JP4134077B2 - Microwave line plasma generator - Google Patents

Microwave line plasma generator Download PDF

Info

Publication number
JP4134077B2
JP4134077B2 JP2005083190A JP2005083190A JP4134077B2 JP 4134077 B2 JP4134077 B2 JP 4134077B2 JP 2005083190 A JP2005083190 A JP 2005083190A JP 2005083190 A JP2005083190 A JP 2005083190A JP 4134077 B2 JP4134077 B2 JP 4134077B2
Authority
JP
Japan
Prior art keywords
plasma
waveguide
discharge tube
gas
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005083190A
Other languages
Japanese (ja)
Other versions
JP2006269151A (en
Inventor
孝之 深沢
修逸 藤井
春雄 進藤
Original Assignee
株式会社アドテック プラズマ テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドテック プラズマ テクノロジー filed Critical 株式会社アドテック プラズマ テクノロジー
Priority to JP2005083190A priority Critical patent/JP4134077B2/en
Publication of JP2006269151A publication Critical patent/JP2006269151A/en
Application granted granted Critical
Publication of JP4134077B2 publication Critical patent/JP4134077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

この発明は、半導体プロセスにおけるエッチングやクリーニング処理、有機フイルムのCVD処理、親水性加工、食品などの殺菌・滅菌処理などに使用されるプラズマを、大気圧など比較的低圧条件で簡単に発生させるためのマイクロ波プラズマ発生装置に関するもので、特に大型の液晶パネルや長尺のフイルムなど広い面積をもつ構造物のプラズマ処理に適するようなライン状のプラズマ発生装置を提供する。   This invention is intended to easily generate plasma, which is used for etching and cleaning processing in semiconductor processes, CVD processing of organic films, hydrophilic processing, sterilization processing of foods, etc. under relatively low pressure conditions such as atmospheric pressure. In particular, a line-shaped plasma generator suitable for plasma processing of a structure having a large area such as a large liquid crystal panel or a long film is provided.

従来この種マイクロ波を利用するラインプラズマ発生装置は、通常矩形状のマイクロ波導波管内を進行するマイクロ波の伝播エネルギーによってガスを励起し、このガスをプラズマ化するものであるが、矩形状導波管の縦方向(矩形の長さ方向)にマイクロ波が進行した場合、この進行方向に直角な方向(矩形の巾方向)のプラズマ生成電界強度が強くなることが知られている。
また導波管内のマイクロ波の伝播波長を長くするほど導波管の縦方向におけるプラズマ化に寄与する電磁波エネルギーの効率が高くなることも知られているが、このマイクロ波の導波管内波長は導波管の横幅長さを狭くすると長くできる。通常使用されるマイクロ波(波長2.45GH)の場合、導波管の巾(横の長さ)を61mmから62mmにしたとき管内伝播波長が一番長くなりプラズマ励起効率が最大になる。即ちプラズマ生成ガスを充満したプラズマ放電管を導波管に対して横方向に配置することによって横方向に強力なライン状のプラズマを発生させることができるが、前記したように導波管の巾は61〜62mm程度に限定されるので、これ以上長いライン状のプラズマは得られない。
そこで本発明者等は、偏平な方形導波管の側壁部にこの導波管の縦方向(マイクロ波の伝播方向)に沿ってスリットを設け、このスリットの方向に沿って導波管の外に縦長のプラズマ放電管を近接配置し、スリットから放射される長波長マイクロ波電磁エネルギーによって放電管内のガスを励起し、放電管から縦方向にライン状のプラズマを発生させる装置を提案した(特許文献1)。これにより導波管の横幅は前記によって制限されても縦長さは自由に長くできるので、放電管から発生するプラズマのライン長さは十分長くとれるようになり、広い面積の構造物をより効率良くプラズマ処理できるようになった。
特願2004−159280
Conventionally, a line plasma generator using such a microwave excites a gas by the propagation energy of the microwave traveling in a rectangular microwave waveguide, and converts this gas into a plasma. It is known that when a microwave travels in the longitudinal direction (rectangular length direction) of the wave tube, the plasma generation electric field strength in a direction perpendicular to the traveling direction (rectangular width direction) increases.
It is also known that the longer the propagation wavelength of the microwave in the waveguide, the higher the efficiency of the electromagnetic wave energy that contributes to the plasma formation in the longitudinal direction of the waveguide. The width can be increased by reducing the width of the waveguide. In the case of a commonly used microwave (wavelength 2.45 GH), when the width of the waveguide (lateral length) is changed from 61 mm to 62 mm, the propagation wavelength in the tube is the longest and the plasma excitation efficiency is maximized. I.e., the plasma discharge tube filled with gas for plasma generation can generate a strong linear plasma laterally by arranging transversely to the waveguide, the waveguide as described above Since the width is limited to about 61 to 62 mm, a longer line-shaped plasma cannot be obtained.
Therefore, the present inventors provided a slit in the side wall of the flat rectangular waveguide along the longitudinal direction of the waveguide (the propagation direction of the microwave), and the outside of the waveguide along the direction of the slit. Proposed a device that generates a line-shaped plasma in the vertical direction from a discharge tube by placing a vertically long plasma discharge tube close to each other and exciting the gas in the discharge tube by long-wavelength microwave electromagnetic energy radiated from a slit (Patent) Reference 1). As a result, even if the horizontal width of the waveguide is limited by the above, the vertical length can be freely increased, so that the line length of the plasma generated from the discharge tube can be sufficiently long, and a structure having a large area can be more efficiently formed. Plasma processing is now possible.
Japanese Patent Application No. 2004-159280

本発明は、前記本発明者等の発明を更に改良発展させ、より強力なラインプラズマを発生できるようにするとともに、コンパクトで簡単に持ち運びできる汎用的なプラズマ発生源を提供するものである。 The present invention, the present inventors have invention further improves development of, as well as to be able to generate a more powerful line plasma, and provides a generic plasma source that can be easily carried in a compact.

上記課題を解決するために発明は、プラズマ発生用の放電管と矩形状のマイクロ波導波管との新規な一体型結合構成を提供したもので、マイクロ波を導入する偏平な矩形状導波管の筐体面の一部に、マイクロ波の進行方向に沿って縦長の開口部を設け、この縦長開口部に誘電体で構成したプラズマ放電管をその放電管の外壁の一部が導波管の内部に入り込むように装着し、この放電管内へプラズマ生成用ガスを連続的に導入することによって、放電管内で発生したプラズマエネルギーを前記放電管の導波管から露出した部分からとりだすように構成したことを特徴とするマイクロ波ラインプラズマ発生装置である。 In order to solve the above problems, the present invention provides a novel integrated coupling structure of a discharge tube for generating plasma and a rectangular microwave waveguide, and a flat rectangular waveguide for introducing microwaves. A vertically long opening is provided in a part of the casing surface of the tube along the microwave traveling direction, and a plasma discharge tube composed of a dielectric is formed in the vertically long opening, and a part of the outer wall of the discharge tube is a waveguide. The plasma generating gas is continuously introduced into the discharge tube so that the energy of the plasma generated in the discharge tube is extracted from the portion exposed from the waveguide of the discharge tube. A microwave line plasma generator characterized by comprising.

好ましい発明態様としては、プラズマ放電管にその長さ方向に沿って縦長の開口を設け、プラズマ放電管内で発生したプラズマをこの縦長開口から直接プラズマ処理チェンバーへ取り出す構成を提供する。 Preferred invention embodiments, the opening of the elongated along its longitudinal direction in the plasma discharge tube, to provide an arrangement for taking out the plasma generated in the plasma discharge tube from the elongated opening to direct plasma processing chamber.

また、別の発明態様として、導波管内へ進入させたプラズマ放電管内へプラズマ生成ガスと被加工物処理用の反応ガスとを共に導入し、双方のガスを同時にプラズマ化して利用する装置を提供する。 Further, as another invention embodiment, the plasma discharge tube which is advanced into the waveguide by introducing both the reaction gas for plasma generation gas workpiece processing, using at the same time plasma both gas system I will provide a.

さらに、本発明実施態様では、導波管内の縦方向電界強度分布を放電管の長軸方向に沿って均一となるように調整する手段を提供するもので、発生するプラズマ強度のライン方向のバラツキを容易に調整でき、長さ方向に均一な安定したライン状プラズマが得られるものである。
[用語の定義]
本明細書において、プラズマ放電管とは、石英やガラス、セラミックスなどの誘電体で構成した管状または縦長の筐体を意味し、断面円形、楕円形、方形または多角形の筐体を言う。
プラズマ生成ガスとは、ヘリウム、アルゴン、キセノン、クリプトン、フッ素、窒素、水素の少なくとも一つを含んだガスであって、マイクロ波の電磁エネルギーの作用によりプラズマが生じ易いガスをいう。
Furthermore, the embodiment of the present invention provides means for adjusting the vertical electric field intensity distribution in the waveguide so as to be uniform along the long axis direction of the discharge tube, and the variation in the generated plasma intensity in the line direction is provided. Can be easily adjusted, and a uniform and stable line-shaped plasma can be obtained in the length direction.
[Definition of terms]
In this specification, the plasma discharge tube means a tubular or vertically long casing made of a dielectric such as quartz, glass, or ceramic, and means a casing having a circular cross section, an ellipse, a square, or a polygon.
The plasma generation gas, helium, argon, xenon, krypton, fluorine, nitrogen, a gas containing at least one hydrogen means the likely gas plasma is generated by the action of the electromagnetic energy of the microwave.

本発明によれば、放電管内のプラズマ生成ガスに、導波管内を伝播するマイクロ波電磁エネルギーを直接関与させるので、プラズマ化効率が高まりより強力なプラズマを導波管の縦方向に沿ってライン状に発生させることができるとともに、導波管とプラズマ放電管とを一体的にコンパクトに構成したので持ち運びも簡単となり汎用性の高いプラズマ発生源が提供できた。
更に導波管内の、放電管内ガスのプラズマ化に直接関係する空間導波路部の電界強度分布を、管の縦方向に沿って調整する手段を提供したので、導波管や放電管の縦方向加工歪に基づくプラズマラインの強度のバラツキも容易に調整することが可能となり、長さ方向に均一な安定したプラズマを発生させることができる。
According to the present invention, the plasma generation gas in the discharge tube, so to involve microwave electromagnetic energy propagating in the waveguide directly, by plasma efficiency along powerful plasma from increasing in the longitudinal direction of the waveguide In addition to being able to generate in a line, the waveguide and plasma discharge tube are made compact in an integrated manner, so it is easy to carry and a highly versatile plasma generation source can be provided.
Furthermore, since a means for adjusting the electric field strength distribution of the spatial waveguide portion directly related to the plasmaization of the gas in the discharge tube in the waveguide along the longitudinal direction of the tube is provided, the longitudinal direction of the waveguide and the discharge tube is provided. Variations in the intensity of the plasma line based on processing strain can be easily adjusted, and uniform and stable plasma can be generated in the length direction.

以下本発明の実施例を図面に基づいて説明する。
図1は、本発明マイクロ波発生装置の基本構成を示す図で、マイクロ波導波管1はアルミや真鍮などの導体で構成され、縦長さy横幅a厚さbの偏平な矩形状の空洞型導波管で、矢印MWの方向からマイクロ波が導入され管内を縦方向に進行する。2はこの導波管の偏平平面(H面)に設けられた縦長の開口部で、この開口部にプラズマ放電管3がその一部が導波管1内へ入り込んだ状態で装填される。この放電管内には図示を省略したが矢印Ginの方向からヘリウム・アルゴンなどを含むプラズマ生成ガスが導入され、矢印Goutの方向へ導出され常時ガスが流動する。4はこの放電管の露出している部分に設けられた縦長の開口で、放電管内へ導入されたガスは導波管内を縦方向に伝播するマイクロ波の電磁エネルギーによって励起され、プラズマ状態となって前記開口4から導波管の縦方向に沿ってライン状に管外の処理室へ放出される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a basic configuration of a microwave generator according to the present invention. A microwave waveguide 1 is made of a conductor such as aluminum or brass, and is a flat rectangular cavity type having a vertical length y width a thickness b. In the waveguide, microwaves are introduced from the direction of the arrow MW and travel in the longitudinal direction in the tube. Reference numeral 2 denotes a vertically long opening provided on the flat plane (H surface) of the waveguide, and a plasma discharge tube 3 is loaded in a state where a part of the plasma discharge tube 3 enters the waveguide 1. This is the discharge tube is not shown is introduced gas for plasma generation, including helium argon from the direction of arrow Gin, always gas derived in the direction of arrow Gout flows. Reference numeral 4 denotes a vertically long opening provided in the exposed portion of the discharge tube, and the gas introduced into the discharge tube is excited by the electromagnetic energy of the microwave propagating in the waveguide in the vertical direction to be in a plasma state. Then, the gas is discharged from the opening 4 into the processing chamber outside the tube in a line along the longitudinal direction of the waveguide.

図において、導波管1へ導入されるマイクロ波の波長をλoとしたとき、導波管内を伝播するマイクロ波の波長λgは、前記本発明者等の特許願2004−159280に記載したように、次式を満足するように選定し、λgがプラズマのライン長さy’より長くなるように導波管の幅aを選定するのが望ましい。

Figure 0004134077
εは誘電率、μは透磁率である。(rは、真空の値に対しての比を表す。たとえば、εr、μrは、それぞれ比誘電率と比透磁率を表す。) In the figure, when the wavelength of the microwave introduced into the waveguide 1 is λo, the wavelength λg of the microwave propagating in the waveguide is as described in the above-mentioned patent application 2004-159280 of the present inventors. It is desirable to select the waveguide width a so that λg is longer than the plasma line length y ′.
Figure 0004134077
ε is a dielectric constant, and μ is a magnetic permeability. (R represents the ratio to the vacuum value. For example, ε r and μ r represent the relative permittivity and the relative permeability, respectively.)

一般的に使われる周波数2.45GHz、波長120mmのマイクロ波をこの導波管に送り込む場合は、上式によれば導波管幅aを61.3mmに選定したとき導波管内のマイクロ波の波長λgは2467mmとなり、縦軸方向に十分長い波長のマイクロ波を走らせることができる。即ち縦軸方向yに沿って長いラインプラズマを発生させるのに有効である。   When a commonly used microwave with a frequency of 2.45 GHz and a wavelength of 120 mm is fed into this waveguide, according to the above equation, when the waveguide width a is selected to be 61.3 mm, the microwave in the waveguide The wavelength λg is 2467 mm, and a sufficiently long wavelength microwave can be run in the vertical axis direction. That is, it is effective for generating a long line plasma along the vertical axis direction y.

図2は、図1の基本構成の側面図で、導波管1内へのマイクロ波の誘導部および発生したプラズマガスによって液晶基板などの被処理物Sを処理するためのプラズマ処理室Tとの関係を示した図である。   FIG. 2 is a side view of the basic configuration of FIG. 1, and a plasma processing chamber T for processing an object to be processed S such as a liquid crystal substrate by a microwave guiding portion into the waveguide 1 and the generated plasma gas. FIG.

偏平な矩形型導波管1のH面に設けた縦長開口部に、プラズマ放電管3が図のようにその一部が導波管の内側へ食い込むように装填され、導波管内を伝播するマイクロ波電磁エネルギーによってプラズマ状態となったガスが点線矢印pgに示すように処理室Tへ放射される。Gは被処理物体Sへ反応ガスを供給するための反応ガス供給ノズルである。処理室Tへ放射されたプラズマpgはさらに前記反応ガスのプラズマ化を促し、被処理物体Sの広い部分を一挙にプラズマ加工できる。 A plasma discharge tube 3 is loaded in a vertically long opening provided on the H surface of a flat rectangular waveguide 1 so that a part of the plasma discharge tube 3 bites into the inside of the waveguide as shown in the figure, and propagates through the waveguide. A gas in a plasma state by microwave electromagnetic energy is radiated into the processing chamber T as indicated by a dotted arrow pg. G is a reaction gas supply nozzle for supplying a reaction gas to the object S to be processed. The plasma pg radiated to the processing chamber T further promotes the reaction gas to be plasma, and a wide portion of the object to be processed S can be processed at once.

尚図において5はマイクロ波発生源、6はマイクロ波誘導管、7は電磁波の反射部で反射波の波長を調整するための可動反射板8を備えている。この反射板8はプランジャー式になっており、位置を左右に調整することにより導波管内を進行するマイクロ波波長λgを微調整することができ、これによりプラズマ発生強度を長さ方向全体に亘って均一になるように調整できる。Gin、Goutは図1と同様放電管へのプラズマ生成ガスの導入・導出配管系である。 In the figure, reference numeral 5 denotes a microwave generation source, 6 denotes a microwave guide tube, and 7 denotes an electromagnetic wave reflecting portion, which includes a movable reflector 8 for adjusting the wavelength of the reflected wave. The reflecting plate 8 is of a plunger type, and the microwave wavelength λg traveling in the waveguide can be finely adjusted by adjusting the position to the left and right, thereby making the plasma generation intensity in the entire length direction. It can be adjusted to be uniform throughout. Gin, Gout is introduced and derived piping system of the plasma generation gas into the same discharge pipe as in FIG.

図3は、図1の基本構成装置における導波管1の断面図で、マイクロ波の進行方向と直角な断面を示し、(a)(b)(c)(d)はプラズマ放電管3と導波管1との結合装填の態様を異ならしめた実施例である。 FIG. 3 is a cross-sectional view of the waveguide 1 in the basic configuration apparatus of FIG. 1, showing cross sections perpendicular to the traveling direction of the microwaves, and (a), (b), (c), and (d) are the plasma discharge tube 3 and This is an embodiment in which the mode of coupling and loading with the waveguide 1 is made different.

図3(a)は、プラズマ放電管3の直径の約1/3を導波管内へ入り込ませた実施例で、マイクロ波エネルギーは紙面に対して垂直方向に放電管の周辺を通って伝播する。本発明者等の実験によれば放電管の下面付近k部分の電界強度が強いほどプラズマ発生効率が高まることを見出したので、この部分の導波管内ギャップ(kの間隙)をマイクロ波の伝播に支障を生じない程度に小さくした。即ち導波管内部の厚みb1は必要にして十分なkになるように設計する。
図3(b)は、導波管のH面のスリット幅を若干大きくしてプラズマ放電管をその直径の約半分程度導波管内へ入り込ませた実施例で、導波管の厚みb2はb1より若干厚くなるが、プラズマ発生の動作は図3(a)と同様である。
FIG. 3A shows an embodiment in which about one third of the diameter of the plasma discharge tube 3 is inserted into the waveguide, and the microwave energy propagates through the periphery of the discharge tube in a direction perpendicular to the paper surface. . According to the experiments by the present inventors, it has been found that the plasma generation efficiency increases as the electric field strength in the k portion near the lower surface of the discharge tube increases, so that the microwave propagation propagates through the gap in the waveguide (k gap) in this portion. It was made small enough not to cause any trouble. That is, the thickness b1 inside the waveguide is designed to be a sufficient k if necessary.
FIG. 3B shows an embodiment in which the slit width on the H surface of the waveguide is slightly increased so that the plasma discharge tube is inserted into the waveguide by about half of its diameter. The thickness b2 of the waveguide is b1. Although slightly thicker, the plasma generation operation is the same as in FIG.

図3(c)は、プラズマ放電管を角形の誘電体製筐体3’としこれを導波管1内へ食い込ませた実施例で、プラズマ発生の動作は(a)(b)と何ら変わらない。 FIG. 3 (c) shows an embodiment in which the plasma discharge tube is a rectangular dielectric casing 3 ′, which is cut into the waveguide 1, and the operation of plasma generation is the same as (a) and (b). Absent.

図3(d)は、導波管の側壁面1bにプラズマ放電管3を装填した実施例で、プラズマ放射方向を側方にとり出す必要がある場合に適用できる例である。 FIG. 3D is an example in which the plasma discharge tube 3 is loaded on the side wall surface 1b of the waveguide, and is an example applicable when the plasma radiation direction needs to be taken out to the side.

図4は、導波管内のマイクロ波伝播条件の関係で、導波管の厚みb’を小さくできない場合にギャップkを狭めてプラズマ発生効率を高めるように設計した実施例で、プラズマ発生の動作は図3の(a)の場合と変わらない。尚図はプラズマ処理室Tを導波管1の上部に直接配置した場合で、Gは反応ガス供給ノズル部である。 FIG. 4 is an embodiment designed to increase the plasma generation efficiency by narrowing the gap k when the thickness b ′ of the waveguide cannot be reduced due to the microwave propagation conditions in the waveguide. Is the same as in the case of FIG. The figure shows a case where the plasma processing chamber T is arranged directly on the upper portion of the waveguide 1, and G is a reactive gas supply nozzle portion.

以上図3、図4の実施例では導波管の上壁面(H面)または側壁面にプラズマ放電管を装着した例を示したが、放電管は導波管の下面に装着してもよいことは当然である。また放電管にガス放射のための開口を設けないで、放電管内で発生したプラズマの光エネルギー(紫外線など)を処理室へとり出すようにしても良い。この場合は放電管の管壁は透光性の高い誘電体(石英ガラスなど)とするのが望ましい。   3 and 4 show the example in which the plasma discharge tube is mounted on the upper wall surface (H surface) or the side wall surface of the waveguide. However, the discharge tube may be mounted on the lower surface of the waveguide. It is natural. Further, without providing an opening for gas emission in the discharge tube, the light energy (such as ultraviolet rays) of plasma generated in the discharge tube may be taken out to the processing chamber. In this case, the tube wall of the discharge tube is preferably made of a highly translucent dielectric (such as quartz glass).

図5は、図3の実施例をさらに発展させた例で、導波管1の上壁面1aと下壁面1cに同時にプラズマ放電管3、3’を装填した実施例である。導波管へ入力するマイクロ波を十分強力なものとし、ギャップkの電界強度が充分強くなるように設計することにより、上下両方向に同時にプラズマを発生させることができる。尚この例では、双方の放電管には開口を設けないで、光透過性の良い誘電体で構成し管内で発生したプラズマによる光pfを直接プラズマ処理室で利用できるようにしたものである。 FIG. 5 is an example in which the embodiment of FIG. 3 is further developed, and is an embodiment in which plasma discharge tubes 3 and 3 ′ are simultaneously loaded on the upper wall surface 1 a and the lower wall surface 1 c of the waveguide 1. By making the microwave input to the waveguide sufficiently strong and designing the field strength of the gap k to be sufficiently strong, plasma can be generated simultaneously in both the upper and lower directions. In this example, both discharge tubes are not provided with openings , but are made of a dielectric material having a good light transmission property, and light pf generated by plasma generated in the tubes can be directly used in the plasma processing chamber.

次に図6は、プラズマ生成ガスを収容したプラズマ放電管3を、導波管1の縦長開口部2に若干の間隙2’を介して収容した例である
図のように放電管3を導波管1の開口部2に気密的に装着しなくても、放電管の下面と導波管の内面とのギャップk部分の電界強度を最適条件に設定することにより放電管内でライン状にプラズマを発生させることができ、図のpgに示すようにプラズマは開口4から上方向に放出される。勿論この実施例においても放電管の開口を封鎖し光エネルギーとしてプラズマを利用することも可能である。
Next, FIG. 6, the plasma discharge tube 3 accommodating a gas for plasma generation is an example of accommodating through a slight gap 2 'to the longitudinal opening 2 of the waveguide 1.
Even if the discharge tube 3 is not airtightly attached to the opening 2 of the waveguide 1 as shown in the figure, the electric field strength at the gap k portion between the lower surface of the discharge tube and the inner surface of the waveguide is set to the optimum condition. As a result, plasma can be generated in a line shape in the discharge tube, and the plasma is emitted upward from the opening 4 as indicated by pg in the figure. Of course, also in this embodiment, it is possible to block the opening of the discharge tube and use plasma as light energy.

図7は、導波管の厚みbをある程度厚くした状態で、プラズマ放電管の下面の導波路空間ギャップkを実質的に狭くし、この部分の電界強度を強くする手段を設けた実施例である。即ち導波管1の下壁面の内側に第2の導電体の壁板9を取り付け、この壁板の中央部付近(放電管の下面に対向する部分)9aを図に示すように内側へ凹ませることにより、マイクロ波の伝播容積を充分大きく確保しつつギャップkの部分の電界密度即ち電界強度を高めたものである。これにより放電管内のガスにはマイクロ波の電磁波エネルギーが強く作用し、密度の高いプラズマを発生させることができる。 FIG. 7 shows an embodiment in which means for increasing the electric field strength in this portion is provided by substantially reducing the waveguide space gap k on the lower surface of the plasma discharge tube with the thickness b of the waveguide increased to some extent. is there. That is, a wall plate 9 of a second conductor is attached to the inside of the lower wall surface of the waveguide 1, and a central portion (a portion facing the lower surface of the discharge tube) 9a of this wall plate is recessed inward as shown in the figure. As a result, the electric field density, that is, the electric field strength in the gap k is increased while ensuring a sufficiently large microwave propagation volume. As a result, microwave electromagnetic energy acts strongly on the gas in the discharge tube, and high-density plasma can be generated.

尚10は放電管下面の狭隘部空間(ギャップ部k)に設けられた導電性ブラシで、このブラシ10の上下位置をねじ機構11によって導波管外から矢印方向に調整することにより、ギャップk部の電界強度を微調整する。このブラシ機構を紙面に垂直方向即ち放電管の長手方向(図2、y’の方向)に沿って複数個設けておくことにより、放電管から発生するプラズマのライン方向の強度の不均一性を調整することができる。   Reference numeral 10 denotes a conductive brush provided in a narrow space (gap portion k) on the lower surface of the discharge tube. By adjusting the vertical position of the brush 10 from the outside of the waveguide by the screw mechanism 11, the gap k is obtained. Finely adjust the electric field strength of the part. By providing a plurality of brush mechanisms in the direction perpendicular to the paper surface, that is, along the longitudinal direction of the discharge tube (the direction of y ′ in FIG. 2), the non-uniformity of the intensity in the line direction of the plasma generated from the discharge tube is reduced. Can be adjusted.

例えば導波管の内壁面の加工精度が長さ方向にバラツキがあったり、プラズマ放電管の直径や管の材質が長さ方向で不同があれば、マイクロ波によるプラズマ励起の程度が長さ方向で変わるので、発生するプラズマの強度もラインに沿って不均一になる。例えば放電管から発生するプラズマの強度が管の両端付近で弱い場合は、放電管の両端付近の下方ギャップ部にある導電ブラシを放電管に近づけるように調整すれば、この部分の電界強度が強くなり、発生するラインプラズマの強度を軸方向に全体的に均一化できる。 For example, if the processing accuracy of the inner wall surface of the waveguide varies in the length direction, or if the diameter of the plasma discharge tube and the material of the tube are not the same in the length direction, the degree of plasma excitation by the microwave is in the length direction. Therefore, the intensity of the generated plasma becomes non-uniform along the line. For example, if the intensity of the plasma generated from the discharge tube is weak near both ends of the tube, the electric field strength in this portion can be increased by adjusting the conductive brush in the lower gap near the both ends of the discharge tube closer to the discharge tube. Thus, the intensity of the generated line plasma can be made uniform in the axial direction as a whole.

次に、図8は本発明の他の実施例を示すもので、プラズマ放電管33内へプラズマ生成ガスと反応ガスとを共に導入し、放電管内で双方のガスを略同時にプラズマ状態に励起する例である。 Next, FIG. 8 shows another embodiment of the present invention, both introduced and reaction gas with a plasma generating gas into the plasma discharge tube 33, substantially at the same time excited to a plasma state both gas discharge tube This is an example.

放電管33は石英やセラミックなどの誘電体で構成され、図に示すように断面逆U字形で、例えば長さy’が800mmないし1000mmの縦長のものである(U字型側溝ブロックのような形状)。Bは導波管11を支持する支持ブロックで、放電管33へガスを供給するガス導入路G1、G2が左右に設けられている。   The discharge tube 33 is made of a dielectric material such as quartz or ceramic, and has an inverted U-shaped cross section as shown in the figure. For example, the discharge tube 33 is vertically long with a length y ′ of 800 mm to 1000 mm (such as a U-shaped side groove block). shape). B is a support block for supporting the waveguide 11, and gas introduction paths G1 and G2 for supplying gas to the discharge tube 33 are provided on the left and right.

G1はHe、Arなどのプラズマ生成用ガス導入路、G2はエッチングガスなど被加工物のプラズマ処理に使用する反応ガスの導入路、Wはプラズマによる放電管の発生熱を冷却するための冷却液還流路である。この冷却液還流路は放電管内のプラズマ熱によって導波管11や放電管33その支持ブロックBが高温になるのを回避するためで、必要に応じて導波管と管路G1の間や放電管の側部にも設けてもよい。 G1 is a gas introducing path for plasma generation such as He and Ar, G2 is an introducing path for a reactive gas used for plasma processing of a workpiece such as an etching gas, and W is a cooling liquid for cooling the generated heat of the discharge tube by the plasma. It is a reflux path. This cooling liquid reflux path is to prevent the waveguide 11 and the discharge tube 33 and the support block B thereof from becoming hot due to the plasma heat in the discharge tube, and if necessary, between the waveguide and the tube G1 or the discharge. It may also be provided on the side of the tube.

逆U字形放電管33は、その頭部33’が図に示すように導波管11の内部に入り込んだ状態でブロックBに保持され、下方にプラズマ放射のための開口4が設けられている。12は導波管の内壁を膨らませた部分(導電体)で、図7の9aと同様にk部分の電界強度を高めるための内壁部である。尚S1、S2はガス拡散用バッフルプレートで、その作用は図10で詳述する。 The inverted U-shaped discharge tube 33 is held by the block B with its head portion 33 ′ entering the inside of the waveguide 11 as shown in the figure, and an opening 4 for plasma emission is provided below. . Reference numeral 12 denotes a portion (conductor) where the inner wall of the waveguide is expanded, which is an inner wall portion for increasing the electric field strength of the k portion, similar to 9a in FIG. S1 and S2 are gas diffusion baffle plates, the operation of which will be described in detail with reference to FIG.

図でも判るように、導波管に近い方の管路G1からHe、Arなどの放電し易く堆積やエッチングをしないガス即ちプラズマ生成ガスを導入することによりプラズマ発生を促進し、放電し難い反応性ガスを開口4に近い方から導入することにより、反応ガスによるプラズマ励起部(頭の部分)付近における誘電体表面の反応(エッチング作用による削り込み現象など)や変質を防ぎプラズマ放電管を保護することができ、安定した放電の維持が可能となる。 As can be seen in the figure, to facilitate plasma generation by introducing He, the discharged without the easy deposition and etching gas i.e. plasma generating gas such as Ar from line G1 is closer to the waveguide, hardly discharged By introducing a reactive gas from the side closer to the opening 4, the plasma discharge tube can be prevented by preventing reaction (such as etching by etching) and alteration of the dielectric surface near the plasma excitation part (head part) due to the reactive gas. It can be protected, and stable discharge can be maintained.

図9は、図8のI−I’断面図で、導波管11の縦長さyが厚さbに比して長いので左側の図は一部省略した。ガス導入路G1、G2は導波管の支持ブロックB内において放電管33の側面に向かってその長手軸に沿って等間隔に複数数本設けられ、ここからガスが放電管内へ導入される。他の符号は図8と同一部材を示す。図では導波管11へのマイクロ波の導入部は省略したが、図の左の方向から印加される。 9 is a cross-sectional view taken along the line II ′ of FIG. 8, and the left side view is partially omitted because the longitudinal length y of the waveguide 11 is longer than the thickness b. A plurality of gas introduction paths G1 and G2 are provided at equal intervals along the longitudinal axis of the support block B of the waveguide toward the side surface of the discharge tube 33, from which gas is introduced into the discharge tube. Other reference numerals denote the same members as those in FIG. Although the introduction part of the microwave to the waveguide 11 is omitted in the figure, it is applied from the left direction of the figure .

図10は図8のII−II’断面図で図9と同様左側の断面は一部省略した。
図の33’’はプラズマ放電管33へのガス導入用開口部で、放電管の側部に長手方向にスリット状に設けられるものであるが、このスリットは放電管の両側面に沿って縦長に形成されるので、管の機械的強度を保持するために巣孔状の開口列となっている。またガス導入路G1は放電管へのガス導入部近辺で図G1’に示すように広がり部が設けられており、G1から導入されたガスはここで放電管の長さ方向に拡散されて放電管内へ導入される。S1、S2は前記ガス導入路G1、G2の広がり部G1’に配置されたバッフルプレート即ち多数の孔を設けたガス拡散板で、管路G1、G2から導入されたガスの流れを放電管の縦軸方向に広げて放電管内へ誘導する。
FIG. 10 is a cross-sectional view taken along the line II-II ′ in FIG.
Reference numeral 33 ″ in the figure denotes an opening for introducing a gas into the plasma discharge tube 33, which is provided in the side of the discharge tube in the form of a slit in the longitudinal direction. This slit is vertically elongated along both side surfaces of the discharge tube. In order to maintain the mechanical strength of the tube, it becomes a burrow-like opening row. Further, the gas introduction path G1 is provided with a widening portion in the vicinity of the gas introduction portion to the discharge tube as shown in FIG. G1 ′, and the gas introduced from G1 is diffused in the length direction of the discharge tube and discharged. It is introduced into the pipe. S1 and S2 are baffle plates arranged in the widened part G1 ′ of the gas introduction paths G1 and G2, that is, gas diffusion plates provided with a large number of holes. The flow of the gas introduced from the pipes G1 and G2 is changed in the discharge tube. It spreads in the vertical axis direction and is guided into the discharge tube.

本発明では導波管の長手方向に均一なプラズマを発生させるのが目的であるので、ガスの流れもできるだけ均一にすることが重要である。そのために本実施例ではプラズマ生成ガスも反応ガスも放電管の側方から長手方向に沿って均一に導入されるように、バッフルプレートS1、S2を通してガスを長手方向に拡散させた状態で放電管に均一に導入する。このようにすることにより、プラズマ反応によって生成されるラジカルも均一にすることができ、長手方向に安定した均一なプラズマが得られる。他の符号は図8、9と同じ部材を示す。 In the present invention, since the purpose is to generate a uniform plasma in the longitudinal direction of the waveguide, it is important to make the gas flow as uniform as possible. Plasma generation gas in the present embodiment in order that also as uniformly introduced in the longitudinal direction from the side of the reaction gas also discharge tube, discharge in a state of being diffused gas longitudinally through the baffle plates S1, S2 Introduce evenly into the tube. By doing so, radicals generated by the plasma reaction can be made uniform, and uniform plasma stable in the longitudinal direction can be obtained. The other symbols indicate the same members as in FIGS.

以上の実施例では、G1にプラズマ生成ガス、G2に反応ガスを分離して導入する場合について説明したが、双方のガスを混合した状態で両導入路から同時に入れてもよく、このようにすればプラズマ放電管内でのガスの混合もよくなりプラズマの安定化に貢献できる。さらにガス導入路をG1、G2以外に3層4層に設け、各管路にそれぞれ別種類の反応ガスを個別に導入するようにしてもよい。 In the above embodiment, the plasma generation gas in G1, has been described to be introduced to separate the reaction gases G2, may be simultaneously placed from both introduction path while mixing both gas, thus This improves gas mixing in the plasma discharge tube and contributes to plasma stabilization. Further, in addition to G1 and G2, gas introduction paths may be provided in three layers and four layers, and different types of reaction gases may be individually introduced into the respective pipelines.

また半導体や液晶パネルの表面クリーニング処理や食品の殺菌処理など特に反応ガスを使用しない場合には、G1、G2双方にHeなどのプラズマ生成ガスを入れるか又は一方の反応ガス導入管路を封鎖してもよい。 Also in the case of not using the semiconductor and surface cleaning and food sterilization, particularly the reaction gas of the liquid crystal panel, G1, G2 or both to add plasma generation gas such as He or sequestering one reactive gas inlet pipe May be.

また実施例においてはマイクロ波導波管及びプラズマ放電管を略大気圧付近で作動させるものであるので、導波管と放電管との装着部やプラズマ取り出し用の開口部付近の気密シールは不要であり、従来の真空プラズマ発生装置のような複雑な気蜜機構や取扱いの不便さは全くない。 In the embodiment, since the microwave waveguide and the plasma discharge tube are operated near the atmospheric pressure, an airtight seal near the mounting portion between the waveguide and the discharge tube and the opening for extracting plasma is unnecessary. There is no complicated honey mechanism and inconvenience of handling like the conventional vacuum plasma generator.

尚、本発明に用いる導波管にはマイクロ波を管内へ誘導管などを介して導入するものであるが、必要に応じてこれに高周波コイルなどを付設して高周波電力を付加的に与え、導波管内の電磁波エネルギーを強めるようにしても良い。   The waveguide used in the present invention introduces microwaves into the tube via a guide tube or the like, and if necessary, a high frequency coil is attached to the waveguide to additionally provide high frequency power. The electromagnetic wave energy in the waveguide may be strengthened.

