WO2018047241A1 - Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle - Google Patents

Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle Download PDF

Info

Publication number
WO2018047241A1
WO2018047241A1 PCT/JP2016/076210 JP2016076210W WO2018047241A1 WO 2018047241 A1 WO2018047241 A1 WO 2018047241A1 JP 2016076210 W JP2016076210 W JP 2016076210W WO 2018047241 A1 WO2018047241 A1 WO 2018047241A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
integrated circuit
semiconductor integrated
pressure plasma
opening
Prior art date
Application number
PCT/JP2016/076210
Other languages
French (fr)
Japanese (ja)
Inventor
正士 神藤
泰寿 ▲奇▼田
Original Assignee
日本サイエンティフィック株式会社
株式会社プラズマアプリケーションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サイエンティフィック株式会社, 株式会社プラズマアプリケーションズ filed Critical 日本サイエンティフィック株式会社
Priority to PCT/JP2016/076210 priority Critical patent/WO2018047241A1/en
Publication of WO2018047241A1 publication Critical patent/WO2018047241A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/98Methods for disconnecting semiconductor or solid-state bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an atmospheric pressure plasma needle generator and a semiconductor integrated circuit package unsealing apparatus and method using the atmospheric pressure plasma needle.
  • an IC package is opened (removal of epoxy resin) by plasma generated by a microwave cavity resonator (for example, Patent Document 1), a combination of laser and plasma (for example, Patent Document 2), or inductively coupled discharge plasma.
  • a microwave cavity resonator for example, Patent Document 1
  • Patent Document 2 a combination of laser and plasma
  • inductively coupled discharge plasma for example, Patent Document 3
  • Generated plasma for example, Patent Document 3
  • silver is a metal that easily oxidizes, and active oxygen having strong oxidizing power causes fatal damage to the silver wire, so that the conventional opening method is in a difficult situation to use.
  • an object of the present invention is to prevent a microwave from leaking to the outside and generate a radical atom having a density high enough to decompose an epoxy resin at low power and low temperature.
  • An atmospheric pressure plasma needle generator includes a tube-shaped insulator in which a gas is introduced from a gas introduction portion and has an opening at one end, and is disposed outside the tube-shaped insulator.
  • a filament-shaped plasma needle is generated between the tip of the inner conductor and the opening of the tube-shaped insulator using a microwave propagating as a waveguide and a gas introduced from the gas introduction portion.
  • the tip of the outer conductor is located outside the tip of the inner conductor, and the opening of the tube-shaped insulator is located outside the tip of the outer conductor. May be located.
  • the diameter of the outer conductor may be 1/2 or less of the wavelength of the microwave.
  • the gas may contain argon and oxygen.
  • the gas may contain hydrogen.
  • the gas may include carbon tetrafluoride.
  • a guide including a gas flow path control surface that spreads gas released from the opening to the outside may be provided in the opening of the tube-shaped insulator. Good.
  • the opening area of the opening of the guide may be larger than the opening area of the opening of the tube-shaped insulator.
  • An opening device for a semiconductor integrated circuit package according to an embodiment of the present invention includes an atmospheric pressure plasma needle generator according to an embodiment of the present invention, and a semiconductor integrated circuit package at a position facing the opening of the tube-shaped insulator.
  • the stage which arranges is provided.
  • the opening device of the semiconductor integrated circuit package according to the embodiment of the present invention may include a temperature adjusting unit that adjusts the temperature of the stage.
  • a method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle includes: arranging the semiconductor integrated circuit package in the atmospheric pressure plasma needle generator according to the embodiment of the present invention; and generating the plasma needle. Then, the semiconductor integrated circuit package is irradiated with remote plasma, which is a neutral gas changed in the process in which the plasma needle advances toward the opening of the insulator.
  • the atmospheric pressure plasma needle generator is located at a position facing the opening of the tube-shaped insulator. You may provide the stage which arrange
  • a method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle may include heating the semiconductor integrated circuit package to 200 ° C. to 400 ° C.
  • a method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle generates a filament-shaped plasma needle using a microwave and a gas, and the plasma needle is formed into a semiconductor integrated circuit package.
  • the semiconductor integrated circuit package is etched until the semiconductor integrated circuit, bonding wires, and bonding pads used in the semiconductor integrated circuit package are exposed by the irradiation.
  • the gas may contain argon and oxygen.
  • the gas may contain hydrogen.
  • the gas may contain carbon tetrafluoride.
  • a method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle may include heating the semiconductor integrated circuit package to 200 ° C. to 400 ° C.
  • a method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle After the irradiation for a predetermined time, the semiconductor integrated circuit package is cleaned with ultrasonic waves, and the semiconductor integrated circuit package is used. If the surface state of the film is photographed with a camera and it is determined that the semiconductor integrated circuit, the bonding wire, and the bonding pad are not exposed based on the photographed result, the irradiation may be further performed.
  • a semiconductor integrated circuit package unsealing apparatus is a semiconductor integrated circuit package unsealing method for performing a method of unsealing a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to an embodiment of the present invention. It may be a device.
  • the microwave it is possible to prevent the microwave from leaking to the outside, and to generate radical atoms having a density high enough to decompose the epoxy resin at low power and low temperature.
  • FIG. 1 is an overall view of a semiconductor integrated circuit package unsealing apparatus using an atmospheric pressure plasma needle generating apparatus according to a first embodiment of the present invention. It is the figure which showed the flowchart of the opening method of the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator by 1st Embodiment of this invention. It is the figure which showed the atmospheric pressure plasma needle generator by 1st Embodiment of this invention. Is a photograph of the silver wire after irradiation for 30 min Ar and a mixed gas of O 2. Ar and a mixed gas of O 2 was irradiated for 30 minutes of silver wire was subjected to ultrasonic cleaning is a photograph taken using an optical microscope.
  • Ar and a mixed gas of O 2 was irradiated for 30 minutes is a SEM photograph of the silver wire was subjected to ultrasonic cleaning.
  • the silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken.
  • the silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken.
  • the silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken.
  • the silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken.
  • Ar it is a photograph of the silver wire after the irradiation with a gas mixture of O 2 and H 2 30 minutes ultrasonic washing.
  • Ar is a SEM photograph of silver wire was photographed after irradiation with a gas mixture of O 2 and H 2 30 minutes.
  • Ar is a SEM photograph of silver wire was photographed after irradiation with a gas mixture of O 2 and H 2 30 minutes. It is the figure which showed the atmospheric pressure plasma needle generator by 2nd Embodiment of this invention. It is the figure which showed the example of the guide of 2nd Embodiment of this invention. It is the figure which showed the example of the guide of 2nd Embodiment of this invention. Without attaching the guide to a second embodiment of the present invention is a photograph taken before opening the IC package with a mixed gas of Ar and O 2.
  • FIG. 1A shows an overall view of a semiconductor integrated circuit package unsealing apparatus using an atmospheric pressure plasma needle generator according to a first embodiment of the present invention.
  • the semiconductor integrated circuit package unsealing apparatus 200 using the atmospheric pressure plasma needle generator 100 includes an XY stage 1, an IC package 2, a CCD camera 3, an ultrasonic cleaning unit 4, an atmospheric pressure plasma needle generator 100, an auto tuner 6, A mass flow controller 7, a microwave oscillator 8, a gas cylinder 9, a PC 10, a water introduction pipe 19, and an air introduction pipe 20 are provided.
  • the gas cylinder 9 is filled with a gas to be converted into plasma.
  • the gas filled in the gas cylinder 9 may be argon (Ar), oxygen (O 2 ), hydrogen (H 2 ), carbon tetrafluoride (CF 4 ), or the like.
  • a gas that generates plasma filled in the gas cylinder 9 is injected into the atmospheric pressure plasma needle generator 100 via the mass flow controller 7.
  • the flow rate of each gas is controlled by a mass flow controller 7 connected to the PC 10.
  • FIG. 2 shows an example in which one gas cylinder 9 is provided, two or more gas cylinders 9 may be provided, and a plurality of types of gases may be injected into the atmospheric pressure plasma needle generator 100 and mixed.
  • Ar and O 2 gas may be used.
  • the flow rate of Ar is 1.6 to 3.3 Pa ⁇ m 3. / Sec (1,000 to 2,000 sccm), and the flow rate of O 2 may be 0.008 to 0.08 Pa ⁇ m 3 / sec (5 to 50 sccm).
  • the microwave oscillator 8 oscillates microwaves.
  • the oscillated microwave is introduced into the auto tuner 6 and the atmospheric pressure plasma needle generator 100 through a coaxial cable.
  • the microwave frequency may be 2.40 to 2.50 GHz, and the power may be 5 to 20 W.
  • the atmospheric pressure plasma needle generator 100 generates a filament-shaped plasma needle and remote plasma using a microwave and gas. The detailed structure of the atmospheric pressure plasma needle generator 100 will be described later.
  • An IC package 2 to be opened is fixed to the XY stage 1.
  • the movement in the XY axis direction and the movement in the Z axis direction of the XY stage 1 are controlled by the PC 10.
  • the ultrasonic cleaning unit 4 includes an ultrasonic vibrator that vibrates water introduced into the IC package 2 by vibrating to perform ultrasonic cleaning of the IC package 2.
  • the water introduction tube 19 is connected to the ultrasonic cleaning unit 4 and introduces water into the IC package 2.
  • the air introduction tube 20 is connected to the ultrasonic cleaning unit 4, and compressed air is sent to the IC package 2, and the water containing the silica filler is blown away by the force of the air jet, and at the same time, the surface of the IC package 2 is dried.
  • the CCD camera 3 is used for observing the surface state of the IC package 2 with the PC 10. That is, the CCD camera 3 is used to photograph the surface state of the IC package 2, and the PC 10 analyzes the image data to determine whether the surface state has reached the target state.
  • the present invention is not limited to this, and after the image data photographed by the CCD camera 3 is displayed on the PC 10, it is determined whether or not the surface state has reached the target state and the plasma needle irradiation is continued. It is also possible to select whether to end.
  • FIG. 2 is a view showing an atmospheric pressure plasma needle generator according to the first embodiment of the present invention.
  • the atmospheric pressure plasma needle generator 100 includes an alumina tube 13, an outer conductor 15, an inner conductor 16, a gas introduction pipe 17, and an SMA (Sub Miniature Type A) connector 18.
  • the internal conductor 16 is a rod-shaped conductor, and is disposed inside the alumina tube 13. One end of the internal conductor 16 is connected to the SMA connector 18 and microwaves are supplied.
  • the inner conductor 16 may have a length L1 of a quarter wavelength of the microwave, but is not limited thereto, and may be any length as long as it is slightly shorter than the outer conductor 15.
  • the inner conductor 16 has a tip 16t at a portion covered with the outer conductor 15.
  • the outer conductor 15 is a tube-shaped conductor and is disposed outside the alumina tube 13 and connected to the ground potential. Since the length L2 of the outer conductor 15 is larger than the length L1 of the inner conductor 16, the tip end portion 16t of the inner conductor 16 is covered with the outer conductor 15, and is located on the inner side of the open end 15t of the outer conductor 15. .
  • the length L2 of the outer conductor 15 is formed to be about several mm longer than the length L1 of the inner conductor 16, and the tip portion 16t of the inner conductor 16 is about several mm higher than the opening end 15t of the outer conductor 15 in the drawing direction. May be arranged as follows.
  • the diameter of the outer conductor 15 may be less than half the wavelength of the microwave, thereby preventing the microwave transmitted to the inner conductor from leaking to the outside. For example, since the wavelength of 2.45 GHz is 12 cm, the diameter of the outer conductor 15 may be less than 6 cm. In this embodiment, the diameter of the outer conductor 15 is less than 1 cm.
  • the alumina tube 13 is composed of an alumina tube that is longer than the inner conductor 16 and the outer conductor 15, and one end of the alumina tube 13 is connected to the gas introduction tube 17 to introduce a gas to be converted into plasma. Examples of gas introduced from the gas introduction pipe 17 are as described below. The other end of the alumina tube 13 is an opening 13t from which gas is released.
  • the material of the alumina tube 13 is not limited to alumina and may be an insulator.
  • a guide 12 (see FIG. 6) may be provided at the tip of the alumina tube 13, and the gas injected from the gas introduction pipe 17 may be discharged from the guide 12 (see FIG. 6). .
  • the alumina tube 13, the outer conductor 15, and the inner conductor 16 have an open end 15 t of the external conductor 15 located outside the tip end 16 t of the internal conductor 16, and an opening of the alumina tube 13 outside the open end 15 t of the external conductor 15. As long as the relationship in which the portion 13t is located is maintained, it may be changed depending on the gas flow rate, the amount of supplied power, the material, structure, and size of the IC chip.
  • the alumina tube 13 has an outer diameter of 6 mm, an inner diameter of 3 mm, a length of 45 mm, and the outer conductor 15 has an inner diameter of 6 mm.
  • the inner conductor 16 may be a copper, molybdenum or tungsten wire having a diameter of 0.6 to 0.8 mm and a length of 30 to 35 mm.
  • Microwave leakage is achieved by positioning the open end 15t of the outer conductor 15 outside the tip end 16t of the internal conductor 16 and the opening 13t of the alumina tube 13 outside the open end 15t of the external conductor 15. Is strongly suppressed, and it is possible to prevent malfunction of peripheral electronic devices, and to generate radical atoms with a density sufficient to efficiently decompose the epoxy resin at low power and low temperature.
  • the SMA connector 18 is connected to the microwave oscillator 8 (see FIG. 1A) by a flexible coaxial cable having a characteristic impedance of 50 ⁇ .
  • a flexible coaxial cable having a characteristic impedance of 50 ⁇ .
  • Microwave power is used to generate the plasma needle 14 at the tip of the inner conductor 16, but the impedance of the plasma needle as a load is likely to fluctuate due to changes in the discharge state, and part of it becomes a reflected wave.
  • An auto tuner 6 (see FIG. 1A) is inserted between the microwave oscillator 8 (see FIG. 1A) and the SMA connector 18 so that this reflected wave is minimized, and the power is automatically controlled, so that the load Reduces microwave power reflection loss to the plasma needle.
