WO2007142315A1 - 発光素子の製造装置および発光素子の製造方法 - Google Patents

発光素子の製造装置および発光素子の製造方法 Download PDF

Info

Publication number
WO2007142315A1
WO2007142315A1 PCT/JP2007/061585 JP2007061585W WO2007142315A1 WO 2007142315 A1 WO2007142315 A1 WO 2007142315A1 JP 2007061585 W JP2007061585 W JP 2007061585W WO 2007142315 A1 WO2007142315 A1 WO 2007142315A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
emitting element
organic layer
light
Prior art date
Application number
PCT/JP2007/061585
Other languages
English (en)
French (fr)
Inventor
Toshihisa Nozawa
Yasushi Yagi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US12/303,568 priority Critical patent/US20100055816A1/en
Publication of WO2007142315A1 publication Critical patent/WO2007142315A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • the present invention relates to a light emitting element manufacturing apparatus including an organic light emitting layer, and a light emitting element manufacturing method including an organic light emitting layer.
  • organic electroluminescence devices Is attracting attention as a next-generation display device because it has features such as self-luminous emission and high-speed response.
  • the organic EL element may be used as a surface light emitting element.
  • An organic EL element has a structure in which an organic layer including an organic EL layer (light emitting layer) is sandwiched between a positive electrode (positive electrode) and a negative electrode (negative electrode).
  • the light emitting layer is configured to emit light by injecting holes from the positive electrode and electrons from the negative electrode to recombine them.
  • the organic layer may be provided between the anode and the light-emitting layer or between the cathode and the light-emitting layer as necessary, for example, for improving the light emission efficiency such as a hole transport layer or an electron transport layer. It is also possible to add layers.
  • the organic layer is formed by vapor deposition on a substrate on which a positive electrode made of ITO is patterned.
  • the vapor deposition method is a method of forming a thin film by evaporating, for example, vaporized or sublimated vapor deposition materials on a substrate to be processed.
  • the organic layer is formed by vapor deposition on a substrate on which a positive electrode made of ITO is patterned.
  • the vapor deposition method is a method of forming a thin film by evaporating, for example, vaporized or sublimated vapor deposition materials on a substrate to be processed.
  • A1 (aluminum) to be the negative electrode is formed by vapor deposition.
  • a light emitting device is formed in which an organic layer is formed between a positive electrode and a negative electrode (see, for example, Patent Document 1).
  • a cluster-type device has a polygonal shape when viewed from above.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-225058
  • the organic layer including the light emitting layer easily deteriorates due to oxygen or moisture contained in the general atmosphere, and the quality of the light emitting element is deteriorated.
  • the organic layer of the light-emitting element may have a structure covered with a protective film made of an inorganic material (silicon oxide film or silicon oxynitride film) that exhibits relatively stable properties in the atmosphere. The majority.
  • the productivity may decrease.
  • conventional cluster-type devices there are restrictions on the handling and maintenance of manufacturing equipment failures in order to prevent the organic layer from being exposed to the atmosphere, which is an obstacle to improving the productivity of light-emitting elements. It was.
  • an object of the present invention is to provide a novel and useful light-emitting element manufacturing apparatus and light-emitting element manufacturing method that solve the above problems.
  • a light emitting element manufacturing apparatus for manufacturing a light emitting element by forming an organic layer including a light emitting layer on a substrate to be processed.
  • a plurality of processing chambers in which the substrate to be processed is sequentially transferred and substrate processing is performed; and a plurality of substrate transfer chambers connected to the plurality of processing chambers, respectively, and the substrate to be processed is held inside
  • a substrate holding container configured to be capable of being sequentially connected to the plurality of substrate transfer chambers so that the substrates to be processed are sequentially transferred to the plurality of processing chambers, and a plurality of the substrate processes are sequentially performed.
  • a method for manufacturing a light-emitting element in which a substrate processing step is performed in each of a plurality of processing chambers, and an organic layer including a light-emitting layer is formed on a substrate to be processed to manufacture a light-emitting element.
  • a substrate holding container for holding the substrate to be processed is sequentially connected to a plurality of substrate transfer chambers respectively connected to the plurality of processing chambers to transfer the substrate to be processed, and the plurality of substrates.
  • FIG. 1 shows a light emitting device manufacturing apparatus according to Example 1.
  • FIG. 2 is a cross-sectional view of the manufacturing apparatus of FIG.
  • FIG. 3A is a view (No. 1) showing a method for manufacturing a light-emitting element according to Example 1.
  • FIG. 3B is a diagram (part 2) illustrating the method for manufacturing the light-emitting element according to Example 1.
  • FIG. 3C is a diagram (part 3) illustrating the method for manufacturing the light-emitting element according to Example 1.
  • FIG. 3D is a diagram (part 4) illustrating the method for manufacturing the light-emitting element according to Example 1.
  • FIG. 3E is a diagram (part 5) illustrating the method for manufacturing the light-emitting element according to Example 1.
  • FIG. 3F is a view (No. 6) showing the method for manufacturing the light-emitting element according to Example 1.
  • FIG. 4 A processing chamber (part 1) used in the manufacturing apparatus of FIG.
  • FIG. 5 is a processing chamber (part 2) used in the manufacturing apparatus of FIG.
  • FIG. 6 A processing chamber (part 3) used in the manufacturing apparatus of FIG.
  • FIG. 7 This is the processing chamber (part 4) used in the manufacturing apparatus of FIG.
  • FIG. 8 is a modification of the manufacturing apparatus of FIG.
  • a light emitting element manufacturing apparatus is a light emitting element manufacturing apparatus for manufacturing a light emitting element by forming an organic layer including a light emitting layer on a substrate to be processed.
  • a plurality of substrate holding containers configured to hold the substrate to be processed are sequentially connected to the plurality of substrate transfer chambers.
  • the substrate to be processed is sequentially transferred to a processing chamber, and a plurality of the substrate processings are sequentially performed.
  • the substrate to be processed on which the organic layer is formed is transported after being protected (sealed) by the substrate holding container and sequentially connected to the substrate transport chamber. It is characterized by the fact that it is possible to manufacture light-emitting elements of good quality with low productivity and good productivity.
  • the substrate to be processed on which the organic layer is formed is transported in a sealed state in the substrate holding container, the maintenance of the processing chamber and the handling of failures are facilitated, and the productivity of the manufacturing apparatus is improved. There is an effect.
  • FIG. 1 is a plan view schematically showing a light emitting device manufacturing apparatus 100 according to Example 1 of the present invention.
  • the manufacturing apparatus 100 includes a plurality of processing chambers CLl, ELI, SPl, ETl, SP2, and CVD1 that perform substrate processing of a substrate W to be processed.
  • the substrate transfer chambers T1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 forces S are connected to the processing chambers CL1, ELI, SP1, ET1, SP2, and CVD1, respectively.
  • substrate transfer means (not shown in the figure) including transfer arms and the like are installed in the substrate transfer chambers ⁇ 1 to ⁇ 6, respectively, and the substrate to be processed is transferred from a substrate holding container (described later). It can be transferred to the processing chamber or from the processing chamber to the substrate holding container.
  • the substrate to be processed W is sequentially subjected to substrate processing in the processing chambers CLl, ELI, SPl, ET1, SP2, and CVD1.
  • substrate processing in the processing chambers CLl, ELI, SPl, ET1, SP2, and CVD1 Through a plurality of substrate processing steps in such a plurality of processing chambers, an organic layer including a light emitting layer and an electrode for applying a voltage to the organic layer are formed on the target substrate W.
  • the light emitting device is manufactured
  • the substrate holding container ⁇ 1 in which the substrate to be processed W is held is transferred together with the substrate to be processed W, and sequentially connected to the plurality of substrate transfer chambers Tl to ⁇ 6. It is a feature.
  • the substrate to be processed W is transferred from the substrate holding container B1 to each processing chamber to which the substrate transfer chambers T1 to T6 are connected by a substrate transfer means (not shown) installed in the section.
  • the substrate W to be processed is transferred from the substrate holding container B1 connected to the substrate transfer chamber T1 to the processing chamber CL1, and the substrate processing chamber is performed in the processing chamber CL1. It will be.
  • the substrate W to be processed that has been processed in the processing chamber CL1 is returned to the substrate holding container B1 again. Thereafter, the substrate holding container B1 holding the substrate W to be processed is connected to the substrate transfer chamber ⁇ 2, and the same processing (transfer of the substrate W to be processed to the processing chamber EL1, substrate in the processing chamber EL1) Processing and transport of the substrate W to be processed to the substrate holding chamber B1).
  • the substrate holding container B1 is sequentially connected to adjacent substrate transfer chambers.
  • the substrate holding container B1 starts in the substrate transfer chamber T1 and is sequentially connected to the substrate transfer chambers ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6.
  • the substrate holding container B1 is connected to the substrate transfer chambers Tl to ⁇ 6, the substrate to be processed W is transferred to the processing chambers connected to the respective substrate transfer chambers Tl to ⁇ 6, and the substrate processing is sequentially performed. Is done.
  • the substrate to be processed W is sequentially processed in the processing chambers CL1, ELI, SP1, ET1, SP2, and CVD1 to form a light emitting element.
  • the substrate holding container B1 is held and transferred by the holding container transfer means TU1.
  • the holding container transfer means TU1 is configured to move in parallel along the transfer rail L.
  • the holding container transfer means TU1 is provided with a transfer arm AMI, and the transfer arm AMI presses and connects the substrate holding container B1 to the substrate transfer chambers T1 to T6, or Remove the substrate holding container B1 from the substrate transfer chamber.
  • a plurality of the substrate holding containers B1 that hold the substrate W to be processed before the light emitting element is formed are arranged in, for example, a holding container station BA1.
  • the holding container transport means TU1 picks up and transports the substrate holding container B1 from the holding container station BA1 and connects it to the substrate transport chamber T1.
  • a plurality of substrate holding containers B1 that hold the substrate to be processed W on which the substrate processing is completed and the light emitting element is formed are arranged in the holding container station 2.
  • Light emitting element The substrate holding container B1 that holds the substrate W to be processed (finished in the processing chamber CVD1) is detached from the substrate transfer chamber T6 and transferred by the holding container transfer means TU1. Placed on the holding container station BA2.
  • the holding container transfer means TU1 the substrate transfer means (not shown) installed in the transfer chambers T1 to T6, and the processing chambers CL1, EL1, SP1, ET1, SP2, C
  • the operation related to the substrate processing (manufacture of light emitting element) such as VD1 is controlled by a control means 100A having a CPU (not shown) inside.
  • FIG. 2 is a diagram schematically showing the AA ′ cross section of FIG. However, the same reference numerals are given to the parts described above, and the description may be omitted.
  • the substrate holding chamber B1 is connected to the substrate transfer chamber T2.
  • a holding base Bh on which the substrate to be processed W is placed and a push-up pin Bp for lifting the substrate to be processed W are installed in the substrate holding container B1.
  • a gas line GAS 1 with a valve VI is connected to the substrate holding container B1.
  • a predetermined filling gas for example, an inert gas such as Ar or a gas such as N
  • an inert gas such as Ar
  • a gas such as N is supplied from the gas line GAS 1 into the substrate holding container B1.
  • a gate valve GVa is installed on the side of the substrate holding container B1 that is connected to the substrate transfer chamber T2. By opening the gate valve GVa, the substrate W to be processed can be unloaded from the substrate holding container B1 and the substrate W to be processed can be loaded into the substrate holding container B1.
  • transfer means (transfer arm) AM2 for transferring the substrate W to be processed is installed.
  • the transport means AM2 transports the substrate W to be processed from the substrate holding container B1 to the processing chamber EL1, or the substrate W to be processed from the processing chamber EL1 to the substrate holding container B1.
  • a gate valve GVt is installed on the substrate holding chamber B1 side of the substrate transfer chamber T2
  • a gate valve 31la is installed on the processing chamber EL1 side of the substrate transfer chamber T2.
  • a gas line GAS2 with a valve V2 is connected to the substrate transfer chamber T2.
  • a predetermined filling gas for example, an inert gas such as Ar or a gas such as N
  • an inert gas such as Ar
  • a gas such as N is supplied from the gas line GAS2 into the substrate transfer chamber T2.
  • the substrate transfer chamber T2 is connected to a vacuum pump PV and an exhaust line EX1 in which a valve V4 is installed. By opening the valve V4, the substrate transfer chamber T2 is brought into a predetermined reduced pressure state. It is possible to hold it.
  • the substrate transfer chamber T2 is connected to the substrate holding container B1 on the gate valve GVt side. In this case, a space SP is defined between the gate valve GVt and the gate valve Gva. Further, the substrate transfer chamber T2 and the substrate holding container B1 are connected via a sealing material Ba, and the hermeticity inside the substrate transfer chamber T2 and the substrate holding container B1 is maintained.
  • the space SP can supply a predetermined filling gas (for example, an inert gas such as Ar or a gas such as N) from a gas line GAS3 provided with a valve V5.
  • a predetermined filling gas for example, an inert gas such as Ar or a gas such as N
  • the space SP is connected to the exhaust line EX1 and can be held in a predetermined reduced pressure state by an exhaust line EX2 to which a valve V3 is attached.
  • the substrate processing of the substrate W to be processed in the processing chamber EL1 is performed as follows.
  • the substrate holding container B1 holding the substrate to be processed W on the holding table Bp is transferred by the holding container transfer means TU1 and connected to the substrate transfer chamber T2.
  • the substrate transfer chamber T2 is evacuated from the exhaust line EX1 in advance to a predetermined reduced pressure state.
  • the valve V3 is further opened, so that the space SP Is in a reduced pressure state.
  • the gate valves GVa and GVt are opened, and the substrate to be processed W is transferred from the substrate holding container B1 into the substrate transfer chamber T2 by the substrate transfer means AM2.
  • the gate banolev GVt GVa is closed, the gate banolev 31 la Is released.
  • the substrate to be processed W is transferred into the processing chamber EL1 by the substrate transfer means AM2, and the gate valve 31la is closed.
  • a predetermined substrate processing for example, film formation of an organic layer
  • the substrate holding container B1 is evacuated in the exhaust lines EX1 and EX2 for a predetermined period of time (while the gate banlevs GVt and GVa are opened), so that the gate valve GVa is closed. Even after the substrate W to be processed is sealed again, the predetermined reduced pressure state is maintained. For this reason, until the substrate holding container B1 is connected to the next substrate transfer chamber, the effect of the organic layer on the substrate to be processed being exposed to oxygen or moisture in the atmosphere to deteriorate the quality is suppressed.
  • the internal force of the substrate holding container B1 may be filled with a predetermined filling gas supplied from the gas line GAS1.
  • a predetermined filling gas supplied from the gas line GAS1.
  • a rare gas such as Ar or nitrogen
  • the filling gas it is possible to use a rare gas such as Ar or nitrogen as the filling gas. That is, the inside of the substrate holding container B1 is replaced with the filling gas. In this case, it is possible to effectively prevent deterioration of the organic layer formed on the substrate to be processed.
  • the substrate holding container B1 holding the substrate W to be processed which has completed the substrate processing is detached from the substrate transfer chamber T2, and then connected to the substrate transfer chamber T3.
  • the substrate holding container B1 is detached from the substrate transfer chamber T2
  • the outline of substrate processing in each processing chamber in the case of manufacturing the above light emitting element is roughly as follows. It becomes like this. This will be described with reference to FIG. First, a plurality of substrate holding containers B1 that hold the substrate to be processed W on which the positive electrode is formed are arranged in the holding container station BA1. The holding container transfer means 1 picks up the substrate holding container B1 and connects it to the substrate transfer chamber T1. Thereafter, as described above, substrate processing is sequentially performed in the processing chambers CL1, EL1, SP1, ET1, SP2, and CVD1.
  • a cleaning process is performed on the substrate to be processed on which the negative electrode is formed.
  • an organic layer including a light emitting layer (organic EL layer) is formed by, for example, a vapor deposition method.
  • a negative electrode is patterned on the organic layer by mask sputtering.
  • the processing chamber ET1 the patterned negative electrode is used as a mask, and the organic layer is etched by, for example, plasma etching to pattern the organic layer. By this etching, a region where the organic layer needs to be peeled is removed, and the organic layer is patterned.
  • the negative electrode is formed by patterning with a drawing line force mask sputtering of the negative electrode.
  • an insulating protective film made of an inorganic material such as silicon nitride (SiN) is formed by the CVD method so as to cover the organic layer.
  • a light emitting element in which an organic layer is formed between the positive electrode and the negative electrode can be formed on the substrate W to be processed.
  • the above light emitting element is sometimes called an organic EL element.
  • the substrate to be processed W is sealed by the substrate holding container B1 when being transferred between different processing chambers.
  • the organic layer on the substrate to be processed is separated from a general atmosphere containing a lot of oxygen and moisture. For this reason, it becomes possible to suppress effectively the fall of the quality of a light emitting element.
  • the substrate to be processed is usually transported in an exposed state.
  • a plurality of processing chambers are connected to the substrate transfer chamber whose interior is replaced with a reduced pressure or an inert gas.
  • the substrate W on which the organic layer is formed is transported while being protected (sealed) by the substrate holding container B1, and sequentially connected to the substrate transport chambers T1 to T6. It is made. For this reason, it is a feature that it is possible to manufacture a light emitting device having a good quality with less concern that the organic layer is exposed to the atmosphere with a good productivity.
  • the inside of the substrate holding container B1 is in a reduced pressure state or a state in which a predetermined filling gas is filled (replaced from the atmosphere with the filling gas). .
  • the target substrate W on which the organic layer is formed is transported in a sealed state in the substrate holding container B1, the maintenance of the respective processing chambers CL1, EL1, SP1, ET1, SP2, and CVD1 is maintained. It is easy to deal with a failure, and the productivity of the manufacturing apparatus is improved.
  • the transfer chambers T1 to T6 also have an effect of facilitating maintenance and handling of failures.
  • the step shown in FIG. 3A is a step corresponding to the substrate processing in the processing chamber CL1.
  • a substrate with a so-called electrode in which a positive electrode 12 made of a transparent material such as ITO and a lead-out line 13 of a negative electrode are formed on a transparent substrate 11 made of glass or the like (the above-mentioned substrate).
  • the positive electrode 12 (the lead wire 13) is formed, for example, by sputtering.
  • the substrate 11 may incorporate a control element for controlling light emission of a light emitting element such as a TFT.
  • a control element for controlling light emission of a light emitting element such as a TFT.
  • the light emitting element formed according to this embodiment is displayed on
  • a control element such as a TFT is incorporated for each pixel.
  • the source electrode of the TFT and the positive electrode 12 are connected, and the gate electrode and the drain electrode of the TFT are connected to the gate line and the drain line formed in a lattice shape, so that display for each pixel is performed. Is controlled.
  • the lead wire 13 is connected to a predetermined control circuit (not shown).
  • Such a driving circuit of the display device is called an active matrix driving circuit. In the figure, such an active matrix driving circuit is not shown.
  • organic layer 14 including a light emitting layer are formed by vapor deposition so as to cover the exposed portion of the substrate 11.
  • a mask is not used for vapor deposition, and the organic layer 14 is formed on substantially the entire surface of the substrate.
  • a negative electrode 15 made of, for example, Ag is formed by patterning into a predetermined shape, for example, by sputtering using a pattern mask.
  • the negative electrode 15 may be patterned by an etching method using a photolithography method after the negative electrode 15 is formed on the entire surface.
  • the patterned negative electrode 15 formed in the step shown in FIG. 3C is used as a mask, for example, by plasma etching.
  • the organic layer 14 is etched, and the organic layer 14 is patterned.
  • a region where the organic layer 14 needs to be peeled (for example, the region on the lead line 13 or other region where the light emitting layer is unnecessary) is removed by etching, and the organic layer 14 is patterned.
  • the patterning of the organic layer 14 does not need to be performed using a mask vapor deposition method as in the prior art. For this reason, various problems resulting from the mask vapor deposition method can be avoided. For example, it is possible to avoid the problem of deterioration of the patterning accuracy of the deposited film (organic layer 14) due to mask deformation due to the temperature rise of the mask during deposition.
  • the connection line 15a that electrically connects the negative electrode 15 and the lead line 13 is patterned by, for example, sputtering using a pattern mask. To form.
  • An insulating protective film 16 made of, for example, silicon nitride (SiN) is formed on the substrate 11 by a CVD method using a pattern mask so as to cover the line 15a.
  • the light-emitting element 10 in which the organic layer 14 is formed between the positive electrode 12 and the negative electrode 15 on the substrate 11 can be formed.
  • the light emitting element 10 is sometimes referred to as an organic EL element.
  • the light-emitting element 10 when a voltage is applied between the positive electrode 12 and the negative electrode 15, holes from the positive electrode 12 are added to the light-emitting layer included in the organic layer 14. Cathode 15 Force Electrons are injected and recombined to form a light emitting structure.
  • the light-emitting layer can be formed using, for example, a material such as a polycyclic aromatic hydrocarbon, a heteroaromatic compound, or an organometallic complex compound. It is possible to form.
  • the organic layer 14 may be provided between the light emitting layer and the positive electrode 12, for example, a hole transport layer or a hole injection layer.
  • a layer or the like may be formed.
  • the hole transport layer and the hole injection layer may have a structure in which either one or both of them are omitted.
  • the organic layer 14 includes, for example, an electron transport layer and an electron injection layer between the light emitting layer and the negative electrode 15 so that the light emission efficiency in the light emitting layer is good. It may be formed. In addition, either or both of the electron transport layer and the electron injection layer may be omitted.
  • the light-emitting layer includes, for example, an aluminoquinolinol complex (Alq3),
  • Alq3 aluminoquinolinol complex
  • the force that can be formed using rubrene for one ping material is not limited to this, and it can be formed using various materials.
  • the positive electrode 12 has a thickness of 100 / im to 200 / im
  • the organic layer 13 has a thickness of 5
  • the negative electrode 14 has a thickness of 50 ⁇ m to 300 ⁇ m.
  • the light emitting element 10 includes a display device (organic EL display device) or a surface light emitting element.
  • FIG. 4 is a view schematically showing a processing chamber (film forming chamber) EL1 according to the light emitting element manufacturing apparatus.
  • the processing chamber EL1 is a processing chamber (film forming chamber) for performing the film forming process by vapor deposition of the organic layer shown in FIG. 3B.
  • the film formation chamber EL1 has a processing container 311 having a holding table 312 for holding a substrate W to be processed (corresponding to the substrate 11 in FIG. 3A).
  • the processing vessel 311 is evacuated by an exhaust line 311A to which a vacuum pump (not shown) is connected, and is in a decompressed state.
  • a deposition source gas generation unit 322A that generates a deposition source gas (gas source) by evaporating or sublimating a deposition source 321 made of, for example, solid or liquid is installed. has been.
  • the film forming source gas generating unit 322A includes a source container 319 and a carrier gas supply line.
  • the film forming material 321 held in the material container 319 is heated by a heater (not shown) or the like, and as a result, a film forming material gas (gas material) is generated.
  • the generated film forming source gas is transported in the transport path 318A together with the carrier gas supplied from the carrier gas supply line 320, and is formed in the processing vessel 311. It is structured to be supplied to.
  • the film forming source gas transported to the film forming source gas supply unit 317A is supplied to the vicinity of the substrate W to be processed in the processing container 311, and film formation (vapor deposition) is performed on the substrate W to be processed. It is a structure to be performed. That is, in the above structure, the organic layer 204 can be formed by face-up film formation.
  • a raw material that evaporates or sublimates from a vapor deposition source in a processing container is formed on the substrate to be processed. It was necessary to use a so-called face-down deposition method with the film surface facing downward. For this reason, when the substrate to be processed becomes large, it becomes difficult to handle the substrate to be processed, resulting in a problem that the productivity of the light emitting element is lowered.
  • the above processing chamber is configured to be capable of film formation by face-up, and thus has an effect that it is easy to cope with a large substrate to be processed. For this reason, the productivity of the light emitting element is improved, and the production cost is suppressed.
  • the film-forming source gas supply unit 317A has, for example, a cylindrical or casing-like supply unit main body 314 to which the transport path 318A is connected, and controls the flow of the film-forming source gas therein.
  • a current plate 315 is installed.
  • a filter plate 316 made of, for example, a porous metal material (metal filter) is installed on the supply unit body 314 on the side facing the substrate W to be processed.
  • the processing vessel 311 has a structure similar to that of the film forming raw material gas supply unit 317A, and has a structure similar to that of the film forming raw material gas supply unit 317A.
  • the film forming raw material gas supply units 3178 to 317? Are connected to film forming raw material gas generating units 322B to 322F, respectively, via transport paths 318B to 318F, respectively.
  • the film forming source gas generating units 322B to 322F have the same structure as the film forming source gas generating unit 322A.
  • the holding table 312 is configured to be movable in response to the supply of a plurality of film forming source gases from the film forming source gas supply units 317A to 317F.
  • the holding table 312 is configured to be movable in parallel on the moving rail 313 installed on the bottom surface of the processing container 311 along the arrangement of the film forming material gas supply units.
  • the holding table 312 is moved in response to the supply of the plurality of film forming source gases from the film forming source gas supply units 317A to 317F, so that the substrate W is placed on the substrate W to be processed.
  • An organic layer having a multilayer structure is formed by face-up film formation.
  • the processing container 311 is provided with a gate valve 31 la on the side connected to the substrate transfer chamber T2. By opening the gate valve 31 la, it is possible to carry the substrate W to be processed into the processing container 311 or to carry the substrate W to be processed from the processing container 311.
  • FIG. 5 is a diagram schematically showing a processing chamber (film formation chamber) SP1 related to the light emitting element manufacturing apparatus 100.
  • the processing chamber SP1 is a processing chamber (deposition chamber) for carrying out the negative electrode deposition process by sputtering shown in FIG. 3C.
  • the processing chamber SP2 has the same structure as the processing chamber SP1.
  • the film forming chamber SP1 has a processing container 331 having a holding table 332 for holding the substrate W to be processed therein.
  • the inside of the processing vessel 331 is structured to be evacuated by an exhaust line (not shown) connected to a vacuum pump.
  • the holding table 332 is configured to be movable in parallel on a moving rail 338 installed on the bottom surface of the processing container 331.
  • the processing container 331 is provided with a gate valve 331a on the side connected to the substrate transfer chamber T3. By opening the gate valve 331a, the substrate W to be processed can be carried into the processing container 331a or the substrate W can be unloaded from the processing container 331.
  • targets 340A and 340B to which a voltage is applied are disposed so as to face each other.
  • the two targets 340A and 340B installed on the substrate holding table 332 each have a structure extending in a direction substantially perpendicular to the direction in which the substrate holding table 332 moves, and are opposed to each other. is set up.
  • a gas supply means 341 for supplying a processing gas for sputtering such as Ar is installed in a space 331A between the targets 340A and 340B.
  • the processing gas is plasma-excited by applying a voltage from the power source 342 to the pressure application targets 340A and 340B.
  • the substrate W to be processed is separated from the space where the plasma is excited (space 331A), and the film formation target is UV light accompanying plasma excitation, It is characterized by being less susceptible to damage from sputtered particle collisions. For this reason, the above processing chamber S
  • the apparatus for forming the negative electrode is not limited to the above-described apparatus, for example, and a sputtering apparatus having a normal target structure may be used.
  • FIG. 6 is a view schematically showing a processing chamber (etching processing chamber) ET1 according to the light emitting element manufacturing apparatus.
  • the processing chamber ET1 is a processing chamber for performing the patterning process by etching of the organic layer shown in FIG. 3D.
  • the processing chamber ET1 has processing containers 501, 502 in which an internal space 5 OOA is defined by being combined, and the internal space 500A includes an earth plate 5 06 and the substrate holding table 505 are installed to face each other.
  • the internal space 500A is exhausted from an exhaust line 509 to which an exhaust means (not shown) such as an exhaust pump is connected, and is structured to be held in a predetermined reduced pressure state.
  • the processing vessel 501 is made of, for example, metal, and the processing vessel 502 is made of a dielectric.
  • a coil 503 to which high-frequency power is applied from a high-frequency power source 504 is installed outside the processing container 502.
  • the substrate holder 505 is configured to receive high frequency power from a high frequency power source 510.
  • an ethyne such as N / Ar is supplied from a gas supply means 508.
  • a processing gas is supplied for the operation.
  • the processing gas is plasma-excited by applying high-frequency power to the coil 503.
  • Such plasma is sometimes referred to as high density plasma (eg, ICP).
  • the process S shown in FIG. 3D can be performed with the processing gas dissociated by the high-density plasma (the organic layer 14 is etched using the negative electrode 15 as a mask).
  • the processing container 501 is provided with a gate valve 507 on the side connected to the substrate transfer chamber T4. By opening the gate valve 507, the treated object It becomes possible to carry the substrate W into the processing container 501 or carry out the substrate W to be processed from the processing container 501.
  • the negative electrode 15 contains Ag, for example, nitrogen (N
  • nitrogen has less influence to corrode metals such as Ag than oxygen and hydrogen described above, and can etch the organic layer 14 efficiently.
  • the plasma of the etching apparatus that dissociates the processing gas is preferably so-called high-density plasma that dissociates nitrogen with high efficiency.
  • the high-density plasma is not limited to ICP. Similar results can be obtained using wave plasma or the like.
  • the organic layer may be patterned, for example, by etching using parallel plate plasma (eg, RIE).
  • parallel plate plasma eg, RIE
  • FIG. 7 is a diagram schematically showing a processing chamber (CVD film forming chamber) CVD 1 according to the light emitting element manufacturing apparatus.
  • the processing chamber CVD1 is a processing chamber for forming a protective layer shown in FIG. 3F.
  • the processing chamber CVD1 includes a holding table for holding a substrate W to be processed.
  • the processing container 301 has the processing container 301 in which 305 was installed.
  • the inside of the processing vessel 301 is exhausted by an exhaust line 301A to which a vacuum pump (not shown) is connected, and is in a reduced pressure state.
  • the processing container 301 has a structure in which, for example, a lid 301B is installed at an opening at one end of a substantially cylindrical lower container 301A.
  • a substantially disk-shaped antenna 302 is installed in the lid portion 302, and a microwave is applied to the antenna 302 from a power source 303.
  • a gas supply unit 304 for supplying a film forming material gas for film formation is installed in the processing container between the antenna 302 and the holding table 305.
  • the gas supply unit 304 is formed in a lattice shape, for example, and has a structure in which microwaves pass through holes in the lattice.
  • the film forming source gas supplied from the gas supply unit 304 is plasma-excited by the microwave supplied by the antenna 302, and is onto the substrate W to be processed held on the holding table 305.
  • a protective layer (SiN layer) is formed.
  • the processing container 301 is provided with a gate valve 30 Ola on the side connected to the transfer chamber T6. By opening the gate valve 301a, the substrate W to be processed can be carried into the processing vessel 301a, or the substrate W to be processed can be carried out from the processing vessel 301a.
  • processing chambers ELI, SP1, ET1, and CVD1 are examples of the configuration of the processing chamber, and the present invention is not limited to these configurations.
  • the configuration, layout, and number of processing chambers of the processing chamber can be variously modified and changed. For example, in order to improve the efficiency of substrate processing, a processing chamber having a long substrate processing time may be added, or a plurality of processing chambers may be provided for backup of a processing chamber that is stopped during maintenance.
  • FIG. 8 is a view showing a light emitting element manufacturing apparatus 200 which is a modification of the light emitting element manufacturing apparatus 100 shown in FIG.
  • the parts described above are denoted by the same reference numerals and the description thereof is omitted. Further, parts not specifically described are the same as those of the manufacturing apparatus 100 of FIG. In this figure, the holding container stations BA1 and BA2 shown in FIG. 1 are not shown.
  • FIG. 8 in the case of the manufacturing apparatus 200 shown in this figure, two processing chambers CL1, ELI, SP1, ETL, SP2, and CVD1 are installed, and two processing chambers are provided.
  • the board transfer chambers T1 to T6 have been added.
  • two processing chambers CL 1, ELI, SP 1, ET 1, SP 2, and CVD 1 are installed so as to face each other across the transfer rail L.
  • the holding container transport unit TU1 contacts the substrate holding container B1 with one of the opposing processing containers.
  • a light-emitting element manufacturing apparatus for manufacturing a light-emitting element by forming an organic layer including a light-emitting layer on a substrate to be processed.
  • a plurality of processing chambers in which the substrates to be processed are sequentially transferred and substrate processing is performed; and a plurality of substrate transfer chambers connected to the plurality of processing chambers, respectively, and the substrates to be processed are held inside
  • a substrate holding container configured to be capable of being sequentially connected to the plurality of substrate transfer chambers so that the substrates to be processed are sequentially transferred to the plurality of processing chambers, and a plurality of substrate processings are sequentially performed. It is possible to provide an apparatus for manufacturing a light-emitting element characterized by being manufactured.
  • the substrate holding container may be configured to seal the substrate to be processed.
  • the inside of the substrate holding container is configured to be evacuated while the substrate holding container is connected to the substrate transfer chamber.
  • the substrate holding container may be configured to be filled with a predetermined filling gas in a state where the substrate holding container is connected to the substrate transfer chamber.
  • a push-up pin for lifting the substrate to be processed may be installed inside the substrate holding container.
  • the plurality of processing chambers include an organic layer deposition chamber for depositing the organic layer and an electrode deposition chamber for depositing an electrode for applying a voltage to the organic layer. It is good.
  • the organic layer film forming chamber may be configured such that the organic layer having a multilayer structure including the light emitting layer that emits light when voltage is applied is continuously formed by an evaporation method. Good. In the electrode film forming chamber, the electrode is formed by sputtering using two targets facing each other.
  • the plurality of processing chambers may include an etching chamber for etching and patterning the organic layer.
  • a substrate processing step is performed in each of a plurality of processing chambers, and an organic layer including a light emitting layer is formed on a substrate to be processed, whereby a light emitting element is manufactured.
  • a method of manufacturing an element, the substrate holding container holding the substrate to be processed inside Force of a light emitting device characterized in that the substrate to be processed is transferred to a plurality of substrate transfer chambers respectively connected to the plurality of processing chambers, and the substrate processing steps are performed.
  • a manufacturing method can be provided.
  • the substrate to be processed may be transported in a sealed state in the substrate holding container and sequentially connected to the plurality of substrate transport chambers.
  • the substrate holding container may be evacuated while the substrate holding container is connected to the substrate transfer chamber.
  • the substrate holding container may be filled with a predetermined filling gas in a state where the substrate holding container is connected to the substrate transfer chamber.
  • the plurality of substrate processing steps include an organic layer film forming step for forming the organic layer and an electrode film forming step for forming an electrode for applying a voltage to the organic layer. It is good as well.
  • the organic layer having a multilayer structure including a light emitting layer that emits light when a voltage is applied may be continuously formed by an evaporation method.
  • the electrode film forming step the electrode may be formed by a sputtering method using two targets facing each other.
  • the plurality of substrate processing steps may include an etching step for etching and patterning the organic layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 発光素子の製造装置は、被処理基板上に、発光層を含む有機層を形成して発光素子を製造する発光素子の製造装置であって、前記被処理基板が順次搬送され、それぞれ基板処理が行われる複数の処理室と、前記複数の処理室にそれぞれ接続される複数の基板搬送室と、を有し、前記被処理基板を内部に保持可能に構成された基板保持容器が、前記複数の基板搬送室に順次接続されることで前記複数の処理室に前記被処理基板が順次搬送され、複数の前記基板処理が順次行われるよう構成されていることを特徴とする。

Description

明 細 書
発光素子の製造装置および発光素子の製造方法
技術分野
[0001] 本発明は、有機発光層を含む発光素子の製造装置、および有機発光層を含む発 光素子の製造方法に関する。
背景技術
[0002] 近年、従来用いられてきた CRT (Cathode Ray Tube)に換わって、薄型にする ことが可能な平面型表示装置の実用化が進んでおり、例えば有機エレクト口ルミネッ センス素子 (有機 EL素子)は自発光、高速応答などの特徴を有するために、次世代 の表示装置として着目されている。また、有機 EL素子は、表示装置のほかに、面発 光素子としても用いられる場合がある。
[0003] 有機 EL素子は、陽電極 (正電極)と陰電極 (負電極)の間に有機 EL層(発光層)を 含む有機層が狭持された構造となっており、当該発光層に正極から正孔を、負極か ら電子を注入してそれらの再結合をさせることによって、当該発光層を発光させる構 造になっている。
[0004] また、前記有機層には、必要に応じて陽極と発光層の間、または陰極と発光層の間 に、例えば正孔輸送層、または電子輸送層など発光効率を良好とするための層を付 加することも可能である。
[0005] 上記の発光素子を形成する方法の一例としては、以下の方法を取ることが一般的 であった。まず、 IT〇よりなる陽電極がパターユングされた基板上に、前記有機層を 蒸着法により形成する。蒸着法とは、例えば蒸発あるいは昇華された蒸着原料を、被 処理基板上に蒸着させることで薄膜を形成する方法である。次に、当該有機層上に
、陰電極となる A1 (アルミニウム)を、蒸着法などにより形成する。
[0006] 例えばこのようにして、陽電極と陰電極の間に有機層が形成されてなる、発光素子 が形成される(例えば特許文献 1参照)。
[0007] また、上記の発光素子を製造する場合には、いわゆるクラスター型の製造装置が用 レ、られる場合があった。クラスター型の装置とは、平面視した場合に多角形状を有す る搬送室に、複数の処理室 (成膜室など)が接続されてなる構造をいう。 特許文献 1 :特開 2004— 225058号公報
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、発光層を含む有機層は、一般的な大気中に含まれる酸素や水分な どによって容易に変質してしまレ、、発光素子の品質が低下してしまう懸念がある。こ のため、発光素子の有機層は、大気中で比較的安定な性質を示す無機材料 (シリコ ン酸化膜やシリコン酸窒化膜)よりなる保護膜で覆われた構造を有している場合が大 半である。
[0009] しかし、発光素子の製造工程では、有機層が剥き出しの状態が存在するため、例 えば製造装置の故障やメンテナンスなどによって有機層が大気に曝された場合、発 光素子の製造の歩留まりが低下して生産性が低下する場合があった。また、従来の クラスター型装置では、有機層が大気に曝されることを防止するために、製造装置の 故障の対応やメンテナンスなどに制限があり、発光素子の生産性を向上させる上で 障害になっていた。
課題を解決するための手段
[0010] そこで、本発明は上記の問題を解決した、新規で有用な発光素子の製造装置およ び発光素子の製造方法を提供することを目的とする。
[0011] より具体的には、生産性が良好である発光素子の製造装置および発光素子の製造 方法を提供する。
[0012] 本発明の一観点によれば、被処理基板上に、発光層を含む有機層を形成して発 光素子を製造する発光素子の製造装置であって、
前記被処理基板が順次搬送され、それぞれ基板処理が行われる複数の処理室と、 前記複数の処理室にそれぞれ接続される複数の基板搬送室と、を有し、 前記被処理基板を内部に保持可能に構成された基板保持容器が、前記複数の基 板搬送室に順次接続されることで前記複数の処理室に前記被処理基板が順次搬送 され、複数の前記基板処理が順次行われるよう構成されてレ、ることを特徴とする発光 素子の製造装置により、また、 本発明の別の観点によれば、複数の処理室で基板処理工程がそれぞれ実施され 、被処理基板上に発光層を含む有機層が形成されて発光素子が製造される発光素 子の製造方法であって、
前記被処理基板を内部に保持する基板保持容器が、前記複数の処理室にそれぞ れ接続された複数の基板搬送室に順次接続されて前記被処理基板の搬送が行わ れ、複数の前記基板処理工程が実施されることを特徴とする発光素子の製造方法が 提供される。
発明の効果
[0013] 本発明によれば、生産性が良好である発光素子の製造装置および発光素子の製 造方法を提供することが可能となる。
図面の簡単な説明
[0014] [図 1]実施例 1による発光素子の製造装置を示す図である。
[図 2]図 1の製造装置の断面図である。
[図 3A]実施例 1による発光素子の製造方法を示す図(その 1)である。
[図 3B]実施例 1による発光素子の製造方法を示す図(その 2)である。
[図 3C]実施例 1による発光素子の製造方法を示す図(その 3)である。
[図 3D]実施例 1による発光素子の製造方法を示す図(その 4)である。
[図 3E]実施例 1による発光素子の製造方法を示す図(その 5)である。
[図 3F]実施例 1による発光素子の製造方法を示す図(その 6)である。
[図 4]図 1の製造装置に用いる処理室 (その 1)である。
[図 5]図 1の製造装置に用いる処理室 (その 2)である。
[図 6]図 1の製造装置に用いる処理室 (その 3)である。
[図 7]図 1の製造装置に用いる処理室 (その 4)である。
[図 8]図 1の製造装置の変形例である。
符号の説明
[0015] 100, 200 発光素子の製造装置
CL1 , ELI , SP1, ET1, SP2, CVD1 処理室
Tl , T2, T3, T4, Τ5, Τ6 基板搬送室 Bl 基板保持容器
W 被処理基板
BA1 , BA2 保持容器ステーション
100A 制御手段
11 基板
12 陽極
13 引き出し線
14 有機層
15 陰極
16 保護層
発明を実施するための最良の形態
[0016] 以下、図面を参照して、本発明の実施の形態に係る半導体装置及びその製造方 法について説明する。
[0017] 本発明に係る発光素子の製造装置は、被処理基板上に、発光層を含む有機層を 形成して発光素子を製造する発光素子の製造装置であって、前記被処理基板が順 次搬送され、それぞれ基板処理が行われる複数の処理室と、前記複数の処理室に それぞれ接続される複数の基板搬送室と、を有している。
[0018] さらに、本発明による発光素子の製造装置では、前記被処理基板を内部に保持可 能に構成された基板保持容器が、前記複数の基板搬送室に順次接続されることで 前記複数の処理室に前記被処理基板が順次搬送され、複数の前記基板処理が順 次行われるよう構成されてレ、ることを特徴としてレ、る。
[0019] 例えば、従来のクラスター型の発光素子の製造装置の場合、装置の故障やメンテ ナンスのために有機層が大気に曝され、発光素子の品質が低下してしまう懸念があ つた。また、有機層が大気に曝されることを防止するために、製造装置の故障の対応 やメンテナンスなどに制限があり、発光素子の生産性を向上させる上で障害になって いた。
[0020] 一方で本発明による製造装置では、有機層が形成される被処理基板が基板保持 容器で保護 (密閉)されて搬送され、基板搬送室に順次接続されるため、有機層が大 気に曝される懸念が少なぐ良好な品質の発光素子を良好な生産性で製造すること が可能になっていることが特徴である。
[0021] また、有機層が形成される被処理基板が基板保持容器に密閉された状態で搬送さ れるため、処理室のメンテナンスや故障の対応が容易となり、製造装置の生産性が 良好となる効果を奏する。
[0022] また、被処理基板が大気へ曝されるリスクが低減されるため、処理室の構成や搬送 経路、またメンテナンスの方法についての自由度が飛躍的に向上し、製造装置の生 産性が良好となる。
[0023] 次に、上記の発光素子の製造装置の構成の例と、当該製造装置を用いた発光素 子の製造方法の例について、図面を用いて説明する。
[0024] 1.実施例 1
図 1は、本発明の実施例 1による発光素子の製造装置 100を模式的に示す平面図 である。図 1を参照するに、前記製造装置 100は、被処理基板 Wの基板処理を行う 複数の処理室 CLl , ELI , SPl, ETl, SP2, CVD1を有している。前記処理室 CL 1 , ELI , SPl, ETl, SP2, CVD1に ίま、基板搬送室 T1 , Τ2, Τ3, Τ4, Τ5, Τ6力 S それぞれ接続されている。また、当該基板搬送室 Τ1〜Τ6の内部には、それぞれ、 搬送アームなどよりなる基板搬送手段 (本図では図示せず)が設置されており、被処 理基板を基板保持容器 (後述)から処理室へ、または処理室から基板保持容器へと 搬送可能に構成されている。
[0025] 上記の製造装置において、被処理基板 Wは、前記処理室 CLl , ELI , SPl, ET1 , SP2, CVD1において順次基板処理が行われる。このような複数の処理室におけ る複数の基板処理工程を経て、前記被処理基板 W上には発光層を含む有機層や、 さらには該有機層に電圧を印加するための電極が形成され、発光素子が製造される
[0026] 本実施例による製造装置 100では、内部に被処理基板 Wが保持された基板保持 容器 Β 1が被処理基板 Wごと搬送されて、複数の基板搬送室 Tl〜Τ6に順次接続さ れることが特徴となっている。
[0027] この場合、前記基板保持容器 B1が接続された前記基板搬送室 Τ1〜Τ6では、内 部に設置された基板搬送手段(図示せず)により、被処理基板 Wが、前記基板保持 容器 B1から前記基板搬送室 T1〜T6が接続されるそれぞれの処理室に搬送される
[0028] 例えば、前記基板搬送室 T1に接続された前記基板保持容器 B1からは、前記被処 理基板 Wが、前記処理室 CL1へと搬送され、当該処理室 CL1で基板処理室が行わ れることになる。前記処理室 CL1で処理を終了した被処理基板 Wは再び前記基板 保持容器 B1に戻される。この後、内部に被処理基板 Wを保持した基板保持容器 B1 は、前記基板搬送室 Τ2に接続され、同様の処理 (被処理基板 Wの処理室 EL1への 搬送、該処理室 EL1での基板処理、該被処理基板 Wの該基板保持室 B1への搬送) が行われる。
[0029] 同様にして、前記基板保持容器 B1は、順次隣接する基板搬送室へ接続される。例 えば、前記基板保持容器 B1は、前記基板搬送室 T1に始まって、前記基板搬送室 Τ 2、 Τ3、 Τ4、 Τ5、 Τ6にそれぞれ順次接続される。また、前記基板保持容器 B1が前 記基板搬送室 Tl〜Τ6に接続されると、それぞれの基板搬送室 Tl〜Τ6に接続され る処理室に被処理基板 Wが搬送され、順次基板処理が実施される。すなわち、被処 理基板 Wは、処理室 CL1 , ELI , SP1, ET1, SP2, CVD1で順次基板処理が行わ れ、発光素子が形成される。
[0030] この場合、前記基板保持容器 B1は、保持容器搬送手段 TU1により保持されて搬 送される。前記保持容器搬送手段 TU1は、搬送レール Lに沿って平行に移動するよ うに構成されている。また、前記保持容器搬送手段 TU1には、搬送アーム AMIが設 置されており、該搬送アーム AMIは、前記基板保持容器 B1を基板搬送室 T1〜T6 へ押圧して接続したり、または、該基板保持容器 B1を基板搬送室から脱着する。
[0031] また、発光素子が形成される前の被処理基板 Wを内部に保持する、前記基板保持 容器 B1は、例えば保持容器ステーション BA1に複数配列される。前記保持容器搬 送手段 TU1は、前記保持容器ステーション BA1から前記基板保持容器 B1をピック アップして搬送し、前記基板搬送室 T1に接続する。
[0032] 一方で、基板処理が完了して発光素子が形成された被処理基板 Wを内部に保持 する基板保持容器 B1は、保持容器ステーション ΒΑ2に複数配列される。発光素子 が形成された(前記処理室 CVD1で処理を終了した)被処理基板 Wを内部に保持す る基板保持容器 B1は、前記保持容器搬送手段 TU1により前記基板搬送室 T6から 脱着され、搬送されて前記保持容器ステーション BA2に載置される。
[0033] また、上記の保持容器搬送手段 TU1や、前記搬送室 T1〜T6の内部に設置され た基板搬送手段(図示せず)、さらに前記処理室 CL1、 EL1、 SP1、 ET1、 SP2、 C VD1などの基板処理 (発光素子の製造)に係る動作は、内部に CPU (図示せず)を 有する制御手段 100Aにより、制御される。
[0034] また、図 2は、図 1の A—A'断面を模式的に示した図である。ただし、先に説明した 部分には同一の符号を付し、説明を省略する場合がある。また、前記基板搬送室 T2 には、前記基板保持容器 B1が接続された状態を示している。
[0035] 図 2を参照するに、前記基板保持容器 B1の内部には、前記被処理基板 Wが載置 される保持台 Bhと、該被処理基板 Wを持ち上げる突き上げピン Bpが設置されている 。また、前記基板保持容器 B1には、バルブ VIが付されたガスライン GAS 1が接続さ れている。前記バルブ VIを開放することで、前記ガスライン GAS 1から前記基板保 持容器 B1内に所定の充填ガス(例えば Arなどの不活性ガス、または、 Nなどのガス
2
)を供給することが可能になっている。
[0036] また、前記基板保持容器 B1の、前記基板搬送室 T2に接続される側には、ゲートバ ルブ GVaが設置されている。前記ゲートバルブ GVaを開放することで、被処理基板 Wの基板保持容器 B1からの搬出や、被処理基板 Wの基板保持容器 B1への搬入が 可能になるように構成されている。
[0037] 一方、前記基板搬送室 T2の内部には、前記被処理基板 Wを搬送するための搬送 手段 (搬送アーム) AM2が設置されている。前記搬送手段 AM2は、前記被処理基 板 Wを前記基板保持容器 B1から前記処理室 EL1に、または、前記被処理基板 Wを 前記処理室 EL1から前記基板保持容器 B1に搬送する。
[0038] また、前記基板搬送室 T2の前記基板保持容器 B1側にはゲートバルブ GVtが、前 記基板搬送室 T2の処理室 EL1側にはゲートバルブ 31 laがそれぞれ設置されてい る。前記被処理基板 Wを前記基板保持容器 B1から前記処理室 EL1に、または、前 記被処理基板 Wを前記処理室 EL1から前記基板保持容器 B 1に搬送する場合には 、前記ゲートバルブ GVt、 31 laを開放する。
[0039] また、前記基板搬送室 T2には、バルブ V2が付されたガスライン GAS2が接続され ている。前記バルブ V2を開放することで、前記ガスライン GAS2から前記基板搬送 室 T2内に所定の充填ガス(例えば Arなどの不活性ガス、または、 Nなどのガス)を
2
供給することが可能になっている。また、前記基板搬送室 T2には、真空ポンプ PV、 およびバルブ V4が設置された排気ライン EX1が接続され、当該バルブ V4を開放す ることによって、当該基板搬送室 T2内を所定の減圧状態に保持することが可能にな つている。
[0040] また、前記基板搬送室 T2は、前記ゲートバルブ GVt側で前記基板保持容器 B1と 接続される。この場合、前記ゲートバルブ GVtと前記ゲートバルブ Gvaの間には、空 間 SPが画成される。また、前記基板搬送室 T2と前記基板保持容器 B1とは、シール 材料 Baを介して接続され、前記基板搬送室 T2と前記基板保持容器 B1内部の気密 性が保持される。
[0041] また、前記空間 SPは、バルブ V5が付されたガスライン GAS3から、所定の充填ガ ス (例えば Arなどの不活性ガス、または、 Nなどのガス)を供給することが可能になつ
2
ている。また、前記空間 SPは、前記排気ライン EX1に接続されるとともに、バルブ V3 が付された排気ライン EX2によって、所定の減圧状態に保持することが可能になって いる。
[0042] 例えば、処理室 EL1における被処理基板 Wの基板処理は、以下に示すようにして 行われる。前記被処理基板 Wを前記保持台 Bp上に保持した前記基板保持容器 B1 力 前記保持容器搬送手段 TU1によって搬送され、前記基板搬送室 T2に接続され る。
[0043] 前記基板搬送室 T2内は、予め前記排気ライン EX1から真空排気されることで所定 の減圧状態とされているが、ここでさらに前記バルブ V3が開放されることで、前記空 間 SPが減圧状態とされる。
[0044] 次に、前記ゲートバルブ GVa、 GVtが開放され、前記基板搬送手段 AM2によって 、前記被処理基板 Wが、前記基板保持容器 B1から前記基板搬送室 T2内へと搬送 される。次に、前記ゲートバノレブ GVt, GVaが閉じられた後、前記ゲートバノレブ 31 la が開放される。ここで、前記基板搬送手段 AM2によって、前記被処理基板 Wが前記 処理室 EL1内に搬送され、前記ゲートバルブ 31 laが閉じられる。この後、前記処理 室 EL1で所定の基板処理 (例えば有機層の成膜)が行われ、基板処理が完了した被 処理基板 Wは、再び前記搬送手段 AM2によって、前記基板搬送室 T2を介して前 記基板保持容器 B1に戻される。
[0045] この場合、前記基板保持容器 B1内は、前記排気ライン EX1、 EX2で所定の時間( 前記ゲートバノレブ GVt, GVaが開放されている間)真空排気されるので、前記ゲート バルブ GVaが閉じられて再び被処理基板 Wが密閉された後も、所定の減圧状態とな つている。このため、前記基板保持容器 B1が次の基板搬送室に接続されるまでの間 、前記被処理基板上の有機層が大気中の酸素や水分に曝されて品質が劣化する影 響が抑制される。
[0046] また、被処理基板 Wが前記基板保持容器 B1内に戻された後で、該基板保持容器 B1内力 前記ガスライン GAS 1から供給される所定の充填ガスで充填されるようにし てもよレ、。例えば、当該充填ガスとしては、 Arなどの希ガスや、または窒素などを用い ること力 Sできる。すなわち、前記基板保持容器 B1内は、当該充填ガスで置換されるこ とになる。この場合、前記被処理基板に形成された有機層の劣化を効果的に防止す ること力 S可言 となる。
[0047] 例えば、前記基板保持容器 B1内を減圧状態とした場合に比べて、前記基板保持 容器 B 1を当該充填ガスで置換した場合には、該基板保持容器 B 1内の圧力と周囲 の大気との圧力差が小さくなる効果を奏する。このため、リークによって基板保持容 器 B1内に侵入する大気が少なくなり、有機層の品質劣化を効果的に抑制することが できる。
[0048] また、基板処理を完了した被処理基板 Wを保持した前記基板保持容器 B1は、前 記基板搬送室 T2から脱着され、次に前記基板搬送室 T3に接続される。前記基板保 持容器 B1を前記基板搬送室 T2から脱着する場合には、前記ガスライン GAS3から 前記空間 SPに所定量のガスを供給することが好ましい。このようにして、前記基板保 持容器 B1は順次基板搬送室に接続され、順次基板処理が行われる。
[0049] 上記の発光素子を製造する場合の、各処理室での基板処理の概要は概ね以下の ようになる。図 1を参照して説明する。まず、陽電極が形成された被処理基板 Wを内 部に保持する複数の基板保持容器 B1が、前記保持容器ステーション BA1に配列さ れる。前記保持容器搬送手段 1は、当該基板保持容器 B1をピックアップして前記基 板搬送室 T1に接続する。この後、さきに説明したように処理室 CL1、 EL1、 SP1、 E Tl、 SP2、 CVD1において順次基板処理が行われる。
[0050] まず、前記処理室 CL1では、陰電極が形成された被処理基板のクリーニング処理 が行われる。次に、前記処理室 EL1では、発光層(有機 EL層)を含む有機層が、例 えば蒸着法により形成される。次に、前記処理室 SP1では、当該有機層上に、陰電 極がマスクスパッタリングにより、パターユングされて形成される。次に、前記処理室 E T1では、パターユングされた当該陰電極がマスクにされて、例えばプラズマエツチン グにより、前記有機層がエッチングされて当該有機層のパターユングが行われる。こ のエッチングによって、有機層の剥離が必要な領域が除去され、該有機層のパター ユングが行われる。
[0051] 次に、前記処理室 SP2において、前記陰電極の引き出し線力 マスクスパッタリン グにより、パターニングされて形成される。次に、前記処理室 CVD1において、前記 有機層を覆うように、例えば窒化シリコン(SiN)などの無機物よりなる絶縁性の保護 膜を CVD法により、形成する。なお、上記のそれぞれの基板処理工程は、図 3A〜 図 3Fで後述する。
[0052] このようにして前記被処理基板 W上に、陽電極と陰電極の間に有機層が形成され てなる、発光素子を形成することができる。上記の発光素子は、有機 EL素子と呼ば れる場合がある。
[0053] 上記の本実施例による製造装置 100では、被処理基板 Wが、異なる処理室の間を 搬送される場合には、前記基板保持容器 B1によって密閉された状態となっている。 この場合、被処理基板上の有機層は、酸素や水分を多く含む一般的な大気から隔 離される。このため、発光素子の品質の低下を効果的に抑制することが可能になる。
[0054] 例えば、従来のクラスター型の発光素子の製造装置の場合、被処理基板は剥き出 しの状態のまま搬送されることが通常であった。また、減圧状態または不活性ガスで 内部が置換された基板搬送室には、複数の処理室が接続された構造となっていた。 [0055] このため、装置の故障やメンテナンスのために有機層(被処理基板)が大気に曝さ れ、発光素子の品質が低下してしまう懸念があった。また、有機層が大気に曝される ことを防止するために、製造装置の故障の対応やメンテナンスなどに制限があり、発 光素子の生産性を向上させる上で障害になっていた。
[0056] 一方で本発明による製造装置では、有機層が形成される被処理基板 Wが基板保 持容器 B1で保護 (密閉)されて搬送され、基板搬送室 T1〜T6に順次接続される構 造になっている。このため、有機層が大気に曝される懸念が少なぐ良好な品質の発 光素子を良好な生産性で製造することが可能になっていることが特徴である。この場 合、先に説明したように、前記基板保持容器 B1内は減圧状態とされるか、または所 定の充填ガスが充填(大気から充填ガスに置換)された状態とされることが好ましい。
[0057] また、有機層が形成される被処理基板 Wが基板保持容器 B1に密閉された状態で 搬送されるため、それぞれの処理室 CL1、 EL1、 SP1、 ET1、 SP2、 CVD1のメンテ ナンスゃ故障の対応が容易となり、製造装置の生産性が良好となる効果を奏する。ま た、前記搬送室 T1〜T6についてもメンテナンスや故障の対応が容易となる効果を 奏する。
[0058] また、被処理基板 Wが大気へ曝されるリスクが低減されるため、処理室 CL1、 ELI 、 SP1、 ET1、 SP2、 CVD1の構成や搬送経路、またメンテナンスの方法についての 自由度が飛躍的に向上し、製造装置の生産性が良好となる。
[0059] 次に、上記の製造装置 100を用いて発光素子を製造する製造方法の詳細につい て、図 3A〜図 3Fに基づき、手順を追って説明する。ただし、先に説明した部分には 同一の符号を付し、説明を省略する場合がある。
[0060] まず、図 3Aに示す工程は、前記処理室 CL1での基板処理に対応する工程である 。本工程では、例えばガラスなどよりなる透明な基板 11上に、 ITOなどの透明な材料 よりなる陽電極 12と、陰電極の引き出し線 13とが形成されてなる、いわゆる電極つき の基板(前記被処理基板 Wに相当)のクリーニングを行う。なお、前記陽電極 12 (前 記引き出し線 13)は、例えばスパッタリング法などにより形成される。
[0061] また、前記基板 11には、例えば TFTなどの発光素子の発光を制御する制御素子 が組み込まれていても良い。例えば、本実施例により形成される発光素子を表示装 置に用いる場合には、画素ごとに、例えば TFTなどの制御用の素子が組み込まれる 場合が多い。
[0062] この場合、 TFTのソース電極と上記の陽電極 12が接続され、さらに TFTのゲート 電極とドレイン電極は、格子状に形成されたゲート線とドレイン線に接続され、画素ご との表示の制御が行われる。この場合、前記引き出し線 13は、所定の制御回路(図 示せず)に接続される。このような表示装置の駆動回路は、アクティブマトリクス駆動 回路と呼ばれている。なお、本図では、このようなアクティブマトリクス駆動回路の図示 は省略している。
[0063] 次に、図 3Bに示す前記処理室 EL1における基板処理工程において、前記陽電極
12、前記引き出し線 13、および前記基板 11の上に、該記陽電極 12、該引き出し線
13、および該基板 11の露出部を覆うように、発光層(有機 EL層)を含む有機層 14を 、蒸着法により形成する。この場合、蒸着にあたってマスクは用いず、実質的に基板 の全面に前記有機層 14を形成する。
[0064] 次に、図 3Cに示す前記処理室 SP1における基板処理工程において、前記有機層
14上に、例えば Agよりなる陰電極 15を、例えばパターンマスクを用いたスパッタリン グにより、所定の形状にパターニングして形成する。また、前記陰電極 15のパター二 ングは、前記陰電極 15を全面に形成した後、フォトリソグラフィ法を用いたエッチング 法により行ってもよい。
[0065] 次に、図 3Dに示す前記処理室 ET1における基板処理工程において、図 3Cに示し た工程において形成された、パターニングされた前記陰電極 15をマスクにして、例え ばプラズマエッチングにより、前記有機層 14のエッチングを行って、当該有機層 14 のパターユングを行う。この工程において、前記有機層 14の剥離が必要な領域 (例 えば前記引き出し線 13上や、その他発光層が不要な領域)がエッチングにより除去 され、該有機層 14のパターニングが行われる。
[0066] 上記の場合、前記有機層 14のパターユングを、従来のようにマスク蒸着法を用いて 行う必要が無くなる。このため、マスク蒸着法に起因する様々な問題を回避すること ができる。例えば、蒸着時のマスクの温度上昇によるマスク変形に起因する、蒸着膜 (有機層 14)のパターユング精度の低下の問題を回避することができる。 [0067] 次に、図 3Eに示す前記処理室 SP2における基板処理工程において、前記陰電極 15と前記引き出し線 13を電気的に接続する接続線 15aを、例えばパターンマスクを 用いたスパッタリングにより、パターニングして形成する。
[0068] 次に、図 3Fに示す前記処理室 CVD1における基板処理工程において、前記陽電 極 12の一部、前記引き出し線 13の一部、前記有機層 14、前記陰電極 15、および前 記接続線 15aを覆うように、例えば窒化シリコン(SiN)よりなる絶縁性の保護膜 16を 、パターンマスクを用いた CVD法により、前記基板 11上に形成する。
[0069] このようにして、前記基板 11上に、前記陽電極 12と前記陰電極 15の間に前記有 機層 14が形成されてなる、発光素子 10を形成することができる。上記の発光素子 10 は、有機 EL素子と呼ばれる場合がある。
[0070] 前記発光素子 10は、前記陽電極 12と前記陰電極 15の間に電圧が印加されること で、前記有機層 14に含まれる発光層に、前記陽電極 12から正孔が、前記陰電極 15 力 電子が注入されてそれらが再結合され、発光する構造になってレ、る。
[0071] 当該発光層は、例えば、多環芳香族炭化水素、ヘテロ芳香族化合物、有機金属錯 体化合物等の材料を用いて形成することが可能であり、上記の材料は例えば蒸着法 により、形成することが可能である。
[0072] また、前記発光層での発光効率が良好となるように、前記有機層 14には、当該発 光層と前記陽電極 12との間に、例えば、正孔輸送層,正孔注入層などが形成されて いてもよい。また、当該正孔輸送層,正孔注入層は、そのいずれかが、またはその双 方が省略される構造であってもよい。
[0073] 同様に、前記発光層での発光効率が良好となるように、前記有機層 14には、当該 発光層と前記陰電極 15との間に、例えば、電子輸送層,電子注入層が形成されて いてもよい。また、当該電子輸送層,電子注入層は、そのいずれかが、またはその双 方が省略される構造であってもよい。
[0074] また、前記有機層 14と前記陰電極 15との界面には、当該界面の仕事関数を調整 するため(発光効率を良好とするため)の物質、例えば、 Li、 LiF、 CsCOなどが添カロ
3 された層が形成されてレ、てもよレ、。
[0075] 例えば、前記発光層は、例えば、ホスト材料にアルミノキノリノール錯体 (Alq3)、ド 一ピング材にはルブレンを用いて形成することができる力 これに限定されず、様々 な材料を用いて形成することが可能である。
[0076] 例えば、前記陽電極 12の厚さは 100 /i m乃至 200 /i m、前記有機層 13の厚さは 5
0 μ m乃至 200 μ m、前記陰電極 14の厚さは 50 μ m乃至 300 μ mに形成される。
[0077] また、例えば、前記発光素子 10は、表示装置 (有機 EL表示装置)や、面発光素子
(照明'光源など)に適用することができるが、これらに限定されるものではなぐ様々 な電子機器に用レ、ることが可能である。
[0078] 次に、上記の製造装置 100に用いられる処理室の構成の例について、図面に基づ き以下に説明する。ただし、先に説明した部分には同一の符号を付し、説明を省略 する場合がある。
[0079] 図 4は、発光素子の製造装置に係る処理室 (成膜室) EL1を模式的に示した図であ る。前記処理室 EL1は、図 3Bに示した、有機層の蒸着による成膜の工程を実施する ための処理室(成膜室)である。
[0080] 図 4を参照するに、前記成膜室 EL1は、内部に被処理基板 W (図 3Aの基板 11に 相当)を保持する保持台 312を有する処理容器 311を有してレ、る。前記処理容器 31 1内は、真空ポンプ(図示せず)が接続された排気ライン 311Aにより排気され、減圧 状態とされる構造になっている。
[0081] 前記処理容器 311の外側には、例えば固体または液体よりなる蒸着の原料 321を 蒸発または昇華させて、成膜原料ガス (気体原料)を生成する成膜原料ガス生成部 3 22Aが設置されている。
[0082] 前記成膜原料ガス生成部 322Aは、原料容器 319、およびキャリアガス供給ライン
320を有している。前記原料容器 319に保持された成膜原料 321は、図示を省略す るヒータなどにより加熱され、その結果成膜原料ガス (気体原料)が生成される。生成 された成膜原料ガスは、キャリアガス供給ライン 320から供給されるキャリアガスととと もに、輸送路 318A内を輸送されて、前記処理容器 311に設置された成膜原料ガス 供給部 317Aに供給される構造になっている。前記成膜原料ガス供給部 317Aに輸 送された成膜原料ガスは、前記処理容器 311内の前記被処理基板 Wの近傍へと供 給され、被処理基板 W上に成膜 (蒸着)が行われる構造になっている。 [0083] すなわち、上記の構造では、フェースアップ成膜によって前記有機層 204が形成可 能になっている。例えば、従来の発光素子の製造装置では、例えば蒸着法を用いて 成膜を行う場合、処理容器内の蒸着源から蒸発または昇華する原料を被処理基板 に成膜させるため、被処理基板の成膜面を下に向けた、いわゆるフェースダウンの成 膜方法により行う必要があった。このため、被処理基板が大きくなつた場合には被処 理基板の扱いが困難となって、発光素子の生産性が低下してしまう問題が生じてい た。
[0084] 一方、上記の処理室では、フェースアップによる成膜が可能に構成されているため 、大型の被処理基板への対応が容易となる効果を奏する。このため、発光素子の生 産性が良好となり、製造コストが抑制される効果を奏する。
[0085] 前記成膜原料ガス供給部 317Aは、前記輸送路 318Aが接続された、例えば円筒 状または筐体状の供給部本体 314を有し、その内部に成膜原料ガスの流れを制御 する整流板 315が設置されている。さらに、前記供給部本体 314の、被処理基板 W に面する側には、例えば多孔質の金属材料 (金属フィルタ)よりなるフィルタ板 316が 設置されている。
[0086] また、前記処理容器 311には、前記成膜原料ガス供給部 317Aと同様の構造を有 する成膜原料ガス供給部 317B〜317F力 該成膜原料ガス供給部 317Aとともに直 線上に配列されている。また、前記成膜原料ガス供給部3178〜317?は、それぞれ 輸送路 318B〜318Fを介して、それぞれ成膜原料ガス生成部 322B〜322Fに接 続されている。前記成膜原料ガス生成部 322B〜322Fは、前記成膜原料ガス生成 部 322Aと同様の構造を有している。
[0087] また、前記保持台 312は、前記成膜原料ガス供給部 317A〜317Fからの複数の 成膜原料ガスの供給に対応して、移動可能に構成されている。例えば、前記保持台 312は、前記処理容器 311の底面に設置された、移動レール 313上を、成膜原料ガ ス供給部の配列に沿って平行に移動可能に構成されている。
[0088] この場合、前記成膜原料ガス供給部 317A〜317Fからの複数の成膜原料ガスの 供給に対応して、前記保持台 312が移動されることによって、前記被処理基板 W上 には、多層構造よりなる有機層が、フェースアップ成膜により形成される。 [0089] また、前記処理容器 311には、前記基板搬送室 T2に接続される側に、ゲートバル ブ 31 laが設けられている。当該ゲートバルブ 31 laを開放することにより、前記被処 理基板 Wの前記処理容器 311内への搬入や、または、前記被処理基板 Wの前記処 理容器 311内からの搬出が可能になる。
[0090] また、図 5は、発光素子の製造装置 100に係る処理室 (成膜室) SP1を模式的に示 した図である。前記処理室 SP1は、図 3Cに示した、スパッタリングによる陰電極の成 膜の工程を実施するための処理室 (成膜室)である。また、前記処理室 SP2は、当該 処理室 SP1と同様の構造を有している。
[0091] 図 5を参照するに、前記成膜室 SP1は、内部に被処理基板 Wを保持する保持台 3 32を有する処理容器 331を有している。前記処理容器 331内は、真空ポンプが接続 された排気ライン(図示せず)により排気され、減圧状態とされる構造になっている。 前記保持台 332は、前記処理容器 331の底面に設置された、移動レール 338上を、 平行に移動可能に構成されている。
[0092] また、前記処理容器 331には、前記基板搬送室 T3に接続される側に、ゲートバル ブ 331aが設けられている。当該ゲートバルブ 331aを開放することにより、前記被処 理基板 Wの前記処理容器 331a内への搬入や、または、前記被処理基板 Wの前記 処理容器 331内からの搬出が可能になる。
[0093] また、前記処理容器 331内には、それぞれに電圧が印加されるターゲット 340A, 3 40Bが互いに対向するように設置されている。前記基板保持台 332上に設置された 、 2つの前記ターゲット 340A, 340Bは、それぞれ、前記基板保持台 332が移動する 方向と略直交する方向に延伸した構造を有し、互いに対向するようにして設置されて いる。
[0094] また、前記処理容器 331内には、前記ターゲット 340A, 340Bの間の空間 331A に、例えば Arなどのスパッタリングのための処理ガスを供給するガス供給手段 341が 設置されている。当該処理ガスは、当該圧印加ターゲット 340A, 340Bに電源 342 より電圧が印加されることでプラズマ励起される。
[0095] 前記ターゲット 340A, 340Bに、それぞれ、電源 342より電力が印加されることで、 当該空間 331Aにプラズマが励起され、ターゲットがスパッタリングされることで、前記 被処理基板 w上に成膜が行われる。
[0096] 上記の処理室 SP1におレ、ては、被処理基板 Wが、プラズマが励起される空間(空 間 331A)から離間しており、成膜対象が、プラズマ励起に伴う紫外線や、スパッタ粒 子の衝突によるダメージの影響を受けにくい特徴がある。このため、上記の処理室 S
P1Aを用いると、成膜対象となる有機層上に与えるダメージを抑制しながら、陰電極
(Ag、 A1)を成膜することが可能となる。
[0097] また、陰電極を成膜する装置としては、例えば上記の装置に限定されず、通常のタ 一ゲット構造を有するスパッタリング装置を用レ、ても良レ、。
[0098] また、図 6は、発光素子の製造装置に係る処理室(エッチング処理室) ET1を模式 的に示した図である。前記処理室 ET1は、図 3Dに示した、有機層のエッチングによ るパターユングの工程を実施するための処理室である。
[0099] 図 6を参照するに、前記処理室 ET1は、組み合わせられることで内部に内部空間 5 OOAが画成される処理容器 501、 502を有し、当該内部空間 500Aには、アース板 5 06と、基板保持台 505が対向して設置された構造を有している。前記内部空間 500 Aは、排気ポンプなどの排気手段(図示せず)が接続された排気ライン 509より排気さ れ、所定の減圧状態に保持される構造になっている。
[0100] また、前記処理容器 501は例えば金属より、前記処理容器 502は誘電体より構成さ れている。前記処理容器 502の外側には、高周波電源 504より高周波電力が印加さ れるコイル 503が設置されている。また、前記基板保持台 505には、高周波電源 510 より高周波電力が印加される構造になっている。
[0101] 前記内部空間 500Aには、ガス供給手段 508より、例えば N /Arなどのエツチン
2
グのための処理ガスが供給される。当該処理ガスは、前記コイル 503に高周波電力 が印加されることでプラズマ励起される。このようなプラズマを高密度プラズマ(例えば 、 ICP)と呼ぶ場合がある。高密度プラズマにより解離された処理ガスにより、図 3Dに 示した工程を実施する(前記有機層 14を、前記陰電極 15をマスクにしてエッチング する)こと力 Sできる。
[0102] また、前記処理容器 501には、前記基板搬送室 T4に接続される側に、ゲートバル ブ 507が設けられている。当該ゲートバルブ 507を開放することにより、前記被処理 基板 Wの前記処理容器 501内への搬入や、または、前記被処理基板 Wの前記処理 容器 501内からの搬出が可能になる。
[0103] 例えば、前記陰電極 15が Agを含む場合には、例えば前記処理ガスとして窒素(N
2
)を用いることが好ましい。例えば、窒素は上記の酸素や水素に比べて Agなどの金 属を腐食させる影響が少なぐまた効率的に前記有機層 14をエッチングすることが可 能である。
[0104] また、処理ガスを解離する、エッチング装置のプラズマは、窒素を高効率で解離す る、いわゆる高密度プラズマを用いることが好ましいが、高密度プラズマは ICPに限 定されず、例えばマイクロ波プラズマなどを用いても同様の結果を得ることができる。
[0105] また、例えば、平行平板プラズマを用いたエッチング (例えば RIEなど)により、有機 層をパターユングしてもよい。
[0106] また、図 7は、発光素子の製造装置に係る処理室(CVD成膜室) CVD1を模式的 に示した図である。前記処理室 CVD1は、図 3Fに示した、保護層の成膜を実施する ための処理室である。
[0107] 図 7を参照するに、前記処理室 CVD1は、内部に被処理基板 Wを保持する保持台
305が設置された処理容器 301を有している。前記処理容器 301内は、真空ポンプ (図示せず)が接続された排気ライン 301Aにより排気され、減圧状態とされる構造に なっている。前記処理容器 301は、例えば略円筒状の下部容器 301Aの一端の開 口部に、蓋部 301Bが設置された構造を有している。前記蓋部 302には、例えば略 円盤状のアンテナ 302が設置され、当該アンテナ 302には、電源 303からマイクロ波 が印加される構造になっている。
[0108] また、前記アンテナ 302と前記保持台 305の間には、処理容器内に成膜のための 成膜原料ガスを供給するガス供給部 304が設置されてレ、る。前記ガス供給部 304は 、例えば格子状に形成され、当該格子の穴からマイクロ波が通過する構造となってい る。
[0109] このため、前記ガス供給部 304から供給された成膜原料ガスは、前記アンテナ 302 力 供給されるマイクロ波によってプラズマ励起され、前記保持台 305上に保持され る被処理基板 W上に保護層(SiN層)の成膜が行われる。 [0110] また、前記処理容器 301には、前記搬送室 T6に接続される側に、ゲートバルブ 30 Olaが設けられている。当該ゲートバルブ 301aを開放することにより、前記被処理基 板 Wの前記処理容器 301a内への搬入や、または、前記被処理基板 Wの前記処理 容器 301a内からの搬出が可能になる。
[0111] また、上記に示した処理室 ELI , SP1, ET1, CVD1は、処理室の構成の一例で あり、本発明はこれらの構成に限定されるものではない。
[0112] また、処理室の構成、レイアウトや処理室の個数は、様々に変形'変更することが可 能である。例えば基板処理の効率を良好とするために、基板処理の時間が長い処理 室を増設したり、またはメンテナンス時に停止する処理室のバックアップ用に、複数の 処理室を設けるようにしてもよい。
[0113] 図 8は、図 1に示した発光素子の製造装置 100の変形例である発光素子の製造装 置 200を示す図である。ただし、先に説明した部分には同一の符号を付し、説明を省 略する。また、特に説明しない部分は図 1の製造装置 100と同様とする。なお、本図 では、図 1に示した保持容器ステーション BA1 , BA2は図示を省略している。
[0114] 図 8を参照するに、本図に示す製造装置 200の場合、処理室 CL1 , ELI , SP1, E Tl , SP2, CVD1が、それぞれ 2つずつ設置され、これらの処理室に対応して、それ ぞれ基板搬送室 T1〜T6が増設されている。
[0115] また、前記処理室 CL1, ELI, SP1 , ET1 , SP2, CVD1は、前記搬送レール Lを 挟んでそれぞれ対向するように 2つずつ設置されている。この場合、前記保持容器搬 送手段 TU1は、前記基板保持容器 B1を、対向する処理容器のうちのいずれかに接 する。
[0116] 上記の構成においては、それぞれの処理室を複数有しているために、製造装置の 生産の効率が良好であるとともに、メンテナンスや修理の効率が良好である効果を奏 する。例えば、上記の製造装置 200の場合、前記処理室 CL1 , ELI, SP1 , ET1 , S P2, CVD1のうちのいずれ力、 1つが故障した場合であっても、それぞれの処理室が 2 つずつあるため、発光素子の製造を継続して行うことが可能となる。
[0117] また、いずれかの処理室または基板搬送室がメンテナンスまたは故障の修理など で停止され、開放された状態となった場合であっても、個々の処理室または個々の基 板搬送室が独立であるため、他の処理室または個々の基板搬送室は実質的に影響 を受けることがない。
[0118] このため、発光素子の有機層が大気中の酸素や水分に曝されるリスクが低減される とともに、良好な生産性で当該発光素子を製造することが可能となる。
[0119] 以上説明したように、本発明の実施の形態によれば、被処理基板上に、発光層を 含む有機層を形成して発光素子を製造する発光素子の製造装置であって、前記被 処理基板が順次搬送され、それぞれ基板処理が行われる複数の処理室と、前記複 数の処理室にそれぞれ接続される複数の基板搬送室と、を有し、前記被処理基板を 内部に保持可能に構成された基板保持容器が、前記複数の基板搬送室に順次接 続されることで前記複数の処理室に前記被処理基板が順次搬送され、複数の前記 基板処理が順次行われるよう構成されていることを特徴とする発光素子の製造装置 を提供すること力 Sできる。
[0120] 前記基板保持容器は、前記被処理基板を密閉することが可能に構成されていても よい。前記基板保持容器が前記基板搬送室に接続された状態で、当該基板保持容 器の内部が真空排気されるよう構成されてレ、てもよレ、。前記基板保持容器が前記基 板搬送室に接続された状態で、当該基板保持容器の内部が所定の充填ガスで充填 されるよう構成されていてもよい。前記基板保持容器の内部には、前記被処理基板 を持ち上げる突き上げピンが設置されていてもよい。前記複数の処理室は、前記有 機層を成膜するための有機層成膜室と、前記有機層に電圧を印加するための電極 を成膜するための電極成膜室と、を含むこととしてもよい。前記有機層成膜室は、電 圧が印加されることで発光する前記発光層を含む多層構造を有する前記有機層が、 蒸着法により、連続的に成膜されるように構成されていてもよい。前記電極成膜室で は、互いに対向する 2つのターゲットを用いたスパッタリング法により前記電極が成膜 されるよう構成されてレ、てもよレ、。前記複数の処理室は、前記有機層をエッチングし てパターユングするためのエッチング室を含んでレ、てもよレ、。
[0121] また、本発明の実施の形態によれば、複数の処理室で基板処理工程がそれぞれ 実施され、被処理基板上に発光層を含む有機層が形成されて発光素子が製造され る発光素子の製造方法であって、前記被処理基板を内部に保持する基板保持容器 力 前記複数の処理室にそれぞれ接続された複数の基板搬送室に順次接続されて 前記被処理基板の搬送が行われ、複数の前記基板処理工程が実施されるとこを特 徴とする発光素子の製造方法を提供することができる。
[0122] 前記被処理基板は前記基板保持容器の内部で密閉された状態で搬送され、前記 複数の基板搬送室に順次接続されることとしてもよい。前記基板保持容器が前記基 板搬送室に接続された状態で、当該基板保持容器の内部が真空排気されることとし てもよい。前記基板保持容器が前記基板搬送室に接続された状態で、当該基板保 持容器の内部が所定の充填ガスで充填されることとしてもよい。前記複数の基板処 理工程は、前記有機層を成膜するための有機層成膜工程と、前記有機層に電圧を 印加するための電極を成膜するための電極成膜工程と、を含むこととしてもよい。前 記有機層成膜工程では、電圧が印加されることで発光する発光層を含む多層構造を 有する前記有機層が、蒸着法により連続的に成膜されることとしてもよい。前記電極 成膜工程では、互いに対向する 2つのターゲットを用いたスパッタリング法により前記 電極が成膜されることとしてもよい。前記複数の基板処理工程は、前記有機層をエツ チングしてパターニングするためのエッチング工程を含むこととしてもよい。
[0123] 以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施 例に限定されるものではなぐ特許請求の範囲に記載した要旨内において様々な変 形 ·変更が可能である。
[0124] 本国際出願は、 2006年 6月 7日に出願した日本国特許出願 2006— 158724号に 基づく優先権を主張するものであり、 日本国特許出願 2006— 158724号の全内容 を本国際出願に援用する。 産業上の利用可能性
[0125] 本発明によれば、生産性が良好である発光素子の製造装置および発光素子の製 造方法を提供することが可能となる。

Claims

請求の範囲
[1] 被処理基板上に、発光層を含む有機層を形成して発光素子を製造する発光素子 の製造装置であって、
前記被処理基板が順次搬送され、それぞれ基板処理が行われる複数の処理室と、 前記複数の処理室にそれぞれ接続される複数の基板搬送室と、を有し、 前記被処理基板を内部に保持可能に構成された基板保持容器が、前記複数の基 板搬送室に順次接続されることで前記複数の処理室に前記被処理基板が順次搬送 され、複数の前記基板処理が順次行われるよう構成されてレ、ることを特徴とする発光 素子の製造装置。
[2] 前記基板保持容器は、前記被処理基板を密閉することが可能に構成されているこ とを特徴とする請求項 1記載の発光素子の製造装置。
[3] 前記基板保持容器が前記基板搬送室に接続された状態で、当該基板保持容器の 内部が真空排気されるよう構成されていることを特徴とする請求項 1または 2記載の発 光素子の製造装置。
[4] 前記基板保持容器が前記基板搬送室に接続された状態で、当該基板保持容器の 内部が所定の充填ガスで充填されるよう構成されていることを特徴とする請求項 1乃 至 3のレ、ずれか 1項記載の発光素子の製造装置。
[5] 前記基板保持容器の内部には、前記被処理基板を持ち上げる突き上げピンが設 置されていることを特徴とする請求項 1乃至 4のいずれ力 4項記載の発光素子の製造 装置。
[6] 前記複数の処理室は、
前記有機層を成膜するための有機層成膜室と、
前記有機層に電圧を印加するための電極を成膜するための電極成膜室と、を含む ことを特徴とする請求項 1乃至 5のいずれ力 4項記載の発光素子の製造装置。
[7] 前記有機層成膜室は、電圧が印加されることで発光する前記発光層を含む多層構 造を有する前記有機層が、蒸着法により、連続的に成膜されるように構成されている ことを特徴とする請求項 6記載の発光素子の製造装置。
[8] 前記電極成膜室では、互いに対向する 2つのターゲットを用いたスパッタリング法に より前記電極が成膜されるよう構成されていることを特徴とする請求項 6または 7記載 の発光素子の製造装置。
[9] 前記複数の処理室は、前記有機層をエッチングしてパターニングするためのエッチ ング室を含むことを特徴とする請求項 6乃至 8のいずれ力 4項記載の発光素子の製 造装置。
[10] 複数の処理室で基板処理工程がそれぞれ実施され、被処理基板上に発光層を含 む有機層が形成されて発光素子が製造される発光素子の製造方法であって、 前記被処理基板を内部に保持する基板保持容器が、前記複数の処理室にそれぞ れ接続された複数の基板搬送室に順次接続されて前記被処理基板の搬送が行わ れ、複数の前記基板処理工程が実施されるとこを特徴とする発光素子の製造方法。
[11] 前記被処理基板は前記基板保持容器の内部で密閉された状態で搬送され、前記 複数の基板搬送室に順次接続されることを特徴とする請求項 10記載の発光素子の 製造方法。
[12] 前記基板保持容器が前記基板搬送室に接続された状態で、当該基板保持容器の 内部が真空排気されることを特徴とする請求項 10または 11記載の発光素子の製造 方法。
[13] 前記基板保持容器が前記基板搬送室に接続された状態で、当該基板保持容器の 内部が所定の充填ガスで充填されることを特徴とする請求項 10乃至 12のいずれ力 1 項記載の発光素子の製造方法。
[14] 前記複数の基板処理工程は、
前記有機層を成膜するための有機層成膜工程と、
前記有機層に電圧を印加するための電極を成膜するための電極成膜工程と、を含 むことを特徴とする請求項 10乃至 13のいずれ力 4項記載の発光素子の製造方法。
[15] 前記有機層成膜工程では、電圧が印加されることで発光する発光層を含む多層構 造を有する前記有機層が、蒸着法により連続的に成膜されることを特徴とする請求項
14記載の発光素子の製造方法。
[16] 前記電極成膜工程では、互いに対向する 2つのターゲットを用いたスパッタリング法 により前記電極が成膜されることを特徴とする請求項 14または 15記載の発光素子の 製造方法。
前記複数の基板処理工程は、前記有機層をエッチングしてパターニングするため のエッチング工程を含むことを特徴とする請求項 14乃至 16のいずれ力 1項記載の発 光素子の製造方法。
PCT/JP2007/061585 2006-06-07 2007-06-07 発光素子の製造装置および発光素子の製造方法 WO2007142315A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/303,568 US20100055816A1 (en) 2006-06-07 2007-06-07 Light Emitting Device Manufacturing Apparatus and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006158724A JP2007328999A (ja) 2006-06-07 2006-06-07 発光素子の製造装置および発光素子の製造方法
JP2006-158724 2006-06-07

Publications (1)

Publication Number Publication Date
WO2007142315A1 true WO2007142315A1 (ja) 2007-12-13

Family

ID=38801561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061585 WO2007142315A1 (ja) 2006-06-07 2007-06-07 発光素子の製造装置および発光素子の製造方法

Country Status (5)

Country Link
US (1) US20100055816A1 (ja)
JP (1) JP2007328999A (ja)
KR (1) KR20090028541A (ja)
TW (1) TW200818968A (ja)
WO (1) WO2007142315A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255987A (ja) * 1997-03-11 1998-09-25 Tdk Corp 有機el素子の製造方法
JP2001140066A (ja) * 1999-11-17 2001-05-22 Anelva Corp 薄膜形成方法及び形成装置
JP2001144166A (ja) * 1999-11-17 2001-05-25 Futaba Corp 基板位置決め装置及び基板ハンドリング方法
WO2004054325A1 (ja) * 2002-12-12 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. 発光装置、製造装置、成膜方法、およびクリーニング方法
JP2005197009A (ja) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd 表示装置及びその製造方法及び製造装置
WO2005087632A1 (ja) * 2004-03-11 2005-09-22 Ulvac, Inc. 基板搬送装置及びこれを備えた基板搬送システム
JP2005285576A (ja) * 2004-03-30 2005-10-13 Mitsubishi-Hitachi Metals Machinery Inc インライン式有機エレクトロルミネセンス製造装置
JP2006024896A (ja) * 2004-05-21 2006-01-26 Semiconductor Energy Lab Co Ltd 半導体装置の製造装置、およびパターン形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345417B2 (en) * 2002-12-19 2008-03-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20050257738A1 (en) * 2004-05-21 2005-11-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus of semiconductor device and pattern-forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255987A (ja) * 1997-03-11 1998-09-25 Tdk Corp 有機el素子の製造方法
JP2001140066A (ja) * 1999-11-17 2001-05-22 Anelva Corp 薄膜形成方法及び形成装置
JP2001144166A (ja) * 1999-11-17 2001-05-25 Futaba Corp 基板位置決め装置及び基板ハンドリング方法
WO2004054325A1 (ja) * 2002-12-12 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. 発光装置、製造装置、成膜方法、およびクリーニング方法
JP2005197009A (ja) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd 表示装置及びその製造方法及び製造装置
WO2005087632A1 (ja) * 2004-03-11 2005-09-22 Ulvac, Inc. 基板搬送装置及びこれを備えた基板搬送システム
JP2005285576A (ja) * 2004-03-30 2005-10-13 Mitsubishi-Hitachi Metals Machinery Inc インライン式有機エレクトロルミネセンス製造装置
JP2006024896A (ja) * 2004-05-21 2006-01-26 Semiconductor Energy Lab Co Ltd 半導体装置の製造装置、およびパターン形成方法

Also Published As

Publication number Publication date
TW200818968A (en) 2008-04-16
JP2007328999A (ja) 2007-12-20
KR20090028541A (ko) 2009-03-18
US20100055816A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US8158012B2 (en) Film forming apparatus and method for manufacturing light emitting element
KR101481749B1 (ko) 제조 시스템
JP5072184B2 (ja) 成膜方法
JP4294305B2 (ja) 成膜装置および成膜方法
JP2008308766A (ja) 成膜方法
JP5051869B2 (ja) 発光素子および発光素子の製造方法
WO2010055851A1 (ja) 基板処理システム
WO2007094322A1 (ja) 発光素子、発光素子の製造方法および基板処理装置
JP4096353B2 (ja) 有機電界発光表示素子の製造装置および製造方法
WO2010113659A1 (ja) 成膜装置、成膜方法及び有機el素子
JP4252317B2 (ja) 蒸着装置および蒸着方法
JP4368633B2 (ja) 製造装置
JP4515060B2 (ja) 製造装置および有機化合物を含む層の作製方法
JP4494126B2 (ja) 成膜装置および製造装置
JP4439827B2 (ja) 製造装置および発光装置の作製方法
JP2003301259A (ja) 製造システムおよび製造方法および製造装置の操作方法および発光装置
WO2007074563A1 (ja) 成膜装置および発光素子の製造方法
WO2007142315A1 (ja) 発光素子の製造装置および発光素子の製造方法
JPWO2018189906A1 (ja) 有機el表示装置の製造方法及び製造装置
JP2018181852A (ja) 有機el表示装置の製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744910

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07744910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12303568

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087030945

Country of ref document: KR