing an alkali metal on the surface of the glass substrate in contact with the molten tin at 600 to 800 ° C, and after the first supply step, 600 to 800 ° C To blow SO gas on the surface of the glass substrate that contacts the molten tin.
2 付ける第 2供給工程とを具備する、無アルカリガラス基板の製造方法。 2. A method for producing an alkali-free glass substrate, comprising a second supply step to be applied.
[9] 更に、前記保護膜を除去する洗浄工程を具備する、請求項 1〜8のいずれかに記 載の無アルカリガラス基板の製造方法。 [9] The method for producing an alkali-free glass substrate according to any one of claims 1 to 8, further comprising a cleaning step of removing the protective film.
[10] 前記アルカリ金属を含有する無機物質が、ナトリウムおよびホウ素を含有する請求 項 1〜9のいずれかに記載の無アルカリガラス基板の製造方法。 10. The method for producing an alkali-free glass substrate according to any one of claims 1 to 9, wherein the inorganic substance containing an alkali metal contains sodium and boron.
[11] 前記アルカリ金属を含有する無機物質が、四ホウ酸ナトリウムである請求項 10に記 載の無アルカリガラス基板の製造方法。 [11] The method for producing an alkali-free glass substrate according to [10], wherein the inorganic substance containing an alkali metal is sodium tetraborate.
[12] 請求項 10または 11に記載の製造方法により製造される無アルカリガラス基板。 [12] An alkali-free glass substrate produced by the production method according to claim 10 or 11.
[13] 請求項 10または 11に記載の製造方法により製造される無アルカリガラス基板であ つて、 [13] An alkali-free glass substrate produced by the production method according to claim 10 or 11,
前記ガラス基板が、酸化物基準の質量百分率表示で、  The glass substrate is a mass percentage display based on oxide,
SiO : 30〜85%、  SiO: 30 to 85%
2  2
AI O : 0  AI O: 0
2 3 〜35%、  2 3 ~ 35%,
B O : 0  B O: 0
2 3 〜35%、  2 3 ~ 35%,
MgO:。〜 35%、  MgO :. ~ 35%,
CaO:。〜 35%、  CaO: ~ 35%,
SrO:。〜 35%、  SrO :. ~ 35%,
BaO:。〜 35%、  BaO :. ~ 35%,
アルカリ金属成分: 0. 5%以下  Alkali metal component: 0.5% or less
を含有し、  Containing
前記ガラス基板の前記溶融スズに接触していた側の表面の平均ホウ素濃度が 4〜 10原子%であり、前記ガラス基板の内部へのホウ素の拡散深さが 5nm以上である無 アルカリガラス基板。  An alkali-free glass substrate having an average boron concentration of 4 to 10 atomic% on the surface of the glass substrate in contact with the molten tin and a boron diffusion depth of 5 nm or more into the glass substrate.
[14] 酸化物基準の質量百分率表示で、 [14] Oxide-based mass percentage display,
SiO : 30〜85%、  SiO: 30 to 85%
2  2
AI O : 0〜35%、  AI O: 0-35%
2 3  twenty three
B O : 0〜35%、  B O: 0-35%
2 3  twenty three
MgO:。〜 35%、  MgO :. ~ 35%,
CaO : 0〜35%、 SrO:0〜35%、 CaO: 0-35%, SrO: 0-35%,
BaO:0〜35%、  BaO: 0-35%,
アルカリ金属成分: 0.5%以下  Alkali metal component: 0.5% or less
を含有し、  Containing
少なくともいずれか一方の表面の平均ホウ素濃度が 4〜: LO原子%であり、該表面 から内部へのホウ素の拡散深さが 5nm以上である無アルカリガラス基板。  An alkali-free glass substrate in which the average boron concentration on at least one surface is 4 to: LO atomic%, and the diffusion depth of boron from the surface to the inside is 5 nm or more.
PCT/JP2007/062913 2006-07-07 2007-06-27 Process for producing alkali-free glass substrate WO2008004480A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780025869XA CN101489946B (en) 2006-07-07 2007-06-27 Process for producing alkali-free glass substrate
JP2008523658A JP5239859B2 (en) 2006-07-07 2007-06-27 Method for producing alkali-free glass substrate
KR1020097000251A KR101107369B1 (en) 2006-07-07 2007-06-27 Process for producing alkali-free glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-187727 2006-07-07
JP2006187727 2006-07-07

Publications (1)

Publication Number Publication Date
WO2008004480A1 true WO2008004480A1 (en) 2008-01-10

Family

ID=38894452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062913 WO2008004480A1 (en) 2006-07-07 2007-06-27 Process for producing alkali-free glass substrate

Country Status (5)

Country Link
JP (1) JP5239859B2 (en)
KR (1) KR101107369B1 (en)
CN (1) CN101489946B (en)
TW (2) TW201300334A (en)
WO (1) WO2008004480A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120535A1 (en) * 2007-04-03 2008-10-09 Asahi Glass Company, Limited Process for producing flat glass, apparatus for forming buffer layer of flat glass, and flat glass producing equipment
WO2009148141A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass
WO2014148046A1 (en) * 2013-03-19 2014-09-25 日本板硝子株式会社 Glass sheet and process for manufacturing glass sheet
JP2014525388A (en) * 2011-09-02 2014-09-29 エルジー・ケム・リミテッド Alkali-free glass and method for producing the same
US8895462B2 (en) 2011-09-02 2014-11-25 Lg Chem, Ltd. Alkali-free glass and preparation thereof
KR20200130266A (en) 2018-03-09 2020-11-18 에이지씨 가부시키가이샤 Alkali free glass substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223395B1 (en) * 2010-11-18 2013-01-16 아사히 가라스 가부시키가이샤 Apparatus for manufacturing glass sheet and method for manufacturing glass sheet
EP2679553B1 (en) 2011-02-21 2018-05-02 LG Chem, Ltd. Method for forming glass surface lubricating layer and method for manufacturing glass using same
WO2013032289A2 (en) * 2011-09-02 2013-03-07 주식회사 엘지화학 Alkali-free glass and method for manufacturing same
WO2013032292A2 (en) * 2011-09-02 2013-03-07 주식회사 엘지화학 Alkali-free glass and method for manufacturing same
CN104169230B (en) * 2012-03-14 2017-09-22 旭硝子株式会社 Float glass plate and its manufacture method
JP2014240346A (en) * 2013-05-15 2014-12-25 日本電気硝子株式会社 Glass plate for tempering and tempered glass plate
CN103936301A (en) * 2014-04-30 2014-07-23 成都光明光电股份有限公司 Manufacturing method of float glass, float glass and manufacturing equipment
EP3159317A4 (en) * 2014-06-20 2018-01-03 Asahi Glass Company, Limited Glass plate and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411795B1 (en) * 1966-08-18 1969-05-29
JPS59152245A (en) * 1983-02-14 1984-08-30 Nippon Taisanbin Kogyo Kk Chemical-resistant treatment of surface of glass bottle
JPH02120256A (en) * 1988-10-27 1990-05-08 Central Glass Co Ltd Method for forming protection film on glass surface
JPH09501647A (en) * 1993-08-19 1997-02-18 カーディナル・アイジー・カンパニー Contamination resistant glass and method of making same
JP2002029775A (en) * 1999-08-03 2002-01-29 Asahi Glass Co Ltd Nonalkali glass
WO2002051767A1 (en) * 2000-12-26 2002-07-04 Nippon Sheet Glass Co.,Ltd. Plate glass with protective film and method of manufacturing the plate glass
JP2005055669A (en) * 2003-08-04 2005-03-03 Central Glass Co Ltd Float glass plate for display substrate and its manufacturing method
JP2005330176A (en) * 2003-12-26 2005-12-02 Asahi Glass Co Ltd No-alkali glass and liquid crystal display panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537937B1 (en) * 1999-08-03 2003-03-25 Asahi Glass Company, Limited Alkali-free glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411795B1 (en) * 1966-08-18 1969-05-29
JPS59152245A (en) * 1983-02-14 1984-08-30 Nippon Taisanbin Kogyo Kk Chemical-resistant treatment of surface of glass bottle
JPH02120256A (en) * 1988-10-27 1990-05-08 Central Glass Co Ltd Method for forming protection film on glass surface
JPH09501647A (en) * 1993-08-19 1997-02-18 カーディナル・アイジー・カンパニー Contamination resistant glass and method of making same
JP2002029775A (en) * 1999-08-03 2002-01-29 Asahi Glass Co Ltd Nonalkali glass
WO2002051767A1 (en) * 2000-12-26 2002-07-04 Nippon Sheet Glass Co.,Ltd. Plate glass with protective film and method of manufacturing the plate glass
JP2005055669A (en) * 2003-08-04 2005-03-03 Central Glass Co Ltd Float glass plate for display substrate and its manufacturing method
JP2005330176A (en) * 2003-12-26 2005-12-02 Asahi Glass Co Ltd No-alkali glass and liquid crystal display panel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223861B2 (en) * 2007-04-03 2013-06-26 旭硝子株式会社 Sheet glass manufacturing method, sheet glass buffer layer forming apparatus, and sheet glass manufacturing equipment
WO2008120535A1 (en) * 2007-04-03 2008-10-09 Asahi Glass Company, Limited Process for producing flat glass, apparatus for forming buffer layer of flat glass, and flat glass producing equipment
KR101503964B1 (en) 2008-06-06 2015-03-18 아사히 가라스 가부시키가이샤 Apparatus and method for producing plate glass
CN102046542A (en) * 2008-06-06 2011-05-04 旭硝子株式会社 Apparatus and method for producing plate glass
CN102046542B (en) * 2008-06-06 2013-07-24 旭硝子株式会社 Apparatus and method for producing plate glass
JP5387920B2 (en) * 2008-06-06 2014-01-15 旭硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
WO2009148141A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass
JP2014525388A (en) * 2011-09-02 2014-09-29 エルジー・ケム・リミテッド Alkali-free glass and method for producing the same
US8895462B2 (en) 2011-09-02 2014-11-25 Lg Chem, Ltd. Alkali-free glass and preparation thereof
WO2014148046A1 (en) * 2013-03-19 2014-09-25 日本板硝子株式会社 Glass sheet and process for manufacturing glass sheet
US20160023946A1 (en) * 2013-03-19 2016-01-28 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
JPWO2014148046A1 (en) * 2013-03-19 2017-02-16 日本板硝子株式会社 Glass plate and method for producing glass plate
US10399894B2 (en) 2013-03-19 2019-09-03 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
KR20200130266A (en) 2018-03-09 2020-11-18 에이지씨 가부시키가이샤 Alkali free glass substrate

Also Published As

Publication number Publication date
TW200811068A (en) 2008-03-01
CN101489946B (en) 2011-12-07
TW201300334A (en) 2013-01-01
KR101107369B1 (en) 2012-01-19
JP5239859B2 (en) 2013-07-17
CN101489946A (en) 2009-07-22
TWI379815B (en) 2012-12-21
KR20090029785A (en) 2009-03-23
JPWO2008004480A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5239859B2 (en) Method for producing alkali-free glass substrate
JP5157904B2 (en) Manufacturing method of glass substrate for flat panel display
TW201343582A (en) Glass sheet capable of being inhibited from warping through chemical strengthening
WO2013146442A1 (en) Glass sheet capable of being inhibited from warping through chemical strengthening
JPWO2002051767A1 (en) Sheet glass having protective coating and method for producing the same
JPWO2014104303A1 (en) Glass plate manufacturing method and glass plate capable of reducing warpage during chemical strengthening
TWI636022B (en) Glass plate manufacturing method
JP6696437B2 (en) Float glass
TWI666179B (en) Glass plate and manufacturing method thereof
TW201514119A (en) Glass plate
TW201518221A (en) Glass plate
JP2015174801A (en) Float glass manufacturing device, and float glass manufacturing method
US9145327B2 (en) Method for forming lubricant layer on surface of glass and method for manufacturing glass using the same
WO2021149396A1 (en) Sulfate-equipped lithium silicate glass plate, lithium silicate glass plate, and method for producing same
CN110395903A (en) Glass substrate
TW201518223A (en) Glass plate and chemically strengthened glass plate
TW201518224A (en) Glass plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025869.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523658

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097000251

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767713

Country of ref document: EP

Kind code of ref document: A1