  • a filamentous plasma needle 14 is generated inside the alumina tube 13. More specifically, a filamentous plasma needle 14 is generated between the tip 16t of the inner conductor and the opening 13t of the alumina tube.
  • the flow rate of the gas is preferably a flow rate that avoids a large flow rate that causes a turbulent flow and that the gas flow becomes a laminar flow.
  • the discharge ignition operation method is not limited to the above method, and after preparing for supply of discharge gas and power supply, a high voltage impulse of 20 kV to 25 kV on the piezoelectric transformer or the secondary side of the coil is separated from the tip of the inner conductor 16 by about 10 mm. Discharge ignition may be performed by generating at a different position. By using such a method, a plasma needle can be generated at a low cost.
  • the size of the plasma needle 14 varies depending on the gas flow rate and the microwave input. For example, when the microwave input is 10 W, the length of the plasma needle 14 is about 10 mm and the diameter is about 2 to 3 mm.
  • the tip of the plasma needle 14 is at a low temperature (non-thermal equilibrium state), and in the case of 10 W, it is about 150 ° C. or less and 5 W is about 60 ° C. or less.
  • the microwave oscillator input is increased, the temperature of the exhaust gas can be lowered by making the alumina tube 13 longer.
  • the ion species and electrons recombine to change into a neutral gas flow (remote plasma 14a) containing a large amount of highly reactive excited species. Since the microwave cannot propagate through the remote plasma, the microwave can be prevented from leaking to the outside.
  • the surface of the IC package 2 is irradiated with the remote plasma 14a.
  • the remote plasma 14a containing a large amount of active oxygen is irradiated onto the epoxy resin of the IC package 2, the epoxy resin is decomposed into H 2 O and CO 2 and etched.
  • the active oxygen includes O radicals, but other active species such as ozone may be included.
  • the plasma needle 14 grows by the microwave propagating along the surface of the plasma needle 14 formed at the tip 16t of the inner conductor 16 ionizing the supply gas. Part of the microwave power is radiated to the periphery of the propagation path, causing microwave leakage and disturbing the operation of the surrounding electronic equipment, so it is desirable to cut it off.
  • the tip of the inner conductor 16 is present in the portion covered with the outer conductor 15, so that the microwave propagating through the inner conductor 16 is radiated around the inner conductor 16. Can be prevented. Further, the plasma needle disappears near the tip of the outer conductor 15, and the remote plasma 14a (neutral gas, etching gas) is present in the space up to the opening 13t of the alumina tube 13, so that the microwaves go beyond that. Propagation is not possible, and microwave leakage toward the distal end of the internal conductor 16 can be strongly suppressed, and malfunction of peripheral electronic devices can be prevented.
  • the remote plasma 14a neutral gas, etching gas
  • the atmospheric pressure plasma needle generator 100 When the plasma needle 14 (remote plasma 14a) is generated, the atmospheric pressure plasma needle generator 100 is moved down in the Z-axis direction and brought close to the IC package 2 fixed to the XY stage 1, and the surface of the IC package 2 is When the distance from the opening 13t of the alumina tube 13 is constant, the distance is fixed in the Z-axis direction, and the surface of the IC package 2 is irradiated with the remote plasma 14a.
  • the remote plasma containing a large amount of active oxygen is irradiated onto the epoxy resin of the IC package 2, the epoxy resin is decomposed into H 2 O and CO 2 and etched (S101).
  • a part of the epoxy resin of the IC package 2 can be etched with active oxygen, but the silica filler constituting 70% or more of the epoxy resin of the IC package 2 is not etched with active oxygen.
  • the surface of the package becomes white with silica filler in about 3 to 10 minutes after irradiation.
  • ultrasonic cleaning is performed to remove the silica filler from the package surface.
  • the IC package 2 is moved directly below the ultrasonic cleaning unit 4, and at the same time, the ultrasonic cleaning unit 4 is moved downward to approach the IC package 2.
  • Water is introduced from the water introduction pipe 19 connected to the ultrasonic cleaning section 4 and when several drops are dropped on the surface of the IC package 2, the water is held on the IC package 2 by surface tension.
  • the ultrasonic cleaning is started by the vibration of the ultrasonic vibrator of the ultrasonic cleaning unit 4 in a state where the ultrasonic cleaning unit 4 and water droplets on the surface of the IC package 2 are in contact with each other.
  • the silica filler is peeled from the IC package 2 by ultrasonic cleaning for about 5 to 10 seconds.
  • the IC package 2 from which the water droplets have been removed is moved directly below the CCD camera 3, and the surface state is observed by the PC 10 (S105).
  • the opening operation is terminated.
  • FIG. 3A shows an Ar flow rate of 2.5 Pa ⁇ m 3 / sec (1500 sccm) and an O 2 flow rate of 0.076 Pa ⁇ m 3 / sec (45 sccm) for a silver wire having a diameter of 0.5 mm and 100% silver. It is the photograph which image
  • FIG. 3B is a photograph taken using an optical microscope after further ultrasonic cleaning
  • FIG. 3C is an SEM photograph after further ultrasonic cleaning.
  • 4A to 4D are SEM photographs obtained by photographing the silver wire after being irradiated with the gas under the above conditions (see the scale in the photograph for the scale).
  • FIGS. 5A to 5C show an Ar flow rate of 2.5 Pa ⁇ m 3 / sec (1500 sccm) and an O 2 flow rate of 0.076 Pa ⁇ m 3 for a silver wire having a diameter of 0.5 mm and 100% silver.
  • This is a photograph of the silver wire after ultrasonic cleaning by irradiating a gas with a flow rate of 0.025 Pa ⁇ m 3 / sec (15 sccm) for 30 minutes / sec (45 sccm) and H 2 (scale is a photograph) (See the scale inside.)
  • the silver wire after etching with Ar, O 2 , H 2 gases remains metallic and remains silver. It can be seen that there is no black soot (silver oxide) visible to the naked eye, and the silver wire is not damaged. Referring to the enlarged SEM photograph, only a very small silver oxide crystal is present, and almost no silver oxide is formed. As described above, when an IC package using a silver wire is opened, etching with Ar, O 2 , or H 2 gas can prevent the silver wire from being oxidized and damaged.
  • the flow rate of Ar, O 2 , H 2 when opening an IC package using a silver wire is not limited to the above example.
  • the flow rate of Ar is 1.7 to 3.4 Pa ⁇ m 3 / sec ( 1000 to 2000 sccm)
  • the flow rate of O 2 is 0.008 to 0.08 Pa ⁇ m 3 / sec (5 to 50 sccm)
  • the flow rate of H 2 is 0.008 to 0.03 Pa ⁇ m 3 / sec (5 to 20 sccm).
  • a mixed gas may be used.
  • the etching rate can be increased by adding CF 4 to Ar and O 2 gases.
  • the flow rate of Ar is 1.7 to 3.4 Pa ⁇ m 3 / sec (1000 to 2000 sccm)
  • the flow rate of O 2 is 0.008 to 0.08 Pa ⁇ m 3 / sec (5 to 50 sccm)
  • CF 4 The flow rate may be 0.008 to 0.08 Pa ⁇ m 3 / sec (5 to 50 sccm).
  • FIG. 6 is an overall view of a semiconductor integrated circuit package unsealing apparatus using the atmospheric pressure plasma needle generator according to the second embodiment of the present invention.
  • 7 and 8 are diagrams showing examples of the shape of the guide.
  • the atmospheric pressure plasma needle generator 300 of the present invention includes a guide 12, an alumina tube 13, an outer conductor 15, an inner conductor 16, a gas introduction pipe 17, and an SMA connector 18.
  • the configuration is the same as that of the first embodiment except that the guide 12 is provided.
  • the guide 12 forms a flow path of the remote plasma 14a coming out from the opening 13t of the alumina tube 13 with the XY stage 1 (see FIG. 1A) on which an object to be etched is placed, and the remote plasma 14a is placed outside. And a gas flow path control surface 12a for irradiating the object to be etched with the remote plasma 14a on a wide surface.
  • the guide 12 may be connected to the alumina tube at a connection portion 12b with the alumina tube 13, and may include a cylindrical portion 12c and a gas flow path control surface 12a.
  • the guide 12 may be formed in a columnar shape as shown in FIG. 7, and as shown in FIG. 8, the inner diameter gradually increases from the outlet of the alumina tube 13, and the opening area of the opening 12d of the guide 12 However, you may form in cone shape so that it may become larger than the opening area of the opening part of the alumina tube 13.
  • FIG. The shape of the guide 12 is not limited to this, and the XY stage 1 (FIG. 1A) on which the etching gas flow is designed to flow so as to wash the IC chip surface uniformly while maintaining the laminar flow state, and the object to be etched is mounted thereon.
  • the flow path of the remote plasma 14a that emerges from the opening 13t of the alumina tube 13 is formed, and the remote plasma 14a may be spread outward.
  • the procedure for opening the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator 300 using the guide 12 is the same as that of the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator 100 described above, except as described below.
  • the procedure of opening the semiconductor integrated circuit package by the opening device 200 is the same.
  • a guide 12 is provided in the opening 13 t of the alumina tube 13.
  • the gas injected from the gas introduction pipe 17 passes through the alumina tube 13 and is discharged from the guide 12.
  • the atmospheric pressure plasma needle generator 300 is lowered in the Z-axis direction to approach the IC package 2, and the distance between the surface of the IC package 2 and the guide 12 is a predetermined distance. When it reaches, it is fixed in the Z-axis direction, and the surface of the IC package 2 is irradiated with the remote plasma 14a.
  • FIG. 9A is a photograph taken before opening the IC package with a mixed gas of Ar and O 2 without attaching the guide of the second embodiment of the present invention.
  • FIG. 9B shows a mixed gas of Ar and O 2 (the flow rate of Ar is 2.4 Pa ⁇ m 3 / sec (1440 sccm), the flow rate of O 2 is 0.01 Pa ⁇ m without attaching the guide of the second embodiment of the present invention. It is the photograph which image
  • FIG. 9C shows a mixed gas of Ar and O 2 (Ar flow rate: 2.4 Pa ⁇ m 3 / sec (1440 sccm), O 2 flow rate: 0.01 Pa ⁇ m without attaching the guide of the second embodiment of the present invention. It is the photograph which image
  • FIG. 10A is a photograph taken before attaching the guide of the second embodiment of the present invention and opening the IC package with a mixed gas of Ar and O 2 .
  • FIG. 10B shows a second embodiment of the present invention with a guide attached thereto, and a mixed gas of Ar and O 2 (Ar flow rate 2.4 Pa ⁇ m 3 / sec (1440 sccm), O 2 flow rate 0.01 Pa ⁇ m 3 / It is the photograph which image
  • FIG. 10B shows a second embodiment of the present invention with a guide attached thereto, and a mixed gas of Ar and O 2 (Ar flow rate 2.4 Pa ⁇ m 3 / sec (1440 sccm), O 2 flow rate 0.01 Pa ⁇ m 3 / It is the photograph which image
  • 10C shows a second embodiment of the present invention with a guide and a mixed gas of Ar and O 2 (Ar flow rate 2.4 Pa ⁇ m 3 / sec (1440 sccm), O 2 flow rate 0.01 Pa ⁇ m 3 / It is the photograph which image
  • the atmospheric pressure plasma needle generator 300 does not allow air to enter from the outside to the surface of the IC package 2 to be etched by attaching the guide 12 having the above-described shape, and uniformly chips. Since the surface is irradiated with active oxygen, the etching area can be increased. Since the etching gas can flow uniformly on the surface of the IC chip without waste, it is possible to cleanly etch the lower part of the bonding wire. In addition, the etching rate can be increased.
  • the remote plasma 14a spreads in a plane shape away from the plasma needle generating portion and is irradiated onto the surface of the IC package 2, so that irradiation is performed at a point without attaching the guide 12. Since it is possible to irradiate plasma at a temperature lower than that of the case, and the influence of the microwave on the IC chip can be reduced, damage to the IC chip due to temperature and microwave can be reduced.
  • the plasma needle generator of the present invention is used, and the same applies to the case where the IC package is opened using a general atmospheric pressure plasma generator. That is, even when the IC package is opened using a general atmospheric pressure plasma generator other than the plasma needle generator of the present invention, the guide 12 having the above-described shape can be attached to cleanly clean the lower part of the bonding wire. In addition, the etching rate can be increased, and damage to the IC chip due to temperature and microwaves can be reduced.
  • FIG. 11 is a view showing an atmospheric pressure plasma needle generator according to a third embodiment of the present invention.
  • the atmospheric pressure plasma needle generator 500 of this embodiment includes a heater 21, a guide 12, an alumina tube 13, an outer conductor 15, an inner conductor 16, a gas introduction pipe 17, and an SMA connector 18. Except for the point provided with the heater 21, it is the same as that of the structure of 2nd Example.
  • the heater 21 is arranged at a place where the IC package 2 can be heated below the IC package 2 and heats the IC package 2.
  • the heater 21 is controlled by the PC 10 and is maintained in a range of about 200 ° C. to 400 ° C. In this case, the PC 10 operates as a temperature controller.
  • the procedure for opening the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator 500 is the same as the procedure for opening the semiconductor integrated circuit package using the atmospheric pressure plasma needle generators 100 and 300 described above, except for the points described below. It is.
  • An IC package 2 using a silver wire is placed on the heater 21 of the XY stage 1 (see FIG. 1A) disposed opposite to the atmospheric pressure plasma needle generator 500.
  • the heater 21 heats the IC package 2 while being maintained at a constant temperature in the range of about 200 ° C. to 400 ° C. by the PC 10.
  • the IC package is opened by irradiating plasma generated using a mixed gas of Ar and O 2 according to the procedure of the first embodiment or the second embodiment.
  • the silver wire Since silver oxide is decomposed into silver and oxygen at about 200 ° C. to 300 ° C., the silver wire is not oxidized by oxygen plasma at a high temperature of about 200 ° C. to 400 ° C., and damage can be prevented. Therefore, according to the atmospheric pressure plasma needle generator 500, when opening the IC package 2 in which the silver wire is used, the silver wire is oxidized using only a mixed gas of Ar and O 2 without using H 2 gas. Can be opened while preventing.
  • the plasma needle generator of the present invention is used, and the same applies to the case where the IC package is opened using a general atmospheric pressure plasma generator. That is, even when the IC package is opened using a general atmospheric pressure plasma generator other than the plasma needle generator of the present invention, the opening operation is performed in a state where the IC package is heated by the heater as described above. By doing so, when opening an IC package using a silver wire, it is possible to open the package while preventing oxidation of the silver wire using only a mixed gas of Ar and O 2 without using H 2 gas.
  • the present embodiment is not limited to the example described above, and may be opened using a mixed gas of Ar, O 2 and H 2 .
  • Atmospheric pressure plasma needle generator 200 Semiconductor integrated circuit package unsealing apparatus 1 using an atmospheric pressure plasma needle generator 1 XY stage 2 IC package 3 CCD camera 4 Ultrasonic cleaning unit 6 Auto tuner 7 Mass flow controller 8 Micro Wave oscillator 9 Gas cylinder 10 PC 12 Guide 13 Alumina tube 13 t Opening 14 of alumina tube 13 Plasma needle 14 a Remote plasma 15 External conductor 15 t Opening end 16 of external conductor 16 Inner conductor 16 t End of internal conductor 17 Gas introduction pipe 18 SMA connector 19 Water introduction pipe 20 Air introduction Tube 21 heater

Abstract

[Problem] To provide an atmospheric pressure plasma needle generating device and a method for unsealing a semiconductor integrated circuit package using the atmospheric pressure plasma needle. [Solution] Provided is an atmospheric pressure plasma needle generating device that is provided with: a tube-shaped insulator for which gas is introduced to the interior from a gas introduction unit, having an opening at one end; a tube-shaped external conductor placed on the outside of the tube-shaped insulator; and an internal conductor placed inside the tube-shaped insulator, having a tip part covered by the external conductor. Using the microwaves propagated with the insulator, the internal conductor, and the external conductor as waveguides and the gas introduced from the gas introduction unit, the atmospheric pressure plasma needle generating device generates a filament-form plasma needle between the tip part of the internal conductor and the opening of the tube-shaped insulator.

Description

大気圧プラズマニードル発生装置及び大気圧プラズマニードルを用いた半導体集積回路パッケージの開封装置及び方法。Atmospheric pressure plasma needle generating apparatus and semiconductor integrated circuit package unsealing apparatus and method using atmospheric pressure plasma needle
 本発明は、大気圧プラズマニードル発生装置及び大気圧プラズマニードルを用いた半導体集積回路パッケージの開封装置及び方法に関する。 The present invention relates to an atmospheric pressure plasma needle generator and a semiconductor integrated circuit package unsealing apparatus and method using the atmospheric pressure plasma needle.
 従来、ICパッケージの開封(エポキシ樹脂の除去)には、マイクロ波空洞共振器によって生成したプラズマ(例えば特許文献1)、レーザーとプラズマの組み合わせ(例えば特許文献2)、又は誘導結合型放電プラズマにより生成されたプラズマ(例えば特許文献3)が用いられてきた。 Conventionally, an IC package is opened (removal of epoxy resin) by plasma generated by a microwave cavity resonator (for example, Patent Document 1), a combination of laser and plasma (for example, Patent Document 2), or inductively coupled discharge plasma. Generated plasma (for example, Patent Document 3) has been used.
 しかし、これらの手段によると、エポキシ樹脂を分解できるだけの密度の高い、低温のラジカル原子を「低電力」で生成することが困難である。また、これらの手段によると、マイクロ波が外部に漏えいしてしまい、ICチップその他周囲の電子機器に悪影響を与えてしまう可能性が高いという不都合がある。 However, according to these means, it is difficult to generate a low-temperature radical atom having a density high enough to decompose the epoxy resin with “low power”. In addition, according to these means, the microwave leaks to the outside, and there is a disadvantage that there is a high possibility that the IC chip and other surrounding electronic devices are adversely affected.
また、近年、ICチップのボンディングワイヤには、従来の金または銅に代わって、銀が用いられ始めてきている。金線または銅線を用いたICチップの開封(エポキシ樹脂の除去)には活性酸素が有効であり、処理時間と温度において実用レベルの装置が開発されている。 In recent years, silver has begun to be used in place of conventional gold or copper as bonding wires for IC chips. Active oxygen is effective for opening an IC chip (removal of epoxy resin) using a gold wire or a copper wire, and a device at a practical level has been developed in terms of processing time and temperature.
しかし、銀は酸化しやすい金属であり、酸化力の強い活性酸素は銀ワイヤに致命的な損傷を招くため、従来の開封方法は使用困難な状況に置かれている。 However, silver is a metal that easily oxidizes, and active oxygen having strong oxidizing power causes fatal damage to the silver wire, so that the conventional opening method is in a difficult situation to use.
また、従来の開封方法によると、エポキシ樹脂の除去の効率が良くないという問題点もある。 Further, according to the conventional opening method, there is a problem that the efficiency of removing the epoxy resin is not good.
国際公開第2013/184000号International Publication No. 2013/184000 米国特許第8555728号明細書US Pat. No. 8,555,728 米国特許出願公開第2015/0118856号明細書US Patent Application Publication No. 2015/0118856
 そこで、本発明は、マイクロ波が外部に漏えいすることを防ぎ、低電力かつ低温でエポキシ樹脂を分解できるだけの密度の高いラジカル原子を生成することを目的とする。 Therefore, an object of the present invention is to prevent a microwave from leaking to the outside and generate a radical atom having a density high enough to decompose an epoxy resin at low power and low temperature.
本発明の実施形態にかかる大気圧プラズマニードル発生装置は、ガス導入部から内部にガスが導入され、一端に開口部を有するチューブ形状の絶縁体と、前記チューブ形状の絶縁体の外側に配置されるチューブ形状の外部導体と、前記チューブ形状の絶縁体の内側に配置され、前記外部導体に覆われた先端部を有する内部導体と、を備え、前記絶縁体、前記内部導体、及び前記外部導体を導波路として伝搬するマイクロ波及び前記ガス導入部から導入されるガスを用いて前記内部導体の先端部と前記チューブ形状の絶縁体の開口部との間にフィラメント状のプラズマニードルを発生させる。 An atmospheric pressure plasma needle generator according to an embodiment of the present invention includes a tube-shaped insulator in which a gas is introduced from a gas introduction portion and has an opening at one end, and is disposed outside the tube-shaped insulator. A tube-shaped outer conductor, and an inner conductor disposed inside the tube-shaped insulator and having a tip portion covered with the outer conductor, the insulator, the inner conductor, and the outer conductor A filament-shaped plasma needle is generated between the tip of the inner conductor and the opening of the tube-shaped insulator using a microwave propagating as a waveguide and a gas introduced from the gas introduction portion.
 本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記内部導体の先端部より外側に前記外部導体の先端が位置し、前記外部導体の先端より外側に前記チューブ形状の絶縁体の開口部が位置してもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, the tip of the outer conductor is located outside the tip of the inner conductor, and the opening of the tube-shaped insulator is located outside the tip of the outer conductor. May be located.
 本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記外部導体の直径は、マイクロ波の波長の1/2以下の長さであってもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, the diameter of the outer conductor may be 1/2 or less of the wavelength of the microwave.
 本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記ガスはアルゴン及び酸素を含んでもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, the gas may contain argon and oxygen.
 本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記ガスは水素を含んでもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, the gas may contain hydrogen.
 本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記ガスは四フッ化炭素を含んでもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, the gas may include carbon tetrafluoride.
本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記チューブ形状の絶縁体の開口部に、前記開口部から放出されるガスを外側に広げるガス流路制御面を含むガイドを備えてもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, a guide including a gas flow path control surface that spreads gas released from the opening to the outside may be provided in the opening of the tube-shaped insulator. Good.
本発明の実施形態にかかる大気圧プラズマニードル発生装置において、前記ガイドの開口部の開口面積は、前記チューブ形状の絶縁体の開口部の開口面積よりも大きくてもよい。 In the atmospheric pressure plasma needle generator according to the embodiment of the present invention, the opening area of the opening of the guide may be larger than the opening area of the opening of the tube-shaped insulator.
本発明の実施形態にかかる半導体集積回路パッケージの開封装置は,本発明の実施形態にかかる大気圧プラズマニードル発生装置、及び、前記チューブ形状の絶縁体の開口部と対向する位置に半導体集積回路パッケージを配置するステージを備える。 An opening device for a semiconductor integrated circuit package according to an embodiment of the present invention includes an atmospheric pressure plasma needle generator according to an embodiment of the present invention, and a semiconductor integrated circuit package at a position facing the opening of the tube-shaped insulator. The stage which arranges is provided.
本発明の実施形態にかかる半導体集積回路パッケージの開封装置は,前記ステージの温度を調節する温度調節部を有してもよい。 The opening device of the semiconductor integrated circuit package according to the embodiment of the present invention may include a temperature adjusting unit that adjusts the temperature of the stage.
 本発明の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法は,本発明の実施形態にかかる大気圧プラズマニードル発生装置に半導体集積回路パッケージを配置し、前記プラズマニードルを発生させ、前記プラズマニードルが前記絶縁体の開口部に向かって進む過程で変化した中性ガスであるリモートプラズマを前記半導体集積回路パッケージに照射する。 A method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to an embodiment of the present invention includes: arranging the semiconductor integrated circuit package in the atmospheric pressure plasma needle generator according to the embodiment of the present invention; and generating the plasma needle. Then, the semiconductor integrated circuit package is irradiated with remote plasma, which is a neutral gas changed in the process in which the plasma needle advances toward the opening of the insulator.
 本発明の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法において,前記大気圧プラズマニードル発生装置は、前記チューブ形状の絶縁体の開口部と対向する位置に前記半導体集積回路パッケージを配置するステージを備えてもよい。 In the method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to an embodiment of the present invention, the atmospheric pressure plasma needle generator is located at a position facing the opening of the tube-shaped insulator. You may provide the stage which arrange | positions a package.
本発明の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法は,前記半導体集積回路パッケージを200℃乃至400℃に加熱することを含んでもよい。 A method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to an embodiment of the present invention may include heating the semiconductor integrated circuit package to 200 ° C. to 400 ° C.
本発明の他の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法は,マイクロ波及びガスを用いてフィラメント状のプラズマニードルを発生させ、前記プラズマニードルを半導体集積回路パッケージに照射することを含み、前記照射によって前記半導体集積回路パッケージに用いられている半導体集積回路、ボンディングワイヤ及びボンディングパッドが露出するまで前記半導体集積回路パッケージをエッチングする。 According to another embodiment of the present invention, a method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle generates a filament-shaped plasma needle using a microwave and a gas, and the plasma needle is formed into a semiconductor integrated circuit package. The semiconductor integrated circuit package is etched until the semiconductor integrated circuit, bonding wires, and bonding pads used in the semiconductor integrated circuit package are exposed by the irradiation.
 本発明の他の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法において,前記ガスはアルゴン及び酸素を含んでもよい。 In the method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to another embodiment of the present invention, the gas may contain argon and oxygen.
 本発明の他の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法において,前記ガスは水素を含んでもよい。 In the method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to another embodiment of the present invention, the gas may contain hydrogen.
 本発明の他の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法において,前記ガスは四フッ化炭素を含んでもよい。 In the method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to another embodiment of the present invention, the gas may contain carbon tetrafluoride.
本発明の他の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法は,前記半導体集積回路パッケージを200℃乃至400℃に加熱することを含んでもよい。 A method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to another embodiment of the present invention may include heating the semiconductor integrated circuit package to 200 ° C. to 400 ° C.
 本発明の他の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法は,所定時間の前記照射の後、前記半導体集積回路パッケージを超音波で洗浄し、前記半導体集積回路パッケージの表面状態をカメラで撮影し、撮影した結果に基づいて前記半導体集積回路、ボンディングワイヤ及びボンディングパッドが露出されていないと判定した場合にはさらに前記照射を行うことを含んでもよい。 According to another embodiment of the present invention, there is provided a method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle. After the irradiation for a predetermined time, the semiconductor integrated circuit package is cleaned with ultrasonic waves, and the semiconductor integrated circuit package is used. If the surface state of the film is photographed with a camera and it is determined that the semiconductor integrated circuit, the bonding wire, and the bonding pad are not exposed based on the photographed result, the irradiation may be further performed.
本発明の他の実施形態にかかる半導体集積回路パッケージの開封装置は,本発明の実施形態にかかる大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法を実行するための半導体集積回路パッケージの開封装置であってもよい。 A semiconductor integrated circuit package unsealing apparatus according to another embodiment of the present invention is a semiconductor integrated circuit package unsealing method for performing a method of unsealing a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to an embodiment of the present invention. It may be a device.
本発明によれば、マイクロ波が外部に漏えいすることを防ぎ、低電力かつ低温でエポキシ樹脂を分解できるだけの密度の高いラジカル原子を生成することができる。 According to the present invention, it is possible to prevent the microwave from leaking to the outside, and to generate radical atoms having a density high enough to decompose the epoxy resin at low power and low temperature.
本発明の第1実施形態による大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封装置の全体図を示したものである。1 is an overall view of a semiconductor integrated circuit package unsealing apparatus using an atmospheric pressure plasma needle generating apparatus according to a first embodiment of the present invention. 本発明の第1実施形態による大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封方法のフローチャートを示した図である。It is the figure which showed the flowchart of the opening method of the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator by 1st Embodiment of this invention. 本発明の第1実施形態による大気圧プラズマニードル発生装置を示した図である。It is the figure which showed the atmospheric pressure plasma needle generator by 1st Embodiment of this invention. Ar及びOの混合ガスを30分間照射した後の銀ワイヤを撮影した写真である。Is a photograph of the silver wire after irradiation for 30 min Ar and a mixed gas of O 2. Ar及びOの混合ガスを30分間照射し超音波洗浄を行った後の銀ワイヤを光学顕微鏡を使用して撮影した写真である。Ar and a mixed gas of O 2 was irradiated for 30 minutes of silver wire was subjected to ultrasonic cleaning is a photograph taken using an optical microscope. Ar及びOの混合ガスを30分間照射し超音波洗浄を行った後の銀ワイヤを撮影したSEM写真である。Ar and a mixed gas of O 2 was irradiated for 30 minutes is a SEM photograph of the silver wire was subjected to ultrasonic cleaning. Ar及びOの混合ガスを30分間照射した後の銀ワイヤを撮影したSEM写真である。The silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken. Ar及びOの混合ガスを30分間照射した後の銀ワイヤを撮影したSEM写真である。The silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken. Ar及びOの混合ガスを30分間照射した後の銀ワイヤを撮影したSEM写真である。The silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken. Ar及びOの混合ガスを30分間照射した後の銀ワイヤを撮影したSEM写真である。The silver wire was irradiated for 30 min Ar and a mixed gas of O 2 is an SEM photograph taken. Ar、O及びHの混合ガスを30分間照射し超音波洗浄を行った後の銀ワイヤを撮影した写真である。Ar, it is a photograph of the silver wire after the irradiation with a gas mixture of O 2 and H 2 30 minutes ultrasonic washing. Ar、O及びHの混合ガスを30分間照射した後の銀ワイヤを撮影したSEM写真である。Ar, is a SEM photograph of silver wire was photographed after irradiation with a gas mixture of O 2 and H 2 30 minutes. Ar、O及びHの混合ガスを30分間照射した後の銀ワイヤを撮影したSEM写真である。Ar, is a SEM photograph of silver wire was photographed after irradiation with a gas mixture of O 2 and H 2 30 minutes. 本発明の第2実施形態による大気圧プラズマニードル発生装置を示した図である。It is the figure which showed the atmospheric pressure plasma needle generator by 2nd Embodiment of this invention. 本発明の第2実施形態のガイドの例を示した図である。It is the figure which showed the example of the guide of 2nd Embodiment of this invention. 本発明の第2実施形態のガイドの例を示した図である。It is the figure which showed the example of the guide of 2nd Embodiment of this invention. 本発明の第2実施形態のガイドを取り付けずにAr及びOの混合ガスでICパッケージを開封する前に撮影した写真である。Without attaching the guide to a second embodiment of the present invention is a photograph taken before opening the IC package with a mixed gas of Ar and O 2. 本発明の第2実施形態のガイドを取り付けずに、Ar及びOの混合ガスで25分間ICパッケージをエッチングした様子を撮影した写真である。Without attaching the guide of the second embodiment of the present invention, it is a photograph of a state in which etching for 25 minutes the IC package with a mixed gas of Ar and O 2. 本発明の第2実施形態のガイドを取り付けずに、Ar及びOの混合ガスで50分間ICパッケージをエッチングした様子を撮影した写真である。Without attaching the guide of the second embodiment of the present invention, it is a photograph of a state in which etching for 50 minutes the IC package with a mixed gas of Ar and O 2. 本発明の第2実施形態のガイドを取り付け、Ar及びOの混合ガスでICパッケージを開封する前に撮影した写真である。It is a photograph taken before attaching the guide of the second embodiment of the present invention and opening the IC package with a mixed gas of Ar and O 2 . 本発明の第2実施形態のガイドを取り付け、Ar及びOの混合ガスで25分間ICパッケージをエッチングした様子を撮影した写真である。Attaching a guide of a second embodiment of the present invention, it is a photograph of a state in which etching for 25 minutes the IC package with a mixed gas of Ar and O 2. 本発明の第2実施形態のガイドを取り付け、Ar及びOの混合ガスで50分間ICパッケージをエッチングした様子を撮影した写真である。Attaching a guide of a second embodiment of the present invention, it is a photograph of a state in which etching for 50 minutes the IC package with a mixed gas of Ar and O 2. 本発明の第3実施形態による大気圧プラズマニードル発生装置を示した図である。It is the figure which showed the atmospheric pressure plasma needle generator by 3rd Embodiment of this invention.
 以下、本発明の実施形態に係る大気圧プラズマニードル発生装置及び大気圧プラズマニードルを用いた半導体集積回路パッケージの開封装置及び方法について、図面を参照しながら詳細に説明する。なお、実施形態は本発明の例を示したものであり、本発明は、明示した実施形態に限定されるものではない。 Hereinafter, an atmospheric pressure plasma needle generator and a semiconductor integrated circuit package unsealing apparatus and method using the atmospheric pressure plasma needle according to an embodiment of the present invention will be described in detail with reference to the drawings. The embodiments show examples of the present invention, and the present invention is not limited to the explicitly described embodiments.
(第1実施形態)
 図1Aは、本発明の第1実施形態による大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封装置の全体図を示したものである。
(First embodiment)
FIG. 1A shows an overall view of a semiconductor integrated circuit package unsealing apparatus using an atmospheric pressure plasma needle generator according to a first embodiment of the present invention.
 大気圧プラズマニードル発生装置100を用いた半導体集積回路パッケージの開封装置200は、XYステージ1、ICパッケージ2、CCDカメラ3、超音波洗浄部4、大気圧プラズマニードル発生装置100、オートチューナー6、マスフローコントローラー7、マイクロ波発振器8、ガスボンベ9、PC10、水導入管19、及び空気導入管20を備える。 The semiconductor integrated circuit package unsealing apparatus 200 using the atmospheric pressure plasma needle generator 100 includes an XY stage 1, an IC package 2, a CCD camera 3, an ultrasonic cleaning unit 4, an atmospheric pressure plasma needle generator 100, an auto tuner 6, A mass flow controller 7, a microwave oscillator 8, a gas cylinder 9, a PC 10, a water introduction pipe 19, and an air introduction pipe 20 are provided.
ガスボンベ9には、プラズマ化されるガスが充填されている。例えば、ガスボンベ9に充填されるガスは、アルゴン(Ar)、酸素(O)、水素(H)、四フッ化炭素(CF)などであってもよい。ガスボンベ9に充填されたプラズマを生成するガスは、マスフローコントローラー7を経由して、大気圧プラズマニードル発生装置100に注入される。各ガスの流量はPC10に接続されたマスフローコントローラー7で制御される。 The gas cylinder 9 is filled with a gas to be converted into plasma. For example, the gas filled in the gas cylinder 9 may be argon (Ar), oxygen (O 2 ), hydrogen (H 2 ), carbon tetrafluoride (CF 4 ), or the like. A gas that generates plasma filled in the gas cylinder 9 is injected into the atmospheric pressure plasma needle generator 100 via the mass flow controller 7. The flow rate of each gas is controlled by a mass flow controller 7 connected to the PC 10.
図2にはガスボンベ9を1個設ける例を示したが、ガスボンベ9を2個以上設け、複数の種類のガスを大気圧プラズマニードル発生装置100に注入し、混合させるようにしてもよい。例えば、銀ワイヤ以外のボンディングワイヤが用いられたICパッケージを開封する場合には、ArとOガスが使用されてもよく、このとき、Arの流量は1.6~3.3Pa・m/sec(1,000~2,000sccm)、Oの流量は0.008~0.08Pa・m/sec(5~50sccm)であってもよい。 Although FIG. 2 shows an example in which one gas cylinder 9 is provided, two or more gas cylinders 9 may be provided, and a plurality of types of gases may be injected into the atmospheric pressure plasma needle generator 100 and mixed. For example, when an IC package using a bonding wire other than silver wire is opened, Ar and O 2 gas may be used. At this time, the flow rate of Ar is 1.6 to 3.3 Pa · m 3. / Sec (1,000 to 2,000 sccm), and the flow rate of O 2 may be 0.008 to 0.08 Pa · m 3 / sec (5 to 50 sccm).
マイクロ波発振器8はマイクロ波を発振する。発振されたマイクロ波は同軸ケーブルでオートチューナー6、大気圧プラズマニードル発生装置100へと導入される。例えば、マイクロ波の周波数は、2.40~2.50GHz、パワーは5~20Wとしてもよい。 The microwave oscillator 8 oscillates microwaves. The oscillated microwave is introduced into the auto tuner 6 and the atmospheric pressure plasma needle generator 100 through a coaxial cable. For example, the microwave frequency may be 2.40 to 2.50 GHz, and the power may be 5 to 20 W.
 大気圧プラズマニードル発生装置100は、マイクロ波及びガスを用いてフィラメント状のプラズマニードル及びリモートプラズマを発生させる。大気圧プラズマニードル発生装置100の詳細な構造については後述する。 The atmospheric pressure plasma needle generator 100 generates a filament-shaped plasma needle and remote plasma using a microwave and gas. The detailed structure of the atmospheric pressure plasma needle generator 100 will be described later.
XYステージ1には開封対象のICパッケージ2が固定されている。XYステージ1のXY軸方向の動き及びZ軸方向の動きは、PC10により制御される。 An IC package 2 to be opened is fixed to the XY stage 1. The movement in the XY axis direction and the movement in the Z axis direction of the XY stage 1 are controlled by the PC 10.
超音波洗浄部4は振動することでICパッケージ2に導入された水を振動させ、ICパッケージ2の超音波洗浄を行う超音波振動子を備える。水導入管19は超音波洗浄部4に接続され、ICパッケージ2に水を導入する。空気導入管20は超音波洗浄部4に接続され、ICパッケージ2に圧縮空気が送り、エアージェットの力によりシリカフィラーを含んだ水を飛ばして除去し、同時にICパッケージ2の表面を乾燥させる。 The ultrasonic cleaning unit 4 includes an ultrasonic vibrator that vibrates water introduced into the IC package 2 by vibrating to perform ultrasonic cleaning of the IC package 2. The water introduction tube 19 is connected to the ultrasonic cleaning unit 4 and introduces water into the IC package 2. The air introduction tube 20 is connected to the ultrasonic cleaning unit 4, and compressed air is sent to the IC package 2, and the water containing the silica filler is blown away by the force of the air jet, and at the same time, the surface of the IC package 2 is dried.
CCDカメラ3は、PC10でICパッケージ2の表面状態を観察するのに用いられる。すなわち、CCDカメラ3を用いてICパッケージ2の表面状態を撮影し、PC10が画像データを解析して表面状態が目的の状態まで至っているかどうかを判定する。本発明はこれに限られず、CCDカメラ3で撮影された画像データをPC10に表示させた上で、ユーザが表面状態が目的の状態まで至っているかどうかの判定をしてプラズマニードルの照射を続行するか終了するかを選択するようにしてもよい。 The CCD camera 3 is used for observing the surface state of the IC package 2 with the PC 10. That is, the CCD camera 3 is used to photograph the surface state of the IC package 2, and the PC 10 analyzes the image data to determine whether the surface state has reached the target state. The present invention is not limited to this, and after the image data photographed by the CCD camera 3 is displayed on the PC 10, it is determined whether or not the surface state has reached the target state and the plasma needle irradiation is continued. It is also possible to select whether to end.
図2は、本発明の第1実施形態による大気圧プラズマニードル発生装置を示した図である。 FIG. 2 is a view showing an atmospheric pressure plasma needle generator according to the first embodiment of the present invention.
大気圧プラズマニードル発生装置100は、アルミナチューブ13、外部導体15、内部導体16、ガス導入管17、及びSMA(Sub Miniature Type A)コネクタ18を備える。 The atmospheric pressure plasma needle generator 100 includes an alumina tube 13, an outer conductor 15, an inner conductor 16, a gas introduction pipe 17, and an SMA (Sub Miniature Type A) connector 18.
内部導体16は棒状の導体であって、アルミナチューブ13の内側に配置され、一端がSMAコネクタ18に接続され、マイクロ波が供給される。内部導体16はマイクロ波の1/4波長の長さL1であってもよいがこれに限られず、外部導体15より少し短ければ、どのような長さであってもよい。内部導体16は外部導体15に覆われた部分にその先端部16tを有する。 The internal conductor 16 is a rod-shaped conductor, and is disposed inside the alumina tube 13. One end of the internal conductor 16 is connected to the SMA connector 18 and microwaves are supplied. The inner conductor 16 may have a length L1 of a quarter wavelength of the microwave, but is not limited thereto, and may be any length as long as it is slightly shorter than the outer conductor 15. The inner conductor 16 has a tip 16t at a portion covered with the outer conductor 15.
外部導体15はチューブ形状の導体であって、アルミナチューブ13の外側に配置され、接地電位に接続されている。外部導体15の長さL2は、内部導体16の長さL1より大きいので、内部導体16の先端部16tは外部導体15に覆われており、外部導体15の開放端15tよりも内側に位置する。例えば、外部導体15の長さL2は、内部導体16の長さL1より数mm程度大きく形成し、内部導体16の先端部16tは外部導体15の開口端15tより数mm程度図面方向上部にくるように配置されてもよい。 The outer conductor 15 is a tube-shaped conductor and is disposed outside the alumina tube 13 and connected to the ground potential. Since the length L2 of the outer conductor 15 is larger than the length L1 of the inner conductor 16, the tip end portion 16t of the inner conductor 16 is covered with the outer conductor 15, and is located on the inner side of the open end 15t of the outer conductor 15. . For example, the length L2 of the outer conductor 15 is formed to be about several mm longer than the length L1 of the inner conductor 16, and the tip portion 16t of the inner conductor 16 is about several mm higher than the opening end 15t of the outer conductor 15 in the drawing direction. May be arranged as follows.
外部導体15の直径はマイクロ波の波長の2分の1未満の長さであってもよく、それによって内部導体に伝わるマイクロ波が外部に漏洩されるのを防ぐことができる。例えば、2.45GHzの波長は12cmなので、外部導体15の直径は、6cm未満の長さであるとよく、本実施形態で外部導体15の直径は1cm未満である。 The diameter of the outer conductor 15 may be less than half the wavelength of the microwave, thereby preventing the microwave transmitted to the inner conductor from leaking to the outside. For example, since the wavelength of 2.45 GHz is 12 cm, the diameter of the outer conductor 15 may be less than 6 cm. In this embodiment, the diameter of the outer conductor 15 is less than 1 cm.
アルミナチューブ13は、内部導体16及び外部導体15よりも長いアルミナ管で構成され、その一端がガス導入管17と接続され、プラズマ化されるガスが導入される。ガス導入管17から導入されるガスの例は後述のとおりである。アルミナチューブ13の他端は開口部13tとなっており、ここからガスが放出される。アルミナチューブ13の材質はアルミナに限定されず、絶縁体であればよい。後述するとおり、アルミナチューブ13の先端にはガイド12(図6参照)を設けてもよく、ガス導入管17から注入されたガスがガイド12(図6参照)から排出されるようにしてもよい。 The alumina tube 13 is composed of an alumina tube that is longer than the inner conductor 16 and the outer conductor 15, and one end of the alumina tube 13 is connected to the gas introduction tube 17 to introduce a gas to be converted into plasma. Examples of gas introduced from the gas introduction pipe 17 are as described below. The other end of the alumina tube 13 is an opening 13t from which gas is released. The material of the alumina tube 13 is not limited to alumina and may be an insulator. As will be described later, a guide 12 (see FIG. 6) may be provided at the tip of the alumina tube 13, and the gas injected from the gas introduction pipe 17 may be discharged from the guide 12 (see FIG. 6). .
アルミナチューブ13、外部導体15、及び内部導体16は、内部導体16の先端部16tより外側に外部導体15の開放端15tが位置し、外部導体15の開放端15tより外側にアルミナチューブ13の開口部13tが位置する関係が維持される限り、ガスの流量、供給電力量、ICチップの材料、構造及び大きさにより変化させてもよい。一例として、アルゴン流量が2.5Pa・m/sec(1500sccm)、マイクロ波発振器入力が15Wの場合、アルミナチューブ13を外径6mm、内径3mm、長さ45mmとし、外部導体15を、内径6.2mm、長さ35~40mmとし、内部導体16を、直径0.6~0.8mm、長さ30~35mmの銅、モリブデン又はタングステン線としてもよい。内部導体16の先端部16tより外側に外部導体15の開放端15tが位置し、外部導体15の開放端15tより外側にアルミナチューブ13の開口部13tが位置するようにすることで、マイクロ波漏洩は強く抑制され、周辺の電子機器への誤動作を防止することができ、また、低電力かつ低温で効率的にエポキシ樹脂を分解できるだけの密度の高いラジカル原子を生成することができる。 The alumina tube 13, the outer conductor 15, and the inner conductor 16 have an open end 15 t of the external conductor 15 located outside the tip end 16 t of the internal conductor 16, and an opening of the alumina tube 13 outside the open end 15 t of the external conductor 15. As long as the relationship in which the portion 13t is located is maintained, it may be changed depending on the gas flow rate, the amount of supplied power, the material, structure, and size of the IC chip. As an example, when the argon flow rate is 2.5 Pa · m 3 / sec (1500 sccm) and the microwave oscillator input is 15 W, the alumina tube 13 has an outer diameter of 6 mm, an inner diameter of 3 mm, a length of 45 mm, and the outer conductor 15 has an inner diameter of 6 mm. The inner conductor 16 may be a copper, molybdenum or tungsten wire having a diameter of 0.6 to 0.8 mm and a length of 30 to 35 mm. Microwave leakage is achieved by positioning the open end 15t of the outer conductor 15 outside the tip end 16t of the internal conductor 16 and the opening 13t of the alumina tube 13 outside the open end 15t of the external conductor 15. Is strongly suppressed, and it is possible to prevent malfunction of peripheral electronic devices, and to generate radical atoms with a density sufficient to efficiently decompose the epoxy resin at low power and low temperature.
SMAコネクタ18は、特性インピーダンス50Ωの可撓性同軸ケーブルでマイクロ波発振器8(図1A参照)に接続される。内部導体16が一端でSMAコネクタ18に接続されることで、マイクロ波発振器8(図2参照)で発振されたマイクロ波がアルミナチューブ13内に導入される。 The SMA connector 18 is connected to the microwave oscillator 8 (see FIG. 1A) by a flexible coaxial cable having a characteristic impedance of 50Ω. By connecting the inner conductor 16 to the SMA connector 18 at one end, the microwave oscillated by the microwave oscillator 8 (see FIG. 2) is introduced into the alumina tube 13.
マイクロ波電力は内部導体16の先端にプラズマニードル14を生成するのに使用されるが、負荷であるプラズマニードルのインピーダンスは放電状態の変化により変動しやすく、一部は反射波となる。この反射波が最小になるように、マイクロ波発振器8(図1A参照)とSMAコネクタ18の間にオートチューナー6(図1A参照)を挿入し、電力を自動的に制御することで、負荷のプラズマニードルへのマイクロ波電力反射損失を低減させる。 Microwave power is used to generate the plasma needle 14 at the tip of the inner conductor 16, but the impedance of the plasma needle as a load is likely to fluctuate due to changes in the discharge state, and part of it becomes a reflected wave. An auto tuner 6 (see FIG. 1A) is inserted between the microwave oscillator 8 (see FIG. 1A) and the SMA connector 18 so that this reflected wave is minimized, and the power is automatically controlled, so that the load Reduces microwave power reflection loss to the plasma needle.
アルミナチューブ13内部にガスを供給している状態で10~15Wのマイクロ波を給電し、放電点火操作を行うと、アルミナチューブ13内部にフィラメント状プラズマニードル14が生成される。より詳細には、内部導体の先端部16tとアルミナチューブの開口部13tとの間にフィラメント状のプラズマニードル14を発生させる。このとき、ガスの流量は、乱流を引き起こすような大きい流量は避け、ガスの流れが層流になるような流量にするとよい。 When a microwave of 10 to 15 W is supplied with a gas being supplied into the alumina tube 13 and a discharge ignition operation is performed, a filamentous plasma needle 14 is generated inside the alumina tube 13. More specifically, a filamentous plasma needle 14 is generated between the tip 16t of the inner conductor and the opening 13t of the alumina tube. At this time, the flow rate of the gas is preferably a flow rate that avoids a large flow rate that causes a turbulent flow and that the gas flow becomes a laminar flow.
放電点火操作としては、ガスを流した状態で、内部導体16の先端部16tに棒状の金属を接触させておき、低電力マイクロ波を給電後にこれを引き離す手段がある。このような方法を用いることにより、電力を要さずに放電点火をすることができる。 As the discharge ignition operation, there is a means in which a rod-shaped metal is brought into contact with the tip end portion 16t of the inner conductor 16 in a gas flow state, and this is separated after feeding a low power microwave. By using such a method, discharge ignition can be performed without requiring electric power.
放電点火操作方法は上記方法に限られず、放電ガスの供給と電力の給電の準備をした後、圧電トランスあるいはコイル2次側の20kV~25kVの高電圧インパルスを内部導体16の先端から10mm程度離れた位置で発生させることによって放電点火してもよい。このような方法を用いることにより、低コストでプラズマニードルを生成することができる。 The discharge ignition operation method is not limited to the above method, and after preparing for supply of discharge gas and power supply, a high voltage impulse of 20 kV to 25 kV on the piezoelectric transformer or the secondary side of the coil is separated from the tip of the inner conductor 16 by about 10 mm. Discharge ignition may be performed by generating at a different position. By using such a method, a plasma needle can be generated at a low cost.
プラズマニードル14の大きさはガス流量とマイクロ波入力に依存して変化する。例えば、マイクロ波入力が10Wの場合、プラズマニードル14の長さは10mm程度、直径は2~3mm程度となる。 The size of the plasma needle 14 varies depending on the gas flow rate and the microwave input. For example, when the microwave input is 10 W, the length of the plasma needle 14 is about 10 mm and the diameter is about 2 to 3 mm.
プラズマニードル14の先端部は低温(非熱平衡状態)であり、10Wの場合は約150℃以下、5Wで約60℃以下である。マイクロ波発振器入力を大きくする場合には、アルミナチューブ13を長くすることで排気ガスの温度を下げることができる。 The tip of the plasma needle 14 is at a low temperature (non-thermal equilibrium state), and in the case of 10 W, it is about 150 ° C. or less and 5 W is about 60 ° C. or less. When the microwave oscillator input is increased, the temperature of the exhaust gas can be lowered by making the alumina tube 13 longer.
プラズマニードル14はアルミナチューブ13の出口に向かって進む過程で、イオン種及び電子が再結合して反応性の高い励起種を多く含む中性ガス流(リモートプラズマ14a)に変化する。マイクロ波はリモートプラズマを伝搬できないので、マイクロ波が外部に漏洩することを防ぐことができる。 As the plasma needle 14 advances toward the outlet of the alumina tube 13, the ion species and electrons recombine to change into a neutral gas flow (remote plasma 14a) containing a large amount of highly reactive excited species. Since the microwave cannot propagate through the remote plasma, the microwave can be prevented from leaking to the outside.
プラズマニードル14(リモートプラズマ14a)が生成されると、リモートプラズマ14aがICパッケージ2の表面に照射される。活性酸素を多く含むリモートプラズマ14aがICパッケージ2のエポキシ樹脂に照射されると、エポキシ樹脂がHOとCOに分解されエッチングされる。本実施形態において活性酸素にはOラジカルが含まれるが,これ以外のオゾン等の他の活性種が含まれてもよい。 When the plasma needle 14 (remote plasma 14a) is generated, the surface of the IC package 2 is irradiated with the remote plasma 14a. When the remote plasma 14a containing a large amount of active oxygen is irradiated onto the epoxy resin of the IC package 2, the epoxy resin is decomposed into H 2 O and CO 2 and etched. In this embodiment, the active oxygen includes O radicals, but other active species such as ozone may be included.
プラズマニードル14は、内部導体16の先端部16tに形成されるプラズマニードル14の表面に沿って伝搬するマイクロ波が供給ガスを電離させることにより成長する。マイクロ波電力の一部は伝搬路の周辺に放射され、マイクロ波漏洩を引き起こして、周囲の電子機器の動作を乱す恐れがあるので遮断することが望ましい。 The plasma needle 14 grows by the microwave propagating along the surface of the plasma needle 14 formed at the tip 16t of the inner conductor 16 ionizing the supply gas. Part of the microwave power is radiated to the periphery of the propagation path, causing microwave leakage and disturbing the operation of the surrounding electronic equipment, so it is desirable to cut it off.
本発明の大気圧プラズマニードル発生装置100では、内部導体16の先端は外部導体15に覆われている部分に存在するため、内部導体16を伝播するマイクロ波が内部導体16の周辺に放射されることを防ぐことができる。また、外部導体15の先端付近でプラズマニードルが消滅し、アルミナチューブ13の開口部13tまでの空間にはリモートプラズマ14a(中性ガス、エッチングガス)となっているため、マイクロ波はその先へ伝搬できず、内部導体16の先端方向へのマイクロ波漏洩も強く抑制することができ、周辺の電子機器への誤動作を防止することができる。 In the atmospheric pressure plasma needle generator 100 of the present invention, the tip of the inner conductor 16 is present in the portion covered with the outer conductor 15, so that the microwave propagating through the inner conductor 16 is radiated around the inner conductor 16. Can be prevented. Further, the plasma needle disappears near the tip of the outer conductor 15, and the remote plasma 14a (neutral gas, etching gas) is present in the space up to the opening 13t of the alumina tube 13, so that the microwaves go beyond that. Propagation is not possible, and microwave leakage toward the distal end of the internal conductor 16 can be strongly suppressed, and malfunction of peripheral electronic devices can be prevented.
以下、図1A及び図1Bを参照して大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封手順を説明する。 A procedure for opening a semiconductor integrated circuit package using the atmospheric pressure plasma needle generator will be described below with reference to FIGS. 1A and 1B.
プラズマニードル14(リモートプラズマ14a)が生成されると、大気圧プラズマニードル発生装置100をZ軸方向に下降し、XYステージ1に固定されているICパッケージ2に接近させ、ICパッケージ2の表面とアルミナチューブ13の開口部13tとの距離が一定のところでZ軸方向に固定し、リモートプラズマ14aがICパッケージ2の表面に照射される。活性酸素を多く含むリモートプラズマがICパッケージ2のエポキシ樹脂に照射されると、エポキシ樹脂がH0とCOに分解されエッチングされる(S101)。 When the plasma needle 14 (remote plasma 14a) is generated, the atmospheric pressure plasma needle generator 100 is moved down in the Z-axis direction and brought close to the IC package 2 fixed to the XY stage 1, and the surface of the IC package 2 is When the distance from the opening 13t of the alumina tube 13 is constant, the distance is fixed in the Z-axis direction, and the surface of the IC package 2 is irradiated with the remote plasma 14a. When the remote plasma containing a large amount of active oxygen is irradiated onto the epoxy resin of the IC package 2, the epoxy resin is decomposed into H 2 O and CO 2 and etched (S101).
ICパッケージ2のエポキシ樹脂の一部は活性酸素でエッチング可能だが、ICパッケージ2のエポキシ樹脂の70%以上を構成するシリカフィラーは活性酸素でエッチングされないため、リモートプラズマをICパッケージ2のエポキシ樹脂に照射して3~10分程度でパッケージ表面はシリカフィラーで白くなる。 A part of the epoxy resin of the IC package 2 can be etched with active oxygen, but the silica filler constituting 70% or more of the epoxy resin of the IC package 2 is not etched with active oxygen. The surface of the package becomes white with silica filler in about 3 to 10 minutes after irradiation.
そこで、シリカフィラーをパッケージ表面から除去するために超音波洗浄が行われる。リモートプラズマ14aによる3~10分程度のエッチング後、ICパッケージ2を超音波洗浄部4の真下に移動させ、同時に超音波洗浄部4を下方に移動させ、ICパッケージ2に接近させる。 Therefore, ultrasonic cleaning is performed to remove the silica filler from the package surface. After the etching with the remote plasma 14a for about 3 to 10 minutes, the IC package 2 is moved directly below the ultrasonic cleaning unit 4, and at the same time, the ultrasonic cleaning unit 4 is moved downward to approach the IC package 2.
超音波洗浄部4に接続された水導入管19からは水が導入され、ICパッケージ2の表面に数滴たらされると表面張力でICパッケージ2上に水が保持される。超音波洗浄部4とICパッケージ2の表面の水滴が接した状態で、超音波洗浄部4の超音波振動子が振動することで、超音波洗浄が開始される。5~10秒程度の超音波洗浄でシリカフィラーをICパッケージ2から剥離させる。 Water is introduced from the water introduction pipe 19 connected to the ultrasonic cleaning section 4 and when several drops are dropped on the surface of the IC package 2, the water is held on the IC package 2 by surface tension. The ultrasonic cleaning is started by the vibration of the ultrasonic vibrator of the ultrasonic cleaning unit 4 in a state where the ultrasonic cleaning unit 4 and water droplets on the surface of the IC package 2 are in contact with each other. The silica filler is peeled from the IC package 2 by ultrasonic cleaning for about 5 to 10 seconds.
ICパッケージ2の表面から剥離されたシリカフィラーを含んだ水を除去するために、超音波洗浄部4に接続された空気導入管20よりICパッケージ2に圧縮空気が送られ、エアージェットの力によりシリカフィラーを含んだ水を飛ばして除去し、同時にICパッケージ2の表面を乾燥させる(S103)。 In order to remove the water containing the silica filler peeled off from the surface of the IC package 2, compressed air is sent to the IC package 2 from the air introduction pipe 20 connected to the ultrasonic cleaning unit 4, and the force of the air jet Water containing the silica filler is removed by blowing, and at the same time, the surface of the IC package 2 is dried (S103).
水滴が除去されたICパッケージ2はCCDカメラ3の真下に移動させ、表面状態をPC10にて観察する(S105)。 The IC package 2 from which the water droplets have been removed is moved directly below the CCD camera 3, and the surface state is observed by the PC 10 (S105).
CCDカメラ3を用いた観察により、ICパッケージ2の開封が目的の状態まで至っていない場合(S107;No)には、ICパッケージ2は再び大気圧プラズマニードル発生装置100の下まで移動させ、エポキシ樹脂が除去され、ICチップ、ボンディングワイヤが露出されるまで、上述の手順が繰り返される。ICパッケージ2の開封が目的の状態まで至った場合(S107;Yes)には開封作業を終了する。 If the opening of the IC package 2 has not reached the target state as a result of observation using the CCD camera 3 (S107; No), the IC package 2 is again moved under the atmospheric pressure plasma needle generator 100, and an epoxy resin is used. The above-described procedure is repeated until the IC chip and the bonding wire are exposed. When the opening of the IC package 2 has reached the target state (S107; Yes), the opening operation is terminated.
図3Aは、直径0.5mm、銀100%の銀ワイヤに対して、Arの流量を2.5Pa・m/sec(1500sccm)、Oの流量を0.076Pa・m/sec(45sccm)としたガスを30分間照射した後の銀ワイヤを撮影した写真である。図3Bはさらに超音波洗浄を行った後に光学顕微鏡を使用して撮影した写真であり、図3Cはさらに超音波洗浄を行った後にSEM写真である。図4A乃至Dは、上記条件でガスを照射した後の銀ワイヤを撮影したSEM写真である(縮尺は写真内のスケールを参照。)。 FIG. 3A shows an Ar flow rate of 2.5 Pa · m 3 / sec (1500 sccm) and an O 2 flow rate of 0.076 Pa · m 3 / sec (45 sccm) for a silver wire having a diameter of 0.5 mm and 100% silver. It is the photograph which image | photographed the silver wire after irradiating the gas made to) for 30 minutes. FIG. 3B is a photograph taken using an optical microscope after further ultrasonic cleaning, and FIG. 3C is an SEM photograph after further ultrasonic cleaning. 4A to 4D are SEM photographs obtained by photographing the silver wire after being irradiated with the gas under the above conditions (see the scale in the photograph for the scale).
図3A~C及び図4A~Dを参照すると、Ar、Oのガスでエッチングした後の銀ワイヤは全体的に黒いすす(酸化銀)で覆われていることが分かる。拡大したSEM写真を参照すると、大きな酸化銀の結晶が形成されている。このように、銀ワイヤが用いられたICパッケージを開封する場合、Ar、Oのガスでエッチングすると、銀ワイヤが酸化して損傷を与えてしまう。 Referring to FIGS. 3A to 3C and FIGS. 4A to 4D, it can be seen that the silver wire after etching with Ar and O 2 gas is entirely covered with black soot (silver oxide). Referring to the enlarged SEM photograph, large silver oxide crystals are formed. As described above, when an IC package using a silver wire is opened, if the etching is performed with Ar or O 2 gas, the silver wire is oxidized and damaged.
他方、図5A~Cは、直径0.5mm、銀100%の銀ワイヤに対して、Arの流量を2.5Pa・m/sec(1500sccm)、Oの流量を0.076Pa・m/sec(45sccm)、Hの流量を0.025Pa・m/sec(15sccm)としたガスを30分間照射し超音波洗浄を行った後の銀ワイヤを撮影した写真である(縮尺は写真内のスケールを参照。)。 On the other hand, FIGS. 5A to 5C show an Ar flow rate of 2.5 Pa · m 3 / sec (1500 sccm) and an O 2 flow rate of 0.076 Pa · m 3 for a silver wire having a diameter of 0.5 mm and 100% silver. This is a photograph of the silver wire after ultrasonic cleaning by irradiating a gas with a flow rate of 0.025 Pa · m 3 / sec (15 sccm) for 30 minutes / sec (45 sccm) and H 2 (scale is a photograph) (See the scale inside.)
図5A~Cを参照すると、Ar、O、Hのガスでエッチングした後の銀ワイヤは金属光沢を残しており、銀色のままである。そして肉眼で目視できる黒いすす(酸化銀)は存在せず、銀ワイヤは損傷を受けていないことが分かる。拡大したSEM写真を参照しても、ごく小さな酸化銀の結晶が部分的に存在するのみで、酸化銀はほとんど形成されていない。このように、銀ワイヤが用いられたICパッケージを開封する場合、Ar、O、Hのガスでエッチングすると、銀ワイヤが酸化して損傷させてしまうことを防ぐことができる。 Referring to FIGS. 5A-C, the silver wire after etching with Ar, O 2 , H 2 gases remains metallic and remains silver. It can be seen that there is no black soot (silver oxide) visible to the naked eye, and the silver wire is not damaged. Referring to the enlarged SEM photograph, only a very small silver oxide crystal is present, and almost no silver oxide is formed. As described above, when an IC package using a silver wire is opened, etching with Ar, O 2 , or H 2 gas can prevent the silver wire from being oxidized and damaged.
銀ワイヤが用いられたICパッケージを開封する場合のAr、O、Hの流量は上述の例に限定されず、例えば、Arの流量を1.7~3.4Pa・m/sec(1000~2000sccm)、Oの流量を0.008~0.08Pa・m/sec(5~50sccm)、Hの流量を0.008~0.03Pa・m/sec(5~20sccm)とした混合ガスを使用してもよい。 The flow rate of Ar, O 2 , H 2 when opening an IC package using a silver wire is not limited to the above example. For example, the flow rate of Ar is 1.7 to 3.4 Pa · m 3 / sec ( 1000 to 2000 sccm), the flow rate of O 2 is 0.008 to 0.08 Pa · m 3 / sec (5 to 50 sccm), and the flow rate of H 2 is 0.008 to 0.03 Pa · m 3 / sec (5 to 20 sccm). A mixed gas may be used.
これは、本発明のプラズマニードル発生装置を用いる場合に限られず、一般的な大気圧プラズマ発生装置を用いてICパッケージを開封する場合にも同様のことが当てはまる。すなわち、本発明のプラズマニードル発生装置以外の一般的な大気圧プラズマ発生装置を用いてICパッケージを開封する場合であっても、Hの混合したガスを用いることにより、銀ワイヤにダメージを与えることなく、銀ワイヤを搭載したICパッケージを開封することができる。 This is not limited to the case where the plasma needle generator of the present invention is used, and the same applies to the case where the IC package is opened using a general atmospheric pressure plasma generator. That is, even when the IC package is opened using a general atmospheric pressure plasma generator other than the plasma needle generator of the present invention, the silver wire is damaged by using a gas mixed with H 2. It is possible to open the IC package on which the silver wire is mounted.
 このように、本実施形態によると、ボンディングワイヤに酸化しやすい金属が用いられている場合であっても、損傷を低減してICチップを開封することが可能となる。 Thus, according to the present embodiment, even when a metal that is easily oxidized is used for the bonding wire, it is possible to reduce the damage and open the IC chip.
シリコーン樹脂または熱硬化された樹脂をエッチングする場合には、Ar、OのガスにCFを付加するとエッチングレートを高めることができる。例えば、Arの流量は1.7~3.4Pa・m/sec(1000~2000sccm)、Oの流量は0.008~0.08Pa・m/sec(5~50sccm)、CFの流量は0.008~0.08Pa・m/sec(5~50sccm)であってもよい。 In the case of etching a silicone resin or a thermally cured resin, the etching rate can be increased by adding CF 4 to Ar and O 2 gases. For example, the flow rate of Ar is 1.7 to 3.4 Pa · m 3 / sec (1000 to 2000 sccm), the flow rate of O 2 is 0.008 to 0.08 Pa · m 3 / sec (5 to 50 sccm), CF 4 The flow rate may be 0.008 to 0.08 Pa · m 3 / sec (5 to 50 sccm).
CFを付加すると、ArとOの混合ガスの場合に比べて、エッチングレートは、数十倍となる。他方、CFプラズマで生成されるFラジカルはSiをエッチングしてしまうため、チップをエッチングしてしまう。したがって、ICパッケージの開封が進み、ICチップの露出が近くなってきたら、CFの流入を止め、Ar及びOでエッチングするようにするとよい。 When CF 4 is added, the etching rate becomes several tens of times as compared with a mixed gas of Ar and O 2 . On the other hand, since F radicals generated by CF 4 plasma etch Si, the chip is etched. Therefore, when the opening of the IC package proceeds and the IC chip is almost exposed, it is preferable to stop the inflow of CF 4 and perform etching with Ar and O 2 .
(第2実施形態)
 図6は、本発明の第2実施形態による大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封装置の全体図を示したものである。図7及び図8は、ガイドの形状の例を示した図である。
(Second Embodiment)
FIG. 6 is an overall view of a semiconductor integrated circuit package unsealing apparatus using the atmospheric pressure plasma needle generator according to the second embodiment of the present invention. 7 and 8 are diagrams showing examples of the shape of the guide.
本発明の大気圧プラズマニードル発生装置300は、ガイド12、アルミナチューブ13、外部導体15、内部導体16、ガス導入管17、及びSMAコネクタ18を備える。ガイド12を備える点以外は第1実施形態の構成と同様である。 The atmospheric pressure plasma needle generator 300 of the present invention includes a guide 12, an alumina tube 13, an outer conductor 15, an inner conductor 16, a gas introduction pipe 17, and an SMA connector 18. The configuration is the same as that of the first embodiment except that the guide 12 is provided.
ガイド12は、エッチングの対象物を載せたXYステージ1(図1A参照)との間で、アルミナチューブ13の開口部13tから出てくるリモートプラズマ14aの流路を形成し、リモートプラズマ14aを外側に広げ、広い面でリモートプラズマ14aをエッチングの対象物に照射するためのガス流路制御面12aを含む。ガイド12は、アルミナチューブ13との接続部12bでアルミナチューブと接続され、円柱部分12cとガス流路制御面12aを含んでもよい。 The guide 12 forms a flow path of the remote plasma 14a coming out from the opening 13t of the alumina tube 13 with the XY stage 1 (see FIG. 1A) on which an object to be etched is placed, and the remote plasma 14a is placed outside. And a gas flow path control surface 12a for irradiating the object to be etched with the remote plasma 14a on a wide surface. The guide 12 may be connected to the alumina tube at a connection portion 12b with the alumina tube 13, and may include a cylindrical portion 12c and a gas flow path control surface 12a.
 ガイド12は、図7に示したような円柱状に形成してもよく、図8に示したとおり、アルミナチューブ13の出口から内径が徐々に増加して、ガイド12の開口部12dの開口面積が、アルミナチューブ13の開口部の開口面積より大きくなるようにコーン状に形成してもよい。ガイド12の形状はこれに限られず、エッチングガス流が層流状態を維持してICチップ表面を一様に洗うように流れるように設計し、エッチングの対象物を載せたXYステージ1(図1A参照)との間で、アルミナチューブ13の開口部13tから出てくるリモートプラズマ14aの流路を形成し、リモートプラズマ14aを外側に広げるような形状であればよい。 The guide 12 may be formed in a columnar shape as shown in FIG. 7, and as shown in FIG. 8, the inner diameter gradually increases from the outlet of the alumina tube 13, and the opening area of the opening 12d of the guide 12 However, you may form in cone shape so that it may become larger than the opening area of the opening part of the alumina tube 13. FIG. The shape of the guide 12 is not limited to this, and the XY stage 1 (FIG. 1A) on which the etching gas flow is designed to flow so as to wash the IC chip surface uniformly while maintaining the laminar flow state, and the object to be etched is mounted thereon. The flow path of the remote plasma 14a that emerges from the opening 13t of the alumina tube 13 is formed, and the remote plasma 14a may be spread outward.
ガイド12を用いた大気圧プラズマニードル発生装置300を用いた半導体集積回路パッケージの開封の手順は、以下説明する点を除いて、上述した大気圧プラズマニードル発生装置100を用いた半導体集積回路パッケージの開封装置200による半導体集積回路パッケージの開封の手順と同様である。 The procedure for opening the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator 300 using the guide 12 is the same as that of the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator 100 described above, except as described below. The procedure of opening the semiconductor integrated circuit package by the opening device 200 is the same.
大気圧プラズマニードル発生装置300において、アルミナチューブ13の開口部13tにはガイド12が設けられる。ガス導入管17から注入されたガスは、アルミナチューブ13の中を通り、ガイド12から排出される。 In the atmospheric pressure plasma needle generator 300, a guide 12 is provided in the opening 13 t of the alumina tube 13. The gas injected from the gas introduction pipe 17 passes through the alumina tube 13 and is discharged from the guide 12.
プラズマニードル14及びリモートプラズマ14aが生成されると、大気圧プラズマニードル発生装置300をZ軸方向に下降し、ICパッケージ2に接近させ、ICパッケージ2の表面とガイド12との距離が所定の距離に至ったところでZ軸方向に固定し、リモートプラズマ14aがICパッケージ2の表面に照射される。 When the plasma needle 14 and the remote plasma 14a are generated, the atmospheric pressure plasma needle generator 300 is lowered in the Z-axis direction to approach the IC package 2, and the distance between the surface of the IC package 2 and the guide 12 is a predetermined distance. When it reaches, it is fixed in the Z-axis direction, and the surface of the IC package 2 is irradiated with the remote plasma 14a.
 図9Aは、本発明の第2実施形態のガイドを取り付けずにAr及びOの混合ガスでICパッケージを開封する前に撮影した写真である。図9Bは、本発明の第2実施形態のガイドを取り付けずに、Ar及びOの混合ガス(Arの流量2.4Pa・m/sec(1440sccm)、Oの流量0.01Pa・m/sec(7.5sccm))で25分間ICパッケージをエッチングした様子を撮影した写真である。図9Cは、本発明の第2実施形態のガイドを取り付けずに、Ar及びOの混合ガス(Arの流量2.4Pa・m/sec(1440sccm)、Oの流量0.01Pa・m/sec(7.5sccm))で50分間ICパッケージをエッチングした様子を撮影した写真である。図10Aは、本発明の第2実施形態のガイドを取り付け、Ar及びOの混合ガスでICパッケージを開封する前に撮影した写真である。図10Bは、本発明の第2実施形態のガイドを取り付け、Ar及びOの混合ガス(Arの流量2.4Pa・m/sec(1440sccm)、Oの流量0.01Pa・m/sec(7.5sccm))で25分間ICパッケージをエッチングした様子を撮影した写真である。図10Cは、本発明の第2実施形態のガイドを取り付け、Ar及びOの混合ガス(Arの流量2.4Pa・m/sec(1440sccm)、Oの流量0.01Pa・m/sec(7.5sccm))で50分間ICパッケージをエッチングした様子を撮影した写真である。 FIG. 9A is a photograph taken before opening the IC package with a mixed gas of Ar and O 2 without attaching the guide of the second embodiment of the present invention. FIG. 9B shows a mixed gas of Ar and O 2 (the flow rate of Ar is 2.4 Pa · m 3 / sec (1440 sccm), the flow rate of O 2 is 0.01 Pa · m without attaching the guide of the second embodiment of the present invention. It is the photograph which image | photographed a mode that the IC package was etched for 25 minutes at 3 / sec (7.5sccm). FIG. 9C shows a mixed gas of Ar and O 2 (Ar flow rate: 2.4 Pa · m 3 / sec (1440 sccm), O 2 flow rate: 0.01 Pa · m without attaching the guide of the second embodiment of the present invention. It is the photograph which image | photographed the mode that the IC package was etched for 50 minutes at 3 / sec (7.5sccm). FIG. 10A is a photograph taken before attaching the guide of the second embodiment of the present invention and opening the IC package with a mixed gas of Ar and O 2 . FIG. 10B shows a second embodiment of the present invention with a guide attached thereto, and a mixed gas of Ar and O 2 (Ar flow rate 2.4 Pa · m 3 / sec (1440 sccm), O 2 flow rate 0.01 Pa · m 3 / It is the photograph which image | photographed the mode that the IC package was etched for 25 minutes by sec (7.5 sccm). FIG. 10C shows a second embodiment of the present invention with a guide and a mixed gas of Ar and O 2 (Ar flow rate 2.4 Pa · m 3 / sec (1440 sccm), O 2 flow rate 0.01 Pa · m 3 / It is the photograph which image | photographed the mode that the IC package was etched for 50 minutes by sec (7.5 sccm).
 図9A~Cを参照すると、ガイドを取り付けずにArとOの混合ガスでICパッケージを開封する場合、50分経過しても下にあるボンディングワイヤがほとんど埋もれており完全にはエッチングされていない。 Referring to FIGS. 9A to 9C, when an IC package is opened with a mixed gas of Ar and O 2 without attaching a guide, the underlying bonding wire is almost buried and completely etched even after 50 minutes. Absent.
 他方、図10A~Cを参照すると、アルミナチューブ13の開口部13tにガイド12を取り付けてArとOの混合ガスでICパッケージ2を開封する場合、50分経過時には下にあるボンディングワイヤの下部も含めてきれいにエッチングされ、ボンディングワイヤがくっきりと露出されていることが分かる。 On the other hand, referring to FIGS. 10A to 10C, when the guide 12 is attached to the opening 13t of the alumina tube 13 and the IC package 2 is opened with a mixed gas of Ar and O 2 , the lower part of the bonding wire below when 50 minutes have passed. It can be seen that the bonding wire is clearly exposed and is clearly exposed.
このように、本発明の大気圧プラズマニードル発生装置300は、上述した形状のガイド12を取り付けることによりエッチングするICパッケージ2の表面には、外部から空気が混入せず、かつ、一様にチップ表面に活性酸素が照射されるので、エッチング面積を広げることができる。エッチングガスがICチップ表面を無駄なく一様に流れるようにすることができるので、ボンデイィグワイヤ下部まできれいにエッチングすることができる。また、エッチングレートを高めることができる。 As described above, the atmospheric pressure plasma needle generator 300 according to the present invention does not allow air to enter from the outside to the surface of the IC package 2 to be etched by attaching the guide 12 having the above-described shape, and uniformly chips. Since the surface is irradiated with active oxygen, the etching area can be increased. Since the etching gas can flow uniformly on the surface of the IC chip without waste, it is possible to cleanly etch the lower part of the bonding wire. In addition, the etching rate can be increased.
また、アルミナチューブ13の先端にガイド12を取り付けた場合、リモートプラズマ14aはプラズマニードル発生部から離れて面状に広がりICパッケージ2に面で照射されるので、ガイド12を取り付けずに点で照射する場合よりも低温のプラズマを照射することができ、かつ、マイクロ波によるICチップへの影響を低減できるため、温度やマイクロ波によるICチップへのダメージを低減することができる。 Further, when the guide 12 is attached to the tip of the alumina tube 13, the remote plasma 14a spreads in a plane shape away from the plasma needle generating portion and is irradiated onto the surface of the IC package 2, so that irradiation is performed at a point without attaching the guide 12. Since it is possible to irradiate plasma at a temperature lower than that of the case, and the influence of the microwave on the IC chip can be reduced, damage to the IC chip due to temperature and microwave can be reduced.
これは、本発明のプラズマニードル発生装置を用いる場合に限られず、一般的な大気圧プラズマ発生装置を用いてICパッケージを開封する場合にも同様のことが当てはまる。すなわち、本発明のプラズマニードル発生装置以外の一般的な大気圧プラズマ発生装置を用いてICパッケージを開封する場合であっても、上述した形状のガイド12を取り付けることにより、ボンディングワイヤ下部まできれいにエッチングすることができ、また、エッチングレートを高めることができ、また、温度やマイクロ波によるICチップへのダメージを低減することができる。 This is not limited to the case where the plasma needle generator of the present invention is used, and the same applies to the case where the IC package is opened using a general atmospheric pressure plasma generator. That is, even when the IC package is opened using a general atmospheric pressure plasma generator other than the plasma needle generator of the present invention, the guide 12 having the above-described shape can be attached to cleanly clean the lower part of the bonding wire. In addition, the etching rate can be increased, and damage to the IC chip due to temperature and microwaves can be reduced.
 このように、本実施形態によると、ICチップを封止するエポキシ樹脂を除去する効率を高めることが可能となる。また、ICチップへのダメージを低減することが可能となる。 Thus, according to the present embodiment, it is possible to increase the efficiency of removing the epoxy resin that seals the IC chip. In addition, damage to the IC chip can be reduced.
(第3実施形態)
 図11は、本発明の第3実施形態による大気圧プラズマニードル発生装置を示した図である。
(Third embodiment)
FIG. 11 is a view showing an atmospheric pressure plasma needle generator according to a third embodiment of the present invention.
本実施形態の大気圧プラズマニードル発生装置500は、加熱器21、ガイド12、アルミナチューブ13、外部導体15、内部導体16、ガス導入管17、及びSMAコネクタ18を備える。加熱器21を備える点以外は第2実施例の構成と同様である。 The atmospheric pressure plasma needle generator 500 of this embodiment includes a heater 21, a guide 12, an alumina tube 13, an outer conductor 15, an inner conductor 16, a gas introduction pipe 17, and an SMA connector 18. Except for the point provided with the heater 21, it is the same as that of the structure of 2nd Example.
加熱器21は、ICパッケージ2の下等ICパッケージ2を加熱できる場所に配置され、ICパッケージ2を加熱する。加熱器21は、PC10によって制御され、200℃~400℃程度の範囲に保たれる。この場合、PC10は温度調節器として動作する。 The heater 21 is arranged at a place where the IC package 2 can be heated below the IC package 2 and heats the IC package 2. The heater 21 is controlled by the PC 10 and is maintained in a range of about 200 ° C. to 400 ° C. In this case, the PC 10 operates as a temperature controller.
図11には、ガイド12を設ける例を示したが、本実施形態はこれに限られず、ガイド12は設けなくてもよい。 Although the example which provides the guide 12 was shown in FIG. 11, this embodiment is not restricted to this, The guide 12 does not need to be provided.
大気圧プラズマニードル発生装置500による半導体集積回路パッケージの開封の手順は、以下説明する点を除いて、上述した大気圧プラズマニードル発生装置100、300を用いた半導体集積回路パッケージの開封の手順と同様である。 The procedure for opening the semiconductor integrated circuit package using the atmospheric pressure plasma needle generator 500 is the same as the procedure for opening the semiconductor integrated circuit package using the atmospheric pressure plasma needle generators 100 and 300 described above, except for the points described below. It is.
大気圧プラズマニードル発生装置500と対向して配置されるXYステージ1(図1A参照)の加熱器21の上には、銀ワイヤが用いられたICパッケージ2が置かれる。加熱器21はPC10により200℃~400℃程度の範囲の一定温度に保たれながら、ICパッケージ2を加熱する。この状態で、第1実施例若しくは第2実施例の手順で、ArとOの混合ガスを用いて生成したプラズマを照射してICパッケージを開封する。 An IC package 2 using a silver wire is placed on the heater 21 of the XY stage 1 (see FIG. 1A) disposed opposite to the atmospheric pressure plasma needle generator 500. The heater 21 heats the IC package 2 while being maintained at a constant temperature in the range of about 200 ° C. to 400 ° C. by the PC 10. In this state, the IC package is opened by irradiating plasma generated using a mixed gas of Ar and O 2 according to the procedure of the first embodiment or the second embodiment.
酸化銀は200℃~300℃程度で銀と酸素に分解されるので、銀ワイヤは200℃~400℃程度の高温では酸素プラズマにより酸化されず、損傷を防ぐことができる。したがって、大気圧プラズマニードル発生装置500によると、銀ワイヤが用いられたICパッケージ2を開封する場合に、Hガスを使用することなく、ArとOの混合ガスのみで、銀ワイヤの酸化を防ぎながら開封することができる。 Since silver oxide is decomposed into silver and oxygen at about 200 ° C. to 300 ° C., the silver wire is not oxidized by oxygen plasma at a high temperature of about 200 ° C. to 400 ° C., and damage can be prevented. Therefore, according to the atmospheric pressure plasma needle generator 500, when opening the IC package 2 in which the silver wire is used, the silver wire is oxidized using only a mixed gas of Ar and O 2 without using H 2 gas. Can be opened while preventing.
これは、本発明のプラズマニードル発生装置を用いる場合に限られず、一般的な大気圧プラズマ発生装置を用いてICパッケージを開封する場合にも同様のことが当てはまる。すなわち、本発明のプラズマニードル発生装置以外の一般的な大気圧プラズマ発生装置を用いてICパッケージを開封する場合であっても、上述したような加熱器でICパッケージを加熱した状態で開封作業を行うことにより、銀ワイヤが用いられたICパッケージを開封する場合に、Hガスを使用することなく、ArとOの混合ガスのみで、銀ワイヤの酸化を防ぎながら開封することができる。 This is not limited to the case where the plasma needle generator of the present invention is used, and the same applies to the case where the IC package is opened using a general atmospheric pressure plasma generator. That is, even when the IC package is opened using a general atmospheric pressure plasma generator other than the plasma needle generator of the present invention, the opening operation is performed in a state where the IC package is heated by the heater as described above. By doing so, when opening an IC package using a silver wire, it is possible to open the package while preventing oxidation of the silver wire using only a mixed gas of Ar and O 2 without using H 2 gas.
本実施形態は上述した例に限られず、Ar、O及びHの混合ガスを使用して開封してもよい。 The present embodiment is not limited to the example described above, and may be opened using a mixed gas of Ar, O 2 and H 2 .
100、300.500 大気圧プラズマニードル発生装置
200 大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封装置
1 XYステージ
2 ICパッケージ
3 CCDカメラ
4 超音波洗浄部
6 オートチューナー
7 マスフローコントローラー
8 マイクロ波発振器
9 ガスボンベ
10 PC
12 ガイド
13 アルミナチューブ
13t アルミナチューブ13の開口部
14 プラズマニードル
14aリモートプラズマ
15 外部導体
15t 外部導体の開口端
16 内部導体
16t 内部導体の先端部
17 ガス導入管
18 SMAコネクタ
19 水導入管
20 空気導入管
21 加熱器
 
100, 300.500 Atmospheric pressure plasma needle generator 200 Semiconductor integrated circuit package unsealing apparatus 1 using an atmospheric pressure plasma needle generator 1 XY stage 2 IC package 3 CCD camera 4 Ultrasonic cleaning unit 6 Auto tuner 7 Mass flow controller 8 Micro Wave oscillator 9 Gas cylinder 10 PC
12 Guide 13 Alumina tube 13 t Opening 14 of alumina tube 13 Plasma needle 14 a Remote plasma 15 External conductor 15 t Opening end 16 of external conductor 16 Inner conductor 16 t End of internal conductor 17 Gas introduction pipe 18 SMA connector 19 Water introduction pipe 20 Air introduction Tube 21 heater

Claims (20)

  1. ガス導入部から内部にガスが導入され、一端に開口部を有するチューブ形状の絶縁体と、
    前記チューブ形状の絶縁体の外側に配置されるチューブ形状の外部導体と、
    前記チューブ形状の絶縁体の内側に配置され、前記外部導体に覆われた先端部を有する内部導体と、を備え、
    前記絶縁体、前記内部導体、及び前記外部導体を導波路として伝搬するマイクロ波及び前記ガス導入部から導入されるガスを用いて前記内部導体の先端部と前記チューブ形状の絶縁体の開口部との間にフィラメント状のプラズマニードルを発生させる大気圧プラズマニードル発生装置。
    A tube-shaped insulator into which gas is introduced from the gas introduction part and having an opening at one end;
    A tube-shaped outer conductor disposed outside the tube-shaped insulator; and
    An inner conductor disposed inside the tube-shaped insulator and having a tip portion covered with the outer conductor;
    Using the microwave propagating through the insulator, the inner conductor, and the outer conductor as a waveguide and the gas introduced from the gas introduction portion, the distal end portion of the inner conductor and the opening portion of the tube-shaped insulator An atmospheric pressure plasma needle generator for generating a filamentous plasma needle between the two.
  2.  前記内部導体の先端部より外側に前記外部導体の先端が位置し、前記外部導体の先端より外側に前記チューブ形状の絶縁体の開口部が位置する請求項1に記載の大気圧プラズマニードル発生装置。 The atmospheric pressure plasma needle generator according to claim 1, wherein the tip of the outer conductor is located outside the tip of the inner conductor, and the opening of the tube-shaped insulator is located outside the tip of the outer conductor. .
  3.  前記外部導体の直径は、マイクロ波の波長の1/2以下の長さである請求項1又は2に記載の大気圧プラズマニードル発生装置。 3. The atmospheric pressure plasma needle generator according to claim 1 or 2, wherein the diameter of the outer conductor is 1/2 or less of the wavelength of the microwave.
  4.  前記ガスはアルゴン及び酸素を含む請求項1乃至3のいずれかに記載の大気圧プラズマニードル発生装置。 The atmospheric pressure plasma needle generator according to any one of claims 1 to 3, wherein the gas contains argon and oxygen.
  5.  前記ガスは水素を含む請求項1乃至4のいずれかに記載の大気圧プラズマニードル発生装置。 The atmospheric pressure plasma needle generator according to any one of claims 1 to 4, wherein the gas contains hydrogen.
  6.  前記ガスは四フッ化炭素を含む請求項1乃至5のいずれかに記載の大気圧プラズマニードル発生装置。 The atmospheric pressure plasma needle generator according to any one of claims 1 to 5, wherein the gas contains carbon tetrafluoride.
  7. 前記チューブ形状の絶縁体の開口部に、前記開口部から放出されるガスを外側に広げるガス流路制御面を含むガイドを備える請求項1乃至6のいずれかに記載の大気圧プラズマニードル発生装置。 The atmospheric pressure plasma needle generator according to any one of claims 1 to 6, further comprising a guide including a gas flow path control surface that expands a gas emitted from the opening to the outside at an opening of the tube-shaped insulator. .
  8. 前記ガイドの開口部の開口面積は、前記チューブ形状の絶縁体の開口部の開口面積よりも大きい請求項7に記載の大気圧プラズマニードル発生装置。 The atmospheric pressure plasma needle generator according to claim 7, wherein an opening area of the opening of the guide is larger than an opening area of the opening of the tube-shaped insulator.
  9. 請求項1乃至8のいずれかに記載の大気圧プラズマニードル発生装置、及び、前記チューブ形状の絶縁体の開口部と対向する位置に半導体集積回路パッケージを配置するステージを備える半導体集積回路パッケージの開封装置。 9. Opening of a semiconductor integrated circuit package comprising the atmospheric pressure plasma needle generating device according to claim 1 and a stage for disposing the semiconductor integrated circuit package at a position facing the opening of the tube-shaped insulator. apparatus.
  10. 前記ステージの温度を調節する温度調節部を有する請求項9に記載の半導体集積回路パッケージの開封装置。 The semiconductor integrated circuit package unsealing apparatus according to claim 9, further comprising a temperature adjusting unit that adjusts a temperature of the stage.
  11.  請求項1乃至8のいずれかに記載の大気圧プラズマニードル発生装置に半導体集積回路パッケージを配置し、
     前記プラズマニードルを発生させ、
     前記プラズマニードルが前記絶縁体の開口部に向かって進む過程で変化した中性ガスであるリモートプラズマを前記半導体集積回路パッケージに照射する、大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。
    A semiconductor integrated circuit package is arranged in the atmospheric pressure plasma needle generator according to any one of claims 1 to 8,
    Generating the plasma needle,
    A method for unsealing a semiconductor integrated circuit package using an atmospheric pressure plasma needle, wherein the semiconductor integrated circuit package is irradiated with remote plasma, which is a neutral gas changed in the process of the plasma needle traveling toward the opening of the insulator.
  12.  前記大気圧プラズマニードル発生装置は、前記チューブ形状の絶縁体の開口部と対向する位置に前記半導体集積回路パッケージを配置するステージを備える請求項11に記載の大気圧プラズマニードル発生装置を用いた半導体集積回路パッケージの開封方法。 The semiconductor using the atmospheric pressure plasma needle generator according to claim 11, wherein the atmospheric pressure plasma needle generator includes a stage for disposing the semiconductor integrated circuit package at a position facing an opening of the tube-shaped insulator. A method for opening an integrated circuit package.
  13. 前記半導体集積回路パッケージを200℃乃至400℃に加熱することを含む請求項11に記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。 The method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to claim 11, comprising heating the semiconductor integrated circuit package to 200 ° C. to 400 ° C.
  14. マイクロ波及びガスを用いてフィラメント状のプラズマニードルを発生させ、
    前記プラズマニードルを半導体集積回路パッケージに照射することを含み、
    前記照射によって前記半導体集積回路パッケージに用いられている半導体集積回路、ボンディングワイヤ及びボンディングパッドが露出するまで前記半導体集積回路パッケージをエッチングする、大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。
    A filamentous plasma needle is generated using microwaves and gas,
    Irradiating a semiconductor integrated circuit package with the plasma needle,
    A method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle, wherein the semiconductor integrated circuit package is etched until the semiconductor integrated circuit, bonding wires, and bonding pads used in the semiconductor integrated circuit package are exposed by the irradiation.
  15.  前記ガスはアルゴン及び酸素を含む請求項14に記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。 The method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to claim 14, wherein the gas contains argon and oxygen.
  16.  前記ガスは水素を含む請求項14又は15に記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。 The method of opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to claim 14 or 15, wherein the gas contains hydrogen.
  17.  前記ガスは四フッ化炭素を含む請求項14乃至16のいずれかに記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。 The method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to any one of claims 14 to 16, wherein the gas contains carbon tetrafluoride.
  18. 前記半導体集積回路パッケージを200℃乃至400℃に加熱することを含む請求項14乃至17のいずれかに記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。 The method for opening a semiconductor integrated circuit package using an atmospheric pressure plasma needle according to any one of claims 14 to 17, comprising heating the semiconductor integrated circuit package to 200 ° C to 400 ° C.
  19.  所定時間の前記照射の後、
     前記半導体集積回路パッケージを超音波で洗浄し、
     前記半導体集積回路パッケージの表面状態をカメラで撮影し、
     撮影した結果に基づいて前記半導体集積回路、ボンディングワイヤ及びボンディングパッドが露出されていないと判定した場合にはさらに前記照射を行う、請求項14乃至18のいずれかに記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法。
    After the irradiation for a predetermined time,
    Cleaning the semiconductor integrated circuit package with ultrasonic waves;
    The surface state of the semiconductor integrated circuit package is photographed with a camera,
    The atmospheric pressure plasma needle according to any one of claims 14 to 18, wherein the irradiation is further performed when it is determined that the semiconductor integrated circuit, the bonding wire, and the bonding pad are not exposed based on a result of photographing. A method for opening a semiconductor integrated circuit package.
  20. 請求項14乃至19のいずれかに記載の大気圧プラズマニードルを用いた半導体集積回路パッケージの開封方法を実行するための半導体集積回路パッケージの開封装置。 A semiconductor integrated circuit package unsealing apparatus for executing the semiconductor integrated circuit package unsealing method using the atmospheric pressure plasma needle according to any one of claims 14 to 19.
PCT/JP2016/076210 2016-09-06 2016-09-06 Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle WO2018047241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076210 WO2018047241A1 (en) 2016-09-06 2016-09-06 Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076210 WO2018047241A1 (en) 2016-09-06 2016-09-06 Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle

Publications (1)

Publication Number Publication Date
WO2018047241A1 true WO2018047241A1 (en) 2018-03-15

Family

ID=61561963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076210 WO2018047241A1 (en) 2016-09-06 2016-09-06 Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle

Country Status (1)

Country Link
WO (1) WO2018047241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267425A (en) * 2019-06-21 2019-09-20 电子科技大学 A kind of combined type double coaxial line atmos low-temperature microwave plasma jet source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005059A (en) * 2005-06-22 2007-01-11 Ebara Corp Plasma melting furnace
WO2008004318A1 (en) * 2006-07-06 2008-01-10 Adtec Plasma Technology Co., Ltd. Method of microwave plasma treatment and apparatus therefor
JP2012038469A (en) * 2010-08-04 2012-02-23 Toyota Gakuen Atmospheric pressure plasma jet apparatus
WO2013184000A1 (en) * 2012-06-06 2013-12-12 Stichting Materials Innovation Institute (M2I) Plasma jet etching device and method for removing an encapsulation portion of a sample via plasma jet etching
JP2014175051A (en) * 2013-03-05 2014-09-22 Tokyo Electron Ltd Microwave waveguide device, plasma processing device, and plasma processing method
US20150118856A1 (en) * 2013-10-30 2015-04-30 Nisene Technology Group Microwave induced plasma decapsulation using a dielectric plasma discharge tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005059A (en) * 2005-06-22 2007-01-11 Ebara Corp Plasma melting furnace
WO2008004318A1 (en) * 2006-07-06 2008-01-10 Adtec Plasma Technology Co., Ltd. Method of microwave plasma treatment and apparatus therefor
JP2012038469A (en) * 2010-08-04 2012-02-23 Toyota Gakuen Atmospheric pressure plasma jet apparatus
WO2013184000A1 (en) * 2012-06-06 2013-12-12 Stichting Materials Innovation Institute (M2I) Plasma jet etching device and method for removing an encapsulation portion of a sample via plasma jet etching
JP2014175051A (en) * 2013-03-05 2014-09-22 Tokyo Electron Ltd Microwave waveguide device, plasma processing device, and plasma processing method
US20150118856A1 (en) * 2013-10-30 2015-04-30 Nisene Technology Group Microwave induced plasma decapsulation using a dielectric plasma discharge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267425A (en) * 2019-06-21 2019-09-20 电子科技大学 A kind of combined type double coaxial line atmos low-temperature microwave plasma jet source

Similar Documents

Publication Publication Date Title
US20020011310A1 (en) Downstream sapphire elbow joint for remote plasma generator
KR20050085049A (en) Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
JP2007048982A (en) Plasma treatment device and control method thereof
WO1988008659A1 (en) Method and apparatus for processing with plasma
WO1998021747A1 (en) Plasma film forming method and plasma film forming apparatus
JP2009055024A (en) Substrate cleaning apparatus and substrate cleaning method
WO2018047241A1 (en) Atmospheric pressure plasma needle generating device, and device and method for unsealing semiconductor integrated circuit package using atmospheric pressure plasma needle
US10910200B2 (en) Plasma processing apparatus and precoating method
JP2001058259A (en) Soldering method and soldering apparatus
WO2003041460A1 (en) Plasma process apparatus and its processor
TW201403708A (en) Plasma jet etching device and method for removing an encapsulation portion of a sample via plasma jet etching
JP2007157535A (en) Traveling wave microwave plasma generating device
JP2007214211A (en) Plasma treatment device
JP5305223B2 (en) Method for stripping insulated conductors
JP4142492B2 (en) Plasma processing method
JPS5941838A (en) Microwave plasma device
JP2000174009A (en) Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device
JP3976761B2 (en) Microwave introducer, plasma generator, and plasma processing apparatus
JP2008198583A (en) Plasma generator
JPH10294199A (en) Microwave plasma processing device
JP7198541B1 (en) Plasma generator, plasma reactor and plasma generation method
JP2012104605A (en) Plasma device and method for producing the same
JP2005116362A (en) Plasma treatment device and plasma treatment method by microwave excitation
JP4993158B2 (en) Microwave introducer, plasma generator, and plasma processing apparatus
JPH04136179A (en) Microwave plasma cvd device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16915660

Country of ref document: EP

Kind code of ref document: A1