WO2008001808A1 - Laser machining apparatus - Google Patents

Laser machining apparatus Download PDF

Info

Publication number
WO2008001808A1
WO2008001808A1 PCT/JP2007/062903 JP2007062903W WO2008001808A1 WO 2008001808 A1 WO2008001808 A1 WO 2008001808A1 JP 2007062903 W JP2007062903 W JP 2007062903W WO 2008001808 A1 WO2008001808 A1 WO 2008001808A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
workpiece
processing
focus detection
laser beam
Prior art date
Application number
PCT/JP2007/062903
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Watanabe
Yoshio Matsuda
Hiroki Yamashita
Original Assignee
O.M.C Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O.M.C Co., Ltd. filed Critical O.M.C Co., Ltd.
Priority to CN200780014040XA priority Critical patent/CN101426611B/en
Priority to JP2008522606A priority patent/JP4852098B2/en
Publication of WO2008001808A1 publication Critical patent/WO2008001808A1/en
Priority to KR1020087027438A priority patent/KR101376995B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • the present invention is capable of detecting a three-dimensional defective product of a work piece which can not be detected by the conventional apparatus and this three-dimensional shape inspection at a laser processing position, and at the time of laser processing
  • the present invention relates to a laser processing apparatus capable of focusing the laser at the processing position with high precision.
  • a conventional force is also used to evaporate and remove or weld a workpiece by emitting a laser to the workpiece.
  • this laser cover by focusing the laser having the largest energy density to the processing position of the workpiece, the workpiece at the processing position is removed by evaporation or melted to cut the hole of the workpiece. It can be opened or welded, and at present, such laser technology is widely used for manufacturing semiconductor devices and other electronic parts.
  • the shape and quality of the component to be incorporated are also strictly asked, and recently, the quality and shape of the three-dimensional shape has also been considered as a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-208844
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-185827
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-230728
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-326235
  • Patent document 5 Unexamined-Japanese-Patent No. 2000-171409
  • the shape of the workpiece is judged before the processing department, the defective product is removed, and only the non-defective product is supplied to the processing department.
  • one laser cae machine will have a defect judgment department and a kaw department arranged side by side, and there is a drawback that the equipment shape becomes large.
  • the present invention has been made in view of the pressing problem, and its main object is to detect a workpiece having a defective shape which can not be detected conventionally, and to focus a processing laser. Provide laser processing equipment that achieves higher accuracy and compactness of equipment It is to offer.
  • an illumination device 16 for emitting illumination light Y for illuminating the workpiece 12;
  • a laser emitting unit 22 which is optically connected to the processing laser generator 14 and the illumination device 16, and emits the processing laser X and the illumination light Y toward the workpiece 12.
  • the laser emitting part drive unit 46 moves the laser emitting part 22 in the approaching and separating direction with respect to the workpiece 12 so that the distance between the laser emitting part 22 and the workpiece 12 is different.
  • Camera 34 for sequentially imaging the workpiece 12 illuminated by the illumination light Y,
  • the in-focus detection data detected at the pixel corresponding to 1-n is sequentially extracted, and the in-focus detection waveform W based on the change in the in-focus detection data is formed for each in-focus detection position P.
  • the workpiece 12 is judged as good and the combination of the laser emission part 22 with the workpiece 12 is determined.
  • the laser emitting unit 22 is moved to the in-focus position Xp, and after that, the laser emitting unit 22 is operated to direct the laser source 12 to perform a laser power by laser emitting.
  • (h) Laser processing apparatus 10 since the quality of the three-dimensional shape of the object 12 to be driven is judged immediately before the laser processing in the laser cavity section, the shape determination section and the processing section differ from each other as in the conventional example. As well as being able to prevent the positional deviation of the load-bearing object 12 which has been generated due to the fact that both sections can be integrated into one, it is possible to realize the compactness of the device.
  • the peak value PK of each in-focus detection waveform W at each in-focus detection position P is used.
  • the laser emission unit 22 can be set to the correct in-focus position Xp, and the accuracy of focusing of the laser for calories can be further enhanced. In other words, it is possible to cope with fine focusing of two or three or more higher harmonic lasers.
  • the three-dimensional shape of the workpiece 12 can be easily determined prior to laser processing at the laser processing position, and the threshold is limited to a minute range near the peak value PK as described later. This makes it possible to cope with the focusing of the higher harmonics.
  • focus detection data refers to the brightness of the pixel (or a plurality of pixel groups adjacent or close to each other) for detecting each minute part of the image captured by the camera 34.
  • the “focused position Xp” of the laser emission unit 22 with respect to the workpiece 12 is the peak value of the all focusing points detection position P, or the arithmetic mean value of the PK group or PK (usually
  • the invention described in claim 2 is an in-focus point detection position P 1S for image processing.
  • the laser according to claim 1 characterized in that it is an arbitrary point on the plane of the force receiving object 12 added to the nine points (P-1) to (P-9). It is the processing apparatus 10, and by measuring these points, it is possible to measure the shape of a three-dimensional shape, in particular, a wedge or!
  • Claim 3 relates to a processing laser used in the present invention, characterized in that "the processing laser is a second or higher harmonic of higher order", whereby high processing accuracy is achieved. Is obtained.
  • the use of the measurement method according to claim 1 or claim 2 makes it possible to use a second or higher harmonics laser.
  • the accuracy of the focus forming position of the processing laser can be made high enough to endure the use of high-order processing lasers such as the second and third harmonics.
  • FIG. 1 is a conceptual view showing a laser processing apparatus according to the present invention.
  • FIG. 2 is a conceptual view showing a processing laser generator.
  • FIG. 3 is a conceptual view showing a laser emission unit according to the present invention.
  • FIG. 4 is a view showing eight in-focus detection positions on a non-defective workpiece.
  • FIG. 5 is a diagram showing a representative waveform based on the feature value at the in-focus point detection position.
  • FIG. 6 is a diagram showing waveforms at each in-focus point detection position on a non-defective workpiece.
  • FIG. 7 A diagram showing the waveforms at each focus detection position in the absence of a workpiece is there.
  • FIG. 10 is a view showing a waveform at each focus detection position on a workpiece having a defect shape.
  • FIG. 11 is a block diagram showing each step of a laser beam method according to the present invention.
  • the laser cover apparatus 10 is, as shown in FIG. 1, a three-dimensional workpiece 12 (in this case, a rectangular parallelepiped) which is an electronic component constituting member such as a tantalum capacitor mounted on a mount 11. Or a cube) is a device that performs processing such as emitting a processing laser X to weld a three-dimensional force receiving object 12 to the mount 11 or the like, the processing laser generator 14 and the lighting device 1 6 And a laser emitting device 18.
  • the laser emitting device 18 is a device for emitting the processing laser X and the illumination light Y toward the object 12 or emitting the light, and as shown in FIG. And laser emitting portion position adjusting means 23.
  • the processing laser generator 14 is a device for generating the processing laser X, and in this embodiment, it is used for generating the second harmonic YAG laser (or higher harmonics are also possible). It is necessary.
  • the processing laser generator 14 further includes an optical fiber 20, and the processing laser X is guided to the laser emission unit 22 by the optical fiber 20.
  • the processing laser X generated by the processing laser generator 14 is not limited to the second harmonic YAG laser, and a laser having a wavelength according to the physical properties of the object 12 to be treated and the content of the laser is selected. I can do it.
  • the processing laser generator 14 faces the laser chamber 100 and the laser chamber 100 at predetermined intervals on both sides of the laser chamber 100. Pair of resonator mirrors 102, and a pair of resonator mirrors provided on an optical path connecting the resonator mirror 102 and the laser chamber 100.
  • the laser chamber 100 is internally provided with a flash lamp (not shown) and a YAG rod (not shown), and by emitting light from the flash lamp, the YAG rod is excited to emit light energy. Be done.
  • the pair of resonator mirrors 102 is a device that reflects light energy emitted from the laser chamber 100 and causes the resonator mirrors 102 to reciprocate in order to oscillate the processing laser X.
  • the distance at which the pair of resonator mirrors 102 is installed is appropriately set in accordance with the wavelength of the processing laser X that oscillates.
  • the pair of resonator shutters 104 is a device for opening and closing an optical path connecting the resonator mirror 102 and the laser chamber 100.
  • the resonator shutter 104 is closed until the energy in the laser chamber 100 is sufficiently stored, and after a predetermined time has elapsed, the resonator shutter 104 is opened and the processing laser X is oscillated to increase the height. A strong processing laser X can be obtained.
  • the first measurement unit 106 is a device for measuring the intensity of the processing laser X, and in the present embodiment, the optical path connecting the resonator mirror 102 and the laser chamber 100 is the laser chamber 100 force in FIG. It is disposed at a position extended in the direction away from.
  • the laser X for laser light oscillated from the laser chamber 100 is reflected by the branch mirror 108 provided on the optical path, passes through the branch shutter 110 and the power adjustment unit 112, and is transmitted to the optical fiber incident unit 114. be introduced. Then, the laser X introduced into the optical fiber incident unit 114 is collected and introduced into the optical fiber 20.
  • the branch mirror 108 and the branch shutter 110 In the case where the laser X generated by one laser chamber 100 is supplied to a plurality of laser irradiation devices 18, as shown by a broken line in FIG. 2, the branch mirror 108 and the branch shutter 110. A plurality of power adjustment units 112 and a plurality of optical fiber injection units 114 are provided. At this time, in order to branch the processing laser X toward the corresponding optical fibers 20, a semi-reflecting mirror (also referred to as a half mirror) is used as the branching mirror 108. In addition, in the power adjustment unit 112, each of the branched processing lasers X By adjusting the intensity, the intensity of each processing laser X becomes uniform. Furthermore, the optical fiber 20 into which the processing laser X is introduced can be appropriately selected by opening and closing the branch shutter 110 as necessary.
  • the helium neon laser oscillator 116 and the folding mirror are made to pass along the same optical path as the processing laser X.
  • the position of 118 is adjusted.
  • the visible light laser Z can be used as a guide light for adjustment of oscillation of the processing laser X, adjustment of incidence, and the like.
  • the illumination device 16 is a device for emitting illumination light Y which is a visible light used for focusing the laser emission unit 22 on the workpiece 12 as shown in FIG. 1, and in the present embodiment, LED is used.
  • the lighting device 16 can also use another light emitting device such as a halogen lamp.
  • the illumination device 16 further includes an optical fiber 21, and the illumination light Y is guided to the laser emission unit 22 by the optical fiber 21.
  • the processing laser X and the illumination light Y are guided to the laser emitting device 18 using the optical fibers 20 and 21.
  • these may be realized by a fixed optical system.
  • the laser emitting unit 22 includes a tubular body 25, an objective lens system 26, a processing laser semi-reflecting mirror 28, an illumination light semi-reflecting mirror 30, and a condenser for a camera.
  • a lens system 32 and a camera 34 are provided.
  • the tubular body 25 has at one end an emission port 36 which is an opening for emitting the processing laser X and the illumination light Y, and at the other end a camera 34 reflects the reflected light of the illumination light Y by the workpiece 12.
  • a circular cross section pipe having a camera connection port 38 which is an opening for leading to the Further, on the side surface of the tubular body 25, a processing laser inlet 40 to which the optical fiber 20 is connected and an illumination light inlet 42 to which the optical fiber 21 is connected are provided.
  • the objective lens system 26 is a lens system combining a convex lens, a concave lens, and the like that forms the focal point of the laser X for a laser beam at a predetermined position from the laser emission device 18, and is mounted at an emission port 36. .
  • the processing laser semi-reflecting mirror 28 is a plate-like semi-reflecting mirror having a property of reflecting the processing laser X on the surface and passing the reflected light of the illumination light Y emitted to the object 12 It is one. Also, the processing laser semi-reflecting mirror 28 is positioned at the processing laser exit 40 so that the laser X incident from the processing laser exit 40 can be reflected toward the exit 36. Are fixed at a predetermined angle (for example 45 °) in relation to the position of the outlet 36 or are disposed inside the tubular body 25 as adjustable.
  • the illumination light semi-reflecting mirror 30 is a plate-like semi-reflecting mirror that reflects the illumination light Y on its surface and passes the reflected light of the illumination light Y. Then, the illumination light semi-reflecting mirror 30 directs the light axis R of the light guide path of the illumination light Y incident from the illumination light emission port 42 to the emission port 36 so as to coincide with the optical axis of the processing laser X. In order to be able to reflect, it is fixed at a predetermined angle (for example 45 °) in relation to the position of the illumination light outlet 42 and the position of the outlet 36 or V is arranged inside the tubular body 25 as adjustable. It is.
  • the condenser lens system 32 for a camera is a lens system that condenses the reflected light of the illumination light Y reflected by the workpiece 12 on the camera 34, and is attached to the camera connection port 38.
  • the laser emitting unit position adjusting means 23 includes an image processing unit 44, a laser emitting unit driving unit 46, a camera 34, an image processing unit 44 and a laser emitting unit driving unit 46. And a circuit 48 for electrically connecting, and the laser emitting unit driving device 46 is an image of the workpiece 12 illuminated with the illumination light Y within a preset movement range of the laser emitting unit 22.
  • it is a means to make the laser emitting part 22 approach and separate in the vertical direction with respect to the workpiece 12 within the above-mentioned range in order to perform multiple imaging with the camera 34 at each imaging position T determined in small increments.
  • the camera 34 is closely spaced with respect to the processing object 12 together with the laser emitting unit 22 within the range previously set by the laser emitting unit driving device 46 and is illuminated by the illumination light Y.
  • This is an apparatus for imaging a plurality of images of the workpiece 12 in the above-described state in which the distances between the laser emission unit 22 and the workpiece 12 are different from each other.
  • a CCD camera 34 is used.
  • the image processing device 44 performs the following operation. First, at each imaging position during movement of the laser emitting unit 22, a force to which an image captured by the camera 34 is sequentially sent is preset to be used for detecting a three-dimensional shape of the object 12 in this image. Focus detection positions P in the selected screen
  • the in-focus point detection data detected at the pixel at the position corresponding to 1-n is sequentially taken out and stored. Then, an in-focus detection waveform W based on a change in the in-focus detection data is formed for each in-focus detection position P, and each in-focus detection waveform W
  • the workpiece 12 is determined as a non-defective product, and the laser emitting unit driver 46 determines the laser emitting unit 22 for the workpiece.
  • An instruction to move the laser emitting unit 22 to the in-focus position Xp is issued to the laser emitting unit driving device 46. After that, a command for causing laser processing by laser emission toward the workpiece is issued to the laser emission unit 22.
  • the laser emission is commanded to determine that the workpiece is defective and not to perform laser emission. Output to section 22.
  • a general-purpose personal computer is used for the image processing device 44 in order to execute the above-mentioned work.
  • the laser emitting unit 22 When it is determined that the workpiece 12 is a non-defective product and the laser emission unit 22 is moved to the in-focus position Xp of the laser emission unit 22 with respect to the workpiece by the laser emission unit driving device 46, the peak value There are as many PK as the number of focus detection positions P. Therefore, the laser emitting unit
  • the in-focus position Xp for the workpiece 12 to be moved by 22 is obtained by the arithmetic average of the peak value PK group or the peak value PK closest to the average value among them, or other suitable means. Will be adopted.
  • Focus detection data for pixels at eight focus detection positions (P-1 to 8) (or a group of pixels including pixels in the vicinity; in this specification, simply referred to as "pixels" unless necessary. Are sequentially stored, and the in-focus point detection data of the other part of the pixel is discarded.
  • the amount of change is plotted to draw the in-focus detection waveform W.
  • the in-focus point detection data (in the case of the present invention, the brightness or gray level) of each pixel at each in-focus point detection position (P-1 to 8) is picked up by the camera 34 (ie, the mount 11).
  • the in-focus detection waveform W is obtained by plotting on the graph in the order of near position force and far position). A case of obtaining the in-focus point detection waveform W at the in-focus point detection position (P-1) will be described as a specific example with reference to FIG.
  • the luminance of the pixel at the intersection of the imaging position T (two-dot chain line in FIG. 5) and the in-focus point detection position (P-1) is recorded as in-focus point detection data.
  • the focal point of the laser emitting unit 22 is closer to the corner C of the object 12 to be focused, the luminance (or gray level) detected by the pixel is higher because the image is in focus.
  • the peak value PK of the focus detection data (brightness) will occur at a low position.
  • the workpiece 12 is not present, that is, when the in-focus position is not present, no peak value ⁇ ⁇ is generated as shown in FIG. 5 (c).
  • the depth of focus of the laser emission unit 22 (the range in which it is in focus) or a numerical value smaller than that (for example, 1Z2 of the depth of focus) is set as the threshold, and the height from the workpiece 12 to form the peak value ⁇ . If the position is determined, in the case of FIG. 5 (a), the peak value ⁇ falls within the threshold range and it is judged as a non-defective product.
  • the peak value at the same position (assuming that the height relationship is also within the non-defective range) at the in-focus detection waveform W at the in-focus detection position ( ⁇ 1 to 8) of the workpiece 12
  • the shape of the workpiece 12 is a good product free of distortion such as bending or jumping at the four corners and four sides.
  • the peak of the waveform at the in-focus detection position does not exceed the threshold, and the force is also not processed.
  • the in-focus point detection data gradually decreases as the distance from the mechanical object 12 increases, and the presence or absence of the workpiece 12 can be detected promptly by detecting the in-focus point detection data (brightness). It can.
  • the peak value at the focus detection position ( ⁇ ⁇ ⁇ ⁇ 1 to 3) is ⁇ .
  • the peak value PK at the focus detection position (P-1 to 3, 5 to 7) is obtained.
  • the peak value PK at the focus detection position (P-4 and 8) is t located at the lower side in the figure, and the result is obtained to know the warp condition of the workpiece 12 in the 8-point measurement. I can do it.
  • the in-focus position P is detected at eight corners of the workpiece 12 and eight sides.
  • the accuracy in determining the workpiece 12 with a more or less defective shape can be enhanced.
  • the in-focus point detection position (P-9) is the in-focus point detection position (P-4 and The same waveform as in 8) can be obtained. Therefore, when eight focus detection positions are set, it is unclear whether the central portion of the workpiece 12 of the defective shape shown in FIG. 9 is concave or not. Again, by setting nine focus detection positions, it can be determined that the upper surface of the workpiece 12 is highly likely to be a curved surface without irregularities.
  • illumination light Y is emitted from the illumination device 16 (illumination light emission step [S ⁇ l]).
  • the illumination light Y emitted from the illumination device 16 is incident on the inside of the tubular body 25 from the illumination light entrance 42 through the optical fiber 21.
  • the illumination light Y entering the inside of the tubular body 25 is reflected by the illumination light semi-reflecting mirror 30 to turn in the direction of the exit 36, and the objective lens system 26 After being refracted when passing through, it is irradiated toward the workpiece 12 and illuminates the entire surface of the workpiece 12 with uniform brightness.
  • the laser emission unit 22 moves to a position closest to the preset target object 12 by the laser emission unit driving device 46 and moving the laser emission unit 22 away from the workpiece 12, Move continuously or intermittently by the movement range.
  • images of the preset number of workpieces 12 are imaged by the camera 34 at different separation distances from the workpiece 12 and output to the image processing device 44 (image capturing step of workpiece images) [S-2]).
  • the image processing apparatus 44 outputs each image taken at different separation distances from the laser emitting unit driving device 46 together with the position information of the laser emitting unit 22, and the image processing apparatus 44 Record with
  • the image processing device 44 determines the quality of the shape of the workpiece 12 and determines the in-focus position (focused position determination step [S-3]). If it is determined that the shape is a defect, the laser processing thereafter is stopped, and the laser processing process is started from the beginning for the next object.
  • the laser emitting unit 22 is driven to the position of the laser emitting unit 22 when the image corresponding to the peak value PK is taken, that is, the in-focus position. It moves with the device 46 (laser emitting part moving step [S-4]).
  • the position information of the laser emission unit 22 for each image of the workpiece 12 is recorded in the image processing device 44, so the peak value PK of the focus detection data is obtained.
  • the laser emission unit 22 is moved to the in-focus position based on the position information when the corresponding image is taken, but there are a plurality (five or more) of peak values PK.
  • the processing laser generator 14 When the movement of the laser emission part 22 is completed, the processing laser generator 14 finally generates the processing laser X, and the light from the processing laser emission port 40 via the optical fiber 20 is used for laser processing.
  • the first X is emitted into the inside of the tubular body 25, and the workpiece 12 is laser processed (laser cover [S-5]).
  • the processing laser X generated from the processing laser generator 14 is guided to the optical fiber 20 and enters the inside of the tubular body 25 from the processing laser inlet 40. Then, the incident laser beam X is reflected by the laser beam semi-reflecting mirror 28 to change the direction to the direction of the emission port 36, and the beam is condensed when passing through the objective lens system 26. Emit to work piece 12.
  • the focal point of the laser X for laser light emitted to the object 12 to be driven is The workpiece 12 can be machined at a focal position where it matches with the workpiece 12 with high accuracy and the energy density of the processing laser X is maximum.
  • the focal position is adjusted by moving the entire laser emission unit 22 including the objective lens system 26 by the laser emission unit driving device 46, but only the objective lens system 26 is moved.
  • the focal position may be adjusted by Further, in the present embodiment, the force used for the tubular body 25 of the laser emission unit 22 is not limited to this. For example, an angular nose or the like may be used. Further, in the present embodiment, visible light is used as the illumination light Y, but other light beams may be used as long as they have a low energy density and there is no risk of damaging the object 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Detection of the three-dimensional shape of a work, enhancement of the precision of the focal point position of a machining laser beam, and compaction of a laser beam machining apparatus are realized. The laser beam machining apparatus (10) operates as follows. While a laser beam output section driver (46) is moving a work (12) from a position near a laser beam output section (22) to a far position, the work (12) is sequentially imaged with a camera (34). Best focused point detection data is extracted from pixels in positions corresponding to best focused point detection positions (P1-n) predetermined in the captured images. A best focused point detection waveform (W) based on the variation of the best focused point detection data is formed for each best focused point detection position (P1-n). The peak values (PK) of the best focused detection waveforms (W) in the best focused detection positions (P1-n) determined from the best focused detection waveforms (W) are compared with one another so as to judge the acceptance/rejection of the work (12). If the work is acceptable, the laser beam output section (22) is moved to the best focused position to perform laser beam machining; contrarily if the work is rejected, the laser beam is not emitted.

Description

明 細 書  Specification
レーザ加工装置  Laser processing equipment
技術分野  Technical field
[0001] 本発明は、従来の装置では検出することが出来な力つた被加工物の立体的不良形 状品およびこの立体的形状検査をレーザ加工位置で検出することが出来ると共に、 レーザ加工時におけるレーザの焦点を高精度で加工位置に合わせることの出来るレ 一ザ加工装置に関する。  [0001] The present invention is capable of detecting a three-dimensional defective product of a work piece which can not be detected by the conventional apparatus and this three-dimensional shape inspection at a laser processing position, and at the time of laser processing The present invention relates to a laser processing apparatus capable of focusing the laser at the processing position with high precision.
背景技術  Background art
[0002] レーザを被加工物に対して出射することで被加工物を蒸発除去または溶接するレ 一ザ力卩ェが従来力も行われている。このレーザカ卩ェによれば、エネルギー密度が最 も大きいレーザの焦点を被加工物の加工位置に合わせることにより、加工位置の被 加工物を蒸発除去または溶融して、被加工物の切断ゃ孔開けまたは溶接などを行う ことが出来、現在では半導体デバイスその他電子部品製造にこのようなレーザ技術 が多用されている。  [0002] A conventional force is also used to evaporate and remove or weld a workpiece by emitting a laser to the workpiece. According to this laser cover, by focusing the laser having the largest energy density to the processing position of the workpiece, the workpiece at the processing position is removed by evaporation or melted to cut the hole of the workpiece. It can be opened or welded, and at present, such laser technology is widely used for manufacturing semiconductor devices and other electronic parts.
[0003] さて、近年の技術進展により、半導体デバイスその他電子部品は小型,高精度化の 一途をたどっており、レーザ技術に対してもより高い加工精度が要求されている。この 要求に応えるため、例えば、レーザ力卩ェに用いられるレーザとして代表的な YAG (ィ ットリウム'アルミニウム 'ガーネット)レーザに代えて、 YAGレーザよりもさらに精密加 ェに適した「高調波レーザ」を使用するようになっている。し力しながら、このような「高 調波レーザ」は焦点深度が従来の YAGレーザに比べて非常に浅ぐ「高調波レーザ 」を使用する場合には従来に増してより正確な焦点合わせをすることが要求され、正 確な焦点合わせの精度いかんによっては製品歩留まりに大きく影響する。  [0003] By the way, with recent technological progress, semiconductor devices and other electronic components have been steadily miniaturized and becoming highly accurate, and higher processing accuracy is required also for laser technology. In order to meet this demand, for example, a “harmonic laser” that is more suitable for laser beam scanning than YAG laser, instead of the typical YAG (lithium 'aluminum' garnet) laser used as a laser. Is supposed to use. However, such “harmonic laser” is more accurate than before when using “harmonic laser” whose depth of focus is much shallower than that of conventional YAG lasers. Depending on the accuracy of accurate focusing, the product yield will be greatly affected.
[0004] 同時に、電子部品の小型'高精度化に伴い、組み込まれる構成部材の形状良否も 厳しく問われ、最近ではその立体的形状の良否も問題とされるようになつてきた。換 言すれば、従来、良品とされていたような形状の部品でもレーザ加工前に厳しく除去 されるように求められている。それ故、高い加工精度が要求されると同時にレーザカロ ェが施される被加工物の立体的不良形状を検出する能力につ 、ても更に高 、精度 が要求されて 、るのが現状である。 At the same time, along with the miniaturization and high precision of electronic parts, the shape and quality of the component to be incorporated are also strictly asked, and recently, the quality and shape of the three-dimensional shape has also been considered as a problem. In other words, it is required that parts with shapes that were considered to be non-defective products be removed strictly before laser processing. Therefore, high machining accuracy is required, and at the same time the ability to detect three-dimensional defect shape of the workpiece to which laser calorie treatment is applied It is the present condition that is required.
[0005] 従来力 被カ卩ェ物の形状検査のために一般的に導入されていたもの力 CCDカメ ラを利用する方法であった。即ち、被加工物の基準形状の画像 (=基準画像)を記憶 させておき、順次送られる被加工物を CCDカメラで撮像してこの画像 (=撮像画像)を 比較し、撮像画像と基準画像とがー致している場合には良品と判断し、基準画像に 対して撮像画像が異なっている場合には不良品として除去するようにしている (特許 文献 1)。し力しながら、 CCDカメラを利用する方法は、平面形状に対する良否判定 には有効であるが、電子部品に組み込まれるような立体的部材の立体的形状判定、 並びにレーザカ卩ェ装置の微細な焦点合わせには不向きである。そこで、被加工物に 対して CCDカメラを傾斜させて撮像し、立体物の形状検査を行うような発明が提案さ れたが、本発明のような微小立体物には適用出来な力つた。カロえて、レーザの焦点 合わせに適用出来るようなものでもな力つた。  A conventional method is a method using a force CCD camera generally introduced for shape inspection of objects to be removed. That is, the image of the reference shape of the workpiece (= reference image) is stored, the workpiece to be sequentially sent is imaged by the CCD camera, this image (= captured image) is compared, and the imaged image and the reference image In the case where it is determined that there is a failure, it is judged as a non-defective product, and when the captured image is different from the reference image, it is removed as a defective product (Patent Document 1). While the method of using a CCD camera is effective in determining the quality of the planar shape, the three-dimensional shape determination of a three-dimensional member such as that incorporated in an electronic component, and the fine focus of the laser beam device It is unsuitable for the match. Therefore, an invention was proposed in which the shape of a three-dimensional object was inspected by tilting the CCD camera with respect to the object to be processed, but it was impossible to apply to a three-dimensional object as in the present invention. It was a good idea to apply it to laser focusing.
特許文献 1:特開平 4— 208844号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 4-208844
特許文献 2 :特開平 10— 185827号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 10-185827
特許文献 3:特開平 11― 230728号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 11-230728
特許文献 4:特開平 11― 326235号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 11-326235
特許文献 5 :特開 2000— 171409号公報  Patent document 5: Unexamined-Japanese-Patent No. 2000-171409
[0006] その他、一般的に加工部署の手前で被加工物の形状良否を判定し、不良品を除 去し、良品のみを加工部署に供給する方法が取られていたが、このような方法の場 合、 1つのレーザカ卩ェ装置に良否判定部署とカ卩ェ部署とが並設されることになり、装 置形状が大きくなるという欠点があるし、良否判定部署から加工部署に搬送中に被 加工物の位置が狂うというような問題点もあり、前記良否判定と加工の高性能化にカロ えて装置のコンパクト化も要求されて ヽた。  [0006] In addition, generally, the shape of the workpiece is judged before the processing department, the defective product is removed, and only the non-defective product is supplied to the processing department. In this case, one laser cae machine will have a defect judgment department and a kaw department arranged side by side, and there is a drawback that the equipment shape becomes large. In addition, there is a problem that the position of the workpiece is deviated, and the compactness of the apparatus is also required to improve the quality judgment and the processing performance.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0007] 本発明は力かる問題点に鑑みてなされたものであり、その主たる目的は、従来は検 出出来な力つた不良形状の被加工品を検出すること、加工用レーザの焦点合わせ の精度をより高くすることおよび装置のコンパクトィ匕を実現するレーザ加工装置を提 供することにある。 The present invention has been made in view of the pressing problem, and its main object is to detect a workpiece having a defective shape which can not be detected conventionally, and to focus a processing laser. Provide laser processing equipment that achieves higher accuracy and compactness of equipment It is to offer.
課題を解決するための手段 Means to solve the problem
請求の範囲第 1項に記載した発明は、  The invention described in claim 1 is
(a)加工用レーザ Xを被力卩ェ物 12の加工位置へ出射して被力卩ェ物 12を加工するレ 一ザカ卩ェ装置 10であって、  (a) A laser 10 for emitting a processing laser X to a processing position of a load receiving object 12 and processing the load receiving object 12;
(b)加工用レーザ Xを発生させる加工用レーザ発生装置 14、  (b) Processing laser generator 14 for generating processing laser X
(c)被加工物 12を照らす照明光 Yを発光する照明装置 16、  (c) an illumination device 16 for emitting illumination light Y for illuminating the workpiece 12;
(d)加工用レーザ発生装置 14および照明装置 16が光学的に接続され、加工用レー ザ Xおよび照明光 Yを被加工物 12に向けて出射するレーザ出射部 22、  (d) A laser emitting unit 22, which is optically connected to the processing laser generator 14 and the illumination device 16, and emits the processing laser X and the illumination light Y toward the workpiece 12.
(e)レーザ出射部 22を被加工物 12に対して近接離間させるレーザ出射部駆動装置 46、  (e) A laser emitting unit driver 46 for moving the laser emitting unit 22 close to and away from the workpiece 12;
(f)レーザ出射部駆動装置 46により被加工物 12に対してレーザ出射部 22を近接離 間方向に移動させ、被加工物 12からのレーザ出射部 22の離間距離が異なる撮像位 置にて照明光 Yで照らされた被加工物 12を順次撮像するカメラ 34、  (f) The laser emitting part drive unit 46 moves the laser emitting part 22 in the approaching and separating direction with respect to the workpiece 12 so that the distance between the laser emitting part 22 and the workpiece 12 is different. Camera 34 for sequentially imaging the workpiece 12 illuminated by the illumination light Y,
(g)異なる撮像位置で順次撮像された複数の画像において、被加工物 12の形状検 知に用いるために予め設定された画面内の複数の合焦点検出位置 P  (g) In a plurality of images sequentially captured at different imaging positions, a plurality of in-focus detection positions P in a screen preset to be used for shape detection of the workpiece 12
1-nに対応する 位置の画素にて検出した合焦点検出データを順次取り出し、前記合焦点検出デー タの変化に基づく合焦点検出波形 Wを合焦点検出位置 P 毎にそれぞれ形成して  The in-focus detection data detected at the pixel corresponding to 1-n is sequentially extracted, and the in-focus detection waveform W based on the change in the in-focus detection data is formed for each in-focus detection position P.
1-n  1-n
前記各合焦点検出波形 Wから割り出された各合焦点検出位置 P における各合焦 Each focusing at each focusing point detection position P determined from each focusing point detection waveform W
1-n  1-n
点検出波形 Wのピーク値 PKを比較し、 Compare the peak value PK of the point detection waveform W,
(g-1)該ピーク値 PKのすべてが予め決定された範囲 (=閾値)内にある場合は、当 該被加工物 12を良品として判定して被加工物 12に対するレーザ出射部 22の合焦 点位置 Xpまでレーザ出射部 22を移動させ、然る後、レーザ出射部 22を作動させて 被力卩ェ物 12に向けてレーザ出射によるレーザ力卩ェを行わせる指令を、  (g-1) When all of the peak values PK are within a predetermined range (= threshold value), the workpiece 12 is judged as good and the combination of the laser emission part 22 with the workpiece 12 is determined. The laser emitting unit 22 is moved to the in-focus position Xp, and after that, the laser emitting unit 22 is operated to direct the laser source 12 to perform a laser power by laser emitting.
(g-2)前記ピーク値の 1が予め決定された範囲から外れた場合は、当該被加工物 12を不良品と判定してレーザ出射を行わないようにする指令をレーザ出射部 22に出 力する画像処理装置 44とを備える、  (g-2) If the peak value 1 deviates from the predetermined range, the laser emitting unit 22 is instructed to determine that the workpiece 12 is a defective product and to prevent laser emission. An image processing apparatus 44 for
(h)レーザ加工装置 10である。 [0009] この発明によれば、被力卩ェ物 12の立体的形状の良否がレーザカ卩ェ部署において レーザ加工直前に判定されるので、従来例のような形状判定部署と加工部署とが異 なって 、たために発生して ヽた被力卩ェ物 12の位置ズレを防止出来るだけでなく、両 部署を 1つに纏められるので、装置のコンパクトィ匕を実現することが出来る。 (h) Laser processing apparatus 10 According to the present invention, since the quality of the three-dimensional shape of the object 12 to be driven is judged immediately before the laser processing in the laser cavity section, the shape determination section and the processing section differ from each other as in the conventional example. As well as being able to prevent the positional deviation of the load-bearing object 12 which has been generated due to the fact that both sections can be integrated into one, it is possible to realize the compactness of the device.
[0010] また、各合焦点検出位置 P における各合焦点検出波形 Wのピーク値 PKを利用  Also, the peak value PK of each in-focus detection waveform W at each in-focus detection position P is used.
1-n  1-n
することにより、レーザ出射部 22を正確な合焦点位置 Xpに設定することが出来、カロ ェ用レーザの焦点合わせの精度をより高くすることが出来る。換言すれば、 2または 3 次或いはそれ以上の高次高調波レーザの微細な焦点合わせに対応することが出来 る。  By doing this, the laser emission unit 22 can be set to the correct in-focus position Xp, and the accuracy of focusing of the laser for calories can be further enhanced. In other words, it is possible to cope with fine focusing of two or three or more higher harmonic lasers.
[0011] 加えて、各合焦点検出位置 P における各合焦点検出波形 Wのピーク値 PKを比  In addition, the peak value PK of each in-focus detection waveform W at each in-focus detection position P is compared
1-n  1-n
較することにより、レーザ加工位置でレーザ加工に先立って被加工物 12の立体的形 状の判定も簡単に行うことが出来るし、後述するように閾値をピーク値 PK近傍の微小 範囲に限定することで、前記高次高調波の焦点合わせに対応出来るようになる。  By comparison, the three-dimensional shape of the workpiece 12 can be easily determined prior to laser processing at the laser processing position, and the threshold is limited to a minute range near the peak value PK as described later. This makes it possible to cope with the focusing of the higher harmonics.
[0012] なお、ここで 、う「合焦点検出データ」とは、カメラ 34で撮像された画像の各微小部 分を検出する画素 (或いは隣接または近接した複数の画素群)力ゝらの輝度や彩度など のデータを抽出.加工することによって得られた生データ、或いはこれらの平均値 (= カメラ 34の昇降往復移動により得た同一地点における複数生データの算術平均値) 、標準偏差、最小値と最大値との差、および最大値などをいうが、本実施例では 1つ の生データを採用しており、以下この場合に基づいて説明する。勿論、平均値、標準 偏差、最小値と最大値との差、および最大値など、加工されたデータに基づく場合で も同じである。  Here, “focus detection data” refers to the brightness of the pixel (or a plurality of pixel groups adjacent or close to each other) for detecting each minute part of the image captured by the camera 34. Raw data obtained by extracting and processing data such as color saturation, etc., or their average value (= arithmetic mean value of multiple raw data at the same point obtained by the vertical movement of the camera 34), standard deviation, Although the difference between the minimum value and the maximum value, the maximum value, and the like are mentioned, in the present embodiment, one raw data is adopted, and the following description will be made based on this case. Of course, even if it is based on processed data, such as average value, standard deviation, difference between minimum value and maximum value, and maximum value, it is the same.
[0013] また、被加工物 12に対するレーザ出射部 22の「合焦点位置 Xp」とは、前記全合焦 点検出位置 P のピーク値 PK群の算術平均値或 、は 、ずれかのピーク値 PK (通常  Further, the “focused position Xp” of the laser emission unit 22 with respect to the workpiece 12 is the peak value of the all focusing points detection position P, or the arithmetic mean value of the PK group or PK (usually
1-n  1-n
は前記平均値に最も近いいずれかのピーク値 PK)またはその他の算出法にて算出さ れた値に一致する。  Corresponds to a value calculated by any peak value PK) or other calculation method closest to the average value.
[0014] 請求の範囲第 2項に記載した発明は、画像処理の合焦点検出位置 P 1S  The invention described in claim 2 is an in-focus point detection position P 1S for image processing.
1-n  1-n
(a) 被力卩ェ物 12の中央と各角部の 5点(P— 1) (P- 3) (P— 5) (P— 7) (P— 9)、 (a) Center of driven object 12 and five points at each corner (P-1) (P-3) (P-5) (P-7) (P-9),
(b) 被加工物 12の各角部と各辺の 8点(P— 1)〜(P— 8)、 (c) 被力卩ェ物 12の各角部と各辺および中央の 9点(P— 1)〜(P— 9)、或いは(b) Each corner of the workpiece 12 and eight points (P-1) to (P-8) on each side, (c) Each corner of the driven object 12 and each side and nine points (P-1) to (P-9) or
(d) 前記 9点(P— 1)〜(P— 9)に加えた被力卩ェ物 12の平面上の任意の点であること を特徴とする請求の範囲第 1項に記載のレーザ加工装置 10であり、これらの点を測 定することにより従来不可能であった立体形状、特に椀形或!、はカップ形の被加工 物 12まで形状測定が可能となる。 (d) The laser according to claim 1, characterized in that it is an arbitrary point on the plane of the force receiving object 12 added to the nine points (P-1) to (P-9). It is the processing apparatus 10, and by measuring these points, it is possible to measure the shape of a three-dimensional shape, in particular, a wedge or!
[0015] 請求の範囲第 3項は本発明に使用する加工用レーザに関し、「加工用レーザが、 2 次以上の高次高調波である」ことを特徴とするもので、これにより高い加工精度が得ら れる。なお、請求の範囲第 1項または第 2項の測定方法を採用することで、 2次以上 の高次高調波レーザの使用が可能となる。  [0015] Claim 3 relates to a processing laser used in the present invention, characterized in that "the processing laser is a second or higher harmonic of higher order", whereby high processing accuracy is achieved. Is obtained. The use of the measurement method according to claim 1 or claim 2 makes it possible to use a second or higher harmonics laser.
発明の効果  Effect of the invention
[0016] 本発明によれば、画像処理の合焦点検出位置を P という多数点にすることで被カロ  According to the present invention, by setting the in-focus point detection position of image processing to a large number of points P, a point to be scanned is generated.
1-n  1-n
ェ物の有無、立体形状の被加工物の良否判定が可能になり、特に、 5点以上とする ことにより従来は判定出来な力つた反りや曲がりを有する立体的不良形状の良否判 別が出来る。し力もこの判別をレーザ加工直前にレーザ加工部署で判定することが 出来るので、レーザカ卩ェ装置のコンパクトィ匕を図ることが出来るだけでなぐレーザカロ ェ装置において、不良形状の検出場所からレーザ加工場所まで搬送する間にずれ た被加工物の位置を修正する必要がなくなるなどの利点を有する。力!]えて、各合焦 点検出位置 P における各合焦点検出波形 Wのピーク値 PKを利用することにより、  It is possible to judge the presence or absence of objects and the quality of workpieces of three-dimensional shape, and in particular, by setting the number of points to 5 or more, it is possible to judge the quality of three-dimensional defect shape having warping and bending that can not be judged conventionally. . This determination can also be made by the laser processing department immediately before the laser processing, so that it is possible to achieve compactness of the laser cover device, and it is possible to detect the defective shape from the location where the laser processing is performed. It has the advantage of eliminating the need to correct the position of the misaligned workpiece during transport to the end. By using the peak value PK of each in-focus detection waveform W at each in-focus point detection position P,
1-n  1-n
加工用レーザの焦点形成位置の精度を第 2高調波や第 3高調波のような高次加工 用レーザの使用に耐えることが出来るまで高くすることが出来る。  The accuracy of the focus forming position of the processing laser can be made high enough to endure the use of high-order processing lasers such as the second and third harmonics.
図面の簡単な説明  Brief description of the drawings
[0017] [図 1]本発明に係るレーザ加工装置を示す概念図である。 FIG. 1 is a conceptual view showing a laser processing apparatus according to the present invention.
[図 2]加工用レーザ発生装置を示す概念図である。  FIG. 2 is a conceptual view showing a processing laser generator.
[図 3]本発明に係るレーザ出射部を示す概念図である。  FIG. 3 is a conceptual view showing a laser emission unit according to the present invention.
[図 4]良品の被加工物における 8箇所の合焦点検出位置を示す図である。  FIG. 4 is a view showing eight in-focus detection positions on a non-defective workpiece.
[図 5]合焦点検出位置における特徴量に基づく代表的な波形を示す図である。  FIG. 5 is a diagram showing a representative waveform based on the feature value at the in-focus point detection position.
[図 6]良品の被加工物における各合焦点検出位置での波形を示す図である。  FIG. 6 is a diagram showing waveforms at each in-focus point detection position on a non-defective workpiece.
[図 7]被加工物が存在しない場合における各合焦点検出位置での波形を示す図で ある。 [Fig. 7] A diagram showing the waveforms at each focus detection position in the absence of a workpiece is there.
[図1—  [Figure 1-
o 8]不良形状の被加工物における各合焦点検出位置での波形を示す図である。 園 9]不良形状の被加工物における各合焦点検出位置での波形を示す図である。  o 8] It is a figure which shows the waveform in each focus detection position in the workpiece of a defect shape. Garden 9] It is a figure which shows the waveform in each in-focus detection position in the workpiece of a defect shape.
[図 10]不良形状の被加工物における各合焦点検出位置での波形を示す図である。 FIG. 10 is a view showing a waveform at each focus detection position on a workpiece having a defect shape.
[図 11]本発明に係るレーザカ卩ェ方法の各ステップを示すブロック図である。 FIG. 11 is a block diagram showing each step of a laser beam method according to the present invention.
符号の説明 Explanation of sign
· ·レーザカ卩ェ装置  · · Laser equipment
11· "マウント  11 · "Mount
12· ··被加工物  12 · · · Workpiece
14· ··加工用レーザ発生装置  14 · · · Laser generator for processing
16· ··照明装置  16 · · · Lighting system
18· · ·レーザ出射装置  18 · · · Laser system
20· ··光ファイバ  20 ··· Fiber
21· "光ファイバ  21 · "Fiber
22· · ·レーザ出射部  22 · · · Laser output part
23· · ·レーザ出射部位置調整手段  23 · · · Laser emission position adjustment means
25· 管状体  25 · Tubular body
26· ··集光レンズ  26 · · · Condenser
28· '·加工用レーザ半反射ミラー  28 · '· Laser semi-reflecting mirror for processing
30· 照明光半反射ミラー  30 · Illumination light semi-reflecting mirror
32· '·カメラ用集光レンズ  32 · '· Focusing lens for camera
34· "カメラ  34 · "Camera
36· ' -出射口  36 · '-Exit
38· ' '·カメラ接続口  38 · '' Camera connection port
40·· '·加工用レーザ出射口  40 ······· Laser beam for processing
42· · •照明光出射口  42 · · • Illumination light exit
44· · '·画像処理装置  44 · · 'Image processing device
46· ' 'レーザ出射部駆動装置 100· ··レーザチャンバ 46 · '' Laser emitter drive 100 ·· Laser chamber
102· ··共振器ミラー  102 · · · Resonator mirror
104· ··共振器シャッター  104 · · · Resonator shutter
106…パワー測定ユニット  106 ... Power measurement unit
108…分岐ミラー  108 ... bifurcated mirror
110…分岐シャッター  110: Branch shutter
112· ··パワー調整ユニット  112 ··· Power adjustment unit
114· ··光ファイバ入射ユニット  114 ··· Optical fiber injection unit
116…ヘリウムネオンレーザ発振器  116 ... Helium neon laser oscillator
118…折り返しミラー  118 ... folding mirror
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明に係るレーザカ卩ェ装置 10は、図 1に示すように、マウント 11に載置したタン タルコンデンサなどの電子部品構成部材である立体的被加工物 12(この場合は直方 体または立方体である)に加工用レーザ Xを出射して立体的被力卩ェ物 12をマウント 1 1に溶接するなどの加工を行う装置であり、加工用レーザ発生装置 14と、照明装置 1 6と、レーザ出射装置 18とを備えている。また、レーザ出射装置 18は、加工用レーザ Xおよび照明光 Yを被加ェ物 12に向けて出射或 ヽは照射するための装置であり、図 1に示すように、レーザ出射部 22と、レーザ出射部位置調整手段 23とを備えている。  The laser cover apparatus 10 according to the present invention is, as shown in FIG. 1, a three-dimensional workpiece 12 (in this case, a rectangular parallelepiped) which is an electronic component constituting member such as a tantalum capacitor mounted on a mount 11. Or a cube) is a device that performs processing such as emitting a processing laser X to weld a three-dimensional force receiving object 12 to the mount 11 or the like, the processing laser generator 14 and the lighting device 1 6 And a laser emitting device 18. The laser emitting device 18 is a device for emitting the processing laser X and the illumination light Y toward the object 12 or emitting the light, and as shown in FIG. And laser emitting portion position adjusting means 23.
[0020] 加工用レーザ発生装置 14は、加工用レーザ Xを発生する装置であり、本実施例で は第 2高調波 YAGレーザ (それ以上の高次高調波も可能)を発生するものが用いら れている。また、加工用レーザ発生装置 14は、光ファイバ 20を備えており、加工用レ 一ザ Xは、光ファイバ 20によりレーザ出射部 22へ導かれる。なお、加工用レーザ発 生装置 14で発生する加工用レーザ Xは、第 2高調波 YAGレーザに限られず、被カロ ェ物 12の物性および力卩ェの内容に応じた波長のレーザを選択することが出来る。  The processing laser generator 14 is a device for generating the processing laser X, and in this embodiment, it is used for generating the second harmonic YAG laser (or higher harmonics are also possible). It is necessary. The processing laser generator 14 further includes an optical fiber 20, and the processing laser X is guided to the laser emission unit 22 by the optical fiber 20. The processing laser X generated by the processing laser generator 14 is not limited to the second harmonic YAG laser, and a laser having a wavelength according to the physical properties of the object 12 to be treated and the content of the laser is selected. I can do it.
[0021] 加工用レーザ発生装置 14についてさらに詳述すると、加工用レーザ発生装置 14 は、図 2に示すように、レーザチャンバ 100と、レーザチャンバ 100の両側において所 定の間隔を隔てて互いに対向するように設置された一対の共振器ミラー 102と、共振 器ミラー 102およびレーザチャンバ 100を結ぶ光路上にそれぞれ設けられた一対の 共振器シャッター 104と、パワー測定ユニット 106と、分岐ミラー 108と、分岐シャツタ 一 110と、パワー調整ユニット 112と、光ファイバ入射ユニット 114と、可視光レーザ Z を発振するヘリウムネオンレーザ発振器 116とを有して 、る。 More specifically, with respect to the processing laser generator 14, as shown in FIG. 2, the processing laser generator 14 faces the laser chamber 100 and the laser chamber 100 at predetermined intervals on both sides of the laser chamber 100. Pair of resonator mirrors 102, and a pair of resonator mirrors provided on an optical path connecting the resonator mirror 102 and the laser chamber 100. A resonator shutter 104, a power measurement unit 106, a branch mirror 108, a branch shutter 110, a power adjustment unit 112, an optical fiber incident unit 114, and a helium neon laser oscillator 116 that oscillates a visible light laser Z. I have it.
[0022] レーザチャンバ 100は、その内部にフラッシュランプ(図示せず)および YAGロッド( 図示せず)を備えており、このフラッシュランプを発光させることにより YAGロッドが励 起されて光エネルギーが放出される。  The laser chamber 100 is internally provided with a flash lamp (not shown) and a YAG rod (not shown), and by emitting light from the flash lamp, the YAG rod is excited to emit light energy. Be done.
[0023] 一対の共振器ミラー 102は、加工用レーザ Xを発振させるため、レーザチャンバ 10 0から放出された光エネルギーを反射させて共振器ミラー 102同士の間を往復させる 装置である。なお、一対の共振器ミラー 102が設置される間隔は、発振する加工用レ 一ザ Xの波長に応じて適宜設定される。  The pair of resonator mirrors 102 is a device that reflects light energy emitted from the laser chamber 100 and causes the resonator mirrors 102 to reciprocate in order to oscillate the processing laser X. The distance at which the pair of resonator mirrors 102 is installed is appropriately set in accordance with the wavelength of the processing laser X that oscillates.
[0024] 一対の共振器シャッター 104は、共振器ミラー 102およびレーザチャンバ 100を結 ぶ光路を開閉する装置である。レーザチャンバ 100内のエネルギーが十分に蓄えら れるまでは共振器シャッター 104を閉じておき、所定の時間が経過した後に共振器 シャッター 104を開 、て加工用レーザ Xを発振させることにより、高 、強度の加工用レ 一ザ Xを得ることができる。  The pair of resonator shutters 104 is a device for opening and closing an optical path connecting the resonator mirror 102 and the laser chamber 100. The resonator shutter 104 is closed until the energy in the laser chamber 100 is sufficiently stored, and after a predetermined time has elapsed, the resonator shutter 104 is opened and the processing laser X is oscillated to increase the height. A strong processing laser X can be obtained.
[0025] ノ ヮ一測定ユニット 106は、加工用レーザ Xの強度測定を行う装置であり、本実施 例では、共振器ミラー 102とレーザチャンバ 100とを結ぶ光路をレーザチャンバ 100 力 図 2中上方に離間する方向に延長した位置に配設されている。  The first measurement unit 106 is a device for measuring the intensity of the processing laser X, and in the present embodiment, the optical path connecting the resonator mirror 102 and the laser chamber 100 is the laser chamber 100 force in FIG. It is disposed at a position extended in the direction away from.
[0026] レーザチャンバ 100から発振された力卩ェ用レーザ Xは、光路上に設けられた分岐ミ ラー 108で反射され、分岐シャッター 110およびパワー調整ユニット 112を通過して 光ファイバ入射ユニット 114に導入される。そして、光ファイバ入射ユニット 114に導 入された力卩ェ用レーザ Xは、集光されて光ファイバ 20に導入される。  The laser X for laser light oscillated from the laser chamber 100 is reflected by the branch mirror 108 provided on the optical path, passes through the branch shutter 110 and the power adjustment unit 112, and is transmitted to the optical fiber incident unit 114. be introduced. Then, the laser X introduced into the optical fiber incident unit 114 is collected and introduced into the optical fiber 20.
[0027] なお、 1つのレーザチャンバ 100で発生させた力卩ェ用レーザ Xを複数のレーザ照射 装置 18に供給する場合には、図 2において破線で示すように、分岐ミラー 108、分岐 シャッター 110、パワー調整ユニット 112、および光ファイバ入射ユニット 114が複数 設けられる。このとき、加工用レーザ Xを対応するそれぞれの光ファイバ 20に向けて 分岐させるため、分岐ミラー 108には半反射ミラー (或いはハーフミラーとも言う)が使 用される。また、パワー調整ユニット 112において、分岐された各加工用レーザ Xの 強度を調整することにより、各加工用レーザ Xの強度がそれぞれ均一になる。さらに、 必要に応じて分岐シャッター 110を開閉することにより、加工用レーザ Xを導入する 光ファイバ 20を適宜選択することができる。 In the case where the laser X generated by one laser chamber 100 is supplied to a plurality of laser irradiation devices 18, as shown by a broken line in FIG. 2, the branch mirror 108 and the branch shutter 110. A plurality of power adjustment units 112 and a plurality of optical fiber injection units 114 are provided. At this time, in order to branch the processing laser X toward the corresponding optical fibers 20, a semi-reflecting mirror (also referred to as a half mirror) is used as the branching mirror 108. In addition, in the power adjustment unit 112, each of the branched processing lasers X By adjusting the intensity, the intensity of each processing laser X becomes uniform. Furthermore, the optical fiber 20 into which the processing laser X is introduced can be appropriately selected by opening and closing the branch shutter 110 as necessary.
[0028] また、ヘリウムネオンレーザ発振器 116から発振される可視光レーザ Zが折り返しミ ラー 118で反射された後、加工用レーザ Xと同一の光路を通るように、ヘリウムネオン レーザ発振器 116および折り返しミラー 118の位置が調整されている。これにより、可 視光レーザ Zを加工用レーザ Xの発振調整や入射調整などにおけるガイド光として 禾 IJ用することがでさる。 In addition, after the visible light laser Z oscillated from the helium neon laser oscillator 116 is reflected by the folding mirror 118, the helium neon laser oscillator 116 and the folding mirror are made to pass along the same optical path as the processing laser X. The position of 118 is adjusted. As a result, the visible light laser Z can be used as a guide light for adjustment of oscillation of the processing laser X, adjustment of incidence, and the like.
[0029] 照明装置 16は、図 1に示すように、レーザ出射部 22の被加工物 12に対する焦点 合わせのために用いられる可視光線である照明光 Yを出射する装置であり、本実施 例では LEDが使用されている。なお、照明装置 16は、ハロゲンランプなど他の発光 装置を用いることも出来る。また、照明装置 16は、光ファイバ 21を備えており、照明 光 Yは、光ファイバ 21によりレーザ出射部 22へ導かれる。なお、本実施例では、加工 用レーザ Xおよび照明光 Yを光ファイバ 20、 21を用いてレーザ出射装置 18へ導 ヽ ているが、当然ながら、固定光学系でこれらを実現してもよい。  The illumination device 16 is a device for emitting illumination light Y which is a visible light used for focusing the laser emission unit 22 on the workpiece 12 as shown in FIG. 1, and in the present embodiment, LED is used. The lighting device 16 can also use another light emitting device such as a halogen lamp. The illumination device 16 further includes an optical fiber 21, and the illumination light Y is guided to the laser emission unit 22 by the optical fiber 21. In the present embodiment, the processing laser X and the illumination light Y are guided to the laser emitting device 18 using the optical fibers 20 and 21. However, as a matter of course, these may be realized by a fixed optical system.
[0030] レーザ出射部 22は、図 3に示すように、管状体 25と、対物レンズ系 26と、加工用レ 一ザ半反射ミラー 28と、照明光半反射ミラー 30と、カメラ用集光レンズ系 32と、カメラ 34とを備えている。  As shown in FIG. 3, the laser emitting unit 22 includes a tubular body 25, an objective lens system 26, a processing laser semi-reflecting mirror 28, an illumination light semi-reflecting mirror 30, and a condenser for a camera. A lens system 32 and a camera 34 are provided.
[0031] 管状体 25は、一端に加工用レーザ Xおよび照明光 Yを出射するための開口である 出射口 36を有するとともに、他端に照明光 Yの被加工物 12による反射光をカメラ 34 に導くための開口であるカメラ接続口 38を有する断面が円形のパイプである。また、 管状体 25の側面には光ファイバ 20が接続された加工用レーザ入射口 40、および光 ファイバ 21が接続された照明光入射口 42が設けられている。  The tubular body 25 has at one end an emission port 36 which is an opening for emitting the processing laser X and the illumination light Y, and at the other end a camera 34 reflects the reflected light of the illumination light Y by the workpiece 12. Is a circular cross section pipe having a camera connection port 38 which is an opening for leading to the Further, on the side surface of the tubular body 25, a processing laser inlet 40 to which the optical fiber 20 is connected and an illumination light inlet 42 to which the optical fiber 21 is connected are provided.
[0032] 対物レンズ系 26は、レーザ出射装置 18から所定の位置に力卩ェ用レーザ Xの焦点 を形成する凸レンズや凹レンズその他を組み合わせたレンズ系であり、出射口 36〖こ 取り付けられている。  The objective lens system 26 is a lens system combining a convex lens, a concave lens, and the like that forms the focal point of the laser X for a laser beam at a predetermined position from the laser emission device 18, and is mounted at an emission port 36. .
[0033] 加工用レーザ半反射ミラー 28は、表面で加工用レーザ Xを反射するとともに、被カロ ェ物 12に出射された照明光 Yの反射光を通過する性質を有する板状の半反射ミラ 一である。また、加工用レーザ半反射ミラー 28は、加工用レーザ出射口 40から入射 した力卩ェ用レーザ Xを出射口 36に向けて反射させることが出来るように、加工用レー ザ出射口 40の位置と出射口 36の位置との関係において所定の角度 (例えば 45° ) に固定或 ヽは調節可能として管状体 25の内部に配設されて 、る。 The processing laser semi-reflecting mirror 28 is a plate-like semi-reflecting mirror having a property of reflecting the processing laser X on the surface and passing the reflected light of the illumination light Y emitted to the object 12 It is one. Also, the processing laser semi-reflecting mirror 28 is positioned at the processing laser exit 40 so that the laser X incident from the processing laser exit 40 can be reflected toward the exit 36. Are fixed at a predetermined angle (for example 45 °) in relation to the position of the outlet 36 or are disposed inside the tubular body 25 as adjustable.
[0034] 照明光半反射ミラー 30は、その表面で照明光 Yを反射するとともに、照明光 Yの反 射光を通過する板状の半反射ミラーである。そして、照明光半反射ミラー 30は、照明 光出射口 42から入射した照明光 Yの導光路の光軸 Rを、加工用レーザ Xの光軸尺と 一致するようにして出射口 36に向けて反射させることが出来るように、照明光出射口 42の位置と出射口 36の位置との関係において所定の角度 (例えば 45° )に固定或 V、は調節可能として管状体 25の内部に配置されて 、る。  The illumination light semi-reflecting mirror 30 is a plate-like semi-reflecting mirror that reflects the illumination light Y on its surface and passes the reflected light of the illumination light Y. Then, the illumination light semi-reflecting mirror 30 directs the light axis R of the light guide path of the illumination light Y incident from the illumination light emission port 42 to the emission port 36 so as to coincide with the optical axis of the processing laser X. In order to be able to reflect, it is fixed at a predetermined angle (for example 45 °) in relation to the position of the illumination light outlet 42 and the position of the outlet 36 or V is arranged inside the tubular body 25 as adjustable. It is.
[0035] カメラ用集光レンズ系 32は、被加工物 12によって反射された照明光 Yの反射光を カメラ 34に集光するレンズ系であり、カメラ接続口 38に取り付けられている。  The condenser lens system 32 for a camera is a lens system that condenses the reflected light of the illumination light Y reflected by the workpiece 12 on the camera 34, and is attached to the camera connection port 38.
[0036] レーザ出射部位置調整手段 23は、図 1に示すように、画像処理装置 44と、レーザ 出射部駆動装置 46と、カメラ 34と、画像処理装置 44およびレーザ出射部駆動装置 46をそれぞれ電気的に接続する回路 48とを備えており、前記レーザ出射部駆動装 置 46は、予め設定されたレーザ出射部 22の移動範囲内において、照明光 Yで照ら された被加工物 12の画像をレーザ出射部 22と被加工物 12との距離が異なる状態( 即ち被加工物 12に対してレーザ出射部 22を近接離間方向の移動 (=近接または離 間方向のみ或いは 1或いは数往復移動)の中で、小刻みに決定された各撮像位置 T) で、カメラ 34で複数撮像するため、前記範囲内でレーザ出射部 22を被加工物 12に 対して垂直方向に近接離間させる手段であり、且つ、加工用レーザ Xを出射するた めに加工用レーザ出射適正位置 (合焦点位置 Xp)にレーザ出射部 22を移動させる 手段である。  As shown in FIG. 1, the laser emitting unit position adjusting means 23 includes an image processing unit 44, a laser emitting unit driving unit 46, a camera 34, an image processing unit 44 and a laser emitting unit driving unit 46. And a circuit 48 for electrically connecting, and the laser emitting unit driving device 46 is an image of the workpiece 12 illuminated with the illumination light Y within a preset movement range of the laser emitting unit 22. The distance between the laser emitting portion 22 and the workpiece 12 is different (ie, movement of the laser emitting portion 22 relative to the workpiece 12 in the approaching or separating direction (= proximity or separation only or one or several reciprocation movements) Among the above, it is a means to make the laser emitting part 22 approach and separate in the vertical direction with respect to the workpiece 12 within the above-mentioned range in order to perform multiple imaging with the camera 34 at each imaging position T determined in small increments. And for processing to emit processing laser X A means for moving the laser emitting section 22 to over The exit correct position (focus position Xp).
[0037] カメラ 34は、レーザ出射部駆動装置 46により予め設定された前記範囲内で、レー ザ出射部 22とともに被加工物 12に対して近接離間等し、かつ、照明光 Yで照らされ た被加工物 12の画像をレーザ出射部 22と被加工物 12との距離が互 、に異なる前 記の状態で複数撮像する装置である。カメラ 34で撮像され、レーザ出射部位置調整 手段 23の画像処理装置 44に出力される画像は、数十万力も数百万の画素で構成さ れている。そして、これら画素は、当該画素が有する輝度(=濃淡)の値 (以下、「階 調」と記載する。例えば、画素が 8ビットの情報で構成されている場合、 256階調とな る。)を有している。なお、本実施例では、カメラ 34〖こ CCDカメラが使用されている。 The camera 34 is closely spaced with respect to the processing object 12 together with the laser emitting unit 22 within the range previously set by the laser emitting unit driving device 46 and is illuminated by the illumination light Y. This is an apparatus for imaging a plurality of images of the workpiece 12 in the above-described state in which the distances between the laser emission unit 22 and the workpiece 12 are different from each other. The image captured by the camera 34 and output to the image processing device 44 of the laser emission position adjustment means 23 is composed of hundreds of thousands of pixels and millions of pixels. It is done. Then, these pixels are described as the value of the luminance (= light and shade) of the pixel (hereinafter, referred to as “tone”. For example, when the pixel is composed of 8-bit information, it has 256 tones. )have. In the present embodiment, a CCD camera 34 is used.
[0038] 画像処理装置 44は、次のような動作を実行する。まず、レーザ出射部 22の移動中 の各撮像位置において、カメラ 34で撮像された画像が順次送られて来る力 この画 像において、被力卩ェ物 12の立体形状検知に用いるために予め設定された画面内の 複数の合焦点検出位置 P The image processing device 44 performs the following operation. First, at each imaging position during movement of the laser emitting unit 22, a force to which an image captured by the camera 34 is sequentially sent is preset to be used for detecting a three-dimensional shape of the object 12 in this image. Focus detection positions P in the selected screen
1-nに対応する位置の画素にて検出した合焦点検出データ を順次取り出し記憶する。そして、前記合焦点検出データの変化に基づく合焦点検 出波形 Wを合焦点検出位置 P 毎にそれぞれ形成し、前記各合焦点検出波形 Wか  The in-focus point detection data detected at the pixel at the position corresponding to 1-n is sequentially taken out and stored. Then, an in-focus detection waveform W based on a change in the in-focus detection data is formed for each in-focus detection position P, and each in-focus detection waveform W
1-n  1-n
ら割り出された各合焦点検出位置 P における各合焦点検出波形 Wのピーク値 PK  Peak value PK of each in-focus point detection waveform W at each in-focus point detection position P
1-n  1-n
を比較する。該ピーク値 PKのすべてが予め決定された範囲 (=閾値)内にある場合 は、当該被加工物 12を良品として判定してレーザ出射部駆動装置 46により、被加工 物に対するレーザ出射部 22の合焦点位置 Xpまでレーザ出射部 22を移動させる指 令をレーザ出射部駆動装置 46に出す。然る後、被加工物に向けてレーザ出射によ るレーザ加工を行わせる指令をレーザ出射部 22に出す。  Compare When all the peak values PK are within a predetermined range (= threshold value), the workpiece 12 is determined as a non-defective product, and the laser emitting unit driver 46 determines the laser emitting unit 22 for the workpiece. An instruction to move the laser emitting unit 22 to the in-focus position Xp is issued to the laser emitting unit driving device 46. After that, a command for causing laser processing by laser emission toward the workpiece is issued to the laser emission unit 22.
[0039] 逆に、前記ピーク値の 1が予め決定された範囲 (=閾値)力も外れた場合は、当該被 加工物を不良品と判定してレーザ出射を行わないようにする指令をレーザ出射部 22 に出力する。本実施例では前記作業を実行するために画像処理装置 44に汎用のパ 一ソナルコンピュータが使用されている。 Conversely, when 1 of the peak value also deviates from the predetermined range (= threshold value) force, the laser emission is commanded to determine that the workpiece is defective and not to perform laser emission. Output to section 22. In the present embodiment, a general-purpose personal computer is used for the image processing device 44 in order to execute the above-mentioned work.
[0040] 上記の当該被加工物 12を良品と判定し、レーザ出射部駆動装置 46により被加工 物に対するレーザ出射部 22の合焦点位置 Xpまでレーザ出射部 22を移動させる場 合、該ピーク値 PKが合焦点検出位置 P の数だけ存在する。従って、レーザ出射部  When it is determined that the workpiece 12 is a non-defective product and the laser emission unit 22 is moved to the in-focus position Xp of the laser emission unit 22 with respect to the workpiece by the laser emission unit driving device 46, the peak value There are as many PK as the number of focus detection positions P. Therefore, the laser emitting unit
1-n  1-n
22が移動すべき被加工物 12に対する合焦点位置 Xpは、該ピーク値 PK群の算術平 均或いは、その中の平均値に最も近いピーク値 PK、またはその他の最適手段によつ て得られた数値を採用することになる。  The in-focus position Xp for the workpiece 12 to be moved by 22 is obtained by the arithmetic average of the peak value PK group or the peak value PK closest to the average value among them, or other suitable means. Will be adopted.
[0041] 次に画像処理装置 44で行われる画像処理について詳述する。被加工物 12 (良品 )をカメラで撮像したときに被加工物 12の良 ·不良立体的形状を検出することの出来 る可能性の高 、合焦点検出位置 Ρ を予め 8箇所 (Ρ— 1〜8)設定して 、る場合に ついて、図 4を用いて説明する。勿論これに限られず、合焦点検出位置 P は複数で Next, the image processing performed by the image processing device 44 will be described in detail. When the workpiece 12 (non-defective product) is imaged by a camera, there is a high possibility that the non-defective three-dimensional shape of the workpiece 12 can be detected. ~ 8) If you set This will be described using FIG. Of course, the invention is not limited to this, and the in-focus point detection position P is plural
1-n あり、実用上は 5箇所以上である。  There are 1-n, which are more than 5 in practical use.
[0042] カメラ 34で撮像された画像 (移動範囲内の移動中の小刻みにされた撮像位置丁に おける画像;小刻み状態を図 5(a)〜(c)に示す。)ごとに、前述の 8箇所の合焦点検出 位置 (P— 1〜8)における画素 (またはその近傍の画素を含めた画素群;本明細書で は単に必要のない限り単に「画素」という。)の合焦点検出データを順次蓄積し、その 他の部分の画素の合焦点検出データを破棄する。全ての画像について合焦点検出 位置 (P— 1〜8)における画素の合焦点検出データの蓄積が終了すると、次に、各 合焦点検出位置 (P— 1〜8)ごとに合焦点検出データの変化量をプロットして合焦点 検出波形 Wを描く事になる。  [0042] For each of the images captured by the camera 34 (images at the moving image capturing position in motion within the movement range; the status is shown in FIGS. 5 (a) to 5 (c)). Focus detection data for pixels at eight focus detection positions (P-1 to 8) (or a group of pixels including pixels in the vicinity; in this specification, simply referred to as "pixels" unless necessary. Are sequentially stored, and the in-focus point detection data of the other part of the pixel is discarded. When the accumulation of focus detection data of pixels at the focus detection positions (P-1 to 8) for all images is completed, next, for each focus detection position (P-1 to 8), The amount of change is plotted to draw the in-focus detection waveform W.
[0043] 即ち、各合焦点検出位置 (P— 1〜8)における画素の合焦点検出データ (本発明の 場合は輝度または濃淡である。)をカメラ 34で撮像した順 (つまり、マウント 11に近い 位置力 遠い位置への順)にグラフ上にプロットして合焦点検出波形 Wを得る。具体 例に合焦点検出位置 (P— 1)における合焦点検出波形 Wを得る場合について図 5を 用いて説明する。  That is, the in-focus point detection data (in the case of the present invention, the brightness or gray level) of each pixel at each in-focus point detection position (P-1 to 8) is picked up by the camera 34 (ie, the mount 11). The in-focus detection waveform W is obtained by plotting on the graph in the order of near position force and far position). A case of obtaining the in-focus point detection waveform W at the in-focus point detection position (P-1) will be described as a specific example with reference to FIG.
[0044] 図 5における二点鎖線は、カメラ 34の移動 (=連続移動或いは撮影中は停止する 間歇移動)中にカメラ 34で被加工物 12を撮像したときにおけるレーザ出射部 22の位 置から刻々変化して!/、る撮像位置 Tを示して 、る。  The two-dot chain line in FIG. 5 indicates the position of the laser emission unit 22 when the workpiece 34 is imaged by the camera 34 during the movement of the camera 34 (= continuous movement or movement while stopping during photographing). Varies from moment to moment! /, Indicates an imaging position T.
[0045] 本実施例では、撮像位置 T (図 5中の二点鎖線)と合焦点検出位置 (P— 1)との交 点の画素の輝度を合焦点検出データとして録取しており、レーザ出射部 22の焦点が 被力卩ェ物 12の角部 Cに近い位置にあるほどピントがあっているため画素が検出する 輝度 (または濃淡)が高くなる。  In the present embodiment, the luminance of the pixel at the intersection of the imaging position T (two-dot chain line in FIG. 5) and the in-focus point detection position (P-1) is recorded as in-focus point detection data. As the focal point of the laser emitting unit 22 is closer to the corner C of the object 12 to be focused, the luminance (or gray level) detected by the pixel is higher because the image is in focus.
[0046] 従って、移動範囲におけるこれらの合焦点検出データ (輝度等)をプロットすると、当 然、図 5 (a)に示すように、レーザ出射部 22の焦点が被力卩ェ物 12の角部 Cに近い位 置 (高さ)にあるほど合焦点検出データ (輝度等)がピークとなる合焦点検出波形 Wが 生成される。換言すれば、この合焦点検出波形 Wのピーク値 PKがレーザ出射部 22 の焦点距離に一致する合焦点位置 (高さ) Xpであると判定することが出来る。  Therefore, when these in-focus point detection data (brightness etc.) in the movement range are plotted, it is natural that the focal point of the laser emitting part 22 is the angle of the force-controlled object 12 as shown in FIG. 5 (a). An in-focus point detection waveform W is generated in which the in-focus point detection data (such as the brightness) peaks as the position (height) is closer to the part C. In other words, it can be determined that the peak value PK of the in-focus point detection waveform W is the in-focus position (height) Xp that matches the focal length of the laser emission unit 22.
[0047] また、仮に角部 C力 図 5 (b)に示すように、図 5 (a)よりも低い位置にある場合、合 焦点検出データ (輝度)のピーク値 PKは低い位置で生じることになる。さらに、被加工 物 12が存在しない場合、つまり合焦点位置が存在しない場合は、図 5 (c)に示すよう に、ピーク値 ΡΚを生じない。なお、レーザ出射部 22の焦点深度 (ピントが合う範囲)或 いはそれ以下の数値 (例えば焦点深度の 1Z2)を閾値として設定し、ピーク値 ΡΚを 形成するべき被加工物 12からの高さ位置を決めておくと図 5(a)の場合はピーク値 Ρ が閾値範囲内となり良品と判定される。 In addition, as shown in FIG. 5 (b), if the corner C force is lower than that in FIG. The peak value PK of the focus detection data (brightness) will occur at a low position. Furthermore, when the workpiece 12 is not present, that is, when the in-focus position is not present, no peak value 生 じ is generated as shown in FIG. 5 (c). Note that the depth of focus of the laser emission unit 22 (the range in which it is in focus) or a numerical value smaller than that (for example, 1Z2 of the depth of focus) is set as the threshold, and the height from the workpiece 12 to form the peak value ΡΚ. If the position is determined, in the case of FIG. 5 (a), the peak value が falls within the threshold range and it is judged as a non-defective product.
[0048] 一方、図 5(b)の場合はピーク値 ΡΚが閾値範囲外となり、被加工物 12の厚みが規 格外であることが分かる。更に、図 5(c)の場合はピーク値 ΡΚが閾値に到達出来ない のである力も被力卩ェ物 12なしと判定されることになる。以上のように図 5(a)の場合を 良品とすると、ピーク値 ΡΚの被力卩ェ物 12からの高さを検出することにより、被加工物 12の高さ関係の良否も判定出来る。  On the other hand, in the case of FIG. 5 (b), it can be seen that the peak value 外 is out of the threshold range, and the thickness of the workpiece 12 is out of the standard. Furthermore, in the case of FIG. 5 (c), a force whose peak value ΡΚ can not reach the threshold value is also judged to be without the object 12 to be impacted. As described above, if the case of FIG. 5A is regarded as a non-defective product, by detecting the height from the force-applying object 12 of the peak value, it is possible to judge whether the height relationship of the workpiece 12 is good or not.
[0049] このような関係を考慮して図 6を参照する。図 6に示すように、被加工物 12の合焦点 検出位置 (Ρ— 1〜8)における合焦点検出波形 Wが全て同じ位置 (高さ関係も良品 範囲に入っているとする)においてピーク値 ΡΚを有する形状を呈する場合、被加工 物 12の形状は 4隅および 4辺において曲がりや跳ね上がりなど歪のない良品である と判定することが出来る。  With reference to such a relationship, reference is made to FIG. As shown in FIG. 6, the peak value at the same position (assuming that the height relationship is also within the non-defective range) at the in-focus detection waveform W at the in-focus detection position (Ρ 1 to 8) of the workpiece 12 In the case of exhibiting a shape having a wrinkle, it is possible to determine that the shape of the workpiece 12 is a good product free of distortion such as bending or jumping at the four corners and four sides.
[0050] 仮に、被加工物 12が加工領域に存在しない場合は、図 7に示すように、合焦点検 出位置 (Ρ— 1〜8)における波形のピークが閾値を越えず、し力も被力卩ェ物 12から遠 ざ力るにつれて合焦点検出データ (輝度)が次第に小さくなり、合焦点検出データ (輝 度)を検知することで被加工物 12の有無もたちどころに検出することが出来る。  If the workpiece 12 is not present in the processing area, as shown in FIG. 7, the peak of the waveform at the in-focus detection position (Ρ1 to 8) does not exceed the threshold, and the force is also not processed. The in-focus point detection data (brightness) gradually decreases as the distance from the mechanical object 12 increases, and the presence or absence of the workpiece 12 can be detected promptly by detecting the in-focus point detection data (brightness). It can.
[0051] また、被加工物 12が、図 8に示すように、反った形状で一方の端部が高い位置にあ る場合は、合焦点検出位置 (Ρ— 1〜3)におけるピーク値 ΡΚに比べて、合焦点検出 位置 (Ρ— 5〜7)におけるピーク値 ΡΚが図中上側に位置する(=高い位置に合焦点 位置がある) t 、つた結果が得られる。  Further, as shown in FIG. 8, when one end of the workpiece 12 is warped and located at a high position, the peak value at the focus detection position (に お け る 1 to 3) is Ρ. The peak value に お け る at the in-focus point detection position (Ρ5 to 7) is located on the upper side in the figure (= there is an in-focus point at a high position), and the result is obtained.
[0052] また、被加工物 12が、図 9に示すように、下向きに凸に反った形状である場合は、 合焦点検出位置 (P— 1〜3、 5〜7)におけるピーク値 PKに比べて、合焦点検出位 置(P— 4および 8)におけるピーク値 PKが図中下側に位置する t 、つた結果が得ら れ、 8点測定における被加工物 12の反りの状態を知ることが出来る。ただし、被加工 物 12の中央を測定しないので、被力卩ェ物 12が椀状または下向き椀状に歪んでいる ことまでは検出出来ない。 In addition, as shown in FIG. 9, when the workpiece 12 has a shape that curves downward and is convex, the peak value PK at the focus detection position (P-1 to 3, 5 to 7) is obtained. In comparison, the peak value PK at the focus detection position (P-4 and 8) is t located at the lower side in the figure, and the result is obtained to know the warp condition of the workpiece 12 in the 8-point measurement. I can do it. However, processed Since the center of the object 12 is not measured, it is impossible to detect that the force object 12 is distorted like a bowl or a downward bowl.
[0053] さらに、被加工物 12が、図 10に示すように、上向き凸に反っている場合は、合焦点 検出位置 (P— 1〜3、 5〜7)におけるピーク値 PKに比べて、合焦点検出位置 (P— 4 および 8)におけるピーク位置が図中上側に位置すると 、つた結果が得られる。 Furthermore, as shown in FIG. 10, when the workpiece 12 is warped upward and convex, as compared with the peak value PK at the in-focus detection position (P-1 to 3, 5 to 7), When the peak position at the in-focus point detection position (P-4 and 8) is located on the upper side in the figure, the result is obtained.
[0054] なお、本実施例では合焦点検出位置 P を被加工物 12の各角部と各辺の 8箇所 In the present embodiment, the in-focus position P is detected at eight corners of the workpiece 12 and eight sides.
1-n  1-n
設定したが、少なくとも被加工物 12の中央と各角部の 5点を測定すれば、反りや椀状 或いは下向き椀状に歪んでいることが分かる。また、被加工物 12の各角部と各辺お よび中央の 9点を測定することで更に正確な測定が可能となる。さらに、前記 9点に 加え、被力卩ェ物 12の平面上の任意の点を更に測定すれば、被加工物 12の平面上 の欠陥を検出することが出来る。即ち、合焦点検出位置 P の  Although it was set, if at least five points at the center and each corner of the workpiece 12 are measured, it can be understood that it is warped or wrinkled or distorted downward. Further, more accurate measurement is possible by measuring each corner of the workpiece 12, each side and nine points in the center. Furthermore, if an arbitrary point on the plane of the workpiece 12 is further measured in addition to the nine points, defects on the plane of the workpiece 12 can be detected. That is, in the in-focus point detection position P
1-n 数が多いほど、より立 体的不良形状の被加工物 12を判定する精度を高めることが出来る。  As the 1-n number is larger, the accuracy in determining the workpiece 12 with a more or less defective shape can be enhanced.
[0055] 例えば、合焦点検出位置 P を 9箇所設定した場合について、図 9を用いて説明す For example, the case where nine in-focus detection positions P are set will be described with reference to FIG.
1-n  1-n
ると、被加工物 12の中央部に 9番目の合焦点検出位置 (P— 9)を設定することにより 、合焦点検出位置 (P— 9)力 は、合焦点検出位置 (P— 4および 8)と同様の波形を 得ることが出来る。したがって、合焦点検出位置を 8箇所設定した場合には、図 9に 示す不良形状の被加工物 12の中央部が凹んでいるの力、突出した形状になってい るのかが不明であるが、繰り返しになるが、合焦点検出位置を 9箇所設定することに より、被加工物 12の上面は凹凸のない曲面である可能性が高いと判定することが出 来る。  Then, by setting the ninth in-focus point detection position (P-9) in the central part of the workpiece 12, the in-focus point detection position (P-9) is the in-focus point detection position (P-4 and The same waveform as in 8) can be obtained. Therefore, when eight focus detection positions are set, it is unclear whether the central portion of the workpiece 12 of the defective shape shown in FIG. 9 is concave or not. Again, by setting nine focus detection positions, it can be determined that the upper surface of the workpiece 12 is highly likely to be a curved surface without irregularities.
[0056] 次に、本実施例に係るレーザカ卩ェ装置 10を用いて被力卩ェ物 12をカ卩ェする方法に ついて、図 11に示すブロック図に基づき説明する。なお、当該方法が開始される際、 被力卩ェ物 12の X— Y方向(加工用レーザ Xおよび照明光 Yの出射方向に直交する 方向)の位置決めはすでに完了している。  Next, a method for covering the object 12 using the laser beam device 10 according to the present embodiment will be described based on a block diagram shown in FIG. When the method is started, the positioning of the force receiving object 12 in the XY direction (direction orthogonal to the emitting direction of the processing laser X and the illumination light Y) has already been completed.
[0057] まず、照明装置 16から照明光 Yを出射する(照明光出射ステップ [S— l] )。このス テツプでは、照明装置 16から出射した照明光 Yを、光ファイバ 21を通して照明光入 射口 42から管状体 25内部に入射する。管状体 25内部に入射された照明光 Yは、照 明光半反射ミラー 30で反射して出射口 36の方向に向きを変え、対物レンズ系 26を 通過する際に屈折された後、被加工物 12に向けて照射され、被加工物 12の全面を 均等の明るさで照らす。 First, illumination light Y is emitted from the illumination device 16 (illumination light emission step [S−l]). In this step, the illumination light Y emitted from the illumination device 16 is incident on the inside of the tubular body 25 from the illumination light entrance 42 through the optical fiber 21. The illumination light Y entering the inside of the tubular body 25 is reflected by the illumination light semi-reflecting mirror 30 to turn in the direction of the exit 36, and the objective lens system 26 After being refracted when passing through, it is irradiated toward the workpiece 12 and illuminates the entire surface of the workpiece 12 with uniform brightness.
[0058] 次に、レーザ出射部駆動装置 46によりレーザ出射部 22を予め設定した最も被カロ ェ物 12に近 、位置に移動した後、レーザ出射部 22を被加工物 12から離間する方 向に移動範囲だけ連続或いは間歇移動する。当該移動に伴い、被加工物 12からの 異なる離間距離において、予め設定した枚数の被加工物 12の画像をカメラ 34で撮 像し、画像処理装置 44に出力する(被加工物画像の撮像ステップ [S— 2])。なお、 本実施例では、画像処理装置 44に対して、異なる離間距離において撮影したときの それぞれの画像をレーザ出射部 22の位置情報と共にレーザ出射部駆動装置 46か ら出力し、画像処理装置 44で記録する。  Next, after moving the laser emission unit 22 to a position closest to the preset target object 12 by the laser emission unit driving device 46 and moving the laser emission unit 22 away from the workpiece 12, Move continuously or intermittently by the movement range. Along with the movement, images of the preset number of workpieces 12 are imaged by the camera 34 at different separation distances from the workpiece 12 and output to the image processing device 44 (image capturing step of workpiece images) [S-2]). In the present embodiment, the image processing apparatus 44 outputs each image taken at different separation distances from the laser emitting unit driving device 46 together with the position information of the laser emitting unit 22, and the image processing apparatus 44 Record with
[0059] そして、前述したように画像処理装置 44で被加工物 12の形状の良否を判定すると ともに合焦点位置を判定し (合焦点位置判定ステップ [S— 3])、被加工物 12が不良 形状であると判定する場合は、以降のレーザ加工を中止し、次の被対象物について 最初からレーザ加工工程を開始する。  Then, as described above, the image processing device 44 determines the quality of the shape of the workpiece 12 and determines the in-focus position (focused position determination step [S-3]). If it is determined that the shape is a defect, the laser processing thereafter is stopped, and the laser processing process is started from the beginning for the next object.
[0060] 一方、被加工物 12を良品と判断する場合は、ピーク値 PKに対応する画像を撮影 したときのレーザ出射部 22の位置、つまり合焦点位置までレーザ出射部 22をレーザ 出射部駆動装置 46で移動する(レーザ出射部移動ステップ [S— 4])。本実施例で は、前述のように被加工物 12を撮影した画像毎のレーザ出射部 22の位置情報が画 像処理装置 44に記録されて 、るので、合焦点検出データのピーク値 PKに対応する 画像を撮影したときの当該位置情報に基づいてレーザ出射部 22を合焦点位置まで 移動することになるが、ピーク値 PKは複数個 (最小 5個)あるので、例えばこれらの算 術平均或 、はピーク値 PKの内の中心に近 、値またはそれ以外の最適方法で求め た値をレーザ出射部 22の合焦点位置 Xpとし、この位置までレーザ出射部 22を移動 させる事になる。前記ピーク値 PKはいずれもレーザ出射部 22の焦点深度内に存在 するため、どの値を使用してもピントがぼけることはないが、算術平均値を使用する事 が好ましい。  On the other hand, when the workpiece 12 is determined to be non-defective, the laser emitting unit 22 is driven to the position of the laser emitting unit 22 when the image corresponding to the peak value PK is taken, that is, the in-focus position. It moves with the device 46 (laser emitting part moving step [S-4]). In the present embodiment, as described above, the position information of the laser emission unit 22 for each image of the workpiece 12 is recorded in the image processing device 44, so the peak value PK of the focus detection data is obtained. The laser emission unit 22 is moved to the in-focus position based on the position information when the corresponding image is taken, but there are a plurality (five or more) of peak values PK. Alternatively, a value determined by a value near the center of the peak value PK or a value obtained by an optimal method other than that is used as the in-focus position Xp of the laser emission unit 22, and the laser emission unit 22 is moved to this position. Since all the peak values PK are within the depth of focus of the laser emitting unit 22, the focus does not get out of focus by any value, but it is preferable to use an arithmetic average value.
[0061] レーザ出射部 22の移動が完了すると、最後に加工用レーザ発生装置 14で加工用 レーザ Xを発生させ、光ファイバ 20を経由して加工用レーザ出射口 40からカ卩ェ用レ 一ザ Xを管状体 25内部に出射し、被加工物 12をレーザ加工する(レーザカ卩エステツ プ [S— 5])。本実施例では、加工用レーザ発生装置 14から発生した加工用レーザ X を光ファイバ 20に導き、加工用レーザ入射口 40から管状体 25内部に入射する。そし て、入射した力卩ェ用レーザ Xを力卩ェ用レーザ半反射ミラー 28で反射することによって 出射口 36の方向に向きを変え、対物レンズ系 26を通過する際に集光させて被加工 物 12に出射する。このとき、レーザ出射部 22は、事前にレーザ出射部 22の合焦点 位置に正確に移動されているので、被力卩ェ物 12に出射された力卩ェ用レーザ Xの焦 点は、被力卩ェ物 12対して高い精度で合っており、加工用レーザ Xのエネルギー密度 が最大となる焦点位置で被加工物 12を加工することが出来る。 When the movement of the laser emission part 22 is completed, the processing laser generator 14 finally generates the processing laser X, and the light from the processing laser emission port 40 via the optical fiber 20 is used for laser processing. The first X is emitted into the inside of the tubular body 25, and the workpiece 12 is laser processed (laser cover [S-5]). In the present embodiment, the processing laser X generated from the processing laser generator 14 is guided to the optical fiber 20 and enters the inside of the tubular body 25 from the processing laser inlet 40. Then, the incident laser beam X is reflected by the laser beam semi-reflecting mirror 28 to change the direction to the direction of the emission port 36, and the beam is condensed when passing through the objective lens system 26. Emit to work piece 12. At this time, since the laser emission unit 22 is accurately moved to the in-focus position of the laser emission unit 22 in advance, the focal point of the laser X for laser light emitted to the object 12 to be driven is The workpiece 12 can be machined at a focal position where it matches with the workpiece 12 with high accuracy and the energy density of the processing laser X is maximum.
なお、本実施例では、対物レンズ系 26を含めたレーザ出射部 22全体をレーザ出 射部駆動装置 46で動かすことにより焦点位置を調整しているが、対物レンズ系 26の みを移動させることにより焦点位置を調整してもよい。また、本実施例では、レーザ出 射部 22の管状体 25に対してノイブを用いている力 これに限定されるわけではなく 、角ノイブなどを用いてもよい。また、本実施例では、照明光 Yに可視光が用いられ ているが、エネルギー密度が低く被力卩ェ物 12を傷つけるおそれがない光線であれば 、他の光線を用いてもよい。  In the present embodiment, the focal position is adjusted by moving the entire laser emission unit 22 including the objective lens system 26 by the laser emission unit driving device 46, but only the objective lens system 26 is moved. The focal position may be adjusted by Further, in the present embodiment, the force used for the tubular body 25 of the laser emission unit 22 is not limited to this. For example, an angular nose or the like may be used. Further, in the present embodiment, visible light is used as the illumination light Y, but other light beams may be used as long as they have a low energy density and there is no risk of damaging the object 12.

Claims

請求の範囲 [1] (a)加工用レーザを被加工物の加工位置へ出射して前記被加工物を加工するレー ザ加工装置であって、 (b)前記加工用レーザを発生させる加工用レーザ発生装置、 (c)前記被加工物を照らす照明光を発光する照明装置、 (d)前記加工用レーザ発生装置および前記照明装置が光学的に接続され、前記カロ ェ用レーザおよび前記照明光を前記被加工物に向けて出射するレーザ出射部、(e)前記レーザ出射部を前記被加工物に対して近接離間させるレーザ出射部駆動 装置、(f)前記レーザ出射部駆動装置により前記被加工物に対して前記レーザ出射 部を近接離間方向に移動させ、前記被加工物力 の前記レーザ出射部の離間距離 が異なる撮像位置にて前記照明光で照らされた前記被加工物を順次撮像するカメラ (g)異なる撮像位置で順次撮像された複数の画像にお!ヽて、前記被加工物の形状 検知に用いるために予め設定された画面内の複数の合焦点検出位置に対応する位 置の画素にて検出した合焦点検出データを順次取り出し、前記合焦点検出データの 変化に基づく合焦点検出波形を前記合焦点検出位置毎にそれぞれ形成して前記各 合焦点検出波形力 割り出された前記各合焦点検出位置における前記各合焦点検 出波形のピーク値を比較し、 [1] (a) A laser processing apparatus for processing a workpiece by emitting a processing laser to a processing position of the workpiece, and (b) for processing to generate the processing laser Laser generator, (c) illumination device for emitting illumination light for illuminating the workpiece, (d) the laser generator for processing and the illumination device are optically connected, the laser for calorie and the illumination light A laser emitting unit for emitting the laser beam toward the workpiece, (e) a laser emitting unit driving device for moving the laser emitting unit closer to or away from the workpiece, (f) the laser emitting unit driving device The laser emitting unit is moved relative to the workpiece in the approaching and separating direction, and the workpiece illuminated by the illumination light is sequentially imaged at imaging positions where the separation distance of the laser emitting unit of the workpiece force is different. Camera (g) Sequential imaging at different imaging positions Focus detection data detected by pixels at positions corresponding to a plurality of in-focus detection positions in the screen, which are preset for use in detecting the shape of the workpiece, Are sequentially taken out, in-focus detection waveforms based on changes in the in-focus detection data are formed for each of the in-focus detection positions, and each in-focus detection waveform is calculated. Compare the peak values of the focus detection waveform,
(g-1)前記ピーク値のすべてが予め決定された範囲内にある場合は、前記被加工 物を良品と判定して前記被加工物に対する前記レーザ出射部の合焦点位置まで前 記レーザ出射部を移動させ、然る後、前記レーザ出射部を作動させて前記被加工物 に向けてレーザ出射によるレーザ加ェを行わせる指令を前記レーザ射出部に出力し  (g-1) If all of the peak values are within a predetermined range, the workpiece is determined as a non-defective product, and the laser beam is emitted to the in-focus position of the laser beam emitting portion with respect to the workpiece. Move the part, and then operate the laser emitting part to output a command for performing laser beam irradiation by the laser emitting to the workpiece to the laser emitting part
(g-2)前記ピーク値の 1が予め決定された範囲力 外れた場合は、前記被加工物を 不良品と判定してレーザ出射を行わないようにする指令を前記レーザ出射部に出力 する画像処理装置とを備える、 (g-2) When the peak value 1 is out of a predetermined range of force, a command is issued to the laser emitting unit to determine that the workpiece is a defective product and to prevent laser emission. And an image processing device,
(h)レーザ加工装置。  (h) Laser processing apparatus.
[2] 画像処理の前記合焦点検出位置が、 (a) 前記被加工物の中央と各角部の 5点、 [2] The focus detection position of image processing is (a) The center of the workpiece and five points at each corner,
(b) 前記被加工物の各角部と各辺の 8点、  (b) each corner of the workpiece and eight points on each side,
(c) 前記被カ卩ェ物の各角部と各辺および中央の 9点、或いは  (c) nine corners of each corner and each side and center of the cover object, or
(d) 前記 9点に加えた前記被加工物の平面上の任意の点である ことを特徴とする請求の範囲第 1項に記載のレーザ加工装置。  (d) The laser processing apparatus according to claim 1, which is an arbitrary point on the plane of the workpiece added to the nine points.
前記加工用レーザが、 2次以上の高次高調波であることを特徴とする 第 1項または第 2項に記載のレーザ加工装置。  The laser processing apparatus according to claim 1 or 2, wherein the processing laser is a second or higher harmonic.
PCT/JP2007/062903 2006-06-30 2007-06-27 Laser machining apparatus WO2008001808A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780014040XA CN101426611B (en) 2006-06-30 2007-06-27 Laser machining apparatus
JP2008522606A JP4852098B2 (en) 2006-06-30 2007-06-27 Laser processing equipment
KR1020087027438A KR101376995B1 (en) 2006-06-30 2008-11-10 Laser machining apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006182398 2006-06-30
JP2006-182398 2006-06-30
JP2006338772 2006-12-15
JP2006-338772 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008001808A1 true WO2008001808A1 (en) 2008-01-03

Family

ID=38845573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062903 WO2008001808A1 (en) 2006-06-30 2007-06-27 Laser machining apparatus

Country Status (4)

Country Link
JP (1) JP4852098B2 (en)
KR (1) KR101376995B1 (en)
CN (1) CN101426611B (en)
WO (1) WO2008001808A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064334A (en) * 2008-09-10 2010-03-25 Trinity Ind Corp Surface decorating system of automotive decorative part
JP2015037076A (en) * 2013-08-14 2015-02-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Sealing apparatus and substrate sealing method
JP2020099912A (en) * 2018-12-20 2020-07-02 ブラザー工業株式会社 Laser marker

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256795A (en) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd Processing device
JP5947571B2 (en) * 2012-03-08 2016-07-06 株式会社アマダホールディングス Welding robot and gap adjustment method for welding robot
KR101362029B1 (en) * 2012-05-30 2014-02-13 주식회사 현대케피코 Asymmetric laser welding equipment
JP7088761B2 (en) * 2018-07-05 2022-06-21 浜松ホトニクス株式会社 Laser processing equipment
DE102018119313B4 (en) * 2018-08-08 2023-03-30 Rogers Germany Gmbh Process for processing a metal-ceramic substrate and installation for carrying out the process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571594A (en) * 1980-06-03 1982-01-06 Nec Corp Laser working machine
JPH01107990A (en) * 1987-10-21 1989-04-25 Komatsu Ltd Automatic focus detector
JPH0553786U (en) * 1991-12-28 1993-07-20 村田機械株式会社 Head height controller for laser processing machine
JPH1123952A (en) * 1997-06-30 1999-01-29 Nec Corp Automatic focusing device and laser beam machining device using the same
JP2000263273A (en) * 1999-03-19 2000-09-26 Amada Co Ltd Teaching method and its device for yag laser beam machine
JP2000326085A (en) * 1999-05-20 2000-11-28 Nec Corp Laser beam machine and inspection device
JP2002321080A (en) * 2001-04-24 2002-11-05 Tokyo Instruments Inc Automatic focussing apparatus for laser precision processing
JP2004066340A (en) * 2002-07-31 2004-03-04 Miyachi Technos Corp Laser weld monitoring system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166486C (en) * 2001-06-27 2004-09-15 西北工业大学 Material feeding method for 3D laser forming of 3D metal part

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571594A (en) * 1980-06-03 1982-01-06 Nec Corp Laser working machine
JPH01107990A (en) * 1987-10-21 1989-04-25 Komatsu Ltd Automatic focus detector
JPH0553786U (en) * 1991-12-28 1993-07-20 村田機械株式会社 Head height controller for laser processing machine
JPH1123952A (en) * 1997-06-30 1999-01-29 Nec Corp Automatic focusing device and laser beam machining device using the same
JP2000263273A (en) * 1999-03-19 2000-09-26 Amada Co Ltd Teaching method and its device for yag laser beam machine
JP2000326085A (en) * 1999-05-20 2000-11-28 Nec Corp Laser beam machine and inspection device
JP2002321080A (en) * 2001-04-24 2002-11-05 Tokyo Instruments Inc Automatic focussing apparatus for laser precision processing
JP2004066340A (en) * 2002-07-31 2004-03-04 Miyachi Technos Corp Laser weld monitoring system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064334A (en) * 2008-09-10 2010-03-25 Trinity Ind Corp Surface decorating system of automotive decorative part
JP2015037076A (en) * 2013-08-14 2015-02-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Sealing apparatus and substrate sealing method
JP2020099912A (en) * 2018-12-20 2020-07-02 ブラザー工業株式会社 Laser marker
JP7003903B2 (en) 2018-12-20 2022-01-21 ブラザー工業株式会社 Laser marker

Also Published As

Publication number Publication date
KR20090030254A (en) 2009-03-24
CN101426611A (en) 2009-05-06
JPWO2008001808A1 (en) 2009-11-26
JP4852098B2 (en) 2012-01-11
KR101376995B1 (en) 2014-03-24
CN101426611B (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4852098B2 (en) Laser processing equipment
JP3961220B2 (en) Printed circuit board inspection equipment
JP6797481B2 (en) Semiconductor ingot inspection method, inspection equipment and laser processing equipment
KR101254377B1 (en) Mold removing method
EP1161126B1 (en) Laser processing method and equipment for printed circuit board
JP4640174B2 (en) Laser dicing equipment
US20130235387A1 (en) Three-dimensional measuring device and method
JPWO2006082639A1 (en) Mark image processing method, program, and apparatus
JP2002361464A (en) Method and device for laser beam machining
JP4594256B2 (en) Laser processing system and laser processing method
TWI667471B (en) Apparatus and method for repairing printed circuit boards
JPH10122823A (en) Positioning method and height measuring device using the method
CN208079513U (en) Device for repairing printed circuit board
KR101937212B1 (en) A Laser Marking Apparatus Having a Structure of Detecting a Focus Length and a Method for Adjusting the Focus Length Automatically and Detecting a Marking Defect
JP2663569B2 (en) Laser processing equipment
KR20240074984A (en) Board Inspection Apparatus Using Multi Variable-Focus Optical System
JP5142916B2 (en) Laser processing method and laser processing apparatus
JP2004223553A (en) Laser beam machining method and apparatus
JP2001050862A (en) Measuring apparatus for aberration of optical-pickup objective lens
JP2000208850A (en) Mirror angle automatic control method and device of laser oscillator
CN110392490B (en) Apparatus and method for repairing printed circuit board
JPH07208917A (en) Automatic focusing method and device
KR101138648B1 (en) High speed substrate inspection apparatus and method using the same
JP2822698B2 (en) Positioning device and laser processing device
JP7388917B2 (en) laser processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522606

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780014040.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087027438

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767705

Country of ref document: EP

Kind code of ref document: A1