WO2007145080A1 - カーボン・ナノチューブ・ネットワーク複合材料およびその製造方法 - Google Patents

カーボン・ナノチューブ・ネットワーク複合材料およびその製造方法 Download PDF

Info

Publication number
WO2007145080A1
WO2007145080A1 PCT/JP2007/061061 JP2007061061W WO2007145080A1 WO 2007145080 A1 WO2007145080 A1 WO 2007145080A1 JP 2007061061 W JP2007061061 W JP 2007061061W WO 2007145080 A1 WO2007145080 A1 WO 2007145080A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
nanotube
network
composite material
substrate
Prior art date
Application number
PCT/JP2007/061061
Other languages
English (en)
French (fr)
Inventor
Zhi-An Ren
Jun Akimitsu
Original Assignee
Tama-Tlo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama-Tlo Co., Ltd. filed Critical Tama-Tlo Co., Ltd.
Publication of WO2007145080A1 publication Critical patent/WO2007145080A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment

Definitions

  • the present invention relates to a carbon “nanotube” network composite material, and more specifically, to a carbon “nanotube” network composite material and a method for producing the same.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-44763 discloses a method for producing a carbon “nanotube” network using a template having micro-sized porosity.
  • the resulting carbon 'nanotube structure contained relatively random carbon' nanotube bonds, and the shape was not well controlled.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-18328 also discloses a carbon “nanotube” network structure in which carbon “nanotube” segments are chemically bonded.
  • Carbon “nanotubes” are carbon nanotubes (CNTs) that are linked by a six-membered carbon ring, as outlined in the special issue by the Research Institute of Science and Technology, “Trends in Carbon 'Nanotube Manufacturing Technology Development”. This is a cylindrical material with one layer of graphite rolled up (graphentite). The diameter force is about Slnm to several tens of nm, and the length is about 1 / m. (Non-patent Document 1).
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-41835.
  • a carbon 'nanotube' network structure having a thickness equivalent to a single carbon 'nanotube' is a plurality of functional groups of carbon 'nanotubes. They are created by cross-linking each other, and therefore their spatial and two-dimensional shapes are not well controlled.
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2005-517573
  • a carbon 'nanotube' network is formed by a chemical vapor deposition method using a template created by an optical lithography technique
  • Patent Document 4 cannot create a carbon-nanotube nanoscale network structure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-44763
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-18328
  • Patent Document 3 JP 2005-41835
  • Patent Document 4 JP-A-2005-517573
  • the present invention proposes a number of carbon nanotube nanotube network formation methods
  • the carbon nanotube nanotube network formation methods known so far are used to control the spatial arrangement of carbon nanotubes.
  • the disclosed carbon 'nanotube' network has also been made with careful consideration of the fact that its spatial shape is uncontrollable. If the spatial shape of the carbon 'nanotube structure, especially the shape in the two-dimensional direction, can be controlled more precisely, the substrate can be effectively coated with the carbon' nanotube 'network. The productivity of nanotube 'network composites can be improved and the spatial effectiveness of carbon' nanotubes can be increased.
  • the present inventors have developed a method for forming a carbon 'nanotube network on a specific substrate, and a spatially controlled carbon' nanotube network 'has been developed. Succeeded in creating a token.
  • the novel approach of the present invention provides a two-dimensional CNT network that is macrostructured on a large scale and has carbon 'nanotubes (referred to as CNTs unless otherwise noted) segments are bonded intramolecularly to each other.
  • Segments are connected at both ends of the segment, the carbon 'nanotube manufacturing process forms a network through intramolecular bonds, and the carbon nanotubes created in this way provide a number of functions, Attractive nanotube networks provide a new route to develop integrated nanotubes for a wide range of applications such as electronic, electromagnetic, optical, biological, pharmaceutical or chemical applications It is thought to do.
  • a composite material including a carbon 'nanotube' network and a substrate, wherein the carbon 'nanotube' network has a plurality of carbon 'nanotube segments at the end of the segment.
  • a composite material is provided, characterized in that it forms a carbon 'nanotube' network that is connected and supported by a substrate.
  • the composite material can have a structure in which carbon nanotubes having a macro structure are formed by intramolecular bonding of the end portions of the segments.
  • the composite material can have a force that a carbon 'nanotube' network has a structure extending in a two-dimensional direction with a thickness of a single segment of the carbon nanotube.
  • the composite material may have a structure in which end portions of the segments form a network junction and catalyst particles are included in each junction.
  • a method of manufacturing a composite material comprising a carbon 'nanotube' network and a substrate is provided. This manufacturing method is
  • the manufacturing method may further include a step of depositing catalyst particles having a particle size of 2 nm to 50 nm in the nanochannel before the CVD process and the thermal decomposition process.
  • the second anodizing process is performed at a voltage lower than the voltage of the first anodizing process, and the composite branch structure is formed from the substrate toward the surface of the porous film. Can be generated.
  • the second anodizing treatment can be performed with a force S of 5V and a voltage in the range of 40V.
  • the substrate can be aluminum
  • the porous film can be anodized aluminum oxide.
  • the CVD process includes methane, ethane, propane, butane, isobutane, pentane, hexane, heptane, octane, nonane, decane, ethylene, propylene, isopropylene, butylene, hexylene. , Octylene, ethyne (acetylene), propyne, butyne, benzene, and other hydrocarbons selected from the group consisting of these hydrocarbons.
  • the production method may further include a step of introducing catalyst particles into the nanochannel using the pore as a supply path before the CVD process and the thermal decomposition process.
  • the CVD process and the pyrolysis process can further include the step of supplying hydrocarbons to the nanochannels to grow a carbon 'nanotube' network.
  • the present invention it is possible to provide a CNT network in which the spatial shape is precisely controlled, and the actual state is regarded as one large nanotube in which the ends of the nanotube segments are bonded intramolecularly. It is what This new CNT network improves the production efficiency of CNT network composites with a small amount of CNT, and the composite material of the present invention It can be applied to various electronic, electromagnetic, optical, biological, pharmaceutical and chemical uses.
  • FIG. 1 Typical template structure used in the present invention
  • Fig. 1 (a) Schematic diagram of AAO pore structure.
  • Figure 1 (b) AAO cross-sectional structure after the second anodizing treatment.
  • FIG. 2 Cross-sectional structure of AAO after etching;
  • Fig. 2 (a) Schematic diagram of template.
  • FIG. 3 Four FE-SEM images showing the CNT network by catalyst growth at different magnifications.
  • the CNT network is created by a so-called template growth method using nanopores of a porous template.
  • a porous template anodized aluminum (hereinafter referred to as “AA” unless otherwise specified), porous silicon, porous titania, a porous structure, and the like can be used.
  • the aluminum oxide produced by the anodizing treatment has high regularity, controlled pore diameter and pore length, so that the porous aluminum produced by the anodizing treatment process is preferable.
  • Figure 1 shows a typical template of the present invention. The structure is shown.
  • FIG. 1 (a) shows an outline of the AAO pore structure formed by the first anodizing treatment
  • Fig. 1 (b) shows an AAO cross-sectional structure after the second anodizing treatment.
  • a specific nanochannel structure can be provided by alternating anodization processes.
  • Identical to the pores using the AA film 10 pores that are placed on the aluminum sheet 14 and have nanochannels (not shown) formed adjacent to the interface between the aluminum sheet 14 and the AA film 10 CNTs with the same morphology are created.
  • the porous AAO film 10 is formed by a plurality of stages of anodizing treatment. Next, the base part of the AAO film 10 is expanded so that nanochannels are formed as receiving parts of the CNT network by the second anodizing treatment.
  • the present invention from the viewpoint of production efficiency, it is preferable to produce an AAO film on a high-purity aluminum sheet that has been electropolished, typically by a two-step anodizing method.
  • the number of stages is not particularly limited as long as the number of stages or conditions of anodizing treatment is one stage or more than one condition.
  • the first anodizing step is performed with a relatively high anodizing voltage that enables the growth of straight extending pores.
  • the template can be made by multiple stages of anodization rather than a single stage of anodization. For this reason, as a specific anodizing treatment in this description, a two-step anodizing treatment will be mainly described as an example.
  • a porous AAO film can be provided more satisfactorily by performing the first anodic oxidation treatment by setting the aluminum sheet in sulfuric acid and oxalic acid to a starting voltage of 15V to 60V.
  • the duration of the first anodizing treatment can be in the range of 5 minutes to 60 minutes in an acid solution of 0 ° C or higher, more preferably 10 ° C to 30 ° C.
  • an acid solution oxalic acid or the like can be contained.
  • the voltage varies with various acid solutions and can range from 5V to 300V depending on the acid compound.
  • the acid solution or acid compound described above can be selected from organic acids and inorganic acids.
  • As the acid solution or acid compound sulfuric acid, phosphoric acid, hydrochloric acid, hydrofluoric acid, boric acid, Is it a group consisting of chromic acid, etc. You can also choose. Although this choice depends on the substrate such as silicon, titanium, niobium, tantalum, copper, magnesium, chromium, vanadium, etc., there is no intrinsic limitation on the type of acid compound or material.
  • temperature had no obvious effect on pore formation except for the effect on pore growth rate.
  • the temperature can usually range from _40 ° C to 40 ° C.
  • the duration of the anodization treatment (corresponding to the thickness of the porous film) can be as short as several minutes to several days with little effect on the formation of the nanotube network (this is the rate of etching). To affect).
  • a second anodizing treatment is subsequently performed.
  • the second anodizing treatment is different from the first anodizing treatment.
  • the second anodizing treatment is an anodizing treatment in which the anodizing voltage is decreased to a low voltage value over several minutes and held at the low voltage value for several minutes to grow smaller pores. Defined.
  • the anodization voltage V is rapidly reduced to a low voltage value while maintaining a predetermined current value as the second anodization treatment.
  • a second anodizing treatment it was held at that value for a few minutes to grow smaller branched pores.
  • the initial voltage V affects the shape of the CNT network. The smaller the value of the initial voltage V, the more the CNT network tends to give more CNTs as well as smaller CNTs. Note that from the TEM image observations, the junction density is determined by the first anodizing voltage.
  • the porous film is etched in a suitable acid solution at a suitable temperature for a sufficient time.
  • Etching time is due to the fact that the oxide wall thickness between the smaller pores depends on the second anodizing conditions, acid type, temperature, film thickness and stirring rate (ie, material diffusion rate). Determined by the low potential value of the process. Therefore, it is not easy to determine the clear range and conditions of etching, but from the course of the experiment, several important characteristics of carbon nanotubes were observed.
  • the nanochannel 'template creation process is very important to grow a complete CNT network
  • the first anodizing voltage V determines the junction density and continues etching Time affects the integration of CNT networks.
  • the etching conditions of the AAO film also affect the properties of the CNT network as described above. If the etching time is slightly excessive, the inner space of the nanochannel becomes too large, and the CNTs tend to separate and grow randomly, and if the etching time is slightly insufficient, the nanochannel is networked Without being communicated throughout, the nanotubes grew into a cage network with many separate roots.
  • the electrical conductivity of the CNT network can be increased by an appropriate doping component, acid functional group, or the like.
  • the etching conditions can be selected according to the specific production conditions of the carbon nanotube. In certain embodiments of the present invention, when phosphoric acid is used, it is preferred that the etching duration not exceed 15 minutes.
  • FIG. 2 shows the effect of etching on the AAO film.
  • the AA O thin film is left on the aluminum substrate while forming a connecting point near the base of the pore.
  • Fig. 2 (a) shows a schematic cross-sectional structure of AAO after the etching process
  • Fig. 2 (b) shows a TEM image corresponding to Fig. 2 (a).
  • the template 18 is referred to as an integrated part including the AA film 10 and the AA film 16 in contact with the aluminum substrate 14.
  • Nanochannel 12 is formed at the root of the pore connected by the connection point CP.
  • FIG. 2 (a) shows that the AA O thin film 16 has a substantial thickness, according to the present invention, the AA O thin film 16 exists to the extent that it supports the thick AA O film 10. Can be made.
  • Figure 2 (b) shows the actual template structure.
  • Nanochannel 12 provides a receptive part for CNT network growth, and according to the present invention, the CNT network grows along the nanochannels on the aluminum sheet 14 to create a precisely controlled two-dimensional shape. Can be created.
  • the spacing or thickness of the nanochannels can be in the range of 2 nm to 50 nm so as to provide a storage space for CNTs formed in a spatially limited shape and to receive catalyst particles therein.
  • any known method can be used to introduce the metal catalyst particles into the nanochannel 12 space.
  • Examples of the method described above include ordinary DC or AC electrolytic deposition and a method of sputtering a catalyst to the bottom of the pore.
  • the method for depositing the catalyst particles affects the catalyst size and the catalyst efficiency, the deposition method is not essentially limited.
  • AC electrolytic deposition is adopted because AC power analysis is widely used and has easy controllability.
  • the metal catalyst fine particles can be selected from, for example, transition metals such as Fe, Co, Mo, Ni, V, and Mn, and composite materials thereof.
  • a CoZFe compound catalyst can be readily formed by electrodeposition.
  • the size of the catalyst particles is not particularly limited, and the size of the catalyst particles is preferably contained in the nanochannel. However, the larger the size of the catalyst particles, the more the catalyst particles inhibit the nanochannel expansion. For this reason, the obtained CNTs showed a tendency to grow only in pores that extend wider and straight in the vertical direction.
  • the size of the catalyst particles can be about lnm force, about 50 nm, more preferably about 5 nm to about 20 nm.
  • a CVD / pyrolysis process is performed.
  • the metal catalyst particles provided in the nanochannel promote the expansion of the nanotube network by chemical vapor deposition and thermal decomposition of a carbon-containing compound using the AAO structure as a template.
  • Examples of the carbon-containing compound useful in the present invention include methane, ethane, propane, butane, isobutane, pentane, hexane, heptane, octane, nonane, decane, ethylene, propylene, isopropylene, butylene, and the like. It may include hydrocarbons containing carbon atoms such as xylene, octylene, ethyne (propylene), propyne, butyne, benzene, and mixtures of the hydrocarbons described above. Hydrocarbons can be used as a mixed gas with a carrier gas such as an inert gas. Increasing the CVD reaction time and temperature, or both, increased the integration of non-catalyst-supported CNT networks.
  • the surface oxide film is carefully removed from the aluminum sheet 14 to expose the CNT network deposited on the substrate.
  • Any etchant capable of dissolving AAO can be used in the removal process.
  • an acid such as phosphochromic acid can be used.
  • any material, base such as HgCl or NaOH can be used as an etchant.
  • the junction density can be 10 1Q Zcm 2 or more.
  • the shape of the CNT network of the present invention greatly depended on the anodizing process and etching process, and the distribution of catalyst particles.
  • the vertical pores act as a gas pipeline in the CVD growth process, so the CNT segment grows from all junctions simultaneously.
  • This structure speeds up parallel growth and forms the entire network with a limited 2D shape, and due to the parallel growth from all the pores, the growth rate is It is thought that it becomes independent of size.
  • the present inventors confirmed that the formation of CNT network (5 cm 2 ) was completed by CVD growth for 2 minutes.
  • the good degree of integration of these networks means that the size of the CNT network can be extended over a wide range, and the size is limited only to the size of the template.
  • An AAO film was prepared by anodizing an electropolished high-purity aluminum sheet.
  • the first anodizing treatment was performed on the aluminum sheet at an initial input voltage of about 40 V in a 0.3 M oxalic acid solution at 12 ° C. 20 minutes of anodizing at 40V After that, a porous film was obtained.
  • the anodizing voltage value was slowly decreased to 15 V over 3 minutes and held at that voltage for another 2 minutes to grow smaller pores.
  • the AAO film was etched with a phosphinic acid (5%) solution and etched at 40 ° C for 12 minutes to connect the pores to form the nanochannel network on the underside of the porous film. It formed on the aluminum substrate.
  • Figure 3 shows four FE—SEM images of a CNT network well formed by catalyst growth, with different magnifications (scale bar (a) 500 nm, (b) 1 / im, (c) 2 ⁇ m, (d) 5 / im). Most CNT segments in the network were intermolecularly bound to each other by “Y” junctions. In addition, 4 and 5 branch junctions were also observed. In addition, we were able to find a point ⁇ ⁇ with higher brightness than other parts of CNT at many junction junctions.
  • the high-brightness point ⁇ was thought to be due to the presence of catalytic metal particles, resulting in different electric field characteristics from the surrounding CN ⁇ , and the catalytic metal giving the above-mentioned high-brightness point.
  • the reason why no clear point ⁇ was found in all the junctions was thought to be because the particle size of the catalyst particles was different, and the detectability on the FE-SEM image was different for each point.
  • the shape of the three-branch junction is thought to originate from the hexagonal structure of the pore cell. These junctions linked all the CNT segments together to form a full network covering the entire centimeter-nominated aluminum surface.
  • the CNT segments were bonded at both ends of the junction, and the catalyst particles had no force observed at the center of the junction, and some of the junctions had no embedded catalyst particles.
  • the diameter of these CNT segments is approximately the typical size of multi-walled carbon 'nanotubes, 5 forces, 20 nm, while the CNT segments The length was estimated to be several tens of nanometers to several micrometers based on the diversity of channels in various templates.
  • FIG. 4 shows the FE-SEM image of the CNT network formed without using catalyst particles. As shown in Fig. 4, although CNT has a slightly different shape and degree of integration from the nanotube network produced by catalyst growth, it was shown that it was successfully created as a nanotube network without a catalyst.
  • FIG. 5 shows an FE-SEM image obtained as a result of Example 3 when etching was performed for 12.5 minutes under the same conditions.
  • Figure 5 shows that a very sparse and irregular CNT network has occurred.
  • the resulting CNT network had good inter-segment bonding and exhibited a well-formed two-dimensional shape.
  • FIG. 6 shows the FE-SEM image of the result of Example 4.
  • Example 4 the anodization was performed under different anodizing conditions to increase the roughness of the aluminum oxide template.
  • FIG. 6 in contrast to the results of Example 3, a relatively close CNT network was obtained. This observation suggests that the surface state of the substrate (the aluminum sheet and the AAO thin film on it) contributes to the network structure.
  • the shape of the CNT network changed depending on the preparation conditions and the presence or absence of a catalyst.
  • the resulting CNT network showed good inter-segment coupling and a well-regulated two-dimensional shape.
  • Comparative Example 1 shows a CNT network formed with the etching time set to 10 minutes and different etching conditions as well as other conditions.
  • Figure 7 shows the results. If the etching time was shortened and regular nanochannels were not created, the nanochannels were not connected to the entire network, and many separate root-connected cage networks were formed.
  • Comparative Example 2 shows a CNT network formed under the same etching conditions except that the etching time was longer than 15 minutes. Etching time When the internal space of the nanochannel becomes too large with a long channel length, a good two-dimensional morphology could not be formed due to the large nanochannel space. The resulting CNT network was obtained as multiple CNTs that were randomly separated and grown.
  • various CNT networks having shapes that are completely interconnected two-dimensionally are provided by the template growth method.
  • the CNT segments are intermolecularly bonded to each other, and the size of this network is a centimeter scale, and the size is limited only by the template size. Since the dependence of the etching conditions on the carbon 'nanotube shape' was observed, it was concluded that the carbon 'nanotube' network of the present invention was grown along with the template formed on the substrate. Combine this with the latest lithographic and nanoimprint technologies to create nanochannels with a predetermined pattern, controllable growth to the desired complex nanotube array, and integrated nanotubes The ability to manufacture electronic devices, optical devices, or both is considered possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】カーボン・ナノチューブ・ネットワーク複合材料とその製造方法を提供すること。 【解決手段】本発明においては、カーボン・ナノチューブ・ネットワークと、基板とを含む複合材料が提供される。本発明による複合材料は、カーボン・ナノチューブの複数のセグメントが、セグメントの端部で連結され、基板によって支持されたネットワークを形成していることを特徴とする、カーボン・ナノチューブ・ネットワークを含んで構成されている。  

Description

明 細 書
カーボン 'ナノチューブ 'ネットワーク複合材料およびその製造方法 技術分野
[0001] 本発明は、カーボン 'ナノチューブ 'ネットワーク複合材料に関し、より具体的には、 カーボン 'ナノチューブ 'ネットワーク複合材料およびその製造方法に関する。
背景技術
[0002] カーボン 'ナノチューブの発見以降、その卓越した電気的、熱的、機械的特性から 、その潜在的な応用を発展させるための多くの試みがなされ、また、カーボン 'ナノチ ユーブの種々の形状および機能を生み出すために様々な合成方法が適用されてき た。多くのカーボン 'ナノチューブ 'ベースのデバイスには、所望のナノチューブ構造 への制御可能な成長が要求される。近年、カーボン 'ナノチューブの Y形ジャンクショ ンによる電子スィッチ動作の例示により、ナノチューブベースの集積エレクトロニクス の実現が可能とされた。
[0003] カーボン 'ナノチューブを含む作成方法や構造体が数多く提案されてきた。例えば 、特許文献 1 (特開 2005— 44763)では、マイクロサイズの多孔性を有するテンプレ ートを用いたカーボン 'ナノチューブ 'ネットワークの製造方法が開示されている。得ら れたカーボン 'ナノチューブ構造体は、し力 ながら、割合にランダムなカーボン 'ナノ チューブの結合を含み、形状も充分に制御がされたものでは無かった。
[0004] 特許文献 2 (特開 2004— 18328)もまた、カーボン 'ナノチューブのセグメントが化 学結合されたカーボン 'ナノチューブ 'ネットワーク構造体が開示されている。しかし、 開示された製造方法においては、既存のカーボン 'ナノチューブ 'セグメントを互いに 接続させ、熱処理によりセグメントを再構成させており、それゆえに、それらの結合は 、依然としてランダムなものであり、カーボン 'ナノチューブ 'ネットワークの形状制御は 充分なものではない。なお、カーボン 'ナノチューブとは、科学技術製作研究所によ る特集、「カーボン 'ナノチューブ製造技術開発の動向」に総説されるように、カーボ ン 'ナノチューブ(CNT)は、炭素 6員環が連なったグラフアイトの 1層(グラフエンシー ト)を丸めた円筒状の物質で、直径力 Slnm程度から数 10nm程度、長さは約 1 / m程 度の組成物を意味する (非特許文献 1)。
[0005] また、特許文献 3 (特開 2005-41835)では、単一のカーボン 'ナノチューブ直径相 当の厚みを有するカーボン 'ナノチューブ 'ネットワーク構造体は、カーボン 'ナノチュ ーブの複数の官能基を相互に架橋することにより作成されており、それゆえ、それら 空間的 ·二次元的な形状は充分に制御されたものではなレ、。
[0006] さらに、特許文献 4 (特開 2005— 517573)では、カーボン 'ナノチューブ 'ネットヮ ークは、光リソグラフィ技術により作成されたテンプレートを用いて、化学気相成長法(
CVD法)により作成されており、したがって特許文献 4で開示された方法では、カー ボン.ナノチューブのナノスケールのネットワーク構造を作成することができなかった。
[0007] 特許文献 1 :特開 2005— 44763号公報
特許文献 2:特開 2004— 18328号公報
特許文献 3 :特開 2005— 41835号公報
特許文献 4 :特開 2005— 517573号公報
特 3午文献 1: http:/ / www.niste . go.jp/achiev/ fix/ jpn/stfc/stt004j/feature3. html 発明の開示
発明が解決しょうとする課題
[0008] 本発明は、数々のカーボン ·ナノチューブ ·ネットワークの形成方法が提案されなが らも、これまでに知られたカーボン ·ナノチューブ ·ネットワークの形成方法では、カー ボン'ナノチューブの空間配置の制御に失敗し、開示されたカーボン 'ナノチューブ' ネットワークもまた、その空間形状が制御不可能なものであるとレ、う事実を鋭意考慮し てなされたものである。カーボン 'ナノチューブ構造体の空間形状、特に 2次元方向 の形状、をより精細に制御することが可能となれば、カーボン 'ナノチューブ 'ネットヮ ークにより基板を有効に被覆することが可能となり、カーボン 'ナノチューブ 'ネットヮ ーク複合材料の生産性を向上させ、カーボン'ナノチューブの空間有効性を高めるこ とができる。
課題を解決するための手段
[0009] 上記課題に鑑み、本発明者等は、特定の基板上にカーボン 'ナノチューブ ·ネットヮ ークを形成する方法を開発し、空間的に制御されたカーボン 'ナノチューブ ·ネットヮ ークを作成することに成功した。本発明の新規なアプローチにより、大規模にマクロ 構造化され、カーボン 'ナノチューブ(以下、特に断らない限り CNTと参照する) ·セグ メントが互いに分子内結合された 2次元 CNTネットワークが提供される。セグメントは 、セグメントの両端で連結されており、カーボン 'ナノチューブの製造プロセスにより分 子内結合を介したネットワークを形成し、このように作成されたカーボン ·ナノチューブ により、数々の機能が提供され、この魅力的なナノチューブ ·ネットワークは、例えば、 電子的、電磁気的、光学的、生物学的、医薬的あるいは化学的な応用といった幅広 レ、用途に向け、集積ナノチューブを発展させるための新規なルートを提供するものと 考えられる。
[0010] すなわち、本発明によれば、カーボン 'ナノチューブ 'ネットワークと、基板とを含む 複合材料であって、カーボン 'ナノチューブ 'ネットワークは、複数のカーボン 'ナノチ ユーブのセグメントが、セグメントの端部で連結され、基板により支持されるカーボン' ナノチューブ 'ネットワークを形成してなることを特徴とする、複合材料が提供される。
[0011] さらに本発明によれば、複合材料は、セグメントの端部が分子内結合して、マクロ構 造を有するカーボン 'ナノチューブを形成した構造を有することができる。
[0012] さらに本発明によれば、複合材料は、カーボン 'ナノチューブ 'ネットワークが、カー ボン'ナノチューブの単一セグメントの厚みをもって 2次元方向に広がった構造を有 すること力 Sできる。
[0013] さらに本発明によれば、複合材料は、セグメントの端部がネットワークのジャンクショ ンを形成し、触媒粒子が各ジャンクション内に含まれる構造を有することができる。
[0014] 本発明の他の特徴では、カーボン 'ナノチューブ 'ネットワークと、基板とを含む複合 材料の製造方法が提供される。この製造方法は、
第 1の陽極酸化処理プロセスと第 2の陽極酸化処理プロセスとを含む複数段階の 陽極酸化処理プロセスにより基板上に多孔性フィルムを形成する工程と、
多孔性フィルムをエッチングして、エッチング 'プロセスでの残部分により支持される ナノチャンネルを多孔性フィルムと基板との間に形成する工程と、
エッチングされた基板に、炭化水素の存在下で CVDプロセスおよび熱分解プロセ スを施して、カーボン 'ナノチューブ 'ネットワークを形成する工程と、 多孔性フィルムを基板から除去してカーボン 'ナノチューブ ·ネットワークを露出させ る工程とを含むこと力 Sできる。
[0015] さらに本発明によれば、製造方法は、 CVDプロセスおよび熱分解のプロセスの前 に、 2nmから 50nmの粒子サイズを有する触媒粒子をナノチャンネル中に堆積させる 工程をさらに含むことができる。
[0016] さらに本発明によれば、第 2の陽極酸化処理プロセスは、第 1の陽極酸化処理プロ セスの電圧より低い電圧で施され、基板から多孔性フィルムの表面に向かって複合 的分岐構造を生じさせることができる。
[0017] さらに本発明によれば、第 2の陽極酸化処理は、 5V力 40Vの範囲の電圧で処理 すること力 Sできる。
[0018] さらに本発明によれば、基板は、アルミニウムとすることができ、多孔性フィルムは、 陽極酸化処理された酸化アルミニウムとすることができる。
[0019] さらに本発明によれば、 CVDプロセスは、メタン、ェタン、プロパン、ブタン、イソブタ ン、ペンタン、へキサン、ヘプタン、オクタン、ノナン、デカン、エチレン、プロピレン、ィ ソプロピレン、ブチレン、へキシレン、オタチレン、ェチン(アセチレン)、プロピン、ブ チン、ベンゼン、およびその他これらの炭化水素の混合物からなるグループから選択 した炭化水素を用いて行うことができる。
[0020] さらに本発明によれば、製造方法は、さらに、 CVDプロセスおよび熱分解プロセス 前に、ポアを供給路として利用して触媒粒子をナノチャンネル中に導入する工程を 含むことができる。
[0021] さらに本発明によれば、 CVDプロセスおよび熱分解プロセスは、さらに、炭化水素 をナノチャンネルに供給して、カーボン 'ナノチューブ 'ネットワークを成長させる工程 を含むことができる。
発明の効果
[0022] 本発明によれば、空間形状が精密に制御された CNTネットワークを提供することが でき、その実態は、ナノチューブ ·セグメントの端と端が分子内結合した、一つの大き なナノチューブと見なされるものである。この新規な CNTネットワークは、少量の CN Tで CNTネットワーク複合材料の生産効率を改善し、さらに、本発明の複合材料は、 種々の電子的、電磁気的、光学的、生物学的、医薬的、化学的な用途に応用するこ とができる。
図面の簡単な説明
[0023] [図 1]本発明で用いられる典型的なテンプレート構造;図 1 (a) AA〇ポア構造の概略 図。図 1 (b)第 2の陽極酸化処理後の AAOの断面構造。
[図 2]エッチング後の AAOの断面構造;図 2 (a)テンプレートの概略図。図 2 (b) TEM
(透過型電子顕微鏡)による図 2 (a)に対応するテンプレートの実際の構造。
[図 3]触媒成長による CNTネットワークを異なる倍率で示す 4つの FE-SEM像 (スケ
~~ノレノヽー (a) 500nm ; (b) 1 μ m ; cノ 2 i m; (d) 5 μ m)。
[図 4]触媒粒子を用いない場合の CNTネットワークの FE-SEM像。
[図 5]実施例 3による CNTネットワークの FE-SEM像。
[図 6]実施例 4による CNTネットワークの FE-SEM像。
[図 7]比較例 1による CNTネットワークの FE-SEM像。
符号の説明
[0024] 10…陽極酸化アルミニウム(AAO)フィルム、 12…ナノチャンネル、 14…アルミユウ ムシート、 16· · ·ΑΑ〇薄膜、 18…テンプレート(ΑΑΟフィルム 10 + CPにより相互連 絡された ΑΑ〇薄膜 16)、 CP…連結点
発明を実施するための最良の形態
[0025] 以下、本発明を、図面に示した本発明の単に特定の実施の形態をもって詳細に説 明する。以下、本発明を図面に示した実施の形態をもって説明するが、図面は、本 発明の特定の実施の形態を示したに過ぎないものである。
[0026] 本発明においては、 CNTネットワークは、多孔性テンプレートのナノポアを用いた、 いわゆるテンプレート成長法により作成される。多孔性テンプレートとしては、陽極酸 化アルミニウム(以下、特に断らない限り AA〇として参照する。)、ポーラスシリコン、 ポーラスチタニア、多孔性構造体などを用いることができる。
[0027] 好ましい実施の形態では、陽極酸化処理により作成された酸化アルミニウムは、高 い規則性、制御されたポア径およびポア長を有するので、陽極酸化処理プロセスに よって作成された多孔性アルミが好ましい。図 1には、本発明の典型的なテンプレー ト構造を示す。
[0028] 図 1 (a)には、第 1の陽極酸化処理により形成された AAOポア構造の概略を示し、 図 1 (b)には、第 2の陽極酸化処理後の AAO断面構造を示す。図 1 (a)に示したよう に、陽極酸化処理条件とポアパラメータの直接的な関係のため、交互的な陽極酸化 処理プロセスによって、特定のナノチャンネル構造を提供することができる。アルミ二 ゥムシート 14の上に配置されるとともに、アルミニウムシート 14と AA〇フィルム 10の 界面に隣接してナノチャンネル(図示せず)が形成された AA〇フィルム 10のポアを 用いて、ポアと同一のモルフォロジ一を有する CNTが作成される。本発明において は、多孔性の AA〇フィルム 10は複数段階の陽極酸化処理によって形成される。次 いで第 2の陽極酸化処理により、 CNTネットワークの受容部分としてのナノチャンネ ルを形成させるように、 AAOフィルム 10の根元部分を拡大する。
[0029] 本発明によれば、生産効率の観点からは、典型的には、 2段階陽極酸ィ匕法により、 電解研磨した高純度アルミニウムシート上に AAOフィルムを作成することが好ましレヽ 。しかしながら、段階数は、陽極酸化処理の段階数または条件が 1段階または 1条件 より大きい限り、特に限定されるものではない。
[0030] 第 1の陽極酸化処理工程は、ストレートに延びたポアの成長を可能とする比較的高 い陽極酸化処理電圧により行われる。本発明においては、テンプレートは、単一段階 の陽極酸化処理よりもむしろ、複数段階の陽極酸化処理によって作成することができ る。このため、本記述における特定の陽極酸化処理として、主に二段階の陽極酸化 処理を例として説明する。硫酸とシユウ酸中においてアルミニウムシートを、 15Vから 60Vの開始電圧に設定して第 1の陽極酸化処理を行うことによって、多孔性 AAOフ イルムをより良好に提供することができる。第 1の陽極酸化処理の継続時間は、 0°C以 上、より好ましくは 10°Cから 30°Cの酸溶液中において、 5分から 60分の範囲とするこ とができる。酸溶液としてはシユウ酸等を含むことができる。
[0031] 陽極酸化処理電圧に関して、電圧は、種々の酸溶液によって変化し、酸化合物に よって 5Vから 300Vの範囲とすることができる。上述した酸溶液又は酸化合物として は、有機酸および無機酸から選択することができ、酸溶液又は酸化合物としては、シ ユウ酸と同様に、硫酸、リン酸、塩酸、フッ酸、ホウ酸、クロム酸等からなるグループか らも選択すること力できる。この選択は、シリコン、チタン、ニオブ、タンタル、銅、マグ ネシゥム、クロム、バナジウム等といった基板に依存するものの、酸の化合物又は材 料の種類には、本質的な制限はない。
[0032] 実験観察から、温度は、ポアの成長速度への効果を除レ、て、ポア形成に対して明 瞭な効果を有しなかった。材料特性にもよるが、温度は、通常、 _40°Cから 40°Cの 範囲とすることができる。陽極酸化処理の継続時間(多孔性フィルムの膜厚に相当す る。 )は、ナノチューブ 'ネットワークの形成に殆ど影響は無ぐ数分間から数日間とす ること力 Sできる(これはエッチングの速度に影響を与える)。
[0033] 多孔性フィルム層を形成させる酸溶液中での適切な継続時間の定電圧における第 1の陽極酸化処理後、続いて、第 2の陽極酸化処理を施す。第 2の陽極酸化処理は 、第 1の陽極酸化処理とは処理材料は変わらなレ、。ただし、第 2の陽極酸化処理は、 陽極酸化処理電圧を、数分間かけて低電圧値まで減少させ、さらに数分間、低電圧 値にて保持して、より小さなポアを成長させる陽極酸化処理として定義される。
[0034] 本発明においては、並列に並んだストレートなポアを形成した後、第 2の陽極酸化 処理としての所定の電流値を維持しつつ、陽極酸化処理電圧 Vを、急速に低電圧値 に減少させ、第 2の陽極酸化処理としてそれ力 数分間その値に保持して、より小さ な分岐ポアを成長させた。初期電圧 Vは、 CNTネットワークの形状に影響を与える。 初期電圧 Vの値が小さくなればなるほど、 CNTネットワークはより多くのジャンクション 密度並びに小さな経の CNTを与える傾向にある。 TEM像の観測結果から、ジャンク シヨン密度は第 1の陽極酸化処理電圧により決定される、ということに留意されたい。
[0035] より小さいポア間の酸化物壁の厚みは益々薄くなるため、引き続いて施される適切 な酸エッチング ·プロセスによって、上述した、より小さなポア同士がすべて相互に連 絡され、ナノチャンネルと共に横方向に広がったネットワークを作ることができる。これ らのサンドイッチ型のナノチャンネル.ネットワークは、 CNTネットワーク作成における テンプレートとして作用する。
[0036] 本発明者は、 AAOの略六角形ポア構造の処理条件を検討したところ、ポアのセル パラメーター DCとポア径 DPは、陽極酸化処理電圧 Vと次式で表される、直接的な関 係を有することを見出した。 [0037] [数 1]
DC = n( り x V(Volt) = a x DP 1 ) 上記式中、定数 nおよび aは、種々の酸溶液および陽極酸化温度に依存して変化す るものの、ポア長 LPは、陽極酸化処理時間に比例する。上記関係は、陽極酸化処理 の間にポア条件を制御するために有用であり、陽極酸化処理を続けながら Vを変更 することによって、ポア径とポア密度を増加および減少させるための予測を与える。
[0038] 陽極酸化処理の次に続いて、多孔性フィルムを、適当な酸溶液中で適当な温度で 充分な時間、エッチング処理を施す。エッチング時間は、より小さなポア間の酸化物 壁厚みが、第 2の陽極酸化処理条件、酸の種類、温度、膜厚および攪拌速度(つまり 物質の拡散速度)に依存するために、陽極酸化処理プロセスの低電位値によって決 定される。したがって、エッチングの明確な範囲および条件を決定することは容易で はないが、実験の経過からは、カーボン 'ナノチューブのレ、くつかの重要な特徴が観 測された。
[0039] 第一に、ナノチャンネル 'テンプレートの作成プロセスは、完全な CNTネットワーク を成長させるために非常に重要であり、第 1の陽極酸化処理電圧 Vは、ジャンクション の密度を決定し、エッチング継続時間は CNTネットワークの集積度に影響を与える。
[0040] 第二に、 AAOフィルムのエッチング条件はまた、上述のように CNTネットワークの 特性に影響を及ぼす。エッチング時間がわずかに過剰になると、ナノチャンネルの内 部空間は大きくなりすぎてしまレ、、 CNTがランダムに分離して成長する傾向を示し、 エッチング時間がわずかに不足する場合、ナノチャンネルはネットワーク全体にわた つて連絡されず、ナノチューブは、多数の分離した根本が連なった髭状ネットワーク へと成長した。本発明によれば、適当なドーピング成分や酸官能基等によって、 CN Tネットワークの電気伝導度を増加させることができる。このため、エッチング条件は、 カーボン 'ナノチューブの特定の製造条件に合わせて選択することができる。本発明 の特定の実施形態では、リン酸を用いた場合、エッチング継続時間は 15分を超えな レ、ことが好ましい。
[0041] 図 2に、 AAOフィルムへのエッチングの効果を示す。本発明の、複数段階の陽極 酸化処理後の AA〇フィルム 10にエッチング 'プロセスを施すことによって、ポア内壁 をエッチングし、ポアの根元近傍に連結点を形成しながら、アルミニウム基板上に AA O薄膜が残される。図 2 (a)に、エッチング 'プロセス後の AAOの模式的な断面構造 を示し、図 2 (b)に、図 2 (a)に対応する TEM像を示す。本発明でテンプレート 18とは 、 AA〇フィルム 10と、アルミニウム基板 14に接触する AA〇薄膜 16とを含む、一体 化された部分として参照される。ナノチャンネノレ 12は、連結点 CPによって連絡された ポアの根元部分に形成される。連結点 CPの間には、エッチング後、 CNTネットヮー クを受容するためのナノチャンネル 12が形成される。図 2 (a)には、 AA〇薄膜 16が 実体的な厚みを有するように示されているものの、本発明によれば、 AA〇薄膜 16は 厚膜の AA〇フィルム 10を支える程度に存在させることができる。図 2 (b)は実際のテ ンプレートの構造を示す。
[0042] ナノサイズのポアは、紙面垂直方向および紙面水平方向に二次元的に広がってい る。このため、図 2 (b)では、図 2 (a)に図示したものとは異なり、ナノサイズのチャンネ ルを明瞭に認めることができないが、連結点 CPは、矢線で示すポイントに認めること ができる。ナノチャンネノレ 12は、 CNTネットワーク成長のための受容部分を提供し、 本発明によれば、 CNTネットワークはアルミニウムシート 14上のナノチャンネルに沿 つて成長して、精密に制御された 2次元形状を生み出すことができる。ナノチャンネル の間隔または厚みは、空間的制限された形状に形成した CNTの収容空間を提供し 、またその内部に触媒粒子を受容するように、 2nmから 50nmの範囲とすることがで きる。
[0043] さらに本発明によれば、例えば、 Kyotaniら、 (Bull. Chem. Soc. Jpn, 1999, 72 , 1957)、 Baeら(Adv. Mater, 2002, 14, 277)、 Sohnら(Appl. Phys. Lett. , 2005, 87, 123115) (http : //scitation. aip. org/jhtml/doi. jsp)によって 報告されたように、触媒粒子を用レ、ても、触媒粒子を用いなくとも、 CNTネットワーク を提供することができる。ポア構造が、熱分解された炭化水素分子の、ナノチューブ への固体化を促進するものと考えられる。
[0044] 如何なる既知の方法によっても、金属触媒粒子をナノチャンネル 12の空間内に導 入すること力 Sできる。上述した方法として、例えば、通常の DCまたは AC電解析出や 、ポアの底へと触媒をスパッタリングするなどの方法を挙げることができる。本発明に おいては、触媒粒子の析出方法は、触媒サイズや触媒効率に影響するものの、堆積 方法は、本質的に制限されるものではない。本発明の特定の実施形態では、 AC電 解析出が、広く用いられ容易な制御性を有することから、 AC電解析出を採用した。
[0045] 金属触媒微粒子として、例えば Fe、 Co、 Mo、 Ni、 V、 Mnといった遷移金属、およ びそれらの複合材料から選ぶことができる。本発明の特定の実施形態では、電析に よって CoZFe化合物触媒を容易に形成することができる。触媒粒子のサイズは、特 に限定されるものではなぐ触媒粒子のサイズは、ナノチャンネル中に含有されること が好ましい。し力、しながら、触媒粒子のサイズが大きくなればなるほど、触媒粒子は、 ナノチャンネルの拡張を阻害する。このため、得られた CNTは、より広く垂直方向に ストレートに延びたポアにのみ成長する傾向を示した。このため、触媒粒子のサイズ は、約 lnm力、ら約 50nm、より好ましくは約 5nmから約 20nmとすることができる。
[0046] 本発明においては、触媒粒子を含んで、または省略してナノチャンネルを形成した 後、 CVD/熱分解プロセスを実施する。この場合には、上記のように、ナノチャンネ ル内に設けられた金属触媒粒子は、 AAO構造をテンプレートとして用いた炭素含有 化合物の化学気相成長および熱分解によるナノチューブ ·ネットワークの拡張を促進 させる。
[0047] 本発明における有用な炭素含有化合物としては、例えば、メタン、ェタン、プロパン 、ブタン、イソブタン、ペンタン、へキサン、ヘプタン、オクタン、ノナン、デカン、ェチレ ン、プロピレン、イソプロピレン、ブチレン、へキシレン、オタチレン、ェチン(ァセチレ ン)、プロピン、ブチン、ベンゼンなどの炭素原子含有の炭化水素、および上述した 炭化水素の混合物を含むことができる。炭化水素は不活性ガスのようなキャリアガス との混合ガスとして用いることができる。 CVD反応時間および温度、またはそれらの レ、ずれか一方を増加させた場合、非触媒担持の CNTネットワークの集積度が増加し た。
[0048] さらに本発明によれば、表面酸化物被膜をアルミニウムシート 14から注意深く除去 し、基板上に付着した CNTネットワークを露出させる。除去プロセスでは、 AAOを溶 解させることができる如何なるエツチャントも使用することができる。好ましい実施形態 では、ホスホクロミック酸等の酸を用いることができる。し力 ながら本発明によれば、 基板金属および表面酸化物層、またはそれらのいずれか一方を除去することができ る限り、如何なる材料、 HgClや、 NaOHのような塩基などをエツチャントとして用いる
2
こと力 sできる。
[0049] レ、くつかの試料では、ジャンクション密度を、 101QZcm2以上にすることができる。
本発明の CNTネットワークの形状は、陽極酸化処理プロセスおよびエッチング 'プロ セス、また触媒粒子の分布に大きく依存した。 CVD成長プロセスにおいて垂直方向 のポアは、ガスのパイプラインとして働くため、 CNTセグメントは、すべてのジャンクシ ヨンから同時に成長する。
[0050] この構造が並列的な成長を迅速なものとして、 2次元形状を制限されたネットワーク の全体を形成し、すべてのポアからの並列的な成長に起因して、成長速度がテンプ レートの大きさには依存しなくなるものと考えられる。本発明者等は、 CNTネットヮー ク(5cm2)の形成力 2分間の CVD成長により完了したことを確認した。これらのネッ トワークの良好な集積度は、 CNTネットワークの大きさを広範囲に拡張することができ 、大きさはテンプレートのサイズにのみ限定されることを意味している。
[0051] さらに本発明によれば、同様の他のテンプレートを、得られたカーボン 'ナノチュー ブ'ネットワーク上に覆うことができ、その後、同一の手順をテンプレートに適用して、 積層ネットワーク構造を形成させるようにすることができる。このプロセスは、特定の用 途に応じて、厚膜のカーボン 'ナノチューブ ·ネットワークが好ましい場合や要求され る場合に利用することができる。この実施の形態では、カーボン 'ナノチューブ 'ネット ワークの上に他のテンプレートを形成する場合は、適切な挿入層および保護層、ある いはそれらレ、ずれか一方を用いることができる。
[0052] 以下、本発明を特定の実施例をもって詳細に説明するが、本発明は特定の実施例 に限定されるものではない。
実施例
[0053] (実施例 1)
AAOフィルムを、電解研磨された高純度アルミニウムシートへの陽極酸化処理によ り作成した。 12°Cの 0. 3Mシユウ酸溶液中において約 40Vの初期投入電圧でアルミ ユウムシ一トに第 1の陽極酸化処理を行つた。約 40Vでの 20分間の陽極酸化処理の 後、多孔性フィルムを得た。
[0054] それから、第 2の陽極酸化処理として、陽極酸化処理電圧値を 3分間かけてゆっくり と 15Vまで減少させ、さらに 2分間その電圧に保持し、より小さなポアを成長させた。 さらに、 AAOフィルムをホスヒン酸(5%)溶液を用レ、、 40°Cで 12分間エッチング処理 を施して、ポア間を連結させてナノチャンネル 'ネットワークを、多孔性フィルムの下側 で、かつアルミニウム基板上に形成した。
[0055] その後、 Sklar等(Nanotechnology, 2005, V0II6, 1265)によって報告された パルス電解析出法により、 CoZFe触媒粒子をナノチャンネル内に析出させた。その 後、 AA〇フィルムを、密封された石英炉芯管内に入れ、真空状態(lPa以下で) 620 °Cまで熱して、テンプレートを形成した。水素ガスを 5分間フローして還元反応を行つ た後、ナノチューブ 'ネットワークの CVD成長を、混合ガス(C H : Ar= 1 : 9)を 150s
2 2
ccm (25°C)で流し、 20分間のアセチレン熱分解によって行った。この CNT成長の ための熱分解の間、石英管の内圧は高速ロータリーポンプにより、 200Paに維持し た。
[0056] 真空中で冷却後、表面アルミナ酸化フィルムを、ホスホクロミック酸によって慎重に 除去し、基板に付着した CNTネットワークを露出させた。露出したアルミシート上の C NTネットワーク構造体を、電界放出型走査型電子顕微鏡 (FE— SEM JOEL JS M— 6301 F)を用レ、て観測した。
[0057] 図 3には、触媒成長によって良好に形成された CNTネットワークの 4つの FE— SE M像を、異なる倍率(スケールバーが(a) 500nm、(b) 1 /i m、 (c) 2 μ m、(d) 5 /i m) で示す。ネットワーク中の大部分の CNTセグメントは互いに「Y」ジャンクションにより 分子内結合していた。加えて、 4分岐や 5分岐ジャンクションもまた認められた。また、 多くのジャンクション接合部には、 CNTの他の箇所よりも高い輝度のポイント Ρを見出 すことができた。高輝度のポイント Ρは、触媒金属の粒子が存在するため、周囲の CN Τとは異なる電界特性が生じ、触媒金属が上述した高輝度のポイントを与えてレ、るも のと考えられた。なお、ジャンクション全部に明確なポイント Ρが見出されない理由は、 触媒粒子の粒径などが異なり、 FE— SEMイメージ上での検出性がポイントごとに相 違するためであると考えられた。 [0058] 3分岐ジャンクションの形状は、ポアセルの六角形構造を起源としているものと考え られる。これらのジャンクションにより、すべての CNTセグメントが相互結合し、センチ メートノレサイズのアルミニウム表面全体を覆うフルネットワークを形成した。一端から他 端までの FE— SEM観測では、 CNTネットワークに断絶が無いことが示され、形成さ れた CNTネットワークは、単一で、一体化され、個々の CNTセグメント間のランダム な結合や接続ではなぐ 2次元にわたってマクロ構造化された新規な構造体が提供 できた。
[0059] CNTセグメントは、ジャンクションにおいてその両端で結合されており、触媒粒子は ジャンクションの中心に観測された力 レ、くつかのジャンクションでは埋設された触媒 粒子を有しなかった。加えて、テンプレート中に形成されたナノチャンネルの径と一致 して、これら CNTセグメントの径は、概ね多層カーボン 'ナノチューブの典型的なサイ ズである、 5力、ら 20nmとなり、一方で CNTセグメントの長さは、種々のテンプレートの チャンネルの多様性に基づレ、て、数十ナノメートルから数マイクロメートノレであると見 積もられた。
[0060] (実施例 2)
本発明においては、遷移金属触媒を用いなレ、CNTの AAOテンプレート成長につ いても検討した。テンプレート調製や CVDプロセス等の作成条件は、触媒粒子の電 析プロセスを省略したことを除いて同一とした。図 4には、触媒粒子を用いずに形成さ せた CNTネットワークの FE— SEM像を示す。図 4に示すように、 CNTは、触媒成長 によるナノチューブ ·ネットワークとは若干異なる形状および集積度を持つものの、触 媒を有しないナノチューブ ·ネットワークとして良好に作成されたことが示されている。
[0061] 触媒粒子を用いない場合、 CNTネットワークの集積度は、比較的乏しぐ数多くの ナノチューブの端部が未接続で、ジャンクションとして結合されていなレ、。この事実は 、ナノチャンネルは、ただ単に CNTの二次元成長を引き起こすにすぎないということ を示唆する。し力 ながら触媒は、ジャンクション形成のためのより大きな活性を提供 するか、これとは別に CNTの二次元成長を促進させる力、、またはこれら両方の効果 を促進し、非触媒成長はゆっくりとしたものとなった。このため、 CNTの形成において は、触媒粒子は CNTセグメントの相互結合の機会を飛躍的に増加させるもの、と結 删 れた。
[0062] (実施例 3)
陽極酸化処理およびエッチングのプロセスを変更することにより、種々の形状の CN Tネットワークが形成された。図 5には、エッチングを同一条件で 12. 5分間とした場 合の、実施例 3の結果得られた FE— SEM像を示す。図 5によれば、非常にまばらで 不規則な CNTネットワークが生じていることがわかる。し力 ながら、得られた CNTネ ットワークは良好なセグメント間の結合を有し、良好に形成された 2次元形状を示した
[0063] (実施例 4)
AA〇フィルムの特性を検討するために、陽極酸化処理およびエッチングのプロセ スを変更し、異なる形状の CNTネットワークを作成した。図 6には、実施例 4の結果の FE— SEM像を示す。実施例 4では、酸化アルミニウムテンプレートのラフネスを大き くするべぐ異なる陽極酸化処理条件にて行った。図 6に示すように、実施例 3の結果 とは逆に、相対的に密接した CNTネットワークが得られた。この観測結果によれば、 基板(アルミニウムシートとその上の AAO薄膜)の表面状態がネットワーク構造に寄 与してレ、ることが示唆された。
[0064] 図 3〜図 6に示したように、 CNTネットワークの形状は作成条件や触媒の有無に依 存して変化した。し力 ながら、得られた CNTネットワークは、良好なセグメント間の 結合と、よく規制された二次元形状を示した。
[0065] (比較例 1)
比較例 1として、エッチング時間を 10分とした、異なるエッチング条件とした他、他 条件を同一として形成した CNTネットワークを示す。図 7にはその結果を示す。エツ チング時間を短くし規則正しいナノチャンネルを作成しない場合、ナノチャンネルは ネットワーク全体に連絡したものとはならず、多くの分離した根本で連結された髭状の ネットワークが形成された。
[0066] (比較例 2)
比較例 2として、エッチング時間を 15分よりも長くした異なるエッチング条件におい て行った他、他条件を同一として形成した CNTネットワークを示す。エッチング時間 を長くして、ナノチャンネルの内部空間が大きくなりすぎた場合、大きなナノチャンネ ルの空間により、良好な二次元モルフォロジ一が形成できなかった。得られた CNT ネットワークは、ランダムに分離 '成長した複数の CNTとして得られた。
産業上の利用可能性
上述したように、本発明によれば、テンプレート成長法により、二次元状に完全相互 結合された形状を有する種々の CNTネットワークが提供される。この CNTネットヮー クでは、 CNTセグメントが相互に分子内結合され、このネットワークのサイズは、セン チメートル規模の大きなものとなり、サイズはテンプレートサイズのみにより限定される 。エッチング条件のカーボン 'ナノチューブ形状への依存性が観測されたことから、本 発明のカーボン 'ナノチューブ 'ネットワークは基板上に形成されたテンプレートに沿 つて成長したものである結論づけられた。これを、最新のリソグラフィ技術やナノイン プリント技術と組み合わせることにより、所定のパターンが形成されたナノチャンネル の作成、所望の複雑なナノチューブ配列構造への制御可能な成長、および一体化 ナノチューブをベースとした電子デバイス、光学デバイス、またはそれら両方を製造 すること力 Sできるものと考えられる。

Claims

請求の範囲
[1] カーボン 'ナノチューブ 'ネットワークと、基板とを含む複合材料であって、前記カー ボン'ナノチューブ 'ネットワークは、複数のカーボン 'ナノチューブのセグメントが、前 記セグメントの端部で連結され、前記基板により支持される前記カーボン 'ナノチュー ブ-ネットワークを形成してなることを特徴とする複合材料。
[2] 前記セグメントの前記端部が分子内結合して、マクロ構造を有するカーボン 'ナノチ ユーブを形成した、請求項 1に記載の複合材料。
[3] 前記カーボン 'ナノチューブ 'ネットワークは、前記カーボン 'ナノチューブの単一セ グメントの厚みをもって 2次元方向に広がる、請求項 1または 2に記載の複合材料。
[4] 前記セグメントの前記端部は、前記カーボン 'ナノチューブ 'ネットワークのジャンク シヨンを形成し、触媒粒子が前記ジャンクション内に含まれる、請求項:!〜 3のいずれ 力 1項に記載の複合材料。
[5] カーボン 'ナノチューブ 'ネットワークと、基板とを含む複合材料の製造方法であって
、前記製造方法は、
第 1の陽極酸化処理プロセスと第 2の陽極酸化処理プロセスとを含む複数段階の 陽極酸化処理プロセスにより前記基板上に多孔性フィルムを形成する工程と、
前記多孔性フィルムをエッチングし、エッチング 'プロセスで残された部分により支 持されるナノチャンネルを前記多孔性フィルムと前記基板との間に形成する工程と、 前記エッチングされた基板に、炭化水素の存在下で CVDプロセスおよび熱分解 プロセスを施して、前記カーボン 'ナノチューブ 'ネットワークを形成する工程と、 前記多孔性フィルムを前記基板から除去して前記カーボン 'ナノチューブ 'ネット ワークを露出させる工程とを含む製造方法。
[6] 前記 CVDプロセスおよび熱分解のプロセスの前に、 2nmから 50nmの粒子サイズ を有する触媒粒子を前記ナノチャンネル中に堆積させる工程をさらに含む、請求項 5 の製造方法。
[7] 前記第 2の陽極酸化処理プロセスは、前記第 1の陽極酸化処理プロセスの電圧より も低い電圧で施され、前記基板から前記多孔性フィルムの表面に向かって複合的分 岐構造を生じさせる、請求項 5の製造方法。
[8] 前記第 2の陽極酸化処理プロセスは、 5Vから 40Vの範囲の電圧で処理される、請 求項 7の製造方法。
[9] 前記基板は、アルミニウムであり、前記多孔性フィルムは、陽極酸化処理された酸 化アルミニウムである、請求項 5〜8のいずれか 1項に記載の製造方法。
[10] 前記 CVDプロセスは、メタン、ェタン、プロパン、ブタン、イソブタン、ペンタン、へキ サン、ヘプタン、オクタン、ノナン、デカン、エチレン、プロピレン、イソプロピレン、プチ レン、へキシレン、オタチレン、ェチン(アセチレン)、プロピン、ブチン、ベンゼン、お よびその他これらの炭化水素の混合物からなるグノレープから選択した前記炭化水素 を用いて実施される、請求項 5〜9のいずれ力 4項に記載の製造方法。
[11] 製造方法は、さらに、前記 CVDプロセスおよび熱分解プロセス前に、ポアを供給路 として利用して触媒粒子をナノチャンネル中に導入する工程を含む、請求項 5〜10 のレ、ずれか 1項に記載の製造方法。
[12] 前記 CVDプロセスおよび熱分解プロセスは、さらに、前記炭化水素を前記ナノチヤ ンネルに供給して、前記カーボン 'ナノチューブ ·ネットワークを成長させる工程を含 む、請求項 10に記載の製造方法。
PCT/JP2007/061061 2006-06-13 2007-05-31 カーボン・ナノチューブ・ネットワーク複合材料およびその製造方法 WO2007145080A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006163543 2006-06-13
JP2006-163543 2006-06-13

Publications (1)

Publication Number Publication Date
WO2007145080A1 true WO2007145080A1 (ja) 2007-12-21

Family

ID=38831598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061061 WO2007145080A1 (ja) 2006-06-13 2007-05-31 カーボン・ナノチューブ・ネットワーク複合材料およびその製造方法

Country Status (1)

Country Link
WO (1) WO2007145080A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043464A1 (ja) * 2009-10-09 2011-04-14 シャープ株式会社 型および型の製造方法ならびに反射防止膜
CN110718402A (zh) * 2019-09-24 2020-01-21 江西理工大学 一种柔性可折叠超级电容器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081621A (ja) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd ナノワイヤーおよびその製造方法、並びにそれを用いたナノネットワーク、ナノネットワークの製造方法、炭素構造体、電子デバイス
JP2004018328A (ja) * 2002-06-18 2004-01-22 Japan Science & Technology Corp カーボンナノチューブネットワークとその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081621A (ja) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd ナノワイヤーおよびその製造方法、並びにそれを用いたナノネットワーク、ナノネットワークの製造方法、炭素構造体、電子デバイス
JP2004018328A (ja) * 2002-06-18 2004-01-22 Japan Science & Technology Corp カーボンナノチューブネットワークとその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HO G.W. ET AL.: "Electric field-induced carbon nanotube junction formation", APPLIED PHYSICS LETTERS, vol. 79, no. 2, 9 July 2001 (2001-07-09), pages 260 - 262, XP001075396 *
LI J. ET AL.: "Growing Y-junction carbon nanotubes", NATURE, vol. 402, 18 November 1999 (1999-11-18), pages 253 - 254, XP003020532 *
LI W.Z. ET AL.: "Straight carbon nanotube Y junctions", APPLIED PHYSICS LETTERS, vol. 79, no. 12, 17 September 2001 (2001-09-17), pages 1879 - 1881, XP012028934 *
TING J.-M. ET AL.: "Multijunction carbon nanotube network", APPLIED PHYSICS LETTERS, vol. 80, no. 2, 14 January 2002 (2002-01-14), pages 324 - 325, XP001093333 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043464A1 (ja) * 2009-10-09 2011-04-14 シャープ株式会社 型および型の製造方法ならびに反射防止膜
JP4796217B2 (ja) * 2009-10-09 2011-10-19 シャープ株式会社 型および型の製造方法ならびに反射防止膜
CN102575372A (zh) * 2009-10-09 2012-07-11 夏普株式会社 模具和模具的制造方法以及防反射膜
CN102575372B (zh) * 2009-10-09 2014-05-28 夏普株式会社 模具和模具的制造方法以及防反射膜
US9127371B2 (en) 2009-10-09 2015-09-08 Sharp Kabushiki Kaisha Mold and production method for same, and anti-reflection film
CN110718402A (zh) * 2019-09-24 2020-01-21 江西理工大学 一种柔性可折叠超级电容器及其制备方法

Similar Documents

Publication Publication Date Title
Hu et al. Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate
Ostrikov et al. Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids
KR101808334B1 (ko) 원자적으로 평탄한 가장자리를 갖는 나노구조화된 그래핀
TWI357448B (en) Process for the production of carbon nanostructure
KR101110409B1 (ko) 카본나노구조체의 제조방법
JP4970038B2 (ja) ナノスケール繊維構造の合成方法およびその繊維構造を含む電子機器コンポーネント
Liang et al. Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications
JPH11194134A (ja) カーボンナノチューブデバイス、その製造方法及び電子放出素子
WO2006052009A1 (ja) カーボンナノチューブ集合体及びその製造方法
JP2012025652A (ja) 金属ピンが設けられたグラフェンシートを備える構造の製造方法、その方法により得られる構造、およびその構造の利用
Das et al. Carbon nanotubes synthesis
Seo et al. ZnO nanotubes by template wetting process
JP6158798B2 (ja) ナノ構造を含む装置及びその製造方法
WO2007145080A1 (ja) カーボン・ナノチューブ・ネットワーク複合材料およびその製造方法
JP2005059135A (ja) カーボンナノチューブを用いたデバイス及びその製造方法
JP2005047763A (ja) 炭素ナノ及びマイクロメートル構造体及びその製造方法
JP2004243477A (ja) 炭素質ナノ構造体の製造方法、炭素質ナノ構造体及びそれを用いた電子源
JP2014065617A (ja) グラフェンのバンドギャップ形成方法
Shin et al. Synthesis of crystalline carbon nanotube arrays on anodic aluminum oxide using catalyst reduction with low pressure thermal chemical vapor deposition
Ding et al. Fabrication of nanocrystalline Si: H nanodot arrays with controllable porous alumina membranes
WO2009154379A2 (en) Organic/inorganic composite comprising three- dimensional carbon nanotube networks, method for preparing the organic/inorganic composite and electronic device using the organic/inorganic composite
Ren et al. Technologies to achieve carbon nanotube alignment
JP2007223823A (ja) カーボンナノ構造体の製造方法および触媒基体
Beard et al. Fabrication of three dimensional layered vertically aligned carbon nanotube structures and their potential applications
TWI299032B (en) Method for controlling the tube number density of carbon nanotubes and method for manufacturing carbon nanotubes

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP