WO2007138642A1 - 光アクセスネットワークシステム - Google Patents

光アクセスネットワークシステム Download PDF

Info

Publication number
WO2007138642A1
WO2007138642A1 PCT/JP2006/310442 JP2006310442W WO2007138642A1 WO 2007138642 A1 WO2007138642 A1 WO 2007138642A1 JP 2006310442 W JP2006310442 W JP 2006310442W WO 2007138642 A1 WO2007138642 A1 WO 2007138642A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
signal
wavelength
network system
Prior art date
Application number
PCT/JP2006/310442
Other languages
English (en)
French (fr)
Inventor
Yutaka Kai
Yasuhiko Aoki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008517710A priority Critical patent/JP4676531B2/ja
Priority to GB0821266A priority patent/GB2452180B/en
Priority to PCT/JP2006/310442 priority patent/WO2007138642A1/ja
Publication of WO2007138642A1 publication Critical patent/WO2007138642A1/ja
Priority to US12/292,337 priority patent/US20090185804A1/en
Priority to US13/524,223 priority patent/US8538259B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0232Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms

Definitions

  • the present invention relates to an optical access network system that transmits high-speed optical signals to subscribers, and in particular, receives an optical signal in which a plurality of optical signals having different wavelengths are multiplexed from a broadband optical network, and receives a predetermined wavelength. It is related with the optical access network system which transmits the optical signal of this to a subscriber side apparatus.
  • FIG. 16 is a block diagram of a conventional GE-PON.
  • a center station 2 connected to the Internet or a wide area Ethernet 1 and a user 3 are connected to optical transmission lines 5, 6, 6, 6, ...
  • optical line terminal which is the center station 2 has a 100/1000 BASE-T or 1000 BASE-SX / LK interface.
  • ONU etwork Unit 3a and a personal computer 3b which is a user terminal connected to the ONU are arranged.
  • the distance (access section distance) between the carrier's center station 2 and the users 3, 3, 3, It is about 20 km long, uses a wavelength of 1490 nm as the downstream optical signal, uses a wavelength of 13 10 nm as the upstream optical signal, and communicates in both directions simultaneously at lGbps speed.
  • the center station 2 receives users 3 and 3 received from the Internet or wide area Ethernet 1.
  • Up to 32 downstream Ethernet frames are branched and sent to optical transmission paths 6, 6, 6,.
  • the 3, 3, 3, ⁇ device 3a extracts the packet addressed to itself and inputs it to the personal computer 3b.
  • each personal computer 3b of each user 3, 3, 3, ... is converted into an optical signal by the ONU 3a.
  • Figure 17 is a block diagram of a conventional WDM-PON.
  • the distance between the carrier and the user is about 20 km at maximum, and communication is performed by multiplexing 32 optical signals with different wavelengths.
  • the wavelengths ⁇ 1 to ⁇ 32 of the optical signals used for downlink and uplink communication are the same, and downlink and uplink communication are performed alternately (ping-pong transmission).
  • the transmitter ( ⁇ ) at the telecommunications carrier's relay station multiplexes 32 optical signals ⁇ 1 to 32, which are modulated with data addressed to each subscriber, with an optical multiplexer (MUX) 3a to multiplex an optical circulator. Send to transmission line 7 via 3b.
  • MUX optical multiplexer
  • an optical multiplexing / demultiplexing filter (MUX / D MUX) 8 receives a wavelength division multiplexed optical signal (WDM optical signal) from the transmission line, it separates the optical signal ⁇ 1 to 32 for each wavelength, and at the subscriber side equipment. Input to certain ONU devices 9-9.
  • WDM optical signal wavelength division multiplexed optical signal
  • the PC of the subscriber side device inputs the transmission data to the ONU devices 9 to 9, and
  • Devices 9 to 9 modulate and transmit optical signals of wavelengths ⁇ 1 to 32 respectively,
  • ONU 8 is an ONU device 9-9 power that combines output optical signals of different wavelengths and sends them to transmission line 7.
  • the optical circulator 3b installed at the telecommunications carrier's relay station receives the received optical signal.
  • the signal is input to the demultiplexing filter (DMUX) 3c of the transmission unit (Rx), and the demultiplexing filter 3c separates and outputs the optical signals ⁇ 1 to 32 for each wavelength.
  • DMUX demultiplexing filter
  • WDM-PON it is possible to assign one wavelength to one person, and it is possible to secure physical confidentiality on the ONU side.
  • WDM optical signals are used, the number of users that can be used in one system is limited to several tens due to the limitation of the number of wavelength multiplexing, and a huge amount of light is required to construct a WDM-PON system for general homes. Fiber cores will be required, which will rebound to the cost of optical fiber facilities.
  • WDM optical signals on the ONU side it is necessary to manage the signal wavelength of each ONU, which increases the cost of the ONU terminal.
  • WDM-PON uses power ping-pong transmission that can secure a sufficient bandwidth, resulting in wasted bandwidth.
  • the present invention was conceived in view of the above problems, and an object thereof is to provide an optical access network system capable of extending the bandwidth and the number of subscribers.
  • Another object of the present invention is to provide an optical access network system to which long-distance transmission and tree-like or star-like network topologies can be applied so that it can be widely applied from access to the metro area.
  • Another object of the present invention is to provide an optical access network system in consideration of physical secrecy that can be used with peace of mind by corporate users.
  • Another object of the present invention is to provide an optical access network system capable of realizing low cost by increasing the number of users per system.
  • Patent Document 1 International Publication Number W095 / 19689 (Special Table 9-510053)
  • a wavelength-multiplexed optical signal (WDM optical signal) is received from an optical network at a relay station, and an optical signal having a predetermined wavelength is transmitted from the relay station to a subscriber side device.
  • An optical access network system wherein the relay station demultiplexes a plurality of optical signals having a fixed wavelength interval as a group from the WDM optical signal, and the demultiplexed optical signals of the group described above.
  • Optical branching means for branching into a plurality of parts, and optical switching means for transmitting the optical signals of the branched group to a predetermined subscriber side device.
  • the optical switching means may be composed of a plurality of optical semiconductor amplifiers having a switching function for turning on / off the connection between the input port and the output port.
  • the optical signals of the group are generated by multiplexing optical signals to be transmitted to each subscriber side device with a temporal shift, and the on / off operations of a plurality of optical semiconductor amplifiers of the optical switching means are temporally performed. By shifting, a predetermined optical signal is input to a predetermined subscriber apparatus.
  • the wavelength-multiplexed optical signal of the group is composed of an optical signal for transmitting subscriber data and a control optical signal having a wavelength different from that of the optical signal, and the relay station is configured to transmit the control optical signal for each group. And a control circuit for switching a high-speed switching element constituting the optical switching means using the demultiplexed control optical signal.
  • the subscriber side device separates the optical signal of each wavelength from the input wavelength division multiplexed optical signal, respectively.
  • the subscriber-side device may use a wavelength selection filter that separates the optical signal of each wavelength from the input wavelength-multiplexed optical signal, and decrypts the signal encrypted on the transmission side using the separated optical signal.
  • a decoding circuit for inputting to the subscriber terminal is provided.
  • a second aspect of the present invention is an optical access network system in which a downlink transmission path and an uplink transmission path are separated.
  • the relay station when the control optical signal is phase-modulated, an optical modulation unit that modulates the intensity of the control optical signal with data transmitted from the subscriber side device and outputs the modulated optical signal, and the optical modulation of each group
  • relay station Includes a transmission data multiplexing unit that demodulates transmission data input as optical signals from a plurality of subscriber-side devices and multiplexes the plurality of transmission data, and the optical modulation unit uses the multiplexed transmission data to transmit the data.
  • the intensity of the control optical signal is modulated.
  • a third aspect of the present invention is an optical access network system that performs bi-directional transmission over a single optical fiber transmission line, and each subscriber-side device transmits an optical signal having a wavelength different from the wavelength of the downstream optical signal as transmission data.
  • Each of the optical transmitters that modulate and output the optical signals input from the transmitters of the respective subscriber side devices by temporally shifting and synthesizing the optical signals of one wavelength.
  • a combining unit that combines the optical signals input from the combining units of a plurality of groups, and an optical signal output from the combining unit on the transmission side in the same transmission path as the downlink transmission path
  • a transmission optical power bra is provided, and transmission path force is transmitted on the transmission side.
  • FIG. 1 is an overall configuration diagram of a communication network system according to the present invention.
  • FIG. 2 is an explanatory diagram of wavelengths of data and control optical signals assigned to groups.
  • FIG. 3 is an explanatory diagram of a situation where wavelength multiplexing is performed for each group and time division multiplexing is performed.
  • FIG. 4 is an overall configuration diagram of an optical communication network system including the optical access network system according to the first embodiment.
  • FIG. 5 is a first block diagram of a receiver in a subscriber side device.
  • FIG. 6 is a second block diagram of a receiver in the subscriber side device.
  • FIG. 7 is an explanatory diagram of the path of control signal light of wavelength ⁇ a.
  • FIG. 8 is a configuration diagram of a reception / multiplexing unit.
  • FIG. 9 is a block diagram of an optical line terminal (OLT) that is a transmission side device.
  • OLT optical line terminal
  • FIG. 10 is a configuration diagram of a signal generation unit for encryption.
  • FIG. 11 is an explanatory diagram of a signal switching format.
  • FIG. 12 is an explanatory diagram of signal switching timing.
  • FIG. 13 is an explanatory diagram of signal switching timing for each group.
  • FIG. 14 is an overall configuration diagram of an optical communication network system including an optical access network system according to a second embodiment.
  • FIG. 15 is an explanatory diagram of a signal switching format.
  • FIG. 16 is a configuration diagram of a conventional GE-PON.
  • FIG. 17 is a configuration diagram of a conventional WDM-PON.
  • FIG. 1 shows the overall configuration of the communication network system according to the present invention.
  • the sender SDS where providers, video distribution centers, telephone exchanges, mobile communication companies, etc. exist, accesses optically via the broadband optical communication network BPN. It is connected to the network system PACN.
  • the relay station RST In the optical access network system PACN, the relay station RST is connected to the user-side USS via an optical transmission line.
  • the relay station RST is divided into first and second relay stations RST1 and RST2, and the optical access network system is constructed in a tree shape.
  • the number of users that can be accommodated in one relay station RST is k 'N, and k
  • the second relay stations RST 2-l to RST2-8 are provided for each group, and can be expanded in groups.
  • the relay station RST can handle WDM optical signals (wavelength multiplexed optical signals) of up to 40 waves
  • the transmitting side SDS can transmit 4 waves of data transmitters 11 to 11 per group and 1 wave of control transmission.
  • Equipped with 11 transmitters assigns 5 waves (4 for data and 1 for control) to one group.
  • the wavelength interval of the five waves assigned to each group is an interval at which four wave mixing (FWM) does not occur. That is, 32 continuous waves of 40 waves are used for data, and 8 continuous waves are used for control, and 4 waves (wavelength: ⁇ 1, ⁇ 9, ⁇ ⁇ , ⁇ 25) is selected for group 1 data, and 1 wave (wavelength: ⁇ a) is selected from 8 consecutive waves for group 1 control. Similarly, optical signals for data and control of other groups are allocated. As a result, the relationship between the wavelengths of the groups 1 to 8 and the data and control optical signals assigned to the groups is as shown in FIG.
  • the transmitters 11 to 11 of group 1 have four optical signals for data (wavelengths: ⁇ ⁇ , ⁇ 9, ⁇ ⁇ , ⁇ 25 ) Are shifted in time with the user data D1-1 to D1-16 of group 1, and the optical multiplexer 12 wavelength-multiplexes the modulated optical signal and sends it to the optical transmission line 21.
  • the entire optical signal is 32 wavelength-multiplexed and time-division multiplexed and transmitted to the relay station RST via the optical transmission line 21.
  • the control optical signals of each group are also wavelength-multiplexed and time-division multiplexed and transmitted to the relay station RST via the optical transmission line 21 simultaneously with the data optical signal.
  • time division multiplexing in this specification means that multiplexing is performed with a time shift, and the destination of user data assigned to each time slot is not fixed but dynamically changes.
  • the control data specifies which user the data in each time slot is addressed to.
  • the periodic multiplexing / demultiplexing filter 31 of the first relay station RST1 demultiplexes the optical data signal and control optical signal of each group from the wavelength-multiplexed optical signal, and multiplexes the optical signal of each group.
  • the second relay stations RST2-l to RST2-8 have a branch coupler 41 and a high-speed optical switch unit 42 for each group.
  • the branch coupler 41 of group G1 splits the input 4-wavelength WDM optical signal of group 1 (wavelength: ⁇ ⁇ , ⁇ 9, ⁇ ), ⁇ 25) into 16 branches and inputs them to the 16 input ports of the high-speed switch unit 42 To do.
  • High-speed switch unit 42 has 16 input ports.
  • each optical switch that turn on / off the connection between the port and 16 output ports, and based on the control data sent in the control optical signal, each optical switch is shifted in time, In other words, on / off control is performed sequentially in a time-slotted time slot period.
  • the WDM optical signals (D1-1 to D1-16) of each user assigned to each time slot are transmitted to the optical transmission lines 51 to 51.
  • Each of the subscriber side devices 61-61 is time-shared.
  • 4-wave WDM optical signal power Decoding the desired signal further improves confidentiality It is possible. If confidentiality is not required or if it is desired to provide lower-cost services, one additional wave of four WDM optical signals distributed to subscriber-side devices 61-61 is used.
  • the uplink data is transmitted by intensity-modulating the control optical signal with the transmission data. That is, the subscriber-side devices 61 to 61 use the signal of 1.3 ⁇ m band and the second relay station RST
  • Up to 2 and the second relay station RST2 receives uplinks from each of the subscriber side devices 61-61.
  • Signals are multiplexed to generate one high-speed data signal, and an optical modulator (not shown) intensity-modulates the control optical signal with the data, and the multiplexing unit converts the optical modulation signal of each group.
  • the signal is multiplexed and transmitted to the transmission side via a transmission line (not shown) different from the downlink transmission line. With this configuration, the subscriber side device can be created at low cost.
  • a subscriber-side device is equipped with an optical modulation unit that modulates optical signals of a wavelength different from that of the transmission side with transmission data.
  • the optical modulation signal is sent from the equipment to the second relay station RST2, and the optical modulation signals sent to the 16th subscriber side equipment for each group are time-division multiplexed to each group, and each group is processed.
  • the time-division multiplexed optical signal is wavelength-multiplexed and returned as a WDM optical signal.
  • FIG 4 shows the overall configuration of the optical communication network system equipped with the optical access network system of the first embodiment.
  • the transmitting side SDS is connected to the optical access network system PACN via the broadband optical communication network BPN.
  • the relay station RST is connected to the user-side USS via an optical transmission line.
  • the maximum distance between the sender SDS and the relay station RST is 300 km, the maximum distance between the first and second relay stations RST1 and 2 is 20 km, and the distance between the relay station RST and the user side USS is less than a few km.
  • the relay station RST is divided into the first and second relay stations RST1 and RST2, and the optical access network PACN is constructed in a tree structure up to the first relay station power subscriber side equipment.
  • the number of users that can be accommodated in one relay station RST is k'N, and each user is divided into a maximum of N groups.
  • the optical access network system is not limited to a tree shape but can be constructed in a star shape.
  • the transmitting side SDS has 4 data transmitters 11 to 11, 11 to 11, and 1 wave per group.
  • the wavelength interval of the five waves assigned to each group is an interval at which four-wave mixing does not occur, for example, a 400 GHz interval, and the relationship between the wavelengths of groups 1 to 8 and the data and control optical signals assigned to the group is shown in FIG. As shown.
  • the downstream optical signal uses 40 C-band waves of 1.5 ⁇ m.
  • Group 1 transmitters 11 to 11 have four optical data signals (wavelengths: ⁇ ⁇ , ⁇ 9, ⁇ ⁇ , 25
  • the group 11 user data D1-1 to D1-16 are shifted in time, that is, time-divisionally modulated, and the transmitter 11 controls the control optical signal (wavelength a) for each group 1 user.
  • the time is shifted according to the data, that is, time-division modulation is performed, and the multiplexer 12
  • the modulation rate is lOGbps.
  • group 8 transmitters 11-11 have four
  • Optical signal for data (wavelength: ⁇ 8, ⁇ 16, ⁇ 24, ⁇ 32) is modulated in time division by group 8 user data D8-1 to D8-16, and transmitter 11 is used for control light.
  • Glue the signal (wavelength ⁇ h)
  • the multiplexer 12 transmits the modulated optical signal.
  • Wavelength multiplex the number Multiplexers 12 to 12 are stacked in multiple layers of commercially available dielectric multilayer films.
  • the arrayed waveguide functions as a multiplexer / demultiplexer, disperses the WDM optical signal for each wavelength, outputs it to each of the plurality of waveguides, and outputs a plurality of waveguide forces.
  • Wavelength groups can be arbitrarily configured. For example, wavelength ⁇ 1-8 is allocated for each service by provider, wavelength 9-16 for voice (telephone), wavelength ⁇ 17-25 for video (video), wavelength 26-3 2 for mopile and others. Can be grouped. By doing this, it is possible to upgrade the existing FTTH system flexibly.
  • the multiplexer 13 multiplexes the WDM optical signals output from each of the multiplexers 12 to 12 (see Fig. 1 and Fig. 3).
  • the optical amplifier 14 Amplified by the optical amplifier 14 and sent to one optical transmission line 21. Since the modulation rate of each optical signal is 10 Gbps, and the total wavelength is 40 wavelengths, the downlink transmission rate is 10 Gbps ⁇ 40.
  • a periodic multiplexing / demultiplexing filter such as a cyclic AWG is used. By devising the waveguide, the cyclic AWG multiplexes multiple sets of WDM optical signals for each predetermined wavelength input from multiple input ports P1 to P8 and outputs them from a single output port. If a periodic multiplexing / demultiplexing filter is used, the number of ports can be reduced, so that low cost can be achieved and the force can be extended in groups.
  • the optical amplifier 32 of the first repeater station RST1 of the optical access network system PACN amplifies the WDM optical signal input via the optical transmission line 21, and the periodic multiplexing / demultiplexing filter 31 includes the WDM optical signal power of each group.
  • the data / control optical signals are combined and sent to the optical transmission lines 23 to 23 from the ports P1 to P8 corresponding to the groups.
  • the periodic multiplexing / demultiplexing filter 31 is
  • the periodic multiplexing / demultiplexing filter 31 sends the WDM optical signal of group 1 from the port P1 to the optical transmission line 23, and similarly, the groups 2 to
  • Eight WDM optical signals are output from ports P2 to P8 to optical transmission lines 23 to 23, respectively.
  • the data / control optical signals of each group are transmitted through the optical transmission lines 23 to 23.
  • the group 1 fixed demultiplexing filter 43 is transmitted from the optical transmission line 23.
  • the high-speed switch unit 42 includes 16 switches SW ⁇ SW16 that turn on / off the connection between the 16 input ports and the 16 output ports, and the switch control circuit 45 is sent as a control optical signal. Based on the incoming control data, the switch is turned on / off by shifting the time (in the time slot period).
  • Each of the 16 switches SW1 to SW16 has Tr and Tf characteristics (rising and falling characteristics) of several ns or less.
  • an optical semiconductor amplifier SOA Silicon 0 ptical Amplifier
  • SOA semiconductor 0 ptical Amplifier
  • the switch control circuit 45 controls the on / off of each optical semiconductor amplifier SOA based on the control data, and thereby the four WDM optical signals assigned to the predetermined time slot are transmitted to the optical power blur 47 and the optical transmission.
  • the switch to which the subscriber unit 61 is connected at a certain time slot time T1.
  • Switch element SW1 on, turn all others off, turn on switch element SW2 to which subscriber side device 61 is connected at the next time slot time T2, and turn everything else on.
  • the same on / off control is performed, and the four WDM optical signals assigned to the predetermined time slot are transmitted to the subscriber side device of the predetermined user.
  • Multicast (broadcast delivery) is also possible if the switch elements are turned on simultaneously.
  • ONU Optical Network Unit 61 which is a subscriber side device
  • 1 ⁇ 61 are light power plastic 62 and receive 16
  • a device 63 and a transmitter 64 are provided.
  • the receiver 63 decodes the wavelength-multiplexed four-wave WDM optical signal power packet and inputs it to the user's personal computer (not shown).
  • the receiver 63 can increase the capacity by allocating four wavelength-multiplexed WDM optical signals to users one by one.
  • the optical switching elements are turned on and off in time series, and the four WDM optical signals remain as they are switched to the specified subscriber side equipment. Since it can be blocked by an optical switching element, it can be made much more confidential.
  • the high-speed optical switching elements SW1 to SW16 a type using an optical semiconductor amplifier (SOA), a compound semiconductor such as gallium arsenide (GaAs) used in a laser diode, etc. is used.
  • SOA optical semiconductor amplifier
  • GaAs gallium arsenide
  • V, switch, PLZT Candidates include electro-optic effect type optical switches using thin films.
  • SOA since SOA also functions as an optical amplifier, it is possible to compensate for the optical distribution loss in k-branching force bra 41, and from the second relay station RST2 further to the subscriber side device There is an effect such as extending the transmission distance.
  • the force using the periodic multiplexing / demultiplexing filter 31 in the configuration of FIG. 4 is effective when an optical semiconductor amplifier (SOA) is used as the switches SW1 to SW16.
  • An optical semiconductor amplifier (SOA) is used to amplify WDM optical signals at once, or to amplify four adjacent WDM optical signals (for example, WDM optical signals at 100 GHz intervals). )
  • a third-order harmonic distortion component is generated under the influence of the nonlinear optical effect, so that the transmission characteristics are significantly deteriorated.
  • the periodic multiplexing / demultiplexing filter 31 is effective, and the wavelength interval for each group in FIG. 2 can be sufficiently separated from 800 GHz, which has the effect of suppressing FWM.
  • FIG. 5 is a first block diagram of the receiver in the group 1 subscriber side device, which is an example in which a desired signal of four waves of WDM optical signal is decoded and input to the user's personal computer.
  • the configuration of the receivers in other groups is the same as in Fig. 5.
  • the fixed wavelength selection filter 63a is group 1
  • WDM optical signal (wavelength: ⁇ ⁇ , ⁇ 9, ⁇ 17, ⁇ 25) is selected and input to the receiving unit 63b, and the receiving unit 63b transmits the signal light with the wavelength ⁇ 1 Demodulated data
  • the fixed wavelength selection filter 63a outputs a fixed wavelength selection filter 63a force WD
  • Signal light (wavelength: ⁇ 9, ⁇ ⁇ , ⁇ 25) is selected and input to the receiver 63b.
  • the receiver 63b demodulates the data transmitted with the signal light of the wavelength ⁇ 9 and sends it to the decoding circuit 63c.
  • the fixed wavelength selection filter 63a outputs from the fixed wavelength selection filter 63a.
  • the data is demodulated and input to the decoding circuit 63c.
  • the data is demodulated and input to the decoding circuit 63c.
  • the decoding circuit 63 c performs a decoding process using the four-wave data demodulated by each demodulation circuit, decodes the original data, and inputs it to the personal computer 71. That is, the decoding circuit 63c generates a packet signal for each wavelength, stores it in a built-in buffer, and decodes one desired packet using the four packets when all four packets are collected. And input to computer 71. If it is not encrypted, packets sent in 4 waves are input to the PC 71 in order.
  • FIG. 6 is a second block diagram of the receiver in the group 1 subscriber side device, and shows a configuration example in the case of further allocating four waves of the WDM optical signal to users.
  • This configuration example can be used for “users who do not need such a high-speed line” and “security is at a general level”, and can increase the number of accommodated users by a factor of four.
  • Fixed wavelength selection filter 63a is a WDM optical signal of group 1 (wavelength: ⁇ ⁇ , ⁇ 9, ⁇ 17, ⁇ 2
  • the packet transmitted by the signal light is demodulated and input to the first user terminal 71.
  • the fixed wavelength selection filter 63a is a WDM light that outputs a fixed wavelength selection filter 63a.
  • the receiving unit 63b demodulates the packet transmitted with the signal light having the wavelength ⁇ 9 to demodulate the second user terminal.
  • the fixed wavelength selection filter 63a is a fixed wavelength selection filter 63a.
  • the received packet is demodulated and input to the third user terminal 71, and the receiving unit 63b
  • the packet transmitted by the signal light is demodulated and input to the fourth user terminal 71.
  • the power of loop 1 downlink transmission The second relay station RST2-2 to R ST2-8 operates in the same way for the other groups.
  • the data transmission rate of one wave is lOGbps, and the data transmission rate becomes 40Gbps by wavelength multiplexing of four waves.
  • high-speed transmission is possible compared to the conventional transmission speed of 30 to 100 Mbps.
  • a soft system can be constructed.
  • the control optical signal branched by the two-branching force bra 44 is used. That is, a part of the control signal light is input to the switch control circuit 45, but the remaining light is used as it is and reused as a return signal wavelength of data transmitted from the subscriber side apparatus. For this reason, when modulating the optical signal of wavelength ⁇ a with the control data, the transmitting SDS does not perform intensity modulation but performs phase modulation that does not change the optical power after modulation. Superimposed on this control optical signal.
  • the purpose of the control data is to specify the switching destination and to specify the switching timing. Since it is sufficient to have several tens of Mbps, there is no problem with phase modulation.
  • Each of the transmitters 64 of the subscriber side devices 61 to 61 transmits an optical signal of 1.3 m band up to lGbps.
  • the optical modulation signal is modulated by the transmission data and the optical modulation signal is transmitted to the optical transmission line 51.
  • the reason for transmitting one-way bidirectionally is to reduce the cost of the subscriber side equipment and the transmission cost to the second relay station RS2 of the subscriber side equipment power.
  • 1.3 m band signals are used for transmission as used in the GE-PON system.
  • the second relay station RST2-1's light power plastic 47 is the subscriber's equipment 61 power input 1.3 m band
  • Each optical signal is demultiplexed and input to the receiving / multiplexing unit 48.
  • the receiver / multiplexer 48 uses the 1.3 m-band optical signal for the subscriber side equipment 61
  • the transmission data of the side devices 61-61 are multiplexed in a time-shifted manner to provide lOGbps high-speed data transmission.
  • the optical amplifier 46 amplifies the control optical signal having the wavelength ⁇ a branched by the two-branching force bra 44 in the saturation region, and inputs it to the optical modulator 49 as a constant optical signal.
  • the optical modulation unit 49 receives the control optical signal and inputs it to the optical transmission line 24 after performing intensity modulation with high-speed data of 10 Gbps that is input to the receiving / multiplexing unit 48.
  • Other groups of light modulators are also used to control wavelengths b to h
  • the optical signal is modulated by intensity modulation with high-speed data of lOGbps to make an optical transmission line 24
  • First repeater RST1 multiplexer 33 is an optical transmission line 24
  • the amplifier 34 optically amplifies the combined WDM optical signal, sends it to the upstream transmission line 22 different from the downstream transmission line 21, and transmits it to the transmitting side SDS.
  • the optical amplifier 15 amplifies the WDM optical signal, and the demultiplexing filter 16 demultiplexes the optical signal for each wavelength ⁇ a to h, and receives the receiver 17
  • Fig. 7 shows the path of the control optical signal of wavelength ⁇ a with a dotted line in the optical communication network system of Fig. 4.
  • FIG. 8 is a block diagram of the reception / multiplexing unit 48, and the same parts as those in FIG. 4 are denoted by the same reference numerals. .
  • the optical signal receivers 48a to 48a are subscriber-side devices 61 demultiplexed by the optical power bras 47 to 47.
  • the received data is input to the serializer 48b.
  • the serializer 48b generates lOGbps time-division multiplexed data by shifting the timing of lGbps upstream transmission data and shifting it.
  • the amplifier 48c amplifies the time division multiplexed data and inputs it to the optical modulator 49.
  • the optical modulator 49 intensity-modulates the control optical signal with the time division multiplexed data.
  • Fig. 9 is a block diagram of an optical line terminal (OLT), which is a transmission side device.
  • OLT optical line terminal
  • the same parts as those in Fig. 4 are given the same reference numerals.
  • the transmitter 11 shows the configuration of group 1 in detail, and the other groups 2 to 8 have the same configuration.
  • the optical signal generators 11a to l la transmit data of group 1 respectively.
  • a signal light is generated.
  • 1 4 modulates the intensity of the data signal light using the transmission data output from the transmission signal generator 11c, and inputs the optical modulation signal to the multiplexer 12.
  • control signal light is modulated by the control data (switching control signal) output from the generator 11c, and the optical modulation signal is input to the multiplexer 12.
  • control data switching control signal
  • optical modulation signal is input to the multiplexer 12.
  • the transmission signal generator 11c multiplexes the data to be transmitted to the 16 users of group 1 and the control data by shifting each time slot in terms of time (time division multiplexing).
  • the transmission signal generator 11c Input to the transmission signal generator 11c as appropriate from the IDER center 81, the video distribution center 82, the telephone exchange 83, the mobile communication company 84, and the like.
  • the source of the data sent to each user may be the same or different. If the signal generation unit lie uses four waves for one user without encryption, the packet to be sent to the first user is divided into units of four bits, and the four bits are divided into optical modulation units l ib ⁇ l lb to tie
  • the signal generation unit 11c divides the packet to be sent to the second user into 4-bit units, and sends the 4 bits to the optical modulation units l ib to l lb.
  • the signal generator 11c identifies the destination of transmission data for each time slot.
  • the packet and control data are time-division multiplexed and wavelength multiplexed and transmitted to the user side.
  • the signal generation unit 11c transmits data (packet) after encryption
  • the signal generation unit 11c performs encryption processing using the packet sent to the first user. Packets are created, and each packet is 1 bit at a time, totaling 4 bits at a time.
  • the signal generator l ie performs encryption processing using the packet to be sent to the second user to create 4 packets, and each packet is 1 bit at a time, and the total of 4 bits is added to the optical modulator l ib to l lb. Enter the time slot period, and then address each user in the same way
  • Control data for specifying the destination of the transmission data is generated for each optical slot and transmitted to the optical modulator l ib
  • the encrypted packet addressed to each user and the control data are time division multiplexed and wavelength multiplexed and transmitted to the user side.
  • FIG. 10 is a configuration diagram of the signal generation unit 11c when performing encryption.
  • the selector 11c is a configuration diagram of the signal generation unit 11c when performing encryption.
  • the encryption circuit 11c uses the input packet.
  • the data generator 11c identifies the destination from the input packet and generates control data (switch control signal).
  • the signal generator 11c uses one wave for one user, the first to fourth users 1-bit optical modulation unit lib ⁇ llb for each packet sent to the first time slot period
  • the signal generating unit 11c inputs the packets to be sent to the fifth to eighth users to the optical modulation units lib to llb by 1 bit respectively for the second time slot period.
  • Packets are sequentially input to the light modulation units lib to llb one bit at a time.
  • Signal generation
  • the unit 11c generates control data specifying the transmission data destination (subscriber side device) for each time slot and inputs it to the optical modulation unit lib. As described above, packets addressed to each user and control data
  • the data is time division multiplexed and wavelength multiplexed and transmitted to the user side.
  • the source of packets sent to each user may be the same or different.
  • the demultiplexing filter 16 demultiplexes the optical signal from the WDM optical signal input from the upstream transmission path 22 for each wavelength ⁇ a to h, and inputs the demultiplexed signal to the receivers 17 to 17.
  • 17 is Gnolepe 1 ⁇
  • Each deserializer 18-18 has the input serial data (16 users
  • Time division multiplexed data is converted into parallel data, and the transmission data of each user is input to the transmitters 19 to 19 corresponding to the destination center and transmitted to the centers 81 to 84.
  • FIG. 11 is an explanatory diagram of the signal switching format, which shows group 1 and is for the case of 1 group 16 users Z4 wavelength.
  • Data for the first user is transmitted in the right time slot T1
  • data for the second user is transmitted in the time slot T2
  • data for the third user is transmitted in the time slot T3, ... ..
  • Data addressed to the 15th user is transmitted in time slot T15
  • data addressed to the 16th user is transmitted in time slot T16.
  • the switching control signal is transmitted earlier than the data, for example, one time slot before, and the destination of data after the next time slot is specified by the switching signal.
  • the data time width of one wave in each time slot is 1 to several tens of microseconds sec). This is because the packet length is from lk bytes to several tens of kilobytes, and the data transmission speed of one wave is lOGbps. As a result, the maximum transmission interval for each user is approximately 16 to 1000 microseconds sec). That is, each Thailand The slot time width and transmission interval ⁇ are variable.
  • FIG. 12 is an explanatory diagram of signal switching timing and shows the group 1. Transmit data destined for the first user 1-1 to time slot T1, transmit data destined for! 8, user 1-8 to time slot ⁇ 2, and so on. If so, a switching control signal is transmitted, for example, one time slot before the data, and the destination of data of the next time slot is specified by the switching signal.
  • the switch control circuit 45 (FIG. 4) determines the optical switch to be turned on / off for the current time slot based on the switching signal received one time slot before, and performs on / off control to send the optical signal to a predetermined user. Transmit to.
  • Figure 13 is an explanatory diagram of signal switching timing for each group.
  • time slot T1 data for group 1 first user 1-1 and data for group 2 eighth user 2-8 are transmitted.
  • ⁇ 2 transmit data for Group 1 2nd user 1-2, group 2 2nd user 2-2 and group 8 13th user 8-13, and so on. It is an example.
  • FIG. 14 is an overall configuration diagram of an optical communication network system including the optical access network system according to the second embodiment.
  • the downlink transmission path and the upstream transmission path are shared, and 1.5 band C band 40 is used for downstream transmission. Wavelength is used, and 8 wavelengths of 1.5 L band are used for upstream transmission.
  • CL power bras 20 and 35 are provided on the transmission side and relay station side of the common transmission line 25, and (2) the transmitter 65 of the subscriber side device is 1.5 band L
  • the signal light of the band is intensity-modulated with transmission data and transmitted to the second relay station RST2-1.
  • the serializer 50 is provided for each group in the second relay station RST2-1 to RST2-8, and each subscriber It is input from the side device, but is output as an optical signal of one wavelength by synthesizing the optical signals while shifting them in time.
  • Both CL force bras 20 and 35 are optical wavelength band multiplexing / demultiplexing filters or optical circuit selectors, which select and send C-band optical signals in the downstream direction and L-band optical signals in the upstream direction. Select and send.
  • the CL force bra 20 is a C-band combined by the periodic multiplexing / demultiplexing filter 13.
  • the 40-wave WDM optical signal is sent to the transmission line 25, and the CL coupler 35 selects the C-band 40-wave WDM optical signal input from the transmission line and passes through the optical amplifier 32 to perform periodic multiplexing / demultiplexing. Enter in filter 3 1. Thereafter, signal light of a predetermined wavelength is transmitted to the subscriber side devices of each group under the same control as in the first embodiment of FIG.
  • the transmitter 65 of the subscriber side devices 61 to 61 of group 1 is 1.5.
  • IX m-band L-band signal light of specified wavelength ⁇ is intensity-modulated with transmission data, and the second relay station RST 1
  • the second relay station RST2-1's light power plastic 47 is a subscriber side device 61-61 power input
  • the serializer 50 receives each optical signal temporally even though the power of each of the subscriber side devices 61 to 61 is also input.
  • the high-speed switch section 50a has the same configuration as the high-speed switch section 42, and has 16 optical switches SW to SW16 'that connect / disconnect between the input port and the output port. Turn on / off the optical switch by shifting the time. As a result, each subscriber unit 61
  • An optical signal with up to 61 power is sent out with a time shift (time division multiplexing).
  • the unit 50b combines the optical signals sent from the high-speed switch unit 50a and sends them to the transmission line 24 as an optical signal having a transmission rate of 10 Gbps and a wavelength ⁇ . Similarly, other groups have a transmission rate of 10Gbps,
  • An optical signal having a wavelength of ⁇ ⁇ is transmitted to transmission lines 24-24.
  • the multiplexer 33 multiplexes optical signals of wavelengths ⁇ to ⁇ input from the optical transmission lines 24 to 24, and
  • the amplifier 34 optically amplifies the combined WDM optical signal and inputs it to the C-L force bra 35.
  • the C_L force bra 35 selects 8 L-band WDM optical signals in the downstream direction and sends them to the transmission line 25.
  • the CL coupler 20 on the transmission side selects the L-band 8-wavelength WDM optical signal in the downstream direction and inputs it to the demultiplexing filter 16 via the optical amplifier 15.
  • the switch control circuit 45 generates a switch signal based on the control data included in the downstream control optical signal.
  • Fig. 15 is an explanatory diagram of the signal switching format, which shows group 1, where 1 group has 16 users and 4 wavelengths.
  • the subscriber side device receives the data and transmits the upstream transmission data after 14 time slots. If so, the sender knows when the subscriber equipment receives data! Therefore, the time slot in which the subscriber side device transmits data is known to the transmitting side. Therefore, the transmission side specifies the timing (time slot) at which the subscriber side device transmits data using the control data.
  • the packet receiving user is specified by the control data C1
  • the packet transmission source user is specified by the control data C2. That is, in FIG. 15, control data C1 transmits data to the first user in time slot T1, transmits data to the second user in time slot T2, and transmits to the third user in time slot T3. It is shown that data is transmitted, .... data is transmitted to the 15th user in time slot T15, and data is transmitted to the 16th user in time slot T16. Also, the control data C2 transmits data from the first user in the time slot T15, transmits data from the second user to V in the time slot T16, and transmits the data from the second user to the time slot T1. It is shown to send data from.
  • the switch control circuit 45 determines the optical switch of the switch unit 42 to be turned on / off for the current time slot and performs on / off control. The optical signal is transmitted to a predetermined user. Also, the switch control circuit 45 determines the optical switch of the switch unit 50 to be turned on / off in the current time slot based on the control data C2 received one time slot before, and controls the optical signal to be turned on / off. Output to multiplexer 50b.
  • bidirectional transmission can be performed with a single optical fiber transmission line.
  • a large number of users for example, 32 users
  • data to the users of the group is transmitted by wavelength multiplexing and time division multiplexing, so that the cost per bit is suppressed. It is possible to construct a to-end optical access network system.
  • the received optical signal is separated for each wavelength and each wavelength light is added.
  • the number of accommodated users can be further increased, and the cost per bit can be increased. Can be suppressed.
  • an optical active element (high-speed optical switching element) is used in a relay station, and the on / off timing of the switching element is shifted, whereby data addressed to each user time-division-multiplexed is transferred. Since the data is transmitted only to the subscriber side device of the user, it is possible to construct an optical access system that ensures physical secrecy.
  • an optical signal having a plurality of wavelengths is separated from an input optical signal, and a signal encrypted on the transmission side using the separated plurality of optical signals. Therefore, it is possible to construct an optical access system that secures more and more confidentiality.
  • SOA semiconductor optical amplifier
  • the optical access network system can have a tree-like or star-like network topology configuration.
  • the present invention it is possible to expand the number of accommodated users in units of groups while reducing the number of ports of the multiplexer / demultiplexer by using the periodic multiplexing / demultiplexing filter, thereby realizing a reduction in initial introduction cost.
  • the switching element since the switching element is turned on / off using the control optical signal transmitted together with the data optical signal, the data addressed to each user that is time-division multiplexed is It can be reliably transmitted only to the user's subscriber side device.
  • the control optical signal is used as a return optical signal and the optical signal is modulated with uplink data at the relay station, ONU can be realized at low cost.
  • an optical transmitter that modulates an optical signal having a wavelength different from the wavelength of the downstream optical signal with transmission data and outputs the modulated optical signal is provided on the subscriber side device, and a plurality of subscriber side devices are provided for each group.
  • the optical modulation signal input from the optical transmitter is time-divided into optical signals of one wavelength, and the optical signals of each group are combined and transmitted to the transmission side via the same transmission path as the downstream transmission path Therefore, bidirectional transmission can be performed with a single-core optical fiber transmission line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 波長多重及び時分割多重された光信号(WDM光信号)を光ネットワークより中継局で受信し、該中継局より所定波長の光信号を加入者側装置に伝送する光アクセスネットワークシステムにおいて、中継局はWDM光信号より一定波長間隔の複数の光信号を1グループとして複数グループ分波し、各グループの光信号をそれぞれk分岐(kは加入者側装置数)して光スイッチに入力し、該光スイッチを時間的にずらしてオン/オフして分岐された光信号をそれぞれ所定の加入者側装置に入力する。

Description

明 細 書
光アクセスネットワークシステム 技術分野
[0001] 本発明は、加入者まで高速な光信号を伝送する光アクセスネットワークシステムに 係わり、特に、波長の異なる複数の光信号が多重された光信号を広帯域光ネットヮー クより受信し、所定波長の光信号を加入者側装置に伝送する光アクセスネットワーク システムに関する。
背景技術
[0002] 加入者まで電気変換することなぐ光信号のまま伝送する次世代の光アクセスネット ワークシステムにおいて、様々な方式が考案されている。力かるアクセスシステムとし て、(l)ATMフレーム対応の B-PON (Broadband Passive Optical Network)をイーサネ ットフレームに対応させた E- PON (Ethernet PON)、さらに、(2)ギガビットイーサネット に対応した GE- PON (Giga Ethernet PON)、(3)独自規格の G- PONがあり、国際的標 準化作業が進められている。これら PONシステムでは、 ADS(Active Double Star)のよ うにネットワークの途中で電気一光変換を行う能動素子を介せず、パッシブ光部品の みで構成するため、 End to Endの光ネットワークを低コストで実現できる。また、さらな る大容量化のために波長多重分割(WDM : Wavelength Division Multiplex)信号を用 いた WDM-PONも装置コストは高いがビット当たりの単価を下げられるため、導入が 検討されている。尚、イーサネット、 Ethernetは登録商標である。
[0003] 図 16は従来の GE-PONの構成図であり、インターネットあるいは広域イーサネット 1 に接続されたセンター局 2とユーザ 3間が光力ブラ 4を介して光伝送路 5, 6 ,6 ,6,…で
1 2 3 接続されている。センター局 2である光回線終端装置 (OLT: Optical Line Terminal)は 、 100/1000 BASE- Tあるいは 1000 BASE- SX/LKインターフェースを有している。カロ 入者宅 3 , 3 , 3,…には、 10/100 BASEインターフェースの加入者側装置(Optical N
1 2 3
etwork Unit: ONU) 3aと該 ONUに接続されたユーザ端末であるパソコン 3bが配置され ている。
通信事業者のセンター局 2とユーザ 3 , 3 , 3,…間の距離 (アクセス区間距離)は最 大 20km程度であり、下り光信号として波長 1490nmを使用し、上り光信号として波長 13 10nmを使用し、双方向に同時に lGbpsの速度で通信が行われる。
センター局 2は、インターネットあるいは広域イーサネット 1より受信したユーザ 3 , 3
1 2
, 3,…宛てのイーサネットフレームを光信号で光伝送路 5に送出する。光力ブラ 4はこ
3
の下りイーサネットフレームを最大 32分岐して光伝送路 6 ,6 ,6,…に送出し、各ユー
1 2 3
ザ 3, 3, 3,· ··ΟΝυ装置 3aは自分宛のパケットを抽出してパソコン 3bに入力する。ま
1 2 3
た、各ユーザ 3 , 3 , 3,…の各パソコン 3bからの送信データは ONU 3aで光信号に変
1 2 3
換されて光伝送路 6 ,6 ,6,…に送出され、光力ブラ 4で合成されてセンター局 2に送ら
1 2 3
れる。
図 17は従来の WDM-PONの構成図であり、通信事業者とユーザ間距離は最大 20k m程度であり、波長が異なる 32個の光信号を多重して通信が行なわれる。下り及び上 り通信に使用する光信号の波長 λ 1〜 λ 32は同じであり、下り及び上り通信は交互に 行われる(ピンポン伝送)。通信事業者の中継局における送信部 (Τχ)は、各加入者宛 データで変調した 32個の波長が異なる光信号 λ 1〜え 32を光合波器 (MUX) 3aで多 重して光サーキユレータ 3bを介して伝送路 7に送出する。光合分波フィルタ (MUX/D MUX) 8は伝送路から波長多重光信号 (WDM光信号)を受信すれば、これより波長毎 に光信号 λ 1〜え 32を分離して加入者側装置である ONU装置 9〜9 に入力する。
1 32
ONU装置 9 9
1〜 32は光信号を電気信号に変換してパソコン (図示せず)に入力する。 又、加入者側装置のパソコンは送信データを ONU装置 9〜9 に入力し、該 ONU装
1 32
置 9〜9 はそれぞれ波長 λ 1〜え 32の光信号を変調して送出し、光合分波フィルタ
1 32
8は各 ONU装置 9〜9 力 出力された波長の異なる光信号を合成して伝送路 7に送
1 32
出する。通信事業者の中継局に設けられた光サーキユレータ 3bは受信した光信号を 受
信部(Rx)の分波フィルタ(DMUX) 3cに入力し、該分波フィルタ 3cは波長毎に光信号 λ 1〜え 32を分離して出力する。
また、従来技術として ΡΟΝをリング状に双方向に送受可能に接続し、各 ΡΟΝに多数 の端末を接続し、端末間で光通信する光通信網がある (特許文献 1)。この従来技術 の光通信網では、端末間の通信チャネルは波長多重され、波長割り当て部が割り当 てた波長を用いて端末間で光通信を行う。
[0005] PONシステムの場合、安価な光受動素子でネットワークを構成できる力 1加入者あ たり 30〜100Mbps程度の帯域しか取れず 100Mbpsを超えるような高速通信ができな い問題がある。また、 PONシステムでは、ネットワークが光力ブラで分岐する構成であ るため、該光力ブラに接続する全ての加入者側装置に同一信号が配信されてしまう。 そのため、信号処理次第では容易に通信内容を解読される危険が高ぐ物理的な秘 匿性が確保されず、ある意味、公衆無線 LANと同等であるといえる。以上より、従来 の PONシステムは、金融向けや企業用途としてセキュリティが不足しているという欠点 がある。
一方、 WDM-PONでは一人に一波長を割り当てることが可能で、 ONU側における 物理的な秘匿性が確保可能である。しかし、 WDM光信号を利用するため、波長多重 数の制限から 1システムで利用可能なユーザ数が数十程度に限定されてしまい、一 般家庭まで WDM-PONシステムを構築するには莫大な光ファイバの芯線が必要とな り、光ファイバ施設コストに跳ね返る。また、 ONU側においても WDM光信号を使用す る場合には個々の ONUの信号波長管理が必要となり、 ONU端末のコスト増となる。ま た、 WDM-PONでは十分な帯域の確保が可能である力 ピンポン伝送であるため帯 域に無駄が生じる。
[0006] 本発明は、上記の課題に鑑み創案されたもので、帯域と加入者数に拡張を持たせ ることが可能な光アクセスネットワークシステムを提供することを目的とする。
本発明の別の目的は、アクセスからメトロ領域まで幅広く対応することもできるように 、長距離伝送やツリー状やスター状のネットワークトポロジーが適用可能な光アクセス ネットワークシステムを提供することである。
本発明の別の目的は、企業ユーザにも安心して使える物理的秘匿性も考慮した光 アクセスネットワークシステムを提供することである。
本発明の別の目的は、 1システム当たりのユーザ数を増やすことにより、低コストを 実現可能な光アクセスネットワークシステムを提供することである。
特許文献 1:国際公開番号 W095/19689 (特表平 9-510053)
発明の開示 [0007] 本発明の第 1の態様は、波長多重された光信号 (WDM光信号)を光ネットワークよ り中継局において受信し、該中継局より所定波長の光信号を加入者側装置に伝送 する光アクセスネットワークシステムであり、前記中継局は、前記 WDM光信号より一 定波長間隔の複数の光信号を 1グループとして分波する光分波手段、分波された前 記グループの光信号を複数に分岐する光分岐手段、前記分岐されたグループの光 信号を所定の加入者側装置に伝送する光スイッチング手段を備えて 、る。前記光ス イッチング手段は、入力ポートと出力ポート間の接続をオン/オフするスィッチ機能を 備えた複数の光半導体増幅器で構成されて!ヽる。
前記グループの光信号は、時間的にずらして各加入者側装置へ伝送する光信号 を多重して生成されており、前記光スイッチング手段の複数の光半導体増幅器のォ ン /オフを時間的にずらすことにより、所定の光信号を所定の加入者側装置に入力す る。
前記グループの波長多重された光信号を、加入者用データを伝送する光信号と該 光信号とは別波長の制御用光信号とで構成し、中継局はグループ毎に、前記制御 用光信号を分波する分波フィルタ、該分波された制御用光信号を用いて前記光スィ ツチング手段を構成する高速スイッチング素子をスイッチングする制御回路を備えて いる。
前記加入者側装置は、入力された波長多重光信号より各波長の光信号を分離して それぞ
れ加入者端末に入力する波長選択フィルタを有する。あるいは、前記加入者側装置 は、入力された波長多重光信号より各波長の光信号を分離する波長選択フィルタ、 該分離された光信号を用いて送信側で暗号化された信号を復号して加入者端末に 入力するする復号回路を備えて 、る。
[0008] 本発明の第 2の態様は、下り伝送路と上り伝送路を別々にする光アクセスネットヮー クシステムである。前記中継局は、前記制御用光信号が位相変調されている場合、 前記加入者側装置から送信するデータにより該制御用光信号を強度変調して出力 する光変調部と、各グループの光変調部から出力する光信号を合波して下り側伝送 路とは別の伝送路を経由して送信側に伝送する合波手段を備えている。又、中継局 は、複数の加入者側装置から光信号で入力した送信データをそれぞれ復調し、該複 数の送信データを多重する送信データ多重部を備え、前記光変調部は該多重され た送信データにより前記制御用光信号を強度変調する。
本発明の第 3の態様は、 1本の光ファイバ伝送路で双方向伝送を行なう光アクセス ネットワークシステムであり、各加入者側装置は、下り光信号の波長と異なる波長の 光信号を送信データで変調して出力する光送信器をそれぞれ備え、前記中継局は、 各加入者側装置の前記送信器カゝら入力された光信号を時間的にずらして合成して 1 つの波長の光信号として出力する合成手段と、複数のグループの前記合成手段から 入力する前記光信号を合波する合波部、該合波部から出力する光信号を下り伝送 路と同一の伝送路で送信側に送信する光力ブラを備え、送信側において伝送路力 加入者側より送信された該光信号を分離することにより、 1つの光ファイバ伝送路で 双方向伝送を行なう。
図面の簡単な説明
[図 1]本発明の通信ネットワークシステムの全体の構成図である。
[図 2]グループに割り当てたデータ用及び制御用光信号の波長説明図である。
[図 3]グループ毎に波長多重され、かつ時分割多重されている情況の説明図である。
[図 4]第 1実施例の光アクセスネットワークシステムを備えた光通信ネットワークシステ ムの全体構成図である。
[図 5]加入者側装置における受信器の第 1の構成図である。
[図 6]加入者側装置における受信器の第 2の構成図である。
[図 7]波長 λ aの制御信号光の経路説明図である。
[図 8]受信/多重部の構成図である。
[図 9]送信側装置である光回線終端装置(OLT : Optical Line Terminal)の構成図で ある。
[図 10]暗号ィ匕する場合の信号発生部の構成図である。
[図 11]信号切替フォーマット説明図である。
[図 12]信号切替タイミング説明図である。
[図 13]グループ別の信号切替タイミング説明図である。 [図 14]第 2実施例の光アクセスネットワークシステムを備えた光通信ネットワークシス テムの全体構成図である。
[図 15]信号切替フォーマット説明図である。
[図 16]従来の GE- PONの構成図である。
[図 17]従来の WDM- PONの構成図である。
発明を実施するための最良の形態
[0010] (A)本発明の概略
図 1は本発明の通信ネットワークシステムの全体の構成図であり、プロバイダー、映 像配信センター、電話交換局、携帯通信会社などが存在する送信側 SDSが,広帯域 光通信ネットワーク BPNを介して光アクセスネットワークシステム PACNと接続され、光 アクセスネットワークシステム PACNにおいて中継局 RSTがユーザ側 USSと光伝送路 で接続されている。中継局 RSTは第 1、第 2の 2つの中継局 RST1,RST2に分割され、光 アクセスネットワークシステムはツリー状に構築されて 、る。 1つの中継局 RSTに収容 可能なユーザ数は k' Nであり、 k
ユーザづっ最大 N個のグループに分けられている。グループ毎に第 2の中継局 RST 2-l〜RST2-8が設けられ、グループ単位で拡張可能な構成になっている。図では最 大グノレープ数 N=8とし 1グノレープは k=16のユーザ U1- 1〜U1- 16で構成されている。 中継局 RSTが最大 40波までの WDM光信号 (波長多重光信号)に対応可能とすれば 、送信側 SDSは、 1グループ当たり 4波のデータ用送信器 11〜11と 1波の制御用送
1 4
信器 11を備え、データ用 4波と制御用 1波をあわせた 5波を 1つのグループに割り当
5
てる。各グループに割り当てる 5波の波長間隔は四光波混合(FWM: Four Wave Mixi ng)が生じない間隔とする。すなわち、 40波のうち連続する 32波をデータ用とし、連続 する 8波を制御用とし、この連続する 32波の光信号より一定波長間隔の 4波(波長: λ 1, λ 9, λ Π, λ 25)を選んでグループ 1のデータ用とし、連続する 8波より 1波 (波長: λ a)選んでグループ 1の制御用とする。同様に他のグループのデータ用及び制御用 の光信号を割り当てる。この結果、グループ 1〜8と該グループに割り当てたデータ用 及び制御用光信号の波長の関係は図 2に示すようになる。
[0011] グループ 1の送信器 11〜11は 4つのデータ用光信号(波長: λ ΐ, λ 9, λ Π, λ 25 )をグループ 1のユーザデータ D1-1〜D1-16で時間的にずらして変調し、光合波器 12 は該変調された光信号を波長多重して光伝送路 21に送出する。同様に他のグルー プ i (i=l〜8)の送信器も 4つのデータ用光信号を該グループ iのユーザデータ Di-1〜 Di-16で時間的にずらして変調し、光合波器 12は該変調された光信号を波長多重し て光伝送路 21に送出する。この結果、図 3に示すように光信号は全体的に 32波が波 長多重され、かつ時分割多重されて光伝送路 21を介して中継局 RSTに送信される。 各グループの制御用光信号も波長多重および時分割多重されて、データ用光信号 と同時に光伝送路 21を介して中継局 RSTに送信される。
なお、本明細書における「時分割多重」という用語は、時間的にずらして多重するこ とを意味し、各タイムスロットに割り当てるユーザデータの宛先は固定でなく動的に変 化する。各タイムスロットのデータがどのユーザ宛であるかは制御データにより指定す る。
第 1中継局 RST1の周期性合分波フィルタ 31は波長多重された光信号より各グルー プのデータ用光信号と制御用光信号を分波し、かつ、グループ毎の光信号を合波し てそれぞれグループ対応のポートより第 2中継局 RST2-l〜RST2-8に入力する。第 2 中継局 RST2-l〜RST2-8は、グループ毎に分岐カプラ 41と高速光スィッチ部 42を備 えている。グループ G1の分岐カプラ 41は入力したグループ 1の 4波の WDM光信号( 波長: λ ΐ, λ 9, λ Π, λ 25)を 16分岐して高速スィッチ部 42の 16個の入力ポートに 入力する。高速スィッチ部 42は 16個の入力ポ
ートと 16個の出力ポート間の接続をオン/オフする 16個の光スィッチを備え、制御用 光信号で送られてくる制御データに基づ 、て各光スィッチを時間的にずらして、すな わち、時分割のタイムスロット周期で順次オン/オフ制御する。これにより、各タイムス ロットに割り当てた各ユーザの WDM光信号(D1-1〜D1-16)は光伝送路 51〜51 を
1 16 介して該ユーザの加入者側装置 61〜61 に入力する。
1 16
以上より、時間的にずらして WDM光信号をユーザに配信するため、該当する WDM 光信号のみが目的ユーザの加入者側装置 61〜61 に配信される。この結果、物理
1 16
的な秘匿性を確保することが可能となる。また各加入者側装置 61〜61 は時分割さ
1 16
れた 4波の WDM光信号力 所望の信号を復号することで、さらに秘匿性を向上させる ことが可能である。また秘匿性が必要ない場合や、より低コストサービスを提供したい 場合は、加入者側装置 61〜61 に配信される 4波の WDM光信号をさらに 1波づっュ
1 16
一ザに割り振ることで更に収容人数を高めることが可能となる。
上りデータの送信は、送信側 SDSより受信した制御用光信号が位相変調されている 場合には、該制御用光信号を送信データで強度変調することにより行なう。すなわち 、加入者側装置 61〜61 は 1.3 μ m帯の信号を利用して 1芯双方向で第 2中継局 RST
1 16
2まで送信データを送信し、第 2中継局 RST2は各加入者側装置 61〜61 からの上り
1 16 信号を多重化して 1つの高速なデータ信号を生成し、光変調器 (図示せず)は該デー タで制御用光信号を強度変調し、合波部は各グループの光変調信号を合波して下り 側伝送路とは別の伝送路 (図示せず)を経由して送信側に伝送する。かかる構成によ り、加入者側装置を安価に作成することができる。
1本の光伝送路を用いて双方向伝送してコストを下げたい場合、加入者側装置に 送信側と異なる波長の光信号を送信データで変調する光変調部を搭載し、該加入 者側装置より光変調信号を第 2中継局 RST2に送り、該第 2中継局にぉ 、てグループ 毎に 16個の加入者側装置力 送られた光変調信号を時分割多重処理し、各グルー プの時分割多重光信号を波長多重して WDM光信号として折り返す。
(B)第 1実施例
図 4は第 1実施例の光アクセスネットワークシステムを備えた光通信ネットワークシス テムの全体構成図であり、送信側 SDSが広帯域光通信ネットワーク BPNを介して光ァ クセスネットワークシステム PACNと接続され、光アクセスネットワークシステム PACNに お!、て中継局 RSTがユーザ側 USSと光伝送路で接続されて 、る。
送信側 SDSと中継局 RST間の最大距離は 300kmであり、第 1、第 2中継局 RST1,2の 間の最大距離は 20km、中継局 RSTとユーザ側 USS間距離は数 km以下である。中継 局 RSTは第 1、第 2の 2つの中継局 RST1,RST2に分割され、光アクセスネットワーク PA CNは第 1中継局力 加入者側装置までツリー状に構築されている。 1つの中継局 RS Tに収容可能なユーザ数は k'Nであり、 kユーザづっ最大 N個のグループに分けら れている。グループ毎に第 2の中継局 RST2-l〜RST2-8が設けられ、グループ単位 で拡張可能な構成になって 、る。図では最大グループ数 N=8とし 1グループは k=16の ユーザ Ul- 1〜U1- 16で構成されているなお、光アクセスネットワークシステムはツリー 状に限らず、スター状に構築することもできる。
(a)下り伝送
中継局 RSTが最大 40波までの WDM光信号 (波長多重信号)に対応可能とすれば、 送信側 SDSは 1グループ当たり 4波のデータ用送信器 11〜11 , 11 〜11 と 1波
1 4 37 40 の制御用送信器 11 , 11 を備え、データ用 4波と制御用 1波をあわせた 5波を 1つ
5 40
のグループに割り当てる。各グループに割り当てる 5波の波長間隔は四光波混合が 生じない間隔、例えば 400 GHz間隔であり、グループ 1〜8と該グループに割り当てた データ用及び制御用光信号の波長の関係は図 2に示すようになる。なお、下り光信 号は 1.5 μ m帯の C- bandの 40波を使用する。
グループ 1の送信器 11〜11は 4つのデータ用光信号 (波長: λ ΐ, λ 9, λ Π, 25
1 4
)
をグループ 1のユーザデータ D1-1〜D1-16により時間をずらして、すなわち、時分割 で変調し、また、送信器 11は制御用光信号 (波長え a)をグループ 1の各ユーザの制
5
御データにより時間をずらして、すなわち、時分割で変調し、合波器 12
1は該変調され た光信号を波長多重する。なお、変調速度は lOGbpsである。
同様に他のグループも動作する。例えば、グループ 8の送信器 11 〜11 は 4つの
36 39 データ用光信号(波長: λ 8, λ 16, λ 24, λ 32)をグループ 8のユーザデータ D8- 1〜 D8-16により時分割で変調し、また、送信器 11 は制御用光信号 (波長 λ h)をグルー
40
プ 8の各ユーザの制御データにより時分割で変調し、合波器 12は該変調された光信
8
号を波長多重する。合波器 12〜12は、市販されている誘電体多層膜を多段に重ね
1 8
た MUXフィルタでもよいし、 AWG(Arrayed Waveguide Grating)でも、ファイバブラッグ グレーティング (FBG)でもよい。アレイ導波路 (AWG)は、合分波器としての機能を備 え、 WDM光信号を波長毎に分散して複数の導波路のそれぞれに出力し、また、複数 の導波路力 入力された波長の異なる光を合波して波長多重光として出力する。 波長グループは任意に構成することができる。たとえば、波長 λ 1〜8をプロバイダ 用、波長え 9〜 16を音声 (電話)用、波長 λ 17〜25をビデオ(映像)用、波長え 26〜3 2をモパイルその他用などとサービス別に割り振ってグループ分けすることができる。 このようにすることで、従来の FTTHシステム力 柔軟にアップグレードすることが可能 である。
[0015] 合波器 13は各合波器 12〜12力 出力する WDM光信号を合波し (図 1、図 3参照)、
1 8
光増幅器 14で増幅して 1本の光伝送路 21に送出する。各光信号の変調速度は 10Gb psであり、全体で 40波長であるから、下り伝送速度は 10Gbps X 40である。合波器 13と して周期性合分波フィルタ、たとえばサイクリック AWGを使用する。サイクリック AWG は導波路を工夫することにより、複数の入力ポート P1〜P8力 入力する所定波長毎 の複数組の WDM光信号を合波して 1つの出力ポートから出力する。周期性合分波フ ィルタを用いると、ポート数が削減できるため低コストィ匕が可能となり、し力も、グルー プ単位の拡張性を持たせることが可能となる。
光アクセスネットワークシステム PACNの第 1中継局 RST1の光増幅器 32は光伝送路 21を介して入力した WDM光信号を増幅し、周期性合分波フィルタ 31は該 WDM光信 号力ゝら各グループのデータ用/制御用光信号をそれぞれ合波してそれぞれグループ 対応のポート P1〜P8より光伝送路 23〜23に送出する。周期性合分波フィルタ 31は
1 8
サイクリック AWG(Arrayed Waveguide Grating)で構成されており、 1つのポートから入 力する WDM光信号より所定波長毎の光信号を分波し、かつ、これらを合波して 1つ のポートから出力し、同様に波長が順次ずれた複数組の光信号をそれぞれ所定のポ ートより送出する。すなわち、周期性合分波フィルタ 31はグループ 1の WDM光信号を ポート P1から光伝送路 23に送出すると共に、同様に波長が順次ずれたグループ 2〜
1
8の WDM光信号をそれぞれポート P2〜P8から光伝送路 23〜23に出力する。
2 8
以上より、各グループのデータ用/制御用光信号は光伝送路 23〜23を介して各グ
1 8
ループの第 2中継局 RST2-l〜RST2-8に入力する。
[0016] 第 2中糸 局 RST2- 1において、グループ 1の固定分波フィルタ 43は光伝送路 23より
1 入力する WDM光信号より波長 λ ΐ, λ 9, λ Π, λ 25のデータ用光信号群と波長え a の制御用光信号を分波し、前者を k分岐力ブラ 41に入力し、後者を 2分岐力ブラ 44に 入力する。 k分岐カプラ 41は、入力したグループ 1の 4波の WDM光信号 (波長: λ 1, λ 9, λ Π, λ 25)を 16分岐して高速スィッチ部 42の 16個の入力ポートに入力する。 2 分岐力ブラ 44は 1波の制御用光信号を 2つに分岐し、一方をスィッチ制御回路 45と光 増幅器 46に入力する。
[0017] 高速スィッチ部 42は 16個の入力ポートと 16個の出力ポート間の接続をオン/オフす る 16個のスィッチ SW广 SW16を備え、スィッチ制御回路 45は制御用光信号で送られ てくる制御データに基づいて所定のスィッチを時間をずらして (タイムスロット周期で) オン/オフ制御する。 16個の各スィッチ SW1〜SW16は数 ns以下の Tr、 Tf特性 (立上り、 立下り特性)を持
つことが要求される。このため、これらスィッチとしてバイアス電源をオン/オフすること により高速に光信号の導通をオン/オフする光半導体増幅器 SOA (Semiconductor 0 ptical Amplifier)が使用される。以上から、スィッチ制御回路 45は制御データに基づ いて各光半導体増幅器 SOAのオン/オフを制御することにより、所定タイムスロットに 割り当てた 4波の WDM光信号を、光力ブラ 47及び光伝送路 51 介して所定ュ
1〜51 を
16
一ザの加入者側装置 61
1〜61 に伝送できる。
16
たとえば、あるタイムスロット時間 T1において加入者側装置 61が接続されたスイツ
1
チ素子 SW1を ONにし、それ以外をすベて OFFにし、次のタイムスロット時間 T2にお いて加入者側装置 61が接続されたスィッチ素子 SW2を ONにし、それ以外をすベて
2
OFFにし、以下同様のオン/オフ制御を行って所定のタイムスロットに割り当てた 4波 の WDM光信号を所定ユーザの加入者側装置 61
1〜61 に入力する。また、複数のス 16
イッチ素子を同時に ONすればマルチキャスト(同報配信)することも可能である。
[0018] 加入者側装置である ONU(Optical Network Unit) 61
1〜61 は、光力プラ 62と受信 16
器 63と送信器 64を備えて 、る。受信器 63は波長多重された 4波の WDM光信号力 パ ケットを復号し、ユーザのパソコン (図示せず)に入力する。あるいは、受信器 63は波 長多重された 4波の WDM光信号をさらに 1波づっユーザに割り振ることで収容人数を 高めることが可能となる。
以上のように時系列的に光スイッチング素子を ON/OFFさせ、 4波の WDM光信号 のまま、所定の加入者側装置へ切り替えて送信することで、各加入者側装置の受信 信号は他の加入者側装置に配信されること光スイッチング素子で遮断できるため、秘 匿性を格段に高くすることが可能となる。また、スィッチとして光スィッチを用いること によりコストの低減が可能である。すなわち、光スィッチを使用せず、電気信号に戻し てスイッチングを行なうものとすれば、高速スィッチ部 42に 0/E, E/0変換を行うため の変換器が総計 16分岐 X 2 = 32個必要となり、大幅にコストアップする。
[0019] 高速光スイッチング素子 SW1〜SW16として、光半導体増幅器 (SOA)を用いたタイ プゃ、レーザダイオードなどで使用されるガリウムヒ素(GaAs)等の化合物半導体を用 V、たスィッチや、 PLZT薄膜を用いた電界光学効果型光スィッチ等が候補としてあげ られる。 SOAを用いた光スィッチの場合、 SOAは光増幅器としての機能も果たすため 、 k分岐力ブラ 41での光分配損失を補うことが可能であり、第 2中継局 RST2からさらに 加入者側装置への伝送距離を延ばせるなどの効果がある。
また、図 4の構成では周期性合分波フィルタ 31を使用している力 これはスィッチ SW 1〜SW16として光半導体増幅器 (SOA)を使用した場合に効果を発揮する。光半導 体増幅器 (SOA)は WDM光信号を一括増幅する場合、隣接する 4波の WDM光信号( たとえば 100GHz間隔の WDM光信号)を増幅する場合、四光波混合(FWM: Four W ave Mixing)という非線形光学効果の影響で第三次高調波歪み成分が発生するため 、伝送特性が著しく劣化する。この問題を解決するためにも周期性合分波フィルタ 31 は有効で、図 2のグループ毎の波長間隔は 800GHzと十分に離すことが可能となり、 F WMを抑制する効果を持つ。
[0020] '加入者側装置における受信器の構成
図 5はグループ 1の加入者側装置における受信器の第 1の構成図であり、 4波の WD M光信号力 所望の信号を復号し、ユーザのパソコンに入力する例である。なお、他 のグループの受信器の構成も図 5と同一になる。
送信側にぉ 、て暗号ィ匕処理を行 、、得られた暗号データにより 4波の光信号をそ れぞれ変調して送信しているものとすれば、固定波長選択フィルタ 63aはグループ 1
1
の WDM光信号 (波長: λ ΐ, λ 9, λ 17, λ 25)より波長 λ 1の信号光を選択して受信 部 63bに入力し、受信部 63bは該波長 λ 1の信号光で送信されているデータを復調
1 1
して復号回路 63cに入力する。
ついで、固定波長選択フィルタ 63aは固定波長選択フィルタ 63a力 出力する WD
2 1
M光信
号 (波長: λ 9, λ Π, λ 25)より波長え 9の信号光を選択して受信部 63bに入力し、受 信部 63bは該波長 λ 9の信号光で送信されているデータを復調して復号回路 63cに
2
入力する。同様に、固定波長選択フィルタ 63aは固定波長選択フィルタ 63aから出力
3 2 する WDM光信号 (波長: λ 17, λ 25)より波長 λ 17、 λ 25の信号光をそれぞれ選択し て受信部 63b、 63bに入力し、受信部 63bは波長え 17の信号光で送信されているデ
3 4 3
ータを復調して復号回路 63cに入力し、受信部 63bは波長え 25の信号光で送信され
4
て 、るデータを復調して復号回路 63cに入力する。
[0021] 復号回路 63cは各復調回路で復調された 4波のデータを用いて復号処理を行って 元のデータを復号してパソコン 71に入力する。すなわち、復号回路 63cは各波長毎に パケット信号を生成し、それを内蔵のバッファに溜め込み、 4波全てのパケットが揃つ た時点で、該 4つのパケットを用いて 1つの所望のパケットを復号し、パソコン 71に入 力する。尚、暗号ィ匕されていない場合には、 4波で送られたパケットを順番にそのまま パソコン 71に入力する。
前述のように 1波のデータ送信速度は lOGbpsであり、 4波を波長多重することにより データ送信速度は 40Gbpsとなる。 16ユーザデータをこのデータ送信速度 40Gbpsによ り時分割多重送信するため、 1ユーザ当りの平均データ送信速度は 40/16=2.5Gbpsと なる。このデータ送信速度 2.5Gbpsは従来の伝送速度 30〜100Mbpsに比べて格段に 大きぐ本発明により高速伝送が可能になる。又、収容ユーザ数は、 1グループ 16ュ 一ザで、 8グループ同時に送信可能であるため、最大 16 X 8=128ユーザを 1つの第 2 中継局 RST2-l〜RST2-8に収容することができる。
[0022] 図 6はグループ 1の加入者側装置における受信器の第 2の構成図であり、 4波の WD M光信号をさらに 1波づっユーザに割り振る場合の構成例である。この構成例は「そ れほど高速な回線は必要でな 、」、「セキュリティも一般レベルでょ 、」 t 、うユーザ向 けに対応可能なもので、収容ユーザ数を 4倍に増加できる。
固定波長選択フィルタ 63aはグループ 1の WDM光信号 (波長: λ ΐ, λ 9, λ 17, λ 2
1
5)より波長 λ 1の信号光を選択して受信部 63bに入力し、受信部 63bは該波長 λ 1の
1 1
信号光で送信されて ヽるパケットを復調して第 1ユーザ端末 71に入力する。
1
また、固定波長選択フィルタ 63aは固定波長選択フィルタ 63a力 出力する WDM光
2 1
信号 (波長: λ 9, λ Π, λ 25)より波長え 9の信号光を選択して受信部 63bに入力し、 受信部 63bは該波長 λ 9の信号光で送信されているパケットを復調して第 2ユーザ端
2
末 71に入力する。同様に、固定波長選択フィルタ 63aは固定波長選択フィルタ 63a
2 3 2 力 出力する WDM光信号 (波長: λ 17, λ 25)より波長え 17、 λ 25の信号光をそれぞ れ選択して受信部 63b、 63bに入力し、受信部 63bは波長え 17の信号光で送信され
3 4 3
ているパケットを復調して第 3ユーザ端末 71に入力し、受信部 63bは波長え 25の信
3 4
号光で送信されているパケットを復調して第 4ユーザ端末 71に入力する。以上はグ
4
ループ 1の下り伝送の場合である力 他のグループについても第 2中継局 RST2-2〜R ST2-8は同様に動作する
[0023] 前述のように 1波のデータ送信速度は lOGbpsであり、 4波を波長多重することにより データ送信速度は 40Gbpsとなる。図 6の構成では、 16 X 4ユーザデータをデータ送信 速度 40Gbpsで時分割多重送信するため、 1ユーザ当りの平均データ送信速度は 40/( 16 X 4) Gbps = 625Mbpsとなり、図 5の場合の 1/4となる。し力し、従来の伝送速度 30 〜100Mbpsに比べて高速伝送が可能である。又、収容ユーザ数は、 1グループ 16 X 4 ユーザで 8グループ同時に送信可能であるため、最大 16 X 4 X 8=512ユーザを 1つの 第 2中継局 RST2に収容することができる。
収容ユーザ数を増やす場合は、すでに住宅近辺まで光信号で引き込めているため
、通常の電気信号交換装置 (ルータやスイッチングハブ)でユーザを増やすことが可 能である。
以上では N=8,k=16として説明した力 一般的に最大で 1中継局あたり、 N X kユーザ で帯域を有効活用することが可能となる。と同時に拡張性と秘匿性も併せ持つことが でき、柔
軟なシステムが構築可能となる。
[0024] (b)上り伝送
上り伝送では、 2分岐力ブラ 44で分岐された制御光信号を利用する。すなわち、制 御信号光は一部がスィッチ制御回路 45へ入力されるが、残りの光をそのまま活用し て加入者側装置から送信するデータの送り返し信号波長として再利用する。このため に、送信側 SDSは制御データで波長 λ aの光信号を変調する場合、強度変調は行わ ず、変調後も光パワーが変化しない位相変調を施す。この制御用光信号に重畳され る制御データは切替え先指定やスイッチングするタイミングを特定することを目的とす るものであり、せ 、ぜ 、数十 Mbpsもあれば十分であるため位相変調しても問題はな い。
加入者側装置 61〜61 の送信器 64はそれぞれ 1.3 m帯の光信号を lGbpsの上り
1 16
送信データにより変調し、該光変調信号を光伝送路 51
1〜51 より第 2中継局 RST2-1 16
まで 1芯双方向で送信する。 1芯双方向で送信する理由は、加入者側装置のコストを 下げ、かつ、加入者側装置力 第 2中継局 RS2への伝送コストを下げるためである。こ のために GE-PONシステムで使用されて 、るように 1.3 m帯の信号を使用して送信 する。
[0025] 第 2中継局 RST2-1の光力プラ 47は加入者側装置 61 力 入力する 1.3 m帯
1〜61
16
の光信号をそれぞれ分波して受信/多重部 48に入力する。受信/多重部 48は 1.3 m 帯の光信号より加入者側装置 61
1〜61 の送信データを復調し、該復調した加入者 16
側装置 61〜61 の送信データを時間的にずらして多重して lOGbpsの高速データ信
1 16
号を生成する。
光増幅器 46は 2分岐力ブラ 44により分岐された波長 λ aの制御用光信号を飽和領 域で増幅してパヮ一一定の光信号にして光変調部 49に入力する。光変調部 49は該 制御用光信号を受信/多重部 48力 入力する lOGbpsの高速データにより強度変調を 施して光伝送路 24に送出する。他のグループの光変調部も波長え b〜え hの制御用
1
光信号を lOGbpsの高速データにより強度変調を施して光伝送路 24 する
2〜24に送出 8
。第 1中継局 RST1の合波器 33は光伝送路 24
1〜24力 入力する光信号を合波し、光 8
増幅器 34は合波した WDM光信号を光増幅して下り伝送路 21とは別の上り伝送路 22 に送出し、送信側 SDSに伝送する。送信側 SDSにおいて、光増幅器 15は WDM光信 号を増幅し、分波フィルタ 16は波長 λ a〜え h毎に光信号を分波して受信器 17
1〜17
8 に入力する。下り伝送路 21と上り伝送路を別々にする理由は、干渉の影響で 1芯双 方向伝送ができな 、ためである。
図 7は図 4の光通信ネットワークシステムにおいて波長 λ aの制御用光信号の経路 を点線で示したものである。
[0026] 図 8は受信/多重部 48の構成図であり、図 4と同一部分には同一符号を付している 。光信号受信部 48a〜48a は光力ブラ 47〜47 により分波された加入者側装置 61
1 16 1 16 1
〜61 力もの 1.3 μ m帯の光信号を受信して lGbpsの上り送信データを復調し、各送
16
信データをシリアライザ 48bに入力する。シリアライザ 48bは lGbpsの上り送信データの タイミングをずらして多重することにより lOGbpsの時分割多重データを生成する。増 幅器 48cは該時分割多重データを増幅して光変調部 49に入力する。光変調部 49は 該時分割多重データで制御用光信号を強度変調する。
[0027] (c)送信側の構成
図 9は送信側装置である光回線終端装置(OLT : Optical Line Terminal)の構成図 であり、図 4と同一部分には同一符号を付している。送信部 11はグループ 1の構成を 詳細に示しており、他のグループ 2〜8も同様の構成を有して 、る。
送信部 11において、光信号発生部 11a〜l laはそれぞれグループ 1のデータ送信
1 5
用信号光と制御用信号光を発生する。すなわち、光信号発生部 11a〜l la
1 4は波長え
1, 9, λ Π, λ 25のデータ用信号光を発生し、光信号発生部 11aは波長え aの制
5
御用信号光を発生する。光変調部 l ib〜l lb
1 4は送信信号発生部 11cから出力する送 信データによりデータ用信号光の強度変調を行ない、光変調信号を合波器 12に入
1 力する。光変調部 l ibは送信信号発
5
生部 11cから出力する制御データ (切替制御信号)により制御用信号光の変調を行な い、光変調信号を合波器 12に入力する。なお、図 5に示すように、第 2中継局 RST2
1
において上り送信データにより制御信号光を強度変調して送信側に折り返す場合に は、光変調部 l ibは位相変調するものとし、強度変調は行なわない。合波器 12は入
5 1 力する 5波の光信号を合波し、周期性合分波フィルタ 13は各グループの光信号を多 重して下り伝送路 21に送出する。
[0028] 送信信号発生部 11cは、グループ 1の 16ユーザに送信するデータ及び制御データ をそれぞれ時間的にタイムスロットづっずらして多重し (時分割多重)、増幅器 l id〜
1 l idを介して光変調部 l ib〜l lbに入力する。各ユーザに送信するデータはプロバ
5 1 5
イダーセンター 81、映像配信センター 82、電話交換局 83、携帯通信会社 84などから 適宜送信信号発生部 11cに入力される。各ユーザに送るデータの送信元は同一であ つても、異なってもよい。 信号発生部 l ieは暗号ィ匕せずに 4波を 1ユーザに使用するものとすれば、第 1ユー ザに送るパケットを 4ビット単位に分割し、該 4ビットを光変調部 l ib〜l lbに所定タイ
1 4 ムスロット期間(例えば第 1タイムスロット期間)入力する。ついで、信号発生部 11cは 第 2ユーザに送るパケットを 4ビット単位に分割し、該 4ビットを光変調部 l ib〜l lbに
1 4 第 2タイムスロット期間入力し、以後、同様に各ユーザ宛のデータを光変調部 l ib〜1
1 lbに入力する。又、信号発生部 11cはタイムスロット毎に送信データの送り先を特定
4
する制御データを発生して光変調部 l ibに入力する。以上により、各ユーザ宛のパ
5
ケット及び制御データが時分割多重及び波長多重されてユーザ側に送信されること になる。
[0029] 一方、信号発生部 11cは暗号ィ匕してデータ (パケット)を送信するものとすれば、該 信号発生部 11cは第 1ユーザに送るパケットを用いて暗号ィ匕処理を行なって 4パケット 作成し、各パケットを 1ビットづっ、トータル 4ビットづっ光変調部 l ib〜l lbに第 1タイ
1 4 ムスロット期間入力する。ついで、信号発生部 l ieは第 2ユーザに送るパケットを用い て暗号化処理を行なって 4パケット作成し、各パケットを 1ビットづっ、トータル 4ビット づっ光変調部 l ib〜l lbに第 2タイムスロット期間入力し、以後、同様に各ユーザ宛
1 4
のパケットを暗号化して光変調部 l ib〜l lbに入力する。又、信号発生部 11cはタイ
1 4
ムスロット毎に送信データの送り先を特定する制御データを発生して光変調部 l ibに
5 入力する。以上により、各ユーザ宛の暗号ィ匕されたパケットと制御データが時分割多 重及び波長多重されてユーザ側に送信されることになる。
[0030] 図 10は暗号ィ匕する場合の信号発生部 11cの構成図であり、セレクタ 11cはタイムス
1 ロット毎に、プロバイダーセンター 81、映像配信センター 82、電話交換局 83、携帯通 信会社 84から入力するユーザ宛パケットを選択して暗号ィ匕回路 11cに入力すると共
2
に、制御データ発生部 11cに入力する。暗号化回路 11cは入力されたパケットを用い
3 2
て暗号化処理を行なって 4パケット作成し、各パケットを 1ビットづっ、トータル 4ビット づっ光変調部 l ib〜l lbに所定速度でタイムスロット期間入力する。また、制御デー
1 4
タ発生部 11cは入力パケットより宛先を識別し、制御データ (切替制御信号)を発生し
3
て光変調部 l ibに入力する。
5
また、信号発生部 11cは 1波を 1ユーザに使用するものとすれば、第 1〜第 4ユーザ に送るパケットをそれぞれ 1ビットづっ光変調部 lib〜llbに第 1タイムスロット期間入
1 4
力する。ついで、信号発生部 11cは第 5〜第 8ユーザに送るパケットをそれぞれ 1ビット づっ光変調部 lib〜llbに第 2タイムスロット期間入力し、以後、同様に 4ユーザ宛の
1 4
パケットをそれぞれ 1ビットづっ光変調部 lib〜llbに順次入力する。又、信号発生
1 4
部 11cはタイムスロット毎に送信データの送り先 (加入者側装置)を特定する制御デー タを発生して光変調部 libに入力する。以上により、各ユーザ宛のパケットと制御デ
5
ータが時分割多重及び波長多重されてユーザ側に送信されることになる。なお、各 ユーザに送るパケットの送信元は同一であっても、異なってもよい。
図 9に戻って、分波フィルタ 16は上り伝送路 22より入力した WDM光信号より波長 λ a 〜え h毎に光信号を分波して受信器 17〜17に入力し、受信器 17〜17はそれぞれ グノレープ 1〜
8の加入者側装置より送信されたデータを復調してグループ対応のデシリアライザ 18
1
〜18に入力する。各デシリアライザ 18〜18は入力されたシリアルデータ(16ユーザ
8 1 8
の時分割多重データ)を並列データに変換し、各ユーザの送信データを宛先センタ 一に応じた送信器 19〜19に入力して各センター 81〜84に送信する。
1 4
(d)信号切替
図 11は、信号切替フォーマット説明図であり、グループ 1について示しており、 1グ ループ 16ユーザ Z4波長の場合である。右側のタイムスロット T1にお 、て第 1ユーザ 宛のデータを伝送し、タイムスロット T2において第 2ユーザ宛のデータを伝送し、タイ ムスロット T3において第 3ユーザ宛のデータを伝送し、 ···..タイムスロット T15において 第 15ユーザ宛のデータを伝送し、タイムスロット T16において第 16ユーザ宛のデータ を伝送するものとしている。かかる場合、切替御信号をデータより早目に、例えば 1タ ィムスロット前に伝送し、該切替信号により次のタイムスロット後のデータの送り先を特 定する。
1タイムスロット毎に 1波で 1パケットを伝送するものとすれば、各タイムスロットの 1波 のデータ時間幅は 1〜数 10マイクロ秒 sec)となる。これは、パケット長が lkバイト〜 数 10kバイトであり、 1波のデータ送信速度は lOGbpsであるからである。この結果、各 ユーザへの送信間隔は最大約 16〜1000マイクロ秒 sec)となる。すなわち、各タイ ムスロット時間幅および送信間隔 τは可変である。
[0032] 図 12は信号切替タイミング説明図であり、グループ 1について示している。タイムス ロット T1にお!/、て第 1ユーザ 1-1宛のデータを伝送し、タイムスロット Τ2にお!/、て第 8ュ 一ザ 1-8宛のデータを伝送し、以下同様に伝送するものとすれば、切替御信号をデ ータより例えば 1タイムスロット前に伝送し、該切替信号により次のタイムスロットのデ ータの送り先を特定する。すなわち、スィッチ制御回路 45(図 4)は 1タイムスロット前に 受信した切替信号に基づいて現タイムスロットのオン/オフする光スィッチを決定して オン/オフ制御して、光信号を所定のユーザに伝送する。
図 13はグループ別の信号切替タイミング説明図であり、タイムスロット T1においてグ ループ 1の第 1ユーザ 1-1宛のデータとグループ 2の第 8ユーザ 2-8宛のデータを伝送 し、タイムスロット Τ2においてグループ 1の第 2ユーザ 1-2宛のデータとグループ 2の第 2ユーザ 2-2宛のデータとグループ 8の第 13ユーザ 8-13宛てのデータを伝送し、以下 同様にして伝送する例である。
[0033] (C)第 2実施例
図 14は第 2実施例の光アクセスネットワークシステムを備えた光通信ネットワークシ ステムの全体構成図であり、下り伝送路と上り伝送路を共通にし、下り伝送に際して 1 .5 帯の Cバンドの 40波長を使用し、上り伝送に際して 1.5 帯の Lバンドの 8波長を 使用している。
図 14の第 2実施例において図 4の第 1実施例と同一部分には同一符号を付してい る。構成上異なる点は、(1)共通伝送路 25の送信側及び中継局側に C-L力ブラ 20,35 が設けられている点、(2)加入者側装置の送信器 65が 1.5 帯の Lバンドの信号光を 送信データで強度変調して第 2中継局 RST2-1に伝送する点、(3)第 2中継局 RST2-1 〜RST2-8にグループ毎にシリアライザ 50を設け、各加入者側装置から入力されたが 光信号を時間的にずらして合成することにより 1つの波長の光信号として出力する点 である。 C-L力ブラ 20,35は共に、光波長帯域合分波フィルタあるいは光サーキユレ一 タであり、下り方向に C-bandの光信号を選択して送出し、上り方向には L-bandの光 信号を選択して送出する。
下り伝送に際して、 C-L力ブラ 20は、周期性合分波フィルタ 13で合波された C-band の 40波の WDM光信号を伝送路 25に送出し、 C-Lカプラ 35は該伝送路より入力した C -bandの 40波の WDM光信号を選択して光増幅器 32を介して周期性合分波フィルタ 3 1に入力する。以後、図 4の第 1実施例と同様の制御により、各グループの加入者側 装置に所定波長の信号光が伝送される。
[0034] 上り伝送に際して、グループ 1の加入者側装置 61 〜61 の送信器 65は 1.5
1 16
IX m帯 L-bandの所定波長 λ の信号光を送信データで強度変調して第 2中継局 RST し 1
2-1に伝送する。第 2中継局 RST2-1の光力プラ 47は加入者側装置 61 〜61 力 入力
1 16 する波長 λ の光信号をそれぞれ分波してシリアライザ 50に入力する。
し 1
シリアライザ 50は、各加入者側装置 61 〜61 力も入力されたが各光信号を時間的
1 16
にずらして送出する高速スィッチ部 50a、該高速スィッチ部から出力する光信号を合 成してシリアルに送出する合波部 50bを備えて 、る。高速スィッチ部 50aは高速スイツ チ部 42と同様の構成を備え、入力ポートと出力ポート間の接続/切断を行なう 16個の 光スィッチ SW 〜SW16' を備え、スィッチ制御回路 45力 入力するスィッチ信号 により光スィッチを時間的にずらしてオン/オフする。これにより、各加入者側装置 61
1
〜61 力も入力された光信号は時間的にずらされて送出される (時分割多重)。合波
16
部 50bは高速スィッチ部 50aから送出される光信号を合成して伝送速度 10Gbps、波長 λ の光信号として伝送路 24に送出する。同様に他のグループも伝送速度 10Gbps、
Ll 1
波長え 〜λ の光信号を伝送路 24 〜24に送出する。
し 2 し 8 2 8
合波器 33は光伝送路 24 〜24から入力する波長 λ 〜λ の光信号を合波し、光
1 8 し 1 L8
増幅器 34は合波した WDM光信号を光増幅して C-L力ブラ 35に入力する。 C_L力ブラ 35は下り方向には L-bandの 8波の WDM光信号を選択して伝送路 25に送出する。送 信側の C-Lカプラ 20は下り方向に L-bandの 8波の WDM光信号を選択して光増幅器 1 5を介して分波フィルタ 16に入力し、分波フィルタ 16は波長え 〜λ 毎に光信号を
Ll L8
分波して受信器 17 〜17に入力する。
1 8
[0035] スィッチ制御回路 45は、下りの制御用光信号に含まれる制御データに基づいてスィ ツチ信号を発生する。図 15は信号切替フォーマット説明図であり、グループ 1につい て示しており、 1グループ 16ユーザ Ζ4波長の場合である。
加入者側装置がデータを受信してカゝら 14タイムスロット後に上り送信データを送信 するように構成されて ヽるものとすれば、送信側は加入者側装置がデータを受信する タイミングを知って!/、るから、送信側にとって加入者側装置がデータを送信するタイム スロットは既知である。そこで、送信側は制御データで加入者側装置がデータを送信 するタイミング (タイムスロット)を特定する。
図 15では、制御データ C1によりパケットの受信先ユーザを特定し、制御データ C2 によりパケットの送信元ユーザを特定する。すなわち、図 15では、制御データ C1によ り、タイムスロット T1において第 1ユーザへデータを伝送し、タイムスロット T2において 第 2ユーザへデータを伝送し、タイムスロット T3にお 、て第 3ユーザへデータを伝送し 、 · ··..タイムスロット T15において第 15ユーザへデータを伝送し、タイムスロット T16に おいて第 16ユーザへデータを伝送することが示されている。又、制御データ C2により 、タイムスロット T15において第 1ユーザからのデータを送信し、タイムスロット T16にお Vヽて第 2ユーザからデータを送信し、タイムスロット T1にお!/、て第 3ユーザからデータ を送信することが示されて 、る。
スィッチ制御回路 45は 1タイムスロット前に受信した制御データ C 1に基づ 、て,現タ ィムスロットにぉ 、てオン/オフするスィッチ部 42の光スィッチを決定してオン/オフ制 御して、光信号を所定のユーザに伝送する。又、スィッチ制御回路 45は 1タイムスロッ ト前に受信した制御データ C2に基づいて,現タイムスロットにおいてオン/オフするスィ ツチ部 50の光スィッチを決定してオン/オフ制御して、光信号を合波器 50bに出力す る。
第 2実施例によれば、一本の光ファイバ伝送路で双方向伝送を行なうことができる。 ,効果
本発明によれば多数のユーザ (例えば 32ユーザ)をグループ化し、該グループのュ 一ザへのデータを波長多重、時分割多重で送信するようにしたから、 1ビット当たりの コストを抑えた End to Endの光アクセスネットワークシステムを構築することが可能とな る。
特に、加入者側装置において、受信光信号を波長毎に分離してそれぞれの波長 光を加入
者端末に入力するようにすれば、収容ユーザ数を更に増加でき、 1ビット当たりのコス トを抑えることができる。
本発明によれば、中継局にお 、て光能動素子 (高速光スイッチング素子)を用い、 該スイッチング素子のオン/オフタイミングをずらし、これにより時分割多重された各ュ 一ザ宛のデータを該ユーザの加入者側装置にのみ送出するようにしたから、物理的 秘匿性を確保した光アクセスシステムを構築することが可能となる。
また、本発明によれば、加入者側装置において、入力された光信号より複数の波長 の光信号を分離し、該分離された複数の光信号を用いて送信側で暗号化された信 号を復号して加入者端末に入力するようにしたから、ますます秘匿性を確保した光ァ クセスシステムを構築することが可能となる。
本発明によれば、オン/オフ可能な半導体光増幅器(SOA: Semiconductor Optical Amplifier)をスイッチング素子として使用しているため、光増幅器を別途設ける必要が なくなり、し力も、マルチキャストにも対応でき、中継局の低コストィ匕および小型化が実 現可能である。
本発明によれば、中継局を 2以上に分割し、かつ、スイッチングを行うようにしたから 、光アクセスネットワークシステムをツリー状やスター状のネットワークトポロジー構成と することが可能となる。
本発明によれば、周期性合分波フィルタを用いることで合分波器のポートを減らし つつ、グループ単位で収容ユーザ数を拡張可能とし、初期導入コストの低減を実現 することができる。
本発明によれば、 WDM化されたパケット信号を一括してスイッチングすることが可 能であるため、ユーザ側のニーズに応じて帯域の増減が容易となる。
本発明によれば、データ用光信号と一緒に送信側力 送出される制御用光信号を 用いてスイッチング素子をオン/オフするようにしたから、時分割多重された各ユーザ 宛のデータは該ユーザの加入者側装置にのみ確実に送出することができる。また、 本発明によれば、該制御用光信号を折り返し光信号として利用し、該光信号を中継 局において上りデータで変調するようにしたから、 ONUを低コストに実現可能である。 本発明によれば、加入者側装置に下り光信号の波長と異なる波長の光信号を送信 データで変調して出力する光送信器を設け、グループ毎に複数の加入者側装置の 光送信器から入力された光変調信号を時分割処理して 1つの波長の光信号とし、各 グループの該光信号を合波して下り伝送路と同一の伝送路を介して送信側に送信 するようにしたから、一芯の光ファイバ伝送路で双方向伝送を行なうことができる。

Claims

請求の範囲
[1] 波長多重された光信号 (WDM光信号)を光ネットワークより中継局において受信し 、該中継局より所定波長の光信号を加入者側装置に伝送する光アクセスネットワーク システムにおいて、前記中継局は、
前記 WDM光信号より一定波長間隔の複数の光信号を 1グループとして分波する光 分波手段、
分波された前記グループの光信号を複数に分岐する光分岐手段、
前記分岐されたグループの光信号を所定の加入者側装置に伝送する光スィッチン グ手段、
を備えたことを特徴とする光アクセスネットワークシステム。
[2] 請求項 1記載の光アクセスネットワークシステムにおいて、
前記光分波手段は、前記 WDM光信号より複数のグループの光信号をそれぞれ分 波し、かつ、グループ毎の光信号を合波して所定のポートから出力する周期性合分 波フィルタであり、前記中継局は、グループ毎に前記光分岐手段及び光スイッチング 手段を備えたことを特徴とする。
[3] 請求項 1または 2記載の光アクセスネットワークシステムにおいて、
前記光スイッチング手段を、入力ポートと出力ポート間の接続をオン/オフするスィ ツチ機能を備えた複数の光半導体増幅器で構成したことを特徴とする。
[4] 請求項 3記載の光アクセスネットワークシステムにお ヽて、
前記グループの光信号は、時間的にずらして各加入者側装置へ伝送する光信号 を多重して生成されており、前記複数の光半導体増幅器のオン/オフを時間的にず らすことにより、所定の光信号を所定の加入者側装置に入力することを特徴とする。
[5] 請求項 3記載の光アクセスネットワークシステムにお ヽて、
前記グループの光スイッチング手段を構成する前記複数の光半導体増幅器を同時 にオン駆動することにより、前記複数に分岐した同一の光信号を同時に複数の加入 者側装置に伝送することを特徴とする。
[6] 請求項 1または 2記載の光アクセスネットワークシステムにお ヽて、
前記グループを構成するは光信号の波長間隔は四光波混合が生じな!/ヽ間隔とす ることを特徴とする。
[7] 請求項 1または 2記載の光アクセスネットワークシステムにおいて、
前記波長多重されたグループの光信号を、加入者用データを伝送する光信号と該 光信号とは別波長の制御用光信号とで構成し、前記中継局はグループ毎に、 前記制御用光信号を分波する分波手段、
該分波された制御用光信号を用いて前記光スイッチング手段を構成する高速スィ ツチング素子をスイッチングする制御回路、
を備えたことを特徴とする。
[8] 請求項 7記載の光アクセスネットワークシステムにお ヽて、
前記制御回路は、前記グループの光信号を 100 s以下の光バースト信号に区切 つてスイッチングすることを特徴とする。
[9] 請求項 7記載の光アクセスネットワークシステムにお ヽて、
前記中継局は、
前記制御用光信号が位相変調されて!ヽる場合、前記加入者側装置から送信する データにより該制御用光信号を強度変調して出力する光変調部と、
各グループの光変調部から出力する光信号を合波して下り側伝送路とは別の伝送 路を経由して送信側に伝送する合波手段、
を備えたことを特徴とする。
[10] 請求項 9記載の光アクセスネットワークシステムにおいて、
前記中継局は、複数の加入者側装置から光信号で入力した送信データをそれぞ れ復調し、該複数の送信データを多重する送信データ多重部を備え、前記光変調 部は該多重された送信データにより前記制御用光信号を強度変調することを特徴と する。
[11] 請求項 9記載の光アクセスネットワークシステムにおいて、
前記中継局は、グループ毎に更に、前記分波手段により分波された前記制御用光 信号を飽和領域で増幅して前記光変調部に入力する光増幅器、
を備えたことを特徴とする。
[12] 請求項 2記載の光アクセスネットワークシステムにおいて、 前記周期性分波フィルタを備えた第 1の中継局、前記光分岐手段及び光スィッチン グ手段を備えた第 2の中継局及び加入者側装置を物理的にツリー状に接続してなる ことを特徴とする。
[13] 請求項 1または 2記載の光アクセスネットワークシステムにおいて、
前記加入者側装置は、入力された光信号より各波長の光信号を分離してそれぞれ 加入者端末に入力する波長選択フィルタを有することを特徴とする。
[14] 請求項 1または 2記載の光アクセスネットワークシステムにおいて、
前記加入者側装置は、
入力された波長多重光信号より各波長の光信号を分離する波長選択フィルタ、 該分離された光信号を用いて送信側で暗号化された信号を復号して加入者端末 に入力する復号回路、
を有することを特徴とする。
[15] 請求項 7記載の光アクセスネットワークシステムにおいて、
各加入者側装置は、下り光信号の波長と異なる波長の光信号を送信データで変調 して出力する光送信器をそれぞれ備え、
前記中継局は、
各加入者側装置の前記送信器力 入力された光信号を時間的にずらして合成して
1つの波長の光信号として出力する合成手段と、
複数のグループの前記合成手段から入力する前記光信号を合波する合波部、 該合波部から出力する光信号を下り伝送路と同一の伝送路で送信側に送信する 光力ブラ、
を備え、送信側において伝送路から加入者側より送信された該光信号を分離する ことにより、 1つの光ファイバ伝送路で双方向伝送を行なうことを特徴とする。
[16] 請求項 15記載の光アクセスネットワークシステムにおいて、
前記光力ブラは、光波長帯域合分波フィルタあるいは光サーキユレータであることを 特徴とする。
[17] 請求項 15記載の光アクセスネットワークシステムにおいて、
前記合成手段は、 各加入者側装置カゝら入力されたが光信号を時間的にずらしてスイッチングするスィ ツチング手段、
該スイッチング手段力 出力する光信号を合波して 1つの波長の光信号として出力 する合波部、
を備え、前記制御用光信号に該スイッチング手段をスイッチング制御する制御信号 を含ませることを特徴とする。
PCT/JP2006/310442 2006-05-25 2006-05-25 光アクセスネットワークシステム WO2007138642A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008517710A JP4676531B2 (ja) 2006-05-25 2006-05-25 光アクセスネットワークシステム
GB0821266A GB2452180B (en) 2006-05-25 2006-05-25 Optical access network system
PCT/JP2006/310442 WO2007138642A1 (ja) 2006-05-25 2006-05-25 光アクセスネットワークシステム
US12/292,337 US20090185804A1 (en) 2006-05-25 2008-11-17 Optical access network system
US13/524,223 US8538259B2 (en) 2006-05-25 2012-06-15 Optical access network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/310442 WO2007138642A1 (ja) 2006-05-25 2006-05-25 光アクセスネットワークシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/292,337 Continuation US20090185804A1 (en) 2006-05-25 2008-11-17 Optical access network system

Publications (1)

Publication Number Publication Date
WO2007138642A1 true WO2007138642A1 (ja) 2007-12-06

Family

ID=38778171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310442 WO2007138642A1 (ja) 2006-05-25 2006-05-25 光アクセスネットワークシステム

Country Status (4)

Country Link
US (2) US20090185804A1 (ja)
JP (1) JP4676531B2 (ja)
GB (1) GB2452180B (ja)
WO (1) WO2007138642A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021341A (ja) * 2008-07-10 2010-01-28 Fujitsu Ltd 光増幅システムおよび光増幅方法
EP2200202A1 (en) 2008-12-19 2010-06-23 Nokia Siemens Networks OY Method apparatus network and system for establishing an optical communication link for wavelength division multiplexing transmission
EP2209229A1 (en) * 2009-01-20 2010-07-21 Nokia Siemens Networks OY Optical PON system and method for data processing

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452180B (en) * 2006-05-25 2011-08-24 Fujitsu Ltd Optical access network system
US8023824B2 (en) * 2007-05-07 2011-09-20 Nec Laboratories America, Inc. Wavelength division multiplexed passive optical network
US7783197B2 (en) * 2007-05-22 2010-08-24 General Instrument Corporation Method and apparatus for reducing crosstalk in a DWDM transmission system
US8346095B2 (en) * 2009-12-07 2013-01-01 Centurylink Intellectual Property Llc System and method for providing multi-provider telecommunications services over a passive optical network
JP5357819B2 (ja) * 2010-04-12 2013-12-04 株式会社日立製作所 データ伝送装置
US8447182B2 (en) * 2010-09-30 2013-05-21 Fujitsu Limited Multi-wavelength transponder with wavelength division multiplexing modules
US9002204B2 (en) * 2010-11-12 2015-04-07 Nec Laboratories America, Inc. 1 Tb/s converged optical metro-access transmission based on wavelength division multiplexed orthogonal frequency division multiple access passive optical network (WDM-OFDMA-PON)
TWI416895B (zh) * 2010-12-07 2013-11-21 Ind Tech Res Inst 點對點光網路訊號傳送方法與其系統
US9087157B2 (en) * 2011-03-01 2015-07-21 William Loh Low-loss transmission line TDM communication link and system
US8958703B2 (en) * 2011-03-04 2015-02-17 Alcatel Lucent Multipath channel for optical subcarrier modulation
JP5853822B2 (ja) * 2012-03-29 2016-02-09 沖電気工業株式会社 加入者側装置登録方法
JP6064530B2 (ja) * 2012-11-08 2017-01-25 住友電気工業株式会社 発光モジュール及び光トランシーバ
US9559801B2 (en) * 2013-04-26 2017-01-31 Tyco Electronics Subsea Communications Llc System and method for applying system policies in an optical communication system having user-allocated bandwidth
US10928659B2 (en) 2014-02-24 2021-02-23 Rockley Photonics Limited Optoelectronic device
WO2015124954A2 (en) * 2014-02-24 2015-08-27 Rockley Photonics Limited Detector remodulator and optoelectronic switch
US9942413B2 (en) 2014-04-02 2018-04-10 Centurylink Intellectual Property Llc Multi-network access gateway
KR102251809B1 (ko) * 2014-05-28 2021-05-13 삼성전자주식회사 메모리 시스템, 메모리 인터페이스 장치 및 메모리 시스템에서의 인터페이싱 방법
US10921616B2 (en) 2016-11-23 2021-02-16 Rockley Photonics Limited Optoelectronic device
US11150494B2 (en) 2015-03-05 2021-10-19 Rockley Photonics Limited Waveguide modulator structures
EP3091678B1 (en) * 2015-05-06 2019-07-10 ADVA Optical Networking SE Optical wdm transmission network
US11101256B2 (en) 2016-11-23 2021-08-24 Rockley Photonics Limited Optical modulators
GB2559458B (en) 2016-12-02 2020-06-03 Rockley Photonics Ltd Waveguide device and method of doping a waveguide device
WO2018100157A1 (en) 2016-12-02 2018-06-07 Rockley Photonics Limited Waveguide optoelectronic device
EP3595173B1 (en) * 2017-03-06 2021-08-11 Mitsubishi Electric Corporation Demultiplexing circuit, multiplexing circuit, and channelizer relay unit
US10200144B1 (en) * 2017-09-15 2019-02-05 Nokia Of America Corporation Communication system for connecting network hosts
WO2021009853A1 (ja) * 2019-07-16 2021-01-21 日本電信電話株式会社 通信装置及び通信方法
CN110769332B (zh) * 2019-10-10 2021-10-08 东南大学 一种光电混合分层交换光接入系统
CN114830563A (zh) * 2019-12-26 2022-07-29 日本电信电话株式会社 光通信装置、光通信系统和光通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177115A (ja) * 1996-12-18 1998-06-30 Nec Corp 光波長セレクタおよび光通信システム
JPH11275614A (ja) * 1998-03-26 1999-10-08 Nec Corp 光交換装置
JP2006025373A (ja) * 2004-07-09 2006-01-26 Fujitsu Ltd 光波長多重伝送システムにおける偏波モード分散補償装置および方法
JP2006081014A (ja) * 2004-09-10 2006-03-23 Nippon Telegr & Teleph Corp <Ntt> 光アクセスシステム、光サービスユニットおよび光ネットワークユニット

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177098A (ja) * 1993-12-17 1995-07-14 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
EP0740892B1 (en) 1994-01-18 1999-04-07 BRITISH TELECOMMUNICATIONS public limited company Interconnected passive optical networks
US6867888B2 (en) * 1996-07-12 2005-03-15 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US6271949B1 (en) * 1996-12-18 2001-08-07 Nec Corporation Optical communication system using wavelength-division multiplexed light
JP3481442B2 (ja) * 1997-12-22 2003-12-22 日本電気株式会社 光ネットワーク
JP2001313660A (ja) * 2000-02-21 2001-11-09 Nippon Telegr & Teleph Corp <Ntt> 波長多重光ネットワーク
US6763191B1 (en) * 2000-07-25 2004-07-13 Eci Telecom Ltd. Optical switching apparatus and methods
US6751372B2 (en) * 2001-03-19 2004-06-15 At&T Corp Four-port wavelength-selective crossbar switches (4WCS) using reciprocal WDM MUX-DEMUX and optical circulator combination
US20020135843A1 (en) * 2001-03-20 2002-09-26 Dumitru Gruia Point-to-multipoint optical access network distributed with central office interface capacity
US7162155B2 (en) * 2001-09-04 2007-01-09 Doron Handelman Optical packet switching apparatus and methods
JP3985571B2 (ja) * 2002-04-08 2007-10-03 住友電気工業株式会社 光分波器および光伝送システム
KR100547715B1 (ko) * 2003-03-12 2006-01-31 삼성전자주식회사 코드분할 다중화를 적용한 수동형 광 가입자 망
US20050226620A1 (en) * 2004-04-05 2005-10-13 Feuer Mark D Four-port wavelength-selective crossbar switches (4WCS) using reciprocal WDM mux-demux and optical circulator combination
WO2006106973A1 (ja) * 2005-03-31 2006-10-12 Nec Corporation 光通信方法、光通信装置、及び光通信システム
JP4704842B2 (ja) * 2005-08-01 2011-06-22 株式会社日立製作所 Wdm型ponシステム
US8023825B2 (en) * 2006-04-04 2011-09-20 Cisco Technology, Inc. Optical switching architectures for nodes in WDM mesh and ring networks
GB2452180B (en) * 2006-05-25 2011-08-24 Fujitsu Ltd Optical access network system
US7706688B2 (en) * 2006-07-17 2010-04-27 University Of Ottawa Wavelength reconfigurable optical network
US20100034532A1 (en) * 2006-09-11 2010-02-11 Paolo Ghelfi Communications Network
WO2008112202A2 (en) * 2007-03-13 2008-09-18 Polatis Photonics, Inc. Method and apparatus for switching optical wavelengths
JP5267119B2 (ja) * 2008-12-26 2013-08-21 富士通株式会社 光受信装置および波長多重伝送システム
US8131151B2 (en) * 2009-10-09 2012-03-06 Fujitsu Limited Testing and measurement in optical networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177115A (ja) * 1996-12-18 1998-06-30 Nec Corp 光波長セレクタおよび光通信システム
JPH11275614A (ja) * 1998-03-26 1999-10-08 Nec Corp 光交換装置
JP2006025373A (ja) * 2004-07-09 2006-01-26 Fujitsu Ltd 光波長多重伝送システムにおける偏波モード分散補償装置および方法
JP2006081014A (ja) * 2004-09-10 2006-03-23 Nippon Telegr & Teleph Corp <Ntt> 光アクセスシステム、光サービスユニットおよび光ネットワークユニット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021341A (ja) * 2008-07-10 2010-01-28 Fujitsu Ltd 光増幅システムおよび光増幅方法
EP2200202A1 (en) 2008-12-19 2010-06-23 Nokia Siemens Networks OY Method apparatus network and system for establishing an optical communication link for wavelength division multiplexing transmission
EP2209229A1 (en) * 2009-01-20 2010-07-21 Nokia Siemens Networks OY Optical PON system and method for data processing

Also Published As

Publication number Publication date
GB0821266D0 (en) 2008-12-31
US20090185804A1 (en) 2009-07-23
US8538259B2 (en) 2013-09-17
JP4676531B2 (ja) 2011-04-27
US20120315038A1 (en) 2012-12-13
JPWO2007138642A1 (ja) 2009-10-01
GB2452180A (en) 2009-02-25
GB2452180B (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4676531B2 (ja) 光アクセスネットワークシステム
Ramaswami Multiwavelength lightwave networks for computer communication
An et al. SUCCESS-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON
US7684706B2 (en) System and method for traffic distribution in an optical network
EP2211490B1 (en) Optical network unit, wavelength splitter and optical wavelength-division multiplexing access system
US7546036B2 (en) Hybrid passive optical network using shared wavelengths
JP5024074B2 (ja) パッシブオプティカルネットワークにおける相異なる通信アーキテクチャを管理するシステムと方法
JP7525795B2 (ja) 光スイッチングシステム、光通信システム及び光通信方法
US20100021164A1 (en) Wdm pon rf/video broadcast overlay
CN101098206A (zh) 一种无源光网络系统及其光路处理方法
JP2000196536A (ja) 波長多重双方向光伝送システム
US20070189772A1 (en) Hybrid passive optical network using wireless communication
US20070177873A1 (en) Hybrid passive optical network
US8139939B2 (en) Upgradeable passive optical network
JP5821644B2 (ja) 光信号中継装置、及び光通信ネットワークシステム
JPH0832523A (ja) 通信ネットワークの端末間通信提供システム
US20230403485A1 (en) Optical communication apparatus, optical communication system and optical communication method
CN102064904B (zh) 多业务共享光分配网络的业务传输方法、系统和装置
KR20120074357A (ko) 광 신호 전송을 위한 수동형 광 네트워크 장치
JP2003234721A (ja) 光通信システム
JP2003124911A (ja) 光通信システム
JPH0817349B2 (ja) 加入者端末と通信網の分局との光接続システム
KR100889912B1 (ko) 광 가입자 망 구조
KR100767898B1 (ko) 광동축 혼합망과 광파장 다중화 전송망에서 광선로를공용하는 광전송 시스템 및 방법
US20240015422A1 (en) Optical communication apparatus, optical communication system and optical communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06756592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517710

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0821266

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060525

WWE Wipo information: entry into national phase

Ref document number: 0821266.4

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756592

Country of ref document: EP

Kind code of ref document: A1