WO2008004318A1 - Method of microwave plasma treatment and apparatus therefor - Google Patents

Method of microwave plasma treatment and apparatus therefor Download PDF

Info

Publication number
WO2008004318A1
WO2008004318A1 PCT/JP2006/317994 JP2006317994W WO2008004318A1 WO 2008004318 A1 WO2008004318 A1 WO 2008004318A1 JP 2006317994 W JP2006317994 W JP 2006317994W WO 2008004318 A1 WO2008004318 A1 WO 2008004318A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
microwave
generating
plasma processing
Prior art date
Application number
PCT/JP2006/317994
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Fukasawa
Raju Ramasamy
Tohru Yasuda
Shuitsu Fujii
Hiroshi Kajiyama
Tsutae Shinoda
Original Assignee
Adtec Plasma Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtec Plasma Technology Co., Ltd. filed Critical Adtec Plasma Technology Co., Ltd.
Priority to JP2008523593A priority Critical patent/JPWO2008004318A1/en
Publication of WO2008004318A1 publication Critical patent/WO2008004318A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Definitions

  • the present invention relates to a method and an apparatus for generating a plasma by microwave excitation of a plasma generating gas, and irradiating the object to be processed with the plasma to plasma the object to be processed.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-60140
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-49470
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-123159
  • an object of the present invention is to generate a plasma having a high electron density at a low temperature and to perform plasma processing using the plasma.
  • the first invention is a method of generating plasma by microwave excitation of a plasma generating gas, and irradiating the workpiece with the plasma to plasma-treat the workpiece.
  • the microwave plasma processing method is characterized in that a mixed gas of Xe gas and Ne gas is used as the plasma generating gas.
  • the second invention generates plasma by microwave excitation of a plasma generating gas, and irradiates the processing object with the plasma to perform plasma processing on the processing object.
  • a microwave plasma processing method is characterized in that Xe gas is used as the plasma generating gas.
  • the plasma treatment is preferably plasma etching, plasma CVD, plasma ashing, or plasma surface modification.
  • the third invention provides a plasma processing chamber into which an object to be processed is introduced, a plasma generation unit that supplies plasma to the plasma processing chamber, and a plasma generation gas in the plasma generation unit
  • a microwave plasma processing apparatus comprising: a gas supply source that supplies a microwave; and a microwave generation source that supplies a microwave for exciting a plasma generation gas to the plasma generation unit, wherein the gas supply source
  • This is a microwave plasma processing device that is characterized by a mixed gas supply source of Xe gas and Ne gas.
  • the fourth invention is a plasma processing chamber into which an object to be processed is introduced, a plasma generation unit for supplying plasma to the plasma processing chamber, and plasma in the plasma generation unit
  • a microwave plasma processing apparatus comprising: a gas supply source for supplying a generation gas; and a microwave generation source for supplying a microwave for exciting a plasma generation gas to the plasma generation unit,
  • the gas supply source constitutes a microwave plasma processing apparatus characterized by being an Xe gas supply source.
  • the plasma treatment is preferably plasma etching, plasma CVD, plasma etching, or plasma surface modification.
  • a mixed gas of Xe gas and Ne gas, or Xe gas is used as a plasma generating gas, and it is microwave-excited to generate a plasma having a high electron density and a low temperature. Can be generated. Since the object to be processed can be irradiated with plasma having a high electron density at this low temperature, it is not necessary to cool the object to be processed at the time of plasma processing. It can be done efficiently.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a plasma torch used in an experiment for confirming the effect of a microwave plasma processing method according to the present invention.
  • FIG. 2 is a graph showing the relationship between the distance in the z-axis direction with the origin at the tip of the discharge tube and the plasma temperature when different types of plasma generating gases are supplied to the plasma torch of FIG.
  • FIG. 3 A graph showing the relationship between the distance in the z-axis with the discharge tube opening at the origin and the electron density of the plasma when different types of plasma generating gas are supplied to the plasma torch in Fig. 1. is there.
  • FIG. 4 is a perspective view showing a schematic configuration of a microwave plasma processing apparatus according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line XX in FIG.
  • FIG. 6 is a cross-sectional view taken along the line II ′ of FIG.
  • FIG. 7 is a cross-sectional view taken along the line ⁇ — ⁇ ′ in FIG.
  • a mixed gas of Xe gas and Ne gas, or Xe gas is used as a plasma generating gas, and the plasma generating gas is microwave-excited to generate plasma.
  • the plasma is applied to the workpiece by irradiating the workpiece with the plasma.
  • a mixed gas of Xe gas and Ne gas it is preferable to contain 0.05% or more of Xe gas in the mixed gas.
  • the plasma torch includes a discharge tube 1 (inner diameter 10 mm) made of quartz glass and a stainless steel ground electrode 2 covering the outside of the discharge tube 1. Inside, a stainless steel antenna 4 is disposed along the central axis for supplying microwaves. Furthermore, a gas introduction tube 3 made of quartz glass is connected to the upper part of the discharge tube 1.
  • this plasma torch is attached to the chamber, and as a gas for generating plasma, He gas, a mixed gas of He gas and Xe gas (two kinds of Xe gas ratio force and 10%), Ne gas, Ne Gas and Xe gas mixture gas (2 kinds of Xe gas ratio power and 10%), Ar gas is supplied, plasma is generated under the conditions of 3 OTorr, 20 W, 1.5 SLM, and the plasma torch discharge tube 1
  • the z-axis was set in the axial direction of the discharge tube 1 with the tip opening as the origin (see Fig. 1), and the plasma temperature and electron density were measured while changing the distance in the z-axis direction.
  • Sarakuko has confirmed that the desired effect can be obtained when mixed gas containing 0.05% or more of Xe gas is used. Also, in this experiment, the same result as in the case of a mixed gas of Xe gas and Ne gas can be obtained even in the case of only the force Xe gas that did not supply only the Xe gas to the plasma torch.
  • FIG. 4 is a perspective view showing a schematic configuration of a microwave plasma processing apparatus according to one embodiment of the present invention.
  • a plasma processing chamber 10 into which an object to be processed is introduced, and a plasma generation unit 11 that supplies plasma to the plasma processing chamber 10 are provided.
  • a gas supply source 12a for supplying a plasma generation gas to the plasma generation unit 11 a gas supply source 12b for supplying a reaction gas to the plasma generation unit 11, and a plasma generation unit for exciting the plasma generation gas
  • a microwave source 13 for supplying microwaves is provided.
  • the gas supply source 12a supplies a mixed gas of Xe gas and Ne gas or only Xe gas as a plasma generating gas.
  • a plasma generating gas and a reactive gas are supplied to the plasma generating unit 11, and both gases are excited into a plasma state substantially simultaneously.
  • FIG. 5 is a cross-sectional view taken along line XX in FIG. 4
  • FIG. 6 is a cross-sectional view taken along line XX in FIG. 5, and FIG. It is sectional drawing along a line.
  • FIGS. 6 and 7 since the longitudinal length y of the waveguide 16 is longer than the thickness b, the left portion is partially omitted.
  • a longitudinally long opening extending in the microwave propagation direction is formed in waveguide 16, and discharge tube 14 is attached to this opening.
  • the discharge tube 14 is made of a dielectric material such as quartz glass or ceramic, and both end portions are closed, and an intermediate portion has an inverted U-shaped cross section.
  • the discharge tube 14 has a part 14 ”of its peripheral wall that invades the internal space of the waveguide 16.
  • the vertically long opening that faces the part 14 ′′ of the peripheral wall is disposed downward.
  • the vertically long opening forms a plasma emission port 15.
  • the waveguide 16 is supported by the support block B, and the discharge tube 14 is held by the support block B.
  • gas introduction paths Gl and G2 for supplying gas to the discharge tube 14 are provided.
  • a plurality of gas introduction paths Gl and G2 are arranged at equal intervals along the longitudinal direction of the support block B against the peripheral wall of the discharge tube 14 by force.
  • G1 is a plasma generation gas introduction path, which is connected to a gas supply source 12a via a gas supply pipe 20, and G2 is a reaction gas introduction path, which supplies gas.
  • the pipe 21 is connected to the gas supply source 12b.
  • W is a coolant reflux path for cooling the heat generated in the discharge tube 14 by plasma.
  • the coolant return path W is used to prevent the waveguide 16 and the support block B from becoming hot due to the plasma heat in the discharge tube. If necessary, the waveguide 16 and the plasma generation gas can be introduced. It can also be provided between the path G1 and at the side of the discharge tube 14.
  • a slit-like gas introduction opening 14 is provided along the longitudinal direction at the side of the discharge tube 14.
  • This slit-like gas introduction opening. 14 has a burrow-like opening array to maintain the mechanical strength of the discharge tube.
  • the plasma generating gas introduction path G1 includes an extension G1 ′ in the vicinity of the gas introduction part to the discharge tube 14, and is connected to the gas introduction opening 14 ′′ in the extension G1 ′.
  • the gas introduced from the gas generating channel G1 for plasma generation is diffused in the length direction of the discharge tube 14 in the extended portion G1 ′ and introduced into the discharge tube 14.
  • the reaction gas is introduced.
  • the connection between the route G2 and the discharge tube 14 has the same configuration.
  • Sl and S2 are baffle plates arranged in the expansion part G1 ′ of the gas introduction paths Gl and G2, that is, A gas diffusion plate having a large number of holes spreads the gas flow introduced from the gas introduction paths Gl and G2 in the longitudinal direction of the discharge tube 14 and guides it uniformly into the discharge tube 14.
  • the gas in order to generate a uniform plasma in the longitudinal direction of the waveguide 16, it is important to make the gas flow as uniform as possible. Therefore, in this example, the gas was diffused in the longitudinal direction through the kaffle plates Sl and S2 so that both the plasma generating gas and the reaction gas were uniformly introduced along the longitudinal direction of the side force of the discharge tube. In this state, it is introduced uniformly into the discharge tube 14. As a result, radicals generated by the plasma reaction can be made uniform, and a uniform plasma stable in the longitudinal direction can be obtained.
  • the gas generating gas is introduced into G1 and the reaction gas is introduced into G2, and both gases may be introduced simultaneously from both gas introduction paths Gl and G2.
  • gas mixing in the discharge tube 14 is improved, which contributes to plasma stability.
  • gas inlets may be provided in three or four layers, and different types of reaction gases may be introduced individually into each pipe line.
  • the microwave plasma processing apparatus of the present invention is generated by microwave excitation of a mixed gas of Xe gas and Ne gas, or a simple substance of Xe gas, at a low temperature and with a high electron density!
  • a mixed gas of Xe gas and Ne gas or a simple substance of Xe gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

It is intended to generate a plasma of high electron density at low temperature and carry out plasma treatment therewith. There is provided a method comprising performing a microwave excitation of plasma generation gas to thereby generate plasma and exposing a treatment object thereto so as to attain plasma treatment of the treatment object, wherein either a mixed gas consisting of Xe gas and Ne gas or Xe gas alone is used as the plasma generation gas.

Description

明 細 書  Specification
マイクロ波プラズマ処理方法および装置  Microwave plasma processing method and apparatus
技術分野  Technical field
[0001] 本発明は、プラズマ生成用ガスをマイクロ波励起してプラズマを生成し、該プラズマ を被処理物に照射して該被処理物をプラズマ処理する方法および装置に関するもの である。  [0001] The present invention relates to a method and an apparatus for generating a plasma by microwave excitation of a plasma generating gas, and irradiating the object to be processed with the plasma to plasma the object to be processed.
背景技術  Background art
[0002] 従来技術にお!、ては、被処理物にプラズマを照射し、被処理物に対してエッチング 、 CVD、アツシングおよび表面改質等のプラズマ処理を行うことがなされている。例え ば、グロ一放電またはコロナ放電によってプラズマ生成ガスを励起してプラズマを生 成し、生成したプラズマをプラスチックフィルムに照射し、プラスチックフィルム表面を プラズマ処理する装置が知られている。ところが、プラズマは、通常、 200〜500°Cと 高温であるため、プラスチックフィルムがプラズマ照射によって熱的なダメージを受け るという問題があり、このため、プラズマ処理に際してプラスチックフィルムを冷却しな ければならな力つた (特許文献 1〜3参照)。  [0002] In the prior art, it has been practiced to irradiate an object to be processed with plasma and perform plasma processing such as etching, CVD, ashing and surface modification on the object to be processed. For example, there is known an apparatus that generates plasma by exciting a plasma generation gas by glow discharge or corona discharge, irradiates the generated plasma to a plastic film, and plasma-treats the surface of the plastic film. However, since the plasma is usually at a high temperature of 200 to 500 ° C, there is a problem that the plastic film is thermally damaged by the plasma irradiation. For this reason, the plastic film must be cooled during the plasma treatment. It was very powerful (see Patent Documents 1 to 3).
[0003] この問題は、プラスチックフィルム以外の被処理物についても同様に生じていた。カロ えて、被処理物を冷却する手段を講じたとしても、被処理物自体の熱伝導性が悪け れば、冷却手段による冷却作用が弱められ、結局、被処理物の表面が破壊されてし まうという問題があった。また、グロ一放電やコロナ放電によるプラズマは、電子密度 が比較的低ぐプラズマ処理効率があまりよくな力つた。  [0003] This problem has also occurred in objects to be processed other than plastic films. Even if measures are taken to cool the workpiece, if the thermal conductivity of the workpiece itself is poor, the cooling action by the cooling means is weakened, and eventually the surface of the workpiece is destroyed. There was a problem of being covered. In addition, plasma generated by glow discharge or corona discharge has a relatively low electron density and has a very high plasma processing efficiency.
[0004] 特許文献 1 :特開平 10— 60140号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 10-60140
特許文献 2:特開 2001— 49470号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-49470
特許文献 3:特開 2005 - 123159号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-123159
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] したがって、本発明の課題は、低温で電子密度が高!ヽプラズマを生成し、それを用 V、てプラズマ処理を行うことができるようにすることにある。 課題を解決するための手段 [0005] Accordingly, an object of the present invention is to generate a plasma having a high electron density at a low temperature and to perform plasma processing using the plasma. Means for solving the problem
[0006] 上記課題を解決するため、第 1発明は、プラズマ生成用ガスをマイクロ波励起して プラズマを生成し、該プラズマを被処理物に照射して該被処理物をプラズマ処理す る方法であって、前記プラズマ生成用ガスとして、 Xeガスと Neガスの混合ガスを使用 することを特徴とするマイクロ波プラズマ処理方法を構成したものである。  [0006] In order to solve the above-described problem, the first invention is a method of generating plasma by microwave excitation of a plasma generating gas, and irradiating the workpiece with the plasma to plasma-treat the workpiece. The microwave plasma processing method is characterized in that a mixed gas of Xe gas and Ne gas is used as the plasma generating gas.
[0007] 上記課題を解決するため、また、第 2発明は、プラズマ生成用ガスをマイクロ波励起 してプラズマを生成し、該プラズマを被処理物に照射して該被処理物をプラズマ処理 する方法であって、前記プラズマ生成用ガスとして Xeガスを使用することを特徴とす るマイクロ波プラズマ処理方法を構成したものである。  [0007] In order to solve the above problems, the second invention generates plasma by microwave excitation of a plasma generating gas, and irradiates the processing object with the plasma to perform plasma processing on the processing object. A microwave plasma processing method is characterized in that Xe gas is used as the plasma generating gas.
[0008] 第 1および第 2発明の構成において、前記プラズマ処理は、プラズマエッチングまた はプラズマ CVDまたはプラズマアツシングまたはプラズマ表面改質であることが好ま しい。  [0008] In the configurations of the first and second inventions, the plasma treatment is preferably plasma etching, plasma CVD, plasma ashing, or plasma surface modification.
[0009] 上記課題を解決するため、第 3発明は、被処理物が導入されるプラズマ処理室と、 前記プラズマ処理室にプラズマを供給するプラズマ生成部と、前記プラズマ生成部 にプラズマ生成用ガスを供給するガス供給源と、前記プラズマ生成部にプラズマ生 成用ガスを励起するためのマイクロ波を供給するマイクロ波発生源とを備えたマイクロ 波プラズマ処理装置であって、前記ガス供給源は、 Xeガスと Neガスの混合ガス供給 源カゝらなっていることを特徴とするマイクロ波プラズマ処理装置を構成したものである  [0009] In order to solve the above problems, the third invention provides a plasma processing chamber into which an object to be processed is introduced, a plasma generation unit that supplies plasma to the plasma processing chamber, and a plasma generation gas in the plasma generation unit A microwave plasma processing apparatus comprising: a gas supply source that supplies a microwave; and a microwave generation source that supplies a microwave for exciting a plasma generation gas to the plasma generation unit, wherein the gas supply source This is a microwave plasma processing device that is characterized by a mixed gas supply source of Xe gas and Ne gas.
[0010] 上記課題を解決するため、また、第 4発明は、被処理物が導入されるプラズマ処理 室と、前記プラズマ処理室にプラズマを供給するプラズマ生成部と、前記プラズマ生 成部にプラズマ生成用ガスを供給するガス供給源と、前記プラズマ生成部にプラズ マ生成用ガスを励起するためのマイクロ波を供給するマイクロ波発生源とを備えたマ イク口波プラズマ処理装置であって、前記ガス供給源は、 Xeガス供給源カゝらなってい ることを特徴とするマイクロ波プラズマ処理装置を構成したものである。 [0010] In order to solve the above-mentioned problems, the fourth invention is a plasma processing chamber into which an object to be processed is introduced, a plasma generation unit for supplying plasma to the plasma processing chamber, and plasma in the plasma generation unit A microwave plasma processing apparatus comprising: a gas supply source for supplying a generation gas; and a microwave generation source for supplying a microwave for exciting a plasma generation gas to the plasma generation unit, The gas supply source constitutes a microwave plasma processing apparatus characterized by being an Xe gas supply source.
[0011] 第 3および第 4発明の構成において、前記プラズマ処理は、プラズマエッチングまた はプラズマ CVDまたはプラズマエッチングまたはプラズマ表面改質であることが好ま しい。 発明の効果 [0011] In the configurations of the third and fourth inventions, the plasma treatment is preferably plasma etching, plasma CVD, plasma etching, or plasma surface modification. The invention's effect
[0012] 本発明によれば、 Xeガスと Neガスとの混合ガス、または Xeガスをプラズマ生成用 ガスとして使用し、それをマイクロ波励起することにより、電子密度が高ぐしかも低温 のプラズマを生成することができる。そして、この低温で電子密度の高いプラズマを被 処理物に照射し、プラズマ処理を行うことができるので、プラズマ処理の際に被処理 物を冷却する必要がなぐさらには、プラズマ処理を短時間に効率的に行うことができ る。  [0012] According to the present invention, a mixed gas of Xe gas and Ne gas, or Xe gas is used as a plasma generating gas, and it is microwave-excited to generate a plasma having a high electron density and a low temperature. Can be generated. Since the object to be processed can be irradiated with plasma having a high electron density at this low temperature, it is not necessary to cool the object to be processed at the time of plasma processing. It can be done efficiently.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明によるマイクロ波プラズマ処理方法の効果を確認するための実験に使用 したプラズマトーチの概略構成を示す縦断面図である。  FIG. 1 is a longitudinal sectional view showing a schematic configuration of a plasma torch used in an experiment for confirming the effect of a microwave plasma processing method according to the present invention.
[図 2]図 1のプラズマトーチに異なる種類のプラズマ生成用ガスを供給したときの、放 電管先端開口を原点とする z軸方向の距離とプラズマの温度との関係を示すグラフで ある。  FIG. 2 is a graph showing the relationship between the distance in the z-axis direction with the origin at the tip of the discharge tube and the plasma temperature when different types of plasma generating gases are supplied to the plasma torch of FIG.
[図 3]図 1のプラズマトーチに異なる種類のプラズマ生成用ガスを供給したときの、放 電管先端開口を原点とする z軸方向の距離とプラズマの電子密度との関係を示した グラフである。  [Fig. 3] A graph showing the relationship between the distance in the z-axis with the discharge tube opening at the origin and the electron density of the plasma when different types of plasma generating gas are supplied to the plasma torch in Fig. 1. is there.
[図 4]本発明の 1実施例によるマイクロ波プラズマ処理装置の概略構成を示した斜視 図である。  FIG. 4 is a perspective view showing a schematic configuration of a microwave plasma processing apparatus according to one embodiment of the present invention.
[図 5]図 4の X— X線に沿った断面図である。  FIG. 5 is a cross-sectional view taken along line XX in FIG.
[図 6]図 5の I—I '線に沿った断面図である。  6 is a cross-sectional view taken along the line II ′ of FIG.
[図 7]図 5の Π—Π '線に沿った断面図である。  FIG. 7 is a cross-sectional view taken along the line Π—Π ′ in FIG.
符号の説明  Explanation of symbols
[0014] 1 放電管 [0014] 1 discharge tube
2 グランド電極  2 Ground electrode
3 ガス導入管  3 Gas inlet pipe
4 アンテナ  4 Antenna
発明を実施するための最良の形態 [0015] 以下、本発明の好ましい実施例について説明する。本発明のマイクロ波プラズマ処 理方法によれば、プラズマ生成用ガスとして Xeガスと Neガスの混合ガス、または Xe ガスを使用し、該プラズマ生成用ガスをマイクロ波励起してプラズマを生成し、該プラ ズマを被処理物に照射して該被処理物をプラズマ処理する。この場合、 Xeガスと Ne ガスの混合ガスを使用するときは、混合ガス中に Xeガスが 0. 05%以上含まれるよう にすることが好ましい。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described. According to the microwave plasma processing method of the present invention, a mixed gas of Xe gas and Ne gas, or Xe gas is used as a plasma generating gas, and the plasma generating gas is microwave-excited to generate plasma. The plasma is applied to the workpiece by irradiating the workpiece with the plasma. In this case, when using a mixed gas of Xe gas and Ne gas, it is preferable to contain 0.05% or more of Xe gas in the mixed gas.
[0016] こうして、本発明の方法によれば、低温でし力も電子密度の高いプラズマを生成す ることができ、そして、生成したプラズマを被処理物に照射することで、被処理物を冷 却するための特別の手段を設けずに、被処理物に熱的なダメージを及ぼすことなぐ プラズマ処理を行うことができる。  [0016] Thus, according to the method of the present invention, it is possible to generate a plasma having a low temperature and a high electron density, and irradiating the workpiece with the generated plasma, thereby cooling the workpiece. Without any special means for rejecting, plasma processing can be performed without causing thermal damage to the object to be processed.
[0017] 上記本発明による方法の効果を確認すベぐ実験を行った。実験は、図 1に示され るようなプラズマトーチを使用し、これに異なる種類のプラズマ生成用ガスを供給して 同一の条件でプラズマを生成し、生成されたプラズマの温度および電子密度を測定 するという方法で行った。  [0017] An experiment was conducted to confirm the effect of the method according to the present invention. In the experiment, a plasma torch as shown in Fig. 1 was used, plasma was generated under the same conditions by supplying different types of plasma generating gas, and the temperature and electron density of the generated plasma were measured. It was done by the method of doing.
[0018] プラズマトーチは、図 1に示されるように、石英ガラス製の放電管 1 (内径 10mm)と、 放電管 1の外側を被覆するステンレス製のグランド電極 2を備えており、放電管 1の内 部には、その中心軸に沿ってマイクロ波を供給するステンレス製のアンテナ 4が配置 されている。さらに、放電管 1の上部には、石英ガラス製のガス導入管 3が接続されて いる。  As shown in FIG. 1, the plasma torch includes a discharge tube 1 (inner diameter 10 mm) made of quartz glass and a stainless steel ground electrode 2 covering the outside of the discharge tube 1. Inside, a stainless steel antenna 4 is disposed along the central axis for supplying microwaves. Furthermore, a gas introduction tube 3 made of quartz glass is connected to the upper part of the discharge tube 1.
[0019] そして、このプラズマトーチをチャンバに装着し、プラズマ生成用ガスとして、 Heガ ス、 Heガスと Xeガスの混合ガス(Xeガスの割合力 と 10%の 2種類)、 Neガス、 Ne ガスと Xeガスの混合ガス(Xeガスの割合力 と 10%の 2種類)、 Arガスを供給し、 3 OTorr、 20W、 1. 5SLMの条件でプラズマを生成し、プラズマトーチの放電管 1の先 端開口を原点として放電管 1の軸方向に z軸を設定し (図 1参照)、 z軸方向の距離を 変化させながら、プラズマの温度および電子密度を測定した。  [0019] Then, this plasma torch is attached to the chamber, and as a gas for generating plasma, He gas, a mixed gas of He gas and Xe gas (two kinds of Xe gas ratio force and 10%), Ne gas, Ne Gas and Xe gas mixture gas (2 kinds of Xe gas ratio power and 10%), Ar gas is supplied, plasma is generated under the conditions of 3 OTorr, 20 W, 1.5 SLM, and the plasma torch discharge tube 1 The z-axis was set in the axial direction of the discharge tube 1 with the tip opening as the origin (see Fig. 1), and the plasma temperature and electron density were measured while changing the distance in the z-axis direction.
[0020] そして、プラズマの温度の測定結果を図 2のグラフに、プラズマの電子密度の測定 結果を図 3のグラフにそれぞれ示した。図 2および図 3のグラフからわ力るように、 Ne ガスと Xeガスの混合ガスの励起によって生成されたプラズマは、他のガスの場合と比 較して、温度が低くかつ電子密度が格段に高いことがわかる。なお、図 2のグラフで は、 Heガスの励起によって生成されたプラズマの温度が格段に低くなつている力 こ のプラズマは、図 3のグラフからわ力るように、電子密度が極めて低い。 [0020] The measurement results of the plasma temperature are shown in the graph of FIG. 2, and the measurement results of the electron density of the plasma are shown in the graph of FIG. As can be seen from the graphs in Fig. 2 and Fig. 3, the plasma generated by the excitation of the mixed gas of Ne gas and Xe gas is different from that of other gases. It can be seen that the temperature is low and the electron density is remarkably high. In the graph of Fig. 2, the force at which the temperature of the plasma generated by the excitation of the He gas is much lower, as shown in the graph of Fig. 3, has an extremely low electron density.
[0021] また、 Xeガスと Neガスの混合ガスを使用して、このプラズマトーチにお ヽてプラズマ が着火する圧力の範囲を調べたところ、大気圧〜数 Ton:の範囲内の圧力下で確実 にプラズマが着火することが確認できた。 [0021] Further, using a mixed gas of Xe gas and Ne gas, the range of the pressure at which the plasma ignites in this plasma torch was examined. Under the pressure in the range of atmospheric pressure to several Ton: It was confirmed that the plasma was surely ignited.
さら〖こは、 Xeガスが 0. 05%以上含まれた混合ガスを使用した場合に、所望の効果が 得られることが確認された。また、この実験では、 Xeガスのみをプラズマトーチに供給 することはしなかった力 Xeガスのみの場合にも、 Xeガスと Neガスの混合ガスの場 合と同様の結果を得ることができる。  Sarakuko has confirmed that the desired effect can be obtained when mixed gas containing 0.05% or more of Xe gas is used. Also, in this experiment, the same result as in the case of a mixed gas of Xe gas and Ne gas can be obtained even in the case of only the force Xe gas that did not supply only the Xe gas to the plasma torch.
[0022] 図 4は、本発明の 1実施例によるマイクロ波プラズマ処理装置の概略構成を示した 斜視図である。図 4を参照して、本発明によれば、被処理物が導入されるプラズマ処 理室 10と、プラズマ処理室 10にプラズマを供給するプラズマ生成部 11が備えられる 。また、プラズマ生成部 11にプラズマ生成用ガスを供給するガス供給源 12aと、ブラ ズマ生成部 11に反応ガスを供給するガス供給源 12bと、プラズマ生成部にプラズマ 生成用ガスを励起するためのマイクロ波を供給するマイクロ波発生源 13が備えられる 。ガス供給源 12aは、プラズマ生成用ガスとして、 Xeガスと Neガスの混合ガス、また は Xeガスのみを供給する。  FIG. 4 is a perspective view showing a schematic configuration of a microwave plasma processing apparatus according to one embodiment of the present invention. Referring to FIG. 4, according to the present invention, a plasma processing chamber 10 into which an object to be processed is introduced, and a plasma generation unit 11 that supplies plasma to the plasma processing chamber 10 are provided. In addition, a gas supply source 12a for supplying a plasma generation gas to the plasma generation unit 11, a gas supply source 12b for supplying a reaction gas to the plasma generation unit 11, and a plasma generation unit for exciting the plasma generation gas A microwave source 13 for supplying microwaves is provided. The gas supply source 12a supplies a mixed gas of Xe gas and Ne gas or only Xe gas as a plasma generating gas.
この装置では、プラズマ生成部 11にプラズマ生成用ガスと反応ガスを供給し、両方 のガスを略同時にプラズマ状態に励起するようになっている。  In this apparatus, a plasma generating gas and a reactive gas are supplied to the plasma generating unit 11, and both gases are excited into a plasma state substantially simultaneously.
[0023] 図 5は、図 4の X—X線に沿った断面図であり、図 6は、図 5の Ι— 線に沿った断面 図であり、図 7は、図 5の Π—Π '線に沿った断面図である。なお、図 6および図 7にお いて、導波管 16の縦方向の長さ yが厚さ bに比べて長いので、左側部分は一部省略 されている。  [0023] FIG. 5 is a cross-sectional view taken along line XX in FIG. 4, FIG. 6 is a cross-sectional view taken along line XX in FIG. 5, and FIG. It is sectional drawing along a line. In FIGS. 6 and 7, since the longitudinal length y of the waveguide 16 is longer than the thickness b, the left portion is partially omitted.
[0024] 図 5を参照して、導波管 16に、マイクロ波の伝播方向にのびる縦長の開口部が形成 され、この開口部に放電管 14が装着される。放電管 14は、石英ガラスやセラミックな どの誘電体から形成され、両端部が閉じられるとともに、中間部は逆 U字状の断面を 有している。そして、放電管 14は、その周壁の一部 14"が導波管 16の内部空間に侵 入し、かつ、当該周壁の一部 14"に対向する縦長の開口が下向きになるように配置さ れる。この縦長の開口は、プラズマ放出口 15を形成する。 Referring to FIG. 5, a longitudinally long opening extending in the microwave propagation direction is formed in waveguide 16, and discharge tube 14 is attached to this opening. The discharge tube 14 is made of a dielectric material such as quartz glass or ceramic, and both end portions are closed, and an intermediate portion has an inverted U-shaped cross section. The discharge tube 14 has a part 14 ”of its peripheral wall that invades the internal space of the waveguide 16. The vertically long opening that faces the part 14 ″ of the peripheral wall is disposed downward. The vertically long opening forms a plasma emission port 15.
[0025] 導波管 16は支持ブロック Bによって支持されるとともに、放電管 14はこの支持ブロッ ク Bに保持される。支持ブロック Bの両側には、放電管 14にガスを供給するガス導入 路 Gl、 G2が設けられる。図 6に示されるように、ガス導入路 Gl、 G2は、支持ブロック B内において放電管 14の周壁に向力つてその長手方向に沿って等間隔に複数本配 置される。 The waveguide 16 is supported by the support block B, and the discharge tube 14 is held by the support block B. On both sides of the support block B, gas introduction paths Gl and G2 for supplying gas to the discharge tube 14 are provided. As shown in FIG. 6, a plurality of gas introduction paths Gl and G2 are arranged at equal intervals along the longitudinal direction of the support block B against the peripheral wall of the discharge tube 14 by force.
[0026] プラズマ生成部 11のプラズマ処理室 10への取付けに関し、装置を略大気圧付近で 作動させる場合には、導波管 16と放電管 14との装着部、支持ブロック Bと放電管との 接合部、および支持ブロック Bとプラズマ処理室 10との接合部等の気密シールは不 要であるが、数 Torr程度の低圧状態で作動させる場合には、従来の減圧状態で作 動するプラズマ処理装置のような気密シールが必要となる。  [0026] Regarding the mounting of the plasma generating unit 11 to the plasma processing chamber 10, when the apparatus is operated near atmospheric pressure, the mounting portion of the waveguide 16 and the discharge tube 14, the support block B and the discharge tube However, when operating in a low pressure state of about several Torr, plasma operating in a conventional reduced pressure state is unnecessary. An airtight seal like a processing device is required.
[0027] 再び図 4を参照して、 G1は、プラズマ生成用ガス導入路であり、ガス供給パイプ 20 を介してガス供給源 12aに接続され、 G2は、反応ガス導入路であり、ガス供給パイプ 21を介してガス供給源 12bに接続される。また、 Wは、プラズマによる放電管 14の発 生熱を冷却するための冷却液還流路である。冷却液還流路 Wは、放電管内のプラズ マ熱によって導波管 16や支持ブロック Bが高温になるのを防止するためのもので、必 要に応じて導波管 16とプラズマ生成用ガス導入路 G1の間や、放電管 14の側部にも 設けられ得る。  [0027] Referring again to FIG. 4, G1 is a plasma generation gas introduction path, which is connected to a gas supply source 12a via a gas supply pipe 20, and G2 is a reaction gas introduction path, which supplies gas. The pipe 21 is connected to the gas supply source 12b. W is a coolant reflux path for cooling the heat generated in the discharge tube 14 by plasma. The coolant return path W is used to prevent the waveguide 16 and the support block B from becoming hot due to the plasma heat in the discharge tube. If necessary, the waveguide 16 and the plasma generation gas can be introduced. It can also be provided between the path G1 and at the side of the discharge tube 14.
[0028] 図 7に示されるように、放電管 14の側部には、長手方向に沿って、スリット状のガス導 入用開口部 14"が設けられる。このスリット状のガス導入用開口部 14"は、放電管の 機械的強度を保持するために巣孔状の開口列となっている。また、プラズマ生成用 ガス導入路 G1は、放電管 14へのガス導入部近辺に拡張部 G1 'を備えており、拡張 部 G1 'においてガス導入用開口部 14"に接続されている。そして、プラズマ生成用ガ ス導入路 G1から導入されたガスは、拡張部 G1 'において放電管 14の長さ方向に拡 散されて放電管 14内に導入される。なお、図示されないが、反応ガス導入路 G2と放 電管 14との接続部もこれと同様の構成を有している。  [0028] As shown in Fig. 7, a slit-like gas introduction opening 14 "is provided along the longitudinal direction at the side of the discharge tube 14. This slit-like gas introduction opening. 14 "has a burrow-like opening array to maintain the mechanical strength of the discharge tube. In addition, the plasma generating gas introduction path G1 includes an extension G1 ′ in the vicinity of the gas introduction part to the discharge tube 14, and is connected to the gas introduction opening 14 ″ in the extension G1 ′. The gas introduced from the gas generating channel G1 for plasma generation is diffused in the length direction of the discharge tube 14 in the extended portion G1 ′ and introduced into the discharge tube 14. Although not shown, the reaction gas is introduced. The connection between the route G2 and the discharge tube 14 has the same configuration.
Sl、 S2は、ガス導入路 Gl、 G2の拡張部 G1 'に配置されたバッフルプレート、即ち 多数の孔を設けたガス拡散板で、ガス導入路 Gl、 G2から導入されたガスの流れを、 放電管 14の縦軸方向に広げて放電管 14内に均一に案内する。 Sl and S2 are baffle plates arranged in the expansion part G1 ′ of the gas introduction paths Gl and G2, that is, A gas diffusion plate having a large number of holes spreads the gas flow introduced from the gas introduction paths Gl and G2 in the longitudinal direction of the discharge tube 14 and guides it uniformly into the discharge tube 14.
[0029] この実施例では、導波管 16の長手方向に均一なプラズマを発生させるため、ガス の流れもできるだけ均一にすることが重要である。そのために、本実施例では、ブラ ズマ生成用ガスも反応ガスも放電管の側方力 長手方向に沿って均一に導入される ように、ノ ッフルプレート Sl、 S2を通してガスを長手方向に拡散させた状態で、放電 管 14に均一に導入する。それによつて、プラズマ反応によって生成されるラジカルも 均一にすることができ、長手方向に安定した均一なプラズマが得られる。  In this embodiment, in order to generate a uniform plasma in the longitudinal direction of the waveguide 16, it is important to make the gas flow as uniform as possible. Therefore, in this example, the gas was diffused in the longitudinal direction through the kaffle plates Sl and S2 so that both the plasma generating gas and the reaction gas were uniformly introduced along the longitudinal direction of the side force of the discharge tube. In this state, it is introduced uniformly into the discharge tube 14. As a result, radicals generated by the plasma reaction can be made uniform, and a uniform plasma stable in the longitudinal direction can be obtained.
[0030] 以上の実施例では、 G1にプラズマ生成用ガス、 G2に反応ガスを導入するようにし た力 両方のガスを混合した状態で両方のガス導入路 Gl、 G2から同時に導入して もよぐこの場合には、放電管 14内においてガスの混合もよくなりプラズマの安定ィ匕 に貢献できる。さらに、ガス導入路を 3層、 4層に設け、各管路にそれぞれ別種類の 反応ガスを個別に導入するようにしてもょ ヽ。  [0030] In the above embodiment, the gas generating gas is introduced into G1 and the reaction gas is introduced into G2, and both gases may be introduced simultaneously from both gas introduction paths Gl and G2. In this case, gas mixing in the discharge tube 14 is improved, which contributes to plasma stability. In addition, gas inlets may be provided in three or four layers, and different types of reaction gases may be introduced individually into each pipe line.
また、プラズマ処理において反応ガスを使用しない場合には、両方のガス導入路 G 1、 G2にプラズマ生成用ガスを供給するか、あるいは反応ガス導入管路 G2を封鎖す るようにしてちょい。  If no reaction gas is used in the plasma treatment, either supply the gas for generating plasma to both gas introduction paths G1 and G2, or block the reaction gas introduction pipe G2.
[0031] こうして、本発明のマイクロ波プラズマ処理装置によれば、 Xeガスと Neガスの混合 ガス、または Xeガスの単体をマイクロ波励起して生成された、低温でしかも電子密度 の高!、プラズマを被処理物に照射することで、被処理物を冷却するための特別の手 段を設けずに、被処理物に熱的なダメージを及ぼすことなぐエッチング、 CVD、アツ シングおよび表面改質等のプラズマ処理を行うことができる。  [0031] Thus, according to the microwave plasma processing apparatus of the present invention, it is generated by microwave excitation of a mixed gas of Xe gas and Ne gas, or a simple substance of Xe gas, at a low temperature and with a high electron density! By irradiating the workpiece with plasma, there is no special means for cooling the workpiece, and etching, CVD, ashing, and surface modification that do not cause thermal damage to the workpiece Etc. can be performed.

Claims

請求の範囲 The scope of the claims
[1] プラズマ生成用ガスをマイクロ波励起してプラズマを生成し、該プラズマを被処理物 に照射して該被処理物をプラズマ処理する方法であって、  [1] A method of generating plasma by microwave excitation of a plasma generating gas, irradiating the processing object with the plasma, and plasma processing the processing object,
前記プラズマ生成用ガスとして、 Xeガスと Neガスの混合ガスを使用することを特徴と するマイクロ波プラズマ処理方法。  A microwave plasma processing method, wherein a mixed gas of Xe gas and Ne gas is used as the plasma generating gas.
[2] プラズマ生成用ガスをマイクロ波励起してプラズマを生成し、該プラズマを被処理物 に照射して該被処理物をプラズマ処理する方法であって、 [2] A method of generating plasma by microwave excitation of a plasma generating gas, irradiating the processing object with the plasma, and plasma processing the processing object,
前記プラズマ生成用ガスとして Xeガスを使用することを特徴とするマイクロ波プラズマ 処理方法。  A microwave plasma processing method, wherein Xe gas is used as the plasma generating gas.
[3] 前記プラズマ処理は、プラズマエッチングまたはプラズマ CVDまたはプラズマアツシ ングまたはプラズマ表面改質であることを特徴とする請求項 1または請求項 2に記載 のマイクロ波プラズマ処理方法。  [3] The microwave plasma processing method according to claim 1 or 2, wherein the plasma processing is plasma etching, plasma CVD, plasma ashing, or plasma surface modification.
[4] 被処理物が導入されるプラズマ処理室と、前記プラズマ処理室にプラズマを供給す るプラズマ生成部と、前記プラズマ生成部にプラズマ生成用ガスを供給するガス供給 源と、前記プラズマ生成部にプラズマ生成用ガスを励起するためのマイクロ波を供給 するマイクロ波発生源とを備えたマイクロ波プラズマ処理装置であって、  [4] A plasma processing chamber into which an object to be processed is introduced, a plasma generation unit that supplies plasma to the plasma processing chamber, a gas supply source that supplies a plasma generation gas to the plasma generation unit, and the plasma generation A microwave plasma processing apparatus including a microwave generation source for supplying a microwave for exciting a plasma generating gas to a section,
前記ガス供給源は、 Xeガスと Neガスの混合ガス供給源力もなつて ヽることを特徴と するマイクロ波プラズマ処理装置。  The microwave plasma processing apparatus, wherein the gas supply source also has a mixed gas supply source power of Xe gas and Ne gas.
[5] 被処理物が導入されるプラズマ処理室と、前記プラズマ処理室にプラズマを供給す るプラズマ生成部と、前記プラズマ生成部にプラズマ生成用ガスを供給するガス供給 源と、前記プラズマ生成部にプラズマ生成用ガスを励起するためのマイクロ波を供給 するマイクロ波発生源とを備えたマイクロ波プラズマ処理装置であって、  [5] A plasma processing chamber into which an object to be processed is introduced, a plasma generation unit that supplies plasma to the plasma processing chamber, a gas supply source that supplies a plasma generation gas to the plasma generation unit, and the plasma generation A microwave plasma processing apparatus including a microwave generation source for supplying a microwave for exciting a plasma generating gas to a section,
前記ガス供給源は、 Xeガス供給源カゝらなって ヽることを特徴とするマイクロ波プラズ マ処理装置。  The microwave plasma processing apparatus, wherein the gas supply source is an Xe gas supply source.
[6] 前記プラズマ処理は、プラズマエッチングまたはプラズマ CVDまたはプラズマエツ チングまたはプラズマ表面改質であることを特徴とする請求項 4または請求項 5に記 載のマイクロ波プラズマ処理装置。  6. The microwave plasma processing apparatus according to claim 4, wherein the plasma processing is plasma etching, plasma CVD, plasma etching, or plasma surface modification.
PCT/JP2006/317994 2006-07-06 2006-09-11 Method of microwave plasma treatment and apparatus therefor WO2008004318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008523593A JPWO2008004318A1 (en) 2006-07-06 2006-09-11 Microwave plasma processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006186903 2006-07-06
JP2006-186903 2006-07-06

Publications (1)

Publication Number Publication Date
WO2008004318A1 true WO2008004318A1 (en) 2008-01-10

Family

ID=38894295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317994 WO2008004318A1 (en) 2006-07-06 2006-09-11 Method of microwave plasma treatment and apparatus therefor

Country Status (2)

Country Link
JP (1) JPWO2008004318A1 (en)
WO (1) WO2008004318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047241A1 (en) * 2016-09-06 2018-03-15 日本サイエンティフィック株式会社 Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845698A (en) * 1994-07-29 1996-02-16 Denki Kogyo Co Ltd Crushing method and device for lump-form semiconductor material using heat plasma
JP2006012962A (en) * 2004-06-23 2006-01-12 Canon Inc Microwave plasma processing apparatus using vacuum ultraviolet light shielding plate with oblique through hole and its processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068204B2 (en) * 1998-01-20 2008-03-26 東京エレクトロン株式会社 Plasma deposition method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845698A (en) * 1994-07-29 1996-02-16 Denki Kogyo Co Ltd Crushing method and device for lump-form semiconductor material using heat plasma
JP2006012962A (en) * 2004-06-23 2006-01-12 Canon Inc Microwave plasma processing apparatus using vacuum ultraviolet light shielding plate with oblique through hole and its processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047241A1 (en) * 2016-09-06 2018-03-15 日本サイエンティフィック株式会社 Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle

Also Published As

Publication number Publication date
JPWO2008004318A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US9595425B2 (en) Antenna, dielectric window, plasma processing apparatus and plasma processing method
KR101125086B1 (en) Film forming apparatus
JP4793662B2 (en) Microwave plasma processing equipment
JP5051581B2 (en) Multi-piece buffer plate assembly for plasma processing systems
JP2019046805A (en) Toroidal plasma processing device
US7640887B2 (en) Surface wave excitation plasma generator and surface wave excitation plasma processing apparatus
US20050178746A1 (en) Higher power density downstream plasma
JP5025614B2 (en) Atmospheric pressure plasma treatment method
TW201015653A (en) Plasma processing apparatus and plasma processing method
JPH11507476A (en) Plasma apparatus and method using azimuthally and axially uniform electric fields
TW200816278A (en) Shower plate, plasma processing device using the same, plasma processing method and manufacturing method of electronic apparatus
JP4532897B2 (en) Plasma processing apparatus, plasma processing method and product manufacturing method
JP4502639B2 (en) Shower plate, plasma processing apparatus, and product manufacturing method
JP2008171996A (en) Conveyance tray and vacuum treatment apparatus using the same
JP2015500557A (en) Gas injector for plasma applicator
JP2009205921A (en) Microwave plasma treatment device, and usage of microwave plasma treatment device
JP5438260B2 (en) Plasma processing equipment
WO2008018159A1 (en) Microwave line plasma generation system with two power supply
JP2008251674A (en) Plasma treatment apparatus
WO2008004318A1 (en) Method of microwave plasma treatment and apparatus therefor
JP2010218801A (en) Atmospheric-pressure plasma generator
JP2001135627A (en) Plasma processor
JP4134077B2 (en) Microwave line plasma generator
JP2006318762A (en) Plasma process device
JP5190203B2 (en) Plasma generator, plasma processing apparatus, and plasma processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06783267

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008523593

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06783267

Country of ref document: EP

Kind code of ref document: A1