これら実施例においてもプラズマ放電管の開口を誘電体で封鎖し、管内のプラズマ光(紫外光など)だけを利用し得ることも当然である。 Also blocked the opening of the plasma discharge tube with a dielectric in these examples, it is of course capable of using only the tube of the plasma light (such as ultraviolet light).

本発明のラインプラズマ発生装置は、矩形型導波管の縦軸方向に沿って安定したライン状のプラズマを発生させることができるので、広い面積をもつ被処理物体に対しても短時間に効率的にプラズマ処理や加工が可能となる。
更に大気圧状態で利用でき且つ、プラズマ放電管とマイクロ波導波管とが一体的にコンパクトに結合装填された可搬型のプラズマ発生装置が得られるので、ホテルやレストラン、コンビニなどの食品調理場における滅菌・消毒用として手軽に利用でき、汎用性も広がるなど産業上の有用性は極めて大きい。
The line plasma generation apparatus of the present invention can generate a stable line-shaped plasma along the longitudinal direction of a rectangular waveguide, so that it is efficient even for an object to be processed having a large area in a short time. Thus, plasma processing and processing can be performed.
Furthermore, a portable plasma generator that can be used in an atmospheric pressure state and in which a plasma discharge tube and a microwave waveguide are integrally and compactly coupled and loaded is obtained, so that it can be used in food kitchens such as hotels, restaurants, and convenience stores. It can be easily used for sterilization and disinfection, and its industrial utility is extremely large.

本発明のマイクロ波発生装置の基本概念を示す斜視図である。It is a perspective view which shows the basic concept of the microwave generator of this invention. 図1の基本概念に基づいて構成した本発明実施例のマイクロ波発生装置の動作説明用側面図である。It is a side view for operation | movement description of the microwave generator of the Example of this invention comprised based on the basic concept of FIG. 図2の実施例の導波管部を紙面と直角方向からみた断面図で、(a)(b)(c)(d)は、導波管とプラズマ放電管との結合装填の態様の各種の例を示すものである。2 is a cross-sectional view of the waveguide portion of the embodiment of FIG. 2 as viewed from a direction perpendicular to the paper surface, wherein (a), (b), (c), and (d) are various types of coupled loading of the waveguide and the plasma discharge tube. This is an example. 図2と同様の断面図で、プラズマ放電管と導波管との結合機構の別の態様を示す実施例図である。It is sectional drawing similar to FIG. 2, and is an Example figure which shows another aspect of the coupling mechanism of a plasma discharge tube and a waveguide. 図2と同様の断面図で、開口を有しないプラズマ放電管を導波管の上下に2個装着した場合の実施例である。FIG. 6 is a cross-sectional view similar to FIG. 2, showing an embodiment in which two plasma discharge tubes having no opening are mounted on the top and bottom of the waveguide. 本発明の他の実施例で、図2と同様な断面図である。FIG. 3 is a cross-sectional view similar to FIG. 2 in another embodiment of the present invention. 本発明の前記各実施例に適用できるマイクロ波導波路の電界強度を調整する機構の実施例である。It is an Example of the mechanism which adjusts the electric field strength of the microwave waveguide applicable to each said Example of this invention. 本発明の他の実施例を示す側断面図である。It is a sectional side view which shows the other Example of this invention. 図8の実施例のI−I’面で切断した図面である。FIG. 9 is a view taken along the line I-I ′ of the embodiment of FIG. 8. 図8の実施例のII−II’面の切断面図である。FIG. 9 is a sectional view taken along the line II-II ′ of the embodiment of FIG. 8.

符号の説明Explanation of symbols

1、11 マイクロ波導波管
2 導波管の壁面に設けた縦長開口部
3、33 プラズマ放電管
プラズマ放電管に設けられた縦長の開口
5 マイクロ波発生源
6 マイクロ波誘導管
7 マイクロ波反射部
8 可動反射板
9 導波管内の電界強度調整用第2の壁板(導電体)
10 導体ブラシ
11 ねじ機構
12 導波管内面の凸部(導電体)
T プラズマ処理室
Z 被処理物体
反応室内への反応ガス供給ノズル
B 導波管支持ブロック
G1、G2 プラズマ放電管へのガス導入路
W 冷却液還流路
S1,S2 ガス拡散部材
1,11 microwave waveguide 2 waveguide opening wall surface provided with a longitudinal opening 3 and 33 plasma discharge tube 4 Vertical provided a plasma discharge tube 5 microwave source 6 microwave guide tube 7 microwave reflection Part 8 Movable reflector 9 Second wall plate (conductor) for adjusting electric field strength in the waveguide
10 Conductor brush 11 Screw mechanism 12 Convex part of conductor inner surface (conductor)
T Plasma processing chamber Z Reactant gas supply nozzle B into object G reaction chamber Gas guide path W to waveguide support block G1, G2 plasma discharge tube Coolant reflux path S1, S2 Gas diffusion member

Claims (8)

マイクロ波を導入する偏平な矩形状導波管の筐体面の一部に、マイクロ波の進行方向に沿って縦長の開口部を設け、この開口部に誘電体で構成したプラズマ放電管をその放電管の外壁の一部が導波管の内部に入り込むように装着し、この放電管内へプラズマ生成用ガスを連続的に導入することによって、放電管内で前記ガスをプラズマ状態に励起し、このプラズマから発生したエネルギーを前記放電管の導波管外へ露出した部分からとりだすように構成したことを特徴とするマイクロ波ラインプラズマ発生装置 A part of the casing of a flat rectangular waveguide into which microwaves are introduced is provided with a vertically long opening along the microwave traveling direction, and a plasma discharge tube made of a dielectric is discharged into the opening. part of an outer wall of the tube is mounted so as to enter the interior of the waveguide, by continuously introducing the discharge tube to the plasma generation gas, the gas is excited into a plasma state in the discharge tube, the plasma microwave line plasma generating apparatus characterized by the energy generated is constructed as taken out from the portion exposed to the guiding tube outer of said discharge tube from. 前記導波管の縦長開口部を導波管の偏平面側の筐体面(H面)に設け、この縦長開口部に沿ってプラズマ放電管をその外壁の一部が導波管内へ入り込むように装着したことを特徴とする請求項1に記載のマイクロ波ラインプラズマ発生装置 A longitudinally long opening of the waveguide is provided in a housing surface (H surface) on the flat surface side of the waveguide, and a part of the outer wall of the plasma discharge tube enters the waveguide along the longitudinally long opening. The microwave line plasma generator according to claim 1, wherein the microwave line plasma generator is mounted . プラズマ放電管の前記導波管から露出した部分の管壁部に、プラズマ放電管の長さ方向に沿って縦長の開口を設け、この縦長開口からプラズマ放電管内で発生したプラズマをプラズマ処理室へ取り出すように構成したことを特徴とする請求項1または2に記載のマイクロ波ラインプラズマ発生装置 A vertically long opening is provided in the tube wall portion of the plasma discharge tube exposed from the waveguide along the length direction of the plasma discharge tube, and plasma generated in the plasma discharge tube from the longitudinal opening is supplied to the plasma processing chamber. The microwave line plasma generator according to claim 1, wherein the microwave line plasma generator is configured to be extracted . プラズマ放電管内へ、プラズマ生成ガスと反応ガスとを同時に導入し、プラズマ放電管内で発生したプラズマを前記縦長開口からプラズマ処理室へ取り出すように構成したことを特徴とする請求項3に記載のマイクロ波ラインプラズマ発生装置 To the plasma discharge tube, introducing a plasma generating gas and the reaction gas at the same time, the plasma generated in the plasma discharge tube according to claim 3, characterized by being configured to retrieve the plasma processing chamber from said elongated opening Microwave line plasma generator . 前記プラズマ放電管の外側近辺に、プラズマ処理のための反応ガス放出口Gを併設し、放電管から放射されたプラズマによって前記反応ガスをプラズマ状態に励起するように構成したことを特徴とする請求項1ないし3の何れかに記載のマイクロ波ラインプラズマ発生装置 A reactive gas discharge port G for plasma processing is provided in the vicinity of the outside of the plasma discharge tube , and the reactive gas is excited into a plasma state by plasma emitted from the discharge tube. Item 4. The microwave line plasma generator according to any one of Items 1 to 3 . 導波管内における、プラズマ放電管と導波管内面との間に形成される導波路が狭窄された空間部分に、この狭窄部の電界強度を調整するための導電体9、9aを設けたことを特徴とする請求項1ないしの何れかに記載のマイクロ波ラインプラズマ発生装置 In the waveguide, conductors 9 and 9a for adjusting the electric field strength of the constricted portion are provided in a space portion k where the waveguide formed between the plasma discharge tube and the inner surface of the waveguide is constricted. microwave line plasma generator according to any one of claims 1 to 5, characterized in that. 前記導電体と前記プラズマ放電管との関係位置を調整する手段11を併せ備えたことを特徴とする請求項に記載のマイクロ波ラインプラズマ発生装置 The microwave line plasma generator according to claim 6 , further comprising means 11 for adjusting a relative position between the conductor and the plasma discharge tube . 前記プラズマ放電管と導波管内面との間の狭窄された空間部に設けた電界強度調整用導体を、導波管の縦軸方向に沿って複数個設け、この導体とプラズマ放電管外面との関係位置を導波管外部から調整する手段11を併せ設けることにより、導波管の縦軸方向に沿った電界強度分布を均整化できるようにしたことを特徴とする請求項1ないしの何れかに記載のマイクロ波ラインプラズマ発生装置 The constricted field strength adjusting conductor provided in the space between the plasma discharge tube and the waveguide surface, provided plurality along a longitudinal axis of the waveguide, the conductor and the plasma The electric field intensity distribution along the longitudinal direction of the waveguide can be made uniform by additionally providing means 11 for adjusting the position relative to the outer surface of the discharge tube from the outside of the waveguide. 1 to the microwave line plasma generator according to any one of 7.
JP2005083190A 2005-03-23 2005-03-23 Microwave line plasma generator Expired - Fee Related JP4134077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083190A JP4134077B2 (en) 2005-03-23 2005-03-23 Microwave line plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083190A JP4134077B2 (en) 2005-03-23 2005-03-23 Microwave line plasma generator

Publications (2)

Publication Number Publication Date
JP2006269151A JP2006269151A (en) 2006-10-05
JP4134077B2 true JP4134077B2 (en) 2008-08-13

Family

ID=37204893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083190A Expired - Fee Related JP4134077B2 (en) 2005-03-23 2005-03-23 Microwave line plasma generator

Country Status (1)

Country Link
JP (1) JP4134077B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150911A (en) * 2010-01-22 2011-08-04 Konica Minolta Holdings Inc Microwave heating device
JP2013178917A (en) * 2012-02-28 2013-09-09 Nagoya Univ Method for forming conductive film
US9812295B1 (en) * 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
CN108267642B (en) * 2017-12-18 2023-06-06 河南师范大学 Micro-fluid electric characteristic microwave detection device

Also Published As

Publication number Publication date
JP2006269151A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5082229B2 (en) Plasma processing equipment
US6263830B1 (en) Microwave choke for remote plasma generator
JP5243457B2 (en) Top plate of microwave plasma processing apparatus, plasma processing apparatus and plasma processing method
US8136479B2 (en) Plasma treatment apparatus and plasma treatment method
JP4873405B2 (en) Plasma processing apparatus and method
JP2019046805A (en) Toroidal plasma processing device
KR100566357B1 (en) Device and method for microwave plasma processing, and microwave power supply device
JP5103223B2 (en) Microwave plasma processing apparatus and method of using microwave plasma processing apparatus
US7640887B2 (en) Surface wave excitation plasma generator and surface wave excitation plasma processing apparatus
JP2006128000A (en) Plasma treatment device
JP2012049299A (en) Plasma processing apparatus and optical monitoring device
US7478609B2 (en) Plasma process apparatus and its processor
JP4134077B2 (en) Microwave line plasma generator
US20070289533A1 (en) Plasma processing apparatus and plasma processing method
US5270616A (en) Microwave plasma generating apparatus
JP2008251660A (en) Plasma treatment apparatus
JP2004153240A (en) Plasma processing apparatus
WO2008018159A1 (en) Microwave line plasma generation system with two power supply
JP2004235434A (en) Plasma processing system
JP5202652B2 (en) Plasma processing equipment
WO2015029090A1 (en) Plasma processing device and plasma processing method
JP2010219003A (en) Microwave line plasma generator
JP2009146837A (en) Surface wave exciting plasma treatment device
JP4390604B2 (en) Plasma processing equipment
JP3913683B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070905

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees