WO2007145290A1 - 振動子、これを用いた共振器およびこれを用いた電気機械フィルタ - Google Patents

振動子、これを用いた共振器およびこれを用いた電気機械フィルタ Download PDF

Info

Publication number
WO2007145290A1
WO2007145290A1 PCT/JP2007/062033 JP2007062033W WO2007145290A1 WO 2007145290 A1 WO2007145290 A1 WO 2007145290A1 JP 2007062033 W JP2007062033 W JP 2007062033W WO 2007145290 A1 WO2007145290 A1 WO 2007145290A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
vibrator
single crystal
electrode
resonator according
Prior art date
Application number
PCT/JP2007/062033
Other languages
English (en)
French (fr)
Inventor
Kunihiko Nakamura
Michiaki Matsuo
Yoshito Nakanishi
Akinori Hashimura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008521256A priority Critical patent/JP5225840B2/ja
Priority to US12/304,602 priority patent/US8026779B2/en
Publication of WO2007145290A1 publication Critical patent/WO2007145290A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2463Clamped-clamped beam resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02283Vibrating means
    • H03H2009/02291Beams
    • H03H2009/02314Beams forming part of a transistor structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02519Torsional
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1057Mounting in enclosures for microelectro-mechanical devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2457Clamped-free beam resonators

Definitions

  • the present invention relates to a vibrator, a resonator using the same, and an electromechanical filter using the same, and more particularly to realizing a high-performance filter circuit in an electric circuit integrated with high density.
  • a vibrator a resonator using the same
  • an electromechanical filter using the same
  • FIG. 33 is a diagram schematically showing the configuration of a mechanical vibration filter using flexural vibration proposed in Non-Patent Document 1.
  • This filter is formed by patterning on a silicon substrate using a thin film process, and is arranged with an input line 104, an output line 105, and a gap of 1 micron or less for each line. It is composed of doubly supported beams 101 and 102 and a connecting beam 103 connecting the two beams.
  • the signal input from the input line 104 is capacitively coupled to the beam 101 and generates an electrostatic force in the beam 101. Mechanical vibration is excited only when the frequency of the signal coincides with the vicinity of the resonance frequency of the elastic structure that also includes the beams 101 and 102 and the coupling beam 103 force, and this mechanical vibration is further reduced between the output line 105 and the beam 102. By detecting this as a change in capacitance, the filtering output of the input signal is extracted.
  • the resonance frequency f of the flexural vibration is as follows.
  • the resonance frequency can be increased by reducing the size of the mechanical vibrator.
  • the mechanical Q value decreases, and the Q value necessary to obtain the desired frequency selection characteristic may not be obtained.
  • FIG. 35 shows a double-supported beam structure shown in Non-Patent Document 2 that is manufactured by applying force to the SOI layer of a silicon substrate 204 that constitutes an SOI (Silicon on Insulator) substrate.
  • the beam is made to vibrate by removing the BOX (Buried Oxide) layer 203 below the SOI layer with hydrofluoric acid, and the BOX layer below the support part 205 is also removed. Vulnerable.
  • the vibration of the support portion 205 cannot be ignored, the resonance frequency of the both-end supported beam is lowered, and vibration energy is dissipated from the support portion, so that it is difficult to obtain a large Q value.
  • Non-Patent Document 3 discloses an example in which the brittleness of the support portion 205 is improved by making the thickness of the support portion 205 sufficiently thicker than the thickness of the vibrator 201 constituting the beam.
  • FIG. 36 shows the structure in the vicinity of the support portion 205 of the double-supported beam shown in Non-Patent Document 3.
  • the thickness of the support portion 205 is the thickness of the silicon substrate 204, and the thickness of the beam is sufficiently thin relative to the thickness of the silicon substrate. Therefore, the support portion 205 has a strong structure.
  • the support structure is not axially symmetric with respect to the length direction of the beam, the support portion 205 becomes weaker as the support portion on one side (for example, the A side) retreats in the beam length direction.
  • the A side and A ′ side of the support part 205 are formed by two separate lithography and dry etching, it is necessary to combine the lithography twice with high accuracy in order to reduce the recession on one side. This matching process is The size becomes very difficult as the force becomes as fine as nm.
  • FIG. 37 is a view showing a cross section of the vibrator and substrate of FIG. As shown in (a), since there is an opening between the vibrator and the substrate, there is an opening even if the electrode 202 close to the side surface of the vibrator 201 is formed by a thin film formation technique such as sputtering. In this case, the electrode cannot be anchored to the substrate, or the electrode thickness in the vicinity of the opening becomes extremely thin as shown in (b), and a strong electrode structure cannot be formed.
  • Non-Patent Document 4 Silicon substrate surface force There is a technique in which boron is diffused, the back surface force of the silicon substrate is anisotropically etched, and the diffusion layer of boron is used as an etching stop layer for anisotropic etching (Non-Patent Document 4). ). If the boron diffusion region is made into a beam shape, a beam-shaped vibrator can be formed as shown in Fig. 38. Since there is no opening on the substrate surface before anisotropic etching, electrodes can be formed on the substrate surface. However, since the effect of the etching stop varies depending on the uneven diffusion of boron, it is difficult to obtain a beam shape having a predetermined dimension, and it is extremely difficult to obtain a desired value for the resonance frequency. Also, since the surface of the resonator is not flat, loss of vibration energy due to surface roughness occurs and the Q value is lowered.
  • FIG. 39 (a) shows a resonator composed of a vibrator made of aluminum.
  • the vibrator 201 has a double-supported beam structure, and both ends are supported by support portions 205.
  • Excitation electrodes 202a and detection electrodes 202b are disposed on both side surfaces of the vibrator 201 via a gap.
  • the vibrator 201 performs flexural vibration in the direction attracted in the direction of the excitation electrode 202a, and the resonance frequency is 35.5 MHz.
  • Figure 39 (b) shows a configuration in which a plurality of resonators in (a) are electrically connected in parallel to reduce impedance.
  • FIG. 40 (a) shows the impedance when the number N of resonators electrically connected in parallel is 1, 10, and 100.
  • the individual resonators are made with extremely high dimensional accuracy, so the variation in resonance frequency is almost zero. As shown in the figure, as the number N is increased, the impedance can be reduced without changing the resonance characteristics.
  • Fig. 40 (b) shows the impedance when the resonance frequency of each resonator has variation (standard deviation 0.3MHz). If there is variation, the peak at the resonance frequency becomes smaller as the number of resonators N is increased to 10, 100, making it difficult to construct an excellent resonator.
  • the resonance frequency of the doubly-supported beam is governed by the length and thickness of the beam in flexural vibration, and the length of the beam in torsional vibration.
  • the length and thickness of the beam are controlled by using the torsional resonance. In this case, beam length management is important.
  • Non-Patent Document 1 Frank D. Bannon III, John R. Clark, and Clark T.- C. Nguyen, “High-Q HF Microelectromechanical Filters,” IEEE Journal of Solid—State Circuits, Vol. 35, No .4, pp.512- 526, April 2000.
  • Non-Patent Document 2 Vincent Agache et al., "CHARACTERIZATION OF VERTICAL VIBRA TION OF ELECTROSTATICALLY ACTUATED RESONATORS USING ATOMIC FORCE MICROSCOPE IN NONCONTACT MODE", Proc. Of IEEE TRANSDUCERS '05, pp.2023— 2026
  • Non-Patent Document 3 A. Tixier-Mita et al., "SINGLE CRYSTAL NANO-RESONATORS AT 100 MHz FABRICATED BY ASIMPLE BATCH PROCESS", Proc. Of IEEE TRANSD UCERS'05, pp.1388— 1391
  • Non-Patent Document 4 Chang-Jin Kim et al., “Silicon-Processed Overhanging Microgripper, Journal of Microelectromechanical Systems, Vol.1, No.l, 1992, pp.31—36
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vibrator and a resonator having a high Q value in which the dissipation of vibration energy in the vibration of the vibrator is small.
  • the resonator of the resonator according to the present invention is such that the thickness of the support portion of the beam-structure resonator is larger than the thickness of the resonator, and the support portion extends in the length direction of the beam. To be axisymmetric.
  • the vibrator is made of a single crystal material, and the vibrator surface is made a crystal plane.
  • the loss of vibration energy caused by the surface roughness of the vibrator surface can be reduced, so that a resonator having a high Q value can be provided.
  • the surface roughness is rough, the number of atoms (surface layer of the oscillator) that are not ordered is increased compared to the atoms (the deep layer of the oscillator) that are arranged in order.
  • the surface layer atoms are different from the deep layer atoms in terms of the movement restraint, so they interfere with the movement of the deep layer atoms that oscillate in an orderly and coordinated manner, resulting in vibration. It becomes an energy loss factor.
  • the resonator according to the present invention is supported at least at one end by the support portion within the cavity formed on the back surface of the single crystal substrate and the thickness between the bottom surface of the cavity and the surface of the single crystal substrate.
  • the vibrator is formed so that the thickness of the vibrator is thinner than that of the support portion and the support portion is axisymmetric with respect to the length direction of the beam.
  • the resonator of the present invention includes a single crystal substrate, a cavity formed on the back surface of the single crystal substrate, and a thickness between the bottom surface of the cavity and the surface of the single crystal substrate. Therefore, a beam-type vibrator formed to support at least one end and an electrode for applying an electrostatic force to the beam-type vibrator, and the thickness of the vibrator It is characterized in that it is thinner than the holding part and the support part is formed to be axially symmetric with respect to the length direction of the beam.
  • the support portion that is thicker than the thickness of the beam-type vibrator and to make the support portion axially symmetric with respect to the length direction of the beam. Therefore, the support portion can have a strong structure. It is also possible to improve the vibration characteristics while improving the supportability.
  • by anisotropically etching a single crystal substrate pattern formation can be performed with good controllability, and at the same time, a vibrator of single crystal material can be obtained. The vibration energy loss in can also be reduced.
  • all the surfaces of the vibrator are crystal faces, there is an effect of reducing vibration energy loss due to the surface roughness.
  • the resonator according to the present invention includes a resonator in which a plurality of beam-shaped vibrators are formed within the thickness between the bottom surface of the same cavity and the surface of the single crystal substrate.
  • the single crystal substrate may be a silicon substrate.
  • the resonator can be manufactured by the semiconductor manufacturing apparatus.
  • the resonator can be integrated with another active element on the same silicon substrate.
  • the single crystal substrate may include an SOI layer of an SOI substrate.
  • a vibrator can be formed from a thin SOI layer on the order of micrometers or nanometers, so that a beam-type vibrator having a resonance point in an extremely small UHF band can be formed. .
  • the resonator of the present invention includes a resonator in which the cross-sectional shape of the beam-type vibrator is a triangle or trapezoid surrounded by crystal planes of ⁇ 100 ⁇ and ⁇ 111 ⁇ .
  • This configuration makes it easy to form a beam-type vibrator using an etching solution having crystal anisotropy. Can be formed.
  • the electrode is opposed to the entire region in the width direction of the side surface of the beam-type vibrator exposed on the surface of the single crystal substrate via a gap, Includes a capacitor formed between the resonator and the resonator.
  • the flexural vibration mode of the beam-type vibrator can be excited by the electrostatic force generated between the electrode and the beam-type vibrator.
  • the resonator of the present invention includes one in which the electric conductivity of the vibrator is asymmetric with respect to the torsional central axis in the beam longitudinal direction.
  • a plurality of torsional vibrators having the same resonance frequency can be densely integrated, and the impedance can be reduced.
  • the electrode is opposed to about half in the width direction of the side surface of the beam-shaped vibrator exposed on the surface of the single crystal substrate via a gap. Includes a capacitor formed between the mold and the resonator.
  • the torsional vibration mode of the beam-type vibrator can be excited by the electrostatic force generated between the electrode and the beam-type vibrator.
  • This gap is set so that the distance between the electrode and the vibrator can generate a predetermined electrostatic force. In other regions, there may be no opposing electrodes, and the distance from the vibrator becomes a predetermined value or more. , So that the electrostatic force is sufficiently smaller than other areas
  • the size of the gap may be adjusted.
  • the resonator according to the present invention includes one having a plurality of the electrodes according to the resonance mode order of the beam-type vibrator.
  • the electrode may be fixed on the single crystal substrate thick film portion at the periphery of the cavity via an insulating film.
  • the thickness of the substrate part to which the electrode is fixed is sufficiently thick with respect to the thickness of the beam and is strong, so that the electrode is affected by an external impact or an electrostatic force between the electrode and the vibrator.
  • the amount of displacement of itself can be reduced.
  • the beam-type vibrator is a doubly-supported beam
  • the beam-type vibrator includes a support portion made of an impurity diffusion region of a reverse conductivity type, the beam-type vibrator is used as a channel, the support portion made of the impurity diffusion region is a source region and a drain region, and an amplifier is provided. Includes what constitutes.
  • the resonance phenomenon of the vibrator can be electrically output via the amplifier, and the resonator is included inside the amplifier. Therefore, when the signal line between the resonator and the amplifier is provided. Noise superimposed on the signal line can be reduced.
  • the resonator of the present invention includes a resonator including a plurality of resonators arranged in parallel electrically.
  • the electrical impedance of the resonator can be further reduced, and a high degree of dimensional accuracy can be obtained. Therefore, it is possible to suppress the characteristic variation and obtain a highly reliable resonator. It becomes.
  • the resonator of the present invention includes the above-described resonator housed in a case whose atmosphere is sealed in a vacuum.
  • the filter of the present invention includes a filter using the resonator.
  • FIG. 1 is a perspective view of a torsional resonator according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view of the torsional resonator according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view of the torsional resonator according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a method for manufacturing the torsional resonator according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing a method for manufacturing the torsional resonator according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a method for manufacturing the torsional resonator according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing a method for manufacturing the torsional resonator according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a method for manufacturing the torsional resonator according to the first embodiment of the present invention.
  • ⁇ 9 An explanatory diagram showing a method for manufacturing a torsional resonator according to the first embodiment of the present invention.
  • ⁇ 10 An explanatory diagram showing a method for manufacturing the torsional resonator according to the first embodiment of the present invention.
  • ⁇ 11 An embodiment of the present invention.
  • FIG. 21 Perspective view of resonator using second-order flexural vibration in Embodiment 5 of the present invention.
  • FIG. 22 Perspective view of MOS transistor including a torsional resonator in Embodiment 6 of the present invention.
  • FIG. 23 is a sectional view of the structure of FIG.
  • FIG. 25 An explanatory diagram of a method for manufacturing a torsional resonator according to Embodiment 7 of the present invention.
  • ⁇ 26 An explanatory diagram of a method for manufacturing a torsional resonator according to Embodiment 7 of the present invention.
  • ⁇ 27 An embodiment of the present invention 7 ⁇ 28] An explanatory diagram of a method for manufacturing a torsional resonator in Embodiment 7 of the present invention.
  • ⁇ 29 An explanatory diagram of a method for manufacturing a torsional resonator in Embodiment 7 of the present invention.
  • [30] Cross-sectional view showing a modification of the resonator according to the seventh embodiment of the present invention.
  • FIG. 31 is a sectional view showing a modification of the resonator according to the seventh embodiment of the present invention.
  • FIG. 32 is a cross-sectional view showing another modified example of the resonator according to the seventh embodiment of the present invention.
  • FIG. 33 is a schematic diagram showing a filter using a conventional mechanical resonator.
  • FIG. 34 is a characteristic diagram showing the relationship between mechanical resonator dimensions and higher frequency in the conventional example.
  • FIG. 35 is an explanatory diagram of a conventional mechanical resonator using an SOI substrate.
  • FIG. 36 is an explanatory diagram of a conventional mechanical resonator support using a silicon substrate.
  • FIG. 37 is a diagram showing a state where electrodes are formed on a conventional mechanical resonator using a silicon substrate.
  • FIG. 39 (a) A diagram showing an example of a single resonator made of aluminum, (b) A diagram showing a configuration in which a plurality of resonators are electrically connected in parallel.
  • FIG. 40 (a) Diagram showing the relationship between the number of parallel connections and impedance when there is no variation in resonance frequency, (b) Diagram showing the relationship between the number of parallel connections and impedance when there is variation in resonance frequency Figure
  • FIG. 1 is a perspective view of relevant parts of the resonator according to the first embodiment of the present invention.
  • 2 is a vertical cross-sectional view of AA ′ in FIG. 1
  • FIG. 3 is a vertical cross-sectional view of BB ′ in FIG.
  • the resonator according to the first embodiment includes a beam-type vibrator 1 that performs torsional vibration, and an electrode 2 that is disposed close to the side surface of the beam-type vibrator 1 via a gap 6.
  • a cavity 7 is formed on the back surface of the single crystal silicon substrate 4, and the vibrator 1 is processed with the same material as the substrate 4 above the cavity. Since a vibrator is formed by processing a single crystal silicon substrate, the support and vibrator are made of the same single crystal material, and vibration energy at the crystal grain interface as seen in a vibrator made of polycrystalline material. Since there is no loss, a vibrator with a high Q value can be obtained.
  • Both ends of the vibrator 1 are fixed to the support portion 5.
  • the thickness of the support portion 5 matches the thickness of the substrate 4 and is thicker than the thickness of the vibrator 1. Therefore, the support part is stronger than when the thickness of the support part is the same as the thickness of the vibrator, and even if the vibrator 1 vibrates, the support part is not easily vibrated. Vibration of the vibrator 1 leaks to the support part. This reduces the amount of vibration energy dissipated. Also, since the vicinity of the connecting portion between the support portion 205 and the vibrator 201 is symmetric with respect to the length B-B 'of the vibrator 1, the support portion as shown in FIG. Since one of 205 does not retract in the length direction of the beam, the support part has a stronger structure.
  • the electrode 2 is formed of a polycrystalline silicon film. As shown in Fig. 2, the electrode 2 is opposed to about half of the width of the side surface of the beam-type vibrator 1 through the gap 6, and forms a capacitance with the beam-type vibrator 1. is doing. This is because the electrostatic force effectively gives a torsional rotational moment when an electrostatic force is applied between the opposing surfaces to cause the vibrator to vibrate.
  • FIGS. 4 to 13 (a) is a view of the main part from above the substrate, and (b) is a cross-sectional view taken along the line CC ′ of (a) (C—C ′ is omitted in FIGS. 5 to 13). did).
  • Substrate 4 is a single crystal silicon substrate, with the front and back surfaces of the substrate being ⁇ 100 ⁇ planes, and the surface visible in cross section being ⁇ 110 ⁇ Surface.
  • An oxide silicon film is formed on the surface of the substrate (downward in the figure).
  • a silicon nitride film is formed on the back surface of the substrate, and a rectangular window is formed in the silicon nitride film. The four sides of this window are formed along the ⁇ 111 ⁇ plane.
  • a silicon nitride film 8 is deposited again on the back surface of the substrate 4 to form a rectangular window in the silicon nitride film 8. At this time, one side of the window is formed so as to cross the cavity 7 and along the ⁇ 111 ⁇ plane as shown in FIGS. 7 (a) and (b).
  • the electrode 2 is deposited on the silicon oxide film 3 and patterned on the surface of the silicon substrate 4.
  • a polycrystalline silicon film formed by CVD chemical vapor deposition
  • CVD chemical vapor deposition
  • This pattern is formed so that the electrode 2 faces the beam side face up to about half of the beam width. This is effective when the beam-type vibrator 1 is used as a torsional vibrator. This is because the torsional momentum is applied to vibrator 1 by the electrostatic force between vibrator 1 and electrode 2. This is for the purpose of effectively operating the event.
  • silicon oxide film 3 is removed. This can be removed using, for example, hydrofluoric acid.
  • FIG. 13 is equivalent to the configuration of FIGS.
  • Non-special literature 5 G. Hashiguchi and H. Mimura, Fabrication of; silicon quantum Wires
  • the support portion 5 of the beam-type vibrator 1 whose thickness is larger than the thickness of the beam can be strengthened. it can. Also, since the vicinity of the connecting part between the support and the vibrator is symmetrical about the length B-B 'in the length direction of the vibrator 1, one of the support parts is a beam as shown in Fig. 36 of the conventional example. Never retreat in the length direction! Therefore, the support part has a stronger structure. Accordingly, it is possible to reduce the amount of vibration of the vibrator 1 leaking to the support portion, and a resonator having a high Q value can be configured.
  • the beam-type vibrator 1 is made of the same single crystal material as that of the substrate 4, there is no vibration energy loss at the crystal grain interface as seen in the vibrator of the polycrystalline material.
  • a resonator having a value can be constructed.
  • the side surface of the beam-type vibrator 1 is composed of a silicon crystal surface, the surface properties are extremely smooth, loss of vibration energy due to surface roughness is reduced, and high Q A resonator having a value can be constructed.
  • the manufacturing method shown in FIGS. 4 to 13 can form a structure having a thickness exceeding the limit of the patterning width in the semiconductor process, a fine structure having a resonance frequency in the range of several hundred MHz to several GHz.
  • This is a manufacturing method useful for manufacturing a beam-type vibrator. For example, if the length of the beam is 1.6 m, a vibrator having a torsional resonance frequency of 1.2 GHz can be provided.
  • TMAH Tetramethyl Ammonium Hydroxide
  • EDP a mixture of ethylenediamine, pyroterol, and water
  • the cross section of the beam-type vibrator 1 is a triangle, it may be a trapezoid.
  • a method of manufacturing a resonator having this trapezoidal vibrator will be described as a second embodiment of the present invention.
  • a vibrator having a trapezoidal cross section can be formed by similarly producing FIGS. 4 to 6 and changing the subsequent steps as shown in FIGS. 14 (a) and (b).
  • 14 (a) and 14 (b) a silicon nitride film is deposited on the back surface (upper side in the figure) of the substrate 4, and two rectangular windows are formed in the silicon nitride film.
  • a linear silicon nitride film 8 having a certain width is formed so as to cross the cavity 7 and along the ⁇ 111 ⁇ plane.
  • anisotropic etching of silicon is performed using KOH, a trapezoidal cross-section doubly supported vibrator can be formed as shown in Figs. 15 (a) and 15 (b).
  • FIGS. 16 (a) and (b) show the state in which the silicon nitride film is removed
  • FIG. 17 shows the polycrystalline silicon electrode 2 on the silicon oxide film 3 on the surface of the silicon substrate 4 (downward in the figure).
  • This pattern is formed so that electrode 2 faces up to about half the beam width, which is the electrostatic force between vibrator 1 and electrode 2.
  • a torsional resonator is applied to the vibrator 1 and this structure can constitute a torsional resonator, and finally the silicon oxide film is removed (Fig. 18).
  • a gap 6 is formed between the vibrator 1 and the electrode 2 so that the vibrator 1 can be vibrated.
  • this resonator may be housed in a case whose atmosphere is sealed in a vacuum.
  • the silicon substrate 4 is bonded to the silicon base 11 via an adhesive layer 10 such as an adhesive.
  • the resonator is contained in the recesses of the silicon base 11 and the glass cap 9, and the silicon base 11 and the glass cap 9 are joined by anodic bonding while vacuuming the inside.
  • a flexural resonator can also be constructed by changing the configuration of the electrodes of the torsional resonator shown in FIGS. Figure 20 shows a cross-sectional view of the flexural resonator.
  • the electrode 2 is opposed across the entire width direction of the side surface of the vibrator 1 through a gap to form a capacitor. With this configuration, the vibrator 1 can be given an electrostatic force by which the vibrator 1 bends and vibrates in the thickness direction of the substrate.
  • FIG. 21 shows a configuration in which the number of electrodes 2 of the torsional resonator shown in FIG. 1 is two. Electrodes 2a and 2b are positioned at the site where the excitation force is applied to the two antinodes of the second-order torsion mode and its vicinity in order to excite the second-order torsional vibration of the beam. In other words, the electrodes 2a and 2b and the beam side face each other at a site that is about half the length of the beam and about half the beam width.
  • FIG. 22 shows the resonator of FIG. 1 in which two electrodes are newly provided on the support portions 5 at both ends of the vibrator 1.
  • the electrode on the vibrator 1 is a gate electrode 22, one on the support 5 is a drain electrode 23, and the other is a source electrode 24.
  • FIG. 23 is a vertical cross-sectional view taken along the line BB ′ of FIG.
  • the substrate 4 and the vibrator 1 are N-type semiconductors, and the drain region 26 having p + diffusion region force is formed on the substrate under the drain electrode 24, and the source region 25 having P + diffusion region force is formed on the substrate under the source electrode 23. It has been.
  • the entire resonator is a p-channel MOS transistor, and the oxide film of the MOS structure is replaced with the gap 6 to allow the vibrator 1 to vibrate.
  • the vibrator 1 receives an electrostatic force between the vibrator 22 and the torsional vibration with a large amplitude near the resonance frequency, modulates the formation of the channel in the vibrator 1, and obtains a drain current associated therewith.
  • it is possible to reduce the size of the device compared to the case where the resonator and the amplifier are manufactured separately and connected by wiring. It is possible to reduce the superposition of loss and noise caused by wiring.
  • the material of the substrate 4 is silicon.
  • a semiconductor material such as SiGe is used for IJ.
  • the electrical impedance of the resonators can be reduced, and the consistency between the signal circuit outside the resonators and the electrical impedance of the resonators can be improved. it can.
  • the vibrator of the present embodiment is formed by the force of SOI (Silicon
  • the resonator may be formed by covering the SOI layer of the On Insulator substrate.
  • Some SOI substrates have a thin SOI layer with a micrometer or nanometer order, so when forming a beam-type vibrator that has a resonance point in a very thin and short UHF band. Can be used.
  • Embodiment 7 of the present invention will be described.
  • a plurality of forces that form one vibrator on the bottom of the cavity can be formed simultaneously.
  • a perspective view when two vibrators are formed is shown in FIG.
  • Electrodes 2a and 2b are arranged with a gap for each transducer.
  • both the electrodes 2a and 2b are formed so that the electrodes are opposed to the vibrator up to about half of the width direction of the beam-type vibrator, and the torsional vibration is effectively excited.
  • the resonator can be formed in the same manner up to the steps of FIGS. 4 to 6, and the subsequent steps can be changed as shown in FIG.
  • a silicon nitride film is deposited on the back surface (upper in the figure) of the substrate 4, and two rectangular windows are formed in the silicon nitride film.
  • a certain width A linear silicon nitride film is formed so as to cross the cavity and along the ⁇ 111 ⁇ plane.
  • anisotropic etching of silicon is performed using KOH, the result is as shown in Figs. 26 (a) and (b).
  • LOCOS is formed on the backside of substrate 4 where silicon is exposed ( Figures 27 (a) and (b)), the silicon nitride film is removed ( Figures 28 (a) and (b)), and LOCOS is masked.
  • anisotropic etching of silicon is again performed using KOH, two beam-type vibrators with triangular cross sections can be formed side by side as shown in (Fig. 29).
  • the two beam-type vibrators having these at the end faces are accurate. It becomes the same length.
  • the resonance frequency of the two beam-type vibrators is the same.
  • the resonance frequency of flexural vibration depends on the length and thickness of the beam, but in particular, the resonance frequency of torsional vibration has a very small thickness dependence compared to the length dependence, so this configuration has multiple identical torsional resonance frequencies. This is an effective means for forming a vibrator having a gap.
  • the impedance can be lowered by connecting a plurality of pairs of transducers and electrodes having the same resonance frequency in parallel as shown in FIG.
  • FIG. 30 shows a configuration in the case where more vibrators having the same resonance frequency are formed.
  • Fig. 30 is a cross-sectional view showing the cross section of the beam. The feature here is that it forms the first cavity C1.
  • the vibrator forming method shown in FIGS. 4 to 6 and FIGS. 25 to 29 is performed on the bottom surface of the first cavity C1.
  • the first cavity C 1 and the second cavity C 2 are formed on the substrate 4, and a plurality of vibrators are formed between the bottom surface of the second cavity C 2 and the surface of the substrate 4. According to this configuration, a plurality of vibrators having the same length can be formed, and at the same time, the electrode 2 is firmly fixed.
  • the thickness Z0 between the bottom surface of the first cavity and the surface of the substrate 4 can be made sufficiently thicker than the thickness Z1 of the beam, so that the electrode 2 can be formed at a strong site on the substrate. .
  • the amount of displacement of the electrode itself due to an external impact or an electrostatic force between the electrode and the vibrator can be reduced.
  • FIG. 31 shows another configuration of a low impedance resonator using a torsional vibration mode as an eighth embodiment of the present invention.
  • FIG. 31 is similar to FIG. 24 in the force formed by forming a plurality of vibrators on the bottom surface of the first cavity.
  • the difference from the low impedance resonator of the seventh embodiment shown in FIG. The electrode 2 is formed so as to face the entire width direction, not up to about half of the width direction of the vibrator.
  • the electrical characteristics of a part of the vibrator facing the electrode 2 are made different from those of the other parts so that the electrostatic force is substantially larger in part of the electrode 2 than in the other parts. It is characterized by that.
  • an impurity diffusion region Id is formed only in a part of the vibrator facing the electrode 2, and a large electrostatic force is generated in the region where the impurity diffusion region Id and the electrode 2 face each other. It is constructed so that can be generated. Therefore, the electrode 2 patterning as shown in FIG. 24 is unnecessary. In addition, since the thickness ZO part for supporting the electrode 2 in FIG. 30 is not required, the vibrators are integrated with higher density.
  • Fig. 32 shows an example of a manufacturing process that makes the conductivity asymmetry.
  • Fig. 32 (a) is an explanatory diagram for creating a beam having a trapezoidal cross section described in the second embodiment. The force is almost the same as in Fig. 14.
  • the number of patterns of silicon nitride film masks formed on the bottom surface of the cavity is plural. It is said. When anisotropic etching is performed on the bottom surface of the cavity, the result is as shown in Fig. 32.
  • impurity ions of one conductivity type such as phosphorus are implanted into the exposed silicon surface, and annealing is performed to form an impurity diffusion region (FIG. 32 (c)).
  • impurity diffusion region SOG (spin on glass) or ion implantation may be used as the diffusion source.
  • a protective film of silicon oxide film is formed on the silicon surface where the impurities are diffused, the silicon nitride film is removed, and anisotropic etching is performed again, as shown in Fig. 32 (d), the conductivity is asymmetric. A triangular cross-section beam is formed.
  • FIG. 32 (d) is an enlarged view.
  • FIG. 32 (e) When the electrode 2 is formed on the silicon oxide film 3 (below the silicon oxide film in the figure) and the silicon oxide film 3 is removed with hydrofluoric acid, the structure shown in FIG. 32 (e), ie, FIG. Using the torsional vibration mode shown, a low impedance resonator is obtained. Applying a voltage between the transducer and the electrode will cause an asymmetry in the conductivity of the transducer. Thus, as shown in FIG. 32 (e), a voltage is applied between the electrode and the portion of the vibrator where the conductivity is high, that is, the impurity diffusion region, and an electrostatic force is generated, so that the impurity diffusion region is selectively Rotational excitation force (moment) is applied to the torsional vibration mode.
  • the conductivity of the vibrator is partially changed by diffusing impurities of one conductivity type such as phosphorus.
  • Torsional vibration can also be generated by insulating a part.
  • the region into which oxygen ions are implanted is insulated and becomes a region in which electrostatic force is unlikely to be generated, so that a rotational excitation force (moment) is applied to the region where oxygen ions are not implanted.
  • the torsional vibration mode can be excited.
  • a resonator according to the present invention is such that an extremely fine structure that can be manufactured by a semiconductor process is excited mainly by an electrostatic force, and particularly for a beam-type vibrator.
  • a resonator having a high Q value with reduced vibration energy dissipation is provided.
  • This resonator is useful as a high-density integrated high-frequency filter circuit mounted on a portable wireless terminal. It can also be applied to medical and environmental applications such as spectrum analysis in the voice band and ultrasonic band, and mass analysis by mechanical resonance.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

振動子の振動における振動エネルギの散逸が小さい、高Q値の振動子および共振器を提供することを目的とし、梁構造の振動子の支持部の厚みを振動子の厚みよりも厚くかつ、支持部を梁の長さ方向に対して軸対称とする。この構成により、支持部の脆弱性を改善し、支持部からの振動エネルギの損失を低減するとともに、振動子表面の表面粗さに起因する振動エネルギの損失を低減することができるので、高Q値を有する共振器を提供することが可能となる。

Description

振動子、これを用いた共振器およびこれを用いた電気機械フィルタ 技術分野
[0001] 本発明は、振動子、これを用いた共振器およびこれを用いた電気機械フィルタに係 り、特に高密度に集積化された電気回路内において、高性能のフィルタ回路を実現 するものに関する。
背景技術
[0002] 微細加工技術を用いた機械共振器力 近年注目されて ヽる。
従来の機械共振器の一例について図 33を参照して説明する。図 33は非特許文献 1で提案されて ヽるたわみ振動を用いた機械振動フィルタの構成を簡略ィ匕して示した 図である。
[0003] このフィルタは、シリコン基板上に薄膜プロセスを用いてパターン形成を行うことで 形成され、入力線路 104と、出力線路 105と、それぞれの線路に対して 1ミクロン以下 の空隙をもって配置された両持ち梁 101、 102と、その 2つの梁を結合する結合梁 10 3とで構成されている。入力線路 104から入力した信号は、梁 101と容量的に結合し 、梁 101に静電力を発生させる。信号の周波数が、梁 101、 102および結合梁 103 力もなる弾性構造体の共振周波数近傍と一致したときのみ機械振動が励振され、こ の機械振動をさらに出力線路 105と梁 102との間の静電容量の変化として検出する ことで、入力信号のフィルタリング出力を取り出すようにしたものである。
[0004] 矩形断面の両持ち梁の場合、弾性率 E、密度 p、厚み h、長さ Lとすると、たわみ振 動の共振周波数 fは、次式となる。
Figure imgf000003_0001
材料をポリシリコンとすると E= 160GPa、 p = 2. 2 X 103kgZm3、また寸法を L=4 O ^ m, h= l. とすると f=8. 2MHzとなり、約 8MHz帯のフィルタを構成するこ とが可能である。コンデンサやコイルなどの受動回路で構成したフィルタに比べて機 械共振を用いることで Q値の高 、急峻な周波数選択特性を得ることができる。
[0006] し力しながら、上記構成では、さらに高い周波数帯域をもつフィルタを構成するには 、以下のような制約がある。すなわち、(数 1)力も明らかなように、第 1に材料を変更し て EZ を大きくすることが望ましいことがわかるが、 Eを大きくすると梁をたわませる 力が同じであっても梁の変位量は小さくなつてしまい、梁の変位を検知することが難 しくなる。
[0007] また、梁の曲がりやすさをあらわす指標を、両持ち梁の梁表面に静荷重を加えたと きの梁中心部のたわみ量 dと梁の長さ Lの比 dZLとすると、 dZLは、次式の比例関 係で表される。
[0008] [数 2] d ύ 1
L h3 Ε
[0009] これらから、 dZLの値を保ちながら共振周波数を上げるには、少なくとも Eは変更で きず、密度 Pの低い材料を求める必要がある力 ポリシリコンと同等のヤング率で密 度が低い材料としては CFRP (Carbon Fiber Reinforced Plastics)等の複合材料を用 いる必要がある。この場合、半導体プロセスで微小機械振動フィルタを構成すること は難しくなる。
[0010] そこでこのような複合材料を用いない第 2の方法として、(数 1)において梁の寸法を 変更して h'L—2を大きくする方法がある。しかし、梁の厚み hを大きくすることと梁の長 さ Lを小さくすることは、たわみやすさの指標である(数 2)の dZLを小さくしてしまい、 梁のたわみを検出することが困難となる。
[0011] (数 1)および (数 2)について log (L)と log (h)の関係を図 34に示すと、直線 aは(数 1)から求まる関係であり、直線 bは (数 2)力も求まる関係である。この図 34において、 現寸法 A点を起点に傾き「2」の直線より上の範囲 (領域 A)の Lと hを選ぶと fは大きく なり、傾き「1」の直線より下の範囲 (領域 B)の Lと hを選ぶと dZLは大きくなる。従って 、図中のハッチング部分 (領域 c)が梁のたわみ量も確保しつつ、共振周波数を上げ ることができる Lと hの範囲である。
[0012] 図 34より明らかなことは、機械振動フィルタの高周波化には、梁の長さ Lおよび梁の 厚み h双方の寸法の微小化が必要条件であり、 Lおよび hを同じスケーリングで小型 化すること、すなわち傾き 1の直線に乗りながら Lと hを小さくすることは、図 34のハツ チング部分の十分条件である。
[0013] このように、従来の機械共振器では機械振動子の寸法を小型化することで、共振周 波数を高くすることができる。しかし、概して寸法を小型化することで、機械的 Q値が 低下し、望まし ヽ周波数選択特性を得るために必要な Q値が得られな ヽ場合が生じ るという課題を有していた。
[0014] そこで、 Q値のすぐれた共振器として、単結晶材料を利用した共振器が考えられる 。単結晶材料の振動子は内部の原子が規則正しく配列されているので、多結晶材料 に比較して高い Q値を得ることができる。例えば図 35は非特許文献 2に示される、 S OI (Silicon on Insulator)基板を構成するシリコン基板 204の SOI層を力卩ェして 作製した両持ち梁構造である。し力しこの構造において、梁は SOI層の下部の BOX (Buried Oxide)層 203をフッ酸で除去して振動可能としたものであり、支持部 205 下部の BOX層も除去され、支持部は脆弱となる。これにより支持部 205の振動は無 視できないものとなり、両持ち梁の共振周波数の低下を伴い、かつ、支持部からの振 動エネルギの散逸が生じるために大きな Q値を得ることが難しくなる。
[0015] そこで支持部 205の厚みを梁を構成する振動子 201の厚みより十分に厚くすること で、支持部 205の脆弱性を改善した例が非特許文献 3に開示されている。図 36は非 特許文献 3に示される両持ち梁の支持部 205近傍の構造である。支持部 205の厚み はシリコン基板 204の厚みであり、梁の厚みはシリコン基板の厚みに対して十分薄く 、従って支持部 205は強固な構造となっている。しかし、支持部構造は梁の長さ方向 に対して軸対称ではないため、軸に対して片側の支持部 (たとえば A側)が梁長さ方 向に後退するほど支持部 205は脆弱となる。支持部 205の A側、 A'側は 2回の個別 のリソグラフィおよびドライエッチングで形成されるので、片側の後退を低減するため には 2度のリソグラフィの高精度のあわせが必要となる。このあわせ工程は、振動子の 寸法が μ m力も nmオーダへと微細になるほど非常に難しくなる。
[0016] また、非特許文献 3の振動子の作製方法では、振動子 201に近接させて電極 202 を形成することが困難である。図 37は図 36の振動子と基板の断面を示した図である 。 (a)に示したように振動子と基板の間には開口部があるので、振動子 201の側面に 近接した電極 202をスパッタ等の薄膜形成技術で形成しょうとしても、開口部がある ために電極を基板に繋留させることができない、もしくは (b)のように開口部付近の電 極厚みが極端に薄くなり、強固な電極構造を形成することができない。
[0017] シリコン基板表面力 ボロンを拡散させ、シリコン基板の裏面力 異方性エッチング を行 、、ボロンの拡散層を異方性エッチングのエッチングストップ層として利用する技 術もある(非特許文献 4)。ボロンの拡散領域を梁形状に作れば、図 38のように梁型 の振動子を形成することもできる。異方性エッチングを行う前は、基板表面に開口部 はないので、基板表面に電極を形成することができる。ただし、ボロンの拡散のむら によりエッチングストップの効果が異なるので、所定の寸法を有する梁形状を得ること が難しく共振周波数についても所望の値を得ることは極めて困難であった。また振動 子の表面も平坦ではないため、表面粗さに起因する振動エネルギの損失が生じて Q 値が低くなつてしまう。
[0018] また、共振器の共振周波数を VHF帯や UHF帯まで高めるためには、より小さな振 動子にしなければならない。これに伴い電極と振動子の対向面積もより縮小するため 、静電容量は小さくなり、また、インピーダンスは高くなる。高周波信号では、インピー ダンス不整合の度合 、が高くなると RF信号のエネルギ損失が大きくなる。この解決 法として、共振器を複数個並列に電気接続することでインピーダンスを低減し、整合 状態に近づける方法がある。図 39 (a)は、アルミニウムを材料とした振動子で構成さ れた共振器である。振動子 201は両持ち梁構造で両端を支持部 205で支持されて いる。振動子 201の両側面にはギャップを介して励振用電極 202aと検出用電極 20 2bが配置されている。この構成では振動子 201は励振用電極 202a方向にひきつけ られる方向にたわみ振動を行い、その共振周波数は 35. 5MHzとなっている。図 39 (b)は(a)の共振器を電気的に複数個並列接続し、インピーダンスの低減をはかった 構成である。 [0019] 図 40 (a)は、電気的に並列接続した共振器の個数 Nを 1、 10、 100としたときのイン ピーダンスを示して 、る。ただし個々の共振器は極めて寸法精度が高く作られて 、る ために共振周波数のばらつきはほぼ 0となっている。図に示すように、個数 Nを増や すほど、共振特性を変化させずにインピーダンスを低減させることができる。
[0020] 図 40 (b)は、個々の共振器の共振周波数にばらつき (標準偏差で 0. 3MHz)を持 つた場合のインピーダンスを示している。ばらつきを有すると共振器の個数 Nを 10、 1 00と増やすほど共振周波数でのピークがなまり、優れた共振器を構成することが難し くなる。
[0021] このように、インピーダンス低減のために複数個の共振器を電気的に並列接続する には個々の共振器を精度よく加工し、共振周波数のばらつきを抑えなければならな い。両持ち梁の共振周波数は、たわみ振動では梁の長さと厚み、ねじり振動では梁 の長さが支配的となるため、たわみ共振を用いる場合は梁の長さと厚みの管理が、 ねじり共振を用いる場合は、梁の長さ管理が重要となる。
[0022] 非特許文献 1: Frank D.Bannon III, John R.Clark, and Clark T.- C.Nguyen, "High- Q HF Microelectromechanical Filters," IEEE Journal of Solid— State Circuits, Vol. 35, No.4, pp.512- 526, April 2000.
非特許文献 2 : Vincent Agache他, "CHARACTERIZATION OF VERTICAL VIBRA TION OF ELECTROSTATICALLY ACTUATED RESONATORS USING ATOMIC FORCE MICROSCOPE IN NONCONTACT MODE",Proc. of IEEE TRANSDUCERS '05, pp.2023— 2026
非特許文献 3 : A. Tixier-Mita 他, "SINGLE CRYSTAL NANO- RESONATORS AT 100 MHz FABRICATED BY ASIMPLE BATCH PROCESS", Proc. of IEEE TRANSD UCERS'05, pp.1388— 1391
非特許文献 4 : Chang- Jin Kim他, "Silicon- Processed Overhanging Microgripper , J ournal of Microelectromechanical Systems, Vol.1, No.l, 1992, pp.31— 36
発明の開示
発明が解決しょうとする課題
[0023] このように、従来の共振器では、梁の長さや、厚みを高精度に制御することは極め て困難であるのに対し、特に複数の振動子を接続して用いるような場合には、極めて 高精度に制御された寸法を持つ振動子を用いる必要がある。しかしながら、振動子 の振動エネルギの散逸を抑制し、高精度で高 Q値を持つ振動子を再現性よく得るこ とは極めて困難であった。
本発明は、前記実情に鑑みてなされたもので、振動子の振動における振動エネル ギの散逸が小さい、高 Q値の振動子および共振器を提供することを目的とする。 課題を解決するための手段
[0024] 上記課題を解決するため、本発明の共振器の振動子は、梁構造の振動子の支持 部の厚みを振動子の厚みよりも厚くかつ、支持部を梁の長さ方向に対して軸対称と する。
この構成によれば、支持部の脆弱性を改善し、支持部からの振動エネルギの損失 を低減できるので、高 Q値を有する共振器を提供することが可能となる。
また、同時に振動子を単結晶材料とし、振動子表面を結晶面とする。これにより振 動子表面の表面粗さに起因する振動エネルギの損失を低減することができるので高 Q値を有する共振器を提供することが可能となる。表面粗さが粗いと、それだけ秩序 正しく配列された原子 (振動子の深層部)に比べて秩序正しくなく配列されている原 子 (振動子の表層部)の数が増大する。この表層部の原子は、深層部の原子とは運 動の拘束のされかたが違うので、秩序正しく配列して調和して振動する深層部の原 子の動きを阻害し、結果的に振動エネルギの損失要因となる。
[0025] すなわち、本発明の振動子は、単結晶基板の裏面に形成されたキヤビティと、前記 キヤビティの底面と前記単結晶基板表面間の厚み内に、支持部によって少なくとも一 端を支持せしめられるように形成された振動子とで構成され、前記振動子の厚みは、 前記支持部よりも薄くかつ、支持部を梁の長さ方向に対して軸対称となるように構成 される。
[0026] また、本発明の共振器は、単結晶基板と、前記単結晶基板の裏面に形成されたキ ャビティと、前記キヤビティの底面と前記単結晶基板表面間の厚み内に、支持部によ つて少なくとも一端を支持せしめられるように形成された梁型の振動子と、前記梁型 の振動子に静電力の励振力を与える電極とを備え、前記振動子の厚みは、前記支 持部よりも薄くかつ、支持部を梁の長さ方向に対して軸対称となるように形成したこと を特徴とする。
[0027] 上記構成によれば、梁型の振動子の厚みよりも厚膜の支持部を形成することができ るとともに、支持部を梁の長さ方向に対して軸対称とすることができるので支持部を強 固な構造とすることができる。また、支持性を高めつつ、振動特性を高めることも可能 となる。また単結晶基板を異方性エッチングすることにより、制御性よくパターン形成 をおこなうことができるとともに、同時に単結晶材料の振動子を得ることができるため、 多結晶材料に見られるような結晶粒界における振動エネルギ損失をも低減すること ができる。また、振動子の表面はすべて結晶面となっているので、表面粗さに起因す る振動エネルギの損失を低減する効果も有する。
[0028] また、本発明の共振器は、同一キヤビティの底面と前記単結晶基板表面間の厚み 内に複数個の梁型の振動子を形成したものを含む。
この構成によれば、長さが等しい複数個の振動子を形成できるために、同一の共振 周波数を有する複数個の共振器を隣接して並べることができる。従って、前期電極と 振動子の間に形成される静電容量を電気的に並列に接続することで容量を増加さ せ、電気的なインピーダンスを低減させ、共振器を含む周辺の電気回路との電気的 インピーダンスの整合を取りやすくすることができる。
[0029] また、本発明の共振器は、前記単結晶基板がシリコン基板であるものを含む。
この構成によれば、共振器を半導体製造装置で製造することができる。また同一シ リコン基板上で共振器を他の能動素子を接続し集積ィ匕することが可能である。または
、共振器を他の能動素子内に作りこむことも可能である。
[0030] また、本発明の共振器は、前記単結晶基板は SOI基板の SOI層であるものを含む
。 この構成によれば、マイクロメートルまたはナノメートルオーダの薄い SOI層から振 動子を形成することができるので、極めて微小な UHF帯に共振点を有する梁型の振 動子を形成することができる。
[0031] また、本発明の共振器は、前記梁型の振動子の断面形状が { 100}および { 111 }の 結晶面に囲まれた三角形もしくは台形である共振器ものを含む。
この構成は、結晶異方性を有するエッチング溶液を用いて簡単に梁型の振動子を 形成することができる。
[0032] また、本発明の共振器は、前記電極が、前記単結晶基板の表面に露出された梁型 の振動子側面の幅方向全域に対して空隙を介して対向し、前記梁型の振動子との 間に容量を形成したものを含む。
この構成によれば、電極と梁型の振動子の間に生じる静電力で梁型の振動子のた わみ振動モードを励起することができる。
[0033] また、本発明の共振器は、前記振動子の導電率が、梁長手方向のねじり中心軸に 対して非対称であるものを含む。
この構成〖こよれば、同一共振周波数のねじり振動子を複数個、密に集積ィ匕すること が可能となり、かつインピーダンスを低減することができる。
[0034] また、本発明の共振器は、前記電極が、前記単結晶基板の表面に露出された梁型 の振動子側面の幅方向の約半分に対して空隙を介して対向し、前記梁型の振動子 との間に容量を形成したものを含む。
この構成によれば、電極と梁型の振動子の間に生じる静電力で梁型の振動子のね じり振動モードを励起することができる。この空隙は、電極と振動子との間隔が所定の 静電力を生起しうる値とし、その他の領域では相対向する電極がなくてもよいし、振 動子との間隔が所定の値以上となり、静電力が他の領域よりも十分に小さくなるように
、空隙の大きさを調整するようにしてもよい。
[0035] また、本発明の共振器は、前記梁型の振動子の共振モード次数に従って前記電極 の数を複数個備えたものを含む。
この構成によれば、振動の基本モード周波数のみではなぐ高次モードの共振周 波数を利用した共振器を構成することができる。
[0036] また、本発明の共振器は、前記電極は、前記キヤビティ周縁の前記単結晶基板厚 膜部上に絶縁膜を介して固定されたものを含む。
この構成によれば、電極が固定される基板部位の厚みは、梁の厚みに対して十分 厚いため強固であるため、外部からの衝撃や、電極と振動子間との静電力により、電 極自身が変位する量を低減することができる。
[0037] また、本発明の共振器は、前記梁型の振動子は両持ち梁であり、その両端に前記 梁型の振動子とは逆導電型の不純物拡散領域からなる支持部を備え、前記梁型の 振動子をチャネルとし、前記不純物拡散領域からなる支持部をソース領域およびドレ イン領域とし、増幅器を構成するものを含む。
この構成によれば、振動子の共振現象を増幅器を介して電気的に出力することが できるとともに、増幅器の内部に共振器を包含するので、共振器と増幅器間の信号 線路を設けた場合に信号線路に重畳するノイズを低減することができる。
[0038] また、本発明の共振器は、電気的に並列に配置された複数個共振器を備えたもの を含む。
この構成によれば、共振器の電気的インピーダンスをさらに低減することができる、 また高度の寸法精度を得ることができることから、特性ばらつきを抑え、極めて信頼性 の高 、共振器を得る事が可能となる。
[0039] また、本発明の共振器は、前記共振器が、雰囲気を真空に封止したケース内に収 納されたものを含む。
この構成によれば、共振器の保護製を向上させるとともに、振動子の振動が空気の 粘性により阻害されることがない、高 Q値の共振器を提供することができる。
[0040] また、本発明のフィルタは、上記共振器を用いたものを含む。
発明の効果
[0041] 本発明の共振器の構成によれば、 Q値が高ぐ UHF帯で使用可能なフィルタを提 供することができる。
図面の簡単な説明
[0042] [図 1]本発明の実施の形態 1におけるねじり共振器の斜視図
[図 2]本発明の実施の形態 1におけるねじり共振器の断面図
[図 3]本発明の実施の形態 1におけるねじり共振器の断面図
[図 4]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図
[図 5]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図
[図 6]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図
[図 7]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図
[図 8]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図 圆 9]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図 圆 10]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図 圆 11]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図 圆 12]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図 圆 13]本発明の実施の形態 1におけるねじり共振器の製造方法を示す説明図 圆 14]本発明の実施の形態 2における台形断面梁によるねじり共振器の製造方法の 説明図
圆 15]本発明の実施の形態 2における台形断面梁によるねじり共振器の製造方法の 説明図
圆 16]本発明の実施の形態 2における台形断面梁によるねじり共振器の製造方法の 説明図
圆 17]本発明の実施の形態 2における台形断面梁によるねじり共振器の製造方法の 説明図
圆 18]本発明の実施の形態 2における台形断面梁によるねじり共振器の製造方法の 説明図
圆 19]本発明の実施の形態 3における共振器を真空封止した状態の説明図 圆 20]本発明の実施の形態 4におけるたわみ共振器の断面図
圆 21]本発明の実施の形態 5における 2次のたわみ振動を用いた共振器の斜視図 [図 22]本発明の実施の形態 6におけるねじり共振器を包含した MOSトランジスタの 斜視図
[図 23]図 22の構成の断面図
圆 24]本発明の実施の形態 7におけるねじり共振器の斜視図
圆 25]本発明の実施の形態 7におけるねじり共振器の製造方法の説明図 圆 26]本発明の実施の形態 7におけるねじり共振器の製造方法の説明図 圆 27]本発明の実施の形態 7におけるねじり共振器の製造方法の説明図 圆 28]本発明の実施の形態 7におけるねじり共振器の製造方法の説明図 圆 29]本発明の実施の形態 7におけるねじり共振器の製造方法の説明図 圆 30]本発明の実施の形態 7における共振器の変形例を示す断面図 [図 31]本発明の実施の形態 7における共振器の変形例を示す断面図
[図 32]本発明の実施の形態 7における共振器の別の変形例を示す断面図
[図 33]従来の機械共振器を用いたフィルタを示す概略図
[図 34]従来例における、機械共振器の寸法と高周波化の関係を示す特性図
[図 35]SOI基板を用いた従来の機械共振器の説明図
[図 36]シリコン基板を用いた従来の機械共振器の支持部の説明図
[図 37]シリコン基板を用いた従来の機械共振器に電極形成を行った状態を示す図
[図 38]ボロン拡散領域をエッチストップとした従来の振動子の作製方法の説明図
[図 39] (a)アルミニウムで作製した共振器単体例を示す図、 (b)複数個の共振器を電 気的に並列接続した構成を示す図
[図 40] (a)共振周波数にばらつきがない場合の、並列接続個数とインピーダンスの関 係を示す図、(b)共振周波数にばらつきがある場合の、並列接続個数とインピーダン スの関係を示す図
符号の説明
[0043] 1 振動子
2 電極
3 絶縁膜
4 基板
5 支持部
6 ギャップ
7 キヤビティ
101、 102 両持ち梁型の振動子
103 結合梁
104 入力線路
105 出力線路
発明を実施するための最良の形態
[0044] 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
(実施の形態 1) 本実施の形態では、単結晶シリコン基板 4の異方性エッチングによってキヤビティ 7 を形成すると共に振動子 1を形成するに際し、前記キヤビティ 7の底面と前記単結晶 基板 4表面間の厚み内に、支持部 5によって両端を支持せしめられるように振動子 1 が形成され、前記振動子 1の厚みが、前記支持部よりも薄くなるように構成される。
[0045] 図 1は、本発明の実施の形態 1における共振器の要部斜視図である。図 2は図 1の A— A'の垂直方向の断面図、図 3は図 1の B— B'の垂直方向の断面図である。本実 施の形態 1の共振器は、ねじり振動を行う梁型の振動子 1と、梁型の振動子 1の側面 にギャップ 6を介して近接して配置された電極 2を有する。
ここで単結晶シリコン基板 4の裏面にはキヤビティ 7が形成され、キヤビティの上方に 基板 4と同じ材料で振動子 1が加工されている。単結晶シリコン基板の加工によって 振動子が形成されるため、支持部と振動子とは同じ単結晶材料で構成されており、 多結晶材料の振動子に見られるような結晶粒界面での振動エネルギ損失がないた め、高 Q値を有する振動子とすることができる。
[0046] 振動子 1の両端は支持部 5に固定されている。支持部 5の厚みは基板 4の厚みと一 致しており、振動子 1の厚みよりも厚い。従って支持部の厚みが振動子の厚みと同一 の場合に比べて支持部は強固となり、振動子 1が振動しても、支持部は振動されにく ぐ振動子 1の振動が支持部に漏れて振動エネルギが散逸する量を抑える効果を得 る。また、振動子 1の長さ方向の B—B'を軸に支持部 205と振動子 201の接続部付 近は対称形となっているため、従来例の図 36に示したように支持部 205の一方が梁 の長さ方向に後退することはないため、支持部はより強固な構造となっている。
[0047] 電極 2は多結晶シリコン膜で形成されている。図 2に示したように、電極 2は、梁型の 振動子 1の側面の幅方向の約半分に対してギャップ 6を介して対向し、梁型の振動 子 1との間に容量を構成している。これは対向する面間に静電力を与えて振動子が 振動を起こすとき、静電力がねじり回転モーメントを有効に与えるためである。
[0048] 次に本発明の実施の形態 1における共振器の製造方法について図 4乃至図 13を 用いて説明する。図 4乃至図 13において (a)は基板上方から要部を見た図、(b)は、 (a)の C— C '断面図である(図 5乃至図 13では C— C 'を省略した)。基板 4は単結晶 シリコン基板であり、基板の表面および裏面は { 100}面、断面に見える面は { 110} 面である。基板の表面(図では下方)には酸ィ匕シリコン膜を形成している。基板の裏 面には窒化シリコン膜を形成し、この窒化シリコン膜に四角形の窓を形成する。この 窓の 4辺は { 111 }面に沿うように形成する。
[0049] 基板 4の裏面より KOHを用いてシリコンの異方性エッチングを行う。 { 111 }面のェ ツチング速度は他の面よりも大幅に遅いため、結果として図 5 (a)および (b)に示すよ うに { 111 }面が露出するようにエッチングが進行する。 { 100}と { 111 }は 54. 7° の 位置関係となる。キヤビティ 7の底面が基板 4の表面までは到達しな 、時間内でエツ チングを停止する。窒化シリコン膜を除去すると図 6 (a)および (b)の状態となる。
[0050] 次に梁型の振動子の作製工程に移行する。梁構造の作製にも異方性エッチングに よる加工技術を利用する。これは非特許文献 5に紹介され、量子細線の生成にも用 いられている方法を一部利用したものである。図 7 (a)および (b)は基板 4の裏面に再 び窒化シリコン膜 8を堆積し、窒化シリコン膜 8に四角形の窓を形成する。このとき窓 の一辺を図 7 (a)および (b)に示すようにキヤビティ 7を横断し、かつ { 111 }面に沿うよ うに形成する。
[0051] 基板 4の裏面より KOHを用いてシリコンの異方性エッチングを行う。エッチングがシ リコン基板 4の表面に到達するまで進行すると、図 8 (a)および (b)に示すようになる。 次にシリコン基板 4の裏面でシリコンが露出している部分に局所的な酸ィ匕シリコン膜 (LOCOS)を形成する(図 9 (a)および (b) )。たとえば酸ィ匕炉でシリコン表面を酸ィ匕さ せる。(図 10 (a)および (b)に LOCOSを残して窒化シリコン膜を除去した状態を示す
[0052] LOCOSをマスクとして、再び KOHを用いてシリコンの異方性エッチングを行うと、 図 11 (a)および (b)に示すように、三角形断面の両持ち梁の振動子を形成することが できる。梁の 3つの側面は、 2つの { 111 }と 1つの { 100}で形成される。
そして図 12に示すようにシリコン基板 4の表面に対して酸ィ匕シリコン膜 3の上に電極 2を堆積しパターユングする。電極 2には例えば CVD (化学気相成長法)で形成した 多結晶シリコン膜を用いる。このパター-ングは、電極 2が梁の幅の約半分まで梁側 面と対向するように形成する。これは梁型の振動子 1をねじり振動子として用いる場 合に有効である。これは振動子 1と電極 2間の静電力により振動子 1にねじりのモーメ ントを有効に作用させるためである。
[0053] 最後に酸ィ匕シリコン膜 3を除去する。これは例えばフッ酸を用いて除去可能である。
これにより図 13に示すように振動子 1と電極 2の間にギャップ 6が形成され、振動子 1 は振動可能な状態となり、かつ振動子 1と電極 2の間に容量を形成する。図 13は図 1 〜図 3の構成と同等である。
[0054] 非特千文献 5 : G. Hashiguchi and H. Mimura, Fabrication of; silicon quantum Wires
Using Separation by Implanted Oxygen Wafer", Jpn. J. Appl. Phys. Vol. 33(1994), p p. L1649-1650.
[0055] 以上の製造方法によれば、図 1〜図 3に示したように、梁型の振動子 1の支持部 5 厚みを梁の厚みに比べて厚ぐ支持部を強固にすることができる。また、振動子 1の 長さ方向の B— B'を軸に支持部と振動子の接続部付近は対称形となっているため、 従来例の図 36に示すように支持部の一方が梁の長さ方向に後退することはな!/、た め、支持部はより強固な構造となっている。従って振動子 1の振動が支持部へ漏れる 量を低減させることが可能であり、高い Q値を有する共振器を構成することができる。
[0056] また、梁型の振動子 1は基板 4と同じ単結晶材料であるので、多結晶材料の振動子 に見られるような結晶粒界面での振動エネルギ損失がな 、ので、高 、Q値を有する 共振器を構成することができる。
[0057] また、梁型の振動子 1の側面はシリコンの結晶面で構成されているので、極めて表 面性状が滑らかであり、表面粗さに起因する振動エネルギの損失が低減され、高い Q値を有する共振器を構成することができる。
[0058] また、図 4乃至図 13に示す製造方法は、半導体プロセスにおけるパターユング幅 の限界を越えた細さの構造物を形成できるため、数百 MHz〜数 GHzに共振周波数 を有する微細な梁型の振動子の作製に有用な製造方法である。例えば梁の長さを 1 . 6 mとすると 1. 2GHzにねじり共振周波数を有する振動子を提供することができ る。
[0059] なお、異方性エッチングには KOHのかわりに TMAH (Tetramethyl Ammoniu m Hydroxide)や EDP (エチレンジァミン、ピロ力テロール、水の混合物)を用いて ちょい。 [0060] (実施の形態 2)
なお、梁型の振動子 1の断面は三角形としたが、台形とすることもできる。本発明の 実施の形態 2としてこの台形状の振動子を持つ共振器の製造方法について説明す る。
本実施の形態では、図 4乃至図 6までは同様に作製し、以降を図 14 (a)および (b) に示すように変更することで台形断面の振動子を形成することができる。図 14 (a)お よび (b)は基板 4の裏面(図では上方)に窒化シリコン膜を堆積し、窒化シリコン膜に 四角形の窓を 2つ形成する。このときある幅を持つ直線状の窒化シリコン膜 8がキヤビ ティ 7を横断し、かつ { 111 }面に沿うように形成する。 KOHを用いてシリコンの異方 性エッチングを行うと、図 15 (a)および (b)に示すように、台形断面の両持ち梁の振 動子を形成することができる。台形の 4つの側面は、 2つの { 111 }と 2つの { 100}で形 成される。図 16 ( (a)および (b)は窒化シリコン膜を除去した状態、図 17はシリコン基 板 4の表面(図では下方)の上の酸ィ匕シリコン膜 3上に多結晶シリコンの電極 2を形成 してパター-ングを行った状態である。このパター-ングは、電極 2が梁の幅の約半 分まで対向するように形成する。これは振動子 1と電極 2間の静電力が振動子 1にね じりのモーメントを作用させるためであり、この構成によりねじり共振器を構成できる。 最後に酸ィ匕シリコン膜を除去する(図 18)。これはたとえばフッ酸を用いて除去可能 である。振動子 1と電極 2の間にギャップ 6が形成され、振動子 1は振動可能な状態と なる。図 14乃至図 18の工程は三角形断面を得る図 4乃至図 13の工程よりも少ない 工程数で共振器を形成することができるのが特徴である。
[0061] (実施の形態 3)
また、図 19に一例を示すように、この共振器が、雰囲気を真空に封止したケース内 に収納されるようにしてもよい。この場合は、シリコン基板 4を接着剤等の接着層 10を 介してシリコン基台 11に接合する。さらにシリコン基台 11とガラスキャップ 9の凹部で 共振器を内包し、内部を真空吸引しながら、シリコン基台 11とガラスキャップ 9を陽極 接合で接合する。この構成により、保護製の高い共振器を形成できるとともに、空気 の粘性による振動子 1の振動エネルギの損失が低減された共振器を提供することが できる。 [0062] (実施の形態 4)
また、図 1〜3に示したねじり共振器の電極の構成を変えることで、たわみ共振器を 構成することもできる。図 20にたわみ共振器の断面図を示す。電極 2はギャップを介 して振動子 1の側面の幅方向全域にわたって対向し、容量を形成している。本構成 により振動子 1が基板厚み方向にたわみ振動する励振カを静電力で与えることがで きる。
[0063] (実施の形態 5)
また、振動子に対して励起したい共振モード次数に従って電極の数を複数個備え ることによって振動子に対して高次の共振モードを励起することができる。図 21は図 1のねじり共振器の電極 2の数を 2個にした構成である。電極 2a、 2bは梁の 2次のね じり振動を励起するために、 2次のねじりモードの 2つの腹とその近傍に励振力を与 える部位に位置している。すなわち、電極 2a、 2bと梁側面とが対向するのは、梁の長 さの約半分、かつ梁の幅の約半分の部位としている。
この場合も、極めて高度の寸法精度をもち均一な梁を形成することができるため、 信頼性の高 、共振器を提供することが可能となる。
[0064] (実施の形態 6)
また、図 1とほぼ同等の構成で、共振器力も出力信号を取り出し、増幅する構成を 追加することも可能である。図 22は図 1の共振器において、振動子 1の両端の支持 部 5上に新たに 2つの電極を設けたものである。振動子 1上の電極をゲート電極 22、 支持部 5上の一方をドレイン電極 23、もう一方をソース電極 24とする。図 23は図 22 の B— B'の縦方向の断面図である。基板 4および振動子 1は N型半導体であり、ドレ イン電極 24下の基板には p+拡散領域力もなるドレイン領域 26が、ソース電極 23下 の基板には P+拡散領域力もなるソース領域 25が形成されて 、る。すなわち共振器 全体が pチャネル MOSトランジスタであり、 MOS構造の酸化膜がギャップ 6に置き換 わり、振動子 1の振動を可能とさせている。振動子 1はゲート電極 22との間の静電力 を受け、共振周波数近傍で大きな振幅のねじり振動を行い、振動子 1内のチャネル の形成に変調を与え、結果それに伴うドレイン電流を得る。力かる構成によれは、共 振器と増幅器を個別に作製して両者を配線で接続する場合に比べて素子の小型化 をは力ることができるとともに、配線に起因する損失や雑音の重畳を低減することが 可能となる。
[0065] 従来から、ゲート電極を振動させるゲート振動型 MOSFETは考案されていたが、 通常、ゲート電極材料には多結晶シリコンまたは金属薄膜が用いられるため、結晶粒 界における振動エネルギの損失が生じ、高い Q値の共振器を構成できな力つたが、 このように振動子を単結晶シリコンで構成することにより、単結晶シリコンで構成した チャネルに相当する振動子が振動するので Q値の高い共振器および増幅器とするこ とがでさる。
[0066] また、本実施の形態では基板 4の材料はシリコンとした力 SiGe等の半導体材料を 禾 IJ用することちでさる。
また、本実施の形態の共振器を電気的に並列に配置することで、共振器の電気的 インピーダンスを低減し、共振器外部の信号回路と共振器の電気的インピーダンス の整合性を高めることができる。
また、本実施の形態の振動子はシリコン基板をカ卩ェして形成した力 SOI (Silicon
On Insulator)基板の SOI層をカ卩ェして振動子を形成してもよい。 SOI基板はマ イク口メートルまたはナノメートルオーダの薄い SOI層を有するものもあるため、極めて 厚みの薄く長さも短い微小な UHF帯に共振点を有するような梁型の振動子を形成 する場合に利用することができる。
[0067] (実施の形態 7)
次に本発明の実施の形態 7について説明する。実施の形態 1における図 1のねじり 共振器では、キヤビティの底に 1個の振動子を形成していた力 複数本を同時形成 することができる。振動子を 2本形成した場合の斜視図を図 24に示す。各振動子に 対して電極 2a、 2bをギャップを介して配置している。この場合はねじり共振器である ので、電極 2a、 2bともに梁型の振動子の幅方向の約半分まで電極が振動子と対向 するように形成し、ねじり振動を効果的に励起する構成として 、る。
[0068] 共振器は図 4乃至図 6の工程までは同様に作製し、以降を図 25のように変更するこ とで形成することができる。図 25 (a)および (b)は基板 4の裏面(図では上方)に窒化 シリコン膜を堆積し、窒化シリコン膜に四角形の窓を 2つ形成する。このときある幅を 持つ直線状の窒化シリコン膜がキヤビティを横断し、かつ { 111 }面に沿うように形成 する。 KOHを用いてシリコンの異方性エッチングを行うと、図 26 (a)および (b)のよう になる。基板 4の裏面でシリコンが露出している部分に LOCOSを形成し(図 27 (a) および (b) )、窒化シリコン膜を除去し(図 28 (a)および (b) )、 LOCOSをマスクとして 再び KOHを用いてシリコンの異方性エッチングを行うと、(図 29)に示すように三角 形断面の 2本の梁型の振動子を並べて形成することができる。
[0069] 図 28 (a)および(b)に示した { 111 }面 aと { 111 }面 bは、結晶面であるので、これら を端面に持つ 2本の梁型の振動子は精度よく同一長さとなる。すなわち 2本の梁型の 振動子の共振周波数は同一となる。たわみ振動の共振周波数は梁の長さと厚みに 依存するが、特にねじり振動の共振周波数は長さ依存性に比べて厚み依存性は極 めて小さいため、本構成は複数本の同一ねじり共振周波数を有する振動子を形成す る場合に有効な手段となる。
[0070] 図 24に示した構成において、振動子が微細化するほど電極と振動子間の静電容 量は小さくなり、電気的インピーダンスは大きくなり、電気的インピーダンスの不整合 が生じやすぐ入力交流信号のエネルギが効率よく振動子の機械振動に変換されに くくなる。しかし、図 24のように複数個の同じ共振周波数を有する振動子および電極 の対を複数個並列に接続することでインピーダンスを下げることができる。
[0071] なお、同一共振周波数を有するより多くの振動子を形成した場合の構成を図 30に 示す。図 30は梁の断面が見えるような断面図である。ここでの特徴は第 1のキヤビテ ィ C1を形成している点である。続いて第 1のキヤビティ C1の底面に対して、図 4乃至 6および図 25乃至図 29に示した振動子の形成方法を実施している。最終的に基板 4には第 1のキヤビティ C1および第 2のキヤビティ C2が形成され、第 2のキヤビティ C2 の底面と基板 4の表面との間に複数個の振動子を形成している。本構成によれば長 さの等しい振動子を複数個形成できると同時に、電極 2の固定を強固にしている。す なわち、第 1のキヤビティの底面と基板 4の表面との間の厚み Z0は、梁の厚み Z1より も十分に厚くすることができるので、電極 2を基板上の強固な部位に形成できる。これ により、外部からの衝撃や、電極と振動子間との静電力により、電極自身が変位する 量を低減することができる。 [0072] (実施の形態 8)
次に本発明の実施の形態 8として、ねじり振動モードを用いた低インピーダンス共 振器の他の構成を図 31に示す。図 31は図 24と同様、第 1のキヤビティの底面に対し て複数個の振動子を形成したものである力 図 24に示した実施の形態 7の低インピ 一ダンス共振器と異なるのは、電極 2が振動子の幅方向の約半分までではなく幅方 向全域と対向するように形成されている点である。そして、この電極 2と対向する振動 子のうちの一部の電気的特性が他部と異なるようにし、実質的に静電力が電極 2の 一部で他部よりも十分に大きくなるようにしたことを特徴とする。ここでは電気的特性 を変えるために、振動子のうち電極 2に対向する領域の一部にのみ不純物拡散領域 Idを形成し、この不純物拡散領域 Idと電極 2とが対向する領域で大きい静電力が生 起せしめられるように構成したことを特徴とする。従って、図 24のような電極 2のパタ 一-ングが不要である。また、図 30において電極 2を支持するための厚み ZO部分が 不要となるため、振動子をさらに高密度に集積ィ匕しゃすい。
[0073] 図 31においてねじり振動モードを励起させるために、振動子の導電率を梁長手方 向のねじり中心軸に対して非対称とさせる。導電率に非対称性を持たせる製造工程 例を図 32に示す。図 32 (a)は実施の形態 2で説明した台形断面の梁を作成する説 明図である図 14とほぼ同様である力 キヤビティの底面に形成した窒化シリコン膜マ スクのパターン数を複数個としている。キヤビティの底面に異方性エッチングを行うと 図 32このようになる。ここで窒化シリコン膜マスクを残したまま、露出したシリコン面 にリンなどの一導電型の不純物イオンを注入し、ァニールを行うことで不純物拡散領 域を形成する(図 32 (c) )。不純物拡散領域の形成に際し、拡散源としては SOG (ス ピンオングラス)を用いてもイオン'インプランテーションを用いてもょ 、。次に不純物 を拡散したシリコン面に酸ィ匕シリコン膜の保護膜を形成し、窒化シリコン膜を除去後、 再び異方性エッチングを行うと、図 32 (d)のように、導電率に非対称性を有する三角 形断面の梁が形成される。ここで図 32 (d)は拡大図である。電極 2を酸ィ匕シリコン膜 3 上(図では酸ィ匕シリコン膜の下方)に形成し、フッ酸で酸ィ匕シリコン膜 3を除去すると、 図 32 (e)の構造、すなわち図 31に示したねじり振動モードを用 、た低インピーダンス 共振器を得る。振動子と電極の間に電圧を加えると、振動子の導電率の非対称性に より、図 32 (e)のように、電極と振動子の導電率の高い部位すなわち不純物拡散領 域との間に電圧がかかり、静電力が生起されることで、この不純物拡散領域に選択的 に回転性の励振力(モーメント)が加わり、ねじり振動モードを励起することができる。
[0074] 以上により、図 31の構成では、梁の長さが同じであるため共振周波数ずれのない 複数の振動子を同一キヤビティ内に密に並列配置することができ、低インピーダンス 化が可能であり、かつ Q値の高いねじり振動モードを利用した高 Q共振器を実現する ことができる。
[0075] なお、前記実施の形態では、リンなどの一導電型の不純物を拡散することで、振動 子の導電率を一部変化させるようにしたが、酸素イオンなどの注入により、振動子の 一部を絶縁ィ匕することによつてもねじり振動を生起することが可能となる。この場合は 、酸素イオンの注入された領域が絶縁化され、静電力を生起されにくい領域となるこ とで、この酸素イオンの注入されていない領域に回転性の励振力(モーメント)が加わ り、ねじり振動モードを励起することができる。
産業上の利用可能性
[0076] 本発明に力かる共振器は、半導体プロセスで作製可能な極めて微細な構造体が主 に静電力で励振されるようにしたものであって、特に梁型の振動子に対して、支持部 を強固な構造とし、かつ振動子表面を平坦な結晶面とすることで、振動エネルギの散 逸が低減された高 Q値の共振器を提供するものである。本共振器は携帯型無線端 末に積載される高密度に集積化された高周波フィルタ回路等として有用である。また 、音声帯域や超音波帯域におけるスペクトル解析や、機械共振による質量分析等の 医療用や環境分野等の用途にも適用可能である。

Claims

請求の範囲
[1] 単結晶基板の裏面に形成されたキヤビティと、前記キヤビティの底面と前記単結晶 基板表面間の厚み内に、支持部によって少なくとも一端を支持せしめられるように形 成された振動子とで構成され、
前記振動子の厚みは、前記支持部よりも薄ぐ前記支持部は、前記振動子の梁の 長さ方向に対して軸対称である振動子。
[2] 単結晶基板と、
前記単結晶基板の裏面に形成されたキヤビティと、前記キヤビティの底面と前記単 結晶基板表面間の厚み内に、支持部によって少なくとも一端を支持せしめられるよう に形成された梁型の振動子と、
前記梁型の振動子に静電力の励振力を与える電極とを備え、
前記振動子の厚みは、前記支持部よりも薄ぐかつ前記支持部は、前記振動子の 梁の長さ方向に対して軸対称である共振器。
[3] 請求項 2に記載の共振器であって、
同一キヤビティの底面と前記単結晶基板表面間の厚み内に複数個の梁型の振動 子を形成した共振器。
[4] 請求項 2または 3に記載の共振器であって、
前記単結晶基板がシリコン基板である共振器。
[5] 請求項 4に記載の共振器であって、
前記単結晶基板は SOI基板の SOI層である共振器。
[6] 請求項 4に記載の共振器であって、
前記梁型の振動子の断面形状が { 100}および { 111 }の結晶面に囲まれた三角形 である共振器。
[7] 請求項 4に記載の共振器であって、
前記梁型の振動子の断面形状が { 100}および { 111 }の結晶面に囲まれた台形で ある共振器。
[8] 請求項 2乃至 7の 、ずれかに記載の共振器であって、
前記電極が、前記単結晶基板の表面に露出された梁型の振動子側面の幅方向全 域に対して空隙を介して対向し、前記梁型の振動子との間に容量を形成した共振器
[9] 請求項 8記載の共振器であって、
前記振動子の導電率が、梁長手方向のねじり中心軸に対して非対称である、ねじり 共振器。
[10] 請求項 2乃至 7の 、ずれかに記載の共振器であって、
前記電極が、前記単結晶基板の表面に露出された梁型の振動子側面の幅方向の 約半分に対して空隙を介して対向し、前記梁型の振動子との間に容量を形成した共 振器。
[11] 請求項 2乃至 10のいずれかに記載の共振器であって、
前記電極は、前記梁型の振動子の共振モード次数に対応して複数個配設された 共振器。
[12] 請求項 2乃至 11のいずれかに記載の共振器であって、
前記電極は、前記キヤビティ周縁の前記単結晶基板厚膜部上に絶縁膜を介して固 定された共振器。
[13] 請求項 2乃至 12のいずれかに記載の共振器であって、
前記梁型の振動子は両持ち梁であり、その両端に前記梁型の振動子とは逆導電 型の不純物拡散領域力 なる支持部を備え、前記梁型の振動子をチャネルとし、前 記不純物拡散領域力 なる支持部をソース領域およびドレイン領域とした、増幅器を 具備した共振器。
[14] 請求項 2乃至 13のいずれかに記載の共振器であって、
電気的に並列に配置された複数個の共振器を備えた共振器。
[15] 請求項 2乃至 14のいずれかに記載の共振器であって、
前記振動子が、雰囲気を真空に封止したケース内に収納された共振器。
[16] 請求項 2乃至 15のいずれかに記載の共振器を用い、所望の周波数帯域の信号を 通過または阻止するように構成した電気機械フィルタ。
PCT/JP2007/062033 2006-06-14 2007-06-14 振動子、これを用いた共振器およびこれを用いた電気機械フィルタ WO2007145290A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008521256A JP5225840B2 (ja) 2006-06-14 2007-06-14 振動子、これを用いた共振器およびこれを用いた電気機械フィルタ
US12/304,602 US8026779B2 (en) 2006-06-14 2007-06-14 Vibrator, resonator using the same and electromechanical filter using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006164382 2006-06-14
JP2006-164382 2006-06-14

Publications (1)

Publication Number Publication Date
WO2007145290A1 true WO2007145290A1 (ja) 2007-12-21

Family

ID=38831804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062033 WO2007145290A1 (ja) 2006-06-14 2007-06-14 振動子、これを用いた共振器およびこれを用いた電気機械フィルタ

Country Status (4)

Country Link
US (1) US8026779B2 (ja)
JP (1) JP5225840B2 (ja)
CN (1) CN101467348A (ja)
WO (1) WO2007145290A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053646A (ja) * 2009-08-04 2011-03-17 Seiko Epson Corp 光偏向器、光偏向器の製造方法および画像表示装置
US11195984B2 (en) 2016-07-14 2021-12-07 Murata Manufacturing Co., Ltd. Piezoelectric transformer
US11233190B2 (en) 2016-08-24 2022-01-25 Murata Manufacturing Co., Ltd. Piezoelectric transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057137A1 (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 水晶片及び水晶振動子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094062A (ja) * 1999-08-17 2001-04-06 Internatl Business Mach Corp <Ibm> 集積回路加工処理と両立する単結晶共振装置の製造方法
JP3694028B2 (ja) * 1994-12-16 2005-09-14 ハネウェル・インターナショナル・インコーポレーテッド 一体化共振マイクロビームセンサ及びトランジスタ発振器
WO2006075717A1 (ja) * 2005-01-13 2006-07-20 Matsushita Electric Industrial Co., Ltd. 捩り共振器およびこれを用いたフィルタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3919616B2 (ja) * 2002-07-05 2007-05-30 キヤノン株式会社 マイクロ構造体及びその製造方法
CN1977452B (zh) * 2004-08-05 2011-12-14 松下电器产业株式会社 扭转谐振器和采用其的滤波器
JP2006074650A (ja) * 2004-09-06 2006-03-16 Seiko Epson Corp レゾネータの振動周波数調整方法、レゾネータ
US7579618B2 (en) * 2005-03-02 2009-08-25 Northrop Grumman Corporation Carbon nanotube resonator transistor and method of making same
CN101223692B (zh) * 2005-09-27 2012-05-09 松下电器产业株式会社 共振器及使用其的滤波器
JP4961219B2 (ja) * 2006-01-31 2012-06-27 パナソニック株式会社 パラメトリック共振器およびこれを用いたフィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694028B2 (ja) * 1994-12-16 2005-09-14 ハネウェル・インターナショナル・インコーポレーテッド 一体化共振マイクロビームセンサ及びトランジスタ発振器
JP2001094062A (ja) * 1999-08-17 2001-04-06 Internatl Business Mach Corp <Ibm> 集積回路加工処理と両立する単結晶共振装置の製造方法
WO2006075717A1 (ja) * 2005-01-13 2006-07-20 Matsushita Electric Industrial Co., Ltd. 捩り共振器およびこれを用いたフィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEUNGBAE LEE AND NGUYEN C.T.-C.: "Mechanically-coupled micromechanical resonator arrays for improved phase noise", FREQUENCY CONTROL SYMPOSIUM AND EXPOSITION, 2004. PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL, 27 August 2004 (2004-08-27), pages 144 - 150, XP010784604 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053646A (ja) * 2009-08-04 2011-03-17 Seiko Epson Corp 光偏向器、光偏向器の製造方法および画像表示装置
US11195984B2 (en) 2016-07-14 2021-12-07 Murata Manufacturing Co., Ltd. Piezoelectric transformer
US11233190B2 (en) 2016-08-24 2022-01-25 Murata Manufacturing Co., Ltd. Piezoelectric transformer

Also Published As

Publication number Publication date
US8026779B2 (en) 2011-09-27
CN101467348A (zh) 2009-06-24
JP5225840B2 (ja) 2013-07-03
US20090195330A1 (en) 2009-08-06
JPWO2007145290A1 (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4838149B2 (ja) 捩り共振器およびこれを用いたフィルタ
US6909221B2 (en) Piezoelectric on semiconductor-on-insulator microelectromechanical resonators
US7023065B2 (en) Capacitive resonators and methods of fabrication
US6275122B1 (en) Encapsulated MEMS band-pass filter for integrated circuits
JP4728242B2 (ja) 捩り共振器およびこれを用いたフィルタ
US9071226B2 (en) Micromechanical resonator and method for manufacturing thereof
US8289092B2 (en) Microelectromechanical resonant structure having improved electrical characteristics
Humad et al. High frequency micromechanical piezo-on-silicon block resonators
US20050151442A1 (en) Micromechanical electrostatic resonator
JP2009529820A (ja) 少なくとも1個の共振器モード形状を有するmems共振器
JP2007116700A (ja) Mems振動子およびmems振動子からの出力信号電流の増強方法
CN213602620U (zh) 微机电系统谐振器设备和谐振器结构
US20070035200A1 (en) Microelectromechanical system comprising a beam that undergoes flexural deformation
Rawat et al. Piezoelectric-on-Silicon array resonators with asymmetric phononic crystal tethering
US8847708B2 (en) MEMS vibrator and oscillator
US8587390B2 (en) MEMS vibrator, oscillator, and method for manufacturing MEMS vibrator
JP5225840B2 (ja) 振動子、これを用いた共振器およびこれを用いた電気機械フィルタ
JP2007116693A (ja) フラップ振動子、フラップ振動子の製造方法およびフラップ振動子を含む集積回路
WO2009104486A1 (ja) マイクロエレクトロメカニカルデバイス及びその製造方法。
TW201401773A (zh) 微機電共振器及其訊號處理方法以及製造方法
JP2012244349A (ja) 微小機械振動子とその製造方法
JPS6281807A (ja) 圧電薄膜共振子
US20100327993A1 (en) Micro mechanical resonator
US8760234B2 (en) MEMS vibrator and oscillator
Kiihamäki et al. Electrical and mechanical properties of micromachined vacuum cavities

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022287.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745290

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008521256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12304602

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07745290

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)