WO2007131390A1 - Milieu de contraste radiotransparent formé d'une matrice aqueuse pour la tomographie par ordinateur du tractus gastrointestinal et procédé de préparation de ce dernier - Google Patents

Milieu de contraste radiotransparent formé d'une matrice aqueuse pour la tomographie par ordinateur du tractus gastrointestinal et procédé de préparation de ce dernier Download PDF

Info

Publication number
WO2007131390A1
WO2007131390A1 PCT/CN2006/001063 CN2006001063W WO2007131390A1 WO 2007131390 A1 WO2007131390 A1 WO 2007131390A1 CN 2006001063 W CN2006001063 W CN 2006001063W WO 2007131390 A1 WO2007131390 A1 WO 2007131390A1
Authority
WO
WIPO (PCT)
Prior art keywords
contrast agent
density
negative contrast
hydrogel
matrix
Prior art date
Application number
PCT/CN2006/001063
Other languages
English (en)
French (fr)
Inventor
Xiaohui Wei
Jianrong Xu
Yuhong Xu
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to US12/300,240 priority Critical patent/US8747812B2/en
Priority to EP06741951A priority patent/EP2050470A1/en
Priority to KR20087030173A priority patent/KR101485501B1/ko
Priority to JP2009508085A priority patent/JP5174011B2/ja
Publication of WO2007131390A1 publication Critical patent/WO2007131390A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0409Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is not a halogenated organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0447Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is a halogenated organic compound
    • A61K49/0457Semi-solid forms, ointments, gels, hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a contrast agent and a method of preparing the same, and more particularly to an aqueous matrix digestive tract CT negative contrast agent and a preparation method thereof.
  • the invention belongs to the field of biomedical technology. Background technique
  • Gastrointestinal diseases especially colon cancer
  • X-ray tomography is widely used in clinical imaging for the diagnosis of digestive diseases.
  • CT X-ray tomography
  • its sub-second scanning speed has basically solved the artifacts caused by respiratory movement and intestinal peristalsis, so it plays a role in the diagnosis of intestinal lesions, especially colonic lesions. More and more important role.
  • water and air are generally used as intestine filling agents to ensure the filling of the lumens, so as to fully display the anatomical relationships, increase the detection rate of small lesions, and reduce the false positive rate.
  • the use of 3D image reconstruction technology for simulation endoscopic image analysis further improves the specificity and sensitivity of the diagnosis of digestive tract diseases.
  • existing CT imaging techniques cannot be timely and accurately diagnosed.
  • existing intestinal contrast agents are positive (CT high density) and neutral (CT density close to water) contrast agents.
  • Positive contrast agents often mask small lesions, and high-density intra-field contrast agents interfere with the enhancement of the intestinal wall; the density difference between the neutral contrast agent and the intestinal wall is too small, and it is difficult to distinguish the intestinal wall, lesions and intestines in the case of poor filling.
  • the structure of the cavity and other structures has a high rate of missed diagnosis, and VR and VE reconstruction cannot be achieved. Therefore, it is very important to develop a CT-negative (low-density) contrast agent that can effectively improve the imaging quality of the intestinal wall and facilitate the reconstruction of three-dimensional simulated endoscopic images.
  • the intestinal contrast agent can simultaneously achieve a good filling of the intestinal lumen, optimal display of the intestinal wall, and the three-dimensional simulation processing of the image.
  • the CT density of the first three preparations is about 10 to -80 HU (Hounsfield Unit), which can not effectively improve the resolution of the intestinal wall, and can not meet the requirements of 3D simulation image reconstruction; Paraffin oil CT dense The degree is about 100HU. After perfusion, the resolution of the intestinal wall can be effectively improved, and image reconstruction can be performed, but it has a strong diarrhea effect, so it is not suitable for clinical application.
  • Three-dimensional simulation using air enema with a CT density of about 1000 HU is highly sensitive and specific for observing lesions in the intestinal cavity such as polyps and tumors.
  • the intestinal wall is poorly displayed on the CT slice, and the intestinal wall shown is often thinner than the normal intestinal wall, and the pathological changes in the intestinal wall cannot be accurately reflected.
  • the present invention is directed to the deficiencies of the existing intestinal CT contrast agents described in the background art, and the need for clinical diagnosis, and proposes an aqueous matrix digestive tract CT negative contrast agent and a preparation method thereof.
  • the suspension-type negative contrast agent is safe, non-toxic and stable; it does not contain paraffin oil, vegetable oil and other oils and diarrhea components such as mannitol.
  • the contrast agent can effectively fill the intestinal lumen, clearly display the intestinal wall, and simultaneously perform three-dimensional image analysis such as simulated endoscopy, thereby greatly improving the sensitivity and specificity of CT for early diagnosis of intestinal wall and intestinal lumen.
  • Diagnosis and treatment provide a reliable imaging basis.
  • the contrast agent is convenient to use, and the patient only needs to perform a bowel preparation to perform a relatively complete imaging series examination, which reduces the inconvenience caused by the preparation of the bowel and saves the inspection cost.
  • the CT-negative contrast agent of the digestive tract of the aqueous substrate of the present invention is a suspension preparation formed by suspending micro-nano particles of a low-density substance in a hydrogel matrix, and the components and weight percentages thereof are: water Gel matrix 0. 01-1%, low density material micro-nanoparticle 5 - 50%, stabilizer 0. 1 - 5%, the rest is deionized water.
  • the micro-nanoparticles of the low-density material are low-density gas microbubbles or/and low-density solid particles.
  • the contrast agent of the invention has a CT density value of between 30 HU and 500 HU. After filling the intestine, the CT image density of the intestinal lumen is significantly lower than that of the intestinal wall, and there is no uneven distribution of density.
  • the contrast agent of the present invention is prepared by dispersing or swelling a viscous solution or semi-solid substance formed in water by a natural or artificially synthesized hydrophilic polymer, and has the ability to fill the intestine while having good fluidity.
  • the present invention also provides a method for preparing a digestive tract CT negative contrast agent of the above aqueous substrate, specifically: firstly dispersing or swelling a natural or artificially synthesized hydrophilic polymer in water to form a hydrogel matrix. Then, stabilizers are added, low-density micro-nano particles are added or prepared, dispersed, formed into a suspension formulation in a hydrogel matrix, and the stability and fluidity of the suspension are adjusted by adjusting the viscosity of the stabilizer and the hydrogel. , get a consistent, stable, fluidity, negative contrast agent for intestinal CT imaging studies.
  • the low-density material used in the invention has a density less than water, a CT value of between 50 HU and 1000 HU, and is easily dispersed but insoluble in water, including various gas microbubbles, polyethylene or polypropylene particles conforming to medical requirements, or the like.
  • the concentration of the micro-nanoparticles of the low-density material in the suspension can be adjusted according to the needs of the application of the preparation, generally between 5 and 50%.
  • Low-density gas microbubbles refer to microbubbles at 25 ° C and 1 atm.
  • the gases contained include air, carbon dioxide, nitrogen, oxygen, fluoroalkanes, chlorofluoroalkanes, thiofluoroalkanes, inert gases including helium, neon, argon, helium, neon, and combinations thereof.
  • the volume of microbubbles in the hydrogel matrix is 5-50% at 1 atmosphere.
  • Low-density solid particles refer to water-insoluble polymer particles with a CT value of 50 HU to 1000 HU at 25 ° (:, 1 atm.), including polyolefin, polyethylene, polypropylene and their mixed polymers. And a combination, the particle size is between 0. 05- lOOOMm, and its concentration in the hydrogel matrix is 5-50%.
  • the hydrogel matrix used in the present invention may be any hydrophilic natural and artificial polymers recognized in the art, such as cellulose and its derivatives, chitosan and its derivatives, agar, gelatin, gum arabic, western yellow. Silicone, sodium polyacrylate and mixtures of these. Hydrogels The concentration is 0. 01-1%; in order to improve the stability of the suspension and the uniformity in the low-density material 3 ⁇ 4 suspension, a certain amount of stabilizer is also added to the suspension.
  • the stabilizer used in the present invention is selected from the group consisting of proteins, glucose caprolactone, various ionic and nonionic surfactants, lipids, amphiphilic polymers, and mixtures thereof, such as dodecyl sulfonic acid. 1-5.
  • the total concentration of the suspension stabilizer in the suspension is 0. 1 - 5
  • the total concentration of the suspension stabilizer in the suspension is 0. 1 - 5 %.
  • Method one is in a hydrogel matrix containing a certain concentration of stabilizer.
  • the gas such as air, nitrogen and inert gas, is introduced into the gas to directly generate the gas microbubbles, and the stabilizer is used to further disperse and stabilize the microbubbles.
  • the second method is to use a hydrogel matrix containing a certain concentration of stabilizer, and to add a low-boiling liquid such as a fluoroanthracene hydrocarbon, a chlorofluorohydrocarbon or a thiofluoroalkane, and a mixture thereof at a temperature lower than the phase transition temperature.
  • a low-boiling liquid such as a fluoroanthracene hydrocarbon, a chlorofluorohydrocarbon or a thiofluoroalkane, and a mixture thereof at a temperature lower than the phase transition temperature.
  • Preparation of a low-density solid particle suspension in a hydrogel matrix can be achieved by any of the following three methods: Method one is to take a medical polyethylene or polypropylene material particle and pre-freeze it into a jet mill to carry out Ultrafine pulverization, obtaining fine particles having a diameter of 0.05 - ⁇ , further mixing with a stabilizer, dispersing into a hydrogel matrix, and preparing a suspension of low-density solid particles having different CT density values; The medical polyethylene or polypropylene material particles are firstly mixed with the stabilizer and then pre-frozen, and then added to the jet mill to be ultra-finely pulverized to obtain fine particles having a surface of 0. 05- lOOOMm and having hydrophilic surface.
  • Method 3 Disperse into a hydrogel matrix to form a low-density solid particle suspension;
  • Method 3 is to dissolve the stabilizer in an organic solvent, uniformly spray the surface of the medical polyethylene or polypropylene material particles, granulate, and dry the solvent.
  • a solid granule formulation was prepared which was dispersed into the hydrogel matrix prior to use to produce a suspension of low density solid particles having different CT density values.
  • the aqueous matrix intestinal CT negative contrast agent prepared by the invention has good uniformity, stability and fluidity, and can effectively improve the clarity and contrast of the intestinal wall imaging.
  • Low-density gas microbubbles or/and low-density solid particles are uniformly dispersed in the suspension, stable and non-layered; and have good fluidity and meet the requirements of perfusion.
  • the isolated small intestine or the ratio CT imaging studies of the dog's rectal perfusion showed that the prepared CT negative contrast agent can greatly reduce the CT density value in the intestinal lumen to a range of 30HU to 200HU, because the CT density of the intestinal wall environment is 100 to 1 About 150 HU, therefore, the clarity, integrity and smoothness of the intestinal wall are much better than the control group with water as the contrast agent.
  • the overall image of the intestine is uniform, and there is no signal difference caused by aggregation and stratification of low-density substance particles, further ensuring the reliability of diagnosis.
  • the intestinal CT negative contrast agent prepared by the invention can simultaneously solve the problem of two-dimensional display of intestinal wall and three-dimensional image reconstruction in current intestinal CT imaging research, thereby greatly improving the sensitivity and specificity of diagnosis of intestinal wall and intestinal cavity diseases, especially It is of great significance for the early and accurate diagnosis of malignant tumors such as colon cancer.
  • the prepared negative contrast agent is based on hydrogel, has good intestinal filling function, and can effectively avoid severe diarrhea caused by oil, fat, mannitol, etc.; low density gas microbubbles or/and low used
  • the density solid particles have the characteristics of safety, no irritability, etc., and can effectively reduce the CT density value in the cavity after being infused into the intestinal lumen.
  • the low-density contrast agent material is easily available, and the preparation method is simple and convenient, and is suitable for large-scale preparation. According to different observation requirements, the CT value of the negative contrast agent can be conveniently adjusted by adjusting the amount of low-density substance added to the matrix to obtain a good two-dimensional contrast image and three-dimensional reconstruction image of the intestinal wall.
  • Example 1 The main component of the contrast agent was 20 °/ of medical polyethylene particles having an ultrafine pulverization and an average diameter of 200 ⁇ 1. 0%, The remainder is deionized water.
  • the stabilizer is 5% of the mixture of pluronic F68 and sodium dodecyl sulfonate.
  • the specific preparation method is as follows: Mixing commercially available polyethylene particles conforming to medical requirements with Pluronic F68 in a ratio of 100:1, adding to a jet mill, superfine pulverization, and obtaining a surface adsorbed with Pluronic F68. Polyethylene pellets with an average diameter of 200Mm.
  • CT density value of contrast agent itself The prepared suspension was placed in a covered plastic test tube for CT scanning, and the CT density value was measured. The results showed that: in the control group, the CT density of water was still zero; the CT density of the prepared suspension negative shadow agent was 30HU, and there was no significant difference in CT density values at each scanning level, which could be within 20 minutes. Stay stable without delamination.
  • Intestinal CT density was measured after intestine perfusion in vitro: The prepared CT intestine CT negative contrast agent was perfused into an isolated pig intestine to remove air and smear; The pig intestine was used as a control group. Two sections of isolated pig intestines were immersed in cooking oil or paraffin oil which simulates the intestinal extra-fat fat environment, and the gas interface effect interference was shielded. CT scan was performed to determine the CT density value in the intestinal lumen. The results showed that: the CT density of the intestine in the control group was about zero, and the intestinal wall was blurred; the negative contrast agent group prepared by the infusion was filled with a CT value of about 30 HU, and the intestinal wall showed obvious control group and intestinal image. Light and dark evenly.
  • the 5%, a water-based substrate, the main component of the present invention is a medicinal polypropylene granules having a mean diameter of 10 m, prepared by a co-milling method, 50%, a stabilizer of a mixture of pluronic F68 and sodium dodecyl sulfonate. 0 ⁇ The sodium polyacrylate hydrogel 0. 005% and methyl cellulose gel 0. 03%, the rest is deionized water.
  • the specific preparation method comprises the following steps: pre-freezing the medical polypropylene particles having a CT density value of about 200 HU and having a CT density of about 200 HU in a mass ratio of 100:1, and then adding to the grinder to carry out the air flow.
  • the co-grinding was promoted to obtain polypropylene particles having a particle size of 10 Mm and having a hydrophilic surface. 5 ⁇
  • 50 grams of polypropylene particles were added to the mortar, and added stabilizer 3.
  • 5 grams (of which, sodium dodecyl sulfate 0.5 g, Pluron 3 g), mixed hook; 10 ml of each of 05% sodium polyacrylate and 0.3% methylcellulose hydrogel was added to the mortar, ground and mixed, and then deionized water was added to 100 g. Magnetically stir and mix further.
  • the prepared polypropylene particle-hydrogel negative contrast agent was measured by the self-CT density value described in Example 1 and the post-infusion intestinal CT density value measurement method. The results showed that the CT contrast value of the prepared negative contrast agent was About 100HU; CT density in the intestinal lumen after perfusion is reduced by about 100HU. The bowel wall is clear, complete and smooth. The image of the intestine is uniform and there is no visible mass.
  • the main component of the present invention is a medicinal polypropylene granules having an average diameter of ⁇ ⁇ , 35%, a mixture of the stabilizer, pluronic F68 and sodium dodecyl sulfonate, 4.8%, agar gel, 0.0000%, methyl fiber
  • the hydrogel was 0.02%, and the rest was deionized water.
  • the specific preparation method is as follows: 100 g of medical polypropylene particles having a CT density of about 100 HU and having a particle size of ⁇ after ultrafine pulverization are placed in a coating pan; and an appropriate concentration of 6% is added to the spray gun. Lonnick F68 ethanol solution, evenly sprayed on the surface of polypropylene particles.
  • the sprayed polypropylene granules were taken out, dried at 60 ° C, and weighed to determine a surface Pluronic F68 concentration of 2%.
  • the prepared pre-dispersed surfactant polypropylene particle-hydrogel negative contrast agent was measured by the self-CT density value described in Example 1 and the post-perfusion intestinal CT density value measurement method. The results showed that the prepared CT contrast density of the negative contrast agent was about 85 HU. After perfusion, the CT density in the intestinal lumen decreased by about 85 HU. The intestinal wall is clear, complete and smooth. The image of the intestine is uniform and there is no visible mass.
  • the main component of the contrast agent is surface modified, medical polyethylene and polypropylene fine powder with an average diameter of 50mn 5%, stabilizer polyoxyethylene-polyoxypropylene block copolymer and lecithin mixture 2%, scutellaria
  • the gelatin was 0.5%, and the rest was deionized water.
  • the specific preparation method is as follows: The medical polyethylene and polypropylene particles are mixed with lecithin, polyoxyethylene-polyoxypropylene block copolymer in a ratio of 50:1:1, and added to a jet mill for ultrafine pulverization.
  • a fine powder of a mixture of polyethylene and polypropylene having a CT density value of 1000 HU and an average particle diameter of 50 nm and having a surface-dispersed stabilizer was obtained.
  • the prepared poly-B A negative contrast agent was tested for the mixture of ene and polypropylene.
  • the CT density of the prepared negative contrast agent was about 200 HU; the CT density of the intestinal lumen decreased by about 200 HU after perfusion.
  • the bowel wall is clear, complete and smooth.
  • the image of the intestine is uniform and there is no visible mass.
  • the agglomerate of the present invention is a surface modified, an average diameter of 500 nm of ethylene-propylene random copolymer fine powder 10%, a stabilizer of polyoxyethylene hydrogenated castor oil and Tween mixture 3%, gum arabic hydrogel 0. 2 %, the rest is deionized water.
  • the specific preparation method is as follows: The ethylene-propylene random copolymer particles are mixed with polyoxyethylene hydrogenated castor oil and Tween 60 in a ratio of 100:1:1, and added to a jet mill for ultrafine pulverization.
  • a fine powder of ethylene-propylene random copolymer having a CT density of 600 HU and an average particle diameter of 100 nm and having a surface-dispersed stabilizer polyoxyethylene hydrogenated castor oil and Tween was obtained.
  • the prepared polypropylene monomethylcellulose hydrogel negative contrast agent was measured by the self-CT density value described in Example 1 and the post-infusion intestinal CT density value measurement method.
  • the CT density of the prepared negative contrast agent was about 100 HU; the CT density of the intestinal lumen decreased by about 100 HU after perfusion.
  • the bowel wall is clear, complete and smooth.
  • the image of the intestine is uniform and there is no visible mass.
  • the main component of the contrast agent is a surface-modified, ethylene-propylene block copolymer fine powder having an average diameter of 1 Mm, 40%, a stabilizer polyoxyethylene hydrogenated castor oil, a mixture of Tween and Span 5%, carboxymethyl fiber. 8%, the rest is deionized water.
  • the specific preparation method is as follows: The ethylene-propylene block copolymer particles are mixed with polyoxyethylene hydrogenated castor oil, Tween and Span in a ratio of 100: 1: 2: 1, and added to a jet mill for ultrafine pulverization.
  • An ethylene-propylene block copolymer fine powder having a CT density of 400 HU and an average particle diameter of 1 Mm and having a stabilizer dispersed thereon was obtained.
  • the prepared polypropylene monomethylcellulose hydrogel negative contrast agent was measured. The results showed that the CT density of the prepared negative contrast agent was about 80 HU. After perfusion, the CT density in the intestinal lumen was reduced by about 80 HU.
  • the bowel wall is clear, complete and smooth. The image of the intestine is uniform and there is no visible mass.
  • the main component of the present invention is the air microbubble 20% (v / v), the stabilizer albumin and gluconolactone 0.1%, methyl cellulose hydrogel 0.4%,
  • the agar hydrogel was 0.1%
  • the gelatin hydrogel was 0. 05%
  • the rest was deionized water.
  • the formed gas microbubbles are kept stable by being combined with a stabilizer in the hydrogel matrix.
  • the mixture of the present agent is a mixture of the stabilizers albumin, cetyltrimethylammonium bromide and polyoxyethylene-polyoxypropylene block copolymer 1. 55% 5%, The rest is deionized water. The 5%, the gelatin hydrogel is 0.5%. Nitrogen microbubbles formed by high speed agitation under aeration conditions are stabilized by binding to a stabilizer in the hydrogel matrix.
  • the specific preparation method is as follows: Weighing stabilizer 1. 55 g (including albumin 1 g, cetyltrimethylammonium bromide 0. 05 g, Pluronic F68 0.
  • the prepared nitrogen microbubble-hydrogel negative contrast agent was measured by the self-CT density value described in Example 1 and the post-infusion intestinal CT density value measurement method. The results show that the prepared CT contrast density of the negative contrast agent is a 500HU left. Right; CT density in the intestinal lumen after perfusion decreased by about 500 HU. The image of the intestine is uniform and there is no visible mass.
  • the main component of the contrast agent is helium microbubble 5% (v/v), a mixture of stabilizer sodium dodecyl sulfate and pluronic F68 1%, methylcellulose hydrogel 0.4%, agar water
  • the gel was 0.3%, and the rest was deionized water.
  • the helium microbubbles formed by high-speed agitation under helium conditions are stabilized by being combined with a stabilizer in the hydrogel matrix.
  • the 3% agar and 0. 3% agar are added to a solution containing 100% of the sodium sulfonate and 0.5% of the agarose. In the hydrogel, mix well.
  • Example 10 The mixture was stirred for 3 minutes using a tissue homogenizer at a speed of 1000 rpm, and helium gas was introduced while stirring to obtain a milky white helium microbubble-hydrogel suspension.
  • the prepared gas microbubble-hydrogel-negative contrast agent was measured by the self-CT density value described in Example 1 and the post-infusion intestinal CT density value measurement method. The results showed that the CT density of the prepared negative contrast agent was about -50 HU; the CT density of the intestinal lumen decreased by about 50 HU after perfusion. The image of the intestine is uniform and there is no visible mass. : Example 10
  • the main component of the contrast agent is sulphur hexafluoride gas microbubbles 10% (v / v), stabilizer phosphorus, phosphatidic acid and pluronic F68 mixture 2%, methyl cellulose hydrogel 0. 3% , agar 7. gel 0.2%, the rest is deionized water.
  • the sulfur hexafluoride microbubbles formed by heating and gasification remain stable by binding to a stabilizer in the hydrogel matrix.
  • the styling solution is 0. 3% methylcellulose and 0. 2 Mix well in the % agar hydrogel.
  • the mixture was cooled with an ice bath, and a sulfur hexafluoride liquid was added dropwise thereto, and stirred for 1 minute using a tissue homogenizer at a rotation speed of 1000 rpm to obtain an oil-in-water emulsion having sulfur hexafluoride as an oil phase.
  • the emulsion was heated in a 25 ° C water bath to vaporize sulfur hexafluoride to form a gas microbubble, thereby obtaining a milky white sulfur hexafluoride gas microbubble-hydrogel suspension.
  • the prepared gas microbubble-hydrogel negative contrast agent was measured by the self-CT density value described in Example 1 and the post-infusion intestinal CT density value measurement method.
  • the image of the intestine is uniform and there is no visible mass.
  • the main component of the contrast agent is trichlorofluoromethicone gas microbubbles 30% (v/v), stabilizer phosphatidylethanolamine, phosphatidic acid and pluronic F68 mixture 5%, sodium carboxymethyl cellulose hydrogel 0% 1%, agar hydrogel 0.1%, the rest is deionized water.
  • the trichlorofluoromethane microbubbles formed by heating and gasification remain stable by binding to a stabilizer in the hydrogel matrix. ⁇ carboxymethylcellulose sodium is added.
  • the prepared gas microbubble-hydrogel negative contrast agent was measured by the self-CT density value described in Example 1 and the post-infusion intestinal CT density value measurement method. The results showed that the CT density of the prepared negative contrast agent was about 400 HU; the CT density of the intestinal lumen decreased by about 400 HU after perfusion. The images of the intestine were hooked and there were no visible masses.
  • the main component of the contrast agent is 20% (v/v) of microbubbles of mixed gas of dichlorofluoroethane and trichlorofluoromethicone, 3% mixture of stabilizer phospholipid, phosphatidylethanolamine and pluronic F68, Sodium acrylate hydrogel 0. 05%, agar hydrogel 0.1%, the rest is deionized water.
  • the mixed gas microbubbles of dichlorofluoroethane and trichlorofluoromethane formed by heating and gasification are kept stable by being combined with a stabilizer in the hydrogel matrix.
  • the sulphate is 0. 05% sodium polyacrylate and 0. 1%. Mix well in the % agar hydrogel.
  • the gas microbubble-hydrogel negative contrast agent was measured. The results showed that the CT density of the prepared negative contrast agent was about 250 HU. The CT density of the intestinal lumen decreased by about 250 HU after perfusion. The image of the intestine is uniform and there is no visible mass.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Description

水性基质的消化道 CT阴性造影剂及其制备方法 技术领域 本发明涉及一种造影剂及其制备方法, 具体涉及一种水性基质的 消化道 CT阴性造影剂及其制备方法。 本发明属于生物医药技术领域。 背景技术
消化道疾病, 尤其是结肠癌等消化道恶性肿瘤已经成为威胁人类 生命健康的重要疾病。 目前临床广泛采用 X线体层扫描 (CT)进行消 化道疾病的影像学诊断。 近年来, 随着多层螺旋 CT的应用, 其亚秒级 的扫描速度, 基本解决了呼吸运动及肠道蠕动产生的伪影问题, 因此 在肠道病变, 尤其是结肠病变的诊断中发挥着越来越重要的作用。 目 前, 临床上一般采用水和空气作为肠道内充盈剂进行灌注, 保证腔道 充盈, 以充分展现各个解剖关系、 提高小病灶的检出率, 降低假阳性 率。 同时, 利用三维图像重建技术进行仿真内镜图像分析进一步提高 对消化道疾病诊断的特异性和灵敏性。 但是, 针对发生于消化道腔壁 的结肠癌等早期病灶, 现有的 CT影像技术却无法进行及时、 准确诊 断。 其重要原因在于, 现有的肠道造影剂均属于阳性 (CT高密度)和 中性(CT密度接近于水)造影剂。 阳性造影剂常掩盖小病灶, 并且高 密度场内造影剂干扰肠壁的强化效果; 中性造影剂与肠壁的密度差太 小, 在充盈欠佳的情况下难以分辨肠壁、 病灶和肠腔等各个结构, 漏 诊率很高, 而且无法实现 VR和 VE重建。 所以, 发展一种能有效提高 肠壁成像质量, 并有利于三维仿真内镜图像重建的 CT阴性(低密度) 造影剂非常重要。
目前尚没有一种肠道造影剂能同时达到良好充盈肠腔、 最佳显示 肠壁且兼顾图像三维仿真处理的要求。 有研究分别采用植物纤维素、 牛奶、 脂肪乳、 石蜡油和空气等作为阴性造影剂进行研究。 前三种制 剂的 CT密度在 10至- 80HU (Hounsfield Unit)左右, 并不能有效地提 高肠壁的分辨率, 更无法达到三维仿真图像重建的要求; 石蜡油 CT密 度在一 100HU左右, 灌注后可有效提高肠壁的分辨率, 可进行图像重 建, 但却有强烈的致泻作用所以不适合临床应用。 采用 CT密度为一 1000HU左右的空气灌肠后进行三维仿真对于观察肠腔内的隆起性病变 如息肉、 肿瘤等病变有较高的敏感性和特异度。 但因为气体的界面效 应, 在 CT切片上对肠壁的显示较差, 所显示的肠壁往往较正常肠壁明 显变薄, 不能准确地反映出肠壁内的病理变化。
经对现有技术检索发现, 目前, 仅有国外报道采用一种车前草籽 溶涨后的混悬液 Mucofalk改善了肠壁的 CT显示 (Helical CT of the small bowel with an alternative oral contrast material in patients with Crohn disease, Doerf ler 0C, Ruppert-Kohlmayr AJ Reittner P et al, ABDOMINAL IMAGING, 2003, 28 (3) : 313, 口服 造影剂用于螺旋 CT 对克隆氏结肠病的诊断, 腹部影像, 2003, 28 ( 3) ) , 但是腔道与肠壁间的密度差仍然不能达到三维仿真成像的 要求。 发明内容 , 本发明针对背景技术中所述的现有的肠道 CT造影剂的不足, 以及 临床诊断需要, 提出了一种水性基质的消化道 CT阴性造影剂及其制备 方法。 该混悬液型阴性造影剂安全、 无毒, 稳定; 不含石蜡油、 植物 油等油脂以及甘露醇等致泻成分。 使用该造影剂, 能够有效充盈肠 腔, 清晰显示肠壁, 并同时进行仿真内镜等三维图像分析, 因而可以 大大提高 CT对早期肠壁和肠腔内病变诊断的灵敏度和特异度, 为临床 诊断和治疗提供可靠的影像学依据。 同时, 该造影剂使用方便, 病人 只需进行一次肠道准备即可进行较完整的影像学系列检查, 减轻肠道 准备给病人带来的不便, 并节省检查费用。
本发明是通过以下技术方案实现的:
本发明所述的水性基质的消化道 CT阴性造影剂, 是一种低密度物 质的微纳米粒子混悬于水凝胶基质中形成的混悬制剂, 其包含的组分 及重量百分比为: 水凝胶基质 0. 01- 1%, 低密度物质的微纳米粒子 5— 50%, 稳定剂 0. 1— 5%, 其余为去离子水。 所述的低密度物质的微纳米 粒子, 为低密度气体微泡或 /和低密度固体颗粒。
本发明造影剂, 其 CT密度值为一 30HU至一 500HU之间, 充盈肠道 后使肠腔 CT影像密度明显低于肠壁, 且无密度分布不均现象。 本发明 造影剂以天然或人工合成的亲水性聚合物分散或溶涨在水中形成的粘 稠状溶液或半固体物质为基质, 具有充盈肠道的能力, 同时具有良好 的流动性。
本发明还提供上述水性基质的消化道 CT阴性造影剂的制备方法, 具体为: 首先将天然或人工合成的亲水性聚合物分散或溶涨在水中, 形成水凝胶基质。 而后, 加入稳定剂, 添加或制备低密度微纳米颗 粒, 分散, 形成水凝胶基质中的混悬制剂, 并通过调节稳定剂以及水 凝胶的粘度, 调节混悬液的稳定性和流动性, 得到均勾, 稳定, 流动 性良好, 符合肠道 CT造影研究要求的阴性造影剂。
本发明采用的低密度物质密度小于水、 自身 CT值在一 50HU 至一 1000HU之间、 易于分散但不溶于水, 包括各种气体微泡、 符合医用要 求的聚乙烯或聚丙烯微粒等或这些物质的配比组成。 可以根据应用制 剂的需要, 调节低密度物质的微纳米粒子在混悬液中的浓度, 一般在 5— 50%之间。
低密度气体微泡是指在 25°C, 1 个大气压时的微小气泡。 所含气 体包括空气、 二氧化碳、 氮气、 氧气、 氟代烷烃, 氯氟代烷烃、 硫氟 代烷烃、 包含氦气、 氖气、 氩气、 氪气、 氙气在内的惰性气体以及它 们的组合。 25 °C, 1 个大气压条件下, 微小气泡在水凝胶基质中的体 积浓度为 5— 50%。
低密度固体颗粒是指在 25° (:, 1个大气压时密度小于水的、 CT值 为一 50HU 至一 1000HU 的水不溶性聚合物颗粒, 包括聚烯烃、 聚乙 烯、 聚丙烯及其混合聚合物和组合, 粒径在 0. 05- lOOOMm之间, 其在 水凝胶基质中的浓度为 5— 50%。
本发明使用的水凝胶基质, 可采用任何本领域认可的亲水性天然 和人工聚合物, 如纤维素及其衍生物、 壳聚糖及其衍生物、 琼脂、 明 胶、 阿拉伯胶、 西黄蓍胶、 聚丙烯酸钠及它们组成的混合物。 水凝胶 的浓度为 0. 01-1%; 为了提高混悬液的稳定性及低密度物质 ¾混悬液 中的均匀性, 在混悬液中还需加入一定量的稳定剂。
本发明使用的稳定剂选自包括蛋白、 葡萄糖己内酯、 各种离子和 非离子型表面活性剂、 脂质、 双亲性高聚物以及它们配比形成的混合 物, 如十二烷基磺酸钠、 山梨醇脂肪酸酯、 脱水山梨醇脂肪酸酯、 聚 氧乙烯一聚氧丙烯共聚物等和它们组成的混合物; 混悬液稳定剂在混 悬液中的总浓度为 0. 1— 5%。
在水凝胶基质中制备低密度气体微泡混悬液, 根据气体微泡产生 方法的不同, 可以有两种不同的制备方法: 方法一是在含有一定浓度 的稳定剂的水凝胶基质中, 通入气体, 如空气, 氮气以及惰性气体, 高速搅拌直接产生气体微泡, 并利用稳定剂对微泡起到进一步地分散 和稳定作用。 方法二是同样使用含有一定浓度稳定剂的水凝胶基质, 在低于相变温度条件下, 加入氟代垸烃、 氯氟代垸烃或硫氟代烷烃以 及它们的混合物等低沸点液体, 制成水包油型乳剂, 而后加热气化, 形成稳定剂包裹的气体微泡。
在水凝胶基质中制备低密度固体颗粒混悬液, 可以通过以下三种 方法中的任意一种实现: 方法一是取医用聚乙烯或聚丙烯材料微粒预 冻后加入气流粉碎机中, 进行超细粉碎, 得到直径为 0. 05- ΙΟΟΟμπι的 微细粒子, 再进一步和稳定剂混匀, 分散到水凝胶基质中, 制成具有 不同 CT密度值的低密度固体颗粒混悬液; 方法二是取医用聚乙烯或聚 丙烯材料微粒先与稳定剂混合均匀后预冻, 再加入气流粉碎机中, 进 行超细粉碎, 得到直径为 0. 05- lOOOMm的、 表面亲水的微细粒子, 再 分散到水凝胶基质中, 制成低密度固体颗粒混悬液; 方法三是将稳定 剂溶解于有机溶剂中, 均匀喷涂于医用聚乙烯或聚丙烯材料微粒表 面, 制粒, 挥干溶剂, 制得固体颗粒制剂, 使用前再分散到水凝胶基 质中, 制成具有不同 CT密度值的低密度固体颗粒混悬液。
本发明制备所得的水性基质肠道 CT阴性造影剂, 具有良好的均匀 性, 稳定性和流动性, 可有效提高肠壁成像的清晰度和对比度。 低密 度气体微泡或 /和低密度固体颗粒在混悬液中分散均匀, 稳定不分层; 而且流动性好, 符合灌注的要求。 以水为对照组, 对离体猪小肠或比 格犬直肠灌注进行 CT影像研究表明, 所制备的肠道 CT阴性造影剂可 大大降低肠腔内的 CT密度值至一 30HU至一 200HU, 由于肠壁外环境的 CT密度值为一 100至一 150HU左右, 因此, 肠壁显示的清晰度, 完整 度和圆滑程度均大大优于以水为造影剂的对照组。 同时, 肠道的整体 图像均匀, 没有因低密度物质微粒发生聚集、 分层而产生的信号差 异, 进一步保证了诊断的可靠性。
本发明制备所得的肠道 CT阴性造影剂可同时解决目前肠道 CT影 像研究中肠壁二维显示以及三维图像重建的难题, 从而大大提高肠壁 及肠腔疾病诊断的灵敏度和特异性, 尤其对于结肠癌等恶性肿瘤的及 早准确诊断具有重要的意义。 所制备的阴性造影剂以水凝胶为基质, 具有良好的肠腔充盈功能, 并可有效避免油, 脂肪, 甘露醇等导致的 严重腹泻作用; 所采用的低密度气体微泡或 /和低密度固体颗粒具有安 全, 无剌激性等特点, 灌注入肠腔后可有效降低腔内 CT密度值。 该低 密度造影剂原料易得, 制备方法简便易行, 适于大规模制备。 根据不 同的观察要求, 可通过调整基质中加入的低密度物质的用量, 方便地 调整阴性造影剂的 CT值, 获得良好的肠壁二维对比图像和三维重建图 像。 具体实施方式
以下结合本发明方法的内容提供具体实施例, 对本发明技术作进 一步理解。
实施例 1 , 本造影剂的主要成分为经过超细粉碎、 平均直径为 200ΜΠ1的医用 聚乙烯颗粒 20°/。, 稳定剂为普朗尼克 F68 和十二烷基磺酸钠混合物 5%, 水凝胶基质为聚丙烯酸钠 0. 01%, 其余为去离子水。 具体制备方 法为: 将市售的、 符合医用要求的聚乙烯颗粒与普朗尼克 F68 按照 100: 1 的比例混匀后加入气流粉碎机中, 进行超细粉碎, 得到表面吸 附有普朗尼克 F68的、 平均直径在 200Mm的聚乙烯颗粒。 称取 20克聚 乙烯颗粒放入研钵中, 加入 5 克稳定剂 (其中十二垸基磺酸钠为 1 克, 普朗尼克 F68为 4克)混合均匀。 量取浓度为 0. 05%的预先溶涨 好的聚丙烯酸钠 (Mw大于三十万) 7j凝胶 20毫升, 加入研钵中, 充 分研磨后加去离子水到 100 克; 进一步转移到平底烧杯中, 中速磁力 搅拌, 即可得到均匀的聚乙烯颗粒一聚丙烯酸钠水凝胶混悬液。
造影剂自身 CT密度值的测定: 将所制备的混悬液放入有盖塑料试 管中进行 CT扫描, 测定其 CT密度值。 结果表明: 对照组中, 水的 CT 密度值仍为零; 所制备的混悬液阴性^影剂的 CT密度值为一 30HU, 并 且各个扫描层面 CT密度值无明显差异, 可在 20分钟内保持稳定不分 层。
离体猪肠灌注后测定肠腔内 CT密度值: 将所制备的混悬液肠道 CT 阴性造影剂灌注到一段离体猪肠中, 排除空气, 扎口; 同样操作, 将水灌注到离体猪肠中作为对照组。 将两段离体猪肠浸没于模拟体内 肠道外脂肪环境的食用油或者石蜡油中, 同时屏蔽气体界面效应干 扰, 进行 CT扫描, 测定肠腔内 CT密度值。 结果表明: 对照组肠腔 CT 密度为零左右, 肠壁模糊不清; 灌入所制备的阴性造影剂组, 肠腔 CT 值为一 30HU左右, 肠壁显示明显由于对照组, 并且肠腔内图像明暗均 匀。
实施例 2
本造影剂的主要成分为通过共研磨方法制备的、 平均直径为 lO m 的医用聚丙烯颗粒 50%, 稳定剂为普朗尼克 F68 和十二烷基磺酸钠混 合物 3. 5%, 水性基质为聚丙烯酸钠水凝胶 0. 005%和甲基纤维素凝胶 0. 03%, 其余为去离子水。 具体制备方法为: 将过 40 目筛的、 自身 CT 密度值为一 200HU左右的医用聚丙烯颗粒与普朗尼克 F68按 100: 1的 质量比混合预冻后, 加入到研磨机中, 进行气流推动的共研磨, 得到 粒径为 10Mm的、 表面亲水的聚丙烯颗粒。 而后, 取 50克聚丙烯颗粒 加入研钵中, 并加入稳定剂 3. 5克 (其中, 十二烷基磺酸钠 0. 5克, 普朗尼克 3克) , 混勾; 量取 0. 05%的聚丙烯酸钠和 0. 3%的甲基纤维 素水凝胶各 10 毫升加入研钵中, 研磨混匀, 而后加去离子水至 100 克。 磁力搅拌进一步混匀。 采用实施例 1中所述的自身 CT密度值以及 灌注后肠腔 CT密度值测定方法, 对所制备的聚丙烯颗粒一水凝胶阴性 造影剂进行测定。 结果表明: 所制备的阴性造影剂自身 CT密度值为, 100HU左右; 灌注后肠腔内 CT密度值降低一 100HU左右。 肠壁显示清 晰, 完整, 平滑。 肠腔图像均匀, 无可见团块。
实施例 3
本造影剂的主要成分为平均直径为 ΙΟΟθμιη 的医用聚丙烯颗粒 35%, 稳定剂普朗尼克 F68和十二烷基磺酸钠混合物 4. 8%, 琼脂凝胶 0. 005%, 甲基纤维素水凝胶 0. 02%, 其余为去离子水。 具体制备方法 为: 取 100 克自身 CT密度值为一 100HU左右、 经超细粉碎后粒径为 ΙΟΟθμιη的的医用聚丙烯颗粒放入包衣锅中; 在喷枪中加入适量浓度为 6%的普朗尼克 F68 乙醇溶液, 均匀喷涂于聚丙烯颗粒表面。 将喷涂后 的聚丙烯颗粒取出, 60摄氏度烘干, 称重, 确定表面普朗尼克 F68浓 度为 2%。 取 35 克烘干后的聚丙烯颗粒加入研钵中, 并加入稳定剂 4 克 (其中十二烷基磺酸钠 0. 5克, 普朗尼克 3. 5 克, 混匀) ; 量取 0. 05%的琼脂和 0. 2%的甲基纤维素水凝胶各 10毫升及适量去离子水, 加入研钵中, 研磨混匀。 而后加入去离子水至 100 克。 中速磁力搅拌 进一步混匀。 采用实施例 1 中所述的自身 CT密度值以及灌注后肠腔 CT密度值测定方法, 对所制备的预先分散表面活性剂的聚丙烯颗粒一 ' 水凝胶阴性造影剂进行测定。 结果表明: 所制备的阴性造影剂自身 CT 密度值为一 85HU左右; 灌注后肠腔内 CT密度值降低一 85HU左右。 肠 壁显示清晰, 完整, 平滑。 肠腔图像均匀, 无可见团块。
实施例 4
本造影剂的主要成分为表面修饰的、 平均直径为 50mn的医用聚乙 烯和聚丙烯细粉 5%, 稳定剂聚氧乙烯一聚氧丙烯嵌段共聚物和卵磷脂 混合物 2%, 西黄蓍胶水凝胶 0. 5%, 其余为去离子水。 具体制备方法 ' 为: 将医用聚乙烯和聚丙烯颗粒与卵磷脂, 聚氧乙烯一聚氧丙烯嵌段 共聚物按照 50: 1: 1的比例混合, 加入气流粉碎机中进行超细粉碎。 得到 CT密度值为一 1000HU的、 平均粒径为 50nm的、 表面分散有稳定 剂的聚乙烯和聚丙烯混合物细粉。 称取混合物细粉 5 克, 聚氧乙烯一 聚氧丙烯嵌段共聚物 2克, 加入到 0. 5%的西黄蓍胶水凝胶中, 制备得 到总重为 100克的聚丙烯一西黄蓍胶混悬液。 采用实施例 1中所述的 自身 CT密度值以及灌注后肠腔 CT密度值测定方法, 对所制备的聚乙 烯和聚丙烯混合物阴性造影剂进行测定。 结果表明: 所制备的阴性造 影剂自身 CT密度值为一 200HU左右; 灌注后肠腔内 CT密度值降低一 200HU左右。 肠壁显示清晰, 完整, 平滑。 肠腔图像均匀, 无可见团 块。
实施例 5
本造影剂的主要成分为表面修饰的、 平均直径为 500nm 的乙烯一 丙烯无规共聚物细粉 10%, 稳定剂聚氧乙烯氢化蓖麻油和吐温混合物 3%, 阿拉伯胶水凝胶 0. 2%, 其余为去离子水。 具体制备方法为: 将乙 烯一丙烯无规共聚物颗粒与聚氧乙烯氢化蓖麻油和吐温 60按照 100: 1: 1 的比例混合, 加入气流粉碎机中进行超细粉碎。 得到自身 CT密 度值为一 600HU 的、 平均粒径为 lOOnm的、 表面分散有稳定剂聚氧乙 烯氢化蓖麻油和吐温的乙烯一丙烯无规共聚物细粉。 称取细粉 10克, 聚氧乙烯氢化蓖麻油 1克和吐温 2克, 加入到 0. 2%的阿拉伯胶水凝胶 中, 制备得到总重为 100克的乙烯一丙烯无规共聚物一阿拉伯胶混悬 液。 采用实施例 1中所述的自身 CT密度值以及灌注后肠腔 CT密度值 测定方法, 对所制备的聚丙烯一甲基纤维素水凝胶阴性造影剂进行测 定。 结果表明: 所制备的阴性造影剂自身 CT密度值为一 100HU左右; 灌注后肠腔内 CT密度值降低一 100HU左右。 肠壁显示清晰, 完整, 平 滑。 肠腔图像均匀, 无可见团块。
实施例 6
本造影剂的主要成分为表面修饰的、 平均直径为 lMm的乙烯一丙 烯嵌段共聚物细粉 40%, 稳定剂聚氧乙烯氢化蓖麻油、 吐温和司盘的 混合物 5%, 羧甲基纤维素钠水凝胶 0. 8%, 其余为去离子水。 具体制备 方法为: 将乙烯一丙烯嵌段共聚物颗粒与聚氧乙烯氢化蓖麻油、 吐温 和司盘按照 100: 1: 2: 1的比例混合, 加入气流粉碎机中进行超细粉 碎。 得到自身 CT密度值为一 400HU的、 平均粒径为 lMm的、 表面分散 有稳定剂的乙烯一丙烯嵌段共聚物细粉。 称取细粉 40克, 聚氧乙烯氢 化蓖麻油 1克, 吐温 2克, 司盘 2克加入到 0. 8%的羧甲基纤维素钠 水凝胶中, 制备得到总重为 100 克的乙烯一丙烯嵌段共聚物混悬液。 采用实施例 1中所述的自身 CT密度值以及灌注后肠腔 CT密度值测定 方法, 对所制备的聚丙烯一甲基纤维素水凝胶阴性造影剂进行测定。 结果表明: 所制备的阴性造影剂自身 CT密度值为一 80HU左右; 灌注 后肠腔内 CT密度值降低一 80HU左右。 肠壁显示清晰, 完整, 平滑。 肠腔图像均匀, 无可见团块。
实施例 7
本造影剂的主要成分为通过高速搅拌产生的空气微泡 20% ( v/v ) , 稳定剂白蛋白和葡萄糖酸己内酯 0. 1%,甲基纤维素水凝胶 0. 4%, 琼脂水凝胶 0. 1%, 明胶水凝胶 0. 05%, 其余为去离子水。 其 中, 形成的气体微泡通过与水凝胶基质中的稳定剂结合而保持稳定。 具体制备方法为: 称取稳定剂 0. 1 克 (其中白蛋白和葡萄糖酸己内酯 各 0. 05克) , 加入 100毫升含 0. 4%甲基纤维素和 0. 1%琼脂和 0. 05% 明胶的水凝胶中, 混合均匀。 采用转速为 lOOOOrpm的组织勾浆器搅拌 5.分钟, 得到乳白色空气微泡一水凝胶混悬液。 采用实施例 1 中所述 的自身 CT密度值以及灌注后肠腔 CT密度值测定方法, 对所制备气体 微泡一水凝胶阴性造影剂进行测定。 结果表明: 所制备的阴性造影剂 自身 CT密度值为一 200HU左右; 灌注后肠腔内 CT密度值降低一 200HU 左右。 肠腔图像均匀, 无可见团块。
实施例 8
本造影剂主要成分是氮气微泡 50% (v/v) , 稳定剂白蛋白、 十六 烷基三甲基溴化铵和聚氧乙烯一聚氧丙烯嵌段共聚物的混合物 1. 55%, 壳聚糖水凝胶 0. 5%, 明胶水凝胶 0. 5%, 其余为去离子水。 通气条件下 高速搅泮形成的氮气微泡通过与水凝胶基质中的稳定剂结合而保持稳 定。 具体制备方法为: 称取稳定剂 1. 55克 (其中白蛋白 1克, 十六烷 基三甲基溴化铵 0. 05克, 普朗尼克 F68 0. 5克) , 加入 100毫升含 0. 5%壳聚糖和 0. 5%明胶的水凝胶中, 混合均勾。 采用转速为 lOOOOrpm 的组织匀浆器搅拌 5 分钟, 一边搅拌一边通入氮气, 得到乳白色氮气 微泡一水凝胶混悬液。 采用实施例 1中所述的自身 CT密度值以及灌注 后肠腔 CT密度值测定方法, 对所制备氮气微泡一水凝胶阴性造影剂进 行测定。 结果表明: 所制备的阴性造影剂自身 CT密度值为一 500HU左 右; 灌注后肠腔内 CT密度值降低一 500HU左右。 肠腔图像均匀, 无可 见团块。
实施例 9
本造影剂主要成分是氦气微泡 5% (v/v) , 稳定剂十二烷基磺酸钠 和普朗尼克 F68 混合物 1%, 甲基纤维素水凝胶 0. 4% , 琼脂水凝胶 0. 3% , 其余为去离子水。 通氦气条件下高速搅拌形成的氦气微泡通过 与水凝胶基质中的稳定剂结合而保持稳定。 具体制备方法为: 称取稳 定剂 1 克 (其中十二烷基磺酸钠和普朗尼克 F68 各 0. 5 克) , 加入 100毫升含 0. 4%甲基纤维素和 0. 3%琼脂的水凝胶中, 混合均匀。 采用 转速为 lOOOOrpm的组织匀桨器搅拌 3分钟, 一边搅拌一边通入氦气, 得到乳白色氦气微泡一水凝胶混悬液。 采用实施例 1中所述的自身 CT 密度值以及灌注后肠腔 CT密度值测定方法, 对所制备气体微泡一水凝 胶阴性造影剂进行测定。 结果表明: 所制备的阴性造影剂自身 CT密度 值为— 50HU左右; 灌注后肠腔内 CT密度值降低一 50HU左右。 肠腔图 像均匀, 无可见团块。 : 实施例 10
本造影剂的主要成分为六氟化硫气体微泡 10% (v/v ) ,稳定剂磷 月旨、 磷脂酸和普朗尼克 F68混合物 2%, 甲基纤维素水凝胶 0. 3%, 琼脂 7 .凝胶 0. 2%, 其余为去离子水。 通过加热气化形成的六氟化硫微泡通 过与水凝胶基质中的稳定剂结合而保持稳定。 具体制备方法为: 称取 稳定剂 2 克 (其中普朗尼克 F68 0. 8 克, 磷脂 1 克, 磷脂酸 0. 2 克) , 加入 100毫升含 0. 3%甲基纤维素和 0. 2%琼脂的水凝胶中, 混合 均匀。 外加冰浴冷却, 滴加六氟化硫液体, 并采用转速为 lOOOOrpm的 组织匀浆器搅拌 1 分钟, 得到以六氟化硫为油相的水包油乳剂。 将乳 剂放入 25°C水浴中加热, 使六氟化硫气化, 形成气体微泡, 得到乳白 色六氟化硫气体微泡一水凝胶混悬液。 采用实施例 1中所述的自身 CT 密度值以及灌注后肠腔 CT密度值测定方法, 对所制备气体微泡一水凝 胶阴性造影剂进行测定。 结果表明: 所制备的阴性造影剂自身 CT密度 值为一 290HU左右; 灌注后肠腔内 CT密度值降低一 290HU左右。 肠腔 图像均匀, 无可见团块。 本造影剂的主要成分为三氯一氟甲垸气体微泡 30% (v/v) ,稳定 剂磷脂酰乙醇胺、 磷脂酸和普朗尼克 F68混合物 5%, 羧甲基纤维素钠 水凝胶 0. 1%, 琼脂水凝胶 0. 1%, 其余为去离子水。 通过加热气化形成 的三氯一氟甲烷微泡通过与水凝胶基质中的稳定剂结合而保持稳定。 具体制备方法为: 称取稳定剂 5克 (其中普朗尼克 F68 2. 5克, 磷脂 酰乙醇胺 2克, 磷脂酸 0. 5克) , 加入 100毫升含 0. 1%羧甲基纤维素 钠和 0. 1%琼脂的水凝胶中, 混合均匀。 外加冰浴冷却, 滴加三氯一氟 甲烷液体, 并采用转速为 lOOOOrpm的组织匀桨器搅拌 3分钟, 得到以 三氯一氟甲烷为油相的水包油乳剂。 将乳剂放入 30Ό7 浴中加热, 使 三氯一氟甲垸气化, 形成气体微泡, 得到乳白色三氯一氟甲烷气体微 泡一水凝胶混悬液。 采用实施例 1中所述的自身 CT密度值以及灌注后 肠腔 CT密度值测定方法, 对所制备气体微泡一水凝胶阴性造影剂进行 测定。 结果表明: 所制备的阴性造影剂自身 CT 密度值为一 400HU 左 右; 灌注后肠腔内 CT密度值降低一 400HU左右。 肠腔图像均勾, 无可 见团块。
实施例 12
本造影剂的主要成分为二氯一氟乙烷和三氯一氟甲垸混合气体的 微泡 20% (v/v) ,稳定剂磷脂、 磷脂酰乙醇胺和普朗尼克 F68混合物 3%, 聚丙烯酸钠水凝胶 0. 05%, 琼脂水凝胶 0. 1%, 其余为去离子水。 通过加热气化形成的二氯一氟乙烷和三氯一氟甲烷混合气体微泡通过 与水凝胶基质中的稳定剂结合而保持稳定。 具体制备方法为: 称取稳 定剂 3克 (其中普朗尼克 F68 1. 5克, 磷脂酰乙醇胺 0. 5克, 磷脂 1 克) , 加入 100毫升含 0. 05%聚丙烯酸钠和 0. 1%琼脂的水凝胶中, 混 合均匀。 外加冰浴冷却, 加入二氯一氟乙烷和三氯一氟甲烷的混合 物, 并采用转速为 lOOOOrpm的组织匀浆器搅拌 3分钟, 得到以这两中 氯氟代烷烃混合物为油相的水包油乳剂。 将乳剂放入 40Ό水浴中加 热, 使氯氟代烷烃混合物气化, 形成气体微泡, 得到乳白色二氯一 E 乙烷和三氯一氟甲烷混合气体微泡一水凝胶混悬液。 采用实施例 1 中 所述的自身 CT密度值以及灌注后肠腔 CT密度值测定方法, 对所制备
11 气体微泡一水凝胶阴性造影剂进行测定。 结果表明: 所制备的阴性造 影剂自身 CT密度值为一 250HU左右; 灌注后肠腔内 CT密度值降低一 250HU左右。 肠腔图像均匀, 无可见团块。

Claims

权 利 要 求
1. 一种水性基质的消化道 CT 阴性造影剂, 其特征在于, 所述造 影剂是一种低密度物质的微纳米粒子混悬于水凝胶基质中形成的混悬 制剂, 所包含的组分及重量百分比为: 水凝胶基质 0. 01-1%, 低密度 物质的微纳米粒子 5— 50%, 稳定剂 0. 1— 5%, 其余为去离子水, 所述 的低密度物质的微纳米粒子, 为低密度气体微泡或 /和低密度固体颗 粒。
2. 根据权利要求 1所述的水性基质的消化道 CT阴性造影剂, 其 特征是, 所述的混悬制剂, 其 CT密度值在一 30HU至一 500HU之间。
3. 根据权利要求 1所述的水性基质的消化道 CT 阴性造影剂, 其 特征是, 所述的混悬制剂, 以天然或人工合成的亲水性聚合物分散或 溶涨在水中形成的粘稠状溶液或半固体物质为基质。
4. 根据权利要求 1所述的水性基质的消化道 CT 阴性造影剂, 其 特征是, 所述的水凝胶基质, 包括纤维素及其衍生物、 琼脂、 明胶、 阿拉伯胶、 西黄蓍胶、 壳聚糖及其衍生物、 聚丙烯酸钠形成的水凝胶 以及它们的任何配比组成, 其中水凝胶的浓度为 0. 01— 1%。
5. 根据权利要求 1所述的水性基质的消化道 CT阴性造影剂, 其 特征是, 所述的低密度气体微泡, 是指在 25Ό、 1 个大气压时的微小 气泡, 所含气体包括空气、 二氧化碳、 氮气、 氧气、 氟代烷烃, 氯氟 代烷烃、 硫氟代烷烃、 包含氦气、 氖气、 氩气、 氪气、 氙气在内的惰 性气体以及它们的组合, 25°C、 1 个大气压时微小气泡在水凝胶基质 中的体积浓度为 5— 50%。
6. 根据权利要求 1所述的水性基质的消化道 CT阴性造影剂, 其 特征是, 所述的低密度固体颗粒, 是指在 25°C、 1 个大气压时密度小 于水的、 CT值为一 50HU 至一 1000HU 的水不溶性聚合物颗粒, 包括聚 烯烃、 聚乙烯、 聚丙烯及其混合聚合物和组合, 粒径在 0. 05- lOOOMm 之间, 其在水凝胶基质中的浓度为 5_50%。
7. 根据权利要求 1所述的水性基质的消化道 CT阴性造影剂, 其 特征是, 所述的稳定剂, 至少选自蛋白、 葡萄糖酸己内酯、 离子和非 离子型表面活性剂、 脂质、 双亲性高聚物以及它们配比形成的混合物 中的一种。
8. 一种如权利要求 1所述的水性基质的消化道 CT阴性造影剂的 制备方法, 其特征在于, 在水凝胶基质中, 加入稳定剂, 添加或制备 低密度气体微泡或 /和低密度固体颗粒, 通过施加外力分散均勾, 形成 水性基质的消化道 CT阴性造影剂。
9. 根据权利要求 8所述的水性基质的消化道 CT阴性造影剂的制 备方法, 其特征是, 制备低密度气体微泡, 是通过对水凝胶基质在通 气的条件下施加机械力, 并均匀分散实现的。
10. 根据权利要求 8所述的水性基质的消化道 CT阴性造影剂的制备 方法, 其特征是, 制备低密度气体微泡, 在低于相转变温度时, 通过 将氟代垸烃及其氯或硫的取代物以及它们的组合物, 分散到水凝胶基 质中制备为水包油乳剂; 再加热使氟代烷烃及其氯或硫的取代物以及 它们的组合物气化而形成微小气泡。
11. 根据权利要求 8所述的水性基质的消化道 CT阴性造影剂的制备 方法, 其特征是, 低密度固体颗粒是通过粉碎或者超细粉碎, 并在粉 碎前或粉碎后对粒子表面进行亲水性修饰而制备得到的。 -
PCT/CN2006/001063 2006-05-11 2006-05-22 Milieu de contraste radiotransparent formé d'une matrice aqueuse pour la tomographie par ordinateur du tractus gastrointestinal et procédé de préparation de ce dernier WO2007131390A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/300,240 US8747812B2 (en) 2006-05-11 2006-05-22 Aqueous negative contrast medium for CT imaging of the gastrointestinal tract and the preparation method thereof
EP06741951A EP2050470A1 (en) 2006-05-11 2006-05-22 Ct negative contrast medium of aqueous matrix for digestive tract and the preparation method thereof
KR20087030173A KR101485501B1 (ko) 2006-05-11 2006-05-22 위장관의 ct 영상용 수성 음성 조영제 및 그 제조 방법
JP2009508085A JP5174011B2 (ja) 2006-05-11 2006-05-22 消化管のct撮像用の水性陰性造影剤およびその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610026434.4 2006-05-11
CNB2006100264344A CN100400105C (zh) 2006-05-11 2006-05-11 水性基质的消化道ct阴性造影剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2007131390A1 true WO2007131390A1 (fr) 2007-11-22

Family

ID=37518392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001063 WO2007131390A1 (fr) 2006-05-11 2006-05-22 Milieu de contraste radiotransparent formé d'une matrice aqueuse pour la tomographie par ordinateur du tractus gastrointestinal et procédé de préparation de ce dernier

Country Status (6)

Country Link
US (1) US8747812B2 (zh)
EP (1) EP2050470A1 (zh)
JP (1) JP5174011B2 (zh)
KR (1) KR101485501B1 (zh)
CN (1) CN100400105C (zh)
WO (1) WO2007131390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158195A1 (en) 2017-02-28 2018-09-07 Lument Ab Per-oral negative contrast agent for abdominal ct

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047843B1 (en) * 2006-07-20 2016-08-03 Kao Corporation Hydrogel particle
US8617892B2 (en) 2009-09-01 2013-12-31 The Trustees Of Columbia University In The City Of New York Microbubble devices, methods and systems
JP6463342B2 (ja) * 2014-04-10 2019-01-30 国立大学法人 岡山大学 粘性気泡液の製造装置およびそれを用いた粘性気泡液の製造方法
ES2890328T3 (es) * 2015-04-20 2022-01-18 Univ California Gas encapsulado o material de contraste de CT de vacío parcial
CN109289095B (zh) * 2018-11-23 2021-03-26 淮海工学院 一种含盐酸利多卡因的肠镜凝胶剂及其制备方法
DE112022002442T5 (de) * 2021-05-06 2024-03-07 Rigaku Corporation Röntgen-kontrastmittel und röntgen-bilderfassungsverfahren
CN115192736B (zh) * 2022-08-22 2023-08-15 内蒙古爱众医学影像有限公司 一种煤制轻质白油纳米乳型低密度造影剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233505A (zh) * 1998-04-24 1999-11-03 胡挽华 一种胃肠阴性造影剂及其生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562099A (en) * 1990-10-05 1996-10-08 Massachusetts Institute Of Technology Polymeric microparticles containing agents for imaging
US5205290A (en) * 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5874062A (en) * 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
CN1035661C (zh) * 1994-02-07 1997-08-20 中国人民解放军兰州军区乌鲁木齐总医院 低密度造影剂
US5736121A (en) * 1994-05-23 1998-04-07 Imarx Pharmaceutical Corp. Stabilized homogenous suspensions as computed tomography contrast agents
PL332820A1 (en) * 1996-10-21 1999-10-11 Nycomed Imaging As Improved contrast media
AUPQ605500A0 (en) * 2000-03-07 2000-03-30 Medefield Pty Ltd Stool marker
CN1162186C (zh) * 2000-08-01 2004-08-18 阿都沁夫 低密度胃肠用造影剂及生产方法
CN1159065C (zh) * 2001-11-19 2004-07-28 侯书君 一种螺旋ct三维仿真内镜造影剂及其生产方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233505A (zh) * 1998-04-24 1999-11-03 胡挽华 一种胃肠阴性造影剂及其生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING WEI ET AL.: "The Prospective Study on a Contrast Medium Eliminating Artifact Produced by Endogastric Fluid Level in CT Scan", JOURNAL OF PRACTICAL RADIOLOGY (CHINESE), vol. 13, no. 3, March 1997 (1997-03-01), pages 146 - 148, XP008102512 *
DOERFLER OC; RUPPERT-KOHLMAYR AJ; REITTNER P ET AL., ABDOMINAL IMAGING, vol. 28, no. 3, 2003, pages 313

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158195A1 (en) 2017-02-28 2018-09-07 Lument Ab Per-oral negative contrast agent for abdominal ct
EP3900744A1 (en) 2017-02-28 2021-10-27 Lument AB Powder for per-oral negative contrast agent

Also Published As

Publication number Publication date
EP2050470A1 (en) 2009-04-22
CN1879895A (zh) 2006-12-20
US8747812B2 (en) 2014-06-10
US20100166668A1 (en) 2010-07-01
JP2009536624A (ja) 2009-10-15
KR101485501B1 (ko) 2015-01-22
KR20090025230A (ko) 2009-03-10
CN100400105C (zh) 2008-07-09
JP5174011B2 (ja) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2007131390A1 (fr) Milieu de contraste radiotransparent formé d'une matrice aqueuse pour la tomographie par ordinateur du tractus gastrointestinal et procédé de préparation de ce dernier
DK171526B1 (da) Anvendelse af ferromagnetiske partikler til fremstilling af et partikkelformigt diagnostisk kontrastmiddel til NMR-billeddannelse
Shi et al. A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ ZrO 2 nanoparticles
Rajinikanth Preparation and characterization of gellan based floating beads of acetohydroxamic acid for eradication of
JP2009508924A (ja) シリコンを含む造影剤
JPH10502341A (ja) 微小結晶製剤用の安定剤被膜としてのブチレンオキサイド−エチレンオキサイドブロック共重合体界面活性剤
Chen et al. Double-sided effect of tumor microenvironment on platelets targeting nanoparticles
TW200900082A (en) Drug release from thermosensitive liposomes by applying an alternative magnetic field
Huang et al. Synthesis and characterization of Bi2S3 composite nanoparticles with high X-ray absorption
Wang et al. Gadolinium-loaded solid lipid nanoparticles for colorectal tumor in MR colonography
JP2000504742A (ja) コントラスト媒体
Ma et al. Three-dimensional angiography fused with CT/MRI for multimodal imaging of nanoparticles based on Ba 4 Yb 3 F 17: Lu 3+, Gd 3+
Shakeri et al. Hyaluronic acid-coated ultrasmall BiOI nanoparticles as a potentially targeted contrast agent for X-ray computed tomography
CN105664188A (zh) 一种子宫输卵管腔道超声造影剂及其制备方法
WO2024077903A1 (zh) 一种双组份胃部超声检查助显剂及其制备方法
CN115531411B (zh) 一种具备ct成像和治疗双重作用的药物及其制备方法和应用
Zhan et al. Silica cross-linked micellar core–shell nanoparticles encapsulating IR-780 with strong bright and good biocompatibility for optical imaging in vivo
WO1994011033A1 (en) Granular preparation for mri
CN109453395A (zh) 超稳定单分散的荧光磁性诊疗纳米探针及其制备方法和应用
Zhang et al. Nanobubbles loaded with carbon quantum dots for ultrasonic fluorescence dual detection
BR102016016795A2 (pt) Nanopartículas lipídicas sólidas magnéticas a base de cera de carnaúba com potencial aplicação em hipertermia magnética e imagem por ressonância magnética
CN115120747B (zh) 一种羟基磷灰石负载的四氧化三铁纳米棒及其制备方法和应用
JP2019510759A (ja) イメージングのためのビーズの調製のための方法
Hu et al. Preparation of lipid nano-bubbles as contrast agent material for tumor ultrasound diagnosis of breast cancer
CN106139168A (zh) 具有脑神经胶质瘤靶向功能的氢氧化钆纳米棒的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06741951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009508085

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12300240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006741951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087030173

Country of ref document: KR