WO2007132873A1 - 核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体 - Google Patents

核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体 Download PDF

Info

Publication number
WO2007132873A1
WO2007132873A1 PCT/JP2007/060002 JP2007060002W WO2007132873A1 WO 2007132873 A1 WO2007132873 A1 WO 2007132873A1 JP 2007060002 W JP2007060002 W JP 2007060002W WO 2007132873 A1 WO2007132873 A1 WO 2007132873A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
polymer
acid
nucleic acid
group
Prior art date
Application number
PCT/JP2007/060002
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Koyama
Tomoko Ito
Original Assignee
Yoshiyuki Koyama
Tomoko Ito
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshiyuki Koyama, Tomoko Ito filed Critical Yoshiyuki Koyama
Priority to EP07743437A priority Critical patent/EP2022853A4/en
Priority to US12/227,394 priority patent/US20090130761A1/en
Priority to CN2007800179999A priority patent/CN101448939B/zh
Priority to JP2008515578A priority patent/JPWO2007132873A1/ja
Publication of WO2007132873A1 publication Critical patent/WO2007132873A1/ja
Priority to US13/396,875 priority patent/US8492142B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0091Purification or manufacturing processes for gene therapy compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention aims at introducing a nucleic acid, oligonucleic acid, or derivative thereof into a cell.
  • Non-viral vectors that are one of such vectors, have high efficiency with no safety concerns, and have low immunogenicity and are easy to prepare include cationic polymers, cationic ribosomes Cationic substances such as cationic lipids have been studied
  • Non-patent Document 3 Biochim Biophys Acta. 2000 Sep 29; 1468 (1-2 ): 127-138.
  • the amount of sugar required here is 500 to 1000 times that of DNA by weight, and the solution after rehydration will have a much higher osmotic pressure than physiological conditions. And not practical.
  • monosaccharides and disaccharides themselves have no beneficial effect on gene expression.
  • dextran a neutral polysaccharide
  • Patent Document 1 JP-A-2005-176830
  • Patent Document 2 JP 2003-231748 A
  • Non-Patent Document 1 J. Biomater. Sci. Polymer Edn., Vol. 14, No. 6, pp.515-531 (2003)
  • Non-Patent Document 2 J. Pharm. Sci., Vol 90, ppl445-1455 ( 2001)
  • Non-Patent Document 3 Biochim Biophys Acta. 2000 Sep 29; 1468 (1-2): 127-138
  • Non-Patent Document 4 J. Pharm. Sci., Vol 94, ppl226-1236 (2005)
  • nucleic acids, oligonucleic acids, or derivatives thereof As a result of intensive studies to eliminate the above-mentioned drawbacks, the inventors of the present application have found that nucleic acids, oligonucleic acids, or derivatives thereof; cationic polymers or cationic lipids or aggregates containing them; and When the lyophilized product of a complex containing an on-state polymer is introduced into cells, the introduced gene, oligonucleic acid, or derivative thereof can be expressed well and the present invention is completed. It came to.
  • the present invention relates to a freeze-dried product of a nucleic acid, an oligonucleic acid, or a derivative thereof; a cationic polymer or a cationic lipid or an aggregate containing the same;
  • the present invention relates to a preparation, a reagent, and a kit for introducing a nucleic acid, oligonucleic acid, or derivative thereof including the lyophilized product.
  • a method for preparing the lyophilized product comprising a nucleic acid, an oligonucleic acid, or a derivative thereof; a cationic polymer or a cationic
  • the present invention relates to a preparation method including a step of forming a complex by mixing a lipid or an aggregate containing the lipid; and a key-on polymer;
  • the present invention further relates to a method for introducing a gene, oligonucleic acid, or a derivative thereof into a cell, wherein the lyophilized product is used.
  • the freeze-dried product of the present invention can be easily adjusted in concentration, easy to handle, and excellent in storage stability.
  • the lyophilized product of the present invention contains a eron polymer, a complex of extremely small size can be obtained even when it is rehydrated in a solvent and used as a suspension or dilution.
  • a stable dispersion containing the body can be obtained at any concentration.
  • nucleic acid, oligonucleic acid, or derivatives thereof can be efficiently introduced into cells without causing aggregation, and good by various administration methods such as local administration and intravenous administration. It shows the ability to express various functions.
  • the lyophilized product of the present invention is a lyophilized product of a nucleic acid, an oligonucleic acid, or a derivative thereof; a cationic polymer or a cationic lipid or an assembly containing the same; .
  • the nucleic acid, oligonucleic acid, or derivative thereof forms a complex due to ionic bonds with the force thione polymer or the cationic lipid or the aggregate containing it, and the cationic polymer or cationic lipid further It is ion-bonded to the polymer.
  • these can form a composite mainly covered with a cationic polymer.
  • nucleic acid, oligonucleic acid, or derivative thereof that can be used in the lyophilized product of the present invention
  • any nucleic acid, oligonucleic acid or the like introduced by gene therapy or antisense therapy can be used.
  • Various DNA and RNA (-and double-stranded) (plasmid DNA, double-stranded oligo RNA, mRNA, tRNA, rRNA, cDNA, etc.); sense or antisense oligonucleotides (including recombinants) ) And derivatives thereof; various nucleic acids such as ribozymes or mixtures thereof, oligonucleic acids, or derivatives thereof.
  • nucleic acids may be modified or substituted if necessary.
  • plasmid DNA for antisense nucleic acids, oligo DNA; S-oligo, double-stranded RNA for RNA interference, ribozyme RNA and the like can be preferably used, and plasmid DNA can be particularly preferably used.
  • the cationic polymer that can be used in the lyophilized product of the present invention is a naturally-derived or synthetic polymer having a positively charged molecular weight of about 1000 to 3 million, and is complexed with DNA in water. It is possible to use a polymer having a plurality of functional groups, preferably 5 or more, in one molecule, such as an optionally substituted amino group or ammonia. Or a salt thereof (these groups may be mono- or polysubstituted by, for example, an alkyl group having 1 to 6 carbon atoms, a phenol group, etc.), an imino group, an imidazolyl group, a gua-dino group, etc. The organic amino group can be mentioned.
  • Such cationic polymers include, for example, positively charged proteins and polypeptides; positively charged dendrimers; positively charged synthetic polymers; and positively charged polysaccharide derivatives, or their derivatives Salts, as well as combinations thereof.
  • the molecular weight of a positively charged protein or positively charged polypeptide that can be used as a cationic polymer in the lyophilized product of the present invention is preferably about 1,000 to 500,000.
  • proteins and polypeptides include proteins and polypeptides such as protamine, histone, HelA1, and gelatin, and polyamino acids containing positively charged amino acid residues. Can also be illustrated.
  • polyamino acid containing a positively charged amino acid residue include poly-L-lysine, polyarginine, polyorthine and the like.
  • salts of these proteins and polypeptides include hydrochlorides, sulfates, phosphates, borates and the like.
  • a positively charged dendrimer having a functional group as described above that can be used as a cationic polymer is an amino group or an ammo- group that may be substituted at the end or inside of a branched molecular chain.
  • a dendrimer having a sulfur group or a salt thereof (these groups may be mono- or polysubstituted by, for example, an alkyl group having 1 to 6 carbon atoms, a phenol group, etc.), and the molecular weight thereof is Preferably it is about 1,000 to 500,000.
  • Specific examples of dendrimers include polyamidoamine dendrimers and polylysine dendrimers.
  • Dendrimer salts include hydrochloride, sulfate, phosphate, borate, etc. ⁇ column can be shown.
  • a positively charged synthetic polymer that can be used as a cationic polymer has a plurality of functional groups, preferably 5 or more, in one molecule that can form a complex with DNA in water as described above.
  • Specific examples of synthetic polymers include polyethyleneimine (including linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl. Examples include a polymer or copolymer of metatalylate.
  • the molecular weight of polyethyleneimine which is an example of a synthetic polymer, is preferably about 1,000 to 500,000, more preferably about 5,000 to 200,000, and most preferably about 10,000 to 100,000.
  • Examples of the polyethyleneimine salt include hydrochloride, sulfate, phosphate and borate.
  • a positively charged polysaccharide derivative that can be used as a cationic polymer has a plurality of functional groups that can form a complex with DNA in water, preferably 5 or more in one molecule. Preferable is ⁇ 10 to 3 million, more preferable ⁇ is 5000 to 500000 polysaccharide derivatives.
  • Specific examples of such polysaccharides include chitosan and dextran derivatives having a functional group introduced as described above. Of these, the molecular weight of chitosan is preferably about 1,000 to 500,000, more preferably about 5,000 to 200,000, and most preferably about 10,000 to 100,000. Examples of the chitosan salt include hydrochloride and acetate. The molecular weight of the dextran derivative is preferably 3,000 to 1,000,000. Specific examples of such dextran derivatives include ethylaminoethyl-dextran.
  • the above cationic polymer can be used as long as it is positively charged by introduction of a functional group such as an amino group even though it is not normally positively charged. May be further modified with a sugar chain, oligopeptide, antibody or the like.
  • Cationic lipids that can be used in the lyophilized product of the present invention include DC— Choi (3 j8-( ⁇ - ( ⁇ ', ⁇ '-dimethylaminoethane)).
  • DDAB N-distearyl-N, N-dimethylammum-umbromide
  • DMRI N- (1,2-dimyristyloxyproper 3-yl) ) -N, N Dimethyl-N hydroxyethylammo-umbromide
  • DODAC N, N —Geoleulu N, N dimethylammo-um chloride
  • DOGS DOGS (diheptadecylamide glycylspermidine)
  • DOSPA N— (1— ( 2, 3 dioleyloxy) propyl) N (2- (sperminecarboxamido) ethyl) —N, N dimethylammo-umtrifluoroacetate
  • DOTAP N— (1— (2,3 dioleoyloxy) propyl) N, N, N trimethylammonium chloride
  • DOTMA N— (1— (2,3 dioleyloxy) propyl) —N, N, N, N trimethylammonium
  • the aggregate containing the cationic lipid for example, DOS PA
  • DOPE dioleoylphosphatidylethanolamine
  • cholesterol a neutral substance
  • DOPE dioleoylphosphatidylethanolamine
  • Things can be used.
  • lipofuctamine 3: lw / w mixture liposome of DOSPA and DOPE above
  • lipofectin 1: lwZw mixture ribosome of DOTMA and DOPE above
  • a mixture thereof etc.
  • Preferable examples can be given.
  • the cationic polymer includes polyethyleneimine; protamine; Hel A 1; dendrimers such as polyamidoamine dendrimer and polylysine dendrimer; chitosan; 2-dimethylaminoethyl methacrylate.
  • Polymer or copolymer; 2-trimethylaminoethyl methacrylate polymer or copolymer can be preferably used, and polyethyleneimine, polyamidoamine dendrimer, polylysine dendrimer, chitosan is particularly preferably used.
  • lipofucamine the above-mentioned DOSPA and DOPE 3: lwZw mixed ribosome
  • the ionic polymer used in the lyophilized product of the present invention is a negatively charged naturally-occurring or synthetic polymer having a molecular weight of about 5 to 4 million and containing a ionic group in the molecule.
  • a polymer having a plurality of, preferably 5 or more, functional groups capable of forming a complex with a polycation in water can be used. Examples of such functional groups include carboxyl groups. , OSO H group, SO H group, phosphate group, and salts thereof
  • ion-on polymers include zwitterionic polymers. included.
  • the eron polymer includes a carboxyl group
  • Synthetic polymers having functional groups selected from 3 groups, phosphate groups, and salts thereof; functional groups selected from carboxyl groups, -OSO H groups, SO H groups, phosphate groups, and salts thereof Base
  • a polymer having an amino group or an ammonium group or a salt thereof (these groups may be mono- or polysubstituted by, for example, an alkyl group having 1 to 6 carbon atoms, a phenol group, etc.); As well as combinations thereof.
  • darcosaminoglycan can be preferably used as the polysaccharide having a functional group as described above that can be used as a ionic polymer or a derivative thereof in the lyophilized product of the present invention.
  • the molecular weight of such darcosaminodarlicans is preferably 1,000 to 4,000,000, more preferably 4,000 to 3,000,000.
  • Specific examples of such darcosaminodarlicans include hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, dermatan sulfate, and the like. Of these, hyaluronic acid can be preferably used.
  • Hyaluronic acid can also be used as its salt or a negatively charged derivative.
  • the molecular weight may be 5,000 or more, but preferably 10,000 or more, more preferably 100,000 to 3 million.
  • hyaluronic acid salts include sodium salts, potassium salts, and ammonium salts.
  • examples of the derivatives of hyaluronic acid include those obtained by introducing polyethylene glycol, peptides, sugars, proteins, iodine acids, antibodies, or a part thereof into hyaluronic acid, such as spermine and supermidine. Zwitterionic derivatives with positively charged moieties are also included
  • the polyamino acid containing an amino acid residue having a negatively charged side chain that can be used as a ionic polymer in the lyophilized product of the present invention includes a carboxyl group, -O-SOH group, SO Amino having side groups such as H groups, phosphate groups, and salts thereof
  • a polyamino acid containing an acid residue preferably having a molecular weight of 500 to 1,000,000.
  • This Specific examples of such polyamino acids include polyglutamic acid and polyaspartic acid.
  • the PEG derivative having a carboxyl side chain that can be used as a ionic polymer in the lyophilized product of the present invention has a plurality of carboxyl side chains per PEG molecule, preferably 5 or more. Above, preferably 2,000 or more, more preferably PEG derivative having a molecular weight of 4,000 to 40,000.
  • the PEG derivative having a carboxyl side chain can also be used as a salt or a negatively charged derivative thereof. Examples of these salts include sodium salts, potassium salts, and ammonium salts. Specific examples of such PEG derivatives include the PEG derivatives described in Non-Patent Document 1 (J. Biomater. Sci. Polymer Edn. Vol. 14, pp 515-531 (2003)). it can.
  • the synthetic polymer having a group is a functional group selected from a plurality of, preferably 5 or more, carboxyl groups, O—SOH groups, SOH groups, phosphate groups, and salts thereof per molecule.
  • polymer or copolymer having a molecular weight of 5 to 4 million, preferably a polymer or copolymer.
  • a polymer or copolymer include a polymer or copolymer of acrylic acid or methacrylic acid having a molecular weight of 1,000 to 3,000,000!
  • succi-midylated poly-L-lysine examples include succi-midylated poly-L-lysine.
  • a group, or an amino group or an ammonium group or a salt thereof (these groups may be mono- or poly-substituted with, for example, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or the like). May be a carboxyl group, OSO H group, SO
  • a plurality of functional groups selected from H groups, phosphate groups, and salts thereof, preferably 5 or more, and substituted as described above may be an amino group or an ammonium group or a salt thereof.
  • the ionic polymer that can be used in the lyophilized product of the present invention is usually negatively charged, and even if it is negatively charged by the introduction of a functional group such as a carboxyl group. Any of these can be used, and if necessary, can be further modified with sugar chains, oligopeptides, antibodies, etc.
  • an ionic polymer such as hyaluronic acid, a PEG derivative having a carboxyl side chain, polyacrylic acid, or a salt thereof is preferably used.
  • Hyaluronic acid, a PEG derivative having a carboxyl side chain, or a salt thereof can be particularly preferably used.
  • a polymer having a specific adhesion ability to a target cell for nucleic acid introduction as a eron polymer, it is possible to introduce nucleic acid specifically to the target cell.
  • a polymer having a specific adhesion ability to a target cell for nucleic acid introduction as a eron polymer, it is possible to introduce nucleic acid specifically to the target cell.
  • hyaluronic acid when used as a key polymer, cells having cell surface molecules such as CD44 that specifically bind to hyaluronic acid can be targeted.
  • a Ron peptide-introduced polymer it is possible to target many types of tumor cells, and by using a Ron-introduced polymer in which a galactose side chain is introduced, hepatocytes can be targeted. Alternatively, liver-derived cells can be targeted.
  • a combination of a cationic polymer or a cationic lipid or an assembly containing the cationic polymer and a cationic polymer includes polyethyleneimine and hyaluronic acid; polyethyleneimine and carboxyl side chain.
  • PEG derivatives with DOSPA eg lipofuectamine (DOSPA and DOPE 3: lwZw mixture liposomal)
  • DOSPA containing aggregates eg lipofuectamine
  • PEG derivatives with carboxyl side chains can be preferably mentioned.
  • the molar ratio of the charged group of the nucleic acid, oligonucleic acid, or derivative thereof used in the lyophilized product of the present invention to the cationic polymer or cationic lipid or assembly containing the same (negative charge: positive charge ratio)
  • the ratio of 1: 0.8 to 1: 100 is preferably 1: 1 to 1:50, more preferably 1: 1.2 to 1:30.
  • the compounding ratio of the nucleic acid, oligonucleic acid or derivative thereof and the cationic polymer or cationic lipid or aggregate containing the same is the molar ratio of each charged group, specifically, the nucleic acid, oligonucleic acid.
  • a negative charge of a derivative thereof as a phosphate ion a positive charge of a cationic polymer or a cationic lipid or an assembly containing the same or a molar ratio of functional groups capable of being positively charged.
  • the molar ratio (negative charge: negative charge ratio) of each charged group of the nucleic acid, oligonucleic acid or derivative thereof and the anionic polymer used in the lyophilized product of the present invention is the target cell 'nucleic acid etc.'
  • the force varies depending on the type of the on-polymer, but is preferably 1: 0.2 to 1: 1000, more preferably 1: 0.2 to 1: 100, and more preferably 1: 1 to 1:60.
  • the compounding ratio of the nucleic acid, oligonucleic acid or derivative acid thereof to the ionic polymer is a molar ratio of each charged group. Specifically, the phosphate anion of the nucleic acid, oligonucleic acid or derivative thereof.
  • Negative charge by: Refers to the molar ratio of the negatively charged or negatively chargeable functional group of the anionic polymer.
  • the self-combination it between nucleic acid and hyaluronic acid may be 1: 0.2 to 1: 1000, preferably 1: 0.2 to 1: 100. Yes, more preferably 1: 1 to 1:60.
  • the compounding ratio of the nucleic acid and the PEG derivative having a carboxyl side chain may be 1: 0.2 to 1: 1000, preferably Is 1: 0.2 to 1: 100, more preferably 1: 1 to 1:60.
  • the mixing ratio of nucleic acid: polyethyleneimine: hyaluronic acid is 1: 2 to 60: 1 to 240, preferably It is 1: 4 to 24: 1 to 160, more preferably 1: 7 to 20: 2 to 60, and particularly preferably 1: 8 to 14: 2 to 32.
  • the compounding ratio of PEG derivative having nucleic acid: polyethyleneimine: carboxyl side chain is 1 : 2 to 60: 1 to 240, preferably 1: 4 to 24: 2 to 160, more preferably 1: 7 to 20: 2 to 60, particularly preferably 1: 8 to 14: 4 to 32 is there.
  • the mixing ratio of nucleic acid: lipofectamine: hyaluronic acid is: 1: 1-50: 0.2-240, preferably 1: 1.2-48: 0.2-160, more preferably 1: 1.5-30: 0.5-60, particularly preferably 1: 1.8-16: 1- 32.
  • the ratio of the PEG derivative having a nucleic acid: ribofactoramine: carboxyl side chain is 1: 1-50: 0.1-160, preferably 1: 1.2-48: 0.2-160, more preferably 1: 1.5-30: 0.5-60, particularly preferably 1: 1.8-16: 2 to 32.
  • the preferred mixing ratio of the nucleic acid, oligonucleic acid, or derivative thereof contained in the lyophilized product of the present invention the cationic polymer or cationic lipid or aggregate containing it;
  • the mixing ratio should be determined appropriately by those skilled in the art depending on the type of cells, nucleic acids, etc. used. Can do.
  • the freeze-dried product of the present invention comprises the above-described nucleic acid, oligonucleic acid, or derivative thereof; a cationic polymer or a cationic lipid or an aggregate containing the same; It can be prepared by a step of forming a complex by mixing and then a step of freezing and drying it.
  • the order of mixing is as follows: [1] nucleic acid, oligonucleic acid, or derivative thereof; [2] cationic polymer or cationic lipid or aggregate containing it, [3] order of cationic polymer, or [1] Nucleic acids, oligonucleic acids, or derivatives thereof; [2] cation polymers, [3] cationic polymers or cationic lipids or aggregates containing them are preferred.
  • the nucleic acid, oligonucleic acid, or derivative thereof is bound to the cationic polymer or the cationic lipid or an aggregate containing the ionic bond, and the cationic polymer or the cationic lipid or the aggregate containing the cationic polymer is an ion.
  • a complex which is ion-bonded to the functional polymer is also formed.
  • the outer shell of such a complex structure is mainly covered with a cation polymer to form an embodiment having a negative surface potential.
  • the complex obtained in the above is freeze-dried. Freeze-drying can be carried out under normal freeze-drying conditions, for example, under reduced pressure (preferably 5 to: LOOmmHg, more preferably lOmmHg), outside temperature—78 ° C. to 60 ° C., preferably —30 ° It can be performed by drying at C to 40 ° C. The time required for drying varies depending on the degree of vacuum and the amount of solvent, and is usually completed in 1 hour to 2 days.
  • the lyophilized product of the present invention thus prepared can be used for experimental animals or various kinds of gene therapy, antisense therapy, or experimental animals into which a specific gene has been introduced, controlled, knocked down or knocked out. Can be used to create cells.
  • the lyophilized product of the present invention may be used as a rehydrate by suspending or dissolving the lyophilized product of the present invention in a solvent such as water, physiological saline, buffer solution, glucose solution, or medium solution immediately before use. it can.
  • a solvent such as water, physiological saline, buffer solution, glucose solution, or medium solution immediately before use. it can.
  • the lyophilized product is suspended or diluted using, for example, a solvent 100 to 1000 times (weight ratio) of the nucleic acid, oligonucleic acid, or derivative thereof. Since different amounts of solvents and different types of solvents can be used before lyophilization, it is easy to prepare relatively high concentration suspensions and solutions (for example, solutions containing 1 mg of DNA in
  • the lyophilized product of the present invention rehydrated in this manner is specifically hydrated with the target cells taken out of the body, for example, during the introduction of nucleic acid or the like into the cells.
  • the gene or antisense nucleic acid is introduced by treatment with the lyophilized product of the present invention, and then the cells are returned to the living body to express the target gene, or in vivo, in situ Any method commonly used for introduction of nucleic acids, oligonucleic acids, or derivatives thereof into living cells, such as direct gene introduction methods or antisense nucleic acid introduction methods, can be used.
  • the lyophilized product of the present invention is a target for introduction of nucleic acid or the like that is brought into contact with a cell to which nucleic acid or the like is introduced as it is without being rehydrated or subcutaneously transferred to an animal to which nucleic acid or the like is introduced. It can be administered by means such as by transplanting within, on or near a tissue.
  • the amount of the lyophilized product of the present invention applied to cells varies depending on the introduction method, the type of disease, etc. described above.
  • the amount of nucleic acid, oligonucleic acid, or derivative thereof can be used as an ex vivo method, in situ.
  • Method 0.2 to 0.2 cm in diameter per well of 1 to 2 cm: LO ⁇ gZl ⁇ 4 to 7 'cells, in viv
  • the force varies greatly depending on the administration site.
  • local administration within the tumor for example, 5 to 100 ⁇ g Zcm 3 ′, for example, for administration to an organ such as a tumor or bladder, for example, 0.1 ⁇ g to 100 mg Z organ, 0. lng ⁇ : LOmgZKg 'can be body weight.
  • a hydrated lyophilized hydrate of the present invention is injected into a vein, subcutaneous or muscle, abdominal cavity, intratumoral, in the vicinity of a tumor, etc .; nasal cavity, oral cavity Inhaled from lungs, etc .; injected directly into the urinary bladder or rectum; administered directly into the affected tissue or nearby blood vessels; or supported on porous materials such as gels and sponges, non-woven fabrics, etc. Any method of gene therapy techniques can be used, such as placement in
  • the above amount of the lyophilized product is obtained by the ex vivo method, the in situ method, or the in vivo method as described above. It can be used.
  • the positive charge possessed by a complex of a normal nucleic acid, oligonucleic acid, or a derivative thereof, and a force thione polymer, a cationic lipid, or an aggregate containing the same is added.
  • -Neutralization of ON polymer and its neutralization effect is maintained even after administration to living body and cells, so that it is aggregated by complex and serum protein, blood cell, extracellular matrix, etc.
  • the like, and the enzymatic degradation of the nucleic acid, oligonucleic acid, or derivative thereof is blocked, so that the nucleic acid is efficiently taken up by the cell and its expression efficiency is high.
  • the lyophilized hydrate of the present invention can be used as a preparation or reagent for introducing a nucleic acid, oligonucleic acid, or a derivative thereof, or as a kit for introducing a nucleic acid, oligonucleic acid, or a derivative thereof. it can.
  • Plasmid Polyethyleneimine (PEI) Hyaluronic acid (HA) complex by freeze-dried product
  • the lyophilized gene / PEI / HA ternary complex was incubated with B16 derived from mouse melanoma cells to confirm the expression of the luciferase gene.
  • the same luciferase plasmid described in Non-Patent Document 6 (Biomacromolecules Vol. 7, pp 1274-1279) was used.
  • HA hyaluronic acid “derived from microorganisms” of Nacalai Testa Co., Ltd. was used.
  • PBS was prepared by dissolving Phosphate Buffered Salts (Tablet) manufactured by Roman Industries in distilled ion-exchanged water. The same applies to the following embodiments.
  • B16 cells Two days before gene introduction, B16 cells were seeded in a 24-well multiplate and incubated for 2 days using EMEM medium.
  • the cell lysate was used as it was for protein assembly. Protein assay was performed using a protein assay kit from Bio-Rad. [0054] For comparison, gene expression was examined for those that were not supplemented with HA, including those that were lyophilized and those that were lyophilized.
  • the value in () in the figure is the ratio of the PEI cation, the HA cation to the plasmid cation, specifically, the molar ratio of the charge of PEI HA to the DNA. is there.
  • Example 1 in [2], the luciferase plasmid was first prepared by adding HA, adding PEI to the force, mixing, and freeze-drying.
  • the value in () in the figure is the ratio of the PEI cation, the HA cation to the plasmid cation, specifically, the molar ratio of the charge of PEI HA to the DNA. is there.
  • PRG-C Plasmid / PRT / carboxyl side chain-containing rod
  • Example 3 PEG-C having a molecular weight of about 10,000 and containing about 18 carboxyl groups in one molecule was used as a ionic polymer.
  • Non-patent document 1 J. Biomater. Sci. Polymer Edn. Vol. 14, pp 515-531 (2003)).
  • the lyophilized gene ⁇ PEI ⁇ PEG-C ternary complex was also incubated with B16 derived from mouse melanoma cells to confirm the expression of the luciferase gene.
  • B16 cells Two days before gene introduction, B16 cells were seeded in a 24-well multiplate and incubated for 2 days using EMEM medium.
  • PBS 50 1 was mixed with the lyophilized product prepared in [2] and incubated for 1 hour.
  • the cell lysate was used as it was for protein assembly.
  • Protein assay was performed using a protein assay kit from Bio-Rad.
  • the value in parentheses in the figure is the ratio of PEI cation, PEG-C cation to plasmid cation, specifically to PEI, PEG-C DNA.
  • the molar ratio of charge is the ratio of PEI cation, PEG-C cation to plasmid cation, specifically to PEI, PEG-C DNA.
  • lipofuectamine manufactured by Invitrogen was used.
  • B16 cells Two days before gene introduction, B16 cells were seeded in a 24-well multiplate and incubated for 2 days using EMEM medium.
  • this cell lysate was used as it was.
  • Protein assay was performed using a protein assay kit from Bio-Rad.
  • Example 4 The same experiment as in Example 4 was performed using PEG-C having a charge ratio of 16 times that of plasmid DNA instead of HA. Specifically, instead of preparing the HA solution 251 in Example 4, as shown in the graph below, an amount of PEG-C having a charge ratio 16 times that of plasmid DNA was dissolved in water. Added as 25 ⁇ l.
  • the value in () in the figure is the weight ratio of Lipofectamine and PEG-C to DNA.
  • Example 5 in [2], a solution was prepared at a low concentration using 10 times the amount of the solvent, mixed and freeze-dried. In [4], PBS501 was added and rehydrated as in 5. Evaluate things in the same way.
  • the value in () in the figure is the weight ratio of Lipofectamine and PEG-C to DNA.
  • the expression was less than 1/1000 of that before lyophilization, and almost no expression was observed. Is highly expressed in lyophilized concentrate, and in the presence of 80% serum, the plasmid / Lipofectamine / PEG-C ternary lyophilizate is the original plasmid / Lipofectamine binary complex that has not been lyophilized. It was nearly 30% higher than that of the body!
  • any gene that can be easily introduced by lyophilization can be selected. It was confirmed that a complex suspension solution having a concentration can be prepared.
  • B16 derived from 4.72 x 10 6 mouse melanoma cells suspended in 100 1 medium "was transplanted subcutaneously into 5-week-old male ddY mice. A cut was made in the tumor, and the solid DNA / PEI / HA complex was embedded in the tumor and sutured.
  • the solid DNA complex showed very high expression in the tumor (results shown in the table below)
  • the total protein amount was quantified by measuring 20 ⁇ l of the sample supernatant diluted to 1/5 in 1 ml of BioRad protein quantification reagent and measuring the absorbance at 595 nm after 20 minutes.
  • the lyophilized DNA complex was resolvated with 250 ⁇ l of 5% glucose.
  • the total protein amount was obtained by diluting the supernatant of each sample to 1/80. In addition to lml of Park quantification reagent, 20 minutes later, the absorbance at a wavelength of 595 nm was measured and quantified.
  • Medium EMEM medium (containing 10% FBS penicillin G sodium (100 units / m) and streptmycin sul fate (0.1 mg / mL))
  • the results are shown in the table below.
  • the concentrations in the table represent the final DNA concentration at the time of complex preparation in terms of nucleobase concentration.
  • HA hyaluronic acid
  • aqueous solution of anti-luciferase siRNA (Invitrogen) (21.28 ⁇ g / ml) in 25 ⁇ 1 is supplemented with 25 ⁇ l of protamine in water (78 g / ml), then hyaluronic acid solution (53.7 g / ml, or 1 07.5 g / ml) 50 1 was added. Mix the three components and put them into the wells of the culture plate. After 30 minutes, freeze at -30 ° C and then freeze-dry.
  • B16 derived from 1.2 x 10 5 mouse melanoma cells suspended in medium "100 1" was plated on a culture plate, and after 4 hours, medium lml was added, followed by pDNA solution (50 g / ml) 25 1 and PEI solution (78 ⁇ g / ml) A mixture of 25 ⁇ 1 was prepared, and after another 20 hours, it was replaced with fresh lml medium.
  • the total protein amount was quantified by measuring 20 ⁇ l of the sample supernatant diluted to 1/5 in 1 ml of BioRad protein quantification reagent and measuring the absorbance at 595 nm after 20 minutes.
  • "Medium; EMEM medium contains 10% FBS ⁇ penicillin G sodium (100unit / mL), streptmycin sul fate (0.1mg / mL))
  • Protamine was also lyophilized in the same way, but without hyaluronic acid.
  • Luciferase expression was significantly suppressed in cells cultured on freeze-dried plates containing protamine (PRT) and hyaluronic acid (HA) (see table below).
  • PRT protamine
  • HA hyaluronic acid
  • Example 2 The same solution of luciferase plasmid (0.8 mg / ml) used in Example 1 (0.8 mg / ml) 1.5 1 was diluted with 0, 1 2.5, or 200 1 water, and then an aqueous solution of hyaluronic acid (5.8 mg / ml) 3 1 was added thereto. Finally, 1.5 l (1.25 mg / ml) of PEI solution was added. 30 minutes after mixing the three components, it was frozen at -30 ° C and then freeze-dried. The lyophilized DNA complex was rehydrated with 6 ⁇ l of water, and 30 minutes later, 800 ⁇ l of water was added and the size was measured with a Malvern zeta analyzer.
  • the ratio of 0 LOOnm particles and 100 200 nm among the generated composite particles is shown in the table below.
  • the number after the component is the final DNA concentration at the time of complex preparation expressed as the nucleic acid base concentration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

 遺伝子及びアンチセンス核酸等の導入に用いると良好な機能発現能を示すとともに、濃度調節が容易で、取り扱いが簡便で、保存性にも優れている凍結乾燥体を提供する。  核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体;及びアニオン性ポリマーを含む複合体の凍結乾燥体;該凍結乾燥体の調製方法であって、核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体;及びアニオン性ポリマーを混合することにより複合体を形成させる工程;次いで凍結乾燥する工程を含む調製方法;当該凍結乾燥体を含む、核酸、オリゴ核酸、又はその誘導体の導入用製剤又は試薬あるいはキット;ならびに細胞に核酸、オリゴ核酸、又はその誘導体を導入する方法であって、当該凍結乾燥体を用いる方法。

Description

明 細 書
核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体
技術分野
[0001] 本発明は、核酸、オリゴ核酸、又はその誘導体を細胞に導入することを目的とする、 核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー又はカチオン性脂質若しく はそれを含む集合体;及びァニオン性ポリマーを含む複合体の凍結乾燥体、その調 製方法、ならびにそれを含む核酸、オリゴ核酸、又はその誘導体の導入用製剤及び 試薬ならびにキットに関する。
背景技術
[0002] 現在、 目的とする遺伝子、アンチセンスオリゴ核酸、その誘導体を細胞内に導入し 、かつその遺伝子、又は機能を発現させることにより、先天的な遺伝病や、ガン細胞 や AIDSなどを治療しょうとする遺伝子療法、アンチセンス療法が実用化されつつあ り、それとともに遺伝子 (DNA)、アンチセンスオリゴ核酸、その誘導体を細胞内に導 入するためのキャリア一として各種ベクターが検討されている。
[0003] このようなベクターの一つであって、安全性に関する懸念がなぐ効率がよぐ免疫 原性がなぐまた調製が容易である非ウィルス性ベクターとしては、カチオン性ポリマ 一、カチオン性リボソーム、カチオン性脂質などのカチオン性物質が研究されている
[0004] これらのカチオン性物質を用いる方法では、 DNAとカチオン性物質の複合体が正 に荷電して!/、るため、血液細胞及びアルブミンなどの血液成分と相互作用することに より凝集してしまい、細胞への導入の障害となっていた。この問題を解消するために、 核酸とカチオン性ポリマーの複合体をヒアルロン酸誘導体で被覆したり(特許文献 1: 特開 2005-176830号);カルボキシル基含有側鎖及び糖残基含有側鎖を有するポリ エチレングリコール (PEG)で被覆したり(特許文献 2 :特開 2003- 231748号);遊離力 ルボン酸ペンダント基を有する PEGを用いて複合体の凝集を防止する(非特許文献 1 :J. Biomater. Sci. Polymer Edn" Vol. 14, No. 6, pp.515- 531 (2003))といった方法 が検討されている。 [0005] このようにして調製された DNAとカチオン性物質の複合体は、低 、凝集性を示し、 また細胞における遺伝子発現も良好である。しかし、このような複合体は、不均一な 懸濁液であるため保存性が低く調製後速やかに使用する必要があり、また高濃度で 調製すると凝集してしまうため、濃度の調整が困難であり、取り扱いも煩雑であるとい う欠点があった。また、再現性の良い調製にも難があった。
一方、上記のような DNAとカチオン性物質との複合体を、遺伝子などの導入に用 いる場合、複合体のサイズ (粒径)の制御もまた重要である。組織内や血流中に投与 した場合、その後の複合体の拡散や、細胞への送達、取り込みの効率がその薬理効 果に大きく影響するためである。しかし、一般に、カチオン性ポリマーのようなイオン 性高分子を混合して複合体化する場合、高分子の凝集が起こり、非常に大きな粒子 や繊維状の複合体ができやすい。これを防ぐには、混合する溶液の濃度を極端に薄 くすることが必要である。しかし、遺伝子導入などに利用される製剤では、ある程度以 上の濃度が必要であるため、大きな凝集塊の生成を回避できな 、と 、う問題があつ た。また、一旦薄い溶液を混合して小さな複合体を形成させた後、濃縮する方法も考 えられるが、複合体粒子が速やかに凝集してしまうため、適切な濃縮手段がなかった
[0006] そこでこれらの問題を解決するために、生物製剤を容易に輸送可能にし、貯蔵安 定性を高めるための一般的方法である凍結乾燥法も検討されていた。しかし、核酸、 オリゴ核酸、又はその誘導体とポリカチオン性物質の複合体を凍結乾燥したものでは 、凍結乾燥により複合体の構造が破壊されてしまうため、遺伝子導入やオリゴ核酸の 導入に用いてもほとんど遺伝子やアンチセンスとしての機能の発現を示さな 、ことが 確認されている(非特許文献 2 : J. Pharm. Sci., vol 90, ppl445- 1455 (2001))。
[0007] これらを解決する手法として、高濃度の単糖や二糖などを加えて凍結乾燥する方 法が提唱された(非特許文献 3 : Biochim Biophys Acta. 2000 Sep 29;1468(1-2):127- 138.)。し力し、ここで必要な糖の量は、重量比にして DNAの 500倍から 1000倍で あり、再水和後の溶液が生理条件よりもはるかに高浸透圧になってしまうことを考える と実用的ではない。また、単糖や二糖自体には、遺伝子発現に対する有利な効果は ない。また、再水和後の浸透圧を軽減するために、中性多糖であるデキストランの利 用が試みられた(非特許文献 4 : J. Pharm. Sci., vol 94, ppl226-1236 (2005))。しかし 、高分子量のデキストランは遺伝子発現を大きく阻害し、また、低分子量 (分子量 30 00程度)のデキストランを用いた場合、凍結乾燥による凝集を防止するためには、重 量比にして DNAの 100倍以上の、かなりの高濃度のデキストランの添カ卩が必要であ つた(非特許文献 4 : J. Pharm. Sci., vol 94, ppl226- 1236 (2005))。このような凍結乾 燥体の in vivoでの利用に際しては、必要な DNA濃度を得るために、凍結乾燥後は 少量の水又は溶媒で再水和し、さらに高濃度に濃縮する必要がある。そうすると再水 和後のデキストラン濃度は 10%を超えてしまい、また凍結乾燥時の DNA濃度、冷却 温度なども限定されており、その実用面での応用は困難である。
特許文献 1:特開 2005-176830号
特許文献 2:特開 2003-231748号
非特許文献 1 :J. Biomater. Sci. Polymer Edn., Vol. 14, No. 6, pp.515- 531 (2003) 非特許文献 2 : J. Pharm. Sci., vol 90, ppl445- 1455 (2001)
非特許文献 3 : Biochim Biophys Acta. 2000 Sep 29;1468(1- 2):127- 138
非特許文献 4 : J. Pharm. Sci., vol 94, ppl226- 1236 (2005)
発明の開示
発明が解決しょうとする課題
[0008] 本願発明者らは、上記の欠点を解消すべく鋭意研究を行った結果、核酸、オリゴ核 酸、又はその誘導体;カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集 合体;及びァ-オン性ポリマーを含む複合体の凍結乾燥体を用いて細胞への導入を 行うと、導入した遺伝子やオリゴ核酸又はその誘導体が良好にその機能を発現する ことを発見して、本発明を完成するに至った。
課題を解決するための手段
[0009] 本発明は、核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー又はカチオン 性脂質若しくはそれを含む集合体;及びァ-オン性ポリマーを含む複合体の凍結乾 燥体に関する。また、当該凍結乾燥体を含む、核酸、オリゴ核酸、又はその誘導体の 導入用製剤及び試薬並びにキットに関する。更にまた、当該凍結乾燥体の調製方法 であって、核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー又はカチオン性 脂質若しくはそれを含む集合体;及びァ-オン性ポリマーを混合することにより複合 体を形成させる工程;次 、で凍結乾燥する工程を含む調製方法に関する。本発明は 、更にまた細胞に遺伝子、オリゴ核酸、又はその誘導体を導入する方法であって、当 該凍結乾燥体を用いる方法にも関する。
発明の効果
[0010] 本発明の凍結乾燥体は、濃度調節が容易で、取り扱いが簡便で、保存性にも優れ ている。また、本発明の凍結乾燥体は、ァ-オン性ポリマーを含むため、使用するに 際して溶媒に再水和して懸濁液または希釈液とした際にも、極めて微少なサイズの 複合体を含む安定な分散体を、任意の濃度で得ることができる。そして、遺伝子導入 に際しても、凝集を起こさずに、細胞に対して効率よく核酸、オリゴ核酸、又はその誘 導体を導入することができ、かつ局所投与、静脈内投与などの各種投与法によって、 良好な機能発現能を示す。
発明を実施するための最良の形態
[0011] 本発明の凍結乾燥体は、核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー 又はカチオン性脂質若しくはそれを含む集合体;及びァ-オン性ポリマーを含む複 合体の凍結乾燥体である。本複合体中で核酸、オリゴ核酸、又はその誘導体は、力 チオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体とイオン結合による 複合体を形成しており、カチオン性ポリマー又はカチオン性脂質はさらにァ-オン性 ポリマーとイオン結合している。これらは、混合比、混合順序等によっては、主にァ- オン性ポリマーで覆われた複合体を形成することができる。
[0012] 本発明の凍結乾燥体に用いることができる核酸、オリゴ核酸、又はその誘導体とし ては、遺伝子治療やアンチセンス治療により導入する任意の核酸やオリゴ核酸等を 用いることができ、具体的には種々の DNA及び RNA (—本鎖及び二本鎖)(プラスミ ド DNA、二本鎖オリゴ RNA、 mRNA、 tRNA、 rRNA、 cDNAなど);センス又はァ ンチセンスオリゴヌクレオチド (組換え体も含む)及びその誘導体;リボザィム又はそれ らの混合物などの各種の核酸、オリゴ核酸、又はその誘導体を挙げることができる。 また、これらの核酸の塩基部分と糖部分は、必要であれば修飾又は置換されていて もよい。核酸であれば、プラスミド DNA、アンチセンス核酸であれば、オリゴ DNA、そ の誘導体である S—オリゴ、 RNA干渉用二本鎖 RNA、リボザィム RNA等を好ましく 用いることができ、なかでもプラスミド DNAを特に好ましく用いることができる。
[0013] 本発明の凍結乾燥体に用いることができるカチオン性ポリマーとしては、正に荷電 された分子量が 1000〜300万程度の天然由来又は合成高分子であって、水中で D NAと複合体を形成できる官能基を 1分子中に複数、好ましくは 5個以上有する高分 子を使用することができ、このような官能基としては、例えば置換されていてもよいアミ ノ基若しくはアンモ-ゥム基又はその塩 (これらの基は、例えば炭素数 1〜6のアルキ ル基、フエ-ル基などで単又は多置換されていてもよい)、イミノ基、イミダゾリル基、 グァ -ジノ基などの有機アミノ基を挙げることができる。このようなカチオン性ポリマー としては、例えば、正に荷電された蛋白質やポリペプチド;正に荷電されたデンドリマ 一;正に荷電された合成ポリマー;及び正に荷電された多糖類誘導体、又はそれらの 塩、並びにそれらの組み合わせが挙げられる。
[0014] 本発明の凍結乾燥体にカチオン性ポリマーとして用いることができる正に荷電され た蛋白質、正に荷電されたポリペプチドの分子量は、好ましくは 1000〜50万程度で ある。このような蛋白質、ポリペプチドとしては、具体的にはプロタミン、ヒストン、 Hel A 1、ゼラチンなどのタンパク質及びポリペプチドを例示することができ、また、正に荷電 されたアミノ酸残基を含むポリアミノ酸もまた例示することができる。このような正に荷 電されたアミノ酸残基を含むポリアミノ酸としては、具体的にはポリ—L—リジン、ポリ アルギニン、ポリオル-チンなどを例示することができる。これらの蛋白質、及びポリ ペプチドの塩としては、塩酸塩、硫酸塩、リン酸塩、ホウ酸塩などを例示することがで きる。
[0015] カチオン性ポリマーとして用いることができる上記のような官能基を有する正に荷電 されたデンドリマーとは、分岐した分子鎖の末端または内部に、置換されていてもよ ぃァミノ基若しくはアンモ-ゥム基又はその塩 (これらの基は、例えば炭素数 1〜6の アルキル基、フエ-ル基などで単又は多置換されて 、てもよ 、)を有するデンドリマー であり、その分子量は、好ましくは 1000〜50万程度である。デンドリマーとしては、 具体的にはポリアミドアミンデンドリマー、ポリリジンデンドリマーなどを例示することが できる。また、デンドリマーの塩としては、塩酸塩、硫酸塩、リン酸塩、ホウ酸塩などを ί列示することができる。
[0016] カチオン性ポリマーとして用いることができる正に荷電された合成ポリマーは、上記 のような、水中で DNAと複合体を形成できる官能基を 1分子中に複数、好ましくは 5 個以上有する合成ポリマーであって、分子量が好ましくは 1000〜300万である合成 ポリマーである。合成ポリマーとしては具体的には、ポリエチレンィミン (直鎖状ポリェ チレンィミン、又はポリ分岐型エチレンイミンを含む)、 2—ジメチルアミノエチルメタク リレートの重合体又は共重合体、 2—トリメチルアミノエチルメタタリレートの重合体又 は共重合体などを例示することができる。合成ポリマーの一例であるポリエチレンイミ ンの分子量は、好ましくは 1000〜50万程度であり、より好ましくは 5000〜20万程度 であり、もっとも好ましくは 1万〜 10万程度である。また、ポリエチレンィミンの塩として 、塩酸塩、硫酸塩、リン酸塩、ホウ酸塩などを例示することができる。
[0017] カチオン性ポリマーとして用いることができる正に荷電された多糖類誘導体は、水 中で DNAと複合体を形成できる官能基を 1分子中に複数、好ましくは 5個以上有す る、分子量力 好まし <は 1000〜300万であり、より好まし <は 5000〜500000であ る多糖類誘導体である。このような多糖類としては、具体的にはキトサン、上記のよう な官能基を導入したデキストラン誘導体などを例示することができる。これらのうちキト サンの分子量は、好ましくは 1000〜50万程度であり、より好ましくは 5000〜20万程 度であり、もっとも好ましくは 1万〜 10万程度である。キトサンの塩としては、塩酸塩、 酢酸塩などを例示することができる。また、デキストラン誘導体の分子量は、好ましく は 3000〜100万である。このようなデキストラン誘導体としては、具体的にはジェチ ルアミノエチルーデキストランなどを例示することができる。
[0018] 上記のカチオン性ポリマーは、通常は正に荷電されていないものであっても、ァミノ 基などの官能基の導入によって正に荷電されるものであれば使用可能であり、また、 必要により糖鎖、オリゴペプチド、抗体などで更に修飾されていてもよい。
[0019] 本発明の凍結乾燥体に用いることができるカチオン性脂質 (カチオン性コレステロ ール誘導体を含む)としては、 DC— Choi (3 j8 - (Ν- (Ν' , Ν' —ジメチルァミノ ェタン)力ルバモイル)コレステロール)、 DDAB (N, N—ジステアリル— N, N—ジメ チルアンモ -ゥムブロミド)、 DMRI (N— (1, 2—ジミリスチルォキシプロパー 3—ィル ) -N, N ジメチルー N ヒドロキシェチルアンモ -ゥムブロミド)、 DODAC (N, N —ジォレイルー N, N ジメチルアンモ -ゥムクロリド)、 DOGS (ジヘプタデシルアミド グリシルスペルミジン)、 DOSPA(N— (1— (2, 3 ジォレイルォキシ)プロピル) N (2- (スペルミンカルボキサミド)ェチル)—N, N ジメチルアンモ -ゥムトリフルォ ロアセタート)、 DOTAP (N— (1— (2, 3 ジォレオイルォキシ)プロピル) N, N, N トリメチルアンモ -ゥムクロリド)、又は DOTMA(N— (1— (2, 3 ジォレイルォ キシ)プロピル)—N, N, N—トリメチルアンモ -ゥムクロリド)、並びにそれらの組み合 わせが挙げられる。
[0020] また、カチオン性脂質を含む集合体としては、上記カチオン性脂質 (たとえば DOS PA)と、例えば DOPE (ジォレオイルホスファチジルエタノールァミン)、コレステロ一 ルなどの中性物質を混合したものを使用することができる。例えばカチオン性脂質を 含む集合体としては、リポフエクタミン(上記 DOSPAと DOPEの 3 : lw/w混合体リ ポソーム)、リポフエクチン(上記 DOTMAと DOPEの 1: lwZw混合体リボソーム)、 またはこれらの混合物などを好ましく挙げることができる。
[0021] 本発明の凍結乾燥体においては、カチオン性ポリマーとしては、ポリエチレンィミン ;プロタミン; Hel A 1 ;ポリアミドアミンデンドリマー、ポリリジンデンドリマーなどのデンド リマー;キトサン; 2—ジメチルアミノエチルメタタリレートの重合体又は共重合体; 2—ト リメチルアミノエチルメタタリレートの重合体又は共重合体などを好ましく用いることが でき、ポリエチレンィミン、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、キトサ ンを特に好ましく用いることができる。また、カチオン性脂質若しくはそれを含む集合 体としては、リポフエクタミン(上記 DOSPAと DOPEの 3 : lwZw混合体リボソーム) を好ましくは用いることができる。
[0022] 本発明の凍結乾燥体において使用するァ-オン性ポリマーとしては、分子中にァ ユオン性基を含む、負に荷電された、分子量が 500〜400万程度の天然由来又は 合成高分子であって、水中でポリカチオンと複合体を形成できる官能基を 1分子中に 複数、好ましくは 5個以上有する高分子を使用することができ、このような官能基とし ては、例えばカルボキシル基、 OSO H基、 SO H基、リン酸基、及びこれらの塩
3 3
を挙げることができる。このようなァ-オン性ポリマーとしては、両イオン性ポリマーも 含まれる。
[0023] 本発明の凍結乾燥体にぉ 、ては、ァ-オン性ポリマーとしては、カルボキシル基、
-OSO H基、 SO H基、リン酸基、及びこれらの塩から選択される官能基を有す
3 3
る多糖類又はその誘導体;負に荷電した側鎖を有するアミノ酸残基を含むポリアミノ 酸;カルボキシル側鎖を持つ PEG誘導体;カルボキシル基、 OSO H基、 SO H
3 3 基、リン酸基、及びこれらの塩から選択される官能基を有する合成高分子;カルボキ シル基、 -OSO H基、 SO H基、リン酸基、及びこれらの塩から選択される官能基
3 3
、並びに置換されて!、てもよ!ヽァミノ基若しくはアンモ-ゥム基又はその塩 (これらの 基は、例えば炭素数 1〜6のアルキル基、フエ-ル基などで単又は多置換されていて もよ 、)を有する高分子;並びにそれらの組み合わせを用いることができる。
[0024] 本発明の凍結乾燥体においてァ-オン性ポリマーとして用いることができる上記の ような官能基を有する多糖類又はその誘導体としては、好ましくはダルコサミノグリカ ンを用いることができる。このようなダルコサミノダリカンの分子量は、好ましくは 1000 〜400万、より好ましくは 4000〜300万である。このようなダルコサミノダリカンとして 、具体的には例えばヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸 、 へパリン、デルマタン硫酸などを例示することができる。なかでもヒアルロン酸を好ま しく用いることができる。ヒアルロン酸は、その塩又は負に荷電した誘導体としても用 いることができる。その分子量は、 5, 000以上であればよいが、 10, 000以上が好ま しぐ 10万〜 300万がより好ましい。ヒアルロン酸の塩としては、ナトリウム塩、カリウム 塩、アンモ-ゥム塩などを例示することができる。また、ヒアルロン酸の誘導体としては 、例えば、ヒアルロン酸にポリエチレングリコール、ペプチド、糖、蛋白質、ヨウ酸、抗 体又はその一部などを導入することによって得られるものが挙げられ、スペルミン、ス ペルミジン等を導入し、プラスに荷電した部分を持つ両イオン性の誘導体も含まれる
[0025] 本発明の凍結乾燥体においてァ-オン性ポリマーとして用いることができる、負に 荷電した側鎖を有するアミノ酸残基を含むポリアミノ酸とは、カルボキシル基、—O— SO H基、 SO H基、リン酸基、及びこれらの塩などの基を側鎖として有するァミノ
3 3
酸残基を含む、好ましくは 500〜 100万の分子量を有するポリアミノ酸である。このよ うなポリアミノ酸としては、具体的にはポリグルタミン酸、ポリアスパラギン酸などを例示 することができる。
[0026] 本発明の凍結乾燥体においてァ-オン性ポリマーとして用いることができるカルボ キシル側鎖を持つ PEG誘導体とは、 PEG1分子当たりカルボキシル側鎖を複数、好 ましくは 5個以上有する、 500以上、好ましくは 2, 000以上、より好ましくは 4, 000〜 40, 000の分子量を有する PEG誘導体である。カルボキシル側鎖を持つ PEG誘導 体は、その塩又は負に荷電した誘導体としても用いることができる。これらの塩として は、ナトリウム塩、カリウム塩、アンモ-ゥム塩などを例示することができる。このような P EG誘導体としては、具体的には非特許文献 1 (J. Biomater. Sci. Polymer Edn. Vol. 14, pp 515-531 (2003)) に記載された PEG誘導体を例示することができる。
[0027] 本発明の凍結乾燥体においてァ-オン性ポリマーとして用いることができるカルボ キシル基、 OSO H基、 SO H基、リン酸基、及びこれらの塩から選択される官能
3 3
基を有する合成高分子とは、 1分子当たり複数、好ましくは 5個以上の、カルボキシル 基、 O— SO H基、 SO H基、リン酸基、及びこれらの塩から選択される官能基を
3 3
有する重合体又は共重合体であって、好ましくは 500〜400万の分子量を有する重 合体又は共重合体である。このような重合体又は共重合体としては、具体的には分 子量 1000〜300万のアクリル酸又はメタクリル酸の重合体又は共重合体、ある!/、は ポリビュルアルコールの硫酸エステル体、サクシ-ミジル化ポリ L リジンなどを例 示することができる。
[0028] 本発明の凍結乾燥体においてァ-オン性ポリマーとして用いることができるカルボ キシル基、 OSO H基、 SO H基、リン酸基、及びこれらの塩から選択される官能
3 3
基、並びに置換されて 、てもよ 、ァミノ基若しくはアンモ-ゥム基又はその塩 (これら の基は、例えば炭素数 1〜6のアルキル基、フエ-ル基などで単又は多置換されてい てもよい)を有する高分子とは、 1分子当たりカルボキシル基、 OSO H基、 SO
3 3
H基、リン酸基、及びこれらの塩から選択される官能基を複数、好ましくは 5個以上、 並びに上記のように置換されて 、てもよ 、ァミノ基若しくはアンモ-ゥム基又はその塩 を有する、 500以上、好ましくは 2, 000以上、より好ましくは 4, 000〜40, 000の分 子量を有する高分子である。このような高分子としては、好ましくは、カルボキシル側 鎖とその当量以下の上記のアミノ基若しくはアンモ-ゥム基又はその塩を持つ PEG 誘導体を挙げることができ、具体的には非特許文献 5 (Macromol. Biosci. Vol. 2, pp 251-256 (2002)) に記載されている方法で調製することができる PEG誘導体を例示 することができる。
[0029] 本発明の凍結乾燥体において用いることができるァ-オン性ポリマーは、通常は負 に荷電されて 、な 、ものであっても、カルボキシル基などの官能基の導入によって負 に荷電されるものであれば使用可能であり、また必要により糖鎖、オリゴペプチド、抗 体などで更に修飾されて 、てもよ!/、。
[0030] 本発明の凍結乾燥体においては、ァ-オン性ポリマーとしては、ヒアルロン酸、カル ボキシル側鎖を持つ PEG誘導体、ポリアクリル酸などのァ-オン性ポリマー又はそれ らの塩を好ましく用いることができ、ヒアルロン酸、カルボキシル側鎖を持つ PEG誘導 体又はそれらの塩などを特に好ましく用いることができる。
[0031] また、ァ-オン性ポリマーとして、核酸導入の標的細胞に対して特異的接着能を有 するものを用いることにより、標的細胞に対して特異的に核酸導入を行うことが可能 である。例えばァ-オン性ポリマーとしてヒアルロン酸を用いる場合、ヒアルロン酸と特 異的に結合する CD44などの細胞表面分子を有する細胞を標的とすることができる。 また、 RGDペプチドを導入したァ-オン性ポリマーを用いることにより、多くの種類の 腫瘍細胞を標的とすることができ、またガラクトース側鎖を導入したァ-オン性ポリマ 一を用いることにより肝細胞又は肝由来の細胞を標的とすることができる。
[0032] 本発明の凍結乾燥体において、カチオン性ポリマー又はカチオン性脂質若しくは それを含む集合体と、ァ-オン性ポリマーの組み合わせとしては、ポリエチレンィミン とヒアルロン酸;ポリエチレンィミンとカルボキシル側鎖を持つ PEG誘導体; DOSPA を含む集合体(例えばリポフエクタミン(DOSPAと DOPEの 3: lwZw混合体リポソ 一ム))とヒアルロン酸; DOSPAを含む集合体(例えばリポフエクタミン)とカルボキシ ル側鎖を持つ PEG誘導体を好ましく挙げることができる。
[0033] 本発明凍結乾燥体において使用する核酸、オリゴ核酸、又はその誘導体と、カチ オン性ポリマー又はカチオン性脂質若しくはそれを含む集合体の各荷電基のモル比 (負電荷:正電荷比)は、標的細胞 ·核酸等'カチオン性ポリマー等の種類により異な るが、 1:0.8〜1: 100であるとよぐ好ましくは 1:1〜1: 50であり、より好ましくは 1:1 .2〜1:30である。ここでいう核酸、オリゴ核酸、又はその誘導体と、カチオン性ポリ マー又はカチオン性脂質若しくはそれを含む集合体の配合比とは、各荷電基のモル 比であり、具体的には核酸、オリゴ核酸、又はその誘導体のリン酸ァ-オンによる負 電荷:カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体の正電荷 又は正に帯電できる官能基のモル比を指す。
[0034] 本発明凍結乾燥体において使用する核酸、オリゴ核酸、又はその誘導体と、ァニォ ン性ポリマーの各荷電基のモル比 (負電荷:負電荷比)は、標的細胞'核酸等'ァニ オン性ポリマーの種類により異なる力 1:0.2〜1: 1000であるとよぐ好ましくは 1:0 .2〜1:100であり、より好ましくは 1:1〜1:60である。ここでいう核酸、オリゴ核酸、 又はその誘導体酸と、ァ-オン性ポリマーの配合比とは、各荷電基のモル比であり、 具体的には核酸、オリゴ核酸、又はその誘導体のリン酸ァニオンによる負電荷:ァニ オン性ポリマーの負電荷又は負に帯電できる官能基のモル比を指す。
[0035] 例えばァ-オン性ポリマーとしてヒアルロン酸を用いる場合、核酸とヒアルロン酸と の酉己合 itは、 1:0.2〜1: 1000であるとよく、好ましくは 1:0.2〜1:100であり、より 好ましくは 1: 1〜 1: 60である。
[0036] 例えばァ-オン性ポリマーとしてカルボキシル側鎖を持つ PEG誘導体を用いる場 合、核酸とカルボキシル側鎖を持つ PEG誘導体との配合比は、 1:0.2〜1:1000で あるとよく、好ましくは 1 :0.2〜1: 100であり、より好ましくは 1: 1〜1 :60である。
[0037] 特に、カチオン性ポリマーとしてポリエチレンイミンを、ァ-オン性ポリマーとしてヒア ルロン酸を用いる場合、核酸:ポリエチレンィミン:ヒアルロン酸配合比は、 1:2〜60: 1〜240、好ましくは1:4〜24:1〜160でぁり、より好ましくは 1: 7〜20: 2〜60、特 に好ましくは1:8〜14:2〜32でぁる。
[0038] 特に、カチオン性ポリマーとしてポリエチレンイミンを、ァ-オン性ポリマーとして力 ルポキシル側鎖を持つ PEG誘導体を用いる場合、核酸:ポリエチレンィミン:カルボ キシル側鎖を持つ PEG誘導体配合比は、 1:2〜60:1〜240、好ましくは 1:4〜24: 2〜160であり、ょり好ましくは1:7〜20:2〜60、特に好ましくは 1 :8〜14:4〜32で ある。 [0039] 特に、カチオン性脂質を含む集合体としてリポフエクタミン(DOSPAと DOPEの 3: lwZw混合体リボソーム)を、ァ-オン性ポリマーとしてヒアルロン酸を用いる場合、 核酸:リポフエクタミン:ヒアルロン酸配合比は、 1:1〜50:0.2〜240、好ましくは 1:1 .2〜48:0.2〜160であり、より好ましくは 1:1.5〜30:0.5〜60、特に好ましくは 1 :1.8〜16:1〜32である。
[0040] 特に、カチオン性脂質を含む集合体としてリポフエクタミンを、ァ-オン性ポリマーと してカルボキシル側鎖を持つ PEG誘導体を用いる場合、核酸:リボフヱクタミン:カル ボキシル側鎖を持つ PEG誘導体配合比は、 1:1〜50:0.1〜160、好ましくは 1:1. 2〜48:0.2〜160であり、より好ましくは 1:1.5〜30:0.5〜60特に好ましくは 1: 1 .8〜16:2〜32である。
[0041] 本発明の凍結乾燥体に含まれる核酸、オリゴ核酸、又はその誘導体;カチオン性ポ リマー又はカチオン性脂質若しくはそれを含む集合体;及びァ-オン性ポリマーの好 ましい配合比は、上述のとおりであるが、核酸などを導入する細胞の数や種類により 最適な条件は変動するため、配合比は、当業者が、用いる細胞、核酸等の種類に応 じて、適宜決定することができる。
[0042] 本発明凍結乾燥体は、上述した核酸、オリゴ核酸、又はその誘導体;カチオン性ポ リマー又はカチオン性脂質若しくはそれを含む集合体;及びァ-オン性ポリマーを、 上述した配合比で、混合することによって複合体を形成させる工程、次いでこれを凍 結乾燥する工程によって調製することができる。混合する順序としては、 [1]核酸、ォ リゴ核酸、又はその誘導体; [2]カチオン性ポリマー又はカチオン性脂質若しくはそ れを含む集合体、 [3]ァ-オン性ポリマーの順、又は、 [1]核酸、オリゴ核酸、又はそ の誘導体; [2]ァ-オン性ポリマー、 [3]カチオン性ポリマー又はカチオン性脂質若し くはそれを含む集合体の順が好ましい。核酸、オリゴ核酸、又はその誘導体は、カチ オン性ポリマー又はカチオン性脂質若しくはそれを含む集合体とイオン結合によって 結合し、さらにカチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体が 、ァ-オン性ポリマーともイオン結合した複合体が形成される。あるいは、各成分の配 合組成によっては、このような複合体構造の外殻を主にァ-オン性ポリマーが被覆し 、負の表面電位を有する態様が形成される [0043] 次 、で得られた複合体を凍結乾燥する。凍結乾燥は、通常の凍結乾燥条件下で 行うことができ、例えば減圧下(好ましくは、 5〜: LOOmmHg、より好ましくは lOmmHg) 、外気温—78°C〜60°C、好ましくは— 30°C〜40°Cで乾燥することによって行うこと ができる。乾燥に要する時間は、減圧度、溶媒の量によって異なり、通常は 1時間〜 2日間で完了する。
[0044] このようにして調製した本発明の凍結乾燥体は、ヒトゃ動物に対する各種の遺伝子 治療、アンチセンス治療、あるいは特定の遺伝子を導入したり、制御、ノックダウン、ノ ックアウトした実験動物や細胞の作成に利用することができる。具体的には、使用直 前に本発明の凍結乾燥体を水、生理食塩水、緩衝液、ブドウ糖溶液、培地液などの 溶媒に懸濁又は溶解することにより再水和物として力も用いることができる。再水和に 際しては、凍結乾燥体を、例えば核酸、オリゴ核酸、又はその誘導体の 100〜1000 0倍 (重量比)の溶媒を用いて懸濁又は稀釈する。凍結乾燥前と異なる量、異なる種 類の溶媒を用いることができるため、従来困難であった比較的高濃度の懸濁液や溶 液 (たとえば lml中に DNAを lmg含む液)も容易に調製することができる。
[0045] このようにして再水和した本発明の凍結乾燥体は、細胞への核酸等の導入に際し ては、具体的には、例えば、ゥエル中、体外に取り出した標的細胞を、水和した本発 明の凍結乾燥体で処理することにより遺伝子やアンチセンス核酸を導入した後、該 細胞を生体内に戻して、目的とする遺伝子を発現させる ex vivo法、あるいは、 in vivo 、 in situ法などの直接的な遺伝子やアンチセンス核酸の導入法など、生体細胞への 核酸、オリゴ核酸、又はその誘導体の導入に通常用いられる任意の方法を用いるこ とがでさる。
また、本発明の凍結乾燥体は、再水和することなぐそのまま核酸等の導入を行う 細胞と接触させたり、核酸等の導入を行う動物に皮下移殖する、核酸等の導入の標 的である組織内、組織表面、または近傍に移殖するなどの手段によって投与すること ちでさる。
[0046] 本発明の凍結乾燥体の細胞への適用量は、上述した導入方法、疾患の種類など によって異なるが、例えば核酸、オリゴ核酸、又はその誘導体の量にして、 ex vivo法 、 in situ法では、直径 l〜2cmのゥエル当たりで 0. 2〜: LO μ gZl〇47個 '細胞、 in viv o法では、投与部位によって大きく異なる力 腫瘍内への局所投与では例えば 5〜10 00 μ gZcm3 '腫瘍、膀胱などの臓器への投与では例えば 0. 1 μ g〜100mgZ臓器、 全身投与では例えば 0. lng〜: LOmgZKg '体重とすることができる。
[0047] 生体に直接投与する in vivo法としては、水和させた本発明の凍結乾燥体水和物を 、静脈、皮下又は筋肉、腹腔、腫瘍内、腫瘍近傍などへ注射し;鼻腔、口腔、肺など カゝら吸入させ;膀胱内、直腸内に直接注入し;病変部組織ないし近傍の血管内に直 接投与し;あるいは、ゲル状物、スポンジなどの多孔体、不織布などに担持させて留 置するなど、遺伝子治療技術の如何なる方法も用いることができる。
また、本発明の凍結乾燥体水和物を再水和することなく用いる際においても、上記 の量の凍結乾燥体を、上述したような ex vivo法、 in situ法、または in vivo法により、用 いることがでさる。
[0048] 本発明の凍結乾燥体においては、通常の核酸、オリゴ核酸、又はその誘導体と、力 チオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体との複合体が持つ 正の荷電を、ァ-オン性ポリマーが中和すると共に、その中和作用が、生体、細胞へ の投与後においても保持されていることによって、複合体と、血清タンパク質、血球細 胞、細胞外マトリックスなどとによる凝集等の相互作用が阻止され、また、核酸、オリゴ 核酸、又はその誘導体の酵素分解が阻止されるため、核酸が細胞に効率的に取り込 まれ、その発現効率も高い。
上記より、本発明の凍結乾燥体水和物は、核酸、オリゴ核酸、又はその誘導体の導 入用製剤又は試薬として、あるいは核酸、オリゴ核酸、又はその誘導体の導入用キッ トとして使用することができる。
[0049] 本発明を、実施例により更に具体的に説明する。なお、これらの実施例は、本発明 を説明するためのものであって、本発明を何ら限定するものではな 、。
実施例 1
[0050] プラスミド(Plasmid) ポリエチレンィミン(PEI) ヒアルロン酸(HA)複合体の凍結乾 燥体による遣伝早 現
凍結乾燥した遺伝子 · PEI · HA力 なる三成分の複合体をマウスのメラノーマ細胞由 来の B16とインキュベートし、ルシフェラーゼ遺伝子の発現を確認した。 [0051] ルシフェラーゼプラスミドは、非特許文献 6 (Biomacromolecules Vol. 7, pp 1274 - 1 279)記載と同じものを用いた。 PEIは、 Polyscience社製の直鎖状 PEI、 Mw= 2500 0のものを用いた。 HAは、ナカライテスタ株式会社の「微生物由来」のヒアルロン酸を 用いた。 PBSは Roman Industries社製の Phosphate Buffered Salts (Tablet)を蒸留し たイオン交換水に溶解したものを用いた。以降の実施例でも同様である。
[0052] [操作手順]
[1]遺伝子を導入する 2日前に、 24穴マルチプレートに B16細胞をまき、 EMEM培 地を用いて 2晚インキュベートした。
[2]導入する前日にルシフェラーゼプラスミド 1. 3 μ gを含む水溶液 2 μ 1を 2 μ 1の ΡΕ I水溶液と + Ζ—比(電荷モル比)が 8となるように混合し、数回ピペッティングした後 、様々な濃度の ΗΑ溶液 4 1を加え、充分撹拌した後マイナス 30°Cで凍結した。そ の後、凍結乾燥して、本発明の凍結乾燥体を調製した。また HAと PEIの混合順序を 変えたものについても同様の方法で調製した。
[3]培養した培地を取り除き、 10%FBSと 25Uのペニシリンと 25 μ gのストレプトマイ シンを含む EMEM500 μ 1をゥエルに入れた。
[4] [1]で調製した凍結乾燥体に PBS 16 μ 1を混合し、 1時間インキュベートしたあ と、ウエノレ〖こカロ免た。
[5] 37°C、5%CO - 95% air下で 4時間インキュベートした。
2
[6]培地を新しい 10%FBSと 25Uのペニシリンと 25 μ gのストレプトマイシンを含む Ε MEMと取り換え、 37°Cで 20時間インキュベートした。
[7] 20時間のインキュベート後、培地を取り除き、 PicaGeneの細胞溶解液を 200 μ 1 ずつ各ゥエルにカ卩えた。 20分ほど放置してから、細胞を剥がし、マイクロチューブに 回収した。
[8]遠心分離(15000rpm, 1分)した後、上清を用いてルシフェラーゼアツセーを行 つた。ノレシフェラーゼアツセ一は、 PicaGene Luminescence kitの方法に従って行つ た。
[0053] なお、プロテインアツセ一には、この細胞溶解液をそのまま用いた。プロテインアツ セ一は、 Bio-Rad社の Protein assay kitを用いて行った。 [0054] 比較のため、 HAを添カ卩しなかったものについて、凍結乾燥したもの、凍結乾燥しな 力つたものにっ 、ても遺伝子発現を調べた。
[0055] [結果]
結果を下図に示す。ここで、図中の( )の中の値は PEIのカチオン、 HAのァ-オン の、プラスミドのァ-オンに対する比であり、具体的には、 PEI HAの DNAに対する電 荷のモル比である。
[0056] 凍結乾燥した Plasmid /PEI二元複合体では、発現が凍結乾燥前の 1000分の 1以 下になり、ほとんど発現が観察されな力つたのに対して、 HAをカ卩えたものに於いては 高い発現が見られ、 Plasmid:PEI:HA = 1:8:16 (in charge)で混合した後凍結乾燥した ものでは、凍結乾燥前の Plasmid /PEI二元複合体よりもさらに 11%以上高い発現効 率を示した。
[0057] 〔表 1〕
Figure imgf000017_0001
0.E+00 1.E+07 2.E+07 3.E+07 4.E+07 5.E+07 6.E+07 7.E+07 8.E+07 9.E+07
RLU/mg Protein 実施例 2
[0058] 混合順序の影響
実施例 1において、 [2]で、ルシフェラーゼプラスミドに先に HAをカ卩えて力も PEIを 加えて混合し、凍結乾燥したものについて同様に評価した。
[0059] [結果]
結果を下図に示す。ここで、図中の( )の中の値は PEIのカチオン、 HAのァ-オン の、プラスミドのァ-オンに対する比であり、具体的には、 PEI HAの DNAに対する電 荷のモル比である。
[0060] 凍結乾燥した Plasmid /PEI二元複合体では、ほとんど発現しな力つたのに対して、 HAをカ卩えたものに於いては高い発現が見られ、 Plasmid:PEI:HA = 1:8:16 (in charge) で混合した後凍結乾燥したものでは、凍結乾燥前の Plasmid /PEI二元複合体よりもさ らに 26%以上高い発現効率を示した。この結果から、混合順序を変えても、高い発 現が見られることが明らかになった。
[0061] 〔表 2〕
Figure imgf000018_0001
O.E+00 1.E+07 2.E+07 3.E+07 4.E+07 5.E+07 6.E+07 7.E+07 8.E+07 9.E+07
RLU/mg Protein 実施例 3
[0062] Plasmid/PRT/カルボキシル側鎖 持つ ΡΕΠ 体 (以下 PRG- C) 含む凍結乾燥 体による遣伝早 現
実施例 3では、ァ-オン性ポリマーとして、分子量約 1万、 1分子に約 18個のカルボ キシル基を含む PEG— Cを、非特許文献 1 (J. Biomater. Sci. Polymer Edn. Vol. 14, pp 515-531 (2003))に記載された方法で合成して用いた。
[0063] 凍結乾燥した遺伝子 · PEI · PEG-C力もなる三成分の複合体をマウスのメラノーマ細 胞由来の B16とインキュベートし、ルシフェラーゼ遺伝子の発現を確認した。
[0064] [操作手順]
[1]遺伝子を導入する 2日前に、 24穴マルチプレートに B16細胞をまき、 EMEM培 地を用いて 2晚インキュベートした。
[2]導入する前日にルシフェラーゼプラスミド 1. 3 μ gを含む水溶液 12. 5 μ 1を 12. 5 μ 1の PEI水溶液と + /—比(電荷モル比)が 8となるように混合し、数回ピぺッティン グした後、様々な濃度の PEG— C溶液 25 1を加え、充分撹拌した後マイナス 30°C で凍結させた。その後、凍結乾燥して、本発明の凍結乾燥体を調製した。
[3]培養した培地を取り除き 10%FBSと 25Uのペニシリンと 25 μ gのストレプトマイシ ンを含む EMEM500 μ 1をゥエルに入れた。
[4] [2]で調製した凍結乾燥体に PBS 50 1を混合し、 1時間インキュベートしたあ と、ウエノレ〖こカロ免た。
[5] 37°C、5%CO - 95% air下で 4時間インキュベートした。
2
[6]培地を新しい 10%FBSと 25Uのペニシリンと 25 μ gのストレプトマイシンを含む Ε MEMと取り換え、 37°Cで 20時間インキュベートした。
[7] 20時間のインキュベート後、培地を取り除き、細胞を PBSで一回洗い、その後 Pi caGeneの細胞溶解液を 200 1ずつ各ゥヱルに加えた。 20分ほど放置してから、細 胞を剥がし、マイクロチューブに回収した。
[8]遠心分離(15000rpm, 1分)した後、上清を用いてルシフェラーゼアツセーを行 つた。ノレシフェラーゼアツセーは、 PicaGene Luminescence kitの方法に従って行つ た。
[0065] なお、プロテインアツセ一には、この細胞溶解液をそのまま用いた。プロテインアツ セ一は、 Bio-Rad社の Protein assay kitを用いて行った。
[0066] また、比較のため、 PEG-Cとほぼ同じ分子量で、電荷を持たない中性ポリマー、 PE
Gを、 PEG— Cと同重量カ卩えて凍結乾燥したものについても同様に実験を行った。
[0067] [結果]
結果を下図に示す。ここで、図中の( )の中の値は PEIのカチオン、 PEG-Cのァ- オンの、プラスミドのァ-オンに対する比であり、具体的には、 PEI、 PEG- Cの DNAに 対する電荷のモル比である。
[0068] 凍結乾燥した Plasmid/PEI二元複合体では発現はほとんど観察されな力つた。また 、電荷を持たない PEGをカ卩えたものでも、発現はほとんど見られなカゝつた。一方、 PE G-Cを加えた本発明の凍結乾燥体に於 、ては、凍結乾燥して 、な 、元の Plasmid/P EI二元複合体の 6割近 、高 、発現が見られた。
[0069] 〔表 3〕 凍結乾燥していないもの
Plasmid/PEI (1 :8)
凍結乾燥したもの 【
Plasmid/PEI (1 :8) |
Plasmid/PEI/PEG Q
Plasmid/PEI/PEG-C
(1 :8:1 6)
0 0.5E+08 1 E+08 1.5E+08 実施例 4
[0070] プラスミド(Plasmid) /リボフヱクタミン(Lipofectamine) /HA凍結乾燥体による遣伝子発 a
本実施例では、リポフエクタミンは Invitrogen社製のものを用いた。
[0071] 凍結乾燥した遺伝子 · Lipofectamine · HAからなる三成分の凍結乾燥体をマウスのメ ラノーマ細胞由来の B16とインキュベートし、ルシフェラーゼ遺伝子の発現を確認した
[0072] [操作手順]
[1]遺伝子を導入する 2日前に、 24穴マルチプレートに B16細胞をまき、 EMEM培 地を用いて 2晚インキュベートした。
[2]導入する前日にルシフェラーゼプラスミド 1. 3 μ gを含む水溶液 12. 5 μ 1を 12. 5 μ 1の Lipofectamine水溶液と、ノレシフェラーゼプラスミドと Lipofectamineの重量比が 8 となるように混合し、数回ピペッティングした後、様々な濃度の HA溶液 25 1を加え 3 0分インキュベート後マイナス 30°Cで凍結させた。その後、凍結乾燥して、本発明の 凍結乾燥体を調製した。
[3]培養した培地を取り除き 25Uのペニシリンと 25 μ gのストレプトマイシンを含む Ε MEMを 500 μ 1ゥエルに入れた。
[4] [2]で調製した凍結乾燥体に PBS 50 μ 1を混合し 45分インキュベートしたあと、 ゥエルに加えた。
[5] 37°C、5%CO - 95% air下で 4時間インキュベートした。
2
[6] 25Uのペニシリンと 25 μ gのストレプトマイシンを含む新し!/、EMEM1100 μ 1と、 FBS400 μ 1を加え、 37。Cで 20時間インキュベートした。 [7] 24時間のインキュベート後、培地を取り除き、細胞を PBSで一回洗い、その後 Pi caGeneの細胞溶解液を 200 1ずつ各ゥヱルに加えた。 20分ほど放置してから、細 胞を剥がし、マイクロチューブに回収した。
[8]遠心分離(15000rpm, 1分)した後、上清を用いてルシフェラーゼアツセーを行 つた。ノレシフェラーゼアツセ一は、 PicaGene Luminescence kitの方法に従って行つ た。
[0073] なお、プロテインアツセ一には、この細胞溶解液をそのまま用いた。プロテインアツ セ一は、 Bio-Rad社の Protein assay kitを用いて行った。
[0074] 比較のため、 HAを添カ卩しなかったものにっ 、て、凍結乾燥したもの、凍結乾燥しな 力つたものにっ 、ても遺伝子発現を調べた。
[0075] また、 [3]の細胞と DNA複合体とのインキュベートを、 80%FBSを含んだ EMEM培 地中で行ったものについても同時に検討した。この場合、 [6]では FBSはカ卩えず、 25
Uのペニシリンと 25 μ gのストレプトマイシンを含む ΕΜΕΜのみを 1500 μ 1カロえた。
[0076] [結果]
結果を下図に示す。ここで、図中の( )の中の値は Lipofectamine、 HAの Plasmidに 対する重量比である。
[0077] FBSを含まな!/、培地中で遺伝子導入したものでは、凍結乾燥した Plasmid/ Lipofect amine二元複合体では、発現が凍結乾燥前の 3000分の 1以下になり、発現はほどんと 観察されなかったのに対して、 HAをカ卩えたものに於 、ては凍結乾燥して ヽな 、元の Plasmid/ Lipofectamine二元複合体の約 55 %の発現が示された。
[0078] 80%血清存在下では、凍結乾燥した Plasmid/ Lipofectamine二元複合体の発現は さらに低下した力 凍結乾燥した Plasmid/Lipofectamine/HA三元複合体は、凍結乾 燥して 、な 、元の Plasmid/ Lipofectamine二元複合体の約 57%の高 、発現を示した
[0079] 〔表 4〕 FBS(0%)
凍結乾燥して
Plasmid:
凍結乾燥した
Plasmid:
Plasmid
Figure imgf000022_0001
RLU/mg Protein
FBS(80%)
凍結乾燥して
Plasmid:
凍結乾燥した
Plasmid:
Plasmid
Figure imgf000022_0002
0 1 xE 7 2xE 7 3xE 7
RLU/mg Protein 実施例 5
[0080] プラスミド(Plasmid) /リポフエクタミン(Lipofectamine) /PEG- C凍結乾燥体による遣伝 綱,
実施例 4と同様の実験を、 HAの代わりに、プラスミド DNAに対して電荷比 16倍の P EG-Cを用いて行った。具体的には、実施例 4で HA溶液 25 1をカ卩えたのに代えて、 下記のグラフに記載した通りにプラスミド DNAの 16倍の電荷比になる量の PEG- Cを 水に溶かして 25 μ 1として加えた。
[0081] 遺伝子導入は血清を含まな!/ヽ培地中又は 80%の血清を含む培地中で行った。
[0082] [結果]
結果を下図に示す。ここで、図中の( )の中の値は Lipofectamine、 PEG- Cの DNA に対する重量比である。
凍結乾燥した DNA/Lipofectamine二元複合体では発現はほとんど観察されなかつ たのに対し、 PEG- Cをカ卩えたものでは高い発現が示され、 80%血清存在下では、 P1 asmid/Lipofectamine/PEG- C三元複合体は、凍結乾燥して!/、な 、元の Plasmid/ Lipo fectamine二元複合体よりもさらに 4倍以上もの高い発現効率を示した
[0083] 〔表 5〕
FBS(0%)
凍結乾燥していな
Plasmid
凍結乾燥したもの
Plasmid
Plasmid: L
Figure imgf000023_0001
5xE 8 15xE 8 20xE 8
RLU/mg Protein
FBS(80%)
Figure imgf000023_0002
2.5xE 5xE 7 7.5xE 10xE
RLU/mg Protein 実施例 6
[0084] 凍結乾'燥前後における濃度の栾化の影響
実施例 5において、 [2]で、溶媒を 10倍量用いて低濃度で液を調製、混合して凍 結乾燥し、 [4]では 5と同様に PBS50 1をカ卩えて再水和したものについて同様に評 価し 7こ。
[0085] [結果]
結果を下図に示す。ここで、図中の( )の中の値は Lipofectamine、 PEG- Cの DNA に対する重量比である。
凍結乾燥した DNA/ Lipofectamine二元複合体では、発現が凍結乾燥前の 1000分 の 1以下になり、発現はほとんど観察されな力 たのに対して、 PEG-Cをカ卩えたもの に於いては凍結乾燥後濃縮したものにおいても、高い発現が見られ、 80%血清存在 下では、 Plasmid/Lipofectamine/PEG- C三元凍結乾燥体は、凍結乾燥していない元 の Plasmid/ Lipofectamine二元複合体よりもさらに 30%近く高!、発現効率を示した。
[0086] これらの結果から、凍結乾燥をすることによって、容易に遺伝子導入可能な任意の 濃度の複合体懸濁液'溶液が調製できることが確認された。
[0087] 〔表 6〕
FBS(80%)
凍結乾燥していないもの
Plasmid: Lipofectamine = 1 : 8 [ |—
凍結乾燥し、 1 0倍に濃縮したもの
Plasmid: Lipofectamine = 1 : 8 |
Plasmid: Lipofectamine: PEG- C (1 : 8 : 16) [ |
0 2.5xE 7 5xE 7
RLU/mg Protein 実施例 7
[0088] 凍結乾燥した固体状の DNA複合体の生体への投与
作手順]
ルシフェラーゼをコードしたプラスミドの TEバッファー溶液 (0.8mg/ml)50 μ 1を水 400 μ 1で希釈し、そこにヒアルロン酸水溶液(5.8mg/ml) 100 1を加え、最後に PEI溶液(1 .25πι§/πι1) 50 /ζ 1を加えた。三成分混ぜてから 30分後に- 30°Cで凍結させ、その後凍 結乾燥し、固体状の複合体を得た。
100 1のメディウム "に懸濁した 4.72 X 106のマウスのメラノーマ細胞由来の B16を 5 週齢の雄の ddYマウスの皮下に移殖した。腫瘍が 6-8mmになった時、麻酔下で腫瘍 部分に切り目を入れ、上記の固体状の DNA/PEI/HA複合体を腫瘍の中に埋め込み 縫合した。
二日後、エーテルで犠死させ、腫瘍と皮を取り出し、 1mlの細胞溶解液 *2中でホモ ジナイズした。その後、 10000rpm、 4°Cで 20分遠心し、上澄み(5 μ 1)に基質 (プロメガ 社製)(20 1)を加え、ルシフェラーゼの発光量をルミノメーターで 30秒間測定した。 総タンパク量は、各サンプルの上澄みを 1/80に希釈したもの 20 μ 1を BioRadのタン ノ ク定量試薬 lmlにカ卩え、 20分後に波長 595nmにおける吸光度を測定し、定量した。
[0089] [結果]
固体状の DNA複合体は、腫瘍内で極めて高!ヽ発現を示した (結果を下記表に示す
) o
"メディウム; EMEM培地(10%FBSゝ penicillin G sodium (100unit/mL)、 streptmycin s ulfate(0. lmg/mL)を含む)
*2細胞溶解液; 0.05%Triton x- 100、 2mM EDTA、 0.1M Tris- HCl(pH7.5)
[0090] 〔表 7〕
皮膚 腫瘍
Figure imgf000025_0001
0 10000 20000 30000 40000 50000
RLU/mg Protein 実施例 8
[0091] 焙着プレートト.で凍結乾燥した DNA 合体による細朐への遣伝子 人
作手順]
ルシフェラーゼをコードしたプラスミドの溶液 (0.8mg/ml)l.56 μ 1を 12.5 μ 1の水で希 釈し、そこに ΡΕΙ溶液(1.25mg/ml) 1.56 1をカ卩え、最後にヒアルロン酸水溶液(5.8mg /ml) 3.56 1をカ卩えた。三成分混ぜて力 培養プレートのゥエルに入れ、 30分後に- 30 °Cで凍結させ、その後凍結乾燥した。ヒアルロン酸をカ卩えないものについても同様に 凍結乾燥した。また、凍結乾燥せずにフレッシュな懸濁液を用いたものについても同 時に比較した。
メディウム "300 1に懸濁した 1.2 X 105のマウスのメラノーマ細胞由来の B16を、 DN A複合体を凍結乾燥したゥエルの中に撒いた。 4時間後メディウム lmlを足し、さらに 2 0時間後新しいメディウム lmlと取り替えた。それから 24時間後、プロメガの細胞溶解 液を 200 μ 1加え、細胞をハーべストし、 15000rpm、 4°Cで 1分遠心し、上澄み(5 μ 1)に 基質 (プロメガ社製)(20 1)をカ卩え、ルシフェラーゼの発光量をルミノメーターで 30秒 間測定した。
総タンパク量は、各サンプルの上澄みを 1/5に希釈したもの 20 μ 1を BioRadのタンパ ク定量試薬 lmlにカ卩え、 20分後に波長 595nmにおける吸光度を測定し、定量した。 "メディウム; EMEM培地(10%FBSゝ penicillin G sodium(100unit/mL)、 streptmycin sul fate (O.lmg/mL)を含む)
[0092] [結果]
ヒアルロン酸 (HA)をカ卩えてな 、ものは凍結乾燥するとほとんど遺伝子導入活性が 無くなつたが、ヒアルロン酸をカ卩えたものは凍結乾燥しても、フレッシュな懸濁液同様 の高 、活性を示した (結果を下記の表に示す)。
[0093] 〔表 8〕
Figure imgf000026_0001
Ο.Ε+ΟΟ 5.Ε+08 1.Ε+09 2.Ε+09 2.Ε+09 3.Ε+09
RLU/mg Prot 実施例 9
[0094] 凍結乾燥によって濃縮した DNA 合体縣溺液 用いた in vivo遣伝早 人
作手順]
ルシフェラーゼをコードしたプラスミドの溶液 (0.8mg/ml)62.5 μ 1を 0、 500、 2000、また は 8000 μ 1の水で希釈し、そこにヒアルロン酸水溶液(5.8mg/ml) 125 μ 1を加え、最後 に ΡΕΙ溶液 62.5 l (1.25mg/ml)を加えた。三成分混ぜてから 30分後に- 30°Cで凍結さ せ、その後凍結乾燥した。
凍結乾燥した DNA複合体を 5%グルコース 250 μ 1で再溶媒和した。
100 1のメディウム "に懸濁した 4.72 X 106のマウスのメラノーマ細胞由来の B16を 5 週齢の雄の ddYマウスの皮下に移殖した。腫瘍が 6-8mmになったところで、再溶媒和 した DNA複合体懸濁液をマウスの尾静脈に投与した。
24時間後、エーテル麻酔下で脱血し、腫瘍、肝臓、肺を取り出し、 1mlの細胞溶解 液 * 2中でホモジナイズした。その後、 10000rpm、 4°Cで 20分遠心し、上澄み(5 μ 1)に 基質 (プロメガ社製)(20 1)をカ卩え、ルシフェラーゼの発光量をルミノメーターで 30秒 間測定した。
総タンパク量は、各サンプルの上澄みを 1/80に希釈したもの 20 μ 1を BioRadのタン パク定量試薬 lmlに加え、 20分後に波長 595nmにおける吸光度を測定し、定量した。 メディウム; EMEM培地(10%FBS penicillin G sodium(100unit/mし)、 streptmycin sul fate(0.1mg/mL)を含む)
*2細胞溶解液; 0.05% Triton x- 100 2mM EDTA 0.1M Tris- HCl(pH7.5)
[0095] [結果]
結果を下記表に示す。表中の濃度は、複合体調製時の最終 DNA濃度を核酸塩基 濃度で表したものである。ヒアルロン酸 (HA)をカ卩えて凍結乾燥したものでは、調製時 に DNA濃度の低かったものほど高!/、遺伝子発現が見られ、特に腫瘍内では顕著に 高!/ヽルシフェラーゼ活性が示された。
[0096] 〔表 9〕
Figure imgf000027_0002
Figure imgf000027_0001
実施例 10
[0097] 焙着プレートト.で凍結乾燥した siRNA 合体による遣伝早 ¾制効菜
作手順]
アンチ'ルシフェラーゼ siRNA(Invitrogen社製)の水溶液 (21.28 μ g/ml)25 μ 1にプロ タミン水溶液(78 g/ml) 25 1をカ卩え、その後ヒアルロン酸溶液(53.7 g/ml、または 1 07.5 g/ml) 50 1を加えた。三成分混ぜて力 培養プレートのゥエルに入れ、 30分後 に- 30°Cで凍結させ、その後凍結乾燥した。
メディウム "100 1に懸濁した 1.2 X 105のマウスのメラノーマ細胞由来の B16を培養 プレート上に撒き、 4時間後メディウム lmlを足したのち、 pDNA溶液 (50 g/ml) 25 1 と PEI溶液 (78 μ g/ml) 25 μ 1を混合したものをカ卩えた。さらに 20時間後新し ヽメディウ ム lmlと取り替えた。 そこから 24時間後プロメガの細胞溶解液を 200 /z lカ卩え、細胞をハーべストし、 15000 rpm、 4°Cで 1分遠心し、上澄み (5 μ 1)に基質 (プロメガ社製) (20 μ 1)を加え、ルシフエ ラーゼの発光量をルミノメーターで 30秒間測定した。
総タンパク量は、各サンプルの上澄みを 1/5に希釈したもの 20 μ 1を BioRadのタンパ ク定量試薬 lmlにカ卩え、 20分後に波長 595nmにおける吸光度を測定し、定量した。 "メディウム; EMEM培地(10%FBSゝ penicillin G sodium(100unit/mL)、 streptmycin sul fate(0.1mg/mL)を含む)
プロタミンゃヒアルロン酸をカ卩えな 、ものにっ 、ても同様に凍結乾燥した。
[0098] [結果]
プロタミン (PRT)とヒアルロン酸 (HA)をカ卩えて凍結乾燥したプレート上で培養した細 胞では、有意にルシフェラーゼの発現が抑制されて 、た(下記表を参照)。
[0099] 〔表 10〕
s
siRNA/PRT
siRNA/PRT/HA (1
siRNA/PRT/HA (1
Figure imgf000028_0001
0 1 E+09 2E+09 3E+09 4E+09 5E+09
RLU/mg protein 実施例 11
[oioo] ^ ^て調製した DNA 合体の苒 7k禾 D後のサイズ
作手順]
実施例 1で用いたものと同じルシフェラーゼプラスミドの溶液 (0.8mg/ml)1.5 1を 0、 1 2.5、または 200 1の水で希釈し、そこにヒアルロン酸水溶液(5.8mg/ml) 3 1をカロえ、 最後に PEI溶液 1.5 l (1.25mg/ml)を加えた。三成分混ぜてから 30分後に- 30°Cで凍 結させ、その後凍結乾燥した。 凍結乾燥した DNA複合体を水 6 μ 1で再水和し、 30分後水 800 μ 1をカ卩えてマルバー ンのゼータアナライザでサイズを測定した。
[0101] [結果]
生成した複合体粒子のうち 0 LOOnmのものの割合、および 100 200nmのものの 割合を下記表に示す。成分の後の数値は、複合体調製時の最終 DNA濃度を核酸塩 基濃度で表したものである。
ヒアルロン酸(HA)をカ卩えて!/、な!/、ものでは、再水和後には微細な粒子はほとんど 観察されなかった。一方、ヒアルロン酸をカ卩えて凍結乾燥したものでは、再水和後も 多くの粒子が微少なサイズを維持 ていることが観察された。また、再水和後の DNA 濃度はどれも同じであつたが、複合体を 薄条件下で調製したものほど小さな粒子 の割合が多いことが認められた。
[0102] 〔表 11〕
Figure imgf000029_0001

Claims

請求の範囲
[1] 核酸、オリゴ核酸、又はその誘導体;カチオン性ポリマー又はカチオン性脂質若しく はそれを含む集合体;及びァニオン性ポリマーを含む複合体の凍結乾燥体。
[2] 核酸、オリゴ核酸、又はその誘導体とカチオン性ポリマー又はカチオン性脂質若し くはそれを含む集合体の各荷電基のモル比 (負電荷:正電荷比)が、 1 : 0. 8〜1 : 10 0である、請求項 1記載の凍結乾燥体。
[3] 核酸、オリゴ核酸、又はその誘導体とァ-オン性ポリマーの各荷電基のモル比 (負 電荷:負電荷比)が、 1 : 0. 2〜1: 1000である、請求項 1又は 2に記載の凍結乾燥体
[4] カチオン性ポリマー力 正に荷電された分子量が 1000〜300万程度の天然由来 又は合成高分子であって、水中で DNAと複合体を形成できる官能基を 1分子中に 複数有する高分子である、請求項 1〜3のいずれか 1項記載の凍結乾燥体。
[5] カチオン性ポリマー力 正に荷電された蛋白質やポリペプチド;正に荷電されたデ ンドリマー;正に荷電された合成ポリマー;及び正に荷電された多糖類誘導体、又は それらの塩、並びにそれらの組み合わせ力 選択される、請求項 4記載の凍結乾燥 体。
[6] カチオン性脂質力 DC -Choi (3 β - (Ν— (Ν' , Ν' —ジメチルアミノエタン)力 ルバモイル)コレステロール)、 DDAB (N, N ジステアリル— N, N ジメチルアン モ -ゥムブロミド)、 DMRI (N— (1, 2 ジミリスチルォキシプロパー 3 ィル)—N, N —ジメチル一 N ヒドロキシェチルアンモ -ゥムブロミド)、 DODAC (N, N ジォレ ィル一 N, N ジメチルアンモ -ゥムクロリド)、 DOGS (ジヘプタデシルアミドグリシル スペルミジン)、 DOSPA(N— (1— (2, 3 ジォレイルォキシ)プロピル) N— (2— (スペルミンカルボキサミド)ェチル)—N, N ジメチルアンモ -ゥムトリフルォロアセ タート)、 DOTAP (N— (1— (2, 3 ジォレオイルォキシ)プロピル) N, N, N トリ メチルアンモ -ゥムクロリド)、又は DOTMA(N— (1— (2, 3 ジォレイルォキシ)プ 口ピル)— N, N, N トリメチルアンモ -ゥムクロリド)である、請求項 1〜3のいずれか 1項記載の凍結乾燥体。
[7] ァ-オン性ポリマーが、分子中にァ-オン性基を含む、負に荷電された、分子量が 500〜400万程度の天然由来又は合成高分子であって、水中でポリカチオンと複合 体を形成できる官能基を 1分子中に複数有する高分子である、請求項 1〜6のいず れか 1項記載の凍結乾燥体。
[8] ァ-オン性ポリマー力 カルボキシル基、 -OSO H基、—SO H基、リン酸基、及
3 3
びこれらの塩から選択される官能基を有する多糖類又はその誘導体;負に荷電した 側鎖を有するアミノ酸残基を含むポリアミノ酸;カルボキシル側鎖を持つ PEG誘導体 ;カルボキシル基、 -OSO H基、 SO H基、リン酸基、及びこれらの塩から選択さ
3 3
れる官能基を有する合成高分子;カルボキシル基、 -OSO H基、 SO H基、リン
3 3 酸基、及びこれらの塩から選択される官能基、並びに置換されていてもよいアミノ基 若しくはアンモ-ゥム基又はその塩を有する高分子、並びにそれらの組み合わせか ら選択される、請求項 7記載の凍結乾燥体。
[9] カチオン性脂質を含む集合体力 DOSPA(N- (1— (2, 3 ジォレイルォキシ) プロピル) -N- (2- (スペルミンカルボキサミド)ェチル)—N, N ジメチルアンモ
-ゥムトリフルォロアセタート)を含む集合体であり、ァ-オン性ポリマーがヒアルロン 酸である、請求項 1記載の凍結乾燥体。
[10] カチオン性脂質を含む集合体力 DOSPA(N- (1— (2, 3 ジォレイルォキシ) プロピル) -N- (2- (スペルミンカルボキサミド)ェチル)—N, N ジメチルアンモ
-ゥムトリフルォロアセタート)を含む集合体であり、ァ-オン性ポリマーがカルボキシ ル側鎖を持つ PEG誘導体である、請求項 1記載の凍結乾燥体。
[11] カチオン性ポリマーがポリエチレンィミンであり;ァ-オン性ポリマーがヒアルロン酸 である、請求項 1記載の凍結乾燥体。
[12] カチオン性ポリマーがポリエチレンィミンであり;ァ-オン性ポリマーがカルボキシル 側鎖を持つ PEG誘導体である、請求項 1記載の凍結乾燥体。
[13] 核酸、オリゴ核酸、又はその誘導体:ポリエチレンィミン:ヒアルロン酸の配合比力 1:
4〜24: 1〜160 (各荷電基のモル比)である、請求項 11記載の凍結乾燥体。
[14] 核酸、オリゴ核酸、又はその誘導体:ポリエチレンィミン:カルボキシル側鎖を持つ P
EG誘導体の配合比が 1 :4〜24: 2〜 160 (各荷電基のモル比)である、請求項 12記 載の凍結乾燥体。
[15] 核酸、オリゴ核酸、又はその誘導体: DOSPAを含む集合体:ヒアルロン酸の配合 比が、 1 : 1. 2〜48 : 0. 2〜160 (各荷電基のモル比)である、請求項 9記載の凍結乾 燥体。
[16] 核酸、オリゴ核酸、又はその誘導体: DOSPAを含む集合体:カルボキシル側鎖を 持つ PEG誘導体の配合比力 1 : 1. 2-48 : 0. 2〜160 (各荷電基のモル比)である 、請求項 10記載の凍結乾燥体。
[17] 請求項 1記載の凍結乾燥体の調製方法であって、核酸、オリゴ核酸、又はその誘 導体;カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体;及びァ- オン性ポリマーを混合することにより複合体を形成させる工程;次いで凍結乾燥する 工程を含む調製方法。
[18] 請求項 1〜16のいずれか 1項記載の凍結乾燥体を含む、核酸、オリゴ核酸、又は その誘導体の導入用製剤又は試薬。
[19] 請求項 1〜16のいずれか 1項記載の凍結乾燥体を含む、核酸、オリゴ核酸、又は その誘導体の導入用キット。
[20] 細胞に核酸、オリゴ核酸、又はその誘導体を導入する方法であって、請求項 1記載 の凍結乾燥体を用いる方法。
[21] 細胞への核酸、オリゴ核酸、又はその誘導体の導入の前に、凍結乾燥体を溶媒に 再水和する工程を含む、請求項 20記載の方法。
[22] 凍結乾燥体を溶媒に再水和せずに使用する、請求項 20記載の方法。
PCT/JP2007/060002 2006-05-17 2007-05-16 核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体 WO2007132873A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07743437A EP2022853A4 (en) 2006-05-17 2007-05-16 FREEZERED PRODUCT FOR THE TRANSFER OF NUCLEIC ACID, OLIGONUCLEIC ACID OR DERIVATIVES THEREOF
US12/227,394 US20090130761A1 (en) 2006-05-17 2007-05-16 Freeze-Dried Product for Introducing Nucleic Acid, Oligonucleic Acid or Derivative Thereof
CN2007800179999A CN101448939B (zh) 2006-05-17 2007-05-16 用于导入核酸、寡核酸或其衍生物的冷冻干燥体
JP2008515578A JPWO2007132873A1 (ja) 2006-05-17 2007-05-16 核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体
US13/396,875 US8492142B2 (en) 2006-05-17 2012-02-15 Freeze-dried product for introducing nucleic acid, oligonucleic acid or derivative thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-138201 2006-05-17
JP2006138201 2006-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/227,394 A-371-Of-International US20090130761A1 (en) 2006-05-17 2007-05-16 Freeze-Dried Product for Introducing Nucleic Acid, Oligonucleic Acid or Derivative Thereof
US13/396,875 Division US8492142B2 (en) 2006-05-17 2012-02-15 Freeze-dried product for introducing nucleic acid, oligonucleic acid or derivative thereof

Publications (1)

Publication Number Publication Date
WO2007132873A1 true WO2007132873A1 (ja) 2007-11-22

Family

ID=38693962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060002 WO2007132873A1 (ja) 2006-05-17 2007-05-16 核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体

Country Status (5)

Country Link
US (2) US20090130761A1 (ja)
EP (1) EP2022853A4 (ja)
JP (1) JPWO2007132873A1 (ja)
CN (1) CN101448939B (ja)
WO (1) WO2007132873A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059064A (ja) * 2008-09-01 2010-03-18 Nagasaki Univ 薬物送達複合体
JP2011516545A (ja) * 2008-04-09 2011-05-26 ビロメッド カンパニー, リミテッド プラスミドdnaの発現増強用凍結乾燥dna製剤
JP2013039098A (ja) * 2011-08-19 2013-02-28 National Institute For Materials Science 被覆hvj−e及び被覆hvj−eの製造方法
WO2013032028A1 (ja) * 2011-08-29 2013-03-07 株式会社アルファ・ナノ・メディカ 新規な複合体、それを含有する医薬及び癌の治療方法
JP2016500515A (ja) * 2012-10-08 2016-01-14 リポカリクス・ゲーエムベーハー 形質導入試薬としてのカルボキシル化ポリアミン誘導体
JP2017014229A (ja) * 2009-07-31 2017-01-19 ラモット アット テル アビブ ユニバーシティ, リミテッド ポリヌクレオチド剤を含む細胞標的化ナノ粒子およびその使用
US10639351B2 (en) 2013-10-22 2020-05-05 Helixmith Co., Ltd. Method for treating amyotrophic lateral sclerosis with a polynucleotide encoding two or more isoforms of hepatocyte growth factor
EP3799858A1 (en) 2016-10-17 2021-04-07 Pola Chemical Industries Inc. Method for producing composite particles
US11554179B2 (en) 2018-07-19 2023-01-17 Helixmith Co., Ltd Lyophilized pharmaceutical compositions for naked DNA gene therapy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011203A1 (en) * 2014-07-15 2016-01-21 Life Technologies Corporation Compositions with lipid aggregates and methods for efficient delivery of molecules to cells
WO2016127251A1 (en) * 2015-02-09 2016-08-18 Polyvalor, Société En Commandite (S.E.C.) Coated chitosan-based polyplex for delivery of nucleic acids
CN106540273A (zh) * 2016-11-21 2017-03-29 湖北工业大学 Lpeis/dna/ha纳米载体及其制备方法和应用
US11559477B2 (en) * 2019-03-01 2023-01-24 Shanghai Cheermore Biological Technology Co., Ltd. Preparation method and use of artificial exosome complex
CN110638690B (zh) * 2019-03-01 2021-06-04 上海澄穆生物科技有限公司 一种人工外泌体复合物的制备方法及应用
CN115449534B (zh) * 2022-10-09 2023-05-16 浙江大学舟山海洋研究中心 一种马尾藻和鱼糜废水的混合酶解方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231748A (ja) 2001-11-28 2003-08-19 Keio Gijuku 医用高分子及びその用途
JP2005176830A (ja) 2003-11-28 2005-07-07 Nof Corp 核酸導入用キャリアー

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689600B1 (en) * 1998-11-16 2004-02-10 Introgen Therapeutics, Inc. Formulation of adenovirus for gene therapy
DE10031236A1 (de) * 2000-06-27 2002-01-10 Qiagen Gmbh Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien
JP4987474B2 (ja) * 2003-06-04 2012-07-25 ジョージタウン・ユニバーシティ リポソーム複合体の安定性および使用期限を改良するための方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231748A (ja) 2001-11-28 2003-08-19 Keio Gijuku 医用高分子及びその用途
JP2005176830A (ja) 2003-11-28 2005-07-07 Nof Corp 核酸導入用キャリアー

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ALLISON S.D. ET AL.: "Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1468, no. 1-2, 2000, pages 127 - 138, XP004273309 *
BIOCHIM. BIOPHYS. ACTA, vol. 1468, no. 1-2, 29 September 2000 (2000-09-29), pages 127 - 138
BIOMACROMOLECULES, vol. 7, pages 1274 - 1279
ITO T. ET AL.: "Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation", J. CONTROLLED RELEASE, vol. 112, no. 3, 2006, pages 382 - 388, XP005449036 *
ITO T. ET AL.: "Hyaluronic Acid de Coat shita Plasmid/Polycation Fukugotai ni yoru Saibo Tokuiteki Idenshi Hatsugen System", POLYMER PREPRINTS, JAPAN, vol. 53, no. 2, 1 September 2004 (2004-09-01), pages 3018 - 3019, XP003019215 *
J. BIOMATER. SCI. POLYMER EDN, vol. 14, 2003, pages 515 - 531
J. BIOMATER. SCI. POLYMER EDN., vol. 14, 2003, pages 515 - 531
J. BIOMATER. SCI. POLYMER EDN., vol. 14, no. 6, 2003, pages 515 - 531
J. PHARM. SCI., vol. 90, 2001, pages 1445 - 1455
J. PHARM. SCI., vol. 94, 2005, pages 1226 - 1236
KOWK K.Y. ET AL.: "Strategies for maintaining the particle size of peptide DNA condensates following freeze-drying", INT. J. PHARMACEUTICS, vol. 203, no. 1-2, 2000, pages 81 - 88, XP000990806 *
MACROMOL. BIOSCI., vol. 2, 2002, pages 251 - 256
PEER D. ET AL.: "Hyaluronan is a key component in cryoprotection and formulation of targeted unilamellar liposomes", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1612, no. 1, 2003, pages 76 - 82, XP004422676 *
RUPONEN M. ET AL.: "Extracellular and intracellular barriers in non-viral gene delivery", J. CONTROLLED RELEASE, vol. 93, no. 2, 2003, pages 213 - 217, XP004473640 *
See also references of EP2022853A4
TORCHILIN V.P. ET AL.: "p-Nitrophenylcarbonyl-PEG-Pe-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1511, no. 2, 2001, pages 397 - 411, XP004273433 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389492B2 (en) 2008-04-09 2013-03-05 Viromed Co., Ltd. Lyophilized DNA formulations for enhanced expression of plasmid DNA
JP2011516545A (ja) * 2008-04-09 2011-05-26 ビロメッド カンパニー, リミテッド プラスミドdnaの発現増強用凍結乾燥dna製剤
JP2010059064A (ja) * 2008-09-01 2010-03-18 Nagasaki Univ 薬物送達複合体
JP2017014229A (ja) * 2009-07-31 2017-01-19 ラモット アット テル アビブ ユニバーシティ, リミテッド ポリヌクレオチド剤を含む細胞標的化ナノ粒子およびその使用
US10179113B2 (en) 2009-07-31 2019-01-15 Ramot At Tel-Aviv University Ltd. Cell-targeting nanoparticles comprising polynucleotide agents and uses thereof
JP2013039098A (ja) * 2011-08-19 2013-02-28 National Institute For Materials Science 被覆hvj−e及び被覆hvj−eの製造方法
WO2013032028A1 (ja) * 2011-08-29 2013-03-07 株式会社アルファ・ナノ・メディカ 新規な複合体、それを含有する医薬及び癌の治療方法
JP2016500515A (ja) * 2012-10-08 2016-01-14 リポカリクス・ゲーエムベーハー 形質導入試薬としてのカルボキシル化ポリアミン誘導体
US9677078B2 (en) 2012-10-08 2017-06-13 Lipocalyx Gmbh Carboxylated polyamine derivatives as transfection reagents
US10639351B2 (en) 2013-10-22 2020-05-05 Helixmith Co., Ltd. Method for treating amyotrophic lateral sclerosis with a polynucleotide encoding two or more isoforms of hepatocyte growth factor
EP3799858A1 (en) 2016-10-17 2021-04-07 Pola Chemical Industries Inc. Method for producing composite particles
US11707419B2 (en) 2016-10-17 2023-07-25 Pola Chemical Industries, Inc. Composite particles including anionic polymer and cationic polymer or peptide, and method for producing composite particles
US12029800B2 (en) 2016-10-17 2024-07-09 Pola Chemical Industries, Inc. Composite particles including anionic polymer and cationic polymer or peptide, and method for producing composite particles
US11554179B2 (en) 2018-07-19 2023-01-17 Helixmith Co., Ltd Lyophilized pharmaceutical compositions for naked DNA gene therapy

Also Published As

Publication number Publication date
US20090130761A1 (en) 2009-05-21
US20120202283A1 (en) 2012-08-09
EP2022853A1 (en) 2009-02-11
US8492142B2 (en) 2013-07-23
EP2022853A4 (en) 2010-03-10
EP2022853A8 (en) 2009-06-17
CN101448939A (zh) 2009-06-03
CN101448939B (zh) 2011-12-14
JPWO2007132873A1 (ja) 2009-09-24

Similar Documents

Publication Publication Date Title
WO2007132873A1 (ja) 核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体
Uchida et al. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA
US11660355B2 (en) Engineered extracellular vesicles for enhanced tissue delivery
Pathak et al. Recent trends in non‐viral vector‐mediated gene delivery
Ravi Kumar et al. Nanoparticle-mediated gene delivery: state of the art
Dastan et al. In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells
EP1589999B1 (en) Polyvinylethers for delivery of polynucleotides to mammalian cells
Gong et al. Transition from vesicles to nanofibres in the enzymatic self-assemblies of an amphiphilic peptide as an antitumour drug carrier
JPH10502918A (ja) 核酸を含有する組成物、その製造および使用
JP7333635B2 (ja) mRNAを細胞に送達するための改善した脂質-ペプチドナノ複合体製剤
US20100311654A1 (en) Modified Polysaccharide-Based Delivery of Nucleic Acids
Huang et al. CRISPR spherical nucleic acids
US20150231274A1 (en) Dextran-peptide hybrid for efficient gene delivery
US8987215B2 (en) Composition for use in gene therapy
Fröhlich et al. Peptide-and polymer-based delivery of therapeutic RNA
JP2012509904A (ja) 核酸送達組成物および核酸送達法
WO2011135734A1 (ja) ウイルスの複合体、それを含有する治療薬及び治療方法
JP2010116383A (ja) 遺伝子導入治療剤
Erdem‐Çakmak et al. Comparison of VEGF gene silencing efficiencies of chitosan and protamine complexes containing shRNA
WO2014056414A1 (zh) 一种还原刺激响应型基因载体系统及其制备和应用
Xiu et al. Recent progress in polymeric gene vectors: Delivery mechanisms, molecular designs, and applications
Prabu et al. Biopolymer in gene delivery
KR102549868B1 (ko) 재조합 프로타민을 이용한 지질 나노입자 기반 약물 전달체 및 이의 제조방법
RU2817116C1 (ru) Способ получения плазмидной ДНК в составе полимерных наносфер для доставки
KR20220092764A (ko) 세포 번역이 가능한 구조를 갖는 rna 발현카세트를 유효성분으로 하는 복합입자 및 이의 용도

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780017999.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008515578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12227394

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743437

Country of ref document: EP