WO2007147662A1 - Verfahren zur reifenzustandserkennung - Google Patents

Verfahren zur reifenzustandserkennung Download PDF

Info

Publication number
WO2007147662A1
WO2007147662A1 PCT/EP2007/053931 EP2007053931W WO2007147662A1 WO 2007147662 A1 WO2007147662 A1 WO 2007147662A1 EP 2007053931 W EP2007053931 W EP 2007053931W WO 2007147662 A1 WO2007147662 A1 WO 2007147662A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
signal
roadway
vehicle
determined
Prior art date
Application number
PCT/EP2007/053931
Other languages
English (en)
French (fr)
Inventor
Thorsten Pannek
Franz Laermer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2009513622A priority Critical patent/JP2009539667A/ja
Priority to US12/227,368 priority patent/US8332092B2/en
Priority to EP07728388A priority patent/EP2035243A1/de
Publication of WO2007147662A1 publication Critical patent/WO2007147662A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • B60T8/1725Using tyre sensors, e.g. Sidewall Torsion sensors [SWT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/064Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle comprising tyre mounted deformation sensors, e.g. to determine road contact area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/14Rough roads, bad roads, gravel roads

Definitions

  • the present invention relates to a device, a method and a computer program for detecting the state of a vehicle tire and / or a roadway, wherein at least one arranged inside the tire sensor, in particular an acceleration sensor, generates a signal associated with physical sizes of the vehicle tire and / or the roadway ,
  • in-vehicle devices for monitoring the tire condition, in particular for tire air pressure monitoring.
  • These devices have a fixed device which cooperates with a device moving together with the respective wheel of the vehicle, so that monitoring of the air pressure can take place during vehicle operation.
  • the moving device senses by appropriate means the air pressure and transmits the measured values by a tactless signal to the fixed device, which informs the driver when the air pressure falls below a certain value.
  • the object of the present invention is therefore to specify a method, a device and a computer program for detecting the state of a vehicle tire and / or a roadway, by means of which a powerful system for determining the tire and roadway properties can be realized in a simple and cost-effective manner with high reliability can.
  • a method for detecting the state of a vehicle tire and / or a roadway wherein at least one arranged inside the tire sensor, in particular an acceleration sensor, generates a signal that is associated with physical sizes of the vehicle tire and / or the roadway, based on the signal a tire condition and / or properties of the road, in particular the road surface, are determined.
  • the periods of passage of the "free" circumference of the tire (T - ⁇ ), and of the contact area with the roadway ⁇ are accurately detected and analyzed with the aid of the acceleration signals, where T is the period duration, with only the change of one large acceleration signal to a relatively small signal or to a disturbed rapidly fluctuating signal, which characterizes the contact of the acceleration sensor with the road.
  • the signal component is determined in a simple and cost-effective manner and subsequently analyzed, which is decisive for the tire condition and for the roadway condition, namely the signal component during which the sensor rolls over the roadway in each case.
  • the tire condition and for the roadway condition namely the signal component during which the sensor rolls over the roadway in each case.
  • the sensor generates a signal which represents periodically alternating phases of a centripetal acceleration, the signal being of a physical magnitude in phases in which the signal falls below a lower limit (almost zero).
  • a lower limit which represents the tire condition and / or the properties of the road, in particular the road surface, is assigned.
  • the lower limit is chosen so that the signal strength is significantly smaller than in the phases in which the acceleration sensor is not in the area of contact with the road surface.
  • the time range is filtered out, in which the acceleration sensor is at the contact surface with the road.
  • the acceleration sensor is mounted inside the tread of the tire such that periodically alternating phases of centripetal acceleration can be detected with it.
  • the acceleration sensor determines acceleration signals which are supplied to an evaluation device provided within the vehicle tire or vehicle interior, wherein display means are provided which, in response to a signal from the evaluation device, identify the tire and / or tire Show road condition.
  • a signal spectrum is obtained from the signal, wherein the determined signal spectrum at least partially contains vibrations which are generated by the movement of a part of the tread of the vehicle tire adjacent to the acceleration sensor when rolling on the roadway. It is advantageous that the signal spectrum determined by the acceleration sensor contains all vibrations which are generated by the movement of a part of the outer tread of the vehicle tire adjacent to the acceleration sensor when rolling over the roadway. This can be both acceleration values in the radial direction and / or those parallel to the roadway or to the direction of travel.
  • the signal spectrum is filtered and the signal components determined thereby are analyzed according to their signal strength in order to obtain quantitative statements regarding the tire condition and / or the road condition.
  • This analysis can be performed using dynamically adaptable to the wheel speed filter components or a Fourier analyzer.
  • a Fourier analysis or other type of spectral filtering and signal strength analysis can be carried out within the tire or preferably centrally in the control unit in the vehicle. Prior to transmission to the central controller, it is advantageous if the data is compressed appropriately to reduce the amount of data.
  • a desired tire signal strength and a desired frequency spectra of the signal spectrum are assigned to a vehicle tire or a tire profile and an actual signal Signal strength and an actual frequency spectrum of the signal spectrum is determined and from this a profile height and material properties of the vehicle tire can be determined by a comparison with the desired signal strength and the desired frequency spectra.
  • the desired signal strength and the desired frequency spectra are a characteristic of the respective vehicle tire or the tire type or the series of tires.
  • the profile height and the material properties of the vehicle tire are determined on the basis of the signal strength and the frequency spectra of the signals characteristic of the tire profile, wherein the vehicle characteristics, in particular irregularities, can be determined on the basis of low-frequency signal components detected by the acceleration sensor.
  • the material properties eg the elasticity of the rubber, can be estimated so that signs of wear or embrittlement can be recognized early. Distortions of the tire can be detected at least when they relate to the environment of the acceleration sensor. The rolling behavior on the roadway can also be analyzed.
  • the roadway characteristics in particular obstacles and irregularities, can be determined.
  • the road condition can be roughly estimated, in particular, a very quiet (smooth) roadway can give an early indication of dangerous water retention or ice formation on the road.
  • a tire pressure in the vehicle tire is determined on the basis of the signal.
  • the acceleration sensor is used for measured value recording, wherein it is oriented in the tire such that it determines a centripetal acceleration and / or acceleration values in the direction parallel to the roadway or to the direction of travel.
  • Absolute values or an absolute and accurate measuring acceleration sensor are not required per se. Rather, as already mentioned above, it only depends on the change from a large signal to a small signal near 0 or to a disturbed rapidly fluctuating signal.
  • the actually relevant measure of the tire pressure is a determined time ratio of the duration of a small to a large signal ( ⁇ / T). An increase over time of this ratio can be interpreted in a manner known per se with a certain rate as critical tire pressure decrease.
  • a device for detecting the state of a vehicle tire and / or a roadway wherein at least one sensor arranged in the tire interior, in particular an acceleration sensor, generates a signal, the physical parameters of the vehicle tire and / or the roadway is assigned, characterized in that based on the signal, a tire condition and / or properties of the road are determined.
  • the signal is supplied to an evaluation device provided within the vehicle tire or in the vehicle interior, wherein at least one display means is arranged in the vehicle, which indicates the tire and / or the road condition in response to a signal of the evaluation device.
  • the acceleration sensor is designed as a piezoelectric transducer element and vulcanized into the vehicle tire .
  • the acceleration sensor is mounted in such a manner inside the tread of the tire that periodically changing phases of a Zentripetalbeatung a z are detected with the acceleration sensor, wherein in the Phases in which the centripetal acceleration is almost 0, the acceleration sensor determines acceleration signals which are supplied to an evaluation device provided within the vehicle tire or in the vehicle interior.
  • Display means are preferably provided which indicate the tire and / or the road condition in response to a signal from the evaluation device.
  • Figure 1 is a schematic diagram of a vehicle wheel, which rests on the surface A on the road.
  • Fig. 2 is a diagram in which the course of the Zentripetalbevant is plotted in time.
  • 1 shows a sketch of a simplified representation of a vehicle wheel 1 with a vehicle tire 2.
  • the vehicle tire 2 comprises a tread 9 and a generally filled with air tire inner 10.
  • an acceleration sensor 3 is arranged, which is an electromagnetically Signal via a transducer 4, which is arranged, for example, axially fixed or body-mounted, transmits to an evaluation device 5.
  • the evaluation device 5 is part of a control unit 6, which is connected to the display device 7 in the field of vision of a driver in a motor vehicle.
  • the vehicle tire 2 rolls on a roadway 8.
  • the roadway has a surface texture, which is characterized in particular by the material of the surface and its physical properties. This also includes bumps, for example in the form of waves, grooves or foreign bodies. Likewise, coverings such as water on the surface change the contact between the tire and the road surface.
  • the vehicle weight is known to be distributed to the wheels, with each wheel having to carry a partial weight G of the vehicle over the surface A of the road surface, as shown in the schematic diagram.
  • the tire pressure p thus carries this weight G by means of a support surface A of the tire on the road.
  • the length of the support surface IA is the decisive factor by which it is decided whether the tire is operated "right” or "wrong” on the vehicle.
  • the correct bearing surface is adjusted in a conventional manner on the tire pressure p. If the tire pressure p is too low, the bearing surface A becomes too large and the tire is too heavy. This would lead to overheating and excessive wear and fuel consumption.
  • the tire pressure p is too high, then the support surface is too small and the tire pulley transmission is accordingly not optimal, which may occur e.g. when accelerating or during a braking maneuver can be harmful. If the vehicle is loaded with additional loads or freed from them, the tire pressure usually has to be raised or lowered in order to set the correct tire-road contact surface again.
  • Total circumference of the tire is determined by means of acceleration measurement.
  • the accelerometer passes through the portion of the path corresponding to the circumference of the tire, it determines the centripetal acceleration, which generally takes on the order of 10 g to a few 100 g.
  • the acceleration sensor passes through that part of the web which corresponds to the contact surface A with the road, the acceleration signal is almost 0, or there are vibrations or disturbances of the road surface determined, in each case a very irregular, rapidly varying, relatively small acceleration signal. This signal contains information about the condition of the tire and the condition of the road.
  • FIG. 2 shows a diagram in which the dependency of a centripetal acceleration a z , ie the acceleration perpendicular to the tire circumference, is graphically represented by the time t. This process results for an approximately punctiform or relatively small acceleration sensor mounted on the inside of the tire tread.
  • the centripetal acceleration a z on the tire circumference results directly from the wheel rotation and the
  • Tire radius i. the distance: Axis center to the tire surface in which the measurement takes place.
  • centripetal acceleration is:
  • LA / 2 ⁇ r ⁇ / T.
  • the acceleration sensor detects signals that are partly characteristic of the road surface, but in part also of the tire and its properties.
  • a signal spectrum is detected which contains all the vibrations which are generated by the movement of the part of the tread of the vehicle tire adjacent to the acceleration sensor when rolling over the roadway.
  • This spectrum contains a periodicity that results from the tire tread, ie the pits and bumps periodically introduced into the tire.
  • This Changing the profile height produces a characteristic noise with frequencies resulting from the groove or profile distance and the circumferential speed of the tire or the rolling speed over the roadway and the profile height. It is obvious that a larger profile height delivers stronger signals than a low profile height.
  • these vibrations also depend on the elasticity properties of the tire rubber. Changes in the elasticity also change the vibration behavior and thus the signal strengths and frequency spectra of the characteristic of the tire tread signals, ie spectrally at the frequencies that have the tire profile as a source in the sense of their origin during unwinding.
  • the signal of the acceleration sensor is composed of a number of spectral components which, related to one another, permit statements about tire and road conditions.
  • the sensor signal contains slower signal components, which result from irregularities of the roadway, e.g. from a cobblestone pavement that creates a periodic structure and thus generates characteristic frequencies with the unwinding speed and the tire together. These frequencies are significantly lower frequency than the signal components originating from the tire profiles, since the characteristic distances on the roadway are generally greater than the profile distances on the tire tread. Such roadway periods can even be greater than the rolling surface of the tire on the road and then often no longer be perceived.
  • nonperiodic "spontaneous" signal components such as obstacles, cracks,
  • a device can be obtained by the use of one or more acceleration sensors, which is preferably designed as a piezoelectric transducer element, not only information about critical tire and road properties, but also monitors the correct tire pressure and in the sense of "power harvesting ", the energy required for the system is obtained, and only an additional expenditure is made with respect to the evaluation electronics in that, by means of spectral filters or Fourier analysis, those frequency components during the deceleration phases of the acceleration Sensors above the roadway must each be isolated and analyzed according to their spectral strength, which are characteristic of the tire behavior and certain road characteristics.
  • Tire pressure sensor a separate acceleration sensor e.g. an OMM-Si sensor o- the piezoelectric sensor for the acceleration during the rolling during the rolling phases, and a "power harvester", for example, a piezoelectric or otherwise type of generator for generating energy in the tire from vibrations. All of these components can be accommodated in a single component
  • the acceleration sensors can each detect different acceleration directions, ie, for example, parallel to the roadway and / or perpendicular to the roadway in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Tires In General (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Verfahren zur Zustandserkennung eines Fahrzeugreifens (2) und/oder einer Fahrbahn (8), wobei mindestens ein im Reifeninneren (10) angeordneter Sensor (3), insbesondere ein Beschleunigungssensor, ein Signal erzeugt, das physikalischen Größen des Fahrzeugreifens (2) und/oder der Fahrbahn (8) zugeordnet ist. Anhand des Signals wird ein Reifenzustand und/oder Eigenschaften der Fahrbahn (8) ermittelt.

Description

Beschreibung
Titel Verfahren zur Reifenzustandserkennung
Stand der Technik
Die vorliegende Erfindung betrifft eine Einrichtung, ein Verfahren und ein Computerprogramm zur Zustandserkennung eines Fahrzeugreifens und/oder einer Fahrbahn, wobei mindestens ein im Reifeninneren angeordneter Sensor, insbesondere ein Beschleunigungssensor, ein Signal erzeugt, das physikalischen Größen des Fahrzeugreifens und/oder der Fahrbahn zugeordnet ist.
Es ist bekannt, fahrzeuginterne Vorrichtungen zur Überwachung des Reifenzustands, insbeson- dere zur Luftdrucküberwachung in Reifen, einzusetzen. Diese Vorrichtungen weisen eine feststehende Einrichtung auf, die mit einer sich mit dem jeweiligen Rad des Fahrzeugs mitbewegenden Einrichtung zusammenwirkt, so dass während des Fahrzeugbetriebs eine Überwachung des Luftdrucks erfolgen kann. Die sich mitbewegende Einrichtung sensiert mit geeigneten Mitteln den Luftdruck und übermittelt die Messwerte durch ein taktloses Signal an die feststehende Einrichtung, die den Fahrer informiert, wenn der Luftdruck einen bestimmten Wert unterschreitet.
Probleme des Standes der Technik
Derzeitige Systeme zur Reifenüberwachung sind lediglich für die Überwachung des Reifendrucks bestimmt und enthalten somit häufig einen Drucksensor zur Messung des Drucks im Reifen, dessen Messwerte geeignet, insbesondere drahtlos durch Telemetrie an ein feststehendes Steuergerät im Fahrzeug übermittelt werden. Neuere Entwicklungen zielen in Richtung rei- fenintegrierter Systeme, bei denen die Sensorik, Telemetrie und Energieerzeugung direkt in den Reifen einvulkanisiert werden. Derartige Systeme erfordern einen Drucksensor und ein Signalübertragungsmittel. Die bekannten Systeme zur Ermittlung des Reifendrucks sind teuer und insbesondere in der aggressiven Umgebung eines Fahrzeugrads tendenziell unzuverlässig. Somit entsteht die Notwendigkeit, ein leistungsfähigeres System zur Überwachung des Reifenzustands zu schaffen, das aussagekräftige Informationen nicht nur über den Reifendruck sondern auch über die Materialeigenschaften des Reifens und gegebenenfalls über die Fahrbahneigenschaften liefert.
Offenbarung der Erfindung
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren, eine Einrichtung und ein Computerprogramm zur Zustandserkennung eines Fahrzeugreifens und/oder einer Fahrbahn anzugeben, durch die ein leistungsfähiges System zur Ermittlung der Reifen- und Fahrbahneigenschaften auf einfache und kostengünstige Weise bei einer hohen Zuverlässigkeit realisiert werden kann.
Dieses Problem wird gelöst durch ein Verfahren zur Zustandserkennung eines Fahrzeugreifens und/oder einer Fahrbahn, wobei mindestens ein im Reifeninneren angeordneter Sensor, insbesondere ein Beschleunigungssensor, ein Signal erzeugt, das physikalischen Größen des Fahrzeugreifens und/oder der Fahrbahn zugeordnet ist, wobei anhand des Signals ein Reifenzustand und/oder Eigenschaften der Fahrbahn, insbesondere der Fahrbahnoberfläche, ermittelt werden. Hierzu werden die Zeitspannen des Durchlaufens des „freien" Umfangs des Reifens (T -τ), und des Kontaktbereichs mit der Fahrbahn τ mit Hilfe der Beschleunigungssignale exakt erfasst und analysiert, wobei T die Periodendauer ist. Dabei kommt es nur auf den Wechsel von einem großen Beschleunigungssignal zu einem relativ kleinen Signal bzw. zu einem gestörten rasch schwankenden Signal an, das den Kontakt des Beschleunigungssensors mit der Fahrbahn charakterisiert.
Durch die erfindungsgemäße Lösung wird auf einfache und kostengünstige Weise der Signalanteil ermittelt und anschließend analysiert, der für den Reifenzustand sowie für den Fahrbahnzustand maßgebend ist, nämlich der Signalanteil während dem der Sensor jeweils über die Fahrbahn abrollt. Somit können durch eine über die Zeit erfolgte Analyse Informationen über kritische Reifeneigenschaften und gewisse Fahrbahneigenschaften gewonnen werden.
Vorzugsweise ist vorgesehen, dass der Sensor ein Signal erzeugt, das periodisch wechselnde Phasen einer Zentripetalbeschleunigung repräsentiert, wobei das Signal in den Phasen, in denen das Signal einen unteren Grenzwert unterschreitet (nahezu null ist), einer physikalischen Grö- ße, die den Reifenzustand und/oder die Eigenschaften der Fahrbahn, insbesondere der Fahrbahnoberfläche, repräsentiert, zugeordnet wird. Der untere Grenzwert wird so gewählt, das die Signalstärke deutlich kleiner als in den Phasen ist, in denen sich der Beschleunigungssensor nicht im Bereich der Kontaktfläche mit der Fahrbahn befindet. Auf diese Weise wird der Zeit- bereich herausgefiltert, in dem der Beschleunigungssensor an der Kontaktfläche mit der Fahrbahn ist. Vorzugsweise ist der Beschleunigungssensor derart im Inneren der Lauffläche des Reifens befestigt, dass periodisch wechselnde Phasen einer Zentripetalbeschleunigung mit ihm erfasst werden können. Dabei ermittelt der Beschleunigungssensor in den Phasen, in denen die Zentripetalbeschleunigung nahezu null ist, Beschleunigungssignale, die einer innerhalb des Fahrzeugreifens oder im Fahrzeuginneren vorgesehenen Auswerteeinrichtung zugeführt werden, wobei Anzeigemittel vorgesehen sind, die auf ein Signal der Auswerteeinrichtung hin den Reifen- und/oder den Fahrbahnzustand anzeigen.
Vorzugsweise ist vorgesehen, dass aus dem Signal ein Signalspektrum gewonnen wird, wobei das ermittelte Signalspektrum zumindest teilweise Vibrationen enthält, die durch die Bewegung eines dem Beschleunigungssensor benachbarten Teils der Lauffläche des Fahrzeugreifens beim Abrollen auf der Fahrbahn erzeugt werden. Dabei ist vorteilhaft, dass das durch den Beschleunigungssensor ermittelte Signalspektrum alle Vibrationen enthält, die durch die Bewegung eines dem Beschleunigungssensor benachbarten Teils der äußeren Lauffläche des Fahrzeugrei- fens beim Abrollen über die Fahrbahn hinweg erzeugt werden. Das können sowohl Beschleu- nigungswerte in radialer Richtung oder/und solche parallel zur Fahrbahn oder zur Fahrtrichtung sein.
Vorzugsweise wird das Signalspektrum gefiltert und die dabei ermittelten Signalanteile werden nach ihrer Signalstärke analysiert um quantitative Aussagen bezüglich des Reifenzustands und/oder des Fahrbahnzustands zu erhalten. Diese Analyse kann anhand von dynamisch an die Raddrehzahl anpassbaren Filterkomponenten oder einem Fourier- Analysator durchgeführt werden. Eine Fourier- Analyse oder sonstwie geartete spektrale Filterung und Signalstärkeanalyse kann innerhalb des Reifens oder bevorzugt zentral im Steuergerät im Fahrzeug durchgeführt werden. Vor der Übermittlung an das zentrale Steuergerät ist es vorteilhaft, wenn die Daten geeignet komprimiert werden, um die Datenmenge zu reduzieren.
Vorzugsweise ist vorgesehen, dass einem Fahrzeugreifen bzw. einem Reifenprofil eine Soll- Signalstärke und ein Soll-Frequenzspektren des Signalspektrums zugeordnet ist und eine Ist- Signalstärke und ein Ist-Frequenzspektrum des Signalspektrums ermittelt wird und daraus durch einen Vergleich mit der Soll-Signalstärke und dem Soll-Frequenzspektren eine Profilhöhe und Materialeigenschaften des Fahrzeugreifens ermittelt werden. Die Soll-Signalstärke und das Soll-Frequenzspektren sind eine für den jeweiligen Fahrzeugreifen bzw. den Reifentyp oder die Baureihe des Reifens charakteristische Größen. Dabei werden anhand der Signalstärke und der Frequenzspektren der für das Reifenprofil charakteristischen Signale die Profilhöhe und die Materialeigenschaften des Fahrzeugreifens ermittelt, wobei anhand von durch den Beschleuni- gungssensor erfassten niederfrequenten Signalanteilen, die Fahrbahneigenschaften, insbesondere Unregelmäßigkeiten, ermittelbar sind. Dabei kann durch einen Verlust an entsprechender spektraler Signalstärke bis hin zum völligen Verschwinden des profilabhängigen Signalanteils die Profilhöhe abgeschätzt werden, also ungenügend tiefe Reifen-Profile können erkannt werden. Es können weiterhin die Materialeigenschaften, also z.B. die Elastizität des Gummis, abgeschätzt werden, wodurch Abnützungs- oder Versprödungserscheinungen frühzeitig erkannt werden können. Verzerrungen des Reifens lassen sich zumindest dann erkennen, wenn sie die Umgebung des Beschleunigungssensors betreffen. Das Abrollverhalten auf der Fahrbahn kann ebenfalls analysiert werden.
Es ist besonders vorteilhaft, dass anhand von durch den Beschleunigungssensor erfassten Signalanteilen, die Fahrbahneigenschaften, insbesondere Hindernisse und Unebenmäßigkeiten, ermittelbar sind. Darüber hinaus kann der Fahrbahnzustand grob abgeschätzt werden, insbesondere kann eine sehr ruhige (glatte) Fahrbahn einen frühen Hinweis auf gefährliche Wasseransammlungen oder Eisbildung auf der Strasse geben.
Vorzugsweise wird anhand des Signals ein Reifendruck in dem Fahrzeugreifen ermittelt. Der Beschleunigungssensor wird zur Messwertaufnahme verwendet, wobei er derart im Reifen orientiert ist, dass er eine Zentripetalbeschleunigung und/oder Beschleunigungswerte in Richtung parallel zur Fahrbahn oder zur Fahrtrichtung ermittelt. Absolutwerte oder ein absolut und genau messender Beschleunigungssensor sind hierfür an sich nicht erforderlich. Vielmehr kommt es, wie oben bereits erwähnt, nur auf den Wechsel von einem großen Signal zu einem kleinen Sig- nal nahe 0 bzw. zu einem gestörten rasch schwankenden Signal an. Somit ist die eigentlich relevante Messgröße für den Reifendruck ein ermitteltes Zeitverhältnis der Dauer eines kleines zu einem großen Signal (τ/T). Eine über die Zeit erfolgende Vergrößerung dieses Verhältnisses kann in an sich bekannter Weise mit einer gewissen Rate als kritische Reifendruckabnahme interpretiert werden. Das eingangs genannte Problem wird auch gelöst durch eine Einrichtung zur Zustandserken- nung eines Fahrzeugreifens und/oder einer Fahrbahn, wobei mindestens ein im Reifeninneren angeordneter Sensor, insbesondere ein Beschleunigungssensor, ein Signal erzeugt, das physika- lischen Größen des Fahrzeugreifens und/oder der Fahrbahn zugeordnet ist, dadurch gekennzeichnet, dass anhand des Signals ein Reifenzustand und/oder Eigenschaften der Fahrbahn ermittelt werden. Vorzugsweise ist dabei vorgesehen, dass das Signal einer innerhalb des Fahrzeugreifens oder im Fahrzeuginneren vorgesehenen Auswerteeinrichtung zugeführt wird, wobei mindestens ein Anzeigemittel in dem Fahrzeug angeordnet ist, das auf ein Signal der Aus- werteeinrichtung hin den Reifen- und/oder den Fahrbahnzustand anzeigt. Weiter ist vorzugsweise vorgesehen, dass der Beschleunigungssensor als piezoelektrisches Wandlerelement ausgeführt und in den Fahrzeugreifen einvulkanisiert ist.. Dabei wird der Beschleunigungssensor derart im Inneren der Lauffläche des Reifens befestigt, dass periodisch wechselnden Phasen einer Zentripetalbeschleunigung az mit dem Beschleunigungssensor erfasst werden, wobei in den Phasen, in denen die Zentripetalbeschleunigung nahezu 0 ist, der Beschleunigungssensor Be- schleunigungssignale ermittelt, die einer innerhalb des Fahrzeugreifens oder im Fahrzeuginneren vorgesehenen Auswerteeinrichtung zugeführt werden. Es sind vorzugsweise Anzeigemittel vorgesehen, die auf ein Signal der Auswerteeinrichtung hin den Reifen und/oder den Fahrbahnzustand anzeigen.
Das eingangs genannte Problem wird auch gelöst durch ein Computerprogramm mit Programmcode zur Durchführung des Verfahrens nach einem der Verfahrensansprüche, wenn das Programm in einem Computer oder Microcontroller oder -prozessor ausgeführt wird.
Zeichnungen
Nachfolgend wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand der beiliegenden Zeichnungen näher erläutert. Dabei zeigen:
Fig. 1 eine Prinzipdarstellung eines Fahrzeugrades, das auf der Fläche A auf der Fahrbahn aufliegt;
Fig. 2 ein Diagramm, in dem der Verlauf der Zentripetalbeschleunigung in der Zeit graphisch dargestellt ist. Figur 1 zeigt skizzenhaft eine vereinfachte Darstellung eines Fahrzeugrades 1 mit einem Fahrzeugreifen 2. Der Fahrzeugreifen 2 umfasst eine Lauffläche 9 sowie ein in der Regel mit Luft gefülltes Reifeninneres 10. Im Reifeninneren 10 des Fahrzeugreifen 2 ist ein Beschleunigungs- sensor 3 angeordnet, der ein elektromegnetisches Signal über einen Aufnehmer 4, der z.B. achsfest oder karosseriefest angeordnet ist, an eine Auswerteeinrichtung 5 überträgt. Die Auswerteeinrichtung 5 ist Teil eines Steuergerätes 6, das mit Anzeigeeinrichtung 7 im Blickfeld eines Fahrers in einem Kraftfahrzeug verbunden ist. Der Fahrzeugreifen 2 rollt auf einer Fahrbahn 8. Die Fahrbahn weist eine Oberflächenbeschaffenheit auf, die insbesondere durch das Material der Oberfläche sowie deren physikalische Eigenschaften charakterisiert ist. Dazu gehören auch Unebenheiten z.B. in Form von Wellen, Rillen oder Fremdkörpern. Ebenso verändern Beläge wie z.B. Wasser auf der Oberfläche den Kontakt zwischen Reifen und Fahrbahn.
Das Fahrzeuggewicht verteilt sich bekannterweise auf die Räder, wobei jedes Rad über die Flä- che A der Fahrbahn- Auflage ein Teilgewicht G des Fahrzeugs zu tragen hat, wie in der Prinzipdarstellung gezeigt ist. Der Zusammenhang zwischen Reifendruck p und Teilgewicht G sowie der Auflagefläche A ist gegeben durch die Formel: G = p*A. Der Reifendruck p trägt also dieses Gewicht G vermöge einer Auflagefläche A des Reifens auf der Fahrbahn. Die Länge der Auflagefläche IA ist dabei die entscheidende Größe, durch welche entschieden wird, ob der Reifen „richtig" oder „falsch" am Fahrzeug betrieben wird. Die richtige Auflagefläche wird in an sich bekannter Weise über den Reifendruck p eingestellt. Ist der Reifendruck p zu gering, wird die Auflagefläche A zu groß und der Reifen zu stark durchgewalkt. Dies würde zu einer Überhitzung und überhöhten Verschleiß und Kraftstoffverbrauch führen. Ist jedoch der Reifendruck p zu hoch, dann ist die Auflagefläche zu klein und die Kraftübertragung ReifenStrasse dementsprechend nicht optimal, was sich z.B. beim Beschleunigen oder bei einem Bremsmanöver schädlich auswirken kann. Wird das Fahrzeug mit Zusatzlasten beladen oder davon befreit, muss in der Regel der Reifendruck erhöht oder abgesenkt werden, um wieder die richtige Auflagefläche Reifen-Strasse einzustellen.
Die Länge der Auflagefläche A in Fahrtrichtung bzw. deren relativer Anteil bezogen auf den
Gesamtumfang des Reifens wird mittels Beschleunigungsmessung ermittelt. Während der Be- schleunigungssensor denjenigen Teil der Bahn durchläuft, der dem Reifenumfang entspricht, ermittelt er die Zentripetalbeschleunigung, die in der Regel eine Größenordnung von 10g bis einigen 100g annimmt. Durchläuft der Beschleunigungssensor denjenigen Teil der Bahn, der der Kontaktfläche A mit der Fahrbahn entspricht, ist das Beschleunigungssignal nahezu 0, bzw. es werden Vibrationen oder Störungen des Straßenbelags ermittelt, in jedem Fall ein sehr unregelmäßiges, schnell variierendes, relativ kleines Beschleunigungssignal. Dieses Signal enthält Informationen über den Reifen- sowie den Fahrbahnzustand.
In Figur 2 ist ein Diagramm gezeigt, in dem die Abhängigkeit einer Zentripetalbeschleunigung az, d.h. die Beschleunigung senkrecht zum Reifenumfang, von der Zeit t graphisch dargestellt ist. Dieser Verlauf ergibt sich für einen annähernd punktförmigen oder relativ kleinen Be- schleunigungssensor, der auf der Innenseite der Reifenlauffläche montiert ist. Die Zentripetal- beschleunigung az auf dem Reifenumfang ergibt sich unmittelbar aus der Raddrehung und dem
Reifenradius, d.h. dem Abstand: Achsmittelpunkt bis zur Reifenfläche, in der die Messung stattfindet. Der Wert der Zentripetalbeschleunigung ist:
az = (ah,
wobei r der Reifenradius ist und ω - die momentane Drehgeschwindigkeit des Rades. Aus dem Diagramm ist ersichtlich, dass sich relativ lange Phasen mit hohen Werten der Zentripetalbeschleunigung periodisch mit relativ kurzen Phasen relativ niedriger Beschleunigung, die während des Kontakts des Beschleunigungssensors mit der Fahrbahn auftreten, abwechseln. Die kurzen Phasen sind also die Phasen, in denen der Beschleunigungssensor „über die Fahrbahn rollt". Die Zeitspannen des Durchlaufens des „freien" Umfangs (T -τ) und des Kontaktbereichs mit der Fahrbahn τ werden mit Hilfe der Beschleunigungssignale exakt erfasst. Das Verhältnis der gemessenen Zeiten τ/T spiegelt dabei das Verhältnis der Längenausdehnung der Auflagefläche A zum Gesamtumfang des Reifens wieder:
lA/2πr = τ/T.
Während der kurzen Phasen ermittelt der Beschleunigungssensor Signale, die teilweise für die Fahrbahnoberfläche, teilweise aber auch für den Reifen und dessen Eigenschaften charakteris- tisch sind. Wie aus Figur 2 ersichtlich ist, wird während dieser Phasen ein Signalspektrum ermittelt, das alle Vibrationen enthält, die durch die Bewegung des dem Beschleunigungssensor benachbarten Teils der Lauffläche des Fahrzeugreifens beim Abrollen über die Fahrbahn hinweg erzeugt werden. Dieses Spektrum enthält eine Periodizität, die aus dem Reifenprofil, d.h. den periodisch in den Reifen eingebrachten Vertiefungen und Erhöhungen resultiert. Dieser Wechsel der Profilhöhe erzeugt ein charakteristisches Geräusch mit Frequenzen, die sich aus dem Rillen- oder Profilabstand und der Umlaufgeschwindigkeit des Reifens bzw. der Abrollge- schwindigkeit über der Fahrbahn sowie der Profilhöhe ergeben. Es ist dabei offensichtlich, dass eine größere Profilhöhe hier stärkere Signale liefert als eine geringe Profilhöhe. Des Weiteren hängen diese Vibrationen auch von den Elastizitätseigenschaften des Reifengummis ab. Veränderungen der Elastizität verändern auch das Schwingungsverhalten und damit die Signalstärken und Frequenzspektren der für das Reifenprofil charakteristischen Signale, d.h. spektral bei den Frequenzen, die das Reifenprofil als Quelle im Sinne ihrer Entstehung beim Abrollen haben.
Wie aus der Figur 2 ersichtlich ist, ist das Signal des Beschleunigungssensors aus einer Reihe spektraler Komponenten zusammengesetzt, die zueinander in Beziehung gebracht Aussagen über Reifen- und Fahrbahnzustand gestatten. Dabei enthält das Sensorsignal langsamere Signalanteile, die aus Unregelmäßigkeiten der Fahrbahn resultieren, z.B. aus einem Kopfstein- pflaster, das eine periodische Struktur erzeugt und folglich mit der Abrollgeschwindigkeit und dem Reifen zusammen charakteristische Frequenzen generiert. Diese Frequenzen sind deutlich niederfrequenter als die aus den Reifenprofilen stammenden Signalanteile, da die charakteristischen Abstände auf der Fahrbahn in aller Regel größer sind als die Profilabstände auf der Reifenlauffläche. Solche Fahrbahnperioden können sogar größer sein als die Abrollfläche des Reifens auf der Fahrbahn und dann oft gar nicht mehr wahrgenommen werden. Des Weiteren kön- nen nichtperiodische „spontane" Signalanteile enthalten sein, so z.B. von Hindernissen, Rissen,
Steinen oder anderen Unebenmäßigkeiten etc. auf der Fahrbahn, die zu chaotischen oder spontanen Reifengeräuschen führen. Auf sandigem Untergrund kommt eine Rauschkomponente hinzu, d.h. das Fahren auf dem feinkörnigen Untergrund erzeugt im Reifen Beschleunigungs- signale bzw. Geräusche, die einem Rauschsignal entsprechen. Diese Beschleunigungssignale können sowohl in radialer Richtung als auch in Fahrtrichtung und/oder parallel zur Fahrbahn ermittelt werden.
Bei einer Einrichtung nach der vorliegenden Erfindung können durch den Einsatz eines oder mehrerer Beschleunigungssensoren, der bevorzugt als piezoelektrisches Wandlerelement aus- geführt ist, nicht nur Informationen über kritische Reifen- und Fahrbahneigenschaften gewonnen werden, sondern auch den korrekten Reifendruck überwacht und im Sinne eines „power harvesting", die für das System benötigte Energie gewonnen werden. Es entsteht lediglich ein zusätzlicher Aufwand bezüglich der Auswerteelektronik, indem durch spektrale Filter oder Fourier-Analyse diejenigen Frequenzanteile während der Abrollphasen des Beschleunigungs- sensors über der Fahrbahn jeweils isoliert und nach ihrer spektralen Stärke analysiert werden müssen, die für das Reifenverhalten und gewisse Fahrbahneigenschaften charakteristisch sind.
Anstatt einer einzigen Komponente ist es aber auch denkbar mehrere Komponenten zu verwen- den, also ein separater Beschleunigungssensor z.B. ein OMM-Si-Sensor oder piezoelektrischer
Sensor für den Reifendruck, ein separater Beschleunigungssensor z.B. ein OMM-Si-Sensor o- der piezoelektrischer Sensor für den Beschleunigungsverlauf während des Abrollens also während der Abrollphasen, sowie ein „Power Harvester", beispielsweise ein piezoelektrischer oder sonst wie gearteter Generator für die Energieerzeugung im Reifen aus Vibrationen. Besonders günstig ist hierbei, dass alle diese Komponenten in einem einzigen Bauteil angesiedelt werden können. Die Beschleunigungssensoren können jeweils unterschiedliche Beschleunigungsrich- tungen erfassen, also z.B. parallel zur Fahrbahn und/oder senkrecht zur Fahrbahn in radialer Richtung.

Claims

Ansprüche
1. Verfahren zur Zustandserkennung eines Fahrzeugreifens (2) und/oder einer Fahrbahn (8), wobei mindestens ein im Reifeninneren (10) angeordneter Sensor (3), insbesondere ein Be- schleunigungssensor, ein Signal erzeugt, das physikalischen Größen des Fahrzeugreifens (2) und/oder der Fahrbahn (8) zugeordnet ist, dadurch gekennzeichnet, dass anhand des Signals ein Reifenzustand und/oder Eigenschaften der Fahrbahn (8) ermittelt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sensor (3) ein Signal erzeugt, das periodisch wechselnde Phasen einer Zentripetalbeschleunigung (az) repräsentiert, wobei das Signal in den Phasen, in denen das Signal einen unteren Grenzwert unterschreitet, einer physikalischen Größe, die den Reifenzustand und/oder die Eigenschaften der Fahrbahn (8) repräsentiert, zugeordnet wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass aus dem Signal ein Signalspektrum gewonnen wird, wobei das ermittelte Signalspektrum zumindest teilweise Vibrationen enthält, die durch die Bewegung eines dem Beschleunigungssensor (3) benachbarten Teils der Lauffläche des Fahrzeugreifens beim Abrollen auf der Fahrbahn (8) erzeugt wer- den.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Signalspektrum gefiltert wird und die dabei ermittelten Signalanteile nach ihrer Signalstärke analysiert werden um quantitative Aussagen bezüglich des Reifenzustands und/oder des Fahr- bahnzustands zu erhalten.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass einem Fahrzeugreifen (2) eine Soll-Signalstärke und ein Soll-Frequenzspektren des Signalspektrums zugeordnet ist und eine Ist- Signalstärke und ein Ist-Frequenzspektrum des Signalspektrums er- mittelt wird und daraus durch einen Vergleich mit der Soll-Signalstärke und dem Soll-
Frequenzspektren eine Profilhöhe und Materialeigenschaften des Fahrzeugreifens (2) ermittelt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass anhand des Signals ein Reifendruck in dem Fahrzeugreifen (2) ermittelt wird.
7. Einrichtung zur Zustandserkennung eines Fahrzeugreifens (2) und/oder einer Fahrbahn (8), wobei mindestens ein im Reifeninneren (10) angeordneter Sensor (3), insbesondere ein Be- schleunigungssensor, ein Signal erzeugt, das physikalischen Größen des Fahrzeugreifens (2) und/oder der Fahrbahn (8) zugeordnet ist, dadurch gekennzeichnet, dass anhand des Signals ein Reifenzustand und/oder Eigenschaften der Fahrbahn (8) ermittelt werden.
8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Signal einer innerhalb des
Fahrzeugreifens oder im Fahrzeuginneren vorgesehenen Auswerteeinrichtung zugeführt wird, wobei mindestens ein Anzeigemittel in dem Fahrzeug angeordnet ist, das auf ein Signal der Auswerteeinrichtung hin den Reifen- und/oder den Fahrbahnzustand anzeigt.
9. Einrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Beschleunigungssen- sor als piezoelektrisches Wandlerelement ausgeführt und in den Fahrzeugreifen einvulkanisiert ist.
10. Computerprogramm mit Programmcode zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6 wenn das Programm in einem Computer oder Microcontroller oder Microprozessor ausgeführt wird.
PCT/EP2007/053931 2006-06-21 2007-04-23 Verfahren zur reifenzustandserkennung WO2007147662A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009513622A JP2009539667A (ja) 2006-06-21 2007-04-23 タイヤ状態の識別方法
US12/227,368 US8332092B2 (en) 2006-06-21 2007-04-23 Method for detecting the state of a tire
EP07728388A EP2035243A1 (de) 2006-06-21 2007-04-23 Verfahren zur reifenzustandserkennung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006028411A DE102006028411A1 (de) 2006-06-21 2006-06-21 Verfahren zur Reifenzustandserkennung
DE102006028411.9 2006-06-21

Publications (1)

Publication Number Publication Date
WO2007147662A1 true WO2007147662A1 (de) 2007-12-27

Family

ID=38179629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/053931 WO2007147662A1 (de) 2006-06-21 2007-04-23 Verfahren zur reifenzustandserkennung

Country Status (5)

Country Link
US (1) US8332092B2 (de)
EP (1) EP2035243A1 (de)
JP (1) JP2009539667A (de)
DE (1) DE102006028411A1 (de)
WO (1) WO2007147662A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006566A1 (de) * 2008-01-29 2009-07-30 Robert Bosch Gmbh Verfahren zur Bestimmung einer Fahrzeugreifenprofiltiefe
FR2940190B1 (fr) 2008-12-23 2012-05-18 Michelin Soc Tech Procede d'alerte concernant l'usure d'un pneumatique muni d'un sillon
US8498785B2 (en) * 2010-09-07 2013-07-30 Trw Automotive U.S. Llc Method and apparatus for determining tire position on a vehicle
US8593273B2 (en) 2011-02-07 2013-11-26 Infineon Technologies Ag Systems and methods for localization of tire pressure monitoring system wheel modules
US8843269B2 (en) * 2011-08-17 2014-09-23 Deere & Company Vehicle soil pressure management based on topography
US8565967B2 (en) * 2011-12-21 2013-10-22 Infineon Technologies Ag Acceleration detection and angular position determination systems and methods in tire pressure monitoring systems
US8532872B2 (en) 2012-01-13 2013-09-10 International Business Machines Corporation Tire pressure adjustment
DE102012212934A1 (de) * 2012-07-24 2014-06-12 Continental Automotive Gmbh Verfahren und Vorrichtung zum Schätzen einer Profiltiefe eines Reifens
US9073392B2 (en) * 2013-06-07 2015-07-07 The Goodyear Tire & Rubber Company Method of tread wear sensor installation in a tire
US20150034222A1 (en) 2013-07-30 2015-02-05 Caterpillar Inc. Tire and system for acquiring data associated with tire
DE102014204862A1 (de) * 2014-03-17 2015-09-17 Continental Automotive Gmbh Verfahren und Anordnung zum Lokalisieren der Verbauposition von Rädern in einem Fahrzeug
FR3028058B1 (fr) * 2014-10-30 2016-12-09 Continental Automotive France Procede de pilotage d'un processeur d'un boitier electronique monte sur une roue d'un vehicule automobile
US9387734B1 (en) 2015-03-26 2016-07-12 Hussain Ali Alhazmi Intelligent embedded system device for monitoring car wheel performance
DE102015216210A1 (de) * 2015-08-25 2017-03-02 Continental Reifen Deutschland Gmbh Verfahren zum Bestimmen von reifencharakteristischen Einflussgrößen, sowie Steuergerät hierfür
CN108139299B (zh) * 2015-10-16 2021-04-13 巴里理工大学 用于确定道路或轨道车辆的模态参数并间接表征道路或轨道轮廓的方法
WO2017095239A1 (en) * 2015-12-04 2017-06-08 Pavement Analytics Limited A method and system for measuring deformation of a surface
TWI593571B (zh) * 2016-05-06 2017-08-01 Mobiletron Electronics Co Ltd Tire monitoring methods
WO2018005972A1 (en) * 2016-06-30 2018-01-04 Massachusetts Institute Of Technology Applying motion sensor data to wheel imbalance detection, tire pressure monitoring, and/ or tread depth measurement
DE102016214953A1 (de) 2016-08-11 2018-02-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überprüfung des Reifenluftdrucks eines Zweirads
CN106525323B (zh) * 2016-12-06 2019-05-17 北京万集科技股份有限公司 车辆胎压检测方法及装置
KR101976083B1 (ko) * 2017-12-11 2019-05-07 대구대학교 산학협력단 사물 인터넷 기반의 자동차 소모부품 수명 예지 시스템
CN112303154B (zh) * 2020-10-09 2022-07-22 北京汽车股份有限公司 预防制动失效的摩擦片间隙自动补偿控制方法、系统及车辆
CN114537358B (zh) * 2021-12-03 2023-05-02 上海拿森汽车电子有限公司 一种车辆制动间隙的补偿方法、装置及计算机存储介质
CN114537351B (zh) * 2021-12-07 2023-05-02 上海拿森汽车电子有限公司 盘片间隙消除方法及系统
CN114485878B (zh) * 2022-01-26 2024-04-09 何剑虹 基于动态能谱分析进行车辆动态重量测量方法及其系统
CN115320608B (zh) * 2022-10-17 2023-01-03 广东粤港澳大湾区黄埔材料研究院 一种轮胎路面信息的监测方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749984A (en) * 1995-12-29 1998-05-12 Michelin Recherche Et Technique S.A. Tire monitoring system and method
DE19807004A1 (de) * 1998-02-19 1999-09-09 Siemens Ag Sensorsystem und Verfahren für Überwachung/Messung des Kraftschlusses eines Fahrzeugreifens mit der Fahrbahn und weiterer physikalischer Daten des Reifens
US7032436B2 (en) * 2000-06-23 2006-04-25 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574267A (en) * 1982-05-06 1986-03-04 Trw Inc. Tire pressure warning system
US4741207A (en) * 1986-12-29 1988-05-03 Spangler Elson B Method and system for measurement of road profile
JPH0198123A (ja) * 1987-10-12 1989-04-17 Matsushita Electric Ind Co Ltd 磁気記録媒体の製造方法
JPH0627680B2 (ja) * 1990-10-11 1994-04-13 株式会社ブリヂストン タイヤ騒音シミュレート方法及びシミュレータ
US5123497A (en) * 1990-12-20 1992-06-23 Ford Motor Company Automotive apparatus and method for dynamically determining centripetal force of a vehicle
US5497657A (en) * 1991-11-11 1996-03-12 Nippondenso Co., Ltd. Tire air pressure detecting device
JP3289375B2 (ja) * 1993-03-24 2002-06-04 株式会社デンソー 車体速度推定装置及び推定車体速度を用いたタイヤ状態検知装置
US5586028A (en) * 1993-12-07 1996-12-17 Honda Giken Kogyo Kabushiki Kaisha Road surface condition-detecting system and anti-lock brake system employing same
US5500065A (en) * 1994-06-03 1996-03-19 Bridgestone/Firestone, Inc. Method for embedding a monitoring device within a tire during manufacture
US5569848A (en) * 1995-01-06 1996-10-29 Sharp; Everett H. System, method and apparatus for monitoring tire inflation pressure in a vehicle tire and wheel assembly
JPH09175137A (ja) * 1995-12-26 1997-07-08 Unisia Jecs Corp 車両懸架装置
DE19611364B4 (de) * 1996-03-22 2005-10-20 Daimler Chrysler Ag Verfahren und Vorrichtung zur Fahrzeugreifenüberwachung
DE19712097C1 (de) * 1997-03-22 1998-04-23 Bosch Gmbh Robert System zur Erkennung des Reifenzustands
FR2764241B1 (fr) * 1997-06-10 1999-08-20 Dassault Electronique Surveillance d'un pneumatique par mesure d'acceleration
US5852243A (en) * 1997-07-21 1998-12-22 J-Squared, Llc Method and apparatus for detecting a road pavement surface condition
US6014595A (en) * 1997-12-23 2000-01-11 Honda Giken Kogyo Kabushiki Kaisha Determination of vehicle assistance from vehicle vibration that results when the vehicle contacts vibration generating structures on the road
JP3396438B2 (ja) * 1998-12-25 2003-04-14 住友ゴム工業株式会社 タイヤ空気圧低下警報方法および装置
US6397133B1 (en) * 1999-04-19 2002-05-28 Palmer Safety Systems, Llc Vehicle rollover safety system
US6278361B1 (en) * 1999-12-03 2001-08-21 Trw Inc. System and method for monitoring vehicle conditions affecting tires
DE19963751A1 (de) * 1999-12-30 2001-07-12 Bosch Gmbh Robert Verfahren zum Untersuchen von Reifen von Fahrzeugen im Fahrbetrieb
SE523023C2 (sv) * 2000-04-12 2004-03-23 Nira Dynamics Ab Metod och anordning för att med rekursiv filtrering bestämma en fysikalisk parameter hos ett hjulfordon
DE10102534C2 (de) * 2001-01-19 2002-11-28 Continental Ag Verfahren zur Messung der Profiltiefe eines Reifens
JP2002340863A (ja) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc 路面判定装置及びシステム
US6759952B2 (en) * 2001-07-06 2004-07-06 Trw Inc. Tire and suspension warning and monitoring system
EP1457388B1 (de) * 2001-12-21 2015-01-21 Kabushiki Kaisha Bridgestone Verfahren und vorrichtung zum abschätzen des fahrbahn- und reifenlaufzustands
US6539295B1 (en) * 2002-01-18 2003-03-25 Ford Global Technologies, Inc. Vehicle tire monitoring system with multiple sensors
DE10213266A1 (de) * 2002-03-25 2003-10-23 Infineon Technologies Ag Reifendrucküberwachungssystem
CN1307064C (zh) * 2002-03-28 2007-03-28 倍耐力轮胎公司 一种用于监测轮胎在机动车行驶期间状态的方法和系统
DE10218781A1 (de) * 2002-04-26 2003-11-13 Tuev Automotive Gmbh Auf einer Felge montierbarer Luftreifen, Sensornetz, Umdrehungsmesseinheit und Fahrzeugüberwachungssystem
US6774779B2 (en) * 2002-09-25 2004-08-10 Lite-On Automotive Corporation Vehicle security system with tire monitoring device
JP2004155222A (ja) * 2002-11-01 2004-06-03 Pacific Ind Co Ltd タイヤ状態監視装置
JP4046059B2 (ja) * 2002-11-08 2008-02-13 株式会社豊田中央研究所 路面状態推定装置
JP2004317484A (ja) * 2003-03-31 2004-11-11 Denso Corp 振動型角速度センサ
US7121138B2 (en) * 2003-09-02 2006-10-17 Infineon Technologies Ag Apparatus and method for detecting a tire deformation of a vehicle tire
DE10352539B4 (de) * 2003-11-11 2007-04-12 Siemens Ag System zum Überwachen eines luftbereiften Fahrzeugs, Signalauswerteverfahren sowie Fahrzeugreifen
JP4349151B2 (ja) * 2004-02-26 2009-10-21 トヨタ自動車株式会社 接触状態取得装置
DE102004010665B4 (de) * 2004-03-04 2014-09-18 Infineon Technologies Ag Vorrichtung und Verfahren zum Ermitteln eines Zustandsparameters eines zu überwachenden Objektes
JP2005321958A (ja) * 2004-05-07 2005-11-17 Denso Corp タイヤ空気圧検出装置
JP4604677B2 (ja) * 2004-11-19 2011-01-05 横浜ゴム株式会社 タイヤ滑り状態検出方法及びタイヤ滑り状態検出装置
US7477973B2 (en) * 2005-10-15 2009-01-13 Trimble Navigation Ltd Vehicle gyro based steering assembly angle and angular rate sensor
EP1878596B1 (de) * 2006-07-11 2013-06-05 The Yokohama Rubber Co., Ltd. Vorrichtung und Verfahren zur Beurteilung des Fahrsicherheitsgrades eines Fahrzeugs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749984A (en) * 1995-12-29 1998-05-12 Michelin Recherche Et Technique S.A. Tire monitoring system and method
DE19807004A1 (de) * 1998-02-19 1999-09-09 Siemens Ag Sensorsystem und Verfahren für Überwachung/Messung des Kraftschlusses eines Fahrzeugreifens mit der Fahrbahn und weiterer physikalischer Daten des Reifens
US7032436B2 (en) * 2000-06-23 2006-04-25 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel

Also Published As

Publication number Publication date
US8332092B2 (en) 2012-12-11
DE102006028411A1 (de) 2007-12-27
US20090210111A1 (en) 2009-08-20
EP2035243A1 (de) 2009-03-18
JP2009539667A (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2007147662A1 (de) Verfahren zur reifenzustandserkennung
DE60106400T2 (de) System, reifen und methode zur bestimmung des verhaltens eines bewegten reifens
DE60319598T2 (de) Verfahren und system zur bestimmung des schräglaufwinkels eines reifens während des fahrens eines fahrzeugs
DE102014226783B4 (de) System und Verfahren zur Ermittlung wenigstens eines, eine Abmessung eines Reifenlatsches an einem Reifen eines Rades eines Fahrzeuges charakterisierenden Reifenlatschparameters
DE602004012903T2 (de) Verfahren und system zur bestimmung des schräglauf-winkels eines reifens während des fahrens eines fahrzeugs
EP2877352B1 (de) Verfahren und vorrichtung zum schätzen einer profiltiefe eines reifens
DE10352539B4 (de) System zum Überwachen eines luftbereiften Fahrzeugs, Signalauswerteverfahren sowie Fahrzeugreifen
DE112009005342B4 (de) Klassifikation der Straßenoberfläche
DE102012109307B4 (de) Radmodul zur Detektion von Raddrehung unter Verwendung eines eindimensionalen Beschleunigungssensors
EP1293362B1 (de) Verfahren zur Bestimmung des Reifenluftdrucks und der Radlast von Fahrzeugreifen
EP2190682B1 (de) Verfahren zur indirekten reifendrucküberwachung und reifendrucküberwachungssystem
DE102004001250B4 (de) Vorrichtung und Verfahren zur Ermittlung der Seitenposition von Rädern
EP2548747A1 (de) Verfahren und Vorrichtung zur Regelung des Reifendrucks von Fahrzeugen
DE69927377T2 (de) Verfahren und vorrichtung zur ermittlung einer reifenplattlaufsituation - sicherheitsträger,räder und reifen dafür hergestellt
DE102016000526A1 (de) Verfahren zur Detektion des Verschleißes von sich abnutzenden Reifen eines Fahrzeugs
DE69831797T2 (de) Sicherheitseinsatz, der ein Vibrationssignal in Querrichtung erzeugt, und Vorrichtung zum Detektieren des Aufliegens eines Reifens auf einem Einsatz
EP3737571A1 (de) Verfahren zur ermittlung der aktuellen fahrbahnrauhigkeit in einem fahrzeug
DE60018199T2 (de) Methode und vorrichtung zur momentanen überwachung eines reifenverhaltens während der fahrt eines kraftfahrzeuges
DE69722978T2 (de) Einrichtung zum Überwachen des Luftdruckes in den Luftreifen eines Fahrzeuges
WO2007147675A1 (de) Verfahren zur messung des luftdrucks in einem fahrzeugreifen
WO2002053427A1 (de) System und verfahren zur überwachung der traktion eines kraftfahrzeugs
DE102008054210A1 (de) Reifen für ein Kraftfahrzeugrad
EP4227118A1 (de) Verfahren und vorrichtung zur überwachung eines profilabriebs eines fahrzeugreifens
EP1795881B1 (de) Verfahren und Vorrichtung zur Abschätzung des Betriebszustandes eines Fahrzeugreifens
EP1162443A2 (de) Verfahren und Vorrichtung zum Erkennen von Dämpferschäden

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007728388

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07728388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12227368

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009513622

Country of ref document: JP