WO2007135853A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2007135853A1
WO2007135853A1 PCT/JP2007/059489 JP2007059489W WO2007135853A1 WO 2007135853 A1 WO2007135853 A1 WO 2007135853A1 JP 2007059489 W JP2007059489 W JP 2007059489W WO 2007135853 A1 WO2007135853 A1 WO 2007135853A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
bend
electric field
display device
Prior art date
Application number
PCT/JP2007/059489
Other languages
English (en)
French (fr)
Inventor
Kazutaka Hanaoka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/296,341 priority Critical patent/US7864280B2/en
Publication of WO2007135853A1 publication Critical patent/WO2007135853A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/086UV absorbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Definitions

  • the present invention relates to a liquid crystal display device using a so-called OCB (Optically Self-Compensated Birefringence) mode in which the alignment of liquid crystal molecules is changed from a splay alignment to a bend alignment by applying an electric field.
  • OCB Optically Self-Compensated Birefringence
  • liquid crystal display devices have been widely put into practical use as a mainstream of large display devices due to the realization of high contrast and wide viewing angle.
  • the liquid crystal display devices that are currently in practical use may have a blurred outline of the display image, which may not be preferable for displaying high-speed moving images. This is because the response speed of the liquid crystal display device is relatively slow.
  • the OCB mode which is a liquid crystal mode with a fast response speed in principle, is expected as a future liquid crystal display.
  • Patent Document 1 Japanese Patent Publication “JP 2002-90747 A (Publication Date: March 27, 2002)”
  • Patent Document 2 Japanese Patent Gazette “Patent No. 3050769 (Publication Date: June 11, 1996, Registration Date: March 31, 2000)”
  • Patent Document 3 US Pat. No. 6,222,605 (Registration Date: April 24, 2001)
  • Patent Document 4 Japanese Patent Publication “JP 2003-107531 (Publication Date: 2003 4) 9th) "
  • Non-Patent Document 1 SID (The Society for Information Display) 2004 Digest, P1416 Disclosure of Invention
  • the conventional technique using a high pretilt angle has a problem that if the pretilt angle is increased, the substantial movable range of the retardation is reduced, and the brightness is significantly reduced.
  • the technique using bend nuclei has a problem that even if this technique is applied with a low pretilt angle, it is difficult to generate bend nuclei in all pixels. There is a problem that after the bend orientation occurs near the bend nucleus, the spreading speed of the bend orientation is slow. Therefore, it is not possible to easily obtain bend alignment over the entire liquid crystal display panel.
  • the present invention has been made in view of the above-described problems, and its purpose is to maintain brightness and to reduce the burden on the driving driver while maintaining the high-speed response characteristic of the CB mode.
  • An object of the present invention is to provide a liquid crystal display device capable of easily obtaining bend alignment over the entire liquid crystal display panel in the liquid crystal display device.
  • a liquid crystal layer is sandwiched between a pair of opposed substrates, and the liquid crystal molecules in the liquid crystal layer are bent from a spray orientation to a bend orientation when an electric field is applied.
  • the pretilt angle force of the liquid crystal molecules is 18 ° to 36 °
  • And is the product of the refractive index anisotropy ⁇ of the liquid crystal molecules and the thickness d of the liquid crystal layer
  • An electric field applying unit that applies a lateral electric field parallel to the substrate and that bend-aligns the liquid crystal molecules in a region corresponding to each pixel in the liquid crystal layer that is 850 nm to 1170 nm. It is a characteristic.
  • the presence / absence of generation of bend nuclei and the spray bend transition are deeply related to the magnitude of the pretilt angle and the application of the transverse electric field.
  • the liquid crystal display device includes an electric field applying unit that applies a lateral electric field parallel to the substrate to bend-align the liquid crystal molecules in a region corresponding to each pixel in the liquid crystal layer.
  • an increase in the bend orientation generation rate and an increase in the bend orientation spreading speed can be realized at the same time.
  • the high pretilt promotes the splay-bend transition, but since each pixel is individually separated, the bend alignment does not spread to a pixel in which no bend nucleus is generated. The splay orientation may remain. In particular, this alignment non-transition tends to occur at the end of the liquid crystal display device where the cell thickness and pretilt angle change.
  • the force that increases the alignment transition speed by increasing the pretilt angle is represented by the retardation ( ⁇ nd)
  • the effective range of motion will become smaller and the brightness force S will be reduced.
  • the pretilt angle and the retardation within the above-described range, the brightness is maintained while maintaining the high-speed response characteristic of the CB mode, and the burden on the driver is reduced. Bend over the entire liquid crystal display panel in a liquid crystal display device There is an effect that it is possible to provide a liquid crystal display device capable of easily obtaining alignment.
  • the liquid crystal display device of the present invention has a polymer layer on the surface of the substrate in contact with the liquid crystal layer, and the polymer layer contains liquid crystal molecules in contact with the polymer layer.
  • the pretilt angular force voltage of the crystal molecule is not applied, it is preferably maintained so that it is 18 ° or more and 36 ° or less.
  • the pretilt angle of the liquid crystal molecules can be maintained at 18 ° or more and 36 ° or less.
  • the polymer layer can be obtained, for example, by polymerizing a polymerizable monomer added to the liquid crystal layer while applying a voltage to the liquid crystal layer.
  • the liquid crystal molecules in the liquid crystal layer transition from the splay alignment to the bend alignment when an electric field is applied.
  • the polymer layer is formed by polymerizing the polymerizable monomer added to the liquid crystal layer while applying a voltage to the liquid crystal layer, so that the liquid crystal molecules in contact with the polymer layer are Can be fixed with high pretilt angle
  • the polymerizable monomer is preferably a bifunctional monomer.
  • the polymerizable monomer is a bifunctional monomer, a planar polymer layer can be formed, and a desired pretilt angle can be easily obtained.
  • the change in the pretilt angle due to the deformation of the polymer layer, where the polymer layer has high rigidity, is small.
  • the electric field applying unit includes two layers of electrodes provided on different planes across the insulating layer, and the liquid crystal layer side of the two layers of electrodes.
  • the electrode preferably has an opening in part of a region overlapping with the other electrode through the insulating layer, and the two electrodes preferably have a potential difference.
  • the electric field applying unit since the electric field applying unit has the above-described configuration, a situation in which bend alignment is dominant in terms of energy occurs due to a lateral electric field that is generated based on a potential difference between the two electrodes from the opening. As a result, bend orientation is likely to occur, and a shape suitable for generating two different domains can be easily obtained.
  • it is not divided into one pixel strength region as in the case where different voltages are applied between two electrodes on the same plane, which is preferable in terms of structure and drive.
  • the opening has a shape having a bent portion.
  • the opening has at least one U-shaped bent portion.
  • the opening has a U-shaped punched shape
  • the domains are not connected to each other, and bend nuclei are easily generated therefrom.
  • the generation of bend nuclei is promoted as compared with the case where the punched shape has a V-shape, for example.
  • the opening has a U-shaped bent portion, a plurality of bend nuclei are easily generated in one opening, and the bend orientation can be obtained more easily.
  • the insulating layer has a thickness of 0.5 / im or less.
  • the thickness of the insulating layer is related to the strength of the spring lateral electric field generated from the opening. As the thickness of the insulating layer increases, the strength of the generated lateral electric field decreases. At this time, what percentage of the applied voltage becomes a transverse electric field depends on the film thickness of the insulating layer, and there is a critical point in the thickness of the insulating layer depending on the ratio at this time. For example, when the thickness of the insulating layer is 3 ⁇ , the transverse electric field strength is 2 V // im, whereas 0.5 / 1111 is doubled 4 ⁇ // 1111. In addition, the boundary value of the transverse electric field strength required for the generation of bend nuclei is experimentally around 4VZ x m. Therefore, the thickness of the insulating layer is preferably 0.5 ⁇ m or less. According to the above invention, the lateral electric field can be generated at a low voltage, and thus the burden on the driving driver can be further reduced.
  • the electrode on the liquid crystal layer side is a pixel electrode and the other electrode is an auxiliary capacitance electrode.
  • the electrode on the liquid crystal layer side is a pixel electrode.
  • the other electrode is an auxiliary capacitance electrode, a lateral electric field generating structure can be easily formed without increasing the number of manufacturing steps, and the liquid crystal display device has an auxiliary capacitance electrode.
  • the pixel potential can be stabilized and the display performance can be further improved.
  • liquid crystal display device of the present invention it is preferable that a structure for forming irregularities in the opening is provided in the opening.
  • the bend nucleus is easily generated from the structure as described above, and the bend orientation is easily generated from the bend nucleus as a starting point. Therefore, the bend alignment can be obtained more reliably, and the orientation shift to the bend alignment is likely to occur even by a weak lateral electric field (source lateral electric field).
  • the structure is preferably a spacer.
  • the structure is a spacer, the structure for promoting the bend alignment can be easily provided without increasing the number of steps.
  • the liquid crystal display device of the present invention has a molecular pretilt angular force of 18 ° to 36 °, and is a product of the refractive index anisotropy ⁇ of the liquid crystal molecules and the thickness d of the liquid crystal layer. And is 850 nm or more and 1170 nm or less, and an electric field applying unit for applying a transverse electric field parallel to the substrate for bending alignment of the liquid crystal molecules is provided in a region corresponding to each pixel in the liquid crystal layer.
  • the liquid crystal display device of the present invention includes an electric field application unit that applies a lateral electric field and has a high pretilt. Therefore, the occurrence rate of bend alignment can be increased and the spread rate of bend alignment can be increased. it can.
  • the liquid crystal display device of the present invention includes the above-described electric field applying unit and has a high pretilt, each pixel is individually separated, and thus includes an end portion where alignment non-transition is likely to occur. Thus, bend alignment can be easily obtained over the entire liquid crystal display device.
  • the liquid crystal display device of the present invention facilitates bend alignment over the entire liquid crystal display panel in the liquid crystal display device while maintaining the brightness while maintaining the high-speed response characteristic of the OCB mode. There is an effect that it can be obtained.
  • FIG. 1 (a) is a graph showing a relationship among an alignment transition time, a pretilt angle, and a white transmittance required for spray-bend transition in a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 1 (b) is a graph showing the relationship between response time, retardation (And), and white transmittance.
  • FIG. 2 is a block diagram showing a schematic configuration of a main part of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a schematic configuration of a main part of a liquid crystal display panel in a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 4 is a plan view schematically showing a schematic configuration of a main part of an electrode substrate in the liquid crystal display panel shown in FIG.
  • FIG. 5 (a) is a cross-sectional view schematically showing how a lateral electric field is generated when viewed from a cross section of an opening forming portion that is effective for a horizontal electric field generating mechanism in the liquid crystal display panel shown in FIG. is there
  • FIG. 5 (b) is a plan view schematically showing the state of generation of bend nuclei in the opening forming portion shown in FIG. 5 (a).
  • FIG. 6 A diagram showing the intensity of the electric field generated in the vicinity of the opening of the lateral electric field generating mechanism in terms of the density of electric lines of force when the thickness of the insulating layer acting on the lateral electric field generating mechanism is 3 ⁇ m It is.
  • FIG. 7 The intensity of the electric field generated in the vicinity of the opening in the liquid crystal display device of the present invention of the lateral electric field generation mechanism when the thickness of the insulating layer acting on the lateral electric field generation mechanism is 0.3 zm. It is a figure shown by the density of an electric force line.
  • FIG. 8 A diagram showing the state of occurrence of bend nuclei for a combination of two types of insulating layer thicknesses and two types of punched shapes.
  • FIG.9 Microscopic view when presence / absence of lateral electric field generation mechanism and opening shape are made different It is a figure which shows the mode of the orientation transfer to a bend orientation using a mirror photograph.
  • FIG. 10 (a)] is a cross-sectional view of a principal part of a liquid crystal display panel, showing a method for realizing a high pretilt angle by forming a polymer layer in the liquid crystal cell.
  • FIG. 10 (b)] is a cross-sectional view of a principal part of a liquid crystal display panel showing a method for realizing a high pretilt by forming a polymer layer in the liquid crystal cell.
  • FIG. 10 (c)] is a cross-sectional view of a principal part of a liquid crystal display panel, showing a method for realizing a high pretilt by forming a polymer layer in the liquid crystal cell.
  • FIG. 10 (d)] is a cross-sectional view of a principal part of a liquid crystal display panel, showing a method for realizing a high pretilt by forming a polymer layer in the liquid crystal cell.
  • FIG. 11 (a)] is a diagram specifically showing, in a cross section of a liquid crystal display panel, a method for realizing a high pretilt angle by forming a polymer layer in a liquid crystal cell in the liquid crystal display panel.
  • FIG. 11 (b) is a diagram specifically showing, in a cross section of a liquid crystal display panel, a method for realizing high pretilt resistance by forming a polymer layer in a liquid crystal cell in the liquid crystal display panel.
  • FIG. 11 (c)] is a diagram specifically showing, in a cross section of the liquid crystal display panel, a method for realizing a high pretilt resistance by forming a polymer layer in the liquid crystal cell in the liquid crystal display panel.
  • Fig. 12 (a)] is a diagram showing the state of orientation transition caused by the application of a voltage, obtained using a micrograph, over time in this order.
  • Fig. 12 (b)] is a diagram showing the state of orientation transition caused by the application of voltage, obtained using a micrograph, in this order over time.
  • Fig. 12 (c)] is a diagram showing the state of orientation transition caused by the application of voltage, obtained using a micrograph, over time in this order.
  • FIG. 13 is a plan view schematically showing a schematic configuration of a main part of an electrode substrate in a liquid crystal display panel having a horizontal electric field generating mechanism having a different opening shape from that of FIG.
  • FIG. 14 (a)] is a cross-sectional view of a liquid crystal display panel showing a method for realizing a high pretilt by forming a polymer layer in a liquid crystal cell having a COA structure.
  • FIG. 14 (b)] is a cross-sectional view of a liquid crystal display panel showing a method for realizing a high pretilt by forming a polymer layer in a liquid crystal cell having a C0A structure.
  • FIG. 15 (a)] is a cross-sectional view schematically showing a schematic configuration of a main part of a liquid crystal display panel according to another embodiment of the present invention.
  • FIG. 15 (b)] is a plan view schematically showing the state of generation of a bend nucleus in the opening forming portion of the electrode substrate of the liquid crystal display panel shown in FIG. 15 (a).
  • FIG. 17 is a diagram showing an example of the shape of the opening in the liquid crystal display device according to one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a main part of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 3 shows the main part of the liquid crystal display panel in the liquid crystal display device. It is sectional drawing which shows typically schematic structure of these.
  • FIG. 4 is a plan view schematically showing a schematic configuration of a main part of the electrode substrate in the liquid crystal display panel.
  • the liquid crystal display device 1 includes a liquid crystal display panel 50 and
  • the control circuit 40, the source driver 41, and the gate driver 42 are provided.
  • pixels 51 are arranged in a matrix, and these pixels
  • a source line 44 connected to the source driver 41 and a gate line 43 connected to the gate driver 42 are provided so as to intersect with each other.
  • the source line 44 and the gate line 43 are driven by a source driver 41 and a gate driver 42, respectively.
  • the liquid crystal display panel 50 includes a first substrate provided to face each other.
  • a liquid crystal layer 4 is formed by sandwiching liquid crystal between both substrates.
  • CF (color filter) substrate is used as the first substrate 2A and an array substrate is used as the second substrate 2B will be described as an example.
  • the first substrate 2A includes, for example, a color filter layer (not shown), an overcoat layer (not shown), ITO (Indium Tin) on a transparent substrate 15 (transparent insulating substrate) such as a glass substrate.
  • a common electrode (counter electrode) 16 and an alignment film (not shown) made of Oxide) are laminated in this order on the transparent substrate 15 side.
  • the second substrate 2B is provided with a first electrode 12 on a transparent substrate 11 (transparent insulating substrate) such as glass, and the insulating layer 13 is interposed on the first electrode 12.
  • the second electrode 14 and the alignment film are stacked in this order from the transparent substrate 11 side.
  • a retardation plate and a polarizing plate are provided, respectively.
  • the second substrate 2B includes a gate line 43 and a source line 44 provided to intersect each other in each column and each row in the pixels 51. At the intersection where 3... and the source line 44... Transistors) 31 are provided.
  • a gate line 43 is connected to the gate electrode 31A of the TFT 31, and a source line 44 is connected to the source electrode 31B.
  • the drain electrode 31C of the TFT 31 is connected to a pixel electrode 32 (display electrode) as the second electrode 14 made of ITO or the like through a contact hole (not shown).
  • a Cs electrode (auxiliary capacitance electrode) 33 as the first electrode 12 is provided between the gate lines 43 and 43 in parallel with the gate lines 43.
  • the Cs electrode 33 is formed in the same layer as the gate line 43.
  • the pixel electrode 32 is stacked on the Cs electrode 33 via an interlayer insulating film (not shown) corresponding to the insulating layer 13.
  • the Cs electrode 33 is provided on the second substrate 2B, which is an array substrate (TFT substrate), the electrical resistance value of the liquid crystal and the off resistance value of the TFT 31 are provided. This can compensate for the leakage current when the drain electrode voltage is maintained due to the shortage of gate current, and can minimize the pull-in voltage when the gate voltage due to the gate-drain capacitance is turned off. It can be stabilized.
  • an alignment film (not shown) is formed on the pixel electrode 32. That is, on the surface of the first substrate 2A and the second substrate 2B, an alignment film (horizontal alignment film, not shown) that forms the splay alignment of the liquid crystal molecules 4A (see FIG. 3) in the liquid crystal layer 4 is formed. It is made.
  • the surfaces of these alignment films are each subjected to an alignment treatment such as a rubbing treatment for aligning the liquid crystal molecules 4A in the liquid crystal layer 4 in parallel and in the same direction.
  • the liquid crystal display device 1 is liquid crystal molecule 4A force S splay alignment when no electric field is applied to the liquid crystal layer 4, and an electric field is applied to the liquid crystal layer 4 by a voltage equal to or higher than a threshold value. Then, the liquid crystal molecules 4A transition to bend alignment (spray-bend transition), and display is performed.
  • This splay-bend transition can also occur by applying a high voltage to the liquid crystal display panel 50 or by utilizing an orientation change due to a concave-convex structure.
  • a high voltage to the liquid crystal display panel 50 or by utilizing an orientation change due to a concave-convex structure.
  • such a method is not desirable because it has a problem that the burden on the driving driver increases or a sufficient effect cannot be obtained.
  • the transition nucleus (bend nucleus)
  • a lateral electric field source lateral electric field
  • transition nuclei that are the origin of orientation transition.
  • an SiN film having a thickness of 5000A is provided as the insulating layer 13. Further, the pixel electrode 32 has a width as the opening 21, and the shape of the opening includes a U-shaped (uneven shape in plan view) as shown in FIG. It has the above bent part.
  • the Cs electrode 33 is a metal electrode made of a metal such as A1, and the pixel electrode 32 is formed of a transparent electrode made of a transparent conductive material such as ITO.
  • FIG. 5 (a) is a cross-sectional view schematically showing the appearance of a spring-out lateral electric field when viewed from the cross section of the opening 21 formation portion in the second substrate 2B.
  • b) is a plan view schematically showing the state of generation of a bend nucleus in the opening 21 formation portion.
  • each pixel 51 has a bend nucleation mechanism (nucleation structure) as an opening in the upper electrode (second electrode 14) of the first electrode 12 and the second electrode 14 stacked via the insulating layer 13. 21 is provided, the electric field that has flowed out of the opening 21 has an equipotential line curved at the opening 21, and the electric field component parallel to the surfaces of the first substrate 2A and the second substrate 2B Will have. As a result, a springing lateral electric field 24 is generated. As shown in FIG. 5 (b), the source lateral electric field 24 generates a plurality of types of domains having different orientation directions of the liquid crystal molecules 4A in the liquid crystal layer 4, and the boundary A between the domains is Bend alignment occurs.
  • the Cs electrode 33 as the first electrode 12 is generally at the same potential as the common electrode 16, and is basically the same as the pixel electrode 32 (second electrode 14) that is a display electrode.
  • the potentials are different from each other, and this forms a lateral electric field (swelling lateral electric field 24) which is an electric field parallel to the substrate surface.
  • the shape of the electrode and the strength of the electric field are important in order to reliably generate bend nuclei by a lateral electric field and to obtain bend alignment with certainty.
  • the above-described lateral electric field generating mechanism (opening) is used as the electric field applying unit for applying a horizontal electric field parallel to the first substrate 2A and the second substrate 2B to the liquid crystal layer 4. It is possible to employ various known methods that are not limited to those of the part 21). However, if a method of applying different voltages between two electrodes on the same plane is adopted as a method for forming the lateral electric field, it is necessary to divide one pixel into two regions, which is structurally driven. However, it is difficult to say that the generated transverse electric field is sufficient.
  • a part of the pixel electrode 32 that is an upper layer electrode of the part where the electrode is doubled in each pixel 51, for example, the part where the Cs electrode 33 is formed is removed.
  • the method of using the source lateral electric field 24 that is generated by the potential difference with the lower electrode Cs electrode 33 can generate a sufficient lateral electric field with a simple configuration.
  • FIG. 6 and FIG. 7 are diagrams showing the intensity of the electric field generated in the vicinity of the opening 21 by the density of the electric lines of force, and the 8V between the pixel electrode 32 and the Cs electrode 33 is shown.
  • FIG. 6 shows the case where the thickness of the insulating layer 13 is 3 zm
  • FIG. 7 shows the case where the thickness of the insulating layer 13 is 0.3 ⁇ m. 6 and 7, the vicinity of the center in the horizontal direction in the figure is the place where the opening 21 is formed, and the arrow in the figure indicates the direction of the lateral electric field 24 generated from the end face of the opening 21. ing.
  • SiN was used for the insulating layer 13.
  • the strength of the generated lateral electric field 24 decreases as the thickness of the insulating layer 13 increases.
  • the thickness of the insulating layer 13 was variously changed and the strength of the transverse electric field generated when a voltage of 8 V was applied between the pixel electrode 32 and the Cs electrode 33, the thickness of the insulating layer 13 was In the case of 3 / im, the force of 2V // im was 0.5V / im, doubled to 4V // im, and a big difference was obtained from the viewpoint of bend nucleation.
  • what percentage of the applied voltage becomes the lateral electric field depends on the film thickness of the insulating layer 13, and what percentage should be sufficient at this time is a critical point.
  • the applied voltage is set to 8V in normal driving. For this reason, the applied voltage was set to 8V.
  • the thickness of the insulating layer 13 is preferably 0.5 zm or less.
  • the thickness of the insulating layer 13 is 0.5 xm or less, as in the case where the thickness of the insulating layer 13 is 0.3 ⁇ m. In some cases, a good transverse electric field was obtained.
  • the shape of the opening 21 is also involved in the generation of the bend nucleus.
  • Fig. 8 is a diagram showing the state of generation of bend nuclei for the combinations of the thicknesses of the two types of insulating layers 13 and the two types of punched shapes.
  • the occurrence rate of bend nuclei means the ratio of pixels 51 where bend nuclei are generated among the observed pixels 51.
  • the punched shape preferably includes at least one bent portion.
  • the shape of the opening 21 is also important in order to reliably generate a bend alignment by a lateral electric field.
  • the pixel electrode 32 which is the upper layer electrode, has a U-shape or a shape in which the U-shape is continuously bent as shown in FIG.
  • a certain shape is preferably bent so as to meander. This is because, as shown in Fig. 5 (b), the above-mentioned two types of domains are generated at a short distance in the bent part of the above shape, so that the bend nucleus is difficult to live.
  • the difference in alignment transfer to bend alignment due to the presence / absence of the lateral electric field generation mechanism (opening 21) and the difference in the shape of the opening 21 is determined. explain about.
  • FIG. 9 is a photomicrograph when the presence / absence of a lateral electric field generating mechanism (opening 21) and the shape of the opening 21 are partially made different from the panel surface of the liquid crystal display panel 50. It is a figure which shows the mode of the orientation transfer to the used bend orientation.
  • the panel surface shown in FIG. 9 has a total of six areas, two in the vertical direction and three in the horizontal direction.
  • the upper right region is the region (region I) where the lateral electric field generation mechanism (opening 21) is not formed, and the upper left, upper center, and lower right regions generate the horizontal electric field.
  • the opening 21 as a mechanism is formed, it is a region (region ⁇ ) that is not the above-mentioned preferable punched shape, and the lower left and the lower middle region are the same as the above described transverse electric field generating mechanism.
  • This is a region (region III) in which the above-mentioned preferable opening 21 having a bent portion is formed.
  • the presence or absence of generation of bend nuclei and the transition to bend alignment are also related to the size of the pretilt angle. In a state where the pretilt angle is low, it is difficult for all the pixels 51 to generate bend nuclei, and the bend nuclei cannot be controlled with only bend nuclei.
  • a polymer layer provided in the liquid crystal cell in the liquid crystal display panel 50 is used to realize a high pre-trento. Yes.
  • FIGS. 10 (a) to 10 (d) show a method for realizing a high pretilt curve by forming a polymer layer in the liquid crystal cell of the liquid crystal display panel 50 and its principle. This will be described below with reference.
  • FIG. 10 (a) to FIG. 10 (d) show the key points of the liquid crystal display panel 50, showing a method for realizing high pretilt by forming a polymer layer in the liquid crystal cell of the liquid crystal display panel 50.
  • FIG. FIGS. 10 (a) to 10 (d) schematically show how the polymer layer is formed in the liquid crystal cell in the order of steps.
  • FIG. 10 (a) shows a liquid crystal and a polymerizable monolith in the liquid crystal cell 50A of the liquid crystal display panel 50.
  • the photopolymerization monomer 6A is filled as a polymer, showing a state before photopolymerization and without application of voltage.
  • FIG. 10B shows a state in which a voltage is applied to the liquid crystal display panel 50 shown in FIG.
  • FIG. 10 (c) shows a state where a polymer layer is formed by polymerizing the photopolymerizable monomer added to the liquid crystal while applying a voltage from the state shown in FIG. 10 (b).
  • FIG. 10 (d) shows a state when the voltage is released after UV irradiation of the liquid crystal display panel 50.
  • an alignment film 5 is formed on the surface of the first substrate 2A and the second substrate 2B that faces the liquid crystal layer 4.
  • the alignment film 5 is formed on the surface of each substrate and then rubbed in a direction parallel to the first substrate 2A and the second substrate 2B by a conventional method.
  • the polymerizable monomer to be added to the liquid crystal is not particularly limited, but it can form a planar polymer, and from the viewpoint of the rigidity of the obtained polymer, 2
  • a functional polymerizable monomer, in particular, a photopolymerizable monomer is preferably used.
  • a liquid crystalline bifunctional monomer having a skeleton in which two benzene rings are continuous is particularly preferable because it can impart rigidity to the polymer after polymerization.
  • a trifunctional or higher functional monomer can be used for the purpose of improving reactivity.
  • TMPT trimethylolpropane trimetatalylate
  • a monofunctional polymerizable monomer is not desirable because it cannot form a planar polymer and may not have a necessary pretilt.
  • the liquid crystal is not particularly limited, and a conventionally known liquid crystal material can be used.
  • TMPT which is a photopolymerizable monomer
  • the invention is not limited to this.
  • TMPT in a proportion exceeding 1.5 wt% is added to the P-type liquid crystal.
  • the pretilt angle in the state shown in FIG. 10 (a) is 8 ° or less, and the alignment state of the liquid crystal molecules 4A in the liquid crystal layer 4 is as follows. The state was low pretilt splay alignment.
  • the liquid crystal cell 50A is applied with a voltage applied thereto.
  • the polymer layer 6 is formed on the alignment film 5 by irradiating UV (ultraviolet light) to the photopolymerizable monomer 6A added to the polymer to form a polymer layer 6 on the alignment film 5
  • the liquid crystal molecules 4A in the vicinity of the polymer layer 6 are shown in FIG. It is fixed to the polymer layer 6 with a high pretilt angle when a voltage is applied in (b).
  • the liquid crystal molecules 4A in the vicinity of the polymer layer 6 are aligned in a state with a high pretilt angle, and in the thickness portion of the liquid crystal layer 4 away from the polymer layer 6.
  • the liquid crystal molecules 4A in the substantially central part are continuous from the liquid crystal molecules 4A in the vicinity of the polymer layer 6 on one substrate to the liquid crystal molecules 4A in the vicinity of the polymer layer 6 on the other substrate while gradually changing the inclination angle.
  • the liquid crystal display panel 50 is aligned substantially parallel to the thickness direction.
  • the method of collecting the photopolymerizable monomer 6A in the vicinity of the alignment film 5 and forming the polymer layer 6 on the alignment film 5 is not particularly limited.
  • the force S is effective because the polymer layer 6 can be easily formed on the alignment film 5.
  • FIG. 11 (a) to 11 (c) show a method for realizing a high pretilt by forming a polymer layer in the liquid crystal cell 50A in the liquid crystal display panel 50.
  • FIG. 11 (a) shows a state in which a voltage is applied to the liquid crystal display panel 50
  • FIG. 11 (b) shows a state in which the liquid crystal display panel 50 is irradiated with UV.
  • FIG. 11 (c) schematically shows the alignment state of the liquid crystal molecules 4A in the obtained liquid crystal display panel 50.
  • FIG. 11 (a) to 11 (c) show a method for realizing a high pretilt by forming a polymer layer in the liquid crystal cell 50A in the liquid crystal display panel 50.
  • FIG. 11 (a) shows a state in which a voltage is applied to the liquid crystal display panel 50
  • FIG. 11 (b) shows a state in which the liquid crystal display panel 50 is irradiated with UV.
  • FIG. 11 (c) schematically shows the alignment state of the liquid crystal
  • the liquid crystal display panel 50 before being filled with the liquid crystal molecules 4A is manufactured by a conventional method. Specifically, first, as shown in FIG. 11 (a), the first substrate 2A is provided with the color filters 3A of the respective colors corresponding to the respective pixels, and the common filter not shown so as to cover these color filters 3A. An electrode, an alignment film, etc. are formed. A black matrix 3 ⁇ is provided between the color filters 3 ⁇ and 3 ⁇ ⁇ ⁇ . On the other hand, on the second substrate 2B, a TFT 31 force S is provided for each pixel, and a Cs electrode, an interlayer insulating film, a pixel electrode, an alignment film, etc. (not shown) are formed.
  • the alignment films formed on the first substrate 2A and the second substrate 2B are subjected to a rubbing process in a direction parallel to the substrates, and then both substrates are arranged to face each other and before liquid crystal filling by a conventional method. Assemble the liquid crystal display panel 50.
  • the two substrates are arranged to face each other so that the cell thickness, that is, the gap between the two substrates (liquid crystal layer thickness d) is 7 ⁇ m.
  • a mixed material of liquid crystal and a polymerizable monomer is prepared as a pre-polymerization mixed material to be filled in the liquid crystal display panel 50.
  • the pre-polymerization mixed material is obtained by adding 0.5 wt% of a bifunctional photopolymerizable monomer to a positive ( ⁇ ) type liquid crystal having a refractive index anisotropy ⁇ of 0.13. Prepared.
  • the liquid crystal molecules 4A in the liquid crystal layer 4 in the liquid crystal display panel 50 are converted into the liquid crystal display panel 50.
  • an alternating voltage (AC) of 20 V (60 Hz) exceeding the boundary voltage (Vcr) was applied to the entire surface of the liquid crystal display panel 50.
  • the liquid crystal display panel 50 was irradiated with UV while the voltage was applied, to polymerize the photopolymerizable monomer 6A.
  • the UV irradiation is performed twice for primary irradiation and secondary irradiation.
  • the entire surface of the liquid crystal display panel 50 was irradiated with UV (365 nm) and 10 jZcm 2 using an ultrahigh pressure mercury lamp as a light source.
  • This UV irradiation is performed from the second substrate 2B side, not from the first substrate 2A side, as shown in FIG. 11 (b) because UV cannot pass through the color filter 3A.
  • the pretilt angle was 25 °.
  • the portion where the bus line 43 and the TFT 31 (not shown) such as the gate line 43 and the source line 44 are formed does not transmit UV, so the pre-polymerization mixed material is not irradiated with UV. May exist. Therefore, secondary irradiation is performed to polymerize the remaining polymerizable monomer that has not been polymerized by the primary irradiation. Specifically, the liquid crystal display panel 50 was allowed to stand for 24 hours under normal fluorescent light with no voltage applied. By this secondary irradiation, the remaining polymerizable monomer became almost 0%.
  • the pretilt angle of the liquid crystal molecules 4A in the obtained liquid crystal display panel 50 is the same as the portion where the color filter 3A is formed on the first substrate 2A and the second substrate 2B.
  • the pretilt angle of the portion where the TFT 31 was not formed was 25 °.
  • the pretilt angle of the portion where the BM3B is formed on the first substrate 2A and the portion where the TFT31 is formed on the second substrate 2B was 8 °.
  • the photopolymerizable monomer added to the liquid crystal is photopolymerized in a state where a sufficiently high voltage (> Vcr) is applied to the liquid crystal display panel 50. A high pretilt angle was achieved.
  • the OCB mode features.
  • the following is a description of the results of investigations based on the size of the retardation ( ⁇ nd) that can maintain brightness while maintaining high-speed response.
  • Fig. 1 (a) and Fig. 1 (b) show the relationship between the orientation transition time required for the splay bend transition, the pretilt angle, and the white transmittance, as well as the response time, retardation (And), and white transmittance. The results of measuring this relationship are shown below.
  • Figure 1 (a) shows the relationship between the pretilt angle (horizontal axis) and orientation transition time (left vertical axis), and the relationship between the pre-tilt angle (horizontal axis) and white transmittance (right vertical axis). It is a graph which shows.
  • Figure 1 (b) shows the relationship between ⁇ nd (horizontal axis) and response time (left vertical axis), and the relationship between ⁇ ⁇ (horizontal axis) and white transmittance (right vertical axis). It is a graph.
  • the alignment transition time indicates the time required for the entire surface of the liquid crystal display panel 50 to bend in the state where a direct current voltage (DC) of 25 V is applied to the entire surface of the liquid crystal display panel 50, and the white transmittance Shows the transmissivity when the transmissivity of two polarizers with their absorption axes aligned is 100%. In the process of calculating the white luminance, it is calculated and incorporated so that the contrast is maximized in the calculation.
  • DC direct current voltage
  • Figure 1 (a) shows a liquid crystal display panel using the current liquid crystal material suitable for CB mode, with the cell thickness (liquid crystal layer thickness d) fixed at 8. lzm and the retardation (And) fixed at 1050 nm.
  • the pretilt angle dependence of the alignment transition time at _30 ° C when using is indicated by “ ⁇ ”, and the pretilt angle dependence of white transmittance is indicated by “country”.
  • Figure 1 (b) shows a liquid crystal display panel using the current liquid crystal material suitable for the OCB mode, with a cell thickness (liquid crystal layer thickness) of 8.5 / m and a pretilt angle of 25 °.
  • the response time at -30 ° C is indicated by “order”
  • the white transmittance is indicated by “country”.
  • the above-described lateral electric field generation mechanism (opening 21) Using liquid crystal display panels with the same conditions except for the presence or absence of, the pre-tilt angle dependence of the orientation transition time at _30 ° C was measured.
  • the liquid crystal display panel 50 provided with the lateral electric field generating mechanism (opening 21) shown in FIG. 4 is applied to the liquid crystal display panel 50 as shown in FIG.
  • the pretilt angle dependence of the alignment transition time at -30 ° C was measured. The result is indicated by “ ⁇ ” in Fig. 1 (a).
  • the alignment transition time is indicated by “order”.
  • the alignment transition time is less than 5 seconds as shown by “ ⁇ ”. It is awkward that it was shortened.
  • the responsiveness and brightness of the liquid crystal display panel 50 depend on conditions such as the presence / absence of the lateral electric field generation mechanism (opening 21), pretilt angle, retardation (And), and the like. For example, it differs depending on the type of liquid crystal material.
  • the above-mentioned display performance is examined by variously changing the above-mentioned conditions, and the conditions for obtaining the best characteristics (liquid crystal materials)
  • Dependency and Retardation (A nd) dependence of white transmittance are shown in Fig. 1 (b) as "O" and "Calligraphy", respectively.
  • the pretilt angle is 27 ° or more for “ ⁇ ” and 18 ° or more for “ ⁇ ”.
  • the white transmittance required for the OCB mode liquid crystal display device is about the transmittance of a general TN (Twisted Nematic) mode liquid crystal display device (95% of parallel polarizers). 70
  • the lower limit is 66%, which is the lower limit in the mode using birefringence.
  • the pretilt angle is 33 ° or less for “country” and 36 ° or less for “ ⁇ ”.
  • the orientation transition time at 30 ° C and the pretilt angle required for the white transmittance to be in the above range are the physical properties of the liquid crystal material (dielectric anisotropy, elastic modulus).
  • the force S varies slightly depending on the liquid crystal material and the structure of the liquid crystal display panel, and the pretilt angle of approximately 18 ° to 36 °
  • the retardation (And) will be described based on FIG. 1 (b). And is preferably increased in order not to decrease the white transmittance (for example, the liquid crystal layer thickness is increased), but at the same time, the response characteristic is deteriorated (response time is delayed), so it cannot be increased significantly. .
  • the white transmittance required for the OCB mode liquid crystal display device is, as described above, 66
  • CounterCountry is 910nm or more, and “K” is 850nm or more.
  • the response time required for the OCB mode liquid crystal display device is limited to 200 ms, which is the fastest value of the TN mode liquid crystal display device at _30 ° C, excluding brightness. Determined.
  • a nd is 1110 or less for “ ⁇ ” and 1170 nm or less for “ ⁇ ”.
  • the response time at -30 ° C and the retardation required for the white transmittance to be in the above range are expressed as the physical properties of the liquid crystal material.
  • the values (dielectric anisotropy and elastic modulus) within the effective range for the OCB mode there is a slight fluctuation depending on the liquid crystal material and the structure of the liquid crystal display panel.
  • a preferable range in an OCB mode liquid crystal display device using bend alignment This range substantially satisfies the physical properties that can be considered as a liquid crystal material for obtaining bend alignment as described above. I can say.
  • an nd of the liquid crystal layer 4 is set large and a bend nucleus is formed.
  • the bend orientation is maintained over the entire liquid crystal display panel 50 while maintaining the high-speed response characteristic of the OCB mode and maintaining the brightness and without increasing the burden on the driver. Can be easily obtained.
  • Fig. 12 (a) to Fig. 12 (c) show the state of orientation transition caused by the application of voltage, obtained using micrographs, as shown in Fig. 12 (a), Fig. 12 (b), Fig. 12 It is a figure shown in order of the order of (c).
  • the voltage application conditions at this time are as follows.
  • the pixel electrode 32 is supplied with an AC voltage (AC) of 10 V (60 Hz) so that the Cs electrode 33 and the pixel electrode 32 have opposite polarities while the potential of the common electrode 16 is set to the ground (GND).
  • AC AC voltage
  • the pre-tilt angle of the liquid crystal display panel 50 used was 25 °, and the ambient temperature was set to 30 ° C.
  • the shape of the opening 21 is a shape having a U-shaped punched shape in a plan view as in FIG. 4 as shown in FIGS. 12 (a) to 12 (c).
  • the bend nucleus 23 is generated in the bent portion 21A of the opening 21 by applying a voltage, and as time passes, the bend nucleus 23 is shown in FIG. 12 (b) and FIG. 12 (c).
  • the orientation transition from the splay alignment to the bend alignment 20 occurred with the bend nucleus 23 as a starting point.
  • an effective lateral electric field (source lateral electric field 24) is applied to the liquid crystal layer 4 in the state of high pretilt as described above.
  • source lateral electric field 24 is applied to the liquid crystal layer 4 in the state of high pretilt as described above.
  • the bend nucleus 23 is surely generated in the bent portion 21A of the opening 21, and the bend nucleus 23 is the starting point, and the bend orientation is efficiently changed from the splay orientation. It can be seen that the orientation transition to 20 occurs, and under the above conditions, the display performance such as high-speed response, brightness, and contrast is maintained as described above. It can be seen that the number of occurrences of the bend orientation 20 (bend nuclei 23) can be increased and the spreading speed of the bend orientation 20 can be improved while keeping this.
  • the force Although the case where the large filter 3A is formed on the first substrate 2A has been described as an example, the substrate on which the color filter 3A is formed is not limited to the first substrate 2A, and the liquid crystal display panel 50 is As shown in Fig. 14 (a) to Fig. 14 (c), it is also possible to adopt a COA (Color-filter On Alley) structure formed on the second substrate 2B on which the color filter 3A force TFT31 is formed. .
  • COA Color-filter On Alley
  • FIGs. 14 (a) to 14 (c) show a method of realizing a high pretilt curve by forming a polymer layer in the liquid crystal cell 50A in the liquid crystal display panel 50 having the C0A structure.
  • FIG. 14 (a) shows a state in which a voltage is applied to the liquid crystal display panel 50
  • FIG. 14 (b) shows the liquid crystal display panel.
  • FIG. 14 (c) schematically shows the alignment state of the liquid crystal molecules 4A in the obtained liquid crystal display panel 50.
  • the TFT 31 and the color filter 3A are formed on each pixel on the second substrate 2B.
  • one substrate that is, the first substrate 2A has no structure that serves as a UV light shielding body. Therefore, as shown in FIG. 14 (b), by irradiating UV from the first substrate 2A side, the irradiated UV force reaches the entire pre-polymerization mixed material filled in the liquid crystal cell 50A of the liquid crystal display panel 50. . Therefore, it is possible to further reduce the residual photopolymerizable monomer after UV irradiation. Note that the pretilt angle after primary irradiation in the liquid crystal display panel 50 employing this COA structure was 25 ° over the entire panel surface as shown in FIG. 14 (c).
  • FIG. 15 (a) is a cross-sectional view schematically showing a schematic configuration of a main part of the liquid crystal display panel in the liquid crystal display device according to the present embodiment
  • FIG. 5 is a plan view schematically showing the state of generation of bend nuclei in the opening forming portion of the electrode substrate (first substrate) in the panel.
  • FIG. 16 is a diagram showing the state of alignment transfer to bend alignment using a micrograph when a voltage is applied to the liquid crystal display panel 50, which is useful in the present embodiment.
  • the liquid crystal display panel 50 which works on the present embodiment is different from the liquid crystal display panel 50 according to the first embodiment.
  • a spacer 22 is provided as a structure in the opening 21 in the horizontal electric field generating mechanism.
  • the spacer 22 has a spherical shape (bead shape), and the size is substantially the same as the liquid crystal layer thickness of the liquid crystal display panel 50.
  • the portion where the spacer 22 is disposed is preferably a point where two domains, which are points where a bend orientation (bend nucleus) is generated, collide with each other in the opening 21. That is, it is preferable that the portion where the spacer 22 is disposed is the bent portion 21A in the opening 21.
  • the opening 21 in the lateral electric field generation mechanism has a U-shaped punched shape is mainly described as an example. Limited to As shown in FIGS. 17A to 17P, various shapes are conceivable as the shape of the opening 21 that is not determined. Among these, the shape of the opening 21 preferably includes at least one bent portion, more preferably two or more bent portions.
  • the opening 21 has a U-shaped punched shape (bent portion) as shown in Fig. 17B or the first embodiment, the boundary A ( As shown in Fig. 5 (b)), the left and right domains are not connected, and a bend nucleus is generated from there.
  • the punched shape has a U-shape
  • the generation of bend nuclei is promoted more than when the punched shape is a V-shape.
  • the opening 21 has a U-shaped bent portion, a plurality of bend nuclei are easily generated in one opening, and the bend orientation can be obtained more easily.
  • the U shape is more preferable than the V shape as the punched shape. That is, it is more preferable that the opening 21 has at least one U-shaped bent portion such as a U-shape or a continuous U-shape.
  • the arrangement location of the spacer 22 is not particularly limited, and can be arranged at various locations other than the bent portion of the opening 21. Among these, the bent portion in the opening 21 is preferable.
  • the method of disposing the spacer 22 in the opening 21 is not particularly limited.
  • a force S can be applied by using a spraying method, an ink jet method, or the like.
  • the spacer 22 has been described as an example of the structure, but the structure disposed in the opening 21 is not limited thereto. Instead, various structures capable of forming irregularities in the opening 21 can be used. This structure can be formed using, for example, metal or resin.
  • the structure can be directly formed in the opening 21 by using a photolithography technique.
  • the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention.
  • Industrial applicability The liquid crystal display device of the present invention easily obtains bend alignment over the entire liquid crystal display panel while maintaining the brightness and maintaining the high speed response characteristic of the OCB mode without increasing the burden on the driver.
  • image display devices such as televisions and monitors, OA devices such as word processors and personal computers, or image display devices provided in information terminals such as video cameras, digital cameras, and mobile phones, Can be widely applied.

Abstract

 OCBモードの特徴である高速応答性を維持しながら、明るさを保ち、かつ駆動ドライバーの負担を大きくすることなく、液晶表示装置における液晶表示パネル全体にわたってベンド配向を容易に得ることができる液晶表示装置を提供する。液晶表示装置は、対向する一対の基板間に挟持された液晶層における液晶分子のプレチルト角が、18°以上36°以下であり、液晶の屈折率異方性△nと、上記液晶層の厚みdとの積である△ndが、850nm以上1170nm以下であり、上記液晶層における各画素に対応する領域に、上記液晶分子をベンド配向させる、上記基板に平行な横電界を印加する横電界発生機構を備えている。

Description

明 細 書
液晶表示装置
技術分野
[0001] 本発明は、電界の印加によって液晶分子の配向がスプレイ配向からベンド配向に 転移するレ、わゆる OCB (Optically self-Compensated Birefringence)モードを利用し た液晶表示装置に関するものである。
背景技術
[0002] 近年、液晶表示装置は、高コントラスト及び広視野角が実現されたことによって、大 型表示装置の主流として広く実用化されてレ、る。
[0003] しかし、現在実用化されている液晶表示装置は、表示画像の輪郭がぼやける場合 があり、高速の動画を表示するのに好ましくない場合がある。これは、液晶表示装置 の応答速度が比較的遅レ、ことに起因する。
[0004] そこで、原理的に応答速度の速い液晶モードである OCBモードが、今後の液晶デ イスプレイとして期待されてレ、る。
[0005] し力、し、この〇CBモードでは、その動作条件であるベンド配向を得ること自体が極 めて難しい。そこで、上記ベンド配向を得るために種々の技術が提案されている。
[0006] 例えば、液晶表示パネルに高レ、電圧を印加してベンド配向を得る技術や、構造物 又は凹凸構造を利用してベンド配向を得る技術が提案されている(特許文献 1参照)
[0007] また、ポリマーを用いて高いプレチルト角を実現し、ベンド配向を安定化する技術も 提案されている (特許文献 2及び 3参照)。
[0008] さらに、横電界などによってベンド核 (ベンド配向への配向転移の起点)を発生させ る技術も提案されてレ、る(特許文献 4、非特許文献 1参照)。
特許文献 1 :日本国公開特許公報「特開 2002— 90747号公報 (公開日: 2002年 3 月 27日)」
特許文献 2 :日本国特許公報「特許第 3050769号公報(公開日: 1996年 6月 11日、 登録日: 2000年 3月 31日)」 特許文献 3 :米国特許第 6, 222, 605号明細書 (登録日: 2001年 4月 24日) 特許文献 4 :日本国公開特許公報「特開 2003— 107531号公報 (公開日: 2003年 4 月 9日)」
非特許文献 1: SID (The Society for Information Display) 2004Digest、 P1416 発明の開示
[0009] しかし、上記従来技術、例えば液晶表示パネルに高い電圧を印加する技術や、構 造物などを利用する技術では、ベンド配向を安定かつ容易に得るという効果が小さ かったり、実際に製品に適用する上で、駆動ドライバーへの負荷が大き過ぎるなどの 問題がある。
[0010] また、高いプレチルト角を用いる従来技術では、プレチルト角を高くすると、実質的 なリタデーシヨンの可動範囲が小さくなつてしまい、明るさが大幅に低減してしまうとい う問題がある。
[0011] さらに、ベンド核を用いる技術では、プレチルト角が低い状態でこの技術を適用して も、すべての画素にもれなくベンド核を発生させることが困難であるという問題がある 。カロえて、ベンド核付近にベンド配向が発生した後、そのベンド配向の広がり速度が 遅いという問題がある。したがって、液晶表示パネル全体にわたってベンド配向を容 易に得ることはできない。
[0012] 本発明は、上記の問題に鑑みてなされたものであり、その目的は、〇CBモードの特 徴である高速応答性を維持しながら、明るさを保ち、かつ駆動ドライバーの負担を大 きくすることなぐ液晶表示装置における液晶表示パネル全体にわたってベンド配向 を容易に得ることができる液晶表示装置を提供することにある。
[0013] 本発明の液晶表示装置は、上記課題を解決するために、対向する一対の基板間 に液晶層が挟持され、上記液晶層における液晶分子が、電界印加時に、スプレイ配 向からベンド配向に転移する液晶表示装置において、上記液晶分子のプレチルト角 力 18° 以上 36° 以下であり、上記液晶分子の屈折率異方性 Δηと、上記液晶層 の厚み dとの積である Andが、 850nm以上 1170nm以下であり、上記液晶層におけ る各画素に対応する領域に、上記液晶分子をベンド配向させる、上記基板に平行な 横電界を印加する電界印加部を備えてレ、ることを特徴としてレ、る。 [0014] ベンド核の発生の有無並びにスプレイ ベンド転移は、プレチルト角の大きさと、上 記横電界の印加とに深く関与している。
[0015] すなわち、上記液晶表示装置は、上記液晶層における各画素に対応する領域に、 上記液晶分子をベンド配向させる、上記基板に平行な横電界を印加する電界印加 部を備えていることで、ベンド配向発生率の増加とベンド配向の広がり速度の増加を 同時に実現することができる。
[0016] し力、しながら、プレチルト角が低い状態では、全ての画素にもれなくベンド核を発生 されることは困難である上、ベンド核のみでは、ベンド核発生後のベンド配向の広がり 速度を制御することはできない。
[0017] 一方、高プレチルト化は、上記スプレイ一ベンド転移を促進するものの、各画素は 個々に切り離されているため、ベンド核が発生していない画素にはベンド配向の広が りが及ばず、スプレイ配向のまま残ってしまうことがある。特に、セル厚やプレチルト角 が変化してレ、る上記液晶表示装置端部では、この配向未転移が生じ易い。
[0018] このように、プレチルト角が大きいというだけ、あるいは、横電界が印加されていると レ、うだけでは、駆動ドライバーの負担を大きくすることなぐ液晶表示装置全体にわた つてベンド配向を容易に得ることはできなレ、。これに対し、本発明によれば、上記した ように、プレチルト角が高ぐかつ、上記液晶層における各画素に対応する領域に、 上記液晶分子をベンド配向させる、上記基板に平行な横電界を印加する電界印加 部を備えていることで、液晶表示装置全体にわたって、ベンド配向の発生率の増加と ベンド配向の広がり速度の増加とが同時に実現され、例えば、液晶層の厚みゃプレ チルト角が変化している液晶表示装置端部においても、ベンド配向への配向未転移 が生じにくい。
[0019] また、プレチルト角を高くすることで配向転移スピードは上がる力 屈折率異方性 Δ nと上記液晶層の厚み(液晶層厚) dとの積で表されるリタデーシヨン( Δ nd)の実質的 な可動範囲は小さくなつてしまい、明るさ力 S低減する。し力 ながら、本発明によれば 、上記プレチルト角並びにリタデーシヨンを上記した範囲内とすることで、〇CBモード の特徴である高速応答性を維持しながら、明るさを保ち、かつ駆動ドライバーの負担 を大きくすることなぐ液晶表示装置における液晶表示パネル全体にわたってベンド 配向を容易に得ることができる液晶表示装置を提供することができるという効果を奏 する。
[0020] また、本発明の液晶表示装置は、上記基板における上記液晶層との接触表面にポ リマー層を有し、上記ポリマー層は、該ポリマー層と接触している液晶分子を、該液 晶分子のプレチルト角力 電圧が無印加の場合に 18° 以上 36° 以下となるように保 持していることが好ましい。
[0021] 上記液晶表示装置が上記ポリマー層を備えていることで上記液晶分子のプレチル ト角を、 18° 以上 36° 以下に保持することができる。
[0022] 上記ポリマー層は、例えば、上記液晶層に添加された重合性モノマーを、上記液 晶層に電圧を印加しながら重合させることにより得ることができる。
[0023] 上記したように、上記液晶層における液晶分子は、電界印加時に、スプレイ配向か らベンド配向に転移する。このため、上記ポリマー層が、上記液晶層に添加された重 合性モノマーを、上記液晶層に電圧を印加しながら重合させてなることで、上記ポリ マー層と接触している液晶分子を、プレチルト角が高い状態で固定することができる
[0024] また、本発明の液晶表示装置では、上記重合性モノマーが、 2官能モノマーである ことが好ましい。
[0025] 上記発明によれば、重合性モノマーが 2官能モノマーであるので、平面的なポリマ 一層の形成が可能となり、所望のプレチルト角を容易に得ることができる。また、ポリ マー層の剛直性が高ぐポリマー層の変形によるプレチルト角の変化が少ない。
[0026] また、本発明の液晶表示装置では、上記電界印加部は、絶縁層をはさんで異なる 平面に設けられた二層の電極を備え、上記二層の電極のうち、上記液晶層側の電極 が、他方の電極と上記絶縁層を介して重畳する領域の一部に開口部を有するととも に、上記両電極は電位差を有することが好ましい。
[0027] 上記発明によれば、上記電界印加部が上記構成を有することで、上記開口部から 上記両電極の電位差に基づいて湧き出した横電界によって、エネルギー的にベンド 配向が優位な状況が生じ、それによつてベンド配向が発生し易くなるとともに、 2種の 異なるドメインを発生させるのに適した形状を容易に得ることができる。また、上記発 明によれば、同一平面上の 2電極間に異なる電圧を印加する場合のように、一画素 力 ¾領域に分けられることがないので、構造的にも駆動的にも好ましい。
[0028] また、本発明の液晶表示装置では、上記開口部が、屈曲部を有する形状を有して レ、ることが好ましい。
[0029] 上記発明によれば、上記屈曲部で横電界によるベンド核が発生しやすぐベンド配 向を容易に得ることができる。
[0030] また、本発明の液晶表示装置では、上記開口部が、 Uの字状の屈曲部を少なくとも 一つ有してレ、ることが好ましレ、。
[0031] 上記開口部が Uの字状の抜き形状を有してレ、る場合、上記ドメイン同士が繋がらな くなり、そこからベンド核が発生し易くなる。このため、上記抜き形状が Uの字状の形 状を有している場合、該抜き形状が例えば V字形状を有している場合などと比較して 、ベンド核の発生が促進される。また、上記開口部が Uの字状の屈曲部を有している ことで、一つの開口部で複数個のベンド核が発生しやすくなり、ベンド配向をさらに容 易に得ることができる。
[0032] また、本発明の液晶表示装置では、上記絶縁層の厚みが、 0. 5 /i m以下であるこ とが好ましい。
[0033] 絶縁層の厚みは、上記開口部から発生する湧き出し横電界の強度と関係する。上 記絶縁層の厚みが厚くなると、発生する湧き出し横電界の強度が弱くなる。このとき、 印加電圧の何割が横電界になるかは上記絶縁層の膜厚に依存し、このときの割合に よって上記絶縁層の厚みには臨界点が存在する。例えば、絶縁層の厚みが 3 μ ΐηの 場合は上記横電界強度は 2V/ /i mであるのに対し、 0. 5 /1 111では倍の4¥/ /1 111と なる。また、ベンド核発生に必要な横電界強度の境界値は、実験的に、 4VZ x m近 傍である。よって、上記絶縁層の厚みは、 0. 5 x m以下であることが好ましい。上記 発明によれば、低い電圧で横電界を発生させることができるので、駆動ドライバーの 負担をさらに低減させることができる。
[0034] また、本発明の液晶表示装置では、上記二層の電極のうち、上記液晶層側の電極 が画素電極であり、他方の電極が補助容量電極であることが好ましい。
[0035] 上記発明によれば、上記二層の電極のうち、上記液晶層側の電極が画素電極であ り、他方の電極が補助容量電極であることで、製造工程を増やすことなぐ容易に横 電界発生構造を形成することができるとともに、上記液晶表示装置が補助容量電極 を有していることで、画素電位を安定させることができ、表示性能をより一層向上させ ること力 Sできる。
[0036] また、本発明の液晶表示装置では、上記開口部に、該開口部内に凹凸を形成する 構造物が設けられていることが好ましい。
[0037] 上記発明によれば、上記構造物を起点としてベンド核が発生しやすぐこのベンド 核を起点としてベンド配向が生じやすレ、。したがって、より確実にベンド配向を得るこ とができるとともに、弱い横電界 (湧き出し横電界)によってもベンド配向への配向移 転が生じやすい。
[0038] また、本発明の液晶表示装置では、上記構造物が、スぺーサであることが好ましい
[0039] 上記発明によれば、上記構造物がスぺーサであることで、工程数を増やさず、容易 に上記ベンド配向促進のための構造物を設けることができる。
[0040] 本発明の液晶表示装置は、以上のように、分子のプレチルト角力 18° 以上 36° 以下であり、液晶分子の屈折率異方性 Δηと、液晶層の厚み dとの積である Andが、 850nm以上 1170nm以下であり、上記液晶層における各画素に対応する領域に、 上記液晶分子をベンド配向させる、基板に平行な横電界を印加する電界印加部を 備えている。
[0041] ベンド核の発生とスプレイ ベンド転移とは、プレチルト角の大きさと横電界の印加 とに深く関与している。本発明の液晶表示装置は、横電界を印加する電界印加部を 備えかつ高プレチルト化されているので、ベンド配向発生率が増加するとともに、ベ ンド配向の広がり速度の増加をも実現することができる。また、本発明の液晶表示装 置は、上記電界印加部を備え、かつ高プレチルト化されているので、各画素が個々 に切り離されているために配向未転移が生じ易い端部などをも含めて、液晶表示装 置全体にわたってベンド配向を容易に得ることができる。
[0042] さらに、単にプレチルト角を高くすることのみではリタデーシヨンの実質的な可動範 囲が小さくなり、明るさが低減するが、本発明の液晶表示装置は、リタデーシヨンが最 適化されているので、明るさの低減が少ない。
[0043] したがって、本発明の液晶表示装置は、 OCBモードの特徴である高速応答性を維 持しながら、明るさを保ちつつ、液晶表示装置における液晶表示パネル全体にわた つてベンド配向を容易に得ることができるという効果を奏する。
図面の簡単な説明
[0044] [図 1(a)]本発明の実施の一形態に力かる液晶表示装置におけるスプレイ一ベンド転 移に要する配向転移時間とプレチルト角と白透過率との関係を示すグラフである。
[図 1(b)]応答時間とリタデーシヨン(A nd)と白透過率との関係を示すグラフである。
[図 2]本発明の実施の一形態に力かる液晶表示装置の要部の概略構成を示すブロッ ク図である。
[図 3]本発明の実施の一形態に力かる液晶表示装置における液晶表示パネルの要 部の概略構成を模式的に示す断面図である。
[図 4]図 3に示す液晶表示パネルにおける電極基板の要部の概略構成を模式的に 示す平面図である。
[図 5(a)]図 3に示す液晶表示パネルにおける横電界発生機構に力かる開口部形成部 分の断面から見たときの湧き出し横電界の発生の様子を模式的に示す断面図である
[図 5(b)]図 5 (a)に示す開口部形成部分におけるベンド核の発生の様子を模式的に 示す平面図である。
[図 6]上記横電界発生機構に力かる絶縁層の厚みが 3 μ mの場合における、上記横 電界発生機構の開口部近傍に発生した電界の強度を、電気力線の密度によって示 す図である。
[図 7]上記横電界発生機構に力かる絶縁層の厚みが 0. 3 z mの場合における、上記 横電界発生機構の本発明の液晶表示装置における、開口部近傍に発生した電界の 強度を、電気力線の密度によって示す図である。
[図 8]2種の絶縁層の厚みと、 2種の抜き形状との組み合わせについて、ベンド核の 発生状況を示す図である。
[図 9]横電界発生機構の有無並びに開口部の抜き形状を異ならしめたときの、顕微 鏡写真を用いたベンド配向への配向移転の様子を示す図である。
園 10(a)]液晶セル内にポリマー層を形成することで高プレチルトイ匕を実現する方法を 示す、液晶表示パネルの要部断面図である。
園 10(b)]液晶セル内にポリマー層を形成することで高プレチルト化を実現する方法を 示す、液晶表示パネルの要部断面図である。
園 10(c)]液晶セル内にポリマー層を形成することで高プレチルト化を実現する方法を 示す、液晶表示パネルの要部断面図である。
園 10(d)]液晶セル内にポリマー層を形成することで高プレチルト化を実現する方法を 示す、液晶表示パネルの要部断面図である。
園 11(a)]液晶表示パネルにおける液晶セル内にポリマー層を形成することで高プレ チルトイ匕を実現する方法を、液晶表示パネルの断面にて具体的に示す図である。
[図 11(b)]液晶表示パネルにおける液晶セル内にポリマー層を形成することで高プレ チルトイヒを実現する方法を、液晶表示パネルの断面にて具体的に示す図である。 園 11(c)]液晶表示パネルにおける液晶セル内にポリマー層を形成することで高プレ チルトイヒを実現する方法を、液晶表示パネルの断面にて具体的に示す図である。 園 12(a)]顕微鏡写真を用いて得られた、電圧の印加によって生じる配向転移の様子 を、この順に経時的に示す図である。
園 12(b)]顕微鏡写真を用いて得られた、電圧の印加によって生じる配向転移の様子 を、この順に経時的に示す図である。
園 12(c)]顕微鏡写真を用いて得られた、電圧の印加によって生じる配向転移の様子 を、この順に経時的に示す図である。
園 13]図 4とは開口部の抜き形状が異なる横電界発生機構を有する液晶表示パネル における電極基板の要部の概略構成を模式的に示す平面図である。
園 14(a)]COA構造を有する液晶セル内にポリマー層を形成することで高プレチルト 化を実現する方法を示す、液晶表示パネルの断面図である。
園 14(b)]C〇A構造を有する液晶セル内にポリマー層を形成することで高プレチルト 化を実現する方法を示す、液晶表示パネルの断面図である。
園 14(c)]C〇A構造を有する液晶セル内にポリマー層を形成することで高プレチルト 化を実現する方法を示す、液晶表示パネルの断面図である。
園 15(a)]本発明の実施の他の形態に力かる液晶表示パネルの要部の概略構成を模 式的に示す断面図である。
園 15(b)]図 15 (a)に示す液晶表示パネルの電極基板の開口部形成部分におけるべ ンド核の発生の様子を模式的に示す平面図である。
園 16]液晶表示パネルに電圧を印加したときの、顕微鏡写真を用いたベンド配向へ の配向移転の様子を示す図である。
園 17]本発明の一実施形態に力、かる液晶表示装置における、開口部の形状の一例 を示す図である。
符号の説明
1 彼晶表示装置
2A 第 1基板
2B 第 2基板
3A カラーフィノレタ
3B BM
4 液晶層
4A 液晶分子
5 配向膜
6 ポリマー層
6A 光重合性モノマー
11 透明基板
12 第 1電極(電界印加部)
13 絶縁層
14 第 2電極(電界印加部)
15 透明基板
16 共通電極
20 ベンド酉己向
21 開口部(電界印加部) 21A 屈曲部
22 スぺーサ
23 ベンド核
24 湧き出し横電界
31 TFT
31A ゲート電極
31B ソース電極
31C ドレイン電極
32 画素電極(電界印加部)
33 Cs電極(電界印加部)
40 制御回路
41 ソースドライノ
42 ゲートドライバ
43 ゲートライン
44 ソースライン
50 液晶表示パネル
50A ί夜晶セノレ
51 画素
A
I 領域
II 領域
III 領域
発明を実施するための最良の形態
[0046] 〔実施の形態 1〕
本発明の実施の一形態について図 1 (a)〜図 1 (b)乃至図 14 (a)〜図 14 (c)に基 づいて説明すれば、以下の通りである。
[0047] 図 2は、本発明の実施の一形態にかかる液晶表示装置の要部の概略構成を示す ブロック図である。また、図 3は、上記液晶表示装置における液晶表示パネルの要部 の概略構成を模式的に示す断面図である。図 4は、上記液晶表示パネルにおける電 極基板の要部の概略構成を模式的に示す平面図である。
[0048] 図 2に示すように、本実施の形態にかかる液晶表示装置 1は、液晶表示パネル 50と
、制御回路 40と、ソースドライバ 41と、ゲートドライバ 42とを備えている。
[0049] 上記液晶表示パネル 50には、画素 51…がマトリクス状に配されており、これら画素
51…における各列及び各行には、それぞれ、前記ソースドライバ 41に接続されたソ ースライン 44と、前記ゲートドライバ 42に接続されたゲートライン 43とが、互いに交差 して設けられている。これらソースライン 44、ゲートライン 43は、それぞれ、ソースドラ ィバ 41、ゲートドライバ 42によって駆動され、上記ソースドライバ 41、ゲートドライバ 4
2は、それぞれ、制御回路 40によって制御されている。
[0050] 図 3に示すように、上記液晶表示パネル 50は、互いに対向して設けられた第 1基板
2Aと第 2基板 2Bとを備えている。両基板間には、液晶が挟持されることによって液晶 層 4が形成されている。
[0051] 以下、本実施の形態では、上記第 1基板 2Aとして CF (カラーフィルタ)基板を使用 し、上記第 2基板 2Bとしてアレイ基板を使用する場合を例に挙げて説明する。
[0052] 上記第 1基板 2Aは、例えば、ガラス基板等の透明基板 15 (透明絶縁性基板)上に 、カラーフィルタ層(図示せず)、オーバーコート層(図示せず)、 ITO (Indium Tin Oxi de)等からなる共通電極 (対向電極) 16、配向膜(図示せず)が、上記透明基板 15側 力 この順に積層されてなる構成を有している。
[0053] 一方、上記第 2基板 2Bは、ガラス等の透明基板 11 (透明絶縁性基板)上に、第 1電 極 12が設けられ、該第 1電極 12上に、絶縁層 13を介して、第 2電極 14、配向膜(図 示せず)が、上記透明基板 11側からこの順に積層されてなる構成を有している。
[0054] 上記第 1基板 2Aおよび第 2基板 2Bの外側(すなわち、両基板における対向面とは 反対面側)には、それぞれ、図示しない位相差板、偏光板が設けられている。
[0055] 以下に、図 4を参照して、上記第 2基板 2Bの構成をより詳細に説明する。
[0056] 上記第 2基板 2Bは、図 4に示すように、画素 51…における各列及び各行に、互い に交差して設けられたゲートライン 43とソースライン 44とを備え、これらゲートライン 4 3…とソースライン 44…とが交差する交差部に、アクティブ素子として、 TFT (薄膜トラ ンジスタ) 31がそれぞれ設けられている構成を有している。
[0057] TFT31のゲート電極 31Aにはゲートライン 43が接続され、ソース電極 31Bにはソ ースライン 44が接続されている。上記 TFT31のドレイン電極 31Cは、図示しないコン タクトホールを介して、 IT〇等からなる、第 2電極 14としての画素電極 32 (表示電極) に接続されている。
[0058] また、各ゲートライン 43 ·43間には、これらゲートライン 43と平行に、第 1電極 12とし ての Cs電極(補助容量電極) 33が設けられている。 Cs電極 33は、ゲートライン 43と 同一の層に形成されている。これにより、上記 Cs電極 33上には、前記絶縁層 13に 相当する図示しなレ、層間絶縁膜を介して上記画素電極 32が積層されてレ、る。
[0059] 上記液晶表示装置 1によれば、アレイ基板 (TFT基板)である上記第 2基板 2Bに上 記 Cs電極 33が設けられていることで、液晶の電気抵抗値や TFT31のオフ抵抗値の 不足によるドレイン電極電圧を保持した時のもれ電流を補うことができるとともに、ゲ 一トードレイン間容量によるゲート電圧をオフした時の引き込み電圧を最小限に抑え ること力 Sでき、画素電位を安定させることができる。
[0060] また、上記画素電極 32上には、前記したように図示しない配向膜が形成されている 。すなわち、上記第 1基板 2A及び第 2基板 2Bの表面には、液晶層 4内の液晶分子 4 A (図 3参照)をスプレイ配向させる図示しない配向膜 (水平配向膜、図示せず)が形 成されている。これら配向膜の表面には、上記液晶層 4内の液晶分子 4Aを平行かつ 同一方向に配向させるベぐラビング処理等の配向処理がそれぞれ施されている。
[0061] 上記液晶表示装置 1は、上記液晶層 4に電界を印加していない状態では、液晶分 子 4A力 Sスプレイ配向しており、上記液晶層 4に、閾値以上の電圧による電界を印加 すると、上記液晶分子 4Aがベンド配向に転移 (スプレイ一ベンド転移)し、表示が行 われる。
[0062] このスプレイ一ベンド転移は、上記液晶表示パネル 50に高い電圧を印加したり、凹 凸構造による配向変化を利用することによつても起こり得る。し力、しながら、このような 方法は、駆動ドライバーへの負担が増加したり、十分な効果を得ることができないとい つた問題があり、望ましくない。
[0063] そこで、上記液晶表示装置 1では、図 3および図 4に示したように、転移核 (ベンド核 )発生機構 (横電界発生機構、電界印加部)として、画素電極 32 (第 2電極 14)が上 記層間絶縁膜 (絶縁層 13)を介して Cs電極 33 (第 1電極 12)と重なる領域に、部分 的に開口部 21 (画素電極 32が部分的に抜き取られた抜き部分)を設けることで、開 口部 21から湧き出す横電界 (湧き出し横電界)を用いて、ベンド配向への配向転移 の起点となる転移核 (ベンド核)を発生させている。
[0064] 上記 Cs電極 33と画素電極 32との間には、絶縁層 13として、 SiN膜が 5000Aの厚 みで設けられている。また、上記画素電極 32には、上記開口部 21として、幅 の 抜きを有し、抜き形状は、図 4に示すように Uの字状 (平面視凹凸形状)の抜き部分を 含み、一つ以上の屈曲部を有している。なお、上記 Cs電極 33は、 A1等の金属からな る金属電極であり、画素電極 32は、 IT〇等の透明導電材料からなる透明電極にて形 成した。
[0065] 以下に、上記ベンド核発生機構 (横電界発生機構)を用いたベンド核の発生原理 につレ、て、図 5 (a)および図 5 (b)を参照して説明する。
[0066] 図 5 (a)は、上記第 2基板 2Bにおける開口部 21形成部分の断面から見たときの湧 き出し横電界の発生の様子を模式的に示す断面図であり、図 5 (b)は、上記開口部 2 1形成部分におけるベンド核の発生の様子を模式的に示す平面図ある。
[0067] 本実施形態におけるベンド核の発生には、図 5 (a)に示すように、湧き出し横電界 2 4を利用している。上記したように各画素 51にベンド核発生機構 (核形成構造)として 、絶縁層 13を介して積層された第 1電極 12および第 2電極 14における上層の電極( 第 2電極 14)に開口部 21が設けられていることで、上記開口部 21から湧き出した電 界は、上記開口部 21で等電位線が湾曲し、第 1基板 2A及び第 2基板 2Bの表面と平 行方向の成分を有することになる。この結果、湧き出し横電界 24が発生する。この湧 き出し横電界 24によって、図 5 (b)に示すように、上記液晶層 4内に、液晶分子 4Aの 配向方向が異なる複数種のドメインが発生し、このドメイン間の境界 Aに、ベンド配向 が発生する。
[0068] このベンド配向発生のメカニズムは、詳細には解明されてなレ、。しかしながら、この ベンド配向の発生の裏付けとして、電圧が印加された状態で、 2種の異なるドメイン同 士、特に、図 5 (b)に示すように左右逆ツイストのドメイン同士が衝突する部位 (上記 境界 A)に、エネルギー的にベンド配向が優位な状況が生じ、それによつてベンド配 向が発生するという観察結果が知られていることが挙げられる。
[0069] 本実施の形態において、上記第 1電極 12としての Cs電極 33は、一般的に共通電 極 16と同電位であり、表示電極である画素電極 32 (第 2電極 14)とは基本的に異な る電位となり、それが基板面と平行な電界である横電界 (湧き出し横電界 24)を形成 する。し力 ながら、上記 Cs電極 33は、個別に駆動される構造であることがより望まし レ、。本実施の形態によれば、 Cs電位と画素電位との電位差を大きくとったり、各々の 周期を変えたりすることで、より効率的にベンド核を発生させ、スプレイ—ベンド転移 を促すことが可能となる。
[0070] また、上記したように横電界によってベンド核を確実に発生させ、ベンド配向を確実 に得るためには、電極形状及び電界の強さが重要である。
[0071] 本実施の形態において、上記液晶層 4に、上記第 1基板 2A及び第 2基板 2Bに平 行な横電界を印加するための電界印加部としては、上記した横電界発生機構(開口 部 21)に限定されるものではなぐ公知の種々の手法を採用することができる。しかし ながら、上記横電界を形成する方法として、同一平面上の 2電極間に異なる電圧を 印加する方法を採用した場合、一画素を 2領域に分ける必要があり、構造的にも駆 動的にも好ましいとは言えず、発生する横電界も十分であるとは言い難い。
[0072] また、ソースライン 44やゲートライン 43などのバスラインと画素電極 32との間に横電 界を発生させる方法では、 2種の異なるドメインを発生させるのに適した形状を採るこ とが困難であり、電極間距離が大きくなることで、十分な横電界を得ることができない
[0073] そこで、上記したように、各画素 51内で電極が二層化されている部分、例えば Cs電 極 33が形成されている部分の上層の電極である画素電極 32の一部を除去し、下層 の電極である Cs電極 33との電位差によって湧き出す、湧き出し横電界 24を利用す る方法が、簡易な構成で、十分な横電界を発生させることができることから、好ましレ、
[0074] また、上記したように、二つの電極が互いに異なる平面に形成された積層構造を有 する二層電極を用いた横電界 (湧き出し横電界 24)を利用する場合、ベンド配向を 確実に得るためには、二層電極間(画素電極 32と Cs電極 33との間)の絶縁層 13の 厚みが重要となる。この絶縁層 13の厚みが厚すぎると、発生する横電界 (湧き出し横 電界 24)の強度が弱くなる。
[0075] そこで、次に、図 6及び図 7を用いて、絶縁層 13の厚みと、発生する湧き出し横電 界 24の強度との関係を説明する。
[0076] ここで、図 6と図 7とは、開口部 21近傍に発生した電界の強度を、電気力線の密度 によって示す図であり、画素電極 32と Cs電極 33との間に 8Vの電圧が印加されたと きに発生する横電界 (湧き出し横電界 24)の強さを比較している。図 6は、絶縁層 13 の厚みが 3 z mの場合を、図 7は、絶縁層 13の厚みが 0. 3 μ mの場合を示している。 そして、図 6及び図 7とも、図の横方向中心付近が開口部 21が形成された箇所にあ たり、図中の矢印が、開口部 21の端面から生じる湧き出し横電界 24の方向を示して いる。なお、上記絶縁層 13には、 SiNを用いた。
[0077] 図 6及び図 7に示すように、絶縁層 13の厚みが厚くなると、発生する湧き出し横電 界 24の強度が弱くなることがわかる。また、絶縁層 13の厚みを種々変更して、画素 電極 32と Cs電極 33との間に 8Vの電圧が印加されたときに発生する横電界の強度 を測定したところ、絶縁層 13の厚みが 3 /i mの場合は 2V/ /i mであったの力 0. 5 /i mでは倍の 4V/ /i mとなり、ベンド核発生の点から見ると、大きな違いが得られた 。すなわち、印加電圧の何割が横電界になるかは上記絶縁層 13の膜厚に依存し、こ のときの割合が何割であればよいかが臨界点になる。なお、印加電圧は、ターゲット とする機種では、通常駆動で 8Vまでとされており、このため、上記印加電圧は、 8Vと した。一方、ベンド核発生に必要な横電界強度の境界値は、実験的に、 4ν/ μ ΐη近 傍であることが観察された。このため、上記絶縁層 13の厚みは、 0. 5 z m以下である ことが好ましい。
[0078] また、図 6と図 7との比較からわ力、るように、絶縁層 13の厚みが 0. 3 μ mの場合のよ うに、絶縁層 13の厚みが 0. 5 x m以下である場合に良好な横電界が得られた。
[0079] また、上記したように横電界 (湧き出し横電界 24)によってベンド配向を発生させる 場合、上記開口部 21の抜き形状も、ベンド核の発生に関与する。
[0080] そこで、次に、上記開口部 21の抜き形状と、絶縁層 13の厚みとの関係について、 図 8を参照して以下に説明する。
[0081] 図 8は、 2種の絶縁層 13の厚みと、 2種の抜き形状との組み合わせについて、ベン ド核の発生状況を示す図である。
[0082] まず、絶縁層 13の厚みについて、その厚みが 3 x mの場合には、 2種の抜き形状 にかかわらず、ベンド核は発生しなかった。
[0083] また、絶縁層 13の厚みが 0. の場合には、いずれの抜き形状においてもベン ド核が発生した力 その発生率には差異があった。ここで、ベンド核の発生率とは、観 察した画素 51■ ·■の中でベンド核が発生した画素 51の比率を意味する。
[0084] すなわち、抜き形状が正方形状の場合は、ベンド核は発生したものの、その発生率 は、 50%以下であった。一方、抜き形状が、図 4にも示したように Uの字形状(平面視 凹凸形状)の抜き形状を有する場合には、 50%以上の発生率でベンド核が発生した
[0085] この結果から、抜き形状には、少なくとも一つ以上の屈曲部が含まれることが好まし レ、と考えられる。
[0086] すなわち、横電界によってベンド配向を確実に発生させるためには、開口部 21の 抜き形状も重要である。
[0087] 上記開口部 21の抜き形状としては、上層電極である画素電極 32が、 Uの字状、又 は、図 13に示すように、 Uの字状に折れ曲がりが連続した形状 (連続 Uの字状)、ある レ、は、蛇行するように折れ曲がる形状が好ましい。これは、図 5 (b)に示したように、上 記形状の屈曲部で、上記二種類のドメインが近距離で発生するため、ベンド核が生 じゃすいことによる。
[0088] 次に、図 9をもとに、液晶表示パネル 50における、横電界発生機構(開口部 21)の 有無並びに開口部 21の抜き形状の相違による、ベンド配向への配向移転の違いに ついて説明する。
[0089] 図 9は、横電界発生機構(開口部 21)の有無並びに開口部 21の抜き形状を、上記 液晶表示パネル 50のパネル面に対して部分的に異ならしめたときの、顕微鏡写真を 用いたベンド配向への配向移転の様子を示す図である。
[0090] 詳しくは、図 9に示すパネル面を、上下方向 2段、左右方向 3列に、合計 6個の領域 に分割した際、上段右の領域は、上記した横電界発生機構(開口部 21)が形成され ていない領域 (領域 I)であり、上段左、上段中央及び下段右の領域は、横電界発生 機構としての開口部 21が形成されているものの、上記好ましい抜き形状ではない領 域 (領域 Π)であり、下段左及び下段中央の領域は、上記した横電界発生機構として 、抜き形状が、互いに近接した屈曲部を有する、上記した好ましい抜き形状の開口部 21が形成されてレ、る領域 (領域 III)である。
[0091] そして、上記 6個の領域 (領域 Ι〜ΙΠ)に、同条件で電圧の印加を行ったところ、領域 Iではベンド核が発生しておらず、全面がベンド化されておらず、領域 IIにはベンド核 が発生したものの、ベンド核が小さぐ一部ベンド配向が発生したものの、全面におい てベンド配向が発生することはなかった。一方、領域 IIIでは、それぞれの領域にベン ド核が発生しており、全面でベンド配向が発生した。以上の結果から、ベンド配向発 生させるためには、上記開口部 21が、上記したように、 Uの字状又は蛇行状等、互い に近接した屈曲部を有する抜き形状を有することが効果的であることがわかる。
[0092] また、ベンド核の発生の有無並びにベンド配向への移行は、プレチルト角の大きさ にも関与している。プレチルト角が低い状態では、全ての画素 51にもれなくベンド核 を発生されることは困難である上、ベンド核のみでは、ベンド核発生後のベンド配向 の広がり速度を制御することはできない。
[0093] そこで、本実施の形態では、上記ベンド配向の広がり速度を高める手段として、上 記液晶表示パネル 50における液晶セル内に設けたポリマー層を利用して、高プレチ ノレト化を実現している。
[0094] そこで、次に、上記液晶表示パネル 50における液晶セル内にポリマー層を形成す ることで高プレチルトイ匕を実現する方法並びにその原理について、図 10 (a)〜図 10 ( d)を参照して以下に説明する。
[0095] 図 10 (a)〜図 10 (d)は、上記液晶表示パネル 50における液晶セル内にポリマー 層を形成することで高プレチルト化を実現する方法を示す、上記液晶表示パネル 50 の要部断面図である。図 10 (a)〜図 10 (d)は、上記液晶セル内にポリマー層を形成 する様子を、工程順に、模式的に示している。
[0096] 図 10 (a)は、液晶表示パネル 50における液晶セル 50A内に、液晶と、重合性モノ マーとして光重合性モノマー 6Aとが充填された、光重合前でかつ電圧無印加の状 態を示している。図 10 (b)は、図 10 (a)に示す液晶表示パネル 50に、電圧を印加し た状態を示している。図 10 (c)は、図 10 (b)に示す状態から、電圧を印加したまま、 液晶に添加した光重合性モノマーを重合させてポリマー層を形成したときの状態を 示している。図 10 (d)は、上記液晶表示パネル 50に UV照射後、電圧を解除したとき の状態を示している。
[0097] 図 10 (a)〜図 10 (d)に示すように、第 1基板 2A及び第 2基板 2Bにおける上記液晶 層 4との対向面には、配向膜 5が形成されている。この配向膜 5は、上記各基板表面 に成膜された後に、従来の方法によって、第 1基板 2A及び第 2基板 2Bと平行方向 にラビングされている。
[0098] 液晶に添加する上記重合性モノマーとしては、特に限定されるものではなレ、が、平 面的なポリマーを形成することができるとともに、得られるポリマーの剛直性の観点か ら、 2官能の重合性モノマー、特に、光重合性モノマーが好適に用いられる。そのな かでも、上記重合性モノマーとしては、ベンゼン環二つが連なる骨格を有する液晶性 2官能モノマーが、重合後のポリマーに剛直性を付与することができることから、特に 好ましい。
[0099] また、上記重合性モノマーとしては、 2官能の光重合性モノマー以外に、反応性向 上などを目的として、 3官能以上のモノマーを使用することもできる。例えば、 TMPT (トリメチロールプロパントリメタタリレート)などを使用することができる。
[0100] し力 ながら、単官能の重合性モノマーは、平面的なポリマー形成が不可能であり 、必要なプレチルトを付けることができないおそれがあるため、望ましくない。
[0101] また、上記液晶としては、特に限定されるものではなぐ従来公知の液晶材料を使 用すること力 sできる。
[0102] ここでは、上記液晶として、 P (ポジ)型液晶を使用するものとし、上記重合性モノマ 一として、光重合性モノマーである TMPTを用いた場合を例に挙げて説明するが、 本発明はこれに限定されるものではない。なお、本例では、上記 P型液晶に対し、 1. 5wt%を超える割合の TMPTを添加している。このときの図 10 (a)に示す状態にお けるプレチルト角は 8° 以下であり、上記液晶層 4内における液晶分子 4Aの配向状 態は、低プレチルトスプレイ配向であった。
[0103] この状態から、上記液晶セル 50Aに、液晶分子の配向がベンド配向となるカ ある いはスプレイ配向となるかの境界電圧 (Vcr)を超える電圧 ( >Vcr)を印加すると、図 10 (b)に示すように、液晶分子 4Aは、スプレイ—ベンド転移し、液晶表示パネル 50 の厚み方向と平行となる方向に傾く。
[0104] そこで、この高いプレチルト角を有するポリマー層 6近傍の液晶分子 4Aを固定する ために、図 10 (c)に示すように、上記液晶セル 50Aに電圧を印加した状態のまま、液 晶に添加した光重合性モノマー 6Aに、 UV (紫外線光)を照射し、光重合させて上記 配向膜 5上にポリマー層 6を形成すると、該ポリマー層 6近傍の液晶分子 4Aは、図 1 0 (b)において電圧を印加したときの、プレチルト角が高い状態で、該ポリマー層 6に 固定される。
[0105] この結果、図 10 (c)に示すように、ポリマー層 6近傍の液晶分子 4Aは、プレチルト 角の高い状態で配向し、上記ポリマー層 6から離れた、液晶層 4の厚み部分における ほぼ中央部分の液晶分子 4Aは、一方の基板におけるポリマー層 6近傍部分の液晶 分子 4Aから、徐々にその傾斜角度を変えながら、他方の基板におけるポリマー層 6 近傍部分の液晶分子 4Aへ連続するように配向し、液晶表示パネル 50の厚み方向 のほぼ中央近傍では、厚み方向にほぼ平行に配向する。
[0106] そこで、図 10 (d)に示すように、電圧の印加を解除し、得られた液晶表示パネル 50 における液晶分子 4Aのプレチルト角を測定したところ、該液晶分子 4Aの配向状態 は、プレチルト角が 8° よりも大きな高プレチルトスプレイ配向を有していた。
[0107] 本実施の形態では、上記したように液晶分子 4Aを、高プレチルト化してポリマー層 6に固定するために、平面的なポリマーを形成することが好ましい。本実施の形態に おいて、上記光重合性モノマー 6Aを、配向膜 5近傍に集め、該配向膜 5上にポリマ 一層 6を形成する方法としては、特に限定されるものではなレ、が、例えば、上記液晶 表示パネル 50に、十分高い電圧(> Vcr)を印加した状態で、弱い光源で長時間(例 えば蛍光灯下で 24時間)かけて光重合性モノマー 6Aの光重合を行う方法力 S、上記 配向膜 5上にポリマー層 6を容易に形成することができることから有効である。
[0108] 以下に、上記手法を用いた液晶表示パネル 50の製造方法の一例、つまり、 UV照 射によるポリマー形成により高プレチルトイ匕を実現する方法について、図 11 (a)〜図 11 (c)を参照して以下に具体的に説明する。
[0109] 図 11 (a)〜図 11 (c)は、上記液晶表示パネル 50における液晶セル 50A内にポリ マー層を形成することで高プレチルト化を実現する方法を、上記液晶表示パネル 50 の断面にて具体的に示す図であり、図 11 (a)は、上記液晶表示パネル 50に電圧を 印加する様子を、図 11 (b)は、上記液晶表示パネル 50に UVを照射する様子を、図 11 (c)は、得られた液晶表示パネル 50における液晶分子 4Aの配向状態を模式的 に示している。
[0110] 本実施の形態における液晶表示パネル 50の製造には、従来の液晶表示パネルの 製造に用いられる方法を適宜採用することができる。したがって、以下の説明では、 従来の液晶表示パネルの製造方法との相違点を中心に説明する。
[0111] まず、従来の方法によって、液晶分子 4Aが充填される前の液晶表示パネル 50を 製造する。具体的には、まず、図 11 (a)に示すように、第 1基板 2Aに、各画素に対応 して各色のカラーフィルタ 3Aを設けるとともに、これらカラーフィルタ 3Aを覆うように、 図示しない共通電極や配向膜等を形成する。なお、各カラーフィルタ 3Α· 3Α間には 、 ΒΜ (ブラックマトリクス) 3Βが設けられる。一方、第 2基板 2Βには、画素毎に、 TFT 31力 S設けられるとともに、図示しない Cs電極や層間絶縁膜、画素電極、配向膜等が 形成される。
[0112] 次に、上記第 1基板 2A及び第 2基板 2Bに形成された配向膜に、基板と平行方向 にラビング処理を施した後、両基板を対向配置し、従来法によって、液晶充填前の液 晶表示パネル 50を組み立てる。なお、本実施の形態では、セル厚、すなわち、両基 板間の間隙 (液晶層厚 d)が 7 μ mとなるように両基板を対向配置させた。
[0113] 次に、上記液晶表示パネル 50に充填する重合前混合材料として、液晶と重合性モ ノマーとが混合されたものを調製する。本実施形態においては、屈折率異方性 Δ ηが 0. 13のポジ (Ρ)型液晶に、 2官能の光重合性モノマーを 0. 5wt%添加することによ つて、重合前混合材料を調製した。
[0114] 続いて、従来の方法によって、上記液晶表示パネル 50に、上記重合前混合材料を 充填した後、該液晶表示パネル 50における液晶層 4内の液晶分子 4Aを、該液晶表 示パネル 50の厚み方向に配向させるために、該液晶表示パネル 50全面に、前記境 界電圧(Vcr)を超える、 20V (60Hz)の交流電圧(AC)を印加した。
[0115] その後、図 11 (b)に示すように、上記電圧を印加したまま、上記液晶表示パネル 50 に UVを照射して、上記光重合性モノマー 6Aを重合させた。なお、本実施形態では 、上記 UV照射を、一次照射と二次照射とに分けて 2回行った。
[0116] まず、上記一次照射として、液晶表示パネル 50の全面に、 UV (365nm)を、超高 圧水銀ランプを光源として、 10jZcm2照射した。この UV照射は、 UVがカラーフィ ルタ 3Aを透過することができないので、図 11 (b)に示すように、第 1基板 2A側からで はなぐ第 2基板 2B側から行う。上記条件で UV照射を行うことによって、プレチルト 角は 25° となった。
[0117] 続いて、二次照射を行った。この二次照射は、重合前混合材料中の残存重合性モ ノマーをほぼ 0%とすることを目的としている。
[0118] 詳しくは、第 2基板 2Bにおける、前記ゲートライン 43やソースライン 44等の図示し ないバスラインや TFT31が形成された部分は、 UVを透過させないため、 UVが照射 されない重合前混合材料が存在する場合がある。そこで、一次照射によって重合さ れなかった残存重合性モノマーを重合させるために、二次照射を行う。具体的には、 通常の蛍光灯下で、電圧無印加の状態で上記液晶表示パネル 50を 24時間放置し た。この二次照射によって、残存重合性モノマーは、ほぼ 0%となった。
[0119] 以上の工程により、本実施形態における液晶表示パネル 50を得ることができた。
[0120] 得られた液晶表示パネル 50における液晶分子 4Aのプレチルト角は、図 1 1 (c)に 示すように、第 1基板 2Aにおいてカラーフィルタ 3Aが形成されている部分及び第 2 基板 2Bにおいて TFT31が形成されていない部分のプレチルト角は 25° であった。 一方、第 1基板 2Aにおいて BM3Bが形成されている部分及び第 2基板 2Bにおいて TFT31が形成されている部分のプレチルト角は 8° であった。
[0121] 以上のように、本実施の形態によれば液晶に添加した光重合性モノマーを、上記 液晶表示パネル 50に、十分高い電圧(> Vcr)を印加した状態で光重合させることで 、高プレチルトイ匕を実現することができた。
[0122] 液晶分子 4Aは、プレチルト角が高いほど、電圧印加時に、スプレイ配向よりもベン ド配向を取り易い。このため、上記したように液晶セル 50A内に、ポリマー層 6 (図 10 (d)参照)を形成することで、ポリマー層 6形成部は、液晶分子 4Aを、低電圧で速や かにスプレイ配向から ベンド配向に移行させることができる。しかしながら、このよう に高プレチルト化を行うことで、配向転移スピードは上がる力 S、屈折率異方性 Δ η Χ 液晶層厚 dで表されるリタデーシヨン( Δ η· d;以下、単に「 Δ nd」と記す)の実質的な 可動範囲は小さくなつてしまい、明るさが低減する。
[0123] そこで、高プレチルトイ匕による A nd低減による明るさの低下を防止するためには、 液晶層 4の Δ ndを大きくすることが重要である。
[0124] そこで、スプレイ一ベンド転移に要する配向転移時間とプレチルト角と白透過率と の関係、並びに、応答時間とリタデーシヨン(A nd)と白透過率との関係から、 OCBモ ードの特徴である高速応答性を維持しながら、明るさを保つことができるリタデーショ ン( Δ nd)の大きさにっレ、て検討した結果を以下に説明する。
[0125] 図 1 (a)及び図 1 (b)に、スプレイ ベンド転移に要する配向転移時間とプレチルト 角と白透過率との関係、並びに、応答時間とリタデーシヨン(A nd)と白透過率との関 係を測定した結果を示す。
[0126] 図 1 (a)は、プレチルト角(横軸)と配向転移時間(左縦軸)との関係、及び、プレチ ノレト角(横軸)と白透過率 (右縦軸)との関係を示すグラフである。また、図 1 (b)は、 Δ nd (横軸)と応答時間 (左縦軸)との関係、及び、 Δ Γ Ι (横軸)と白透過率 (右縦軸)と の関係を示すグラフである。
[0127] 配向転移時間は、液晶表示パネル 50の全面に、 25Vの直流電圧(DC)を印加し た状態で、液晶表示パネル 50の全面がベンド配向になるまでの時間を示し、白透過 率は、互いの吸収軸を合わせた 2枚の偏光子の透過率を 100%とした場合の透過率 を示している。なお、白輝度を算出する過程では、コントラストが計算上最大となるよう に組み込んで計算してレ、る。
[0128] 図 1 (a)に、〇CBモードに適した現行の液晶材料を使用し、セル厚 (液晶層厚 d)を 8. l z m、リタデーシヨン(A nd)を 1050nmに固定した液晶表示パネルを用いたとき の、 _ 30°Cでの配向転移時間のプレチルト角依存性を「♦」で示し、白透過率のプ レチルト角依存性を「國」で示す。 [0129] また、図 1 (b)に、 OCBモードに適した現行の液晶材料を使用し、セル厚 (液晶層 厚)を 8. 5 / m、プレチルト角を 25° とした液晶表示パネルを用いて液晶層のリタデ ーシヨン(A nd)を変化させたときの、— 30°Cでの応答時間を「令」で示し、白透過率 を「國」で示す。
[0130] なお、上記図 1 (a)及び図 1 (b)において「♦」及び「國」で示す結果は、いずれも、 画素電極 32に前記した横電界発生機構(開口部 21)が形成されていない液晶表示 パネルを用いて測定した結果を示している。
[0131] 一方、上記した横電界発生機構(開口部 21)とポリマー層 6による高プレチルト化と を組み合わせた場合の配向転移改善効果を示すために、上記した横電界発生機構 (開口部 21)の有無以外の条件が等しい液晶表示パネルを用いて、 _ 30°Cでの配 向転移時間のプレチルト角依存性を測定した。すなわち、図 4に示した横電界発生 機構(開口部 21)が設けられた、本実施の形態に力、かる液晶表示パネル 50に、図 1 ( a)中、「令」で示した配向転移時間のプレチルト角依存性の測定に用いた液晶材料 と同じ液晶材料を用いて、—30°Cでの配向転移時間のプレチルト角依存性を測定し た。この結果を、図 1 (a)に、「▲」で示す。
[0132] 図 1 (a)から、プレチルト角が 20° の場合、上記横電界発生機構(開口部 21)が形 成されていない液晶表示パネル 50では、配向転移時間が、「令」で示すように 20秒 を超えていたのに対し、上記横電界発生機構(開口部 21)が形成されている液晶表 示パネル 50では、配向転移時間が、「▲」で示すように 5秒未満に短縮されたことが わ力る。
[0133] このように、上記液晶表示パネル 50の応答性や明るさは、上記横電界発生機構( 開口部 21)の有無、プレチルト角、リタデーシヨン(A nd)等の条件、より具体的には、 例えば液晶材料の種類等によって異なる。
[0134] そこで、 OCBモードの液晶表示装置として使用可能な範囲内で上記した条件を種 々変更して上記した表示性能を調べ、最も良好な特性が得られる条件 (液晶材料) において再測定及び計算したときの、セル厚 (液晶層厚 d) 8.: m、リタデーンヨン( A nd) 1050nmの液晶表示ノ ネノレ 50における、 _ 30。Cでの配向転移時間のプレチ ルト角依存、白透過率のプレチルト角依存性を、それぞれ、図 1 (a)に「〇」、「き」で 示す。
[0135] また、同様に、〇CBモードの液晶表示装置として使用可能な範囲内で上記した条 件を種々変更して上記した表示性能を調べ、最も良好な特性が得られる条件 (液晶 材料)におレ、て再測定及び計算したときの、セル厚 (液晶層厚) 8. 5 x m,プレチルト 角 25° の液晶表示パネル 50における、 _ 30°Cでの応答時間のリタデーシヨン(Δ η d)依存性、白透過率のリタデーシヨン(A nd)依存性を、それぞれ、図 1 (b)に「〇」、 「書」で示す。
[0136] まず、 _ 30°Cという環境下での挙動であり、 OCBモードの液晶表示装置に要求さ れる配向転移時間は、 目標値である Isを上限と考えた。
[0137] そこで、プレチルト角と配向転移時間との関係をみると、上記要求を満たすために は、プレチルト角は、「♦」で 27° 以上、「〇」で 18° 以上となる。
[0138] また、 OCBモードの液晶表示装置に要求される白透過率は、一般的な TN (Twiste d Nematic)モードの液晶表示装置の透過率(平行な偏光子の 95%とする)の約 70
%の透過率であり、複屈折を利用するモードでは下限とされる値である、 66%が下 限であると考えられる。
[0139] そこで、プレチルト角と白透過率との関係をみると、上記要求を満たすためには、プ レチルト角は、「國」で 33° 以下、「秦」で 36° 以下となる。
[0140] 以上のように、 30°Cでの配向転移時間、及び白透過率が上記の範囲にあるため に必要なプレチルト角を、液晶材料の物性値 (誘電率異方性、弾性率)を OCBモー ドに有効な範囲で変化させて算出した結果、液晶材料などや液晶表示パネルの構 造によって若干の変動はある力 S、おおむね 18° 以上 36° 以下のプレチルト角が、 ベンド配向を用いる〇CBモードの液晶表示装置において好ましい範囲であり、この 範囲は、上述のようにベンド配向を得るための液晶材料として考え得る物性のものを 、ほぼ満たしていると言える。
[0141] 次に、図 1 (b)に基づいて、リタデーシヨン(A nd)について説明する。 A ndは、白 透過率を低下させないためには、増加させることが好ましいが(例えば、液晶層厚を 増加させる)、同時に応答特性を劣化 (応答時間を遅延)させるため、大幅な増加は できない。 [0142] まず、 OCBモードの液晶表示装置に要求される白透過率は、前述したように、 66
%が下限であると考えられる。
[0143] そこで、 A ndと白透過率との関係をみると、上記要求を満たすためには、 A ndは、
「國」で 910nm以上、「秦」で 850nm以上となる。
[0144] また、 OCBモードの液晶表示装置に要求される応答時間は、 _ 30°Cでの TNモー ドの液晶表示装置における、明るさ等を度外視した最高速の値である 200msを上限 と定めた。
[0145] そこで、 A ndと応答時間との関係をみると、上記要求を満たすためには、 A ndは、 「♦」で 1110以下、「〇」で 1170nm以下となる。
[0146] 以上のように、プレチルト角の算出と同様に、 _ 30°Cでの応答時間、及び白透過 率が上記の範囲にあるために必要なリタデーシヨン( A nd)を、液晶材料の物性値( 誘電率異方性、弾性率)を OCBモードに有効な範囲で変化させて算出した結果、液 晶材料などや液晶表示パネルの構造によって若干の変動はある力 おおむね 850η m以上 1170nm以下の A ndが、ベンド配向を用いる OCBモードの液晶表示装置に おいて好ましい範囲であり、この範囲は、上述のようにベンド配向を得るための液晶 材料として考え得る物性のものを、ほぼ満たしてレ、ると言える。
[0147] 以上のように、本実施の形態によれば、高プレチルトイ匕による A nd低減による明る さの低下を防止するために、液晶層 4の A ndを大きく設定するとともに、ベンド核形 成のための横電界発生機構を各画素 51に設けることで、ベンド配向発生率の増加と ベンド配向の広がり速度の増加を同時に実現することができる。したがって、本実施 の形態によれば、 OCBモードの特徴である高速応答性を維持しながら、明るさを保 ち、かつ駆動ドライバーの負担を大きくすることなぐ液晶表示パネル 50全体にわた つてベンド配向を容易に得ることができる。
[0148] 特に、上記したように例えばポリマー形成を用いた高プレチルト化は、上記したよう に配向転移を促進するが、各画素 51は個々に切り離されているため、ベンド核が発 生していない画素 51にはベンド配向の広がりが及ばず、スプレイ配向のまま残ってし まうことがある。特に、セル厚ゃプレチルト角が変化している液晶表示パネル 50の端 部では、この配向未転移が生じ易レ、。そこで、本実施の形態に力かる液晶表示パネ ル 50のように、各画素 51に上記横電界発生機構を設け、ベンド配向発生の起点とな るベンド核を各画素 51に発生させることで、より完全に全画素 51の配向転移を可能 にすることができる。
[0149] そこで、本実施形態の液晶表示パネル 50における、上記ベンド核を起点とした、ス プレイ配向からベンド配向への配向転移の様子について、図 12 (a)〜図 12 (c)を参 照して以下に説明する。
[0150] 図 12 (a)〜図 12 (c)は、顕微鏡写真を用いて得られた、電圧の印加によって生じる 配向転移の様子を、図 12 (a)、図 12 (b)、図 12 (c)の順に経時的に示す図である。
[0151] このときの電圧印加の条件は以下の通りである。画素電極 32には、共通電極 16の 電位をグランド(GND)としたうえで、 Cs電極 33と画素電極 32とが互いに逆の極性と なるように、 10V (60Hz)の交流電圧 (AC)を印加した。また、用いた液晶表示パネ ノレ 50のプレチルト角は 25° であり、環境温度は一 30°Cとした。また、開口部 21の形 状は、図 12 (a)〜図 12 (c)に示すように、図 4と同じく平面視で Uの字状の抜き形状 を有する形状とした。
[0152] まず、図 12 (a)に示すように、電圧印加によって、開口部 21の屈曲部 21Aにベンド 核 23が生じ、時間の経過とともに、図 12 (b)及び図 12 (c)に示すように、上記ベンド 核 23を起点として、スプレイ配向からベンド配向 20の配向転移が生じた。本実施形 態においては、 5秒以内で液晶表示パネル 50のほぼ全域において、スプレイ配向か らベンド配向 20への配向転移が生じていたことが確認された。
[0153] 以上のように、本実施の形態によれば、上記したように高プレチルト化された状態で 、有効な横電界 (湧き出し横電界 24)が液晶層 4に印加されることで、上記したように 環境温度が低い場合であっても、上記開口部 21の屈曲部 21Aに、ベンド核 23が確 実に生じるとともに、該ベンド核 23を起点として、効率的に、スプレイ配向からベンド 配向 20への配向転移が生じることがわかるとともに、上記条件においては、前記した ように、高速応答性や明るさ、さらにはコントラストなどの表示性能が保たれていること から、このような表示性能を保ったまま、ベンド配向 20の発生箇所 (ベンド核 23)の増 大と、ベンド配向 20の広がり速度を改善することができることがわかる。
[0154] なお、本実施形態においては、主に、前記図 11 (a)〜図 11 (c)に示したように、力 ラーフィルタ 3Aを、第 1基板 2Aに形成した場合を例に挙げて説明したが、上記カラ 一フィルタ 3Aを形成する基板は、上記第 1基板 2Aに限られず、上記液晶表示パネ ノレ 50は、図 14 (a)〜図 14 (c)に示すように、カラーフィルタ 3A力 TFT31が形成さ れた第 2基板 2Bに形成されている COA (Color-filter On Alley)構造とすることもでき る。
[0155] ここで、図 14 (a)〜図 14 (c)は、 C〇A構造を有する液晶表示パネル 50における液 晶セル 50A内にポリマー層を形成することで高プレチルトイ匕を実現する方法を、上記 液晶表示パネル 50の断面にて具体的に示す図であり、図 14 (a)は、上記液晶表示 パネル 50に電圧を印加する様子を、図 14 (b)は、上記液晶表示パネル 50に UVを 照射する様子を、図 14 (c)は、得られた液晶表示パネル 50における液晶分子 4Aの 配向状態を模式的に示している。
[0156] 上記 COA構造を有する液晶表示パネル 50では、図 14 (a)〜図 14 (c)に示すよう に、第 2基板 2Bに、 TFT31及びカラーフィルタ 3A力 各画素に形成されている。
[0157] この COA構造を採用することによって、一方の基板、すなわち第 1基板 2Aには、 U Vの遮光体となる構造物が全く存在しなくなる。したがって、図 14 (b)に示すように第 1基板 2A側から UVの照射を行うことによって、照射した UV力 上記液晶表示パネ ル 50の液晶セル 50Aに充填された重合前混合材料全体に行き渡る。よって、 UV照 射後の残存光重合性モノマーをより少なくすることが可能となる。なお、この COA構 造を採用した液晶表示パネル 50における一次照射後のプレチルト角は、図 14 (c)に 示すように、パネル全面にわたって 25° であった。
[0158] また、この COA構造を採用した液晶表示パネル 50では、上記の通り残存光重合 性モノマーが少ないため、二次照射の時間は、図 11 (a)〜図 11 (c)に示した方法の 半分である 12時間に短縮することができた。
[0159] 〔実施形態 2〕
本発明に力かる実施の他の形態について、図 15 (a)〜図 15 (b)乃至図 17の(a) 〜(P)を参照して説明すれば、以下の通りである。なお、本実施の形態では、前記実 施の形態 1との相違点について説明するものとし、前記実施の形態 1と同様の機能を 有する構成要素には同一の番号を付し、その説明を省略する。 [0160] 図 15 (a)は、本実施の形態に力かる液晶表示装置における液晶表示パネルの要 部の概略構成を模式的に示す断面図であり、図 15 (b)は、上記液晶表示パネルに おける電極基板 (第 1基板)の開口部形成部分におけるベンド核の発生の様子を模 式的に示す平面図ある。また、図 16は、本実施の形態に力かる上記液晶表示パネ ル 50に電圧を印加したときの、顕微鏡写真を用いたベンド配向への配向移転の様 子を示す図である。
[0161] 図 15 (a) ·図 15 (b)及び図 16に示すように、本実施の形態に力かる液晶表示パネ ノレ 50が、前記実施の形態 1にかかる液晶表示パネル 50と相違する点は、横電界発 生機構における開口部 21に、構造物としてスぺーサ 22が設けられている点である。
[0162] 上記スぺーサ 22は球形状(ビーズ状)であり、大きさは液晶表示パネル 50の液晶 層厚とほぼ同等のものである。このスぺーサ 22が配置される部位は、上記開口部 21 におレ、てベンド配向(ベンド核)が発生するポイントである二つのドメインが衝突する ポイントであることが好ましい。すなわち、上記スぺーサ 22が配置される部位は、上記 開口部 21における屈曲部 21Aであることが好ましい。
[0163] ここで、本実施形態における液晶表示パネル 50での、ベンド配向への配向転移の 様子について図 16をもとに説明する。
[0164] 本実施形態における液晶表示パネル 50では、電圧の印加による配向転移の様子 を観察する際、前記実施の形態 1に比べて弱い電圧を印加した。それにもかかわら ず、本実施形態における液晶表示パネル 50では、ベンド核が発生し、さらに発生し たベンド核を起点として、図 16に示すように、ベンド配向 20への配向転移が広がつ た。すなわち、弱い横電界 (湧き出し横電界)においても、ベンド配向 20への配向移 転が生じた。
[0165] なお、上記構造物の設置によって、弱い横電界でもベンド核が発生する機構は明 らかではないが、以下の様に推察される。すなわち、ベンド核は、横電界によって発 生した二つのドメインが衝突して、一方のドメインが切断される瞬間に発生する。構造 物は、上記ドメインの切断をスムースにする働きがあると推察される。
[0166] なお、上記した各実施形態では、上記横電界発生機構における開口部 21が、主に 、 Uの字状の抜き形状を有する場合を例に挙げて説明したが、本発明は、これに限 定されるものではなぐ上記開口部 21の形状としては、図 17の(a)〜(p)に示すよう に、種々の形状が考えられる。そのなかでも、上記開口部 21の形状としては、屈曲部 を、少なくとも一つ以上、より好ましくは二つ以上有していることが好ましい。
[0167] 特に、図 17の(b)あるいは前記実施の形態 1などでも示したように上記開口部 21が Uの字状の抜き形状 (屈曲部)を有している場合、前記境界 A (図 5 (b)参照)に示し たように左右のドメインが繋がらなくなり、そこからベンド核が発生する。このため、上 記抜き形状が Uの字状の形状を有してレ、る場合、該抜き形状が V字形状である場合 よりもベンド核の発生が促進される。また、上記開口部 21が Uの字状の屈曲部を有し ていることで、一つの開口部で複数個のベンド核が発生しやすくなり、ベンド配向をさ らに容易に得ることができる。このため、上記抜き形状としては、 V字形状よりも、 Uの 字形状の方がより好ましい。すなわち、上記開口部 21は、 Uの字あるいは連続 Uの 字など、 Uの字状の屈曲部を少なくとも一つ有していることがより好ましい。
[0168] また、上記スぺーサ 22の配置箇所は、特に限定されるものではなぐ上記開口部 2 1の屈曲部以外の種々の箇所に配置することができる。そのなかでも、好ましくは、上 記開口部 21における屈曲部である。
[0169] また、上記開口部 21にスぺーサ 22を配置する方法は、特に限定されず、例えば、 噴霧によって散布する方法や、インクジェット方式によって配設する方法などを用い ること力 Sできる。
[0170] また、本実施の形態では、上記構造物の一例として、スぺーサ 22を例に挙げて説 明したが、上記開口部 21に配される構造物としては、これに限定されるものではなく 、上記開口部 21内に、凹凸を形成することができる種々の構造物を用いることができ る。この構造物は、例えば金属や樹脂などを材料として形成することができる。
[0171] また、例えば、上記構造物は、フォトリソグラフィ技術を用いて上記開口部 21に直接 造り込むことも可能である。
[0172] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用可能性 本発明の液晶表示装置は、 OCBモードの特徴である高速応答性を維持しながら、 明るさを保ち、かつ駆動ドライバーの負担を大きくすることなぐ液晶表示パネル全体 にわたつてベンド配向を容易に得ることができるので、例えば、テレビやモニタ等の画 像表示装置や、ワープロやパーソナルコンピュータ等の OA機器、あるいは、ビデオ カメラ、デジタルカメラ、携帯電話等の情報端末等に備えられる画像表示装置に、広 く適用することができる。

Claims

請求の範囲
[1] 対向する一対の基板間に液晶層が挟持され、上記液晶層における液晶分子が、 電界印加時に、スプレイ配向からベンド配向に転移する液晶表示装置において、 上記液晶分子のプレチルト角が、 18° 以上 36° 以下であり、
上記液晶分子の屈折率異方性 Δηと、上記液晶層の厚み dとの積である Andが、 8
50nm以上 1170nm以下であり、
上記液晶層における各画素に対応する領域に、上記液晶分子をベンド配向させる
、上記基板に平行な横電界を印加する電界印加部を備えてレ、ることを特徴とする液 晶表示装置。
[2] 上記基板における上記液晶層との接触表面にポリマー層を有し、
上記ポリマー層は、該ポリマー層と接触している液晶分子を、該液晶分子のプレチ ノレト角力 電圧が無印加の場合に 18° 以上 36° 以下となるように保持していること を特徴とする請求項 1に記載の液晶表示装置。
[3] 上記ポリマー層は、上記液晶層に添加された重合性モノマーを、上記液晶層に電 圧を印加しながら重合させてなる層であることを特徴とする請求項 2に記載の液晶表 示装置。
[4] 上記重合性モノマーが、 2官能モノマーであることを特徴とする請求項 3に記載の 液晶表示装置。
[5] 上記電界印加部は、絶縁層をはさんで異なる平面に設けられた二層の電極を備え 上記二層の電極のうち、上記液晶層側の電極が、他方の電極と上記絶縁層を介し て重畳する領域の一部に開口部を有するとともに、上記両電極は電位差を有するこ とを特徴とする請求項 1に記載の液晶表示装置。
[6] 上記開口部が、屈曲部を有する形状を有していることを特徴とする請求項 5に記載 の液晶表示装置。
[7] 上記開口部が、 Uの字状の屈曲部を少なくとも一つ有していることを特徴とする請 求項 6に記載の液晶表示装置。
[8] 上記絶縁層の厚みが、 0. 5 β m以下であることを特徴とする請求項 5に記載の液晶 表示装置。
[9] 上記二層の電極のうち、上記液晶層側の電極が画素電極であり、他方の電極が補 助容量電極であることを特徴とする請求項 5に記載の液晶表示装置。
[10] 上記開口部に、該開口部内に凹凸を形成する構造物が設けられていることを特徴 とする請求項 5に記載の液晶表示装置。
[11] 上記構造物が、スぺーサであることを特徴とする請求項 10に記載の液晶表示装置
PCT/JP2007/059489 2006-05-19 2007-05-08 液晶表示装置 WO2007135853A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/296,341 US7864280B2 (en) 2006-05-19 2007-05-08 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006140930 2006-05-19
JP2006-140930 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007135853A1 true WO2007135853A1 (ja) 2007-11-29

Family

ID=38723165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059489 WO2007135853A1 (ja) 2006-05-19 2007-05-08 液晶表示装置

Country Status (2)

Country Link
US (1) US7864280B2 (ja)
WO (1) WO2007135853A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279376B2 (en) 2008-06-27 2012-10-02 Au Optronics Corporation Liquid crystal display panel and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100067481A (ko) * 2008-12-11 2010-06-21 삼성전자주식회사 액정 표시 장치
CN102809843B (zh) * 2012-08-07 2014-12-17 京东方科技集团股份有限公司 液晶面板以及透反式液晶显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166341A (ja) * 1999-12-03 2001-06-22 Canon Inc 液晶素子
JP2003107506A (ja) * 2001-01-25 2003-04-09 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003279993A (ja) * 2002-03-19 2003-10-02 Fujitsu Display Technologies Corp 液晶表示装置
JP2006053538A (ja) * 2004-07-12 2006-02-23 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及びそれを用いた画像表示装置
JP2006113478A (ja) * 2004-10-18 2006-04-27 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668651A (en) 1994-03-18 1997-09-16 Sharp Kabushiki Kaisha Polymer-wall LCD having liquid crystal molecules having a plane-symmetrical bend orientation
GB2306228A (en) 1995-10-13 1997-04-30 Sharp Kk Surface mode liquid crystal device
US6515724B1 (en) 1998-02-20 2003-02-04 F.O.B. Gmbh Gesellschaft Zur Fertigung Farbiger Optoelektronischer Bauelemente Optical switch
KR20010073233A (ko) 1999-07-29 2001-07-31 모리시타 요이찌 액정표시장치 및 그 제조방법
JP2002182036A (ja) * 2000-04-06 2002-06-26 Fujitsu Ltd 視角補償フィルム及び液晶表示装置
KR100656911B1 (ko) * 2000-09-19 2006-12-12 삼성전자주식회사 액정 표시 장치용 기판
WO2002050603A1 (fr) 2000-12-19 2002-06-27 Matsushita Electric Industrial Co., Ltd. Affichage a cristaux liquides et son procede de commande
SG114524A1 (en) 2001-01-25 2005-09-28 Matsushita Electric Ind Co Ltd Liquid crystal display
TWI275859B (en) 2002-02-20 2007-03-11 Sharp Kk Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
US7248318B2 (en) * 2002-05-31 2007-07-24 Sharp Kabushiki Kaisha Liquid crystal display device and method of producing the same
JP2004151546A (ja) * 2002-10-31 2004-05-27 Sharp Corp アクティブマトリクス基板および表示装置
WO2006006254A1 (en) 2004-07-12 2006-01-19 Fujifilm Corporation Antireflection film, polarizing plate, and image display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166341A (ja) * 1999-12-03 2001-06-22 Canon Inc 液晶素子
JP2003107506A (ja) * 2001-01-25 2003-04-09 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003279993A (ja) * 2002-03-19 2003-10-02 Fujitsu Display Technologies Corp 液晶表示装置
JP2006053538A (ja) * 2004-07-12 2006-02-23 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及びそれを用いた画像表示装置
JP2006113478A (ja) * 2004-10-18 2006-04-27 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279376B2 (en) 2008-06-27 2012-10-02 Au Optronics Corporation Liquid crystal display panel and manufacturing method thereof
US8294851B2 (en) 2008-06-27 2012-10-23 Au Optronics Corporation Manufacturing method of liquid crystal display panel

Also Published As

Publication number Publication date
US20090180057A1 (en) 2009-07-16
US7864280B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
JP4504626B2 (ja) 液晶表示装置及びその製造方法
US8330906B2 (en) Liquid crystal display device
JP5075718B2 (ja) 液晶表示装置
JP6178442B2 (ja) 液晶シャッタ眼鏡
WO2014017329A1 (ja) 液晶表示装置
JP2009075569A (ja) 液晶表示装置及びその製造方法
JP2009156930A (ja) 液晶表示素子
JPWO2007026535A1 (ja) ネマチック液晶を用いた液晶表示装置
JP4551230B2 (ja) 液晶表示装置の製造方法
JP2010191450A (ja) 液晶表示装置及びその製造方法
JP5864221B2 (ja) 液晶表示装置
JP5159403B2 (ja) 液晶表示装置
WO2007135853A1 (ja) 液晶表示装置
EP2461207B1 (en) Liquid crystal panel and liquid crystal display device
JP4995942B2 (ja) 液晶表示装置
JP2009294320A (ja) 液晶表示装置
JP4383825B2 (ja) 液晶表示装置
JPH07234400A (ja) 液晶表示装置
JP2004177775A (ja) 液晶表示パネル及びその製造方法
US20050140886A1 (en) Liquid crystal display device and method for manufacturing the same
JP2008089639A (ja) 液晶表示素子
JP2007178496A (ja) 液晶表示素子
US7956968B2 (en) Liquid crystal display device and fabrication method thereof
JP2008003512A (ja) 液晶表示素子
JP4637248B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12296341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP