WO2007142008A1 - 車両用圧縮空気供給システムおよびエアドライヤ - Google Patents

車両用圧縮空気供給システムおよびエアドライヤ Download PDF

Info

Publication number
WO2007142008A1
WO2007142008A1 PCT/JP2007/060237 JP2007060237W WO2007142008A1 WO 2007142008 A1 WO2007142008 A1 WO 2007142008A1 JP 2007060237 W JP2007060237 W JP 2007060237W WO 2007142008 A1 WO2007142008 A1 WO 2007142008A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
air
purge
command pressure
dryer
Prior art date
Application number
PCT/JP2007/060237
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Mitsuhashi
Ichirou Minato
Satoshi Sasaki
Yoshinori Ohnuma
Ronpei Omachi
Original Assignee
Nabtesco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation filed Critical Nabtesco Corporation
Priority to JP2008520475A priority Critical patent/JP5187664B2/ja
Publication of WO2007142008A1 publication Critical patent/WO2007142008A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/002Air treatment devices
    • B60T17/004Draining and drying devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the present invention relates to a compressed air supply system for use in a pneumatic circuit such as an air brake device or an air suspension device installed in a vehicle.
  • the present invention relates to a technique effective in dealing with a failure of an electronic control part in a system capable of electronically controlling the regeneration operation of a desiccant in an air dryer.
  • the present invention relates to an air dryer suitable for use in such a compressed air supply system.
  • This type of compressed air supply system basically includes an air compressor that discharges compressed air, a compressed air force that is discharged by the air compressor, an air dryer that removes foreign matters such as moisture, and a passage through the air dryer. And an air tank for storing the compressed air.
  • Figure 3 shows a schematic diagram of a conventional compressed air supply system.
  • the outlet 16 of the air compressor 12 is connected to an air tank 25 via an air dryer 26.
  • the air compressor 12 includes unloading means 18 for disabling the compressed air discharge function while supply of compressed air is unnecessary.
  • the unloading means 18 switches the air compressor 12 between a loaded state and an unloaded state according to an unload command pressure transmitted through the pipe line 20.
  • the air dryer 26 includes a desiccant 30 inside the housing. The compressed air supplied from the inlet 32 of the air dryer 26 passes through the desiccant 30 to remove moisture and is discharged from the outlet 34.
  • the air dryer 26 is generally configured to remove large water droplets or oil droplets in advance with a filter or the like before the removal treatment with the desiccant 30.
  • the desiccant 30 requires periodic regeneration operations in conjunction with when the air compressor 12 becomes inactive. This regeneration operation is performed by opening the drain valve 35 provided at the lower end of the air dryer 26.
  • the drain valve 35 opens in response to the purge command pressure transmitted through the control port 27 and communicates the inside of the air dryer 26 with the atmosphere. The At this time, the compressed air dried in the air dryer 26 is exhausted to the atmosphere while flowing back through the desiccant 30, and the desiccant 30 is regenerated while purging the drain and the like in the air dryer 26.
  • the unload command pressure for the unload means 18 of the air compressor 12 is output from a first solenoid valve (unload control valve) 36.
  • the purge command pressure for the drain valve of the air dryer 26 is output from a second solenoid valve (purge control valve) 28.
  • These solenoid valves 36 and 28 are controlled by an electronic control unit 38.
  • the first solenoid valve 36 opens in response to an electrical signal from the electronic control unit 38 to communicate the air tank 25 with the unloading means 18 and to unload the air compressor 12 to make it unloaded.
  • the pressure is sent to the unloading means 18.
  • the second solenoid valve 28 opens in response to an electric signal from the electronic control device 38 to connect the air tank 25 and the drain valve 35, and sends a purge command pressure for opening the drain valve 35.
  • the unloading means 18 and the drain valve 35 can be individually controlled by the electronic control unit 38.
  • Patent Document 1 Japanese Patent No. 2795944
  • the electronic control parts including the electronic control device 38 and the solenoid valves 36 and 28, etc. fail, or the electric circuit connecting these electronic control parts causes disconnection, leakage, etc. If each solenoid valve 36, 28 becomes inoperable, the system will malfunction immediately. In particular, when the second solenoid valve 28 that controls the purge command pressure becomes inoperable, the desiccant in the air dryer 26 cannot be regenerated and reaches a saturated state, and drain accumulates in the air dryer 26. As a result, the foreign matter removing action by the air dryer 26 is not satisfied, and each of the pneumatic equipment downstream from this is adversely affected (for example, corrosion promotion is disabled due to drain freezing, etc.).
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a compressed air supply system capable of electronically controlling the purge operation of an air dryer even when an electronic control component fails or the like. Technology that can respond effectively without causing malfunction Is to provide. Another object of the present invention is to provide an air dryer suitable for use in such a compressed air supply system.
  • the present invention relates to a vehicle including a solenoid valve for outputting a purge command pressure to a command pressure passage connected to a drain valve, and an electronic control unit for outputting an electrical command signal to the solenoid valve.
  • a solenoid valve for outputting a purge command pressure to a command pressure passage connected to a drain valve
  • an electronic control unit for outputting an electrical command signal to the solenoid valve.
  • an auxiliary command pressure passage connected to the drain valve is provided to bypass the solenoid valve, and the purge command pressure is output to the auxiliary command pressure passage. It is characterized by having a pneumatically operated pre-tension governor.
  • the pneumatically operated pressure governor that is not affected by the failure will operate, and the auxiliary command pressure passage force drain valve Purge command pressure can be sent to Upon receiving the purge command pressure, the drain valve opens and purges the drain in the dryer with compressed air in the purge air tank to regenerate the desiccant.
  • the present invention provides the auxiliary command pressure passage for sending the purge command pressure from another passage in the air dryer including the solenoid valve for controlling the purge command pressure and the electronic control unit. And the above-mentioned presser governor.
  • This solenoid valve connects the command pressure passage connected to the drain valve and the outlet of the air dryer based on the electrical signal from the electronic control unit, and sends the purge command pressure to the drain valve.
  • the pressure governor is operated by the air pressure at the outlet of the air dryer and connects the auxiliary command pressure passage and the outlet of the air dryer to send the purge command pressure to the drain valve.
  • the electrically actuated solenoid valve and the pneumatically actuated pressure governor can each be actuated according to the air pressure at the outlet of the air dryer.
  • the electronic control unit is connected to a pressure sensor that detects the air pressure at the outlet of the air dryer. When the detected value of the sensor reaches the predetermined first set pressure, the purge command pressure is output by the solenoid valve.
  • the pressure governor operates in response to the air pressure at the outlet of the air dryer, and outputs the purge command pressure to the drain valve when the air pressure at the outlet reaches a predetermined second set pressure.
  • the second set pressure at which the pressure governor outputs the purge command pressure can be set higher than the first set pressure at which the solenoid valve outputs the purge command pressure.
  • the pressure governor does not operate because the air pressure at the outlet of the air dryer does not reach the second set pressure while the purge command pressure is controlled by the solenoid valve.
  • the pressure regulator can be configured not to impede the control of the purge command pressure by the solenoid valve.
  • the first purge command pressure output to the drain valve can be output from the pressure governor.
  • the air pressure inside and at the outlet of the air dryer is at atmospheric pressure. Even if the air compressor operates in this state and the detected value of the pressure sensor first reaches the first set pressure, the electronic control unit does not operate the solenoid valve. After that, when the air pressure at the outlet of the air dryer reaches the second set pressure, the pressure governor operates and outputs the purge command pressure. This confirms that the presser governor is operating normally. Confirmation of the normal operation of the pressure governor can be made by the electronic control unit based on the detection result of the pressure sensor, for example.
  • the pneumatically operated pressure governor can be operated to send a purge command pressure to the drain valve. Therefore, the purge operation of the air dryer can be performed reliably, and the foreign matter removing action of the compressed air by the air dryer can be secured more stably.
  • FIG. 1 is a circuit diagram of a compressed air supply system according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a compressed air supply system according to a second embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a compressed air supply system according to the prior art.
  • FIG. 1 is a circuit diagram of a compressed air supply system 100 for a vehicle according to a first embodiment of the present invention. Similar to the system shown in FIG. 3, the compressed air supply system 100 includes an air compressor 112 that discharges compressed air, an air dryer 126 that includes a function of removing foreign substances in the compressed air, and an air tank 125 that stores the compressed air. .
  • the air compressor 112 includes unloading means 118 that disables the discharge function of compressed air (switches the air compressor 112 between a loaded state and a no-load state).
  • the outlet 116 of the air compressor 112 is connected to the inlet 132 of the air dryer 126.
  • air The dryer 126 includes a dryer 139 containing a desiccant that can be regenerated inside, and a purge air tank 133 that stores a part of the compressed air that has passed through the dryer 139.
  • a first check valve 161 is provided between the inlet 1 32 and the dryer 139. The first check valve 161 prevents the compressed air in the air dryer 126 from flowing back to the air compressor 112 side. Further, a drain valve 135 is provided on the primary side of the dryer 139.
  • the drain valve 135 is opened according to the purge command pressure, and the compressed air in the purge air tank 133 is caused to flow back into the dryer 139 to regenerate the desiccant in the dryer 139.
  • a second check valve 162 for preventing the compressed air of the purge air tank 133 from flowing back to the dryer 139 side, and this second check valve 162.
  • a throttle passage 163 for adjusting the flow rate of the purge air.
  • the secondary side of the purge air tank 133 is connected to the outlet 134 via the third check valve 164.
  • the third check valve 164 prevents the compressed air from the outlet 134 from flowing back to the purge air tank 162 side.
  • a flow path in which the force between the third check valve 164 and the outlet 134 is also branched is connected to an air suspension port 188 of the vehicle.
  • the outlet 134 of the air dryer 126 is connected to the air tank 125.
  • the air tank 125 is divided into four parts corresponding to the four air pressure circuits 21 to 24 including, for example, an air brake device circuit and an auxiliary machine circuit!
  • a multi-sir kit protection valve 190 is provided between the air dryer 126 and the air tank 125, and the multi-circuit protection valve 190 divides the flow path connected from the outlet 134 of the air dryer 126 into four.
  • Multiplexer kit protection valve 190 closes the protective valve (not shown) corresponding to the failed air pressure circuit even if one of air pressure circuits 21 to 24 fails and air leaks. In other failures, it functions to protect the air pressure circuit.
  • the air dryer 126 is electrically connected to the solenoid valves 136, 128, and 183 and the solenoid valves 136, 128, and 183 to control the unloading means 118 and the drain valve 135 of the air compressor 112. And an electronic control unit 138 for outputting various command signals.
  • the first solenoid valve (hereinafter referred to as the unload control valve) 136 is connected to the unload command command pressure passage 171 connected to the unload means 118 of the air compressor 112 in the normal non-energized state (demagnetized state). 181 connected to the electronic control When switched to the energized state (excited state) by the part 138, the command pressure passage 171 for the unload command is connected to the outlet 134 of the air dryer 126.
  • the second solenoid valve (hereinafter referred to as the purge control valve) 128 is connected to the exhaust port 182 with a command pressure passage 172 for a purge command connected to the drain valve 135 in a normal non-energized state.
  • the command pressure passage 172 for the purge command is connected to the outlet 134 of the air dryer 126.
  • a third solenoid valve (hereinafter referred to as a backflow control valve) 183 connects the purge air tank 133 and the outlet 134 so as to bypass the third check valve 164 provided near the outlet 134 of the air dryer 126.
  • the reverse flow passage 173 is provided to open and close the reverse flow passage 173.
  • the reverse flow control valve 183 is in the closed position in a normal non-energized state, and is switched to the open position when energized by the electronic control unit 138.
  • the air dryer 126 includes a pressure sensor 155 that detects the air pressure in the purge air tank 133. Furthermore, the air dryer 126 also includes a plurality of pressure sensors 156, 157, 158 that detect the pressure around the multi-protection valve 190. One pressure sensor 156 detects the air pressure on the primary side of the multi-protection valve 190 (the outlet 134 of the air dryer 126). The other pressure sensors 157 and 158 detect the air pressure on the secondary side of the multi-protection valve 190 (each air tank 125 corresponding to the air pressure circuits 21 and 22). These pressure sensors 155 to 158 are electrically connected to the electronic control unit 138, and the respective detection results can be used to control the solenoid valves 136, 128, and 183.
  • the compressed air supply system 100 operates as follows.
  • the compressed air discharged from the outlet 116 of the air compressor 112 is introduced into the dryer 139 through the inlet 132 of the air dryer 126 and the first check valve 161.
  • the compressed air from which foreign matter such as moisture has been removed by passing through the dryer 139 is discharged from the outlet 134 of the air dryer 126 and the air suspension port 188.
  • the compressed air discharged from the outlet 134 is stored in the air tank 125 through the multi-protection valve 190.
  • a part of the compressed air that has passed through the dryer 139 is also stored in the purge air tank 133.
  • the electronic control unit 138 passes the air pressure at the outlet 134 of the air dryer 126 via the pressure sensor 156.
  • the unload control valve 136 and the purge control valve 128 are switched to the energized state.
  • the command pressure passage 171 connected to the unload control valve 136 is connected to the outlet 134 of the air dryer 126, and the unload command pressure is output to the unload means 118.
  • the unloading means 118 that receives this command pressure puts the air compressor 112 into a no-load state, and the pneumatic compressor 112 enters an unload state.
  • the command pressure passage 172 connected to the purge control valve 128 is connected to the outlet 134 of the air dryer 126, and the purge command pressure is output to the drain valve 135.
  • the drain valve 135 is switched to the open position, and the interior of the dryer 139 communicates with the atmosphere. Then, the compressed air in the purge air tank 133 is exhausted from the drain valve 135 to the atmosphere through the throttle passage 163 without flowing back through the dryer 139. As a result, the drain accumulated in the dryer 139 is released and the desiccant in the dryer 139 is regenerated.
  • the unload control valve 136 and the purge control valve 128 are activated. It returns to the non-energized state. Then, the unload command pressure passage 171 is connected to the exhaust port 181 so that the unload command pressure to the unload means 118 is discharged to the atmosphere, and the purge command pressure passage 172 is exhausted. By connecting to the port 182, the purge command pressure to the drain valve 135 is discharged to the atmosphere. As a result, the operating state of the air compressor 112 shown in FIG. 1 is restored.
  • this compressed air supply system 100 has an auxiliary command pressure passage as a command pressure passage for sending the purge command pressure to the drain valve 135, in addition to the command pressure passage 172 provided with the purge control valve 128. 174.
  • the auxiliary command pressure passage 174 is provided so that the outlet 134 of the air dryer 126 and the drain valve 135 can be connected so as to bypass the purge control valve 128, and includes a pneumatically operated pressure governor 17 5 for switching the connection state. ing.
  • the pressure pressure governor 175 connects the auxiliary command pressure passage 174 to the exhaust port 185.
  • the command pressure passage 174 is By connecting to the outlet 134, the purge command pressure is output to the drain valve 135.
  • the pressure governor 175 returns to the original state where the auxiliary command pressure passage 174 is connected to the exhaust port 185, and the purge to the drain valve 1 35 is performed.
  • the command pressure is discharged to the atmosphere.
  • a shuttle valve 177 is provided at the junction of two passages (the command pressure passage 172 and the auxiliary command pressure passage 174) for sending the purge command pressure to the drain valve 135.
  • Shuttle valve 177 switches according to the pressure difference between the supply pressures from these two passages, and when one of the passages outputs a purge command pressure, it closes the other.
  • the set pressure at which this pneumatically actuated pressure governor 175 operates (the air pressure at the outlet 134 of the air dryer 126 when the purge command pressure is output to the auxiliary command pressure passage 174) is the unload control valve 136. Is set to the set pressure (air pressure at the outlet 134 when the unload command pressure is output to the command pressure passage 171) and the purge control valve 128 is set to the set pressure (purge command pressure to the command pressure passage 172). It is set higher than the air pressure at the outlet 134 when outputting. Therefore, while the command pressures are controlled by the unload control valve 136 and the purge control valve 128, the air pressure at the outlet 134 of the air dryer 126 does not reach the set pressure of the pressure governor 175. Letscha governor 175 does not operate. As a result, the pressure regulator 175 has a configuration that does not obstruct the control by the unload control valve 136 and the purge control valve 128.
  • the unload control valve 136 and the purge control valve 128 cannot be energized due to, for example, a failure of the electronic control unit 138
  • the air pressure at the outlet 134 of the air dryer 126 reaches the set pressure of the pressure governor 175.
  • Pretschabana 175 is activated.
  • the drain valve 135 is switched to the open position based on the purge command pressure that has passed through the auxiliary command pressure passage 174, and the purge operation is performed.
  • the pneumatic compressor 112 since the compressed air discharged from the air compressor 112 is also exhausted from the drain valve 135 to the atmosphere, the pneumatic compressor 112 is substantially unloaded, and the supply of compressed air is stopped.
  • the unload control valve 136 and the purge control valve 128 connect the command pressure passages 171, 172 to the exhaust ports 181, 182 respectively in the non-energized state, so that the purge control by the pressure governor 175 is obstructed. Gana,.
  • the pressure regulator 175 does not operate. Therefore, for example, when the vehicle is started, the first purge command pressure sent to the drain valve 135 is output by operating the pressure regulator 175. Accordingly, it can be confirmed that the pressure governor 175 operates normally.
  • the electronic control unit 138 can determine whether the pressure governor 175 is operating normally based on the detection result of the pressure sensor 155 or the pressure sensor 156.
  • the electronic control unit 138 operates the unload control valve 136 and the purge control valve 128 while notifying the vehicle driver or the like of the determination result.
  • FIG. 2 is a circuit diagram of a compressed air supply system 200 according to the second embodiment of the present invention.
  • the compressed air supply system 100 shown in FIG. 1 uses separate solenoid valves for unload control and purge control.
  • this compressed air supply system 200 differs from that shown in FIG. 1 in that the air compressor 212 is not provided with an unloading means, but instead the air compressor 212 has an unload function. 226 drain valve 235. Therefore, the compressed air supply system 200 does not include the unload control valve 136 shown in FIG.
  • the electronic control unit 238 switches the purge control valve 228 to the open position when the air pressure at the outlet 234 of the air dryer 226 reaches the set pressure.
  • This compressed air supply system 200 also includes an auxiliary command pressure passage 274 as a command pressure passage for sending the purge command pressure to the drain valve 235, in addition to the command pressure passage 272 provided with the purge control valve 228. Yes.
  • the auxiliary command pressure passage 274 is provided so that the outlet 234 of the air dryer 226 and the drain valve 235 can be connected so as to bypass the purge control valve 228, and includes a pneumatically operated pressure pressure governor 275 that switches the connection state. ⁇ .
  • the purge command pressure can be sent from the auxiliary command pressure passages 174 and 274 to the drain valves 135 and 235 by the pneumatically actuated pressure governors 175 and 275.
  • This purge command pressure is due to the operation of the pneumatic pressure type pressure governor 175, 275 which is not based on the control of the electronic control units 138, 238. Therefore, even when the purge control valves 128 and 228 become inoperable due to a failure of the electric control parts, the purge operation of the air dryers 126 and 226 can be performed reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Description

明 細 書
車両用圧縮空気供給システムおよびエアドライャ
技術分野
[0001] 本発明は、車両に装備されたエアブレーキ装置やエアサスペンション装置等の空 圧回路に使用するための圧縮空気供給システムに関する。特に本発明は、エアドラ ィャ内の乾燥剤の再生作業を電子制御できるシステムにお 、て、電子制御部分の故 障に対応する上で有効な技術に関する。さらに本発明は、そうした圧縮空気供給シ ステムに使用する上で好適なエアドライャに関する。
背景技術
[0002] この種の圧縮空気供給システムは、基本的に、圧縮空気を吐出する空気圧縮機と 、この空気圧縮機が吐出した圧縮空気力 水分等の異物を除去するェアドライヤと、 このエアドライャを通過した圧縮空気を貯えるエアタンクとを備える。図 3は、従来の 圧縮空気供給システムの概略図を示す。
[0003] 図 3に示す圧縮空気供給システム 10において、空気圧縮機 12の出口 16は、エア ドライヤ 26を介してエアタンク 25に接続している。これにより、空気圧縮機 12の出口 16から吐出された圧縮空気は、エアドライャ 26で水分等の異物が除去された後、ェ ァタンク 25に貯えられる。空気圧縮機 12は、圧縮空気の供給が不要の間、圧縮空 気の吐出機能を無能化するアンロード手段 18を備えている。アンロード手段 18は、 管路 20を介して伝わるアンロード指令圧に応じて、空気圧縮機 12を負荷状態と無負 荷状態とに切り換えるものである。一方、エアドライャ 26は、ハウジングの内部に乾燥 剤 30を備えている。エアドライャ 26の入口 32から供給された圧縮空気は、乾燥剤 3 0を通過することで水分等が除去され、出口 34から排出される。エアドライャ 26は、 通常、乾燥剤 30による除去処理の前段階で、大きな水滴や油滴をフィルタ等によつ て予め除去する構成となっている。乾燥剤 30は、空気圧縮機 12が活動不能となった ときに合わせて、周期的な再生作業を必要とする。この再生作業は、エアドライヤ 26 の下端部に設けたドレンバルブ 35を開くことで行う。ドレンバルブ 35は、制御ポート 2 7を通して伝わるパージ指令圧に応じて開き、エアドライャ 26の内部を大気と連通す る。このとき、エアドライャ 26内の乾燥された圧縮空気が乾燥剤 30を逆流しながら大 気に排気され、エアドライャ 26内のドレン等をパージしながら乾燥剤 30を再生するこ とになる。
[0004] 空気圧縮機 12のアンロード手段 18に対するアンロード指令圧は、第一のソレノイド バルブ(アンロード制御バルブ) 36から出力される。また、エアドライャ 26のドレンバ ルブに対するパージ指令圧は、第二のソレノイドバルブ (パージ制御バルブ) 28から 出力される。これらソレノイドバルブ 36, 28は、電子制御装置 38によって制御される 。第一のソレノイドバルブ 36は、電子制御装置 38からの電気信号に応じて開くことで エアタンク 25とアンロード手段 18とを連通し、空気圧縮機 12を無負荷状態とするた めのアンロード指令圧をアンロード手段 18へ送る。第二のソレノイドバルブ 28は、電 子制御装置 38からの電気信号に応じて開くことでエアタンク 25とドレンバルブ 35とを 連通し、ドレンバルブ 35を開くためのパージ指令圧を送る。この圧縮空気供給システ ム 10によれば、アンロード手段 18およびドレンバルブ 35を電子制御装置 38によって それぞれ個別に制御することができる。
特許文献 1:特許 2795944号公報
発明の開示
発明が解決しょうとする課題
[0005] 圧縮空気供給システム 10は、電子制御装置 38や各ソレノイドバルブ 36および 28 等を含む電子制御部品が故障し、あるいはそれら電子制御部品をつなぐ電気回路 が断絶や漏電等を生じることで、各ソレノイドバルブ 36, 28が作動できない状態にな ると、直ちにシステム作動不良となる。特にパージ指令圧を制御する第二のソレノイド バルブ 28が作動不能になると、エアドライャ 26内の乾燥剤が再生できずに飽和状態 に達するとともに、エアドライャ 26内にドレンが蓄積する。この結果、エアドライヤ 26 による異物除去作用が満たされなくなり、これより下流の各空圧機器に悪影響 (例え ば、腐食促進ゃドレン凍結による作動不能等)を生じることになる。
[0006] 本発明はこうした問題に鑑みてなされたものであり、その目的は、エアドライャのパ ージ作業を電子制御できる圧縮空気供給システムにお 、て、電子制御部品が故障 等したときでもシステム作動不良を生じることなぐ有効に対応することができる技術 を提供することにある。また、本発明の別の目的は、こうした圧縮空気供給システムに 使用する上で好適なエアドライャを提供することにある。
課題を解決するための手段
[0007] 本発明は、ドレンバルブへつながる指令圧通路にパージ指令圧を出力するための ソレノイドバルブと、このソレノイドバルブに対して電気的な指令信号を出力する電子 制御部とを備えた車両用圧縮空気供給システムにおいて、さらに、その指令圧通路 とは別に、前記ソレノイドバルブをバイパスするようにドレンバルブへつながる補助用 の指令圧通路を設け、この補助用の指令圧通路にパージ指令圧を出力するための 空圧作動式のプレツシャガバナを備えたことを特徴とする。これによれば、電子制御 部品の故障等によってソレノイドバルブが作動不能になったとしても、その故障に影 響を受けない空圧作動式のプレツシャガバナが作動し、補助用の指令圧通路力 ド レンバルブへパージ指令圧を送ることができる。パージ指令圧を受けたドレンバルブ は開弁し、パージエアタンク内の圧縮空気により乾燥器内のドレン等をパージして乾 燥剤を再生する。
[0008] また、本発明は、パージ指令圧を制御するための上記ソレノイドバルブおよび上記 電子制御部を備えたエアドライャにおいて、さらに、パージ指令圧を別通路から送る ための上記補助用の指令圧通路および上記プレツシャガバナをも備えたことを特徴 とする。このソレノイドバルブは、電子制御部からの電気信号に基づいて、ドレンバル ブへつながる指令圧通路とェアドライヤの出口とを接続し、パージ指令圧をドレンバ ルブに対して送るものである。また、プレツシャガバナは、エアドライヤの出口のエア 圧力によって作動し、補助用の指令圧通路とェアドライヤの出口とを接続することで、 パージ指令圧をドレンバルブに対して送るものである。これによれば、電子制御部品 の故障等によってソレノイドバルブが作動不能になったとしても、その故障に影響を 受けない空圧作動式のプレツシャガバナが作動し、補助用の指令圧通路からドレン バルブへパージ指令圧を送ることができる。
[0009] 電気作動式のソレノイドバルブおよび空圧作動式のプレツシャガバナは、それぞれ ェアドライヤの出口のエア圧力に応じて作動させることができる。この場合、電子制御 部は、ェアドライヤの出口のエア圧力を検出する圧力センサに接続され、この圧力セ ンサの検出値が所定の第 1の設定圧力に達したとき、ソレノイドバルブによりパージ指 令圧を出力させる。また、プレツシャガバナは、エアドライヤの出口のエア圧力を受け て作動し、その出口のエア圧力が所定の第 2の設定圧力に達したとき、パージ指令 圧をドレンバルブへ出力する。
[0010] ここで、プレツシャガバナがパージ指令圧を出力する第 2の設定圧力は、ソレノイド バルブがパージ指令圧を出力する第 1の設定圧力に比べて高く設定することができ る。この場合、ソレノイドバルブによってパージ指令圧を制御している間、エアドライヤ の出口のエア圧力が第 2の設定圧力に達することがないため、プレツシャガバナは作 動しない。これにより、プレツシャガバナがソレノイドバルブによるパージ指令圧の制 御を阻害しない構成にすることができる。
[0011] また、例えば車両を始動したとき、ドレンバルブへ出力される最初のパージ指令圧 は、プレツシャガバナから出力させることができる。通常、車両の始動時、エアドライヤ の内部および出口のエア圧力は大気圧の状態にある。この状態で空気圧縮機が稼 動し、圧力センサの検出値が最初に第 1の設定圧力に達しても、電子制御部はソレノ イドバルブを作動させない。その後、ェアドライヤの出口のエア圧力が第 2の設定圧 力にまで達したとき、プレツシャガバナが作動してパージ指令圧を出力する。これによ つて、プレツシャガバナが正常に作動していることを確認できる。プレツシャガバナの 正常作動の確認は、例えば圧力センサの検知結果に基づ 、て電子制御部が判断で きる。
[0012] 本発明によれば、電子制御部品の故障等が生じても空圧作動式のプレツシャガバ ナが作動してドレンノ レブに対してパージ指令圧を送ることができる。したがって、ェ アドライヤのパージ作業を確実に行うことができ、エアドライャによる圧縮空気の異物 除去作用をより安定して確保することができる。
図面の簡単な説明
[0013] [図 1]本発明に係る第一の実施の形態である圧縮空気供給システムの回路図。
[図 2]本発明に係る第二の実施の形態である圧縮空気供給システムの回路図。
[図 3]従来技術に係る圧縮空気供給システムの回路図。
符号の説明 [0014] 100, 200 圧縮空気供給システム
112, 212 空気圧縮機
118 アンロード手段
125 エアタンク
126, 226 エアドライヤ
128, 228 パージ制御バルブ(第二のソレノイドバルブ)
130 乾燥剤
132 人口
133 パージエアタンク
134, 234 出口
135, 235 ドレンノ レブ
136 アンロード制御バルブ(第一のソレノイドバルブ)
138, 238 電子制御部
139 除湿器
171 指令圧通路 (アンロード指令用)
172, 272 指令圧通路 (パージ指令用)
174, 274 補助用の指令圧通路 (パージ指令用)
175 プレツシャガバナ
185 逆流制御バルブ(第三のソレノイドバルブ)
発明を実施するための最良の形態
[0015] 本発明の実施の形態を図面に基づいて説明する。まず、図 1は、本発明に係る第 一の実施の形態であって、車両用圧縮空気供給システム 100の回路図を示す。この 圧縮空気供給システム 100は、図 3に示すシステムと同様、圧縮空気を吐出する空 気圧縮機 112と、圧縮空気中の異物除去機能を含むエアドライヤ 126と、圧縮空気 を貯えるエアタンク 125とを備える。空気圧縮機 112は、圧縮空気の吐出機能を無能 化する (空気圧縮機 112を負荷状態と無負荷状態とに切り換える)アンロード手段 11 8を備える。
[0016] 空気圧縮機 112の出口 116は、エアドライャ 126の入口 132に接続している。エア ドライヤ 126は、内部に再生可能な乾燥剤を収容した乾燥器 139と、この乾燥器 139 内を通過した後の圧縮空気の一部を貯えるパージエアタンク 133とを備える。入口 1 32と乾燥器 139との間には第一の逆止弁 161を備える。この第一の逆止弁 161は、 エアドライヤ 126内の圧縮空気が空気圧縮機 112側へ逆流することを防止するもの である。さらに、乾燥器 139の一次側にはドレンバルブ 135を備える。このドレンバル ブ 135は、パージ指令圧に応じて開弁し、パージエアタンク 133内の圧縮空気を乾 燥器 139内に逆流させることで、乾燥器 139内の乾燥剤を再生する。乾燥器 139の 二次側力もパージエアタンク 133へ接続された通路には、パージエアタンク 133の圧 縮空気が乾燥器 139側へ逆流するのを防止する第二の逆止弁 162と、この第二の 逆止弁 162をバイパスするように設けられ、パージエアの流量調整のための絞り通路 163とを備える。パージエアタンク 133の二次側は、第三の逆止弁 164を介して出口 134に接続している。第三の逆止弁 164は、出口 134の圧縮空気がパージエアタン ク 162側へ逆流することを防止するものである。なお、第三の逆止弁 164と出口 134 との間力も分岐した流路を車両のエアサスペンション用ポート 188に接続している。
[0017] エアドライャ 126の出口 134は、エアタンク 125に接続している。エアタンク 125は、 例えばエアブレーキ装置用回路や補機用回路を含む 4つのエア圧回路 21〜 24に 対応して 4つに分かれて!/、る。エアドライヤ 126とエアタンク 125との間にはマルチサ 一キットプロテクションバルブ 190が設けられ、このマルチサーキットプロテクションバ ルブ 190がエアドライャ 126の出口 134からつながる流路を 4つに分けている。マル チサ一キットプロテクションバルブ 190は、各エア圧回路 21〜24のいずれかが失陥 してエア漏れを生じても、その失陥したエア圧回路に対応する保護弁(図示しない) を閉じることで、他の失陥して 、な 、エア圧回路を保護するように機能する。
[0018] エアドライャ 126は、空気圧縮機 112のアンロード手段 118およびドレンバルブ 13 5を制御するため、複数のソレノイドバルブ 136, 128および 183と、これらソレノイド バルブ 136, 128および 183に対して電気的な指令信号を出力する電子制御部 13 8とを備えている。第一のソレノイドバルブ(以下、アンロード制御バルブ) 136は、通 常の無通電状態 (消磁状態)では空気圧縮機 112のアンロード手段 118へつながる アンロード指令用の指令圧通路 171を排気ポート 181に接続して 、るが、電子制御 部 138により通電状態 (励磁状態)へ切り換えられると、そのアンロード指令用の指令 圧通路 171をエアドライヤ 126の出口 134に接続する。第二のソレノイドバルブ (以下 、パージ制御バルブ) 128は、通常の無通電状態ではドレンバルブ 135へつながる パージ指令用の指令圧通路 172を排気ポート 182に接続して 、るが、電子制御部 1 38により通電状態へ切り換えられると、そのパージ指令用の指令圧通路 172をエア ドライヤ 126の出口 134に接続する。また、第三のソレノイドバルブ (以下、逆流制御 バルブ) 183は、エアドライャ 126の出口 134近くに設けた第三の逆止弁 164をバイ パスするように、パージエアタンク 133と出口 134とを接続する逆流用通路 173に設 けられ、この逆流用通路 173を開閉するものである。この逆流制御バルブ 183は、通 常の無通電状態では閉位置にあり、電子制御部 138により通電されることで開位置 に切り換えられる。
[0019] エアドライャ 126は、パージエアタンク 133のエア圧力を検知する圧力センサ 155 を備えている。さらに、エアドライャ 126は、マルチプロテクションバルブ 190前後の 圧力を検知する複数の圧力センサ 156, 157, 158も備えている。うち一つの圧力セ ンサ 156は、マルチプロテクションバルブ 190の一次側(エアドライヤ 126の出口 134 )のエア圧力を検知する。他の圧力センサ 157および 158は、マルチプロテクション バルブ 190の二次側(エア圧回路 21および 22に対応する各エアタンク 125)のエア 圧力を検知する。これら圧力センサ 155〜158は、電子制御部 138と電気的に接続 され、それぞれの検知結果を各ソレノイドバルブ 136, 128, 183の制御に使用する ことができる。
[0020] こうした圧縮空気供給システム 100は、以下のとおり作用する。空気圧縮機 112の 出口 116から吐出された圧縮空気は、エアドライャ 126の入口 132および第一の逆 止弁 161を通して、乾燥器 139内部へ導入される。乾燥器 139内を通過することで 水分等の異物が除去された圧縮空気は、エアドライャ 126の出口 134およびェアサ スペンション用ポート 188から排出される。出口 134から排出された圧縮空気は、マ ルチプロテクションバルブ 190を通してエアタンク 125に貯えられる。また、その乾燥 器 139を通過した圧縮空気の一部がパージエアタンク 133にも貯えられている。
[0021] 電子制御部 138は、圧力センサ 156を介してエアドライャ 126の出口 134のエア圧 が設定圧力に達するまで上昇したことを認識すると、アンロード制御バルブ 136およ びパージ制御バルブ 128を通電状態へ切り換える。アンロード制御バルブ 136が通 電状態へ切り換えられると、そこにつながる指令圧通路 171がエアドライャ 126の出 口 134に接続され、アンロード指令圧がアンロード手段 118へ出力される。すると、こ の指令圧を受けたアンロード手段 118が空気圧縮機 112を無負荷状態にし、空気圧 縮機 112はアンロード状態となる。また、パージ制御バルブ 128が通電状態へ切り換 えられると、そこにつながる指令圧通路 172がエアドライャ 126の出口 134に接続さ れ、パージ指令圧がドレンバルブ 135へ出力される。この指令圧を受けたドレンバル ブ 135は、開位置に切り換えられ、乾燥器 139の内部を大気と連通する。すると、パ ージエアタンク 133内の圧縮空気が絞り通路 163を通して乾燥器 139内を逆流しな 力 Sらドレンバルブ 135から大気に排気される。この結果、乾燥器 139の内部に溜まつ たドレンが放出されるとともに、乾燥器 139内の乾燥剤が再生されることになる。
[0022] この後、エアタンク 125内の圧縮空気が消費され、エアタンク 125の内圧とともにェ アドライヤ 126の出口 134のエア圧が降下していくと、アンロード制御バルブ 136およ びパージ制御バルブ 128が無通電状態に戻される。すると、アンロード指令用の指 令圧通路 171が排気ポート 181に接続されることでアンロード手段 118へのアンロー ド指令圧が大気へ排出されるとともに、パージ指令用の指令圧通路 172が排気ポー ト 182に接続されることでドレンバルブ 135へのパージ指令圧が大気へ排出される。 これにより、図 1に示す空気圧縮機 112の稼動状態に戻る。
[0023] さて、この圧縮空気供給システム 100は、ドレンバルブ 135へパージ指令圧を送る ための指令圧通路として、パージ制御バルブ 128を配した指令圧通路 172とは別に 、補助用の指令圧通路 174を備えている。補助用の指令圧通路 174は、パージ制御 バルブ 128をバイパスするようにエアドライャ 126の出口 134とドレンバルブ 135とを 接続可能に設けられ、その接続状態を切り換える空圧作動式のプレツシャガバナ 17 5を備えている。プレツシャガバナ 175は、空気圧縮機 112の稼動状態において補助 用の指令圧通路 174を排気ポート 185に接続しており、エアドライャ 126の出口 134 のエア圧力が設定圧力に達すると、指令圧通路 174をその出口 134に接続すること でパージ指令圧をドレンバルブ 135へ出力する。その後、エアタンク 125内の圧縮空 気の消費に応じて出口 134のエア圧が降下していくと、プレツシャガバナ 175は、補 助用の指令圧通路 174を排気ポート 185に接続する元の状態に戻り、ドレンバルブ 1 35へのパージ指令圧が大気へ排出される。
[0024] ドレンバルブ 135へパージ指令圧を送るための二つの通路(指令圧通路 172およ び補助用の指令圧通路 174)の合流箇所には、シャトル弁 177を設けている。シャト ル弁 177は、それら二つの通路からの供給圧力の圧力差によって切り換わり、各通 路のうち一方力もパージ指令圧が出力されているとき、他方を塞ぐものである。
[0025] この空圧作動式のプレツシャガバナ 175が作動する設定圧力(補助用の指令圧通 路 174へパージ指令圧を出力するときのエアドライャ 126の出口 134のエア圧力)は 、アンロード制御バルブ 136が通電される設定圧力(指令圧通路 171へアンロード指 令圧を出力するときの出口 134のエア圧力)およびパージ制御ノ レブ 128が通電さ れる設定圧力(指令圧通路 172へパージ指令圧を出力するときの出口 134のエア圧 力)に比べて高く設定されている。したがって、アンロード制御バルブ 136およびパー ジ制御ノ レブ 128によって各指令圧が制御されている間は、エアドライャ 126の出口 134のエア圧力がプレツシャガバナ 175の設定圧力にまで達することがな 、ため、プ レツシャガバナ 175は作動しない。これにより、プレツシャガバナ 175がアンロード制 御バルブ 136およびパージ制御バルブ 128による制御を阻害しない構成にしている
[0026] 一方、例えば電子制御部 138の故障等によってアンロード制御バルブ 136および パージ制御バルブ 128を通電できない場合には、エアドライャ 126の出口 134のェ ァ圧力がプレツシャガバナ 175の設定圧力にまで達して、プレツシャガバナ 175が作 動する。すると、補助用の指令圧通路 174を通したパージ指令圧に基づいてドレン バルブ 135が開位置に切り換えられ、パージ作業が行われる。このとき、空気圧縮機 112から吐出された圧縮空気もドレンバルブ 135から大気に排気されるため、空気圧 縮機 112は実質的にアンロード状態となり、圧縮空気の供給が停止される。また、ァ ンロード制御バルブ 136およびパージ制御バルブ 128は、無通電の状態で各指令 圧通路 171, 172をそれぞれ排気ポート 181, 182に接続しているので、プレツシャ ガバナ 175によるパージ制御を阻害することがな 、。 [0027] この圧縮空気供給システム 100では、アンロード制御バルブ 136およびパージ制 御バルブ 128が正常に作動している場合、プレツシャガバナ 175が作動することはな い。そこで、例えば車両を始動したとき、ドレンバルブ 135へ送られる最初のパージ 指令圧はプレツシャガバナ 175を作動させて出力する。これによつて、プレツシャガバ ナ 175が正常に作動することを確認することができる。プレツシャガバナ 175の正常 作動の確認は、圧力センサ 155あるいは圧力センサ 156の検知結果に基づいて電 子制御部 138が判断できる。つまり、これら圧力センサ 155, 156の検知結果がプレ ッシャガバナ 175の作動設定圧力よりも高い値を示したとき、プレツシャガバナ 175が 正常に作動していないと判断できる。この場合、電子制御部 138は、その判断結果を 車両の運転手等へ報知しながら、アンロード制御弁 136およびパージ制御弁 128を 作動させる。
[0028] パージ指令圧に基づいたドレンバルブ 135によるパージ作業は、通常の場合、 ージエアタンク 133内の圧縮空気が使用される。しかし、車両の状況に応じて、例え ば車両がブレーキを作動させることなく走行状態を維持して 、る場合など、エアドライ ャ 126より下流のエア圧回路において圧縮空気がほとんど消費されない場合がある 。この場合には、電子制御装置 138は、逆流制御用バルブ 183を開位置に切り換え る。すると、エアドライャ 126より下流の圧縮空気をパージエアとして使用することで、 乾燥器 139内のパージをより確実に行うことができる。
[0029] 図 2は、本発明に係る第二の実施の形態であって、圧縮空気供給システム 200の 回路図を示す。上述の図 1に示す圧縮空気供給システム 100は、アンロード制御お よびパージ制御にそれぞれ個別のソレノイドバルブを使用する。これに対して、この 圧縮空気供給システム 200は、図 1に示すものとは異なり、空気圧縮機 212にアン口 ード手段を備えることなぐその代わりに空気圧縮機 212のアンロード機能をエアドラ ィャ 226のドレンバルブ 235に負わせるものである。したがって、圧縮空気供給シス テム 200は、図 1に示すアンロード制御バルブ 136も備えていない。この圧縮空気供 給システム 200において、電子制御部 238は、エアドライャ 226の出口 234のエア圧 が設定圧力にまで達すると、パージ制御ノ レブ 228を開位置に切り換える。すると、 指令圧通路 272を介してパージ指令圧がドレンバルブ 235へ出力され、このパージ 指令圧を受けたドレンバルブ 235は開位置に切り換えられる。このとき、空気圧縮機 212から吐出された圧縮空気もドレンバルブ 235から大気に排気されるため、空気圧 縮機 212は実質的にアンロード状態となり、圧縮空気の供給が停止される。この圧縮 空気供給システム 200もまた、ドレンバルブ 235へパージ指令圧を送るための指令 圧通路として、パージ制御バルブ 228を配した指令圧通路 272とは別に、補助用の 指令圧通路 274を備えている。補助用の指令圧通路 274は、パージ制御バルブ 22 8をバイパスするようにエアドライャ 226の出口 234とドレンバルブ 235とを接続可能 に設けられ、その接続状態を切り換える空圧作動式プレツシャガバナ 275を備えて ヽ る。
本発明によれば、空圧作動式のプレツシャガバナ 175, 275によって、ドレンバルブ 135, 235に対して補助用の指令圧通路 174, 274からパージ指令圧を送ることがで きる。このパージ指令圧は、電子制御部 138, 238の制御に基づくものではなぐ空 圧作動式のプレツシャガバナ 175, 275の作動によるものである。したがって、電気制 御部品の故障等に起因してパージ制御バルブ 128, 228が作動不能になったときで も、エアドライャ 126, 226のパージ作業を確実に行うことができる。

Claims

請求の範囲
[1] 圧縮空気を吐出する空気圧縮機と、この空気圧縮機が吐出した圧縮空気から水分 等の異物を除去するェアドライヤと、このエアドライャを通過した圧縮空気を貯えるェ ァタンクとを備えた車両用圧縮空気供給システムであって、
前記エアドライャは、前記空気圧縮機に連絡される入口と、前記エアタンクに連絡 される出口と、それら入口および出口に連絡し、内部に再生可能な乾燥剤を収容し た乾燥器と、この乾燥器内を通過した後の圧縮空気の一部を貯えるパージエアタン クと、パージ指令圧に応じて開弁し、前記パージエアタンク内の圧縮空気によって前 記乾燥剤を再生するためのドレンバルブとを備えており、
さらに、前記ドレンバルブへつながる指令圧通路に前記パージ指令圧を出力する ためのソレノイドバルブと、このソレノイドバルブに対して電気的な指令信号を出力す る電子制御部とを備えた車両用圧縮空気供給システムにおいて、
前記指令圧通路とは別に、前記ソレノイドバルブをバイパスするように前記ドレンバ ルブへつながる補助用の指令圧通路を設けるとともに、この補助用の指令圧通路に 前記パージ指令圧を出力するための空圧作動式のプレツシャガバナを備えたことを 特徴とする、車両用圧縮空気供給システム。
[2] 次の (A)および (B)を含む、請求項 1の車両用圧縮空気供給システム。
(A)前記電子制御部は、前記エアドライヤの前記出口のエア圧力を検出する圧力セ ンサに接続され、この圧力センサの検出値が所定の第 1の設定圧力に達したとき、前 記ソレノイドバルブにより前記パージ指令圧を出力させる。
(B)前記プレツシャガバナは、前記ェアドライヤの前記出口のエア圧力が所定の第 2 の設定圧力に達したとき、前記パージ指令圧を前記ドレンバルブへ出力する。
[3] 前記プレツシャガバナが前記パージ指令圧を出力する前記第 2の設定圧力は、前 記ソレノイドバルブが前記パージ指令圧を出力する前記第 1の設定圧力に比べて高 く設定されて!、る、請求項 2の車両用圧縮空気供給システム。
[4] 車両を始動したとき、前記ドレンバルブへ出力される最初の前記パージ指令圧は 前記プレツシャガバナから出力される、請求項 3の車両用圧縮空気供給システム。
[5] 圧縮空気を吐出する空気圧縮機に連絡される入口と、圧縮空気を貯えるエアタンク に連絡される出口と、それら入口および出口に連絡し、内部に再生可能な乾燥剤を 収容した乾燥器と、この乾燥器内を通過した後の圧縮空気の一部を貯えるパージェ ァタンクと、パージ指令圧に応じて開弁し、前記パージエアタンク内の圧縮空気によ つて前記乾燥剤を再生するドレンバルブと、このドレンノ レブに対して前記パージ指 令圧を出力するために当該ドレンバルブへつながる指令圧通路と前記出口とを接続 するソレノイドバルブと、このソレノイドバルブに対して電気的な指令信号を出力する 電子制御部とを備えたェアドライヤにぉ 、て、
前記指令圧通路とは別に、前記ソレノイドバルブをバイパスするように前記ドレンバ ルブへつながる補助用の指令圧通路を設けるとともに、前記出口のエア圧力に応じ て前記補助用の指令圧通路と前記出口とを接続することでこの補助用の指令圧通路 に前記パージ指令圧を出力する空圧作動式のプレツシャガバナを備えたことを特徴 とする、エアドライヤ。
[6] 次の (A)および (B)を含む、請求項 5のエアドライャ。
(A)前記電子制御部は、前記出口のエア圧力を検出する圧力センサに接続され、こ の圧力センサの検出値が所定の第 1の設定圧力に達したとき、前記ソレノイドバルブ により前記パージ指令圧を出力させる。
(B)前記プレツシャガバナは、前記出口のエア圧力が所定の第 2の設定圧力に達し たとき、前記パージ指令圧を前記ドレンノ レブへ出力する。
[7] 前記プレツシャガバナが前記パージ指令圧を出力する前記第 2の設定圧力は、前 記ソレノイドバルブが前記パージ指令圧を出力する前記第 1の設定圧力に比べて高 く設定されている、請求項 6のエアドライャ。
[8] 車両を始動したとき、前記ドレンバルブへ出力される最初の前記パージ指令圧は 前記プレツシャガバナから出力される、請求項 7のエアドライャ。
PCT/JP2007/060237 2006-05-19 2007-05-18 車両用圧縮空気供給システムおよびエアドライヤ WO2007142008A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008520475A JP5187664B2 (ja) 2006-05-19 2007-05-18 車両用圧縮空気供給システムおよびエアドライヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006140789 2006-05-19
JP2006-140789 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007142008A1 true WO2007142008A1 (ja) 2007-12-13

Family

ID=38801272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060237 WO2007142008A1 (ja) 2006-05-19 2007-05-18 車両用圧縮空気供給システムおよびエアドライヤ

Country Status (2)

Country Link
JP (1) JP5187664B2 (ja)
WO (1) WO2007142008A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103893A1 (de) * 2010-02-24 2011-09-01 Wabco Gmbh & Co. Ohg Druckluftaufbereitungseinrichtung für kraftfahrzeuge
JP2012180827A (ja) * 2011-02-10 2012-09-20 Nabtesco Automotive Corp バルブ装置、エアードライヤ、圧縮空気供給システム
KR101354227B1 (ko) * 2012-10-26 2014-01-23 현대자동차주식회사 에어탱크 퍼지 제어 방법
KR101428289B1 (ko) * 2012-12-17 2014-08-07 현대자동차주식회사 차량용 에어 프로세싱 유닛
JP2015051697A (ja) * 2013-09-06 2015-03-19 日野自動車株式会社 エア供給システム
EP2916001A4 (en) * 2014-01-24 2015-09-09 Nantong Guangxing Pneumatic Equipment Co Ltd HIGH PRESSURE PUMP
CN109027665A (zh) * 2018-08-14 2018-12-18 东风商用车有限公司 一种反馈式可变储气容积能量回收装置
EP3556622A1 (en) * 2018-04-17 2019-10-23 WABCO Europe BVBA Air supply unit for a pneumatic system of a commercial vehicle
JP2021154784A (ja) * 2020-03-25 2021-10-07 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP2021154781A (ja) * 2020-03-25 2021-10-07 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP2021154782A (ja) * 2020-03-25 2021-10-07 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997321B1 (ko) * 2016-11-14 2019-07-05 현대자동차주식회사 공압 생성 시스템 및 카트리지 재생 효율을 높인 동작모드 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114418U (ja) * 1991-03-22 1992-10-08 日産デイーゼル工業株式会社 ブレーキエアドライヤ装置
JPH09263235A (ja) * 1996-03-29 1997-10-07 Nissan Diesel Motor Co Ltd エアドライヤの再生装置
JPH10296038A (ja) * 1997-04-28 1998-11-10 Nabco Ltd 圧縮空気供給システムおよびエアドライヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114418U (ja) * 1991-03-22 1992-10-08 日産デイーゼル工業株式会社 ブレーキエアドライヤ装置
JPH09263235A (ja) * 1996-03-29 1997-10-07 Nissan Diesel Motor Co Ltd エアドライヤの再生装置
JPH10296038A (ja) * 1997-04-28 1998-11-10 Nabco Ltd 圧縮空気供給システムおよびエアドライヤ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8740316B2 (en) 2010-02-24 2014-06-03 Wabco Gmbh Compressed air preparation device
WO2011103893A1 (de) * 2010-02-24 2011-09-01 Wabco Gmbh & Co. Ohg Druckluftaufbereitungseinrichtung für kraftfahrzeuge
JP2012180827A (ja) * 2011-02-10 2012-09-20 Nabtesco Automotive Corp バルブ装置、エアードライヤ、圧縮空気供給システム
KR101354227B1 (ko) * 2012-10-26 2014-01-23 현대자동차주식회사 에어탱크 퍼지 제어 방법
US9254826B2 (en) 2012-10-26 2016-02-09 Hyundai Motor Company Purge control method of air tank
KR101428289B1 (ko) * 2012-12-17 2014-08-07 현대자동차주식회사 차량용 에어 프로세싱 유닛
JP2015051697A (ja) * 2013-09-06 2015-03-19 日野自動車株式会社 エア供給システム
EP2916001A4 (en) * 2014-01-24 2015-09-09 Nantong Guangxing Pneumatic Equipment Co Ltd HIGH PRESSURE PUMP
US11300144B2 (en) 2018-04-17 2022-04-12 Zf Cv Systems Europe Bv Air supply unit for a pneumatic system of a commercial vehicle
EP3556622A1 (en) * 2018-04-17 2019-10-23 WABCO Europe BVBA Air supply unit for a pneumatic system of a commercial vehicle
CN109027665A (zh) * 2018-08-14 2018-12-18 东风商用车有限公司 一种反馈式可变储气容积能量回收装置
CN109027665B (zh) * 2018-08-14 2023-09-19 东风商用车有限公司 一种反馈式可变储气容积能量回收装置
JP2021154781A (ja) * 2020-03-25 2021-10-07 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP2021154782A (ja) * 2020-03-25 2021-10-07 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP2021154784A (ja) * 2020-03-25 2021-10-07 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP7234985B2 (ja) 2020-03-25 2023-03-08 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP7314846B2 (ja) 2020-03-25 2023-07-26 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両
JP7314847B2 (ja) 2020-03-25 2023-07-26 いすゞ自動車株式会社 エア供給システム、エア供給方法および車両

Also Published As

Publication number Publication date
JPWO2007142008A1 (ja) 2009-10-22
JP5187664B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5187664B2 (ja) 車両用圧縮空気供給システムおよびエアドライヤ
JP5278888B2 (ja) エアドライヤおよび圧縮空気供給システム
US8801111B2 (en) Vehicle air braking system
JP7273222B2 (ja) 空気供給システム
JP6403678B2 (ja) 圧縮空気供給装置および圧縮空気供給装置の動作方法
KR102248426B1 (ko) 상용차용 압축 공기 처리 장치
KR102248427B1 (ko) 상용차용 압축 공기 처리 장치
JP2009023627A (ja) 車両用圧縮空気供給システム
JP2010221179A (ja) 車両用圧縮空気供給装置
KR101908752B1 (ko) 상용차용 압축 공기 공급 장치 및 압축 공기 공급 장치의 작동 방법
JP2009078760A (ja) 車両用圧縮空気供給システム
JP2022176244A (ja) 空気供給システム
CN113766965B (zh) 空气供给系统、空气供给系统的控制方法及空气供给系统的控制程序
US8616231B2 (en) Valve device for a compressed air supply device and compressed air supply system
JP7439179B2 (ja) 空気供給回路
KR20220075784A (ko) 상용 차량용 지능형 eapu 모듈
KR20220075785A (ko) 연비 향상을 위한 차량용 eapu 모듈 제어 방법
JP2007231740A (ja) ストレーナの目詰まり判定方法及び判定装置
JPWO2017078068A1 (ja) 空気供給システム及び空気供給システムの制御方法
CN114718850B (zh) 空气供给回路
JP7476110B2 (ja) 空気供給システム
JP4346558B2 (ja) 圧縮気体の除湿における継続供給方法及び圧縮気体の除湿装置
JP2024026149A (ja) 空気供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520475

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743672

Country of ref document: EP

Kind code of ref document: